xref: /netbsd-src/sys/kern/vfs_cache.c (revision e94a5d02693120d4ad9d909e488894e9fcf0eb76)
1 /*	$NetBSD: vfs_cache.c,v 1.159 2024/12/07 02:27:38 riastradh Exp $	*/
2 
3 /*-
4  * Copyright (c) 2008, 2019, 2020, 2023 The NetBSD Foundation, Inc.
5  * All rights reserved.
6  *
7  * This code is derived from software contributed to The NetBSD Foundation
8  * by Andrew Doran.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29  * POSSIBILITY OF SUCH DAMAGE.
30  */
31 
32 /*
33  * Copyright (c) 1989, 1993
34  *	The Regents of the University of California.  All rights reserved.
35  *
36  * Redistribution and use in source and binary forms, with or without
37  * modification, are permitted provided that the following conditions
38  * are met:
39  * 1. Redistributions of source code must retain the above copyright
40  *    notice, this list of conditions and the following disclaimer.
41  * 2. Redistributions in binary form must reproduce the above copyright
42  *    notice, this list of conditions and the following disclaimer in the
43  *    documentation and/or other materials provided with the distribution.
44  * 3. Neither the name of the University nor the names of its contributors
45  *    may be used to endorse or promote products derived from this software
46  *    without specific prior written permission.
47  *
48  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
49  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
50  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
51  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
52  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
53  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
54  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
55  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
56  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
57  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
58  * SUCH DAMAGE.
59  *
60  *	@(#)vfs_cache.c	8.3 (Berkeley) 8/22/94
61  */
62 
63 /*
64  * Name caching:
65  *
66  *	Names found by directory scans are retained in a cache for future
67  *	reference.  It is managed LRU, so frequently used names will hang
68  *	around.  The cache is indexed by hash value obtained from the name.
69  *
70  *	The name cache is the brainchild of Robert Elz and was introduced in
71  *	4.3BSD.  See "Using gprof to Tune the 4.2BSD Kernel", Marshall Kirk
72  *	McKusick, May 21 1984.
73  *
74  * Data structures:
75  *
76  *	Most Unix namecaches very sensibly use a global hash table to index
77  *	names.  The global hash table works well, but can cause concurrency
78  *	headaches for the kernel hacker.  In the NetBSD 10.0 implementation
79  *	we are not sensible, and use a per-directory data structure to index
80  *	names, but the cache otherwise functions the same.
81  *
82  *	The index is a red-black tree.  It should not be difficult to
83  *	experiment with other types of index, however note that a tree
84  *	can trivially be made to support lockless lookup.
85  *
86  *	Each cached name is stored in a struct namecache, along with a
87  *	pointer to the associated vnode (nc_vp).  Names longer than a
88  *	maximum length of NCHNAMLEN are allocated with kmem_alloc(); they
89  *	occur infrequently, and names shorter than this are stored directly
90  *	in struct namecache.  If it is a "negative" entry, (i.e. for a name
91  *	that is known NOT to exist) the vnode pointer will be NULL.
92  *
93  *	In practice this implementation is not any slower than the hash
94  *	table that preceeded it and in some cases it significantly
95  *	outperforms the hash table.  Some reasons why this might be:
96  *
97  *	- natural partitioning provided by the file system structure, which
98  *	  the prior implementation discarded (global hash table).
99  *	- worst case tree traversal of O(log n), the hash table could have
100  *	  many collisions.
101  *	- minimized cache misses & total L2/L3 CPU cache footprint; struct
102  *	  namecache and vnode_impl_t are laid out to keep cache footprint
103  *	  minimal in the lookup path; no hash table buckets to cache.
104  *	- minimized number of conditionals & string comparisons.
105  *
106  *	For a directory with 3 cached names for 3 distinct vnodes, the
107  *	various vnodes and namecache structs would be connected like this
108  *	(the root is at the bottom of the diagram):
109  *
110  *          ...
111  *           ^
112  *           |- vi_nc_tree
113  *           |
114  *      +----o----+               +---------+               +---------+
115  *      |  VDIR   |               |  VCHR   |               |  VREG   |
116  *      |  vnode  o-----+         |  vnode  o-----+         |  vnode  o------+
117  *      +---------+     |         +---------+     |         +---------+      |
118  *           ^          |              ^          |              ^           |
119  *           |- nc_vp   |- vi_nc_list  |- nc_vp   |- vi_nc_list  |- nc_vp    |
120  *           |          |              |          |              |           |
121  *      +----o----+     |         +----o----+     |         +----o----+      |
122  *  +---onamecache|<----+     +---onamecache|<----+     +---onamecache|<-----+
123  *  |   +---------+           |   +---------+           |   +---------+
124  *  |        ^                |        ^                |        ^
125  *  |        |                |        |                |        |
126  *  |        |  +----------------------+                |        |
127  *  |-nc_dvp | +-------------------------------------------------+
128  *  |        |/- vi_nc_tree   |                         |
129  *  |        |                |- nc_dvp                 |- nc_dvp
130  *  |   +----o----+           |                         |
131  *  +-->|  VDIR   |<----------+                         |
132  *      |  vnode  |<------------------------------------+
133  *      +---------+
134  *
135  *      START HERE
136  *
137  * Replacement:
138  *
139  *	As the cache becomes full, old and unused entries are purged as new
140  *	entries are added.  The synchronization overhead in maintaining a
141  *	strict ordering would be prohibitive, so the VM system's "clock" or
142  *	"second chance" page replacement algorithm is aped here.  New
143  *	entries go to the tail of the active list.  After they age out and
144  *	reach the head of the list, they are moved to the tail of the
145  *	inactive list.  Any use of the deactivated cache entry reactivates
146  *	it, saving it from impending doom; if not reactivated, the entry
147  *	eventually reaches the head of the inactive list and is purged.
148  *
149  * Concurrency:
150  *
151  *	From a performance perspective, cache_lookup(nameiop == LOOKUP) is
152  *	what really matters; insertion of new entries with cache_enter() is
153  *	comparatively infrequent, and overshadowed by the cost of expensive
154  *	file system metadata operations (which may involve disk I/O).  We
155  *	therefore want to make everything simplest in the lookup path.
156  *
157  *	struct namecache is mostly stable except for list and tree related
158  *	entries, changes to which don't affect the cached name or vnode.
159  *	For changes to name+vnode, entries are purged in preference to
160  *	modifying them.
161  *
162  *	Read access to namecache entries is made via tree, list, or LRU
163  *	list.  A lock corresponding to the direction of access should be
164  *	held.  See definition of "struct namecache" in src/sys/namei.src,
165  *	and the definition of "struct vnode" for the particulars.
166  *
167  *	Per-CPU statistics, and LRU list totals are read unlocked, since an
168  *	approximate value is OK.  We maintain 32-bit sized per-CPU counters
169  *	and 64-bit global counters since 32-bit sized counters can be
170  *	observed locklessly while the global counters are protected by a
171  *	mutex.
172  *
173  *	The lock order is:
174  *
175  *	1) vi->vi_nc_lock	(tree or parent -> child direction,
176  *				 used during forward lookup)
177  *
178  *	2) vi->vi_nc_listlock	(list or child -> parent direction,
179  *				 used during reverse lookup)
180  *
181  *	3) cache_lru_lock	(LRU list direction, used during reclaim)
182  */
183 
184 #define __NAMECACHE_PRIVATE
185 
186 #include <sys/cdefs.h>
187 __KERNEL_RCSID(0, "$NetBSD: vfs_cache.c,v 1.159 2024/12/07 02:27:38 riastradh Exp $");
188 
189 #ifdef _KERNEL_OPT
190 #include "opt_ddb.h"
191 #include "opt_dtrace.h"
192 #endif
193 
194 #include <sys/param.h>
195 #include <sys/types.h>
196 
197 #include <sys/atomic.h>
198 #include <sys/callout.h>
199 #include <sys/cpu.h>
200 #include <sys/errno.h>
201 #include <sys/evcnt.h>
202 #include <sys/hash.h>
203 #include <sys/kernel.h>
204 #include <sys/mount.h>
205 #include <sys/mutex.h>
206 #include <sys/namei.h>
207 #include <sys/param.h>
208 #include <sys/pool.h>
209 #include <sys/sdt.h>
210 #include <sys/sysctl.h>
211 #include <sys/systm.h>
212 #include <sys/time.h>
213 #include <sys/vnode_impl.h>
214 
215 #include <miscfs/genfs/genfs.h>
216 
217 /*
218  * Assert that data structure layout hasn't changed unintentionally.
219  */
220 #ifdef _LP64
221 CTASSERT(sizeof(struct namecache) == 128);
222 #else
223 CTASSERT(sizeof(struct namecache) == 64);
224 #endif
225 CTASSERT(NC_NLEN_MASK >= MAXPATHLEN);
226 
227 static void	cache_activate(struct namecache *);
228 static void	cache_update_stats(void *);
229 static int	cache_compare_nodes(void *, const void *, const void *);
230 static void	cache_deactivate(void);
231 static void	cache_reclaim(void);
232 static int	cache_stat_sysctl(SYSCTLFN_ARGS);
233 
234 /*
235  * Global pool cache.
236  */
237 static pool_cache_t cache_pool __read_mostly;
238 
239 /*
240  * LRU replacement.
241  */
242 enum cache_lru_id {
243 	LRU_ACTIVE,
244 	LRU_INACTIVE,
245 	LRU_COUNT
246 };
247 
248 static struct {
249 	TAILQ_HEAD(, namecache)	list[LRU_COUNT];
250 	u_int			count[LRU_COUNT];
251 } cache_lru __cacheline_aligned;
252 
253 static kmutex_t cache_lru_lock __cacheline_aligned;
254 
255 /*
256  * Cache effectiveness statistics.  nchstats holds system-wide total.
257  */
258 struct nchstats	nchstats;
259 struct nchstats_percpu _NAMEI_CACHE_STATS(uint32_t);
260 struct nchcpu {
261 	struct nchstats_percpu cur;
262 	struct nchstats_percpu last;
263 };
264 static callout_t cache_stat_callout;
265 static kmutex_t cache_stat_lock __cacheline_aligned;
266 
267 #define	COUNT(f) do { \
268 	lwp_t *l = curlwp; \
269 	KPREEMPT_DISABLE(l); \
270 	struct nchcpu *nchcpu = curcpu()->ci_data.cpu_nch; \
271 	nchcpu->cur.f++; \
272 	KPREEMPT_ENABLE(l); \
273 } while (/* CONSTCOND */ 0);
274 
275 #define	UPDATE(nchcpu, f) do { \
276 	uint32_t cur = atomic_load_relaxed(&nchcpu->cur.f); \
277 	nchstats.f += (uint32_t)(cur - nchcpu->last.f); \
278 	nchcpu->last.f = cur; \
279 } while (/* CONSTCOND */ 0)
280 
281 /*
282  * Tunables.  cache_maxlen replaces the historical doingcache:
283  * set it zero to disable caching for debugging purposes.
284  */
285 int cache_lru_maxdeact __read_mostly = 2;	/* max # to deactivate */
286 int cache_lru_maxscan __read_mostly = 64;	/* max # to scan/reclaim */
287 int cache_maxlen __read_mostly = NC_NLEN_MASK;	/* max name length to cache */
288 int cache_stat_interval __read_mostly = 300;	/* in seconds */
289 
290 /*
291  * sysctl stuff.
292  */
293 static struct	sysctllog *cache_sysctllog;
294 
295 /*
296  * This is a dummy name that cannot usually occur anywhere in the cache nor
297  * file system.  It's used when caching the root vnode of mounted file
298  * systems.  The name is attached to the directory that the file system is
299  * mounted on.
300  */
301 static const char cache_mp_name[] = "";
302 static const int cache_mp_nlen = sizeof(cache_mp_name) - 1;
303 
304 /*
305  * Red-black tree stuff.
306  */
307 static const rb_tree_ops_t cache_rbtree_ops = {
308 	.rbto_compare_nodes = cache_compare_nodes,
309 	.rbto_compare_key = cache_compare_nodes,
310 	.rbto_node_offset = offsetof(struct namecache, nc_tree),
311 	.rbto_context = NULL
312 };
313 
314 /*
315  * dtrace probes.
316  */
317 SDT_PROBE_DEFINE1(vfs, namecache, invalidate, done, "struct vnode *");
318 SDT_PROBE_DEFINE1(vfs, namecache, purge, parents, "struct vnode *");
319 SDT_PROBE_DEFINE1(vfs, namecache, purge, children, "struct vnode *");
320 SDT_PROBE_DEFINE2(vfs, namecache, purge, name, "char *", "size_t");
321 SDT_PROBE_DEFINE1(vfs, namecache, purge, vfs, "struct mount *");
322 SDT_PROBE_DEFINE3(vfs, namecache, lookup, hit, "struct vnode *",
323     "char *", "size_t");
324 SDT_PROBE_DEFINE3(vfs, namecache, lookup, miss, "struct vnode *",
325     "char *", "size_t");
326 SDT_PROBE_DEFINE3(vfs, namecache, lookup, toolong, "struct vnode *",
327     "char *", "size_t");
328 SDT_PROBE_DEFINE2(vfs, namecache, revlookup, success, "struct vnode *",
329      "struct vnode *");
330 SDT_PROBE_DEFINE2(vfs, namecache, revlookup, fail, "struct vnode *",
331      "int");
332 SDT_PROBE_DEFINE2(vfs, namecache, prune, done, "int", "int");
333 SDT_PROBE_DEFINE3(vfs, namecache, enter, toolong, "struct vnode *",
334     "char *", "size_t");
335 SDT_PROBE_DEFINE3(vfs, namecache, enter, done, "struct vnode *",
336     "char *", "size_t");
337 
338 /*
339  * rbtree: compare two nodes.
340  */
341 static int
342 cache_compare_nodes(void *context, const void *n1, const void *n2)
343 {
344 	const struct namecache *nc1 = n1;
345 	const struct namecache *nc2 = n2;
346 
347 	if (nc1->nc_key < nc2->nc_key) {
348 		return -1;
349 	}
350 	if (nc1->nc_key > nc2->nc_key) {
351 		return 1;
352 	}
353 	KASSERT(NC_NLEN(nc1) == NC_NLEN(nc2));
354 	return memcmp(nc1->nc_name, nc2->nc_name, NC_NLEN(nc1));
355 }
356 
357 /*
358  * Compute a key value for the given name.  The name length is encoded in
359  * the key value to try and improve uniqueness, and so that length doesn't
360  * need to be compared separately for string comparisons.
361  */
362 static uintptr_t
363 cache_key(const char *name, size_t nlen)
364 {
365 	uintptr_t key;
366 
367 	KASSERT((nlen & ~NC_NLEN_MASK) == 0);
368 
369 	key = hash32_buf(name, nlen, HASH32_STR_INIT);
370 	return (key << NC_NLEN_BITS) | (uintptr_t)nlen;
371 }
372 
373 /*
374  * Remove an entry from the cache.  vi_nc_lock must be held, and if dir2node
375  * is true, then we're locking in the conventional direction and the list
376  * lock will be acquired when removing the entry from the vnode list.
377  */
378 static void
379 cache_remove(struct namecache *ncp, const bool dir2node)
380 {
381 	struct vnode *vp, *dvp = ncp->nc_dvp;
382 	vnode_impl_t *dvi = VNODE_TO_VIMPL(dvp);
383 	size_t namelen = NC_NLEN(ncp);
384 
385 	KASSERT(rw_write_held(&dvi->vi_nc_lock));
386 	KASSERT(cache_key(ncp->nc_name, namelen) == ncp->nc_key);
387 	KASSERT(rb_tree_find_node(&dvi->vi_nc_tree, ncp) == ncp);
388 
389 	SDT_PROBE(vfs, namecache, invalidate, done, ncp, 0, 0, 0, 0);
390 
391 	/*
392 	 * Remove from the vnode's list.  This excludes cache_revlookup(),
393 	 * and then it's safe to remove from the LRU lists.
394 	 */
395 	if ((vp = ncp->nc_vp) != NULL) {
396 		vnode_impl_t *vi = VNODE_TO_VIMPL(vp);
397 		if (__predict_true(dir2node)) {
398 			rw_enter(&vi->vi_nc_listlock, RW_WRITER);
399 			TAILQ_REMOVE(&vi->vi_nc_list, ncp, nc_list);
400 			rw_exit(&vi->vi_nc_listlock);
401 		} else {
402 			TAILQ_REMOVE(&vi->vi_nc_list, ncp, nc_list);
403 		}
404 	}
405 
406 	/* Remove from the directory's rbtree. */
407 	rb_tree_remove_node(&dvi->vi_nc_tree, ncp);
408 
409 	/* Remove from the LRU lists. */
410 	mutex_enter(&cache_lru_lock);
411 	TAILQ_REMOVE(&cache_lru.list[ncp->nc_lrulist], ncp, nc_lru);
412 	cache_lru.count[ncp->nc_lrulist]--;
413 	mutex_exit(&cache_lru_lock);
414 
415 	/* Finally, free it. */
416 	if (namelen > NCHNAMLEN) {
417 		size_t sz = offsetof(struct namecache, nc_name[namelen]);
418 		kmem_free(ncp, sz);
419 	} else {
420 		pool_cache_put(cache_pool, ncp);
421 	}
422 }
423 
424 /*
425  * Find a single cache entry and return it.  vi_nc_lock must be held.
426  */
427 static struct namecache * __noinline
428 cache_lookup_entry(struct vnode *dvp, const char *name, size_t namelen,
429     uintptr_t key)
430 {
431 	vnode_impl_t *dvi = VNODE_TO_VIMPL(dvp);
432 	struct rb_node *node = dvi->vi_nc_tree.rbt_root;
433 	struct namecache *ncp;
434 	enum cache_lru_id lrulist;
435 	int diff;
436 
437 	KASSERT(namelen <= MAXPATHLEN);
438 	KASSERT(rw_lock_held(&dvi->vi_nc_lock));
439 
440 	/*
441 	 * Search the RB tree for the key.  This is an inlined lookup
442 	 * tailored for exactly what's needed here that turns out to be
443 	 * quite a bit faster than using rb_tree_find_node().
444 	 *
445 	 * For a matching key memcmp() needs to be called once to confirm
446 	 * that the correct name has been found.  Very rarely there will be
447 	 * a key value collision and the search will continue.
448 	 */
449 	for (;;) {
450 		if (__predict_false(RB_SENTINEL_P(node))) {
451 			return NULL;
452 		}
453 		ncp = (struct namecache *)node;
454 		KASSERT((void *)&ncp->nc_tree == (void *)ncp);
455 		KASSERT(ncp->nc_dvp == dvp);
456 		if (ncp->nc_key == key) {
457 			KASSERT(NC_NLEN(ncp) == namelen);
458 			diff = memcmp(ncp->nc_name, name, namelen);
459 			if (__predict_true(diff == 0)) {
460 				break;
461 			}
462 			node = node->rb_nodes[diff < 0];
463 		} else {
464 			node = node->rb_nodes[ncp->nc_key < key];
465 		}
466 	}
467 
468 	/*
469 	 * If the entry is on the wrong LRU list, requeue it.  This is an
470 	 * unlocked check, but it will rarely be wrong and even then there
471 	 * will be no harm caused.
472 	 */
473 	lrulist = atomic_load_relaxed(&ncp->nc_lrulist);
474 	if (__predict_false(lrulist != LRU_ACTIVE)) {
475 		cache_activate(ncp);
476 	}
477 	return ncp;
478 }
479 
480 /*
481  * Look for a the name in the cache. We don't do this
482  * if the segment name is long, simply so the cache can avoid
483  * holding long names (which would either waste space, or
484  * add greatly to the complexity).
485  *
486  * Lookup is called with DVP pointing to the directory to search,
487  * and CNP providing the name of the entry being sought: cn_nameptr
488  * is the name, cn_namelen is its length, and cn_flags is the flags
489  * word from the namei operation.
490  *
491  * DVP must be locked.
492  *
493  * There are three possible non-error return states:
494  *    1. Nothing was found in the cache. Nothing is known about
495  *       the requested name.
496  *    2. A negative entry was found in the cache, meaning that the
497  *       requested name definitely does not exist.
498  *    3. A positive entry was found in the cache, meaning that the
499  *       requested name does exist and that we are providing the
500  *       vnode.
501  * In these cases the results are:
502  *    1. 0 returned; VN is set to NULL.
503  *    2. 1 returned; VN is set to NULL.
504  *    3. 1 returned; VN is set to the vnode found.
505  *
506  * The additional result argument ISWHT is set to zero, unless a
507  * negative entry is found that was entered as a whiteout, in which
508  * case ISWHT is set to one.
509  *
510  * The ISWHT_RET argument pointer may be null. In this case an
511  * assertion is made that the whiteout flag is not set. File systems
512  * that do not support whiteouts can/should do this.
513  *
514  * Filesystems that do support whiteouts should add ISWHITEOUT to
515  * cnp->cn_flags if ISWHT comes back nonzero.
516  *
517  * When a vnode is returned, it is locked, as per the vnode lookup
518  * locking protocol.
519  *
520  * There is no way for this function to fail, in the sense of
521  * generating an error that requires aborting the namei operation.
522  *
523  * (Prior to October 2012, this function returned an integer status,
524  * and a vnode, and mucked with the flags word in CNP for whiteouts.
525  * The integer status was -1 for "nothing found", ENOENT for "a
526  * negative entry found", 0 for "a positive entry found", and possibly
527  * other errors, and the value of VN might or might not have been set
528  * depending on what error occurred.)
529  */
530 bool
531 cache_lookup(struct vnode *dvp, const char *name, size_t namelen,
532 	     uint32_t nameiop, uint32_t cnflags,
533 	     int *iswht_ret, struct vnode **vn_ret)
534 {
535 	vnode_impl_t *dvi = VNODE_TO_VIMPL(dvp);
536 	struct namecache *ncp;
537 	struct vnode *vp;
538 	uintptr_t key;
539 	int error;
540 	bool hit;
541 	krw_t op;
542 
543 	KASSERT(namelen != cache_mp_nlen || name == cache_mp_name);
544 
545 	/* Establish default result values */
546 	if (iswht_ret != NULL) {
547 		*iswht_ret = 0;
548 	}
549 	*vn_ret = NULL;
550 
551 	if (__predict_false(namelen > cache_maxlen)) {
552 		SDT_PROBE(vfs, namecache, lookup, toolong, dvp,
553 		    name, namelen, 0, 0);
554 		COUNT(ncs_long);
555 		return false;
556 	}
557 
558 	/* Compute the key up front - don't need the lock. */
559 	key = cache_key(name, namelen);
560 
561 	/* Could the entry be purged below? */
562 	if ((cnflags & ISLASTCN) != 0 &&
563 	    ((cnflags & MAKEENTRY) == 0 || nameiop == CREATE)) {
564 		op = RW_WRITER;
565 	} else {
566 		op = RW_READER;
567 	}
568 
569 	/* Now look for the name. */
570 	rw_enter(&dvi->vi_nc_lock, op);
571 	ncp = cache_lookup_entry(dvp, name, namelen, key);
572 	if (__predict_false(ncp == NULL)) {
573 		rw_exit(&dvi->vi_nc_lock);
574 		COUNT(ncs_miss);
575 		SDT_PROBE(vfs, namecache, lookup, miss, dvp,
576 		    name, namelen, 0, 0);
577 		return false;
578 	}
579 	if (__predict_false((cnflags & MAKEENTRY) == 0)) {
580 		/*
581 		 * Last component and we are renaming or deleting,
582 		 * the cache entry is invalid, or otherwise don't
583 		 * want cache entry to exist.
584 		 */
585 		KASSERT((cnflags & ISLASTCN) != 0);
586 		cache_remove(ncp, true);
587 		rw_exit(&dvi->vi_nc_lock);
588 		COUNT(ncs_badhits);
589 		return false;
590 	}
591 	if ((vp = ncp->nc_vp) == NULL) {
592 		if (iswht_ret != NULL) {
593 			/*
594 			 * Restore the ISWHITEOUT flag saved earlier.
595 			 */
596 			*iswht_ret = ncp->nc_whiteout;
597 		} else {
598 			KASSERT(!ncp->nc_whiteout);
599 		}
600 		if (nameiop == CREATE && (cnflags & ISLASTCN) != 0) {
601 			/*
602 			 * Last component and we are preparing to create
603 			 * the named object, so flush the negative cache
604 			 * entry.
605 			 */
606 			COUNT(ncs_badhits);
607 			cache_remove(ncp, true);
608 			hit = false;
609 		} else {
610 			COUNT(ncs_neghits);
611 			SDT_PROBE(vfs, namecache, lookup, hit, dvp, name,
612 			    namelen, 0, 0);
613 			/* found neg entry; vn is already null from above */
614 			hit = true;
615 		}
616 		rw_exit(&dvi->vi_nc_lock);
617 		return hit;
618 	}
619 	error = vcache_tryvget(vp);
620 	rw_exit(&dvi->vi_nc_lock);
621 	if (error) {
622 		KASSERT(error == EBUSY);
623 		/*
624 		 * This vnode is being cleaned out.
625 		 * XXX badhits?
626 		 */
627 		COUNT(ncs_falsehits);
628 		return false;
629 	}
630 
631 	COUNT(ncs_goodhits);
632 	SDT_PROBE(vfs, namecache, lookup, hit, dvp, name, namelen, 0, 0);
633 	/* found it */
634 	*vn_ret = vp;
635 	return true;
636 }
637 
638 /*
639  * Version of the above without the nameiop argument, for NFS.
640  */
641 bool
642 cache_lookup_raw(struct vnode *dvp, const char *name, size_t namelen,
643 		 uint32_t cnflags,
644 		 int *iswht_ret, struct vnode **vn_ret)
645 {
646 
647 	return cache_lookup(dvp, name, namelen, LOOKUP, cnflags | MAKEENTRY,
648 	    iswht_ret, vn_ret);
649 }
650 
651 /*
652  * Used by namei() to walk down a path, component by component by looking up
653  * names in the cache.  The node locks are chained along the way: a parent's
654  * lock is not dropped until the child's is acquired.
655  */
656 bool
657 cache_lookup_linked(struct vnode *dvp, const char *name, size_t namelen,
658 		    struct vnode **vn_ret, krwlock_t **plock,
659 		    kauth_cred_t cred)
660 {
661 	vnode_impl_t *dvi = VNODE_TO_VIMPL(dvp);
662 	struct namecache *ncp;
663 	krwlock_t *oldlock, *newlock;
664 	struct vnode *vp;
665 	uintptr_t key;
666 	int error;
667 
668 	KASSERT(namelen != cache_mp_nlen || name == cache_mp_name);
669 
670 	/* If disabled, or file system doesn't support this, bail out. */
671 	if (__predict_false((dvp->v_mount->mnt_iflag & IMNT_NCLOOKUP) == 0)) {
672 		return false;
673 	}
674 
675 	if (__predict_false(namelen > cache_maxlen)) {
676 		COUNT(ncs_long);
677 		return false;
678 	}
679 
680 	/* Compute the key up front - don't need the lock. */
681 	key = cache_key(name, namelen);
682 
683 	/*
684 	 * Acquire the directory lock.  Once we have that, we can drop the
685 	 * previous one (if any).
686 	 *
687 	 * The two lock holds mean that the directory can't go away while
688 	 * here: the directory must be purged with cache_purge() before
689 	 * being freed, and both parent & child's vi_nc_lock must be taken
690 	 * before that point is passed.
691 	 *
692 	 * However if there's no previous lock, like at the root of the
693 	 * chain, then "dvp" must be referenced to prevent dvp going away
694 	 * before we get its lock.
695 	 *
696 	 * Note that the two locks can be the same if looking up a dot, for
697 	 * example: /usr/bin/.  If looking up the parent (..) we can't wait
698 	 * on the lock as child -> parent is the wrong direction.
699 	 */
700 	if (*plock != &dvi->vi_nc_lock) {
701 		oldlock = *plock;
702 		newlock = &dvi->vi_nc_lock;
703 		if (!rw_tryenter(&dvi->vi_nc_lock, RW_READER)) {
704 			return false;
705 		}
706 	} else {
707 		oldlock = NULL;
708 		newlock = NULL;
709 		if (*plock == NULL) {
710 			KASSERT(vrefcnt(dvp) > 0);
711 		}
712 	}
713 
714 	/*
715 	 * First up check if the user is allowed to look up files in this
716 	 * directory.
717 	 */
718 	if (cred != FSCRED) {
719 		if (dvi->vi_nc_mode == VNOVAL) {
720 			if (newlock != NULL) {
721 				rw_exit(newlock);
722 			}
723 			return false;
724 		}
725 		KASSERT(dvi->vi_nc_uid != VNOVAL);
726 		KASSERT(dvi->vi_nc_gid != VNOVAL);
727 		error = kauth_authorize_vnode(cred,
728 		    KAUTH_ACCESS_ACTION(VEXEC,
729 			dvp->v_type, dvi->vi_nc_mode & ALLPERMS),
730 		    dvp, NULL,
731 		    genfs_can_access(dvp, cred, dvi->vi_nc_uid, dvi->vi_nc_gid,
732 			dvi->vi_nc_mode & ALLPERMS, NULL, VEXEC));
733 		if (error != 0) {
734 			if (newlock != NULL) {
735 				rw_exit(newlock);
736 			}
737 			COUNT(ncs_denied);
738 			return false;
739 		}
740 	}
741 
742 	/*
743 	 * Now look for a matching cache entry.
744 	 */
745 	ncp = cache_lookup_entry(dvp, name, namelen, key);
746 	if (__predict_false(ncp == NULL)) {
747 		if (newlock != NULL) {
748 			rw_exit(newlock);
749 		}
750 		COUNT(ncs_miss);
751 		SDT_PROBE(vfs, namecache, lookup, miss, dvp,
752 		    name, namelen, 0, 0);
753 		return false;
754 	}
755 	if ((vp = ncp->nc_vp) == NULL) {
756 		/* found negative entry; vn is already null from above */
757 		KASSERT(namelen != cache_mp_nlen);
758 		KASSERT(name != cache_mp_name);
759 		COUNT(ncs_neghits);
760 	} else {
761 		COUNT(ncs_goodhits); /* XXX can be "badhits" */
762 	}
763 	SDT_PROBE(vfs, namecache, lookup, hit, dvp, name, namelen, 0, 0);
764 
765 	/*
766 	 * Return with the directory lock still held.  It will either be
767 	 * returned to us with another call to cache_lookup_linked() when
768 	 * looking up the next component, or the caller will release it
769 	 * manually when finished.
770 	 */
771 	if (oldlock) {
772 		rw_exit(oldlock);
773 	}
774 	if (newlock) {
775 		*plock = newlock;
776 	}
777 	*vn_ret = vp;
778 	return true;
779 }
780 
781 /*
782  * Scan cache looking for name of directory entry pointing at vp.
783  * Will not search for "." or "..".
784  *
785  * If the lookup succeeds the vnode is referenced and stored in dvpp.
786  *
787  * If bufp is non-NULL, also place the name in the buffer which starts
788  * at bufp, immediately before *bpp, and move bpp backwards to point
789  * at the start of it.  (Yes, this is a little baroque, but it's done
790  * this way to cater to the whims of getcwd).
791  *
792  * Returns 0 on success, -1 on cache miss, positive errno on failure.
793  */
794 int
795 cache_revlookup(struct vnode *vp, struct vnode **dvpp, char **bpp, char *bufp,
796     bool checkaccess, accmode_t accmode)
797 {
798 	vnode_impl_t *vi = VNODE_TO_VIMPL(vp);
799 	struct namecache *ncp;
800 	enum cache_lru_id lrulist;
801 	struct vnode *dvp;
802 	int error, nlen;
803 	char *bp;
804 
805 	KASSERT(vp != NULL);
806 
807 	if (cache_maxlen == 0)
808 		goto out;
809 
810 	rw_enter(&vi->vi_nc_listlock, RW_READER);
811 	if (checkaccess) {
812 		/*
813 		 * Check if the user is allowed to see.  NOTE: this is
814 		 * checking for access on the "wrong" directory.  getcwd()
815 		 * wants to see that there is access on every component
816 		 * along the way, not that there is access to any individual
817 		 * component.  Don't use this to check you can look in vp.
818 		 *
819 		 * I don't like it, I didn't come up with it, don't blame me!
820 		 */
821 		if (vi->vi_nc_mode == VNOVAL) {
822 			rw_exit(&vi->vi_nc_listlock);
823 			return -1;
824 		}
825 		KASSERT(vi->vi_nc_uid != VNOVAL);
826 		KASSERT(vi->vi_nc_gid != VNOVAL);
827 		error = kauth_authorize_vnode(kauth_cred_get(),
828 		    KAUTH_ACCESS_ACTION(VEXEC, vp->v_type, vi->vi_nc_mode &
829 			ALLPERMS),
830 		    vp, NULL, genfs_can_access(vp, curlwp->l_cred,
831 			vi->vi_nc_uid, vi->vi_nc_gid,
832 			vi->vi_nc_mode & ALLPERMS,
833 			NULL, accmode));
834 		if (error != 0) {
835 			rw_exit(&vi->vi_nc_listlock);
836 			COUNT(ncs_denied);
837 			return SET_ERROR(EACCES);
838 		}
839 	}
840 	TAILQ_FOREACH(ncp, &vi->vi_nc_list, nc_list) {
841 		KASSERT(ncp->nc_vp == vp);
842 		KASSERT(ncp->nc_dvp != NULL);
843 		nlen = NC_NLEN(ncp);
844 
845 		/*
846 		 * Ignore mountpoint entries.
847 		 */
848 		if (nlen == cache_mp_nlen) {
849 			continue;
850 		}
851 
852 		/*
853 		 * The queue is partially sorted.  Once we hit dots, nothing
854 		 * else remains but dots and dotdots, so bail out.
855 		 */
856 		if (ncp->nc_name[0] == '.') {
857 			if (nlen == 1 ||
858 			    (nlen == 2 && ncp->nc_name[1] == '.')) {
859 				break;
860 			}
861 		}
862 
863 		/*
864 		 * Record a hit on the entry.  This is an unlocked read but
865 		 * even if wrong it doesn't matter too much.
866 		 */
867 		lrulist = atomic_load_relaxed(&ncp->nc_lrulist);
868 		if (lrulist != LRU_ACTIVE) {
869 			cache_activate(ncp);
870 		}
871 
872 		if (bufp) {
873 			bp = *bpp;
874 			bp -= nlen;
875 			if (bp <= bufp) {
876 				*dvpp = NULL;
877 				rw_exit(&vi->vi_nc_listlock);
878 				SDT_PROBE(vfs, namecache, revlookup,
879 				    fail, vp, ERANGE, 0, 0, 0);
880 				return SET_ERROR(ERANGE);
881 			}
882 			memcpy(bp, ncp->nc_name, nlen);
883 			*bpp = bp;
884 		}
885 
886 		dvp = ncp->nc_dvp;
887 		error = vcache_tryvget(dvp);
888 		rw_exit(&vi->vi_nc_listlock);
889 		if (error) {
890 			KASSERT(error == EBUSY);
891 			if (bufp)
892 				(*bpp) += nlen;
893 			*dvpp = NULL;
894 			SDT_PROBE(vfs, namecache, revlookup, fail, vp,
895 			    error, 0, 0, 0);
896 			return -1;
897 		}
898 		*dvpp = dvp;
899 		SDT_PROBE(vfs, namecache, revlookup, success, vp, dvp,
900 		    0, 0, 0);
901 		COUNT(ncs_revhits);
902 		return 0;
903 	}
904 	rw_exit(&vi->vi_nc_listlock);
905 	COUNT(ncs_revmiss);
906 out:
907 	*dvpp = NULL;
908 	return -1;
909 }
910 
911 /*
912  * Add an entry to the cache.
913  */
914 void
915 cache_enter(struct vnode *dvp, struct vnode *vp,
916 	    const char *name, size_t namelen, uint32_t cnflags)
917 {
918 	vnode_impl_t *dvi = VNODE_TO_VIMPL(dvp);
919 	struct namecache *ncp, *oncp;
920 	int total;
921 
922 	KASSERT(namelen != cache_mp_nlen || name == cache_mp_name);
923 
924 	/* First, check whether we can/should add a cache entry. */
925 	if ((cnflags & MAKEENTRY) == 0 ||
926 	    __predict_false(namelen > cache_maxlen)) {
927 		SDT_PROBE(vfs, namecache, enter, toolong, vp, name, namelen,
928 		    0, 0);
929 		return;
930 	}
931 
932 	SDT_PROBE(vfs, namecache, enter, done, vp, name, namelen, 0, 0);
933 
934 	/*
935 	 * Reclaim some entries if over budget.  This is an unlocked check,
936 	 * but it doesn't matter.  Just need to catch up with things
937 	 * eventually: it doesn't matter if we go over temporarily.
938 	 */
939 	total = atomic_load_relaxed(&cache_lru.count[LRU_ACTIVE]);
940 	total += atomic_load_relaxed(&cache_lru.count[LRU_INACTIVE]);
941 	if (__predict_false(total > desiredvnodes)) {
942 		cache_reclaim();
943 	}
944 
945 	/* Now allocate a fresh entry. */
946 	if (__predict_true(namelen <= NCHNAMLEN)) {
947 		ncp = pool_cache_get(cache_pool, PR_WAITOK);
948 	} else {
949 		size_t sz = offsetof(struct namecache, nc_name[namelen]);
950 		ncp = kmem_alloc(sz, KM_SLEEP);
951 	}
952 
953 	/*
954 	 * Fill in cache info.  For negative hits, save the ISWHITEOUT flag
955 	 * so we can restore it later when the cache entry is used again.
956 	 */
957 	ncp->nc_vp = vp;
958 	ncp->nc_dvp = dvp;
959 	ncp->nc_key = cache_key(name, namelen);
960 	ncp->nc_whiteout = ((cnflags & ISWHITEOUT) != 0);
961 	memcpy(ncp->nc_name, name, namelen);
962 
963 	/*
964 	 * Insert to the directory.  Concurrent lookups may race for a cache
965 	 * entry.  If there's a entry there already, purge it.
966 	 */
967 	rw_enter(&dvi->vi_nc_lock, RW_WRITER);
968 	oncp = rb_tree_insert_node(&dvi->vi_nc_tree, ncp);
969 	if (oncp != ncp) {
970 		KASSERT(oncp->nc_key == ncp->nc_key);
971 		KASSERT(NC_NLEN(oncp) == NC_NLEN(ncp));
972 		KASSERT(memcmp(oncp->nc_name, name, namelen) == 0);
973 		cache_remove(oncp, true);
974 		oncp = rb_tree_insert_node(&dvi->vi_nc_tree, ncp);
975 		KASSERT(oncp == ncp);
976 	}
977 
978 	/*
979 	 * With the directory lock still held, insert to the tail of the
980 	 * ACTIVE LRU list (new) and take the opportunity to incrementally
981 	 * balance the lists.
982 	 */
983 	mutex_enter(&cache_lru_lock);
984 	ncp->nc_lrulist = LRU_ACTIVE;
985 	cache_lru.count[LRU_ACTIVE]++;
986 	TAILQ_INSERT_TAIL(&cache_lru.list[LRU_ACTIVE], ncp, nc_lru);
987 	cache_deactivate();
988 	mutex_exit(&cache_lru_lock);
989 
990 	/*
991 	 * Finally, insert to the vnode and unlock.  With everything set up
992 	 * it's safe to let cache_revlookup() see the entry.  Partially sort
993 	 * the per-vnode list: dots go to back so cache_revlookup() doesn't
994 	 * have to consider them.
995 	 */
996 	if (vp != NULL) {
997 		vnode_impl_t *vi = VNODE_TO_VIMPL(vp);
998 		rw_enter(&vi->vi_nc_listlock, RW_WRITER);
999 		if ((namelen == 1 && name[0] == '.') ||
1000 		    (namelen == 2 && name[0] == '.' && name[1] == '.')) {
1001 			TAILQ_INSERT_TAIL(&vi->vi_nc_list, ncp, nc_list);
1002 		} else {
1003 			TAILQ_INSERT_HEAD(&vi->vi_nc_list, ncp, nc_list);
1004 		}
1005 		rw_exit(&vi->vi_nc_listlock);
1006 	}
1007 	rw_exit(&dvi->vi_nc_lock);
1008 }
1009 
1010 /*
1011  * Set identity info in cache for a vnode.  We only care about directories
1012  * so ignore other updates.  The cached info may be marked invalid if the
1013  * inode has an ACL.
1014  */
1015 void
1016 cache_enter_id(struct vnode *vp, mode_t mode, uid_t uid, gid_t gid, bool valid)
1017 {
1018 	vnode_impl_t *vi = VNODE_TO_VIMPL(vp);
1019 
1020 	if (vp->v_type == VDIR) {
1021 		/* Grab both locks, for forward & reverse lookup. */
1022 		rw_enter(&vi->vi_nc_lock, RW_WRITER);
1023 		rw_enter(&vi->vi_nc_listlock, RW_WRITER);
1024 		if (valid) {
1025 			vi->vi_nc_mode = mode;
1026 			vi->vi_nc_uid = uid;
1027 			vi->vi_nc_gid = gid;
1028 		} else {
1029 			vi->vi_nc_mode = VNOVAL;
1030 			vi->vi_nc_uid = VNOVAL;
1031 			vi->vi_nc_gid = VNOVAL;
1032 		}
1033 		rw_exit(&vi->vi_nc_listlock);
1034 		rw_exit(&vi->vi_nc_lock);
1035 	}
1036 }
1037 
1038 /*
1039  * Return true if we have identity for the given vnode, and use as an
1040  * opportunity to confirm that everything squares up.
1041  *
1042  * Because of shared code, some file systems could provide partial
1043  * information, missing some updates, so check the mount flag too.
1044  */
1045 bool
1046 cache_have_id(struct vnode *vp)
1047 {
1048 
1049 	if (vp->v_type == VDIR &&
1050 	    (vp->v_mount->mnt_iflag & IMNT_NCLOOKUP) != 0 &&
1051 	    atomic_load_relaxed(&VNODE_TO_VIMPL(vp)->vi_nc_mode) != VNOVAL) {
1052 		return true;
1053 	} else {
1054 		return false;
1055 	}
1056 }
1057 
1058 /*
1059  * Enter a mount point.  cvp is the covered vnode, and rvp is the root of
1060  * the mounted file system.
1061  */
1062 void
1063 cache_enter_mount(struct vnode *cvp, struct vnode *rvp)
1064 {
1065 
1066 	KASSERT(vrefcnt(cvp) > 0);
1067 	KASSERT(vrefcnt(rvp) > 0);
1068 	KASSERT(cvp->v_type == VDIR);
1069 	KASSERT((rvp->v_vflag & VV_ROOT) != 0);
1070 
1071 	if (rvp->v_type == VDIR) {
1072 		cache_enter(cvp, rvp, cache_mp_name, cache_mp_nlen, MAKEENTRY);
1073 	}
1074 }
1075 
1076 /*
1077  * Look up a cached mount point.  Used in the strongly locked path.
1078  */
1079 bool
1080 cache_lookup_mount(struct vnode *dvp, struct vnode **vn_ret)
1081 {
1082 	bool ret;
1083 
1084 	ret = cache_lookup(dvp, cache_mp_name, cache_mp_nlen, LOOKUP,
1085 	    MAKEENTRY, NULL, vn_ret);
1086 	KASSERT((*vn_ret != NULL) == ret);
1087 	return ret;
1088 }
1089 
1090 /*
1091  * Try to cross a mount point.  For use with cache_lookup_linked().
1092  */
1093 bool
1094 cache_cross_mount(struct vnode **dvp, krwlock_t **plock)
1095 {
1096 
1097 	return cache_lookup_linked(*dvp, cache_mp_name, cache_mp_nlen,
1098 	   dvp, plock, FSCRED);
1099 }
1100 
1101 /*
1102  * Name cache initialization, from vfs_init() when the system is booting.
1103  */
1104 void
1105 nchinit(void)
1106 {
1107 
1108 	cache_pool = pool_cache_init(sizeof(struct namecache),
1109 	    coherency_unit, 0, 0, "namecache", NULL, IPL_NONE, NULL,
1110 	    NULL, NULL);
1111 	KASSERT(cache_pool != NULL);
1112 
1113 	mutex_init(&cache_lru_lock, MUTEX_DEFAULT, IPL_NONE);
1114 	TAILQ_INIT(&cache_lru.list[LRU_ACTIVE]);
1115 	TAILQ_INIT(&cache_lru.list[LRU_INACTIVE]);
1116 
1117 	mutex_init(&cache_stat_lock, MUTEX_DEFAULT, IPL_NONE);
1118 	callout_init(&cache_stat_callout, CALLOUT_MPSAFE);
1119 	callout_setfunc(&cache_stat_callout, cache_update_stats, NULL);
1120 	callout_schedule(&cache_stat_callout, cache_stat_interval * hz);
1121 
1122 	KASSERT(cache_sysctllog == NULL);
1123 	sysctl_createv(&cache_sysctllog, 0, NULL, NULL,
1124 		       CTLFLAG_PERMANENT,
1125 		       CTLTYPE_STRUCT, "namecache_stats",
1126 		       SYSCTL_DESCR("namecache statistics"),
1127 		       cache_stat_sysctl, 0, NULL, 0,
1128 		       CTL_VFS, CTL_CREATE, CTL_EOL);
1129 }
1130 
1131 /*
1132  * Called once for each CPU in the system as attached.
1133  */
1134 void
1135 cache_cpu_init(struct cpu_info *ci)
1136 {
1137 	size_t sz;
1138 
1139 	sz = roundup2(sizeof(struct nchcpu), coherency_unit);
1140 	ci->ci_data.cpu_nch = kmem_zalloc(sz, KM_SLEEP);
1141 	KASSERT(((uintptr_t)ci->ci_data.cpu_nch & (coherency_unit - 1)) == 0);
1142 }
1143 
1144 /*
1145  * A vnode is being allocated: set up cache structures.
1146  */
1147 void
1148 cache_vnode_init(struct vnode *vp)
1149 {
1150 	vnode_impl_t *vi = VNODE_TO_VIMPL(vp);
1151 
1152 	rw_init(&vi->vi_nc_lock);
1153 	rw_init(&vi->vi_nc_listlock);
1154 	rb_tree_init(&vi->vi_nc_tree, &cache_rbtree_ops);
1155 	TAILQ_INIT(&vi->vi_nc_list);
1156 	vi->vi_nc_mode = VNOVAL;
1157 	vi->vi_nc_uid = VNOVAL;
1158 	vi->vi_nc_gid = VNOVAL;
1159 }
1160 
1161 /*
1162  * A vnode is being freed: finish cache structures.
1163  */
1164 void
1165 cache_vnode_fini(struct vnode *vp)
1166 {
1167 	vnode_impl_t *vi = VNODE_TO_VIMPL(vp);
1168 
1169 	KASSERT(RB_TREE_MIN(&vi->vi_nc_tree) == NULL);
1170 	KASSERT(TAILQ_EMPTY(&vi->vi_nc_list));
1171 	rw_destroy(&vi->vi_nc_lock);
1172 	rw_destroy(&vi->vi_nc_listlock);
1173 }
1174 
1175 /*
1176  * Helper for cache_purge1(): purge cache entries for the given vnode from
1177  * all directories that the vnode is cached in.
1178  */
1179 static void
1180 cache_purge_parents(struct vnode *vp)
1181 {
1182 	vnode_impl_t *dvi, *vi = VNODE_TO_VIMPL(vp);
1183 	struct vnode *dvp, *blocked;
1184 	struct namecache *ncp;
1185 
1186 	SDT_PROBE(vfs, namecache, purge, parents, vp, 0, 0, 0, 0);
1187 
1188 	blocked = NULL;
1189 
1190 	rw_enter(&vi->vi_nc_listlock, RW_WRITER);
1191 	while ((ncp = TAILQ_FIRST(&vi->vi_nc_list)) != NULL) {
1192 		/*
1193 		 * Locking in the wrong direction.  Try for a hold on the
1194 		 * directory node's lock, and if we get it then all good,
1195 		 * nuke the entry and move on to the next.
1196 		 */
1197 		dvp = ncp->nc_dvp;
1198 		dvi = VNODE_TO_VIMPL(dvp);
1199 		if (rw_tryenter(&dvi->vi_nc_lock, RW_WRITER)) {
1200 			cache_remove(ncp, false);
1201 			rw_exit(&dvi->vi_nc_lock);
1202 			blocked = NULL;
1203 			continue;
1204 		}
1205 
1206 		/*
1207 		 * We can't wait on the directory node's lock with our list
1208 		 * lock held or the system could deadlock.
1209 		 *
1210 		 * Take a hold on the directory vnode to prevent it from
1211 		 * being freed (taking the vnode & lock with it).  Then
1212 		 * wait for the lock to become available with no other locks
1213 		 * held, and retry.
1214 		 *
1215 		 * If this happens twice in a row, give the other side a
1216 		 * breather; we can do nothing until it lets go.
1217 		 */
1218 		vhold(dvp);
1219 		rw_exit(&vi->vi_nc_listlock);
1220 		rw_enter(&dvi->vi_nc_lock, RW_WRITER);
1221 		/* Do nothing. */
1222 		rw_exit(&dvi->vi_nc_lock);
1223 		holdrele(dvp);
1224 		if (blocked == dvp) {
1225 			kpause("ncpurge", false, 1, NULL);
1226 		}
1227 		rw_enter(&vi->vi_nc_listlock, RW_WRITER);
1228 		blocked = dvp;
1229 	}
1230 	rw_exit(&vi->vi_nc_listlock);
1231 }
1232 
1233 /*
1234  * Helper for cache_purge1(): purge all cache entries hanging off the given
1235  * directory vnode.
1236  */
1237 static void
1238 cache_purge_children(struct vnode *dvp)
1239 {
1240 	vnode_impl_t *dvi = VNODE_TO_VIMPL(dvp);
1241 	struct namecache *ncp;
1242 
1243 	SDT_PROBE(vfs, namecache, purge, children, dvp, 0, 0, 0, 0);
1244 
1245 	rw_enter(&dvi->vi_nc_lock, RW_WRITER);
1246 	while ((ncp = RB_TREE_MIN(&dvi->vi_nc_tree)) != NULL) {
1247 		cache_remove(ncp, true);
1248 	}
1249 	rw_exit(&dvi->vi_nc_lock);
1250 }
1251 
1252 /*
1253  * Helper for cache_purge1(): purge cache entry from the given vnode,
1254  * finding it by name.
1255  */
1256 static void
1257 cache_purge_name(struct vnode *dvp, const char *name, size_t namelen)
1258 {
1259 	vnode_impl_t *dvi = VNODE_TO_VIMPL(dvp);
1260 	struct namecache *ncp;
1261 	uintptr_t key;
1262 
1263 	SDT_PROBE(vfs, namecache, purge, name, name, namelen, 0, 0, 0);
1264 
1265 	key = cache_key(name, namelen);
1266 	rw_enter(&dvi->vi_nc_lock, RW_WRITER);
1267 	ncp = cache_lookup_entry(dvp, name, namelen, key);
1268 	if (ncp) {
1269 		cache_remove(ncp, true);
1270 	}
1271 	rw_exit(&dvi->vi_nc_lock);
1272 }
1273 
1274 /*
1275  * Cache flush, a particular vnode; called when a vnode is renamed to
1276  * hide entries that would now be invalid.
1277  */
1278 void
1279 cache_purge1(struct vnode *vp, const char *name, size_t namelen, int flags)
1280 {
1281 
1282 	if (flags & PURGE_PARENTS) {
1283 		cache_purge_parents(vp);
1284 	}
1285 	if (flags & PURGE_CHILDREN) {
1286 		cache_purge_children(vp);
1287 	}
1288 	if (name != NULL) {
1289 		cache_purge_name(vp, name, namelen);
1290 	}
1291 }
1292 
1293 /*
1294  * vnode filter for cache_purgevfs().
1295  */
1296 static bool
1297 cache_vdir_filter(void *cookie, vnode_t *vp)
1298 {
1299 
1300 	return vp->v_type == VDIR;
1301 }
1302 
1303 /*
1304  * Cache flush, a whole filesystem; called when filesys is umounted to
1305  * remove entries that would now be invalid.
1306  */
1307 void
1308 cache_purgevfs(struct mount *mp)
1309 {
1310 	struct vnode_iterator *iter;
1311 	vnode_t *dvp;
1312 
1313 	vfs_vnode_iterator_init(mp, &iter);
1314 	for (;;) {
1315 		dvp = vfs_vnode_iterator_next(iter, cache_vdir_filter, NULL);
1316 		if (dvp == NULL) {
1317 			break;
1318 		}
1319 		cache_purge_children(dvp);
1320 		vrele(dvp);
1321 	}
1322 	vfs_vnode_iterator_destroy(iter);
1323 }
1324 
1325 /*
1326  * Re-queue an entry onto the tail of the active LRU list, after it has
1327  * scored a hit.
1328  */
1329 static void
1330 cache_activate(struct namecache *ncp)
1331 {
1332 
1333 	mutex_enter(&cache_lru_lock);
1334 	TAILQ_REMOVE(&cache_lru.list[ncp->nc_lrulist], ncp, nc_lru);
1335 	TAILQ_INSERT_TAIL(&cache_lru.list[LRU_ACTIVE], ncp, nc_lru);
1336 	cache_lru.count[ncp->nc_lrulist]--;
1337 	cache_lru.count[LRU_ACTIVE]++;
1338 	ncp->nc_lrulist = LRU_ACTIVE;
1339 	mutex_exit(&cache_lru_lock);
1340 }
1341 
1342 /*
1343  * Try to balance the LRU lists.  Pick some victim entries, and re-queue
1344  * them from the head of the active list to the tail of the inactive list.
1345  */
1346 static void
1347 cache_deactivate(void)
1348 {
1349 	struct namecache *ncp;
1350 	int total, i;
1351 
1352 	KASSERT(mutex_owned(&cache_lru_lock));
1353 
1354 	/* If we're nowhere near budget yet, don't bother. */
1355 	total = cache_lru.count[LRU_ACTIVE] + cache_lru.count[LRU_INACTIVE];
1356 	if (total < (desiredvnodes >> 1)) {
1357 		return;
1358 	}
1359 
1360 	/*
1361 	 * Aim for a 1:1 ratio of active to inactive.  This is to allow each
1362 	 * potential victim a reasonable amount of time to cycle through the
1363 	 * inactive list in order to score a hit and be reactivated, while
1364 	 * trying not to cause reactivations too frequently.
1365 	 */
1366 	if (cache_lru.count[LRU_ACTIVE] < cache_lru.count[LRU_INACTIVE]) {
1367 		return;
1368 	}
1369 
1370 	/* Move only a few at a time; will catch up eventually. */
1371 	for (i = 0; i < cache_lru_maxdeact; i++) {
1372 		ncp = TAILQ_FIRST(&cache_lru.list[LRU_ACTIVE]);
1373 		if (ncp == NULL) {
1374 			break;
1375 		}
1376 		KASSERT(ncp->nc_lrulist == LRU_ACTIVE);
1377 		ncp->nc_lrulist = LRU_INACTIVE;
1378 		TAILQ_REMOVE(&cache_lru.list[LRU_ACTIVE], ncp, nc_lru);
1379 		TAILQ_INSERT_TAIL(&cache_lru.list[LRU_INACTIVE], ncp, nc_lru);
1380 		cache_lru.count[LRU_ACTIVE]--;
1381 		cache_lru.count[LRU_INACTIVE]++;
1382 	}
1383 }
1384 
1385 /*
1386  * Free some entries from the cache, when we have gone over budget.
1387  *
1388  * We don't want to cause too much work for any individual caller, and it
1389  * doesn't matter if we temporarily go over budget.  This is also "just a
1390  * cache" so it's not a big deal if we screw up and throw out something we
1391  * shouldn't.  So we take a relaxed attitude to this process to reduce its
1392  * impact.
1393  */
1394 static void
1395 cache_reclaim(void)
1396 {
1397 	struct namecache *ncp;
1398 	vnode_impl_t *dvi;
1399 	int toscan;
1400 
1401 	/*
1402 	 * Scan up to a preset maximum number of entries, but no more than
1403 	 * 0.8% of the total at once (to allow for very small systems).
1404 	 *
1405 	 * On bigger systems, do a larger chunk of work to reduce the number
1406 	 * of times that cache_lru_lock is held for any length of time.
1407 	 */
1408 	mutex_enter(&cache_lru_lock);
1409 	toscan = MIN(cache_lru_maxscan, desiredvnodes >> 7);
1410 	toscan = MAX(toscan, 1);
1411 	SDT_PROBE(vfs, namecache, prune, done, cache_lru.count[LRU_ACTIVE] +
1412 	    cache_lru.count[LRU_INACTIVE], toscan, 0, 0, 0);
1413 	while (toscan-- != 0) {
1414 		/* First try to balance the lists. */
1415 		cache_deactivate();
1416 
1417 		/* Now look for a victim on head of inactive list (old). */
1418 		ncp = TAILQ_FIRST(&cache_lru.list[LRU_INACTIVE]);
1419 		if (ncp == NULL) {
1420 			break;
1421 		}
1422 		dvi = VNODE_TO_VIMPL(ncp->nc_dvp);
1423 		KASSERT(ncp->nc_lrulist == LRU_INACTIVE);
1424 		KASSERT(dvi != NULL);
1425 
1426 		/*
1427 		 * Locking in the wrong direction.  If we can't get the
1428 		 * lock, the directory is actively busy, and it could also
1429 		 * cause problems for the next guy in here, so send the
1430 		 * entry to the back of the list.
1431 		 */
1432 		if (!rw_tryenter(&dvi->vi_nc_lock, RW_WRITER)) {
1433 			TAILQ_REMOVE(&cache_lru.list[LRU_INACTIVE],
1434 			    ncp, nc_lru);
1435 			TAILQ_INSERT_TAIL(&cache_lru.list[LRU_INACTIVE],
1436 			    ncp, nc_lru);
1437 			continue;
1438 		}
1439 
1440 		/*
1441 		 * Now have the victim entry locked.  Drop the LRU list
1442 		 * lock, purge the entry, and start over.  The hold on
1443 		 * vi_nc_lock will prevent the vnode from vanishing until
1444 		 * finished (cache_purge() will be called on dvp before it
1445 		 * disappears, and that will wait on vi_nc_lock).
1446 		 */
1447 		mutex_exit(&cache_lru_lock);
1448 		cache_remove(ncp, true);
1449 		rw_exit(&dvi->vi_nc_lock);
1450 		mutex_enter(&cache_lru_lock);
1451 	}
1452 	mutex_exit(&cache_lru_lock);
1453 }
1454 
1455 /*
1456  * For file system code: count a lookup that required a full re-scan of
1457  * directory metadata.
1458  */
1459 void
1460 namecache_count_pass2(void)
1461 {
1462 
1463 	COUNT(ncs_pass2);
1464 }
1465 
1466 /*
1467  * For file system code: count a lookup that scored a hit in the directory
1468  * metadata near the location of the last lookup.
1469  */
1470 void
1471 namecache_count_2passes(void)
1472 {
1473 
1474 	COUNT(ncs_2passes);
1475 }
1476 
1477 /*
1478  * Sum the stats from all CPUs into nchstats.  This needs to run at least
1479  * once within every window where a 32-bit counter could roll over.  It's
1480  * called regularly by timer to ensure this.
1481  */
1482 static void
1483 cache_update_stats(void *cookie)
1484 {
1485 	CPU_INFO_ITERATOR cii;
1486 	struct cpu_info *ci;
1487 
1488 	mutex_enter(&cache_stat_lock);
1489 	for (CPU_INFO_FOREACH(cii, ci)) {
1490 		struct nchcpu *nchcpu = ci->ci_data.cpu_nch;
1491 		UPDATE(nchcpu, ncs_goodhits);
1492 		UPDATE(nchcpu, ncs_neghits);
1493 		UPDATE(nchcpu, ncs_badhits);
1494 		UPDATE(nchcpu, ncs_falsehits);
1495 		UPDATE(nchcpu, ncs_miss);
1496 		UPDATE(nchcpu, ncs_long);
1497 		UPDATE(nchcpu, ncs_pass2);
1498 		UPDATE(nchcpu, ncs_2passes);
1499 		UPDATE(nchcpu, ncs_revhits);
1500 		UPDATE(nchcpu, ncs_revmiss);
1501 		UPDATE(nchcpu, ncs_denied);
1502 	}
1503 	if (cookie != NULL) {
1504 		memcpy(cookie, &nchstats, sizeof(nchstats));
1505 	}
1506 	/* Reset the timer; arrive back here in N minutes at latest. */
1507 	callout_schedule(&cache_stat_callout, cache_stat_interval * hz);
1508 	mutex_exit(&cache_stat_lock);
1509 }
1510 
1511 /*
1512  * Fetch the current values of the stats for sysctl.
1513  */
1514 static int
1515 cache_stat_sysctl(SYSCTLFN_ARGS)
1516 {
1517 	struct nchstats stats;
1518 
1519 	if (oldp == NULL) {
1520 		*oldlenp = sizeof(nchstats);
1521 		return 0;
1522 	}
1523 
1524 	if (*oldlenp <= 0) {
1525 		*oldlenp = 0;
1526 		return 0;
1527 	}
1528 
1529 	/* Refresh the global stats. */
1530 	sysctl_unlock();
1531 	cache_update_stats(&stats);
1532 	sysctl_relock();
1533 
1534 	*oldlenp = MIN(sizeof(stats), *oldlenp);
1535 	return sysctl_copyout(l, &stats, oldp, *oldlenp);
1536 }
1537 
1538 /*
1539  * For the debugger, given the address of a vnode, print all associated
1540  * names in the cache.
1541  */
1542 #ifdef DDB
1543 void
1544 namecache_print(struct vnode *vp, void (*pr)(const char *, ...))
1545 {
1546 	struct vnode *dvp = NULL;
1547 	struct namecache *ncp;
1548 	enum cache_lru_id id;
1549 
1550 	for (id = 0; id < LRU_COUNT; id++) {
1551 		TAILQ_FOREACH(ncp, &cache_lru.list[id], nc_lru) {
1552 			if (ncp->nc_vp == vp) {
1553 				(*pr)("name %.*s\n", NC_NLEN(ncp),
1554 				    ncp->nc_name);
1555 				dvp = ncp->nc_dvp;
1556 			}
1557 		}
1558 	}
1559 	if (dvp == NULL) {
1560 		(*pr)("name not found\n");
1561 		return;
1562 	}
1563 	for (id = 0; id < LRU_COUNT; id++) {
1564 		TAILQ_FOREACH(ncp, &cache_lru.list[id], nc_lru) {
1565 			if (ncp->nc_vp == dvp) {
1566 				(*pr)("parent %.*s\n", NC_NLEN(ncp),
1567 				    ncp->nc_name);
1568 			}
1569 		}
1570 	}
1571 }
1572 #endif
1573