1 /* $NetBSD: vfs_cache.c,v 1.159 2024/12/07 02:27:38 riastradh Exp $ */ 2 3 /*- 4 * Copyright (c) 2008, 2019, 2020, 2023 The NetBSD Foundation, Inc. 5 * All rights reserved. 6 * 7 * This code is derived from software contributed to The NetBSD Foundation 8 * by Andrew Doran. 9 * 10 * Redistribution and use in source and binary forms, with or without 11 * modification, are permitted provided that the following conditions 12 * are met: 13 * 1. Redistributions of source code must retain the above copyright 14 * notice, this list of conditions and the following disclaimer. 15 * 2. Redistributions in binary form must reproduce the above copyright 16 * notice, this list of conditions and the following disclaimer in the 17 * documentation and/or other materials provided with the distribution. 18 * 19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS 20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED 21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS 23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 29 * POSSIBILITY OF SUCH DAMAGE. 30 */ 31 32 /* 33 * Copyright (c) 1989, 1993 34 * The Regents of the University of California. All rights reserved. 35 * 36 * Redistribution and use in source and binary forms, with or without 37 * modification, are permitted provided that the following conditions 38 * are met: 39 * 1. Redistributions of source code must retain the above copyright 40 * notice, this list of conditions and the following disclaimer. 41 * 2. Redistributions in binary form must reproduce the above copyright 42 * notice, this list of conditions and the following disclaimer in the 43 * documentation and/or other materials provided with the distribution. 44 * 3. Neither the name of the University nor the names of its contributors 45 * may be used to endorse or promote products derived from this software 46 * without specific prior written permission. 47 * 48 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 49 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 50 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 51 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 52 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 53 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 54 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 55 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 56 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 57 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 58 * SUCH DAMAGE. 59 * 60 * @(#)vfs_cache.c 8.3 (Berkeley) 8/22/94 61 */ 62 63 /* 64 * Name caching: 65 * 66 * Names found by directory scans are retained in a cache for future 67 * reference. It is managed LRU, so frequently used names will hang 68 * around. The cache is indexed by hash value obtained from the name. 69 * 70 * The name cache is the brainchild of Robert Elz and was introduced in 71 * 4.3BSD. See "Using gprof to Tune the 4.2BSD Kernel", Marshall Kirk 72 * McKusick, May 21 1984. 73 * 74 * Data structures: 75 * 76 * Most Unix namecaches very sensibly use a global hash table to index 77 * names. The global hash table works well, but can cause concurrency 78 * headaches for the kernel hacker. In the NetBSD 10.0 implementation 79 * we are not sensible, and use a per-directory data structure to index 80 * names, but the cache otherwise functions the same. 81 * 82 * The index is a red-black tree. It should not be difficult to 83 * experiment with other types of index, however note that a tree 84 * can trivially be made to support lockless lookup. 85 * 86 * Each cached name is stored in a struct namecache, along with a 87 * pointer to the associated vnode (nc_vp). Names longer than a 88 * maximum length of NCHNAMLEN are allocated with kmem_alloc(); they 89 * occur infrequently, and names shorter than this are stored directly 90 * in struct namecache. If it is a "negative" entry, (i.e. for a name 91 * that is known NOT to exist) the vnode pointer will be NULL. 92 * 93 * In practice this implementation is not any slower than the hash 94 * table that preceeded it and in some cases it significantly 95 * outperforms the hash table. Some reasons why this might be: 96 * 97 * - natural partitioning provided by the file system structure, which 98 * the prior implementation discarded (global hash table). 99 * - worst case tree traversal of O(log n), the hash table could have 100 * many collisions. 101 * - minimized cache misses & total L2/L3 CPU cache footprint; struct 102 * namecache and vnode_impl_t are laid out to keep cache footprint 103 * minimal in the lookup path; no hash table buckets to cache. 104 * - minimized number of conditionals & string comparisons. 105 * 106 * For a directory with 3 cached names for 3 distinct vnodes, the 107 * various vnodes and namecache structs would be connected like this 108 * (the root is at the bottom of the diagram): 109 * 110 * ... 111 * ^ 112 * |- vi_nc_tree 113 * | 114 * +----o----+ +---------+ +---------+ 115 * | VDIR | | VCHR | | VREG | 116 * | vnode o-----+ | vnode o-----+ | vnode o------+ 117 * +---------+ | +---------+ | +---------+ | 118 * ^ | ^ | ^ | 119 * |- nc_vp |- vi_nc_list |- nc_vp |- vi_nc_list |- nc_vp | 120 * | | | | | | 121 * +----o----+ | +----o----+ | +----o----+ | 122 * +---onamecache|<----+ +---onamecache|<----+ +---onamecache|<-----+ 123 * | +---------+ | +---------+ | +---------+ 124 * | ^ | ^ | ^ 125 * | | | | | | 126 * | | +----------------------+ | | 127 * |-nc_dvp | +-------------------------------------------------+ 128 * | |/- vi_nc_tree | | 129 * | | |- nc_dvp |- nc_dvp 130 * | +----o----+ | | 131 * +-->| VDIR |<----------+ | 132 * | vnode |<------------------------------------+ 133 * +---------+ 134 * 135 * START HERE 136 * 137 * Replacement: 138 * 139 * As the cache becomes full, old and unused entries are purged as new 140 * entries are added. The synchronization overhead in maintaining a 141 * strict ordering would be prohibitive, so the VM system's "clock" or 142 * "second chance" page replacement algorithm is aped here. New 143 * entries go to the tail of the active list. After they age out and 144 * reach the head of the list, they are moved to the tail of the 145 * inactive list. Any use of the deactivated cache entry reactivates 146 * it, saving it from impending doom; if not reactivated, the entry 147 * eventually reaches the head of the inactive list and is purged. 148 * 149 * Concurrency: 150 * 151 * From a performance perspective, cache_lookup(nameiop == LOOKUP) is 152 * what really matters; insertion of new entries with cache_enter() is 153 * comparatively infrequent, and overshadowed by the cost of expensive 154 * file system metadata operations (which may involve disk I/O). We 155 * therefore want to make everything simplest in the lookup path. 156 * 157 * struct namecache is mostly stable except for list and tree related 158 * entries, changes to which don't affect the cached name or vnode. 159 * For changes to name+vnode, entries are purged in preference to 160 * modifying them. 161 * 162 * Read access to namecache entries is made via tree, list, or LRU 163 * list. A lock corresponding to the direction of access should be 164 * held. See definition of "struct namecache" in src/sys/namei.src, 165 * and the definition of "struct vnode" for the particulars. 166 * 167 * Per-CPU statistics, and LRU list totals are read unlocked, since an 168 * approximate value is OK. We maintain 32-bit sized per-CPU counters 169 * and 64-bit global counters since 32-bit sized counters can be 170 * observed locklessly while the global counters are protected by a 171 * mutex. 172 * 173 * The lock order is: 174 * 175 * 1) vi->vi_nc_lock (tree or parent -> child direction, 176 * used during forward lookup) 177 * 178 * 2) vi->vi_nc_listlock (list or child -> parent direction, 179 * used during reverse lookup) 180 * 181 * 3) cache_lru_lock (LRU list direction, used during reclaim) 182 */ 183 184 #define __NAMECACHE_PRIVATE 185 186 #include <sys/cdefs.h> 187 __KERNEL_RCSID(0, "$NetBSD: vfs_cache.c,v 1.159 2024/12/07 02:27:38 riastradh Exp $"); 188 189 #ifdef _KERNEL_OPT 190 #include "opt_ddb.h" 191 #include "opt_dtrace.h" 192 #endif 193 194 #include <sys/param.h> 195 #include <sys/types.h> 196 197 #include <sys/atomic.h> 198 #include <sys/callout.h> 199 #include <sys/cpu.h> 200 #include <sys/errno.h> 201 #include <sys/evcnt.h> 202 #include <sys/hash.h> 203 #include <sys/kernel.h> 204 #include <sys/mount.h> 205 #include <sys/mutex.h> 206 #include <sys/namei.h> 207 #include <sys/param.h> 208 #include <sys/pool.h> 209 #include <sys/sdt.h> 210 #include <sys/sysctl.h> 211 #include <sys/systm.h> 212 #include <sys/time.h> 213 #include <sys/vnode_impl.h> 214 215 #include <miscfs/genfs/genfs.h> 216 217 /* 218 * Assert that data structure layout hasn't changed unintentionally. 219 */ 220 #ifdef _LP64 221 CTASSERT(sizeof(struct namecache) == 128); 222 #else 223 CTASSERT(sizeof(struct namecache) == 64); 224 #endif 225 CTASSERT(NC_NLEN_MASK >= MAXPATHLEN); 226 227 static void cache_activate(struct namecache *); 228 static void cache_update_stats(void *); 229 static int cache_compare_nodes(void *, const void *, const void *); 230 static void cache_deactivate(void); 231 static void cache_reclaim(void); 232 static int cache_stat_sysctl(SYSCTLFN_ARGS); 233 234 /* 235 * Global pool cache. 236 */ 237 static pool_cache_t cache_pool __read_mostly; 238 239 /* 240 * LRU replacement. 241 */ 242 enum cache_lru_id { 243 LRU_ACTIVE, 244 LRU_INACTIVE, 245 LRU_COUNT 246 }; 247 248 static struct { 249 TAILQ_HEAD(, namecache) list[LRU_COUNT]; 250 u_int count[LRU_COUNT]; 251 } cache_lru __cacheline_aligned; 252 253 static kmutex_t cache_lru_lock __cacheline_aligned; 254 255 /* 256 * Cache effectiveness statistics. nchstats holds system-wide total. 257 */ 258 struct nchstats nchstats; 259 struct nchstats_percpu _NAMEI_CACHE_STATS(uint32_t); 260 struct nchcpu { 261 struct nchstats_percpu cur; 262 struct nchstats_percpu last; 263 }; 264 static callout_t cache_stat_callout; 265 static kmutex_t cache_stat_lock __cacheline_aligned; 266 267 #define COUNT(f) do { \ 268 lwp_t *l = curlwp; \ 269 KPREEMPT_DISABLE(l); \ 270 struct nchcpu *nchcpu = curcpu()->ci_data.cpu_nch; \ 271 nchcpu->cur.f++; \ 272 KPREEMPT_ENABLE(l); \ 273 } while (/* CONSTCOND */ 0); 274 275 #define UPDATE(nchcpu, f) do { \ 276 uint32_t cur = atomic_load_relaxed(&nchcpu->cur.f); \ 277 nchstats.f += (uint32_t)(cur - nchcpu->last.f); \ 278 nchcpu->last.f = cur; \ 279 } while (/* CONSTCOND */ 0) 280 281 /* 282 * Tunables. cache_maxlen replaces the historical doingcache: 283 * set it zero to disable caching for debugging purposes. 284 */ 285 int cache_lru_maxdeact __read_mostly = 2; /* max # to deactivate */ 286 int cache_lru_maxscan __read_mostly = 64; /* max # to scan/reclaim */ 287 int cache_maxlen __read_mostly = NC_NLEN_MASK; /* max name length to cache */ 288 int cache_stat_interval __read_mostly = 300; /* in seconds */ 289 290 /* 291 * sysctl stuff. 292 */ 293 static struct sysctllog *cache_sysctllog; 294 295 /* 296 * This is a dummy name that cannot usually occur anywhere in the cache nor 297 * file system. It's used when caching the root vnode of mounted file 298 * systems. The name is attached to the directory that the file system is 299 * mounted on. 300 */ 301 static const char cache_mp_name[] = ""; 302 static const int cache_mp_nlen = sizeof(cache_mp_name) - 1; 303 304 /* 305 * Red-black tree stuff. 306 */ 307 static const rb_tree_ops_t cache_rbtree_ops = { 308 .rbto_compare_nodes = cache_compare_nodes, 309 .rbto_compare_key = cache_compare_nodes, 310 .rbto_node_offset = offsetof(struct namecache, nc_tree), 311 .rbto_context = NULL 312 }; 313 314 /* 315 * dtrace probes. 316 */ 317 SDT_PROBE_DEFINE1(vfs, namecache, invalidate, done, "struct vnode *"); 318 SDT_PROBE_DEFINE1(vfs, namecache, purge, parents, "struct vnode *"); 319 SDT_PROBE_DEFINE1(vfs, namecache, purge, children, "struct vnode *"); 320 SDT_PROBE_DEFINE2(vfs, namecache, purge, name, "char *", "size_t"); 321 SDT_PROBE_DEFINE1(vfs, namecache, purge, vfs, "struct mount *"); 322 SDT_PROBE_DEFINE3(vfs, namecache, lookup, hit, "struct vnode *", 323 "char *", "size_t"); 324 SDT_PROBE_DEFINE3(vfs, namecache, lookup, miss, "struct vnode *", 325 "char *", "size_t"); 326 SDT_PROBE_DEFINE3(vfs, namecache, lookup, toolong, "struct vnode *", 327 "char *", "size_t"); 328 SDT_PROBE_DEFINE2(vfs, namecache, revlookup, success, "struct vnode *", 329 "struct vnode *"); 330 SDT_PROBE_DEFINE2(vfs, namecache, revlookup, fail, "struct vnode *", 331 "int"); 332 SDT_PROBE_DEFINE2(vfs, namecache, prune, done, "int", "int"); 333 SDT_PROBE_DEFINE3(vfs, namecache, enter, toolong, "struct vnode *", 334 "char *", "size_t"); 335 SDT_PROBE_DEFINE3(vfs, namecache, enter, done, "struct vnode *", 336 "char *", "size_t"); 337 338 /* 339 * rbtree: compare two nodes. 340 */ 341 static int 342 cache_compare_nodes(void *context, const void *n1, const void *n2) 343 { 344 const struct namecache *nc1 = n1; 345 const struct namecache *nc2 = n2; 346 347 if (nc1->nc_key < nc2->nc_key) { 348 return -1; 349 } 350 if (nc1->nc_key > nc2->nc_key) { 351 return 1; 352 } 353 KASSERT(NC_NLEN(nc1) == NC_NLEN(nc2)); 354 return memcmp(nc1->nc_name, nc2->nc_name, NC_NLEN(nc1)); 355 } 356 357 /* 358 * Compute a key value for the given name. The name length is encoded in 359 * the key value to try and improve uniqueness, and so that length doesn't 360 * need to be compared separately for string comparisons. 361 */ 362 static uintptr_t 363 cache_key(const char *name, size_t nlen) 364 { 365 uintptr_t key; 366 367 KASSERT((nlen & ~NC_NLEN_MASK) == 0); 368 369 key = hash32_buf(name, nlen, HASH32_STR_INIT); 370 return (key << NC_NLEN_BITS) | (uintptr_t)nlen; 371 } 372 373 /* 374 * Remove an entry from the cache. vi_nc_lock must be held, and if dir2node 375 * is true, then we're locking in the conventional direction and the list 376 * lock will be acquired when removing the entry from the vnode list. 377 */ 378 static void 379 cache_remove(struct namecache *ncp, const bool dir2node) 380 { 381 struct vnode *vp, *dvp = ncp->nc_dvp; 382 vnode_impl_t *dvi = VNODE_TO_VIMPL(dvp); 383 size_t namelen = NC_NLEN(ncp); 384 385 KASSERT(rw_write_held(&dvi->vi_nc_lock)); 386 KASSERT(cache_key(ncp->nc_name, namelen) == ncp->nc_key); 387 KASSERT(rb_tree_find_node(&dvi->vi_nc_tree, ncp) == ncp); 388 389 SDT_PROBE(vfs, namecache, invalidate, done, ncp, 0, 0, 0, 0); 390 391 /* 392 * Remove from the vnode's list. This excludes cache_revlookup(), 393 * and then it's safe to remove from the LRU lists. 394 */ 395 if ((vp = ncp->nc_vp) != NULL) { 396 vnode_impl_t *vi = VNODE_TO_VIMPL(vp); 397 if (__predict_true(dir2node)) { 398 rw_enter(&vi->vi_nc_listlock, RW_WRITER); 399 TAILQ_REMOVE(&vi->vi_nc_list, ncp, nc_list); 400 rw_exit(&vi->vi_nc_listlock); 401 } else { 402 TAILQ_REMOVE(&vi->vi_nc_list, ncp, nc_list); 403 } 404 } 405 406 /* Remove from the directory's rbtree. */ 407 rb_tree_remove_node(&dvi->vi_nc_tree, ncp); 408 409 /* Remove from the LRU lists. */ 410 mutex_enter(&cache_lru_lock); 411 TAILQ_REMOVE(&cache_lru.list[ncp->nc_lrulist], ncp, nc_lru); 412 cache_lru.count[ncp->nc_lrulist]--; 413 mutex_exit(&cache_lru_lock); 414 415 /* Finally, free it. */ 416 if (namelen > NCHNAMLEN) { 417 size_t sz = offsetof(struct namecache, nc_name[namelen]); 418 kmem_free(ncp, sz); 419 } else { 420 pool_cache_put(cache_pool, ncp); 421 } 422 } 423 424 /* 425 * Find a single cache entry and return it. vi_nc_lock must be held. 426 */ 427 static struct namecache * __noinline 428 cache_lookup_entry(struct vnode *dvp, const char *name, size_t namelen, 429 uintptr_t key) 430 { 431 vnode_impl_t *dvi = VNODE_TO_VIMPL(dvp); 432 struct rb_node *node = dvi->vi_nc_tree.rbt_root; 433 struct namecache *ncp; 434 enum cache_lru_id lrulist; 435 int diff; 436 437 KASSERT(namelen <= MAXPATHLEN); 438 KASSERT(rw_lock_held(&dvi->vi_nc_lock)); 439 440 /* 441 * Search the RB tree for the key. This is an inlined lookup 442 * tailored for exactly what's needed here that turns out to be 443 * quite a bit faster than using rb_tree_find_node(). 444 * 445 * For a matching key memcmp() needs to be called once to confirm 446 * that the correct name has been found. Very rarely there will be 447 * a key value collision and the search will continue. 448 */ 449 for (;;) { 450 if (__predict_false(RB_SENTINEL_P(node))) { 451 return NULL; 452 } 453 ncp = (struct namecache *)node; 454 KASSERT((void *)&ncp->nc_tree == (void *)ncp); 455 KASSERT(ncp->nc_dvp == dvp); 456 if (ncp->nc_key == key) { 457 KASSERT(NC_NLEN(ncp) == namelen); 458 diff = memcmp(ncp->nc_name, name, namelen); 459 if (__predict_true(diff == 0)) { 460 break; 461 } 462 node = node->rb_nodes[diff < 0]; 463 } else { 464 node = node->rb_nodes[ncp->nc_key < key]; 465 } 466 } 467 468 /* 469 * If the entry is on the wrong LRU list, requeue it. This is an 470 * unlocked check, but it will rarely be wrong and even then there 471 * will be no harm caused. 472 */ 473 lrulist = atomic_load_relaxed(&ncp->nc_lrulist); 474 if (__predict_false(lrulist != LRU_ACTIVE)) { 475 cache_activate(ncp); 476 } 477 return ncp; 478 } 479 480 /* 481 * Look for a the name in the cache. We don't do this 482 * if the segment name is long, simply so the cache can avoid 483 * holding long names (which would either waste space, or 484 * add greatly to the complexity). 485 * 486 * Lookup is called with DVP pointing to the directory to search, 487 * and CNP providing the name of the entry being sought: cn_nameptr 488 * is the name, cn_namelen is its length, and cn_flags is the flags 489 * word from the namei operation. 490 * 491 * DVP must be locked. 492 * 493 * There are three possible non-error return states: 494 * 1. Nothing was found in the cache. Nothing is known about 495 * the requested name. 496 * 2. A negative entry was found in the cache, meaning that the 497 * requested name definitely does not exist. 498 * 3. A positive entry was found in the cache, meaning that the 499 * requested name does exist and that we are providing the 500 * vnode. 501 * In these cases the results are: 502 * 1. 0 returned; VN is set to NULL. 503 * 2. 1 returned; VN is set to NULL. 504 * 3. 1 returned; VN is set to the vnode found. 505 * 506 * The additional result argument ISWHT is set to zero, unless a 507 * negative entry is found that was entered as a whiteout, in which 508 * case ISWHT is set to one. 509 * 510 * The ISWHT_RET argument pointer may be null. In this case an 511 * assertion is made that the whiteout flag is not set. File systems 512 * that do not support whiteouts can/should do this. 513 * 514 * Filesystems that do support whiteouts should add ISWHITEOUT to 515 * cnp->cn_flags if ISWHT comes back nonzero. 516 * 517 * When a vnode is returned, it is locked, as per the vnode lookup 518 * locking protocol. 519 * 520 * There is no way for this function to fail, in the sense of 521 * generating an error that requires aborting the namei operation. 522 * 523 * (Prior to October 2012, this function returned an integer status, 524 * and a vnode, and mucked with the flags word in CNP for whiteouts. 525 * The integer status was -1 for "nothing found", ENOENT for "a 526 * negative entry found", 0 for "a positive entry found", and possibly 527 * other errors, and the value of VN might or might not have been set 528 * depending on what error occurred.) 529 */ 530 bool 531 cache_lookup(struct vnode *dvp, const char *name, size_t namelen, 532 uint32_t nameiop, uint32_t cnflags, 533 int *iswht_ret, struct vnode **vn_ret) 534 { 535 vnode_impl_t *dvi = VNODE_TO_VIMPL(dvp); 536 struct namecache *ncp; 537 struct vnode *vp; 538 uintptr_t key; 539 int error; 540 bool hit; 541 krw_t op; 542 543 KASSERT(namelen != cache_mp_nlen || name == cache_mp_name); 544 545 /* Establish default result values */ 546 if (iswht_ret != NULL) { 547 *iswht_ret = 0; 548 } 549 *vn_ret = NULL; 550 551 if (__predict_false(namelen > cache_maxlen)) { 552 SDT_PROBE(vfs, namecache, lookup, toolong, dvp, 553 name, namelen, 0, 0); 554 COUNT(ncs_long); 555 return false; 556 } 557 558 /* Compute the key up front - don't need the lock. */ 559 key = cache_key(name, namelen); 560 561 /* Could the entry be purged below? */ 562 if ((cnflags & ISLASTCN) != 0 && 563 ((cnflags & MAKEENTRY) == 0 || nameiop == CREATE)) { 564 op = RW_WRITER; 565 } else { 566 op = RW_READER; 567 } 568 569 /* Now look for the name. */ 570 rw_enter(&dvi->vi_nc_lock, op); 571 ncp = cache_lookup_entry(dvp, name, namelen, key); 572 if (__predict_false(ncp == NULL)) { 573 rw_exit(&dvi->vi_nc_lock); 574 COUNT(ncs_miss); 575 SDT_PROBE(vfs, namecache, lookup, miss, dvp, 576 name, namelen, 0, 0); 577 return false; 578 } 579 if (__predict_false((cnflags & MAKEENTRY) == 0)) { 580 /* 581 * Last component and we are renaming or deleting, 582 * the cache entry is invalid, or otherwise don't 583 * want cache entry to exist. 584 */ 585 KASSERT((cnflags & ISLASTCN) != 0); 586 cache_remove(ncp, true); 587 rw_exit(&dvi->vi_nc_lock); 588 COUNT(ncs_badhits); 589 return false; 590 } 591 if ((vp = ncp->nc_vp) == NULL) { 592 if (iswht_ret != NULL) { 593 /* 594 * Restore the ISWHITEOUT flag saved earlier. 595 */ 596 *iswht_ret = ncp->nc_whiteout; 597 } else { 598 KASSERT(!ncp->nc_whiteout); 599 } 600 if (nameiop == CREATE && (cnflags & ISLASTCN) != 0) { 601 /* 602 * Last component and we are preparing to create 603 * the named object, so flush the negative cache 604 * entry. 605 */ 606 COUNT(ncs_badhits); 607 cache_remove(ncp, true); 608 hit = false; 609 } else { 610 COUNT(ncs_neghits); 611 SDT_PROBE(vfs, namecache, lookup, hit, dvp, name, 612 namelen, 0, 0); 613 /* found neg entry; vn is already null from above */ 614 hit = true; 615 } 616 rw_exit(&dvi->vi_nc_lock); 617 return hit; 618 } 619 error = vcache_tryvget(vp); 620 rw_exit(&dvi->vi_nc_lock); 621 if (error) { 622 KASSERT(error == EBUSY); 623 /* 624 * This vnode is being cleaned out. 625 * XXX badhits? 626 */ 627 COUNT(ncs_falsehits); 628 return false; 629 } 630 631 COUNT(ncs_goodhits); 632 SDT_PROBE(vfs, namecache, lookup, hit, dvp, name, namelen, 0, 0); 633 /* found it */ 634 *vn_ret = vp; 635 return true; 636 } 637 638 /* 639 * Version of the above without the nameiop argument, for NFS. 640 */ 641 bool 642 cache_lookup_raw(struct vnode *dvp, const char *name, size_t namelen, 643 uint32_t cnflags, 644 int *iswht_ret, struct vnode **vn_ret) 645 { 646 647 return cache_lookup(dvp, name, namelen, LOOKUP, cnflags | MAKEENTRY, 648 iswht_ret, vn_ret); 649 } 650 651 /* 652 * Used by namei() to walk down a path, component by component by looking up 653 * names in the cache. The node locks are chained along the way: a parent's 654 * lock is not dropped until the child's is acquired. 655 */ 656 bool 657 cache_lookup_linked(struct vnode *dvp, const char *name, size_t namelen, 658 struct vnode **vn_ret, krwlock_t **plock, 659 kauth_cred_t cred) 660 { 661 vnode_impl_t *dvi = VNODE_TO_VIMPL(dvp); 662 struct namecache *ncp; 663 krwlock_t *oldlock, *newlock; 664 struct vnode *vp; 665 uintptr_t key; 666 int error; 667 668 KASSERT(namelen != cache_mp_nlen || name == cache_mp_name); 669 670 /* If disabled, or file system doesn't support this, bail out. */ 671 if (__predict_false((dvp->v_mount->mnt_iflag & IMNT_NCLOOKUP) == 0)) { 672 return false; 673 } 674 675 if (__predict_false(namelen > cache_maxlen)) { 676 COUNT(ncs_long); 677 return false; 678 } 679 680 /* Compute the key up front - don't need the lock. */ 681 key = cache_key(name, namelen); 682 683 /* 684 * Acquire the directory lock. Once we have that, we can drop the 685 * previous one (if any). 686 * 687 * The two lock holds mean that the directory can't go away while 688 * here: the directory must be purged with cache_purge() before 689 * being freed, and both parent & child's vi_nc_lock must be taken 690 * before that point is passed. 691 * 692 * However if there's no previous lock, like at the root of the 693 * chain, then "dvp" must be referenced to prevent dvp going away 694 * before we get its lock. 695 * 696 * Note that the two locks can be the same if looking up a dot, for 697 * example: /usr/bin/. If looking up the parent (..) we can't wait 698 * on the lock as child -> parent is the wrong direction. 699 */ 700 if (*plock != &dvi->vi_nc_lock) { 701 oldlock = *plock; 702 newlock = &dvi->vi_nc_lock; 703 if (!rw_tryenter(&dvi->vi_nc_lock, RW_READER)) { 704 return false; 705 } 706 } else { 707 oldlock = NULL; 708 newlock = NULL; 709 if (*plock == NULL) { 710 KASSERT(vrefcnt(dvp) > 0); 711 } 712 } 713 714 /* 715 * First up check if the user is allowed to look up files in this 716 * directory. 717 */ 718 if (cred != FSCRED) { 719 if (dvi->vi_nc_mode == VNOVAL) { 720 if (newlock != NULL) { 721 rw_exit(newlock); 722 } 723 return false; 724 } 725 KASSERT(dvi->vi_nc_uid != VNOVAL); 726 KASSERT(dvi->vi_nc_gid != VNOVAL); 727 error = kauth_authorize_vnode(cred, 728 KAUTH_ACCESS_ACTION(VEXEC, 729 dvp->v_type, dvi->vi_nc_mode & ALLPERMS), 730 dvp, NULL, 731 genfs_can_access(dvp, cred, dvi->vi_nc_uid, dvi->vi_nc_gid, 732 dvi->vi_nc_mode & ALLPERMS, NULL, VEXEC)); 733 if (error != 0) { 734 if (newlock != NULL) { 735 rw_exit(newlock); 736 } 737 COUNT(ncs_denied); 738 return false; 739 } 740 } 741 742 /* 743 * Now look for a matching cache entry. 744 */ 745 ncp = cache_lookup_entry(dvp, name, namelen, key); 746 if (__predict_false(ncp == NULL)) { 747 if (newlock != NULL) { 748 rw_exit(newlock); 749 } 750 COUNT(ncs_miss); 751 SDT_PROBE(vfs, namecache, lookup, miss, dvp, 752 name, namelen, 0, 0); 753 return false; 754 } 755 if ((vp = ncp->nc_vp) == NULL) { 756 /* found negative entry; vn is already null from above */ 757 KASSERT(namelen != cache_mp_nlen); 758 KASSERT(name != cache_mp_name); 759 COUNT(ncs_neghits); 760 } else { 761 COUNT(ncs_goodhits); /* XXX can be "badhits" */ 762 } 763 SDT_PROBE(vfs, namecache, lookup, hit, dvp, name, namelen, 0, 0); 764 765 /* 766 * Return with the directory lock still held. It will either be 767 * returned to us with another call to cache_lookup_linked() when 768 * looking up the next component, or the caller will release it 769 * manually when finished. 770 */ 771 if (oldlock) { 772 rw_exit(oldlock); 773 } 774 if (newlock) { 775 *plock = newlock; 776 } 777 *vn_ret = vp; 778 return true; 779 } 780 781 /* 782 * Scan cache looking for name of directory entry pointing at vp. 783 * Will not search for "." or "..". 784 * 785 * If the lookup succeeds the vnode is referenced and stored in dvpp. 786 * 787 * If bufp is non-NULL, also place the name in the buffer which starts 788 * at bufp, immediately before *bpp, and move bpp backwards to point 789 * at the start of it. (Yes, this is a little baroque, but it's done 790 * this way to cater to the whims of getcwd). 791 * 792 * Returns 0 on success, -1 on cache miss, positive errno on failure. 793 */ 794 int 795 cache_revlookup(struct vnode *vp, struct vnode **dvpp, char **bpp, char *bufp, 796 bool checkaccess, accmode_t accmode) 797 { 798 vnode_impl_t *vi = VNODE_TO_VIMPL(vp); 799 struct namecache *ncp; 800 enum cache_lru_id lrulist; 801 struct vnode *dvp; 802 int error, nlen; 803 char *bp; 804 805 KASSERT(vp != NULL); 806 807 if (cache_maxlen == 0) 808 goto out; 809 810 rw_enter(&vi->vi_nc_listlock, RW_READER); 811 if (checkaccess) { 812 /* 813 * Check if the user is allowed to see. NOTE: this is 814 * checking for access on the "wrong" directory. getcwd() 815 * wants to see that there is access on every component 816 * along the way, not that there is access to any individual 817 * component. Don't use this to check you can look in vp. 818 * 819 * I don't like it, I didn't come up with it, don't blame me! 820 */ 821 if (vi->vi_nc_mode == VNOVAL) { 822 rw_exit(&vi->vi_nc_listlock); 823 return -1; 824 } 825 KASSERT(vi->vi_nc_uid != VNOVAL); 826 KASSERT(vi->vi_nc_gid != VNOVAL); 827 error = kauth_authorize_vnode(kauth_cred_get(), 828 KAUTH_ACCESS_ACTION(VEXEC, vp->v_type, vi->vi_nc_mode & 829 ALLPERMS), 830 vp, NULL, genfs_can_access(vp, curlwp->l_cred, 831 vi->vi_nc_uid, vi->vi_nc_gid, 832 vi->vi_nc_mode & ALLPERMS, 833 NULL, accmode)); 834 if (error != 0) { 835 rw_exit(&vi->vi_nc_listlock); 836 COUNT(ncs_denied); 837 return SET_ERROR(EACCES); 838 } 839 } 840 TAILQ_FOREACH(ncp, &vi->vi_nc_list, nc_list) { 841 KASSERT(ncp->nc_vp == vp); 842 KASSERT(ncp->nc_dvp != NULL); 843 nlen = NC_NLEN(ncp); 844 845 /* 846 * Ignore mountpoint entries. 847 */ 848 if (nlen == cache_mp_nlen) { 849 continue; 850 } 851 852 /* 853 * The queue is partially sorted. Once we hit dots, nothing 854 * else remains but dots and dotdots, so bail out. 855 */ 856 if (ncp->nc_name[0] == '.') { 857 if (nlen == 1 || 858 (nlen == 2 && ncp->nc_name[1] == '.')) { 859 break; 860 } 861 } 862 863 /* 864 * Record a hit on the entry. This is an unlocked read but 865 * even if wrong it doesn't matter too much. 866 */ 867 lrulist = atomic_load_relaxed(&ncp->nc_lrulist); 868 if (lrulist != LRU_ACTIVE) { 869 cache_activate(ncp); 870 } 871 872 if (bufp) { 873 bp = *bpp; 874 bp -= nlen; 875 if (bp <= bufp) { 876 *dvpp = NULL; 877 rw_exit(&vi->vi_nc_listlock); 878 SDT_PROBE(vfs, namecache, revlookup, 879 fail, vp, ERANGE, 0, 0, 0); 880 return SET_ERROR(ERANGE); 881 } 882 memcpy(bp, ncp->nc_name, nlen); 883 *bpp = bp; 884 } 885 886 dvp = ncp->nc_dvp; 887 error = vcache_tryvget(dvp); 888 rw_exit(&vi->vi_nc_listlock); 889 if (error) { 890 KASSERT(error == EBUSY); 891 if (bufp) 892 (*bpp) += nlen; 893 *dvpp = NULL; 894 SDT_PROBE(vfs, namecache, revlookup, fail, vp, 895 error, 0, 0, 0); 896 return -1; 897 } 898 *dvpp = dvp; 899 SDT_PROBE(vfs, namecache, revlookup, success, vp, dvp, 900 0, 0, 0); 901 COUNT(ncs_revhits); 902 return 0; 903 } 904 rw_exit(&vi->vi_nc_listlock); 905 COUNT(ncs_revmiss); 906 out: 907 *dvpp = NULL; 908 return -1; 909 } 910 911 /* 912 * Add an entry to the cache. 913 */ 914 void 915 cache_enter(struct vnode *dvp, struct vnode *vp, 916 const char *name, size_t namelen, uint32_t cnflags) 917 { 918 vnode_impl_t *dvi = VNODE_TO_VIMPL(dvp); 919 struct namecache *ncp, *oncp; 920 int total; 921 922 KASSERT(namelen != cache_mp_nlen || name == cache_mp_name); 923 924 /* First, check whether we can/should add a cache entry. */ 925 if ((cnflags & MAKEENTRY) == 0 || 926 __predict_false(namelen > cache_maxlen)) { 927 SDT_PROBE(vfs, namecache, enter, toolong, vp, name, namelen, 928 0, 0); 929 return; 930 } 931 932 SDT_PROBE(vfs, namecache, enter, done, vp, name, namelen, 0, 0); 933 934 /* 935 * Reclaim some entries if over budget. This is an unlocked check, 936 * but it doesn't matter. Just need to catch up with things 937 * eventually: it doesn't matter if we go over temporarily. 938 */ 939 total = atomic_load_relaxed(&cache_lru.count[LRU_ACTIVE]); 940 total += atomic_load_relaxed(&cache_lru.count[LRU_INACTIVE]); 941 if (__predict_false(total > desiredvnodes)) { 942 cache_reclaim(); 943 } 944 945 /* Now allocate a fresh entry. */ 946 if (__predict_true(namelen <= NCHNAMLEN)) { 947 ncp = pool_cache_get(cache_pool, PR_WAITOK); 948 } else { 949 size_t sz = offsetof(struct namecache, nc_name[namelen]); 950 ncp = kmem_alloc(sz, KM_SLEEP); 951 } 952 953 /* 954 * Fill in cache info. For negative hits, save the ISWHITEOUT flag 955 * so we can restore it later when the cache entry is used again. 956 */ 957 ncp->nc_vp = vp; 958 ncp->nc_dvp = dvp; 959 ncp->nc_key = cache_key(name, namelen); 960 ncp->nc_whiteout = ((cnflags & ISWHITEOUT) != 0); 961 memcpy(ncp->nc_name, name, namelen); 962 963 /* 964 * Insert to the directory. Concurrent lookups may race for a cache 965 * entry. If there's a entry there already, purge it. 966 */ 967 rw_enter(&dvi->vi_nc_lock, RW_WRITER); 968 oncp = rb_tree_insert_node(&dvi->vi_nc_tree, ncp); 969 if (oncp != ncp) { 970 KASSERT(oncp->nc_key == ncp->nc_key); 971 KASSERT(NC_NLEN(oncp) == NC_NLEN(ncp)); 972 KASSERT(memcmp(oncp->nc_name, name, namelen) == 0); 973 cache_remove(oncp, true); 974 oncp = rb_tree_insert_node(&dvi->vi_nc_tree, ncp); 975 KASSERT(oncp == ncp); 976 } 977 978 /* 979 * With the directory lock still held, insert to the tail of the 980 * ACTIVE LRU list (new) and take the opportunity to incrementally 981 * balance the lists. 982 */ 983 mutex_enter(&cache_lru_lock); 984 ncp->nc_lrulist = LRU_ACTIVE; 985 cache_lru.count[LRU_ACTIVE]++; 986 TAILQ_INSERT_TAIL(&cache_lru.list[LRU_ACTIVE], ncp, nc_lru); 987 cache_deactivate(); 988 mutex_exit(&cache_lru_lock); 989 990 /* 991 * Finally, insert to the vnode and unlock. With everything set up 992 * it's safe to let cache_revlookup() see the entry. Partially sort 993 * the per-vnode list: dots go to back so cache_revlookup() doesn't 994 * have to consider them. 995 */ 996 if (vp != NULL) { 997 vnode_impl_t *vi = VNODE_TO_VIMPL(vp); 998 rw_enter(&vi->vi_nc_listlock, RW_WRITER); 999 if ((namelen == 1 && name[0] == '.') || 1000 (namelen == 2 && name[0] == '.' && name[1] == '.')) { 1001 TAILQ_INSERT_TAIL(&vi->vi_nc_list, ncp, nc_list); 1002 } else { 1003 TAILQ_INSERT_HEAD(&vi->vi_nc_list, ncp, nc_list); 1004 } 1005 rw_exit(&vi->vi_nc_listlock); 1006 } 1007 rw_exit(&dvi->vi_nc_lock); 1008 } 1009 1010 /* 1011 * Set identity info in cache for a vnode. We only care about directories 1012 * so ignore other updates. The cached info may be marked invalid if the 1013 * inode has an ACL. 1014 */ 1015 void 1016 cache_enter_id(struct vnode *vp, mode_t mode, uid_t uid, gid_t gid, bool valid) 1017 { 1018 vnode_impl_t *vi = VNODE_TO_VIMPL(vp); 1019 1020 if (vp->v_type == VDIR) { 1021 /* Grab both locks, for forward & reverse lookup. */ 1022 rw_enter(&vi->vi_nc_lock, RW_WRITER); 1023 rw_enter(&vi->vi_nc_listlock, RW_WRITER); 1024 if (valid) { 1025 vi->vi_nc_mode = mode; 1026 vi->vi_nc_uid = uid; 1027 vi->vi_nc_gid = gid; 1028 } else { 1029 vi->vi_nc_mode = VNOVAL; 1030 vi->vi_nc_uid = VNOVAL; 1031 vi->vi_nc_gid = VNOVAL; 1032 } 1033 rw_exit(&vi->vi_nc_listlock); 1034 rw_exit(&vi->vi_nc_lock); 1035 } 1036 } 1037 1038 /* 1039 * Return true if we have identity for the given vnode, and use as an 1040 * opportunity to confirm that everything squares up. 1041 * 1042 * Because of shared code, some file systems could provide partial 1043 * information, missing some updates, so check the mount flag too. 1044 */ 1045 bool 1046 cache_have_id(struct vnode *vp) 1047 { 1048 1049 if (vp->v_type == VDIR && 1050 (vp->v_mount->mnt_iflag & IMNT_NCLOOKUP) != 0 && 1051 atomic_load_relaxed(&VNODE_TO_VIMPL(vp)->vi_nc_mode) != VNOVAL) { 1052 return true; 1053 } else { 1054 return false; 1055 } 1056 } 1057 1058 /* 1059 * Enter a mount point. cvp is the covered vnode, and rvp is the root of 1060 * the mounted file system. 1061 */ 1062 void 1063 cache_enter_mount(struct vnode *cvp, struct vnode *rvp) 1064 { 1065 1066 KASSERT(vrefcnt(cvp) > 0); 1067 KASSERT(vrefcnt(rvp) > 0); 1068 KASSERT(cvp->v_type == VDIR); 1069 KASSERT((rvp->v_vflag & VV_ROOT) != 0); 1070 1071 if (rvp->v_type == VDIR) { 1072 cache_enter(cvp, rvp, cache_mp_name, cache_mp_nlen, MAKEENTRY); 1073 } 1074 } 1075 1076 /* 1077 * Look up a cached mount point. Used in the strongly locked path. 1078 */ 1079 bool 1080 cache_lookup_mount(struct vnode *dvp, struct vnode **vn_ret) 1081 { 1082 bool ret; 1083 1084 ret = cache_lookup(dvp, cache_mp_name, cache_mp_nlen, LOOKUP, 1085 MAKEENTRY, NULL, vn_ret); 1086 KASSERT((*vn_ret != NULL) == ret); 1087 return ret; 1088 } 1089 1090 /* 1091 * Try to cross a mount point. For use with cache_lookup_linked(). 1092 */ 1093 bool 1094 cache_cross_mount(struct vnode **dvp, krwlock_t **plock) 1095 { 1096 1097 return cache_lookup_linked(*dvp, cache_mp_name, cache_mp_nlen, 1098 dvp, plock, FSCRED); 1099 } 1100 1101 /* 1102 * Name cache initialization, from vfs_init() when the system is booting. 1103 */ 1104 void 1105 nchinit(void) 1106 { 1107 1108 cache_pool = pool_cache_init(sizeof(struct namecache), 1109 coherency_unit, 0, 0, "namecache", NULL, IPL_NONE, NULL, 1110 NULL, NULL); 1111 KASSERT(cache_pool != NULL); 1112 1113 mutex_init(&cache_lru_lock, MUTEX_DEFAULT, IPL_NONE); 1114 TAILQ_INIT(&cache_lru.list[LRU_ACTIVE]); 1115 TAILQ_INIT(&cache_lru.list[LRU_INACTIVE]); 1116 1117 mutex_init(&cache_stat_lock, MUTEX_DEFAULT, IPL_NONE); 1118 callout_init(&cache_stat_callout, CALLOUT_MPSAFE); 1119 callout_setfunc(&cache_stat_callout, cache_update_stats, NULL); 1120 callout_schedule(&cache_stat_callout, cache_stat_interval * hz); 1121 1122 KASSERT(cache_sysctllog == NULL); 1123 sysctl_createv(&cache_sysctllog, 0, NULL, NULL, 1124 CTLFLAG_PERMANENT, 1125 CTLTYPE_STRUCT, "namecache_stats", 1126 SYSCTL_DESCR("namecache statistics"), 1127 cache_stat_sysctl, 0, NULL, 0, 1128 CTL_VFS, CTL_CREATE, CTL_EOL); 1129 } 1130 1131 /* 1132 * Called once for each CPU in the system as attached. 1133 */ 1134 void 1135 cache_cpu_init(struct cpu_info *ci) 1136 { 1137 size_t sz; 1138 1139 sz = roundup2(sizeof(struct nchcpu), coherency_unit); 1140 ci->ci_data.cpu_nch = kmem_zalloc(sz, KM_SLEEP); 1141 KASSERT(((uintptr_t)ci->ci_data.cpu_nch & (coherency_unit - 1)) == 0); 1142 } 1143 1144 /* 1145 * A vnode is being allocated: set up cache structures. 1146 */ 1147 void 1148 cache_vnode_init(struct vnode *vp) 1149 { 1150 vnode_impl_t *vi = VNODE_TO_VIMPL(vp); 1151 1152 rw_init(&vi->vi_nc_lock); 1153 rw_init(&vi->vi_nc_listlock); 1154 rb_tree_init(&vi->vi_nc_tree, &cache_rbtree_ops); 1155 TAILQ_INIT(&vi->vi_nc_list); 1156 vi->vi_nc_mode = VNOVAL; 1157 vi->vi_nc_uid = VNOVAL; 1158 vi->vi_nc_gid = VNOVAL; 1159 } 1160 1161 /* 1162 * A vnode is being freed: finish cache structures. 1163 */ 1164 void 1165 cache_vnode_fini(struct vnode *vp) 1166 { 1167 vnode_impl_t *vi = VNODE_TO_VIMPL(vp); 1168 1169 KASSERT(RB_TREE_MIN(&vi->vi_nc_tree) == NULL); 1170 KASSERT(TAILQ_EMPTY(&vi->vi_nc_list)); 1171 rw_destroy(&vi->vi_nc_lock); 1172 rw_destroy(&vi->vi_nc_listlock); 1173 } 1174 1175 /* 1176 * Helper for cache_purge1(): purge cache entries for the given vnode from 1177 * all directories that the vnode is cached in. 1178 */ 1179 static void 1180 cache_purge_parents(struct vnode *vp) 1181 { 1182 vnode_impl_t *dvi, *vi = VNODE_TO_VIMPL(vp); 1183 struct vnode *dvp, *blocked; 1184 struct namecache *ncp; 1185 1186 SDT_PROBE(vfs, namecache, purge, parents, vp, 0, 0, 0, 0); 1187 1188 blocked = NULL; 1189 1190 rw_enter(&vi->vi_nc_listlock, RW_WRITER); 1191 while ((ncp = TAILQ_FIRST(&vi->vi_nc_list)) != NULL) { 1192 /* 1193 * Locking in the wrong direction. Try for a hold on the 1194 * directory node's lock, and if we get it then all good, 1195 * nuke the entry and move on to the next. 1196 */ 1197 dvp = ncp->nc_dvp; 1198 dvi = VNODE_TO_VIMPL(dvp); 1199 if (rw_tryenter(&dvi->vi_nc_lock, RW_WRITER)) { 1200 cache_remove(ncp, false); 1201 rw_exit(&dvi->vi_nc_lock); 1202 blocked = NULL; 1203 continue; 1204 } 1205 1206 /* 1207 * We can't wait on the directory node's lock with our list 1208 * lock held or the system could deadlock. 1209 * 1210 * Take a hold on the directory vnode to prevent it from 1211 * being freed (taking the vnode & lock with it). Then 1212 * wait for the lock to become available with no other locks 1213 * held, and retry. 1214 * 1215 * If this happens twice in a row, give the other side a 1216 * breather; we can do nothing until it lets go. 1217 */ 1218 vhold(dvp); 1219 rw_exit(&vi->vi_nc_listlock); 1220 rw_enter(&dvi->vi_nc_lock, RW_WRITER); 1221 /* Do nothing. */ 1222 rw_exit(&dvi->vi_nc_lock); 1223 holdrele(dvp); 1224 if (blocked == dvp) { 1225 kpause("ncpurge", false, 1, NULL); 1226 } 1227 rw_enter(&vi->vi_nc_listlock, RW_WRITER); 1228 blocked = dvp; 1229 } 1230 rw_exit(&vi->vi_nc_listlock); 1231 } 1232 1233 /* 1234 * Helper for cache_purge1(): purge all cache entries hanging off the given 1235 * directory vnode. 1236 */ 1237 static void 1238 cache_purge_children(struct vnode *dvp) 1239 { 1240 vnode_impl_t *dvi = VNODE_TO_VIMPL(dvp); 1241 struct namecache *ncp; 1242 1243 SDT_PROBE(vfs, namecache, purge, children, dvp, 0, 0, 0, 0); 1244 1245 rw_enter(&dvi->vi_nc_lock, RW_WRITER); 1246 while ((ncp = RB_TREE_MIN(&dvi->vi_nc_tree)) != NULL) { 1247 cache_remove(ncp, true); 1248 } 1249 rw_exit(&dvi->vi_nc_lock); 1250 } 1251 1252 /* 1253 * Helper for cache_purge1(): purge cache entry from the given vnode, 1254 * finding it by name. 1255 */ 1256 static void 1257 cache_purge_name(struct vnode *dvp, const char *name, size_t namelen) 1258 { 1259 vnode_impl_t *dvi = VNODE_TO_VIMPL(dvp); 1260 struct namecache *ncp; 1261 uintptr_t key; 1262 1263 SDT_PROBE(vfs, namecache, purge, name, name, namelen, 0, 0, 0); 1264 1265 key = cache_key(name, namelen); 1266 rw_enter(&dvi->vi_nc_lock, RW_WRITER); 1267 ncp = cache_lookup_entry(dvp, name, namelen, key); 1268 if (ncp) { 1269 cache_remove(ncp, true); 1270 } 1271 rw_exit(&dvi->vi_nc_lock); 1272 } 1273 1274 /* 1275 * Cache flush, a particular vnode; called when a vnode is renamed to 1276 * hide entries that would now be invalid. 1277 */ 1278 void 1279 cache_purge1(struct vnode *vp, const char *name, size_t namelen, int flags) 1280 { 1281 1282 if (flags & PURGE_PARENTS) { 1283 cache_purge_parents(vp); 1284 } 1285 if (flags & PURGE_CHILDREN) { 1286 cache_purge_children(vp); 1287 } 1288 if (name != NULL) { 1289 cache_purge_name(vp, name, namelen); 1290 } 1291 } 1292 1293 /* 1294 * vnode filter for cache_purgevfs(). 1295 */ 1296 static bool 1297 cache_vdir_filter(void *cookie, vnode_t *vp) 1298 { 1299 1300 return vp->v_type == VDIR; 1301 } 1302 1303 /* 1304 * Cache flush, a whole filesystem; called when filesys is umounted to 1305 * remove entries that would now be invalid. 1306 */ 1307 void 1308 cache_purgevfs(struct mount *mp) 1309 { 1310 struct vnode_iterator *iter; 1311 vnode_t *dvp; 1312 1313 vfs_vnode_iterator_init(mp, &iter); 1314 for (;;) { 1315 dvp = vfs_vnode_iterator_next(iter, cache_vdir_filter, NULL); 1316 if (dvp == NULL) { 1317 break; 1318 } 1319 cache_purge_children(dvp); 1320 vrele(dvp); 1321 } 1322 vfs_vnode_iterator_destroy(iter); 1323 } 1324 1325 /* 1326 * Re-queue an entry onto the tail of the active LRU list, after it has 1327 * scored a hit. 1328 */ 1329 static void 1330 cache_activate(struct namecache *ncp) 1331 { 1332 1333 mutex_enter(&cache_lru_lock); 1334 TAILQ_REMOVE(&cache_lru.list[ncp->nc_lrulist], ncp, nc_lru); 1335 TAILQ_INSERT_TAIL(&cache_lru.list[LRU_ACTIVE], ncp, nc_lru); 1336 cache_lru.count[ncp->nc_lrulist]--; 1337 cache_lru.count[LRU_ACTIVE]++; 1338 ncp->nc_lrulist = LRU_ACTIVE; 1339 mutex_exit(&cache_lru_lock); 1340 } 1341 1342 /* 1343 * Try to balance the LRU lists. Pick some victim entries, and re-queue 1344 * them from the head of the active list to the tail of the inactive list. 1345 */ 1346 static void 1347 cache_deactivate(void) 1348 { 1349 struct namecache *ncp; 1350 int total, i; 1351 1352 KASSERT(mutex_owned(&cache_lru_lock)); 1353 1354 /* If we're nowhere near budget yet, don't bother. */ 1355 total = cache_lru.count[LRU_ACTIVE] + cache_lru.count[LRU_INACTIVE]; 1356 if (total < (desiredvnodes >> 1)) { 1357 return; 1358 } 1359 1360 /* 1361 * Aim for a 1:1 ratio of active to inactive. This is to allow each 1362 * potential victim a reasonable amount of time to cycle through the 1363 * inactive list in order to score a hit and be reactivated, while 1364 * trying not to cause reactivations too frequently. 1365 */ 1366 if (cache_lru.count[LRU_ACTIVE] < cache_lru.count[LRU_INACTIVE]) { 1367 return; 1368 } 1369 1370 /* Move only a few at a time; will catch up eventually. */ 1371 for (i = 0; i < cache_lru_maxdeact; i++) { 1372 ncp = TAILQ_FIRST(&cache_lru.list[LRU_ACTIVE]); 1373 if (ncp == NULL) { 1374 break; 1375 } 1376 KASSERT(ncp->nc_lrulist == LRU_ACTIVE); 1377 ncp->nc_lrulist = LRU_INACTIVE; 1378 TAILQ_REMOVE(&cache_lru.list[LRU_ACTIVE], ncp, nc_lru); 1379 TAILQ_INSERT_TAIL(&cache_lru.list[LRU_INACTIVE], ncp, nc_lru); 1380 cache_lru.count[LRU_ACTIVE]--; 1381 cache_lru.count[LRU_INACTIVE]++; 1382 } 1383 } 1384 1385 /* 1386 * Free some entries from the cache, when we have gone over budget. 1387 * 1388 * We don't want to cause too much work for any individual caller, and it 1389 * doesn't matter if we temporarily go over budget. This is also "just a 1390 * cache" so it's not a big deal if we screw up and throw out something we 1391 * shouldn't. So we take a relaxed attitude to this process to reduce its 1392 * impact. 1393 */ 1394 static void 1395 cache_reclaim(void) 1396 { 1397 struct namecache *ncp; 1398 vnode_impl_t *dvi; 1399 int toscan; 1400 1401 /* 1402 * Scan up to a preset maximum number of entries, but no more than 1403 * 0.8% of the total at once (to allow for very small systems). 1404 * 1405 * On bigger systems, do a larger chunk of work to reduce the number 1406 * of times that cache_lru_lock is held for any length of time. 1407 */ 1408 mutex_enter(&cache_lru_lock); 1409 toscan = MIN(cache_lru_maxscan, desiredvnodes >> 7); 1410 toscan = MAX(toscan, 1); 1411 SDT_PROBE(vfs, namecache, prune, done, cache_lru.count[LRU_ACTIVE] + 1412 cache_lru.count[LRU_INACTIVE], toscan, 0, 0, 0); 1413 while (toscan-- != 0) { 1414 /* First try to balance the lists. */ 1415 cache_deactivate(); 1416 1417 /* Now look for a victim on head of inactive list (old). */ 1418 ncp = TAILQ_FIRST(&cache_lru.list[LRU_INACTIVE]); 1419 if (ncp == NULL) { 1420 break; 1421 } 1422 dvi = VNODE_TO_VIMPL(ncp->nc_dvp); 1423 KASSERT(ncp->nc_lrulist == LRU_INACTIVE); 1424 KASSERT(dvi != NULL); 1425 1426 /* 1427 * Locking in the wrong direction. If we can't get the 1428 * lock, the directory is actively busy, and it could also 1429 * cause problems for the next guy in here, so send the 1430 * entry to the back of the list. 1431 */ 1432 if (!rw_tryenter(&dvi->vi_nc_lock, RW_WRITER)) { 1433 TAILQ_REMOVE(&cache_lru.list[LRU_INACTIVE], 1434 ncp, nc_lru); 1435 TAILQ_INSERT_TAIL(&cache_lru.list[LRU_INACTIVE], 1436 ncp, nc_lru); 1437 continue; 1438 } 1439 1440 /* 1441 * Now have the victim entry locked. Drop the LRU list 1442 * lock, purge the entry, and start over. The hold on 1443 * vi_nc_lock will prevent the vnode from vanishing until 1444 * finished (cache_purge() will be called on dvp before it 1445 * disappears, and that will wait on vi_nc_lock). 1446 */ 1447 mutex_exit(&cache_lru_lock); 1448 cache_remove(ncp, true); 1449 rw_exit(&dvi->vi_nc_lock); 1450 mutex_enter(&cache_lru_lock); 1451 } 1452 mutex_exit(&cache_lru_lock); 1453 } 1454 1455 /* 1456 * For file system code: count a lookup that required a full re-scan of 1457 * directory metadata. 1458 */ 1459 void 1460 namecache_count_pass2(void) 1461 { 1462 1463 COUNT(ncs_pass2); 1464 } 1465 1466 /* 1467 * For file system code: count a lookup that scored a hit in the directory 1468 * metadata near the location of the last lookup. 1469 */ 1470 void 1471 namecache_count_2passes(void) 1472 { 1473 1474 COUNT(ncs_2passes); 1475 } 1476 1477 /* 1478 * Sum the stats from all CPUs into nchstats. This needs to run at least 1479 * once within every window where a 32-bit counter could roll over. It's 1480 * called regularly by timer to ensure this. 1481 */ 1482 static void 1483 cache_update_stats(void *cookie) 1484 { 1485 CPU_INFO_ITERATOR cii; 1486 struct cpu_info *ci; 1487 1488 mutex_enter(&cache_stat_lock); 1489 for (CPU_INFO_FOREACH(cii, ci)) { 1490 struct nchcpu *nchcpu = ci->ci_data.cpu_nch; 1491 UPDATE(nchcpu, ncs_goodhits); 1492 UPDATE(nchcpu, ncs_neghits); 1493 UPDATE(nchcpu, ncs_badhits); 1494 UPDATE(nchcpu, ncs_falsehits); 1495 UPDATE(nchcpu, ncs_miss); 1496 UPDATE(nchcpu, ncs_long); 1497 UPDATE(nchcpu, ncs_pass2); 1498 UPDATE(nchcpu, ncs_2passes); 1499 UPDATE(nchcpu, ncs_revhits); 1500 UPDATE(nchcpu, ncs_revmiss); 1501 UPDATE(nchcpu, ncs_denied); 1502 } 1503 if (cookie != NULL) { 1504 memcpy(cookie, &nchstats, sizeof(nchstats)); 1505 } 1506 /* Reset the timer; arrive back here in N minutes at latest. */ 1507 callout_schedule(&cache_stat_callout, cache_stat_interval * hz); 1508 mutex_exit(&cache_stat_lock); 1509 } 1510 1511 /* 1512 * Fetch the current values of the stats for sysctl. 1513 */ 1514 static int 1515 cache_stat_sysctl(SYSCTLFN_ARGS) 1516 { 1517 struct nchstats stats; 1518 1519 if (oldp == NULL) { 1520 *oldlenp = sizeof(nchstats); 1521 return 0; 1522 } 1523 1524 if (*oldlenp <= 0) { 1525 *oldlenp = 0; 1526 return 0; 1527 } 1528 1529 /* Refresh the global stats. */ 1530 sysctl_unlock(); 1531 cache_update_stats(&stats); 1532 sysctl_relock(); 1533 1534 *oldlenp = MIN(sizeof(stats), *oldlenp); 1535 return sysctl_copyout(l, &stats, oldp, *oldlenp); 1536 } 1537 1538 /* 1539 * For the debugger, given the address of a vnode, print all associated 1540 * names in the cache. 1541 */ 1542 #ifdef DDB 1543 void 1544 namecache_print(struct vnode *vp, void (*pr)(const char *, ...)) 1545 { 1546 struct vnode *dvp = NULL; 1547 struct namecache *ncp; 1548 enum cache_lru_id id; 1549 1550 for (id = 0; id < LRU_COUNT; id++) { 1551 TAILQ_FOREACH(ncp, &cache_lru.list[id], nc_lru) { 1552 if (ncp->nc_vp == vp) { 1553 (*pr)("name %.*s\n", NC_NLEN(ncp), 1554 ncp->nc_name); 1555 dvp = ncp->nc_dvp; 1556 } 1557 } 1558 } 1559 if (dvp == NULL) { 1560 (*pr)("name not found\n"); 1561 return; 1562 } 1563 for (id = 0; id < LRU_COUNT; id++) { 1564 TAILQ_FOREACH(ncp, &cache_lru.list[id], nc_lru) { 1565 if (ncp->nc_vp == dvp) { 1566 (*pr)("parent %.*s\n", NC_NLEN(ncp), 1567 ncp->nc_name); 1568 } 1569 } 1570 } 1571 } 1572 #endif 1573