1 /* $NetBSD: kern_proc.c,v 1.276 2024/07/14 05:10:40 kre Exp $ */
2
3 /*-
4 * Copyright (c) 1999, 2006, 2007, 2008, 2020, 2023
5 * The NetBSD Foundation, Inc.
6 * All rights reserved.
7 *
8 * This code is derived from software contributed to The NetBSD Foundation
9 * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
10 * NASA Ames Research Center, and by Andrew Doran.
11 *
12 * Redistribution and use in source and binary forms, with or without
13 * modification, are permitted provided that the following conditions
14 * are met:
15 * 1. Redistributions of source code must retain the above copyright
16 * notice, this list of conditions and the following disclaimer.
17 * 2. Redistributions in binary form must reproduce the above copyright
18 * notice, this list of conditions and the following disclaimer in the
19 * documentation and/or other materials provided with the distribution.
20 *
21 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
22 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
23 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
24 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
25 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
26 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
27 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
28 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
29 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
30 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
31 * POSSIBILITY OF SUCH DAMAGE.
32 */
33
34 /*
35 * Copyright (c) 1982, 1986, 1989, 1991, 1993
36 * The Regents of the University of California. All rights reserved.
37 *
38 * Redistribution and use in source and binary forms, with or without
39 * modification, are permitted provided that the following conditions
40 * are met:
41 * 1. Redistributions of source code must retain the above copyright
42 * notice, this list of conditions and the following disclaimer.
43 * 2. Redistributions in binary form must reproduce the above copyright
44 * notice, this list of conditions and the following disclaimer in the
45 * documentation and/or other materials provided with the distribution.
46 * 3. Neither the name of the University nor the names of its contributors
47 * may be used to endorse or promote products derived from this software
48 * without specific prior written permission.
49 *
50 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
51 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
52 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
53 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
54 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
55 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
56 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
57 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
58 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
59 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
60 * SUCH DAMAGE.
61 *
62 * @(#)kern_proc.c 8.7 (Berkeley) 2/14/95
63 */
64
65 #include <sys/cdefs.h>
66 __KERNEL_RCSID(0, "$NetBSD: kern_proc.c,v 1.276 2024/07/14 05:10:40 kre Exp $");
67
68 #ifdef _KERNEL_OPT
69 #include "opt_kstack.h"
70 #include "opt_maxuprc.h"
71 #include "opt_dtrace.h"
72 #include "opt_compat_netbsd32.h"
73 #include "opt_kaslr.h"
74 #endif
75
76 #if defined(__HAVE_COMPAT_NETBSD32) && !defined(COMPAT_NETBSD32) \
77 && !defined(_RUMPKERNEL)
78 #define COMPAT_NETBSD32
79 #endif
80
81 #include <sys/param.h>
82 #include <sys/systm.h>
83 #include <sys/kernel.h>
84 #include <sys/proc.h>
85 #include <sys/resourcevar.h>
86 #include <sys/buf.h>
87 #include <sys/acct.h>
88 #include <sys/wait.h>
89 #include <sys/file.h>
90 #include <ufs/ufs/quota.h>
91 #include <sys/uio.h>
92 #include <sys/pool.h>
93 #include <sys/pset.h>
94 #include <sys/ioctl.h>
95 #include <sys/tty.h>
96 #include <sys/signalvar.h>
97 #include <sys/ras.h>
98 #include <sys/filedesc.h>
99 #include <sys/syscall_stats.h>
100 #include <sys/kauth.h>
101 #include <sys/sleepq.h>
102 #include <sys/atomic.h>
103 #include <sys/kmem.h>
104 #include <sys/namei.h>
105 #include <sys/dtrace_bsd.h>
106 #include <sys/sysctl.h>
107 #include <sys/exec.h>
108 #include <sys/cpu.h>
109 #include <sys/compat_stub.h>
110 #include <sys/futex.h>
111 #include <sys/pserialize.h>
112
113 #include <uvm/uvm_extern.h>
114
115 /*
116 * Process lists.
117 */
118
119 struct proclist allproc __cacheline_aligned;
120 struct proclist zombproc __cacheline_aligned;
121
122 kmutex_t proc_lock __cacheline_aligned;
123 static pserialize_t proc_psz;
124
125 /*
126 * pid to lwp/proc lookup is done by indexing the pid_table array.
127 * Since pid numbers are only allocated when an empty slot
128 * has been found, there is no need to search any lists ever.
129 * (an orphaned pgrp will lock the slot, a session will lock
130 * the pgrp with the same number.)
131 * If the table is too small it is reallocated with twice the
132 * previous size and the entries 'unzipped' into the two halves.
133 * A linked list of free entries is passed through the pt_lwp
134 * field of 'free' items - set odd to be an invalid ptr. Two
135 * additional bits are also used to indicate if the slot is
136 * currently occupied by a proc or lwp, and if the PID is
137 * hidden from certain kinds of lookups. We thus require a
138 * minimum alignment for proc and lwp structures (LWPs are
139 * at least 32-byte aligned).
140 */
141
142 struct pid_table {
143 uintptr_t pt_slot;
144 struct pgrp *pt_pgrp;
145 pid_t pt_pid;
146 };
147
148 #define PT_F_FREE ((uintptr_t)__BIT(0))
149 #define PT_F_LWP 0 /* pseudo-flag */
150 #define PT_F_PROC ((uintptr_t)__BIT(1))
151
152 #define PT_F_TYPEBITS (PT_F_FREE|PT_F_PROC)
153 #define PT_F_ALLBITS (PT_F_FREE|PT_F_PROC)
154
155 #define PT_VALID(s) (((s) & PT_F_FREE) == 0)
156 #define PT_RESERVED(s) ((s) == 0)
157 #define PT_NEXT(s) ((u_int)(s) >> 1)
158 #define PT_SET_FREE(pid) (((pid) << 1) | PT_F_FREE)
159 #define PT_SET_LWP(l) ((uintptr_t)(l))
160 #define PT_SET_PROC(p) (((uintptr_t)(p)) | PT_F_PROC)
161 #define PT_SET_RESERVED 0
162 #define PT_GET_LWP(s) ((struct lwp *)((s) & ~PT_F_ALLBITS))
163 #define PT_GET_PROC(s) ((struct proc *)((s) & ~PT_F_ALLBITS))
164 #define PT_GET_TYPE(s) ((s) & PT_F_TYPEBITS)
165 #define PT_IS_LWP(s) (PT_GET_TYPE(s) == PT_F_LWP && (s) != 0)
166 #define PT_IS_PROC(s) (PT_GET_TYPE(s) == PT_F_PROC)
167
168 #define MIN_PROC_ALIGNMENT (PT_F_ALLBITS + 1)
169
170 /*
171 * Table of process IDs (PIDs).
172 */
173 static struct pid_table *pid_table __read_mostly;
174
175 #define INITIAL_PID_TABLE_SIZE (1 << 5)
176
177 /* Table mask, threshold for growing and number of allocated PIDs. */
178 static u_int pid_tbl_mask __read_mostly;
179 static u_int pid_alloc_lim __read_mostly;
180 static u_int pid_alloc_cnt __cacheline_aligned;
181
182 /* Next free, last free and maximum PIDs. */
183 static u_int next_free_pt __cacheline_aligned;
184 static u_int last_free_pt __cacheline_aligned;
185 static pid_t pid_max __read_mostly;
186
187 /* Components of the first process -- never freed. */
188
189 struct session session0 = {
190 .s_count = 1,
191 .s_sid = 0,
192 };
193 struct pgrp pgrp0 = {
194 .pg_members = LIST_HEAD_INITIALIZER(&pgrp0.pg_members),
195 .pg_session = &session0,
196 };
197 filedesc_t filedesc0;
198 struct cwdinfo cwdi0 = {
199 .cwdi_cmask = CMASK,
200 .cwdi_refcnt = 1,
201 };
202 struct plimit limit0;
203 struct pstats pstat0;
204 struct vmspace vmspace0;
205 struct sigacts sigacts0;
206 struct proc proc0 = {
207 .p_lwps = LIST_HEAD_INITIALIZER(&proc0.p_lwps),
208 .p_sigwaiters = LIST_HEAD_INITIALIZER(&proc0.p_sigwaiters),
209 .p_nlwps = 1,
210 .p_nrlwps = 1,
211 .p_pgrp = &pgrp0,
212 .p_comm = "system",
213 /*
214 * Set P_NOCLDWAIT so that kernel threads are reparented to init(8)
215 * when they exit. init(8) can easily wait them out for us.
216 */
217 .p_flag = PK_SYSTEM | PK_NOCLDWAIT,
218 .p_stat = SACTIVE,
219 .p_nice = NZERO,
220 .p_emul = &emul_netbsd,
221 .p_cwdi = &cwdi0,
222 .p_limit = &limit0,
223 .p_fd = &filedesc0,
224 .p_vmspace = &vmspace0,
225 .p_stats = &pstat0,
226 .p_sigacts = &sigacts0,
227 #ifdef PROC0_MD_INITIALIZERS
228 PROC0_MD_INITIALIZERS
229 #endif
230 };
231 kauth_cred_t cred0;
232
233 static const int nofile = NOFILE;
234 static const int maxuprc = MAXUPRC;
235
236 static int sysctl_doeproc(SYSCTLFN_PROTO);
237 static int sysctl_kern_proc_args(SYSCTLFN_PROTO);
238 static int sysctl_security_expose_address(SYSCTLFN_PROTO);
239
240 #ifdef KASLR
241 static int kern_expose_address = 0;
242 #else
243 static int kern_expose_address = 1;
244 #endif
245 /*
246 * The process list descriptors, used during pid allocation and
247 * by sysctl. No locking on this data structure is needed since
248 * it is completely static.
249 */
250 const struct proclist_desc proclists[] = {
251 { &allproc },
252 { &zombproc },
253 { NULL },
254 };
255
256 static struct pgrp * pg_remove(pid_t);
257 static void pg_delete(pid_t);
258 static void orphanpg(struct pgrp *);
259
260 static specificdata_domain_t proc_specificdata_domain;
261
262 static pool_cache_t proc_cache;
263
264 static kauth_listener_t proc_listener;
265
266 static void fill_proc(const struct proc *, struct proc *, bool);
267 static int fill_pathname(struct lwp *, pid_t, void *, size_t *);
268 static int fill_cwd(struct lwp *, pid_t, void *, size_t *);
269
270 static int
proc_listener_cb(kauth_cred_t cred,kauth_action_t action,void * cookie,void * arg0,void * arg1,void * arg2,void * arg3)271 proc_listener_cb(kauth_cred_t cred, kauth_action_t action, void *cookie,
272 void *arg0, void *arg1, void *arg2, void *arg3)
273 {
274 struct proc *p;
275 int result;
276
277 result = KAUTH_RESULT_DEFER;
278 p = arg0;
279
280 switch (action) {
281 case KAUTH_PROCESS_CANSEE: {
282 enum kauth_process_req req;
283
284 req = (enum kauth_process_req)(uintptr_t)arg1;
285
286 switch (req) {
287 case KAUTH_REQ_PROCESS_CANSEE_ARGS:
288 case KAUTH_REQ_PROCESS_CANSEE_ENTRY:
289 case KAUTH_REQ_PROCESS_CANSEE_OPENFILES:
290 case KAUTH_REQ_PROCESS_CANSEE_EPROC:
291 result = KAUTH_RESULT_ALLOW;
292 break;
293
294 case KAUTH_REQ_PROCESS_CANSEE_ENV:
295 if (kauth_cred_getuid(cred) !=
296 kauth_cred_getuid(p->p_cred) ||
297 kauth_cred_getuid(cred) !=
298 kauth_cred_getsvuid(p->p_cred))
299 break;
300
301 result = KAUTH_RESULT_ALLOW;
302
303 break;
304
305 case KAUTH_REQ_PROCESS_CANSEE_KPTR:
306 if (!kern_expose_address)
307 break;
308
309 if (kern_expose_address == 1 && !(p->p_flag & PK_KMEM))
310 break;
311
312 result = KAUTH_RESULT_ALLOW;
313
314 break;
315
316 default:
317 break;
318 }
319
320 break;
321 }
322
323 case KAUTH_PROCESS_FORK: {
324 int lnprocs = (int)(unsigned long)arg2;
325
326 /*
327 * Don't allow a nonprivileged user to use the last few
328 * processes. The variable lnprocs is the current number of
329 * processes, maxproc is the limit.
330 */
331 if (__predict_false((lnprocs >= maxproc - 5)))
332 break;
333
334 result = KAUTH_RESULT_ALLOW;
335
336 break;
337 }
338
339 case KAUTH_PROCESS_CORENAME:
340 case KAUTH_PROCESS_STOPFLAG:
341 if (proc_uidmatch(cred, p->p_cred) == 0)
342 result = KAUTH_RESULT_ALLOW;
343
344 break;
345
346 default:
347 break;
348 }
349
350 return result;
351 }
352
353 static int
proc_ctor(void * arg __unused,void * obj,int flags __unused)354 proc_ctor(void *arg __unused, void *obj, int flags __unused)
355 {
356 struct proc *p = obj;
357
358 memset(p, 0, sizeof(*p));
359 klist_init(&p->p_klist);
360
361 /*
362 * There is no need for a proc_dtor() to do a klist_fini(),
363 * since knote_proc_exit() ensures that p->p_klist is empty
364 * when a process exits.
365 */
366
367 return 0;
368 }
369
370 static pid_t proc_alloc_pid_slot(struct proc *, uintptr_t);
371
372 /*
373 * Initialize global process hashing structures.
374 */
375 void
procinit(void)376 procinit(void)
377 {
378 const struct proclist_desc *pd;
379 u_int i;
380 #define LINK_EMPTY ((PID_MAX + INITIAL_PID_TABLE_SIZE) & ~(INITIAL_PID_TABLE_SIZE - 1))
381
382 for (pd = proclists; pd->pd_list != NULL; pd++)
383 LIST_INIT(pd->pd_list);
384
385 mutex_init(&proc_lock, MUTEX_DEFAULT, IPL_NONE);
386
387 proc_psz = pserialize_create();
388
389 pid_table = kmem_alloc(INITIAL_PID_TABLE_SIZE
390 * sizeof(struct pid_table), KM_SLEEP);
391 pid_tbl_mask = INITIAL_PID_TABLE_SIZE - 1;
392 pid_max = PID_MAX;
393
394 /* Set free list running through table...
395 Preset 'use count' above PID_MAX so we allocate pid 1 next. */
396 for (i = 0; i <= pid_tbl_mask; i++) {
397 pid_table[i].pt_slot = PT_SET_FREE(LINK_EMPTY + i + 1);
398 pid_table[i].pt_pgrp = 0;
399 pid_table[i].pt_pid = 0;
400 }
401 /* slot 0 is just grabbed */
402 next_free_pt = 1;
403 /* Need to fix last entry. */
404 last_free_pt = pid_tbl_mask;
405 pid_table[last_free_pt].pt_slot = PT_SET_FREE(LINK_EMPTY);
406 /* point at which we grow table - to avoid reusing pids too often */
407 pid_alloc_lim = pid_tbl_mask - 1;
408 #undef LINK_EMPTY
409
410 /* Reserve PID 1 for init(8). */ /* XXX slightly gross */
411 mutex_enter(&proc_lock);
412 if (proc_alloc_pid_slot(&proc0, PT_SET_RESERVED) != 1)
413 panic("failed to reserve PID 1 for init(8)");
414 mutex_exit(&proc_lock);
415
416 proc_specificdata_domain = specificdata_domain_create();
417 KASSERT(proc_specificdata_domain != NULL);
418
419 size_t proc_alignment = coherency_unit;
420 if (proc_alignment < MIN_PROC_ALIGNMENT)
421 proc_alignment = MIN_PROC_ALIGNMENT;
422
423 proc_cache = pool_cache_init(sizeof(struct proc), proc_alignment, 0, 0,
424 "procpl", NULL, IPL_NONE, proc_ctor, NULL, NULL);
425
426 proc_listener = kauth_listen_scope(KAUTH_SCOPE_PROCESS,
427 proc_listener_cb, NULL);
428 }
429
430 void
procinit_sysctl(void)431 procinit_sysctl(void)
432 {
433 static struct sysctllog *clog;
434
435 sysctl_createv(&clog, 0, NULL, NULL,
436 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
437 CTLTYPE_INT, "expose_address",
438 SYSCTL_DESCR("Enable exposing kernel addresses"),
439 sysctl_security_expose_address, 0,
440 &kern_expose_address, 0, CTL_KERN, CTL_CREATE, CTL_EOL);
441 sysctl_createv(&clog, 0, NULL, NULL,
442 CTLFLAG_PERMANENT,
443 CTLTYPE_NODE, "proc",
444 SYSCTL_DESCR("System-wide process information"),
445 sysctl_doeproc, 0, NULL, 0,
446 CTL_KERN, KERN_PROC, CTL_EOL);
447 sysctl_createv(&clog, 0, NULL, NULL,
448 CTLFLAG_PERMANENT,
449 CTLTYPE_NODE, "proc2",
450 SYSCTL_DESCR("Machine-independent process information"),
451 sysctl_doeproc, 0, NULL, 0,
452 CTL_KERN, KERN_PROC2, CTL_EOL);
453 sysctl_createv(&clog, 0, NULL, NULL,
454 CTLFLAG_PERMANENT,
455 CTLTYPE_NODE, "proc_args",
456 SYSCTL_DESCR("Process argument information"),
457 sysctl_kern_proc_args, 0, NULL, 0,
458 CTL_KERN, KERN_PROC_ARGS, CTL_EOL);
459
460 /*
461 "nodes" under these:
462
463 KERN_PROC_ALL
464 KERN_PROC_PID pid
465 KERN_PROC_PGRP pgrp
466 KERN_PROC_SESSION sess
467 KERN_PROC_TTY tty
468 KERN_PROC_UID uid
469 KERN_PROC_RUID uid
470 KERN_PROC_GID gid
471 KERN_PROC_RGID gid
472
473 all in all, probably not worth the effort...
474 */
475 }
476
477 /*
478 * Initialize process 0.
479 */
480 void
proc0_init(void)481 proc0_init(void)
482 {
483 struct proc *p;
484 struct pgrp *pg;
485 struct rlimit *rlim;
486 rlim_t lim;
487 int i;
488
489 p = &proc0;
490 pg = &pgrp0;
491
492 mutex_init(&p->p_stmutex, MUTEX_DEFAULT, IPL_HIGH);
493 mutex_init(&p->p_auxlock, MUTEX_DEFAULT, IPL_NONE);
494 p->p_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NONE);
495
496 rw_init(&p->p_reflock);
497 cv_init(&p->p_waitcv, "wait");
498 cv_init(&p->p_lwpcv, "lwpwait");
499
500 LIST_INSERT_HEAD(&p->p_lwps, &lwp0, l_sibling);
501
502 KASSERT(lwp0.l_lid == 0);
503 pid_table[lwp0.l_lid].pt_slot = PT_SET_LWP(&lwp0);
504 LIST_INSERT_HEAD(&allproc, p, p_list);
505
506 pid_table[lwp0.l_lid].pt_pgrp = pg;
507 LIST_INSERT_HEAD(&pg->pg_members, p, p_pglist);
508
509 #ifdef __HAVE_SYSCALL_INTERN
510 (*p->p_emul->e_syscall_intern)(p);
511 #endif
512
513 /* Create credentials. */
514 cred0 = kauth_cred_alloc();
515 p->p_cred = cred0;
516
517 /* Create the CWD info. */
518 rw_init(&cwdi0.cwdi_lock);
519
520 /* Create the limits structures. */
521 mutex_init(&limit0.pl_lock, MUTEX_DEFAULT, IPL_NONE);
522
523 rlim = limit0.pl_rlimit;
524 for (i = 0; i < __arraycount(limit0.pl_rlimit); i++) {
525 rlim[i].rlim_cur = RLIM_INFINITY;
526 rlim[i].rlim_max = RLIM_INFINITY;
527 }
528
529 rlim[RLIMIT_NOFILE].rlim_max = maxfiles;
530 rlim[RLIMIT_NOFILE].rlim_cur = maxfiles < nofile ? maxfiles : nofile;
531
532 rlim[RLIMIT_NPROC].rlim_max = maxproc;
533 rlim[RLIMIT_NPROC].rlim_cur = maxproc < maxuprc ? maxproc : maxuprc;
534
535 lim = MIN(VM_MAXUSER_ADDRESS, ctob((rlim_t)uvm_availmem(false)));
536 rlim[RLIMIT_RSS].rlim_max = lim;
537 rlim[RLIMIT_MEMLOCK].rlim_max = lim;
538 rlim[RLIMIT_MEMLOCK].rlim_cur = lim / 3;
539
540 rlim[RLIMIT_NTHR].rlim_max = maxlwp;
541 rlim[RLIMIT_NTHR].rlim_cur = maxlwp / 2;
542
543 /* Note that default core name has zero length. */
544 limit0.pl_corename = defcorename;
545 limit0.pl_cnlen = 0;
546 limit0.pl_refcnt = 1;
547 limit0.pl_writeable = false;
548 limit0.pl_sv_limit = NULL;
549
550 /* Configure virtual memory system, set vm rlimits. */
551 uvm_init_limits(p);
552
553 /* Initialize file descriptor table for proc0. */
554 fd_init(&filedesc0);
555
556 /*
557 * Initialize proc0's vmspace, which uses the kernel pmap.
558 * All kernel processes (which never have user space mappings)
559 * share proc0's vmspace, and thus, the kernel pmap.
560 */
561 uvmspace_init(&vmspace0, pmap_kernel(), round_page(VM_MIN_ADDRESS),
562 trunc_page(VM_MAXUSER_ADDRESS),
563 #ifdef __USE_TOPDOWN_VM
564 true
565 #else
566 false
567 #endif
568 );
569
570 /* Initialize signal state for proc0. XXX IPL_SCHED */
571 mutex_init(&p->p_sigacts->sa_mutex, MUTEX_DEFAULT, IPL_SCHED);
572 siginit(p);
573
574 proc_initspecific(p);
575 kdtrace_proc_ctor(NULL, p);
576 }
577
578 /*
579 * Session reference counting.
580 */
581
582 void
proc_sesshold(struct session * ss)583 proc_sesshold(struct session *ss)
584 {
585
586 KASSERT(mutex_owned(&proc_lock));
587 ss->s_count++;
588 }
589
590 void
proc_sessrele(struct session * ss)591 proc_sessrele(struct session *ss)
592 {
593 struct pgrp *pg;
594
595 KASSERT(mutex_owned(&proc_lock));
596 KASSERT(ss->s_count > 0);
597
598 /*
599 * We keep the pgrp with the same id as the session in order to
600 * stop a process being given the same pid. Since the pgrp holds
601 * a reference to the session, it must be a 'zombie' pgrp by now.
602 */
603 if (--ss->s_count == 0) {
604 pg = pg_remove(ss->s_sid);
605 } else {
606 pg = NULL;
607 ss = NULL;
608 }
609
610 mutex_exit(&proc_lock);
611
612 if (pg)
613 kmem_free(pg, sizeof(struct pgrp));
614 if (ss)
615 kmem_free(ss, sizeof(struct session));
616 }
617
618 /*
619 * Check that the specified process group is in the session of the
620 * specified process.
621 * Treats -ve ids as process ids.
622 * Used to validate TIOCSPGRP requests.
623 */
624 int
pgid_in_session(struct proc * p,pid_t pg_id)625 pgid_in_session(struct proc *p, pid_t pg_id)
626 {
627 struct pgrp *pgrp;
628 struct session *session;
629 int error;
630
631 if (pg_id <= INT_MIN)
632 return EINVAL;
633
634 mutex_enter(&proc_lock);
635 if (pg_id < 0) {
636 struct proc *p1 = proc_find(-pg_id);
637 if (p1 == NULL) {
638 error = EINVAL;
639 goto fail;
640 }
641 pgrp = p1->p_pgrp;
642 } else {
643 pgrp = pgrp_find(pg_id);
644 if (pgrp == NULL) {
645 error = EINVAL;
646 goto fail;
647 }
648 }
649 session = pgrp->pg_session;
650 error = (session != p->p_pgrp->pg_session) ? EPERM : 0;
651 fail:
652 mutex_exit(&proc_lock);
653 return error;
654 }
655
656 /*
657 * p_inferior: is p an inferior of q?
658 */
659 static inline bool
p_inferior(struct proc * p,struct proc * q)660 p_inferior(struct proc *p, struct proc *q)
661 {
662
663 KASSERT(mutex_owned(&proc_lock));
664
665 for (; p != q; p = p->p_pptr)
666 if (p->p_pid == 0)
667 return false;
668 return true;
669 }
670
671 /*
672 * proc_find_lwp: locate an lwp in said proc by the ID.
673 *
674 * => Must be called with p::p_lock held.
675 * => LSIDL lwps are not returned because they are only partially
676 * constructed while occupying the slot.
677 * => Callers need to be careful about lwp::l_stat of the returned
678 * lwp.
679 */
680 struct lwp *
proc_find_lwp(proc_t * p,pid_t pid)681 proc_find_lwp(proc_t *p, pid_t pid)
682 {
683 struct pid_table *pt;
684 unsigned pt_mask;
685 struct lwp *l = NULL;
686 uintptr_t slot;
687 int s;
688
689 KASSERT(mutex_owned(p->p_lock));
690
691 /*
692 * Look in the pid_table. This is done unlocked inside a
693 * pserialize read section covering pid_table's memory
694 * allocation only, so take care to read things in the correct
695 * order:
696 *
697 * 1. First read the table mask -- this only ever increases, in
698 * expand_pid_table, so a stale value is safely
699 * conservative.
700 *
701 * 2. Next read the pid table -- this is always set _before_
702 * the mask increases, so if we see a new table and stale
703 * mask, the mask is still valid for the table.
704 */
705 s = pserialize_read_enter();
706 pt_mask = atomic_load_acquire(&pid_tbl_mask);
707 pt = &atomic_load_consume(&pid_table)[pid & pt_mask];
708 slot = atomic_load_consume(&pt->pt_slot);
709 if (__predict_false(!PT_IS_LWP(slot))) {
710 pserialize_read_exit(s);
711 return NULL;
712 }
713
714 /*
715 * Check to see if the LWP is from the correct process. We won't
716 * see entries in pid_table from a prior process that also used "p",
717 * by virtue of the fact that allocating "p" means all prior updates
718 * to dependant data structures are visible to this thread.
719 */
720 l = PT_GET_LWP(slot);
721 if (__predict_false(atomic_load_relaxed(&l->l_proc) != p)) {
722 pserialize_read_exit(s);
723 return NULL;
724 }
725
726 /*
727 * We now know that p->p_lock holds this LWP stable.
728 *
729 * If the status is not LSIDL, it means the LWP is intended to be
730 * findable by LID and l_lid cannot change behind us.
731 *
732 * No need to acquire the LWP's lock to check for LSIDL, as
733 * p->p_lock must be held to transition in and out of LSIDL.
734 * Any other observed state of is no particular interest.
735 */
736 pserialize_read_exit(s);
737 return l->l_stat != LSIDL && l->l_lid == pid ? l : NULL;
738 }
739
740 /*
741 * proc_find_lwp_unlocked: locate an lwp in said proc by the ID.
742 *
743 * => Called in a pserialize read section with no locks held.
744 * => LSIDL lwps are not returned because they are only partially
745 * constructed while occupying the slot.
746 * => Callers need to be careful about lwp::l_stat of the returned
747 * lwp.
748 * => If an LWP is found, it's returned locked.
749 */
750 struct lwp *
proc_find_lwp_unlocked(proc_t * p,pid_t pid)751 proc_find_lwp_unlocked(proc_t *p, pid_t pid)
752 {
753 struct pid_table *pt;
754 unsigned pt_mask;
755 struct lwp *l = NULL;
756 uintptr_t slot;
757
758 KASSERT(pserialize_in_read_section());
759
760 /*
761 * Look in the pid_table. This is done unlocked inside a
762 * pserialize read section covering pid_table's memory
763 * allocation only, so take care to read things in the correct
764 * order:
765 *
766 * 1. First read the table mask -- this only ever increases, in
767 * expand_pid_table, so a stale value is safely
768 * conservative.
769 *
770 * 2. Next read the pid table -- this is always set _before_
771 * the mask increases, so if we see a new table and stale
772 * mask, the mask is still valid for the table.
773 */
774 pt_mask = atomic_load_acquire(&pid_tbl_mask);
775 pt = &atomic_load_consume(&pid_table)[pid & pt_mask];
776 slot = atomic_load_consume(&pt->pt_slot);
777 if (__predict_false(!PT_IS_LWP(slot))) {
778 return NULL;
779 }
780
781 /*
782 * Lock the LWP we found to get it stable. If it's embryonic or
783 * reaped (LSIDL) then none of the other fields can safely be
784 * checked.
785 */
786 l = PT_GET_LWP(slot);
787 lwp_lock(l);
788 if (__predict_false(l->l_stat == LSIDL)) {
789 lwp_unlock(l);
790 return NULL;
791 }
792
793 /*
794 * l_proc and l_lid are now known stable because the LWP is not
795 * LSIDL, so check those fields too to make sure we found the
796 * right thing.
797 */
798 if (__predict_false(l->l_proc != p || l->l_lid != pid)) {
799 lwp_unlock(l);
800 return NULL;
801 }
802
803 /* Everything checks out, return it locked. */
804 return l;
805 }
806
807 /*
808 * proc_find_lwp_acquire_proc: locate an lwp and acquire a lock
809 * on its containing proc.
810 *
811 * => Similar to proc_find_lwp(), but does not require you to have
812 * the proc a priori.
813 * => Also returns proc * to caller, with p::p_lock held.
814 * => Same caveats apply.
815 */
816 struct lwp *
proc_find_lwp_acquire_proc(pid_t pid,struct proc ** pp)817 proc_find_lwp_acquire_proc(pid_t pid, struct proc **pp)
818 {
819 struct pid_table *pt;
820 struct proc *p = NULL;
821 struct lwp *l = NULL;
822 uintptr_t slot;
823
824 KASSERT(pp != NULL);
825 mutex_enter(&proc_lock);
826 pt = &pid_table[pid & pid_tbl_mask];
827
828 slot = pt->pt_slot;
829 if (__predict_true(PT_IS_LWP(slot) && pt->pt_pid == pid)) {
830 l = PT_GET_LWP(slot);
831 p = l->l_proc;
832 mutex_enter(p->p_lock);
833 if (__predict_false(l->l_stat == LSIDL)) {
834 mutex_exit(p->p_lock);
835 l = NULL;
836 p = NULL;
837 }
838 }
839 mutex_exit(&proc_lock);
840
841 KASSERT(p == NULL || mutex_owned(p->p_lock));
842 *pp = p;
843 return l;
844 }
845
846 /*
847 * proc_find_raw_pid_table_locked: locate a process by the ID.
848 *
849 * => Must be called with proc_lock held.
850 */
851 static proc_t *
proc_find_raw_pid_table_locked(pid_t pid,bool any_lwpid)852 proc_find_raw_pid_table_locked(pid_t pid, bool any_lwpid)
853 {
854 struct pid_table *pt;
855 proc_t *p = NULL;
856 uintptr_t slot;
857
858 /* No - used by DDB. KASSERT(mutex_owned(&proc_lock)); */
859 pt = &pid_table[pid & pid_tbl_mask];
860
861 slot = pt->pt_slot;
862 if (__predict_true(PT_IS_LWP(slot) && pt->pt_pid == pid)) {
863 /*
864 * When looking up processes, require a direct match
865 * on the PID assigned to the proc, not just one of
866 * its LWPs.
867 *
868 * N.B. We require lwp::l_proc of LSIDL LWPs to be
869 * valid here.
870 */
871 p = PT_GET_LWP(slot)->l_proc;
872 if (__predict_false(p->p_pid != pid && !any_lwpid))
873 p = NULL;
874 } else if (PT_IS_PROC(slot) && pt->pt_pid == pid) {
875 p = PT_GET_PROC(slot);
876 }
877 return p;
878 }
879
880 proc_t *
proc_find_raw(pid_t pid)881 proc_find_raw(pid_t pid)
882 {
883
884 return proc_find_raw_pid_table_locked(pid, false);
885 }
886
887 static proc_t *
proc_find_internal(pid_t pid,bool any_lwpid)888 proc_find_internal(pid_t pid, bool any_lwpid)
889 {
890 proc_t *p;
891
892 KASSERT(mutex_owned(&proc_lock));
893
894 p = proc_find_raw_pid_table_locked(pid, any_lwpid);
895 if (__predict_false(p == NULL)) {
896 return NULL;
897 }
898
899 /*
900 * Only allow live processes to be found by PID.
901 * XXX: p_stat might change, since proc unlocked.
902 */
903 if (__predict_true(p->p_stat == SACTIVE || p->p_stat == SSTOP)) {
904 return p;
905 }
906 return NULL;
907 }
908
909 proc_t *
proc_find(pid_t pid)910 proc_find(pid_t pid)
911 {
912 return proc_find_internal(pid, false);
913 }
914
915 proc_t *
proc_find_lwpid(pid_t pid)916 proc_find_lwpid(pid_t pid)
917 {
918 return proc_find_internal(pid, true);
919 }
920
921 /*
922 * pgrp_find: locate a process group by the ID.
923 *
924 * => Must be called with proc_lock held.
925 */
926 struct pgrp *
pgrp_find(pid_t pgid)927 pgrp_find(pid_t pgid)
928 {
929 struct pgrp *pg;
930
931 KASSERT(mutex_owned(&proc_lock));
932
933 pg = pid_table[pgid & pid_tbl_mask].pt_pgrp;
934
935 /*
936 * Cannot look up a process group that only exists because the
937 * session has not died yet (traditional).
938 */
939 if (pg == NULL || pg->pg_id != pgid || LIST_EMPTY(&pg->pg_members)) {
940 return NULL;
941 }
942 return pg;
943 }
944
945 static void
expand_pid_table(void)946 expand_pid_table(void)
947 {
948 size_t pt_size, tsz;
949 struct pid_table *n_pt, *new_pt;
950 uintptr_t slot;
951 struct pgrp *pgrp;
952 pid_t pid, rpid;
953 u_int i;
954 uint new_pt_mask;
955
956 KASSERT(mutex_owned(&proc_lock));
957
958 /* Unlock the pid_table briefly to allocate memory. */
959 pt_size = pid_tbl_mask + 1;
960 mutex_exit(&proc_lock);
961
962 tsz = pt_size * 2 * sizeof(struct pid_table);
963 new_pt = kmem_alloc(tsz, KM_SLEEP);
964 new_pt_mask = pt_size * 2 - 1;
965
966 /* XXX For now. The pratical limit is much lower anyway. */
967 KASSERT(new_pt_mask <= FUTEX_TID_MASK);
968
969 mutex_enter(&proc_lock);
970 if (pt_size != pid_tbl_mask + 1) {
971 /* Another process beat us to it... */
972 mutex_exit(&proc_lock);
973 kmem_free(new_pt, tsz);
974 goto out;
975 }
976
977 /*
978 * Copy entries from old table into new one.
979 * If 'pid' is 'odd' we need to place in the upper half,
980 * even pid's to the lower half.
981 * Free items stay in the low half so we don't have to
982 * fixup the reference to them.
983 * We stuff free items on the front of the freelist
984 * because we can't write to unmodified entries.
985 * Processing the table backwards maintains a semblance
986 * of issuing pid numbers that increase with time.
987 */
988 i = pt_size - 1;
989 n_pt = new_pt + i;
990 for (; ; i--, n_pt--) {
991 slot = pid_table[i].pt_slot;
992 pgrp = pid_table[i].pt_pgrp;
993 if (!PT_VALID(slot)) {
994 /* Up 'use count' so that link is valid */
995 pid = (PT_NEXT(slot) + pt_size) & ~pt_size;
996 rpid = 0;
997 slot = PT_SET_FREE(pid);
998 if (pgrp)
999 pid = pgrp->pg_id;
1000 } else {
1001 pid = pid_table[i].pt_pid;
1002 rpid = pid;
1003 }
1004
1005 /* Save entry in appropriate half of table */
1006 n_pt[pid & pt_size].pt_slot = slot;
1007 n_pt[pid & pt_size].pt_pgrp = pgrp;
1008 n_pt[pid & pt_size].pt_pid = rpid;
1009
1010 /* Put other piece on start of free list */
1011 pid = (pid ^ pt_size) & ~pid_tbl_mask;
1012 n_pt[pid & pt_size].pt_slot =
1013 PT_SET_FREE((pid & ~pt_size) | next_free_pt);
1014 n_pt[pid & pt_size].pt_pgrp = 0;
1015 n_pt[pid & pt_size].pt_pid = 0;
1016
1017 next_free_pt = i | (pid & pt_size);
1018 if (i == 0)
1019 break;
1020 }
1021
1022 /* Save old table size and switch tables */
1023 tsz = pt_size * sizeof(struct pid_table);
1024 n_pt = pid_table;
1025 atomic_store_release(&pid_table, new_pt);
1026 KASSERT(new_pt_mask >= pid_tbl_mask);
1027 atomic_store_release(&pid_tbl_mask, new_pt_mask);
1028
1029 /*
1030 * pid_max starts as PID_MAX (= 30000), once we have 16384
1031 * allocated pids we need it to be larger!
1032 */
1033 if (pid_tbl_mask > PID_MAX) {
1034 pid_max = pid_tbl_mask * 2 + 1;
1035 pid_alloc_lim |= pid_alloc_lim << 1;
1036 } else
1037 pid_alloc_lim <<= 1; /* doubles number of free slots... */
1038
1039 mutex_exit(&proc_lock);
1040
1041 /*
1042 * Make sure that unlocked access to the old pid_table is complete
1043 * and then free it.
1044 */
1045 pserialize_perform(proc_psz);
1046 kmem_free(n_pt, tsz);
1047
1048 out: /* Return with proc_lock held again. */
1049 mutex_enter(&proc_lock);
1050 }
1051
1052 struct proc *
proc_alloc(void)1053 proc_alloc(void)
1054 {
1055 struct proc *p;
1056
1057 p = pool_cache_get(proc_cache, PR_WAITOK);
1058 p->p_stat = SIDL; /* protect against others */
1059 proc_initspecific(p);
1060 kdtrace_proc_ctor(NULL, p);
1061
1062 /*
1063 * Allocate a placeholder in the pid_table. When we create the
1064 * first LWP for this process, it will take ownership of the
1065 * slot.
1066 */
1067 if (__predict_false(proc_alloc_pid(p) == -1)) {
1068 /* Allocating the PID failed; unwind. */
1069 proc_finispecific(p);
1070 proc_free_mem(p);
1071 p = NULL;
1072 }
1073 return p;
1074 }
1075
1076 /*
1077 * proc_alloc_pid_slot: allocate PID and record the occupant so that
1078 * proc_find_raw() can find it by the PID.
1079 */
1080 static pid_t __noinline
proc_alloc_pid_slot(struct proc * p,uintptr_t slot)1081 proc_alloc_pid_slot(struct proc *p, uintptr_t slot)
1082 {
1083 struct pid_table *pt;
1084 pid_t pid;
1085 int nxt;
1086
1087 KASSERT(mutex_owned(&proc_lock));
1088
1089 for (;;expand_pid_table()) {
1090 if (__predict_false(pid_alloc_cnt >= pid_alloc_lim)) {
1091 /* ensure pids cycle through 2000+ values */
1092 continue;
1093 }
1094 /*
1095 * The first user process *must* be given PID 1.
1096 * it has already been reserved for us. This
1097 * will be coming in from the proc_alloc() call
1098 * above, and the entry will be usurped later when
1099 * the first user LWP is created.
1100 * XXX this is slightly gross.
1101 */
1102 if (__predict_false(PT_RESERVED(pid_table[1].pt_slot) &&
1103 p != &proc0)) {
1104 KASSERT(PT_IS_PROC(slot));
1105 pt = &pid_table[1];
1106 pt->pt_slot = slot;
1107 return 1;
1108 }
1109 pt = &pid_table[next_free_pt];
1110 #ifdef DIAGNOSTIC
1111 if (__predict_false(PT_VALID(pt->pt_slot) || pt->pt_pgrp))
1112 panic("proc_alloc: slot busy");
1113 #endif
1114 nxt = PT_NEXT(pt->pt_slot);
1115 if (nxt & pid_tbl_mask)
1116 break;
1117 /* Table full - expand (NB last entry not used....) */
1118 }
1119
1120 /* pid is 'saved use count' + 'size' + entry */
1121 pid = (nxt & ~pid_tbl_mask) + pid_tbl_mask + 1 + next_free_pt;
1122 if ((uint)pid > (uint)pid_max)
1123 pid &= pid_tbl_mask;
1124 next_free_pt = nxt & pid_tbl_mask;
1125
1126 /* XXX For now. The pratical limit is much lower anyway. */
1127 KASSERT(pid <= FUTEX_TID_MASK);
1128
1129 /* Grab table slot */
1130 pt->pt_slot = slot;
1131
1132 KASSERT(pt->pt_pid == 0);
1133 pt->pt_pid = pid;
1134 pid_alloc_cnt++;
1135
1136 return pid;
1137 }
1138
1139 pid_t
proc_alloc_pid(struct proc * p)1140 proc_alloc_pid(struct proc *p)
1141 {
1142 pid_t pid;
1143
1144 KASSERT((((uintptr_t)p) & PT_F_ALLBITS) == 0);
1145 KASSERT(p->p_stat == SIDL);
1146
1147 mutex_enter(&proc_lock);
1148 pid = proc_alloc_pid_slot(p, PT_SET_PROC(p));
1149 if (pid != -1)
1150 p->p_pid = pid;
1151 mutex_exit(&proc_lock);
1152
1153 return pid;
1154 }
1155
1156 pid_t
proc_alloc_lwpid(struct proc * p,struct lwp * l)1157 proc_alloc_lwpid(struct proc *p, struct lwp *l)
1158 {
1159 struct pid_table *pt;
1160 pid_t pid;
1161
1162 KASSERT((((uintptr_t)l) & PT_F_ALLBITS) == 0);
1163 KASSERT(l->l_proc == p);
1164 KASSERT(l->l_stat == LSIDL);
1165
1166 /*
1167 * For unlocked lookup in proc_find_lwp(), make sure l->l_proc
1168 * is globally visible before the LWP becomes visible via the
1169 * pid_table.
1170 */
1171 #ifndef __HAVE_ATOMIC_AS_MEMBAR
1172 membar_producer();
1173 #endif
1174
1175 /*
1176 * If the slot for p->p_pid currently points to the proc,
1177 * then we should usurp this ID for the LWP. This happens
1178 * at least once per process (for the first LWP), and can
1179 * happen again if the first LWP for a process exits and
1180 * before the process creates another.
1181 */
1182 mutex_enter(&proc_lock);
1183 pid = p->p_pid;
1184 pt = &pid_table[pid & pid_tbl_mask];
1185 KASSERT(pt->pt_pid == pid);
1186 if (PT_IS_PROC(pt->pt_slot)) {
1187 KASSERT(PT_GET_PROC(pt->pt_slot) == p);
1188 l->l_lid = pid;
1189 pt->pt_slot = PT_SET_LWP(l);
1190 } else {
1191 /* Need to allocate a new slot. */
1192 pid = proc_alloc_pid_slot(p, PT_SET_LWP(l));
1193 if (pid != -1)
1194 l->l_lid = pid;
1195 }
1196 mutex_exit(&proc_lock);
1197
1198 return pid;
1199 }
1200
1201 static void __noinline
proc_free_pid_internal(pid_t pid,uintptr_t type __diagused)1202 proc_free_pid_internal(pid_t pid, uintptr_t type __diagused)
1203 {
1204 struct pid_table *pt;
1205
1206 KASSERT(mutex_owned(&proc_lock));
1207
1208 pt = &pid_table[pid & pid_tbl_mask];
1209
1210 KASSERT(PT_GET_TYPE(pt->pt_slot) == type);
1211 KASSERT(pt->pt_pid == pid);
1212
1213 /* save pid use count in slot */
1214 pt->pt_slot = PT_SET_FREE(pid & ~pid_tbl_mask);
1215 pt->pt_pid = 0;
1216
1217 if (pt->pt_pgrp == NULL) {
1218 /* link last freed entry onto ours */
1219 pid &= pid_tbl_mask;
1220 pt = &pid_table[last_free_pt];
1221 pt->pt_slot = PT_SET_FREE(PT_NEXT(pt->pt_slot) | pid);
1222 pt->pt_pid = 0;
1223 last_free_pt = pid;
1224 pid_alloc_cnt--;
1225 }
1226 }
1227
1228 /*
1229 * Free a process id - called from proc_free (in kern_exit.c)
1230 *
1231 * Called with the proc_lock held.
1232 */
1233 void
proc_free_pid(pid_t pid)1234 proc_free_pid(pid_t pid)
1235 {
1236
1237 KASSERT(mutex_owned(&proc_lock));
1238 proc_free_pid_internal(pid, PT_F_PROC);
1239 }
1240
1241 /*
1242 * Free a process id used by an LWP. If this was the process's
1243 * first LWP, we convert the slot to point to the process; the
1244 * entry will get cleaned up later when the process finishes exiting.
1245 *
1246 * If not, then it's the same as proc_free_pid().
1247 */
1248 void
proc_free_lwpid(struct proc * p,pid_t pid)1249 proc_free_lwpid(struct proc *p, pid_t pid)
1250 {
1251
1252 KASSERT(mutex_owned(&proc_lock));
1253
1254 if (__predict_true(p->p_pid == pid)) {
1255 struct pid_table *pt;
1256
1257 pt = &pid_table[pid & pid_tbl_mask];
1258
1259 KASSERT(pt->pt_pid == pid);
1260 KASSERT(PT_IS_LWP(pt->pt_slot));
1261 KASSERT(PT_GET_LWP(pt->pt_slot)->l_proc == p);
1262
1263 pt->pt_slot = PT_SET_PROC(p);
1264 return;
1265 }
1266 proc_free_pid_internal(pid, PT_F_LWP);
1267 }
1268
1269 void
proc_free_mem(struct proc * p)1270 proc_free_mem(struct proc *p)
1271 {
1272
1273 kdtrace_proc_dtor(NULL, p);
1274 pool_cache_put(proc_cache, p);
1275 }
1276
1277 /*
1278 * proc_enterpgrp: move p to a new or existing process group (and session).
1279 *
1280 * If we are creating a new pgrp, the pgid should equal
1281 * the calling process' pid.
1282 * If is only valid to enter a process group that is in the session
1283 * of the process.
1284 * Also mksess should only be set if we are creating a process group
1285 *
1286 * Only called from sys_setsid, sys_setpgid and posix_spawn/spawn_return.
1287 */
1288 int
proc_enterpgrp(struct proc * curp,pid_t pid,pid_t pgid,bool mksess)1289 proc_enterpgrp(struct proc *curp, pid_t pid, pid_t pgid, bool mksess)
1290 {
1291 struct pgrp *new_pgrp, *pgrp;
1292 struct session *sess;
1293 struct proc *p;
1294 int rval;
1295 pid_t pg_id = NO_PGID;
1296
1297 /* Allocate data areas we might need before doing any validity checks */
1298 sess = mksess ? kmem_alloc(sizeof(*sess), KM_SLEEP) : NULL;
1299 new_pgrp = kmem_alloc(sizeof(*new_pgrp), KM_SLEEP);
1300
1301 mutex_enter(&proc_lock);
1302 rval = EPERM; /* most common error (to save typing) */
1303
1304 /* Check pgrp exists or can be created */
1305 pgrp = pid_table[pgid & pid_tbl_mask].pt_pgrp;
1306 if (pgrp != NULL && pgrp->pg_id != pgid)
1307 goto done;
1308
1309 /* Can only set another process under restricted circumstances. */
1310 if (pid != curp->p_pid) {
1311 /* Must exist and be one of our children... */
1312 p = proc_find_internal(pid, false);
1313 if (p == NULL || !p_inferior(p, curp)) {
1314 rval = ESRCH;
1315 goto done;
1316 }
1317 /* ... in the same session... */
1318 if (sess != NULL || p->p_session != curp->p_session)
1319 goto done;
1320 /* ... existing pgid must be in same session ... */
1321 if (pgrp != NULL && pgrp->pg_session != p->p_session)
1322 goto done;
1323 /* ... and not done an exec. */
1324 if (p->p_flag & PK_EXEC) {
1325 rval = EACCES;
1326 goto done;
1327 }
1328 } else {
1329 /* ... setsid() cannot re-enter a pgrp */
1330 if (mksess && (curp->p_pgid == curp->p_pid ||
1331 pgrp_find(curp->p_pid)))
1332 goto done;
1333 p = curp;
1334 }
1335
1336 /* Changing the process group/session of a session
1337 leader is definitely off limits. */
1338 if (SESS_LEADER(p)) {
1339 if (sess == NULL && p->p_pgrp == pgrp)
1340 /* unless it's a definite noop */
1341 rval = 0;
1342 goto done;
1343 }
1344
1345 /* Can only create a process group with id of process */
1346 if (pgrp == NULL && pgid != pid)
1347 goto done;
1348
1349 /* Can only create a session if creating pgrp */
1350 if (sess != NULL && pgrp != NULL)
1351 goto done;
1352
1353 /* Check we allocated memory for a pgrp... */
1354 if (pgrp == NULL && new_pgrp == NULL)
1355 goto done;
1356
1357 /* Don't attach to 'zombie' pgrp */
1358 if (pgrp != NULL && LIST_EMPTY(&pgrp->pg_members))
1359 goto done;
1360
1361 /* Expect to succeed now */
1362 rval = 0;
1363
1364 if (pgrp == p->p_pgrp)
1365 /* nothing to do */
1366 goto done;
1367
1368 /* Ok all setup, link up required structures */
1369
1370 if (pgrp == NULL) {
1371 pgrp = new_pgrp;
1372 new_pgrp = NULL;
1373 if (sess != NULL) {
1374 sess->s_sid = p->p_pid;
1375 sess->s_leader = p;
1376 sess->s_count = 1;
1377 sess->s_ttyvp = NULL;
1378 sess->s_ttyp = NULL;
1379 sess->s_flags = p->p_session->s_flags & ~S_LOGIN_SET;
1380 memcpy(sess->s_login, p->p_session->s_login,
1381 sizeof(sess->s_login));
1382 p->p_lflag &= ~PL_CONTROLT;
1383 } else {
1384 sess = p->p_pgrp->pg_session;
1385 proc_sesshold(sess);
1386 }
1387 pgrp->pg_session = sess;
1388 sess = NULL;
1389
1390 pgrp->pg_id = pgid;
1391 LIST_INIT(&pgrp->pg_members);
1392 #ifdef DIAGNOSTIC
1393 if (__predict_false(pid_table[pgid & pid_tbl_mask].pt_pgrp))
1394 panic("enterpgrp: pgrp table slot in use");
1395 if (__predict_false(mksess && p != curp))
1396 panic("enterpgrp: mksession and p != curproc");
1397 #endif
1398 pid_table[pgid & pid_tbl_mask].pt_pgrp = pgrp;
1399 pgrp->pg_jobc = 0;
1400 }
1401
1402 /*
1403 * Adjust eligibility of affected pgrps to participate in job control.
1404 * Increment eligibility counts before decrementing, otherwise we
1405 * could reach 0 spuriously during the first call.
1406 */
1407 fixjobc(p, pgrp, 1);
1408 fixjobc(p, p->p_pgrp, 0);
1409
1410 /* Interlock with ttread(). */
1411 mutex_spin_enter(&tty_lock);
1412
1413 /* Move process to requested group. */
1414 LIST_REMOVE(p, p_pglist);
1415 if (LIST_EMPTY(&p->p_pgrp->pg_members))
1416 /* defer delete until we've dumped the lock */
1417 pg_id = p->p_pgrp->pg_id;
1418 p->p_pgrp = pgrp;
1419 LIST_INSERT_HEAD(&pgrp->pg_members, p, p_pglist);
1420
1421 /* Done with the swap; we can release the tty mutex. */
1422 mutex_spin_exit(&tty_lock);
1423
1424 done:
1425 if (pg_id != NO_PGID) {
1426 /* Releases proc_lock. */
1427 pg_delete(pg_id);
1428 } else {
1429 mutex_exit(&proc_lock);
1430 }
1431 if (sess != NULL)
1432 kmem_free(sess, sizeof(*sess));
1433 if (new_pgrp != NULL)
1434 kmem_free(new_pgrp, sizeof(*new_pgrp));
1435 #ifdef DEBUG_PGRP
1436 if (__predict_false(rval))
1437 printf("enterpgrp(%d,%d,%d), curproc %d, rval %d\n",
1438 pid, pgid, mksess, curp->p_pid, rval);
1439 #endif
1440 return rval;
1441 }
1442
1443 /*
1444 * proc_leavepgrp: remove a process from its process group.
1445 * => must be called with the proc_lock held, which will be released;
1446 */
1447 void
proc_leavepgrp(struct proc * p)1448 proc_leavepgrp(struct proc *p)
1449 {
1450 struct pgrp *pgrp;
1451
1452 KASSERT(mutex_owned(&proc_lock));
1453
1454 /* Interlock with ttread() */
1455 mutex_spin_enter(&tty_lock);
1456 pgrp = p->p_pgrp;
1457 LIST_REMOVE(p, p_pglist);
1458 p->p_pgrp = NULL;
1459 mutex_spin_exit(&tty_lock);
1460
1461 if (LIST_EMPTY(&pgrp->pg_members)) {
1462 /* Releases proc_lock. */
1463 pg_delete(pgrp->pg_id);
1464 } else {
1465 mutex_exit(&proc_lock);
1466 }
1467 }
1468
1469 /*
1470 * pg_remove: remove a process group from the table.
1471 * => must be called with the proc_lock held;
1472 * => returns process group to free;
1473 */
1474 static struct pgrp *
pg_remove(pid_t pg_id)1475 pg_remove(pid_t pg_id)
1476 {
1477 struct pgrp *pgrp;
1478 struct pid_table *pt;
1479
1480 KASSERT(mutex_owned(&proc_lock));
1481
1482 pt = &pid_table[pg_id & pid_tbl_mask];
1483 pgrp = pt->pt_pgrp;
1484
1485 KASSERT(pgrp != NULL);
1486 KASSERT(pgrp->pg_id == pg_id);
1487 KASSERT(LIST_EMPTY(&pgrp->pg_members));
1488
1489 pt->pt_pgrp = NULL;
1490
1491 if (!PT_VALID(pt->pt_slot)) {
1492 /* Orphaned pgrp, put slot onto free list. */
1493 KASSERT((PT_NEXT(pt->pt_slot) & pid_tbl_mask) == 0);
1494 pg_id &= pid_tbl_mask;
1495 pt = &pid_table[last_free_pt];
1496 pt->pt_slot = PT_SET_FREE(PT_NEXT(pt->pt_slot) | pg_id);
1497 KASSERT(pt->pt_pid == 0);
1498 last_free_pt = pg_id;
1499 pid_alloc_cnt--;
1500 }
1501 return pgrp;
1502 }
1503
1504 /*
1505 * pg_delete: delete and free a process group.
1506 * => must be called with the proc_lock held, which will be released.
1507 */
1508 static void
pg_delete(pid_t pg_id)1509 pg_delete(pid_t pg_id)
1510 {
1511 struct pgrp *pg;
1512 struct tty *ttyp;
1513 struct session *ss;
1514
1515 KASSERT(mutex_owned(&proc_lock));
1516
1517 pg = pid_table[pg_id & pid_tbl_mask].pt_pgrp;
1518 if (pg == NULL || pg->pg_id != pg_id || !LIST_EMPTY(&pg->pg_members)) {
1519 mutex_exit(&proc_lock);
1520 return;
1521 }
1522
1523 ss = pg->pg_session;
1524
1525 /* Remove reference (if any) from tty to this process group */
1526 mutex_spin_enter(&tty_lock);
1527 ttyp = ss->s_ttyp;
1528 if (ttyp != NULL && ttyp->t_pgrp == pg) {
1529 ttyp->t_pgrp = NULL;
1530 KASSERT(ttyp->t_session == ss);
1531 }
1532 mutex_spin_exit(&tty_lock);
1533
1534 /*
1535 * The leading process group in a session is freed by proc_sessrele(),
1536 * if last reference. It will also release the locks.
1537 */
1538 pg = (ss->s_sid != pg->pg_id) ? pg_remove(pg_id) : NULL;
1539 proc_sessrele(ss);
1540
1541 if (pg != NULL) {
1542 /* Free it, if was not done above. */
1543 kmem_free(pg, sizeof(struct pgrp));
1544 }
1545 }
1546
1547 /*
1548 * Adjust pgrp jobc counters when specified process changes process group.
1549 * We count the number of processes in each process group that "qualify"
1550 * the group for terminal job control (those with a parent in a different
1551 * process group of the same session). If that count reaches zero, the
1552 * process group becomes orphaned. Check both the specified process'
1553 * process group and that of its children.
1554 * entering == 0 => p is leaving specified group.
1555 * entering == 1 => p is entering specified group.
1556 *
1557 * Call with proc_lock held.
1558 */
1559 void
fixjobc(struct proc * p,struct pgrp * pgrp,int entering)1560 fixjobc(struct proc *p, struct pgrp *pgrp, int entering)
1561 {
1562 struct pgrp *hispgrp;
1563 struct session *mysession = pgrp->pg_session;
1564 struct proc *child;
1565
1566 KASSERT(mutex_owned(&proc_lock));
1567
1568 /*
1569 * Check p's parent to see whether p qualifies its own process
1570 * group; if so, adjust count for p's process group.
1571 */
1572 hispgrp = p->p_pptr->p_pgrp;
1573 if (hispgrp != pgrp && hispgrp->pg_session == mysession) {
1574 if (entering) {
1575 pgrp->pg_jobc++;
1576 p->p_lflag &= ~PL_ORPHANPG;
1577 } else {
1578 /* KASSERT(pgrp->pg_jobc > 0); */
1579 if (--pgrp->pg_jobc == 0)
1580 orphanpg(pgrp);
1581 }
1582 }
1583
1584 /*
1585 * Check this process' children to see whether they qualify
1586 * their process groups; if so, adjust counts for children's
1587 * process groups.
1588 */
1589 LIST_FOREACH(child, &p->p_children, p_sibling) {
1590 hispgrp = child->p_pgrp;
1591 if (hispgrp != pgrp && hispgrp->pg_session == mysession &&
1592 !P_ZOMBIE(child)) {
1593 if (entering) {
1594 child->p_lflag &= ~PL_ORPHANPG;
1595 hispgrp->pg_jobc++;
1596 } else {
1597 KASSERT(hispgrp->pg_jobc > 0);
1598 if (--hispgrp->pg_jobc == 0)
1599 orphanpg(hispgrp);
1600 }
1601 }
1602 }
1603 }
1604
1605 /*
1606 * A process group has become orphaned;
1607 * if there are any stopped processes in the group,
1608 * hang-up all process in that group.
1609 *
1610 * Call with proc_lock held.
1611 */
1612 static void
orphanpg(struct pgrp * pg)1613 orphanpg(struct pgrp *pg)
1614 {
1615 struct proc *p;
1616
1617 KASSERT(mutex_owned(&proc_lock));
1618
1619 LIST_FOREACH(p, &pg->pg_members, p_pglist) {
1620 if (p->p_stat == SSTOP) {
1621 p->p_lflag |= PL_ORPHANPG;
1622 psignal(p, SIGHUP);
1623 psignal(p, SIGCONT);
1624 }
1625 }
1626 }
1627
1628 #ifdef DDB
1629 #include <ddb/db_output.h>
1630 void pidtbl_dump(void);
1631 void
pidtbl_dump(void)1632 pidtbl_dump(void)
1633 {
1634 struct pid_table *pt;
1635 struct proc *p;
1636 struct pgrp *pgrp;
1637 uintptr_t slot;
1638 int id;
1639
1640 db_printf("pid table %p size %x, next %x, last %x\n",
1641 pid_table, pid_tbl_mask+1,
1642 next_free_pt, last_free_pt);
1643 for (pt = pid_table, id = 0; id <= pid_tbl_mask; id++, pt++) {
1644 slot = pt->pt_slot;
1645 if (!PT_VALID(slot) && !pt->pt_pgrp)
1646 continue;
1647 if (PT_IS_LWP(slot)) {
1648 p = PT_GET_LWP(slot)->l_proc;
1649 } else if (PT_IS_PROC(slot)) {
1650 p = PT_GET_PROC(slot);
1651 } else {
1652 p = NULL;
1653 }
1654 db_printf(" id %x: ", id);
1655 if (p != NULL)
1656 db_printf("slotpid %d proc %p id %d (0x%x) %s\n",
1657 pt->pt_pid, p, p->p_pid, p->p_pid, p->p_comm);
1658 else
1659 db_printf("next %x use %x\n",
1660 PT_NEXT(slot) & pid_tbl_mask,
1661 PT_NEXT(slot) & ~pid_tbl_mask);
1662 if ((pgrp = pt->pt_pgrp)) {
1663 db_printf("\tsession %p, sid %d, count %d, login %s\n",
1664 pgrp->pg_session, pgrp->pg_session->s_sid,
1665 pgrp->pg_session->s_count,
1666 pgrp->pg_session->s_login);
1667 db_printf("\tpgrp %p, pg_id %d, pg_jobc %d, members %p\n",
1668 pgrp, pgrp->pg_id, pgrp->pg_jobc,
1669 LIST_FIRST(&pgrp->pg_members));
1670 LIST_FOREACH(p, &pgrp->pg_members, p_pglist) {
1671 db_printf("\t\tpid %d addr %p pgrp %p %s\n",
1672 p->p_pid, p, p->p_pgrp, p->p_comm);
1673 }
1674 }
1675 }
1676 }
1677 #endif /* DDB */
1678
1679 #ifdef KSTACK_CHECK_MAGIC
1680
1681 #define KSTACK_MAGIC 0xdeadbeaf
1682
1683 /* XXX should be per process basis? */
1684 static int kstackleftmin = KSTACK_SIZE;
1685 static int kstackleftthres = KSTACK_SIZE / 8;
1686
1687 void
kstack_setup_magic(const struct lwp * l)1688 kstack_setup_magic(const struct lwp *l)
1689 {
1690 uint32_t *ip;
1691 uint32_t const *end;
1692
1693 KASSERT(l != NULL);
1694 KASSERT(l != &lwp0);
1695
1696 /*
1697 * fill all the stack with magic number
1698 * so that later modification on it can be detected.
1699 */
1700 ip = (uint32_t *)KSTACK_LOWEST_ADDR(l);
1701 end = (uint32_t *)((char *)KSTACK_LOWEST_ADDR(l) + KSTACK_SIZE);
1702 for (; ip < end; ip++) {
1703 *ip = KSTACK_MAGIC;
1704 }
1705 }
1706
1707 void
kstack_check_magic(const struct lwp * l)1708 kstack_check_magic(const struct lwp *l)
1709 {
1710 uint32_t const *ip, *end;
1711 int stackleft;
1712
1713 KASSERT(l != NULL);
1714
1715 /* don't check proc0 */ /*XXX*/
1716 if (l == &lwp0)
1717 return;
1718
1719 #ifdef __MACHINE_STACK_GROWS_UP
1720 /* stack grows upwards (eg. hppa) */
1721 ip = (uint32_t *)((void *)KSTACK_LOWEST_ADDR(l) + KSTACK_SIZE);
1722 end = (uint32_t *)KSTACK_LOWEST_ADDR(l);
1723 for (ip--; ip >= end; ip--)
1724 if (*ip != KSTACK_MAGIC)
1725 break;
1726
1727 stackleft = (void *)KSTACK_LOWEST_ADDR(l) + KSTACK_SIZE - (void *)ip;
1728 #else /* __MACHINE_STACK_GROWS_UP */
1729 /* stack grows downwards (eg. i386) */
1730 ip = (uint32_t *)KSTACK_LOWEST_ADDR(l);
1731 end = (uint32_t *)((char *)KSTACK_LOWEST_ADDR(l) + KSTACK_SIZE);
1732 for (; ip < end; ip++)
1733 if (*ip != KSTACK_MAGIC)
1734 break;
1735
1736 stackleft = ((const char *)ip) - (const char *)KSTACK_LOWEST_ADDR(l);
1737 #endif /* __MACHINE_STACK_GROWS_UP */
1738
1739 if (kstackleftmin > stackleft) {
1740 kstackleftmin = stackleft;
1741 if (stackleft < kstackleftthres)
1742 printf("warning: kernel stack left %d bytes"
1743 "(pid %u:lid %u)\n", stackleft,
1744 (u_int)l->l_proc->p_pid, (u_int)l->l_lid);
1745 }
1746
1747 if (stackleft <= 0) {
1748 panic("magic on the top of kernel stack changed for "
1749 "pid %u, lid %u: maybe kernel stack overflow",
1750 (u_int)l->l_proc->p_pid, (u_int)l->l_lid);
1751 }
1752 }
1753 #endif /* KSTACK_CHECK_MAGIC */
1754
1755 int
proclist_foreach_call(struct proclist * list,int (* callback)(struct proc *,void * arg),void * arg)1756 proclist_foreach_call(struct proclist *list,
1757 int (*callback)(struct proc *, void *arg), void *arg)
1758 {
1759 struct proc marker;
1760 struct proc *p;
1761 int ret = 0;
1762
1763 marker.p_flag = PK_MARKER;
1764 mutex_enter(&proc_lock);
1765 for (p = LIST_FIRST(list); ret == 0 && p != NULL;) {
1766 if (p->p_flag & PK_MARKER) {
1767 p = LIST_NEXT(p, p_list);
1768 continue;
1769 }
1770 LIST_INSERT_AFTER(p, &marker, p_list);
1771 ret = (*callback)(p, arg);
1772 KASSERT(mutex_owned(&proc_lock));
1773 p = LIST_NEXT(&marker, p_list);
1774 LIST_REMOVE(&marker, p_list);
1775 }
1776 mutex_exit(&proc_lock);
1777
1778 return ret;
1779 }
1780
1781 int
proc_vmspace_getref(struct proc * p,struct vmspace ** vm)1782 proc_vmspace_getref(struct proc *p, struct vmspace **vm)
1783 {
1784
1785 /* XXXCDC: how should locking work here? */
1786
1787 /* curproc exception is for coredump. */
1788
1789 if ((p != curproc && (p->p_sflag & PS_WEXIT) != 0) ||
1790 (p->p_vmspace->vm_refcnt < 1)) {
1791 return EFAULT;
1792 }
1793
1794 uvmspace_addref(p->p_vmspace);
1795 *vm = p->p_vmspace;
1796
1797 return 0;
1798 }
1799
1800 /*
1801 * Acquire a write lock on the process credential.
1802 */
1803 void
proc_crmod_enter(void)1804 proc_crmod_enter(void)
1805 {
1806 struct lwp *l = curlwp;
1807 struct proc *p = l->l_proc;
1808 kauth_cred_t oc;
1809
1810 /* Reset what needs to be reset in plimit. */
1811 if (p->p_limit->pl_corename != defcorename) {
1812 lim_setcorename(p, defcorename, 0);
1813 }
1814
1815 mutex_enter(p->p_lock);
1816
1817 /* Ensure the LWP cached credentials are up to date. */
1818 if ((oc = l->l_cred) != p->p_cred) {
1819 l->l_cred = kauth_cred_hold(p->p_cred);
1820 kauth_cred_free(oc);
1821 }
1822 }
1823
1824 /*
1825 * Set in a new process credential, and drop the write lock. The credential
1826 * must have a reference already. Optionally, free a no-longer required
1827 * credential.
1828 */
1829 void
proc_crmod_leave(kauth_cred_t scred,kauth_cred_t fcred,bool sugid)1830 proc_crmod_leave(kauth_cred_t scred, kauth_cred_t fcred, bool sugid)
1831 {
1832 struct lwp *l = curlwp, *l2;
1833 struct proc *p = l->l_proc;
1834 kauth_cred_t oc;
1835
1836 KASSERT(mutex_owned(p->p_lock));
1837
1838 /* Is there a new credential to set in? */
1839 if (scred != NULL) {
1840 p->p_cred = scred;
1841 LIST_FOREACH(l2, &p->p_lwps, l_sibling) {
1842 if (l2 != l) {
1843 lwp_lock(l2);
1844 l2->l_flag |= LW_CACHECRED;
1845 lwp_need_userret(l2);
1846 lwp_unlock(l2);
1847 }
1848 }
1849
1850 /* Ensure the LWP cached credentials are up to date. */
1851 if ((oc = l->l_cred) != scred) {
1852 l->l_cred = kauth_cred_hold(scred);
1853 }
1854 } else
1855 oc = NULL; /* XXXgcc */
1856
1857 if (sugid) {
1858 /*
1859 * Mark process as having changed credentials, stops
1860 * tracing etc.
1861 */
1862 p->p_flag |= PK_SUGID;
1863 }
1864
1865 mutex_exit(p->p_lock);
1866
1867 /* If there is a credential to be released, free it now. */
1868 if (fcred != NULL) {
1869 KASSERT(scred != NULL);
1870 kauth_cred_free(fcred);
1871 if (oc != scred)
1872 kauth_cred_free(oc);
1873 }
1874 }
1875
1876 /*
1877 * proc_specific_key_create --
1878 * Create a key for subsystem proc-specific data.
1879 */
1880 int
proc_specific_key_create(specificdata_key_t * keyp,specificdata_dtor_t dtor)1881 proc_specific_key_create(specificdata_key_t *keyp, specificdata_dtor_t dtor)
1882 {
1883
1884 return (specificdata_key_create(proc_specificdata_domain, keyp, dtor));
1885 }
1886
1887 /*
1888 * proc_specific_key_delete --
1889 * Delete a key for subsystem proc-specific data.
1890 */
1891 void
proc_specific_key_delete(specificdata_key_t key)1892 proc_specific_key_delete(specificdata_key_t key)
1893 {
1894
1895 specificdata_key_delete(proc_specificdata_domain, key);
1896 }
1897
1898 /*
1899 * proc_initspecific --
1900 * Initialize a proc's specificdata container.
1901 */
1902 void
proc_initspecific(struct proc * p)1903 proc_initspecific(struct proc *p)
1904 {
1905 int error __diagused;
1906
1907 error = specificdata_init(proc_specificdata_domain, &p->p_specdataref);
1908 KASSERT(error == 0);
1909 }
1910
1911 /*
1912 * proc_finispecific --
1913 * Finalize a proc's specificdata container.
1914 */
1915 void
proc_finispecific(struct proc * p)1916 proc_finispecific(struct proc *p)
1917 {
1918
1919 specificdata_fini(proc_specificdata_domain, &p->p_specdataref);
1920 }
1921
1922 /*
1923 * proc_getspecific --
1924 * Return proc-specific data corresponding to the specified key.
1925 */
1926 void *
proc_getspecific(struct proc * p,specificdata_key_t key)1927 proc_getspecific(struct proc *p, specificdata_key_t key)
1928 {
1929
1930 return (specificdata_getspecific(proc_specificdata_domain,
1931 &p->p_specdataref, key));
1932 }
1933
1934 /*
1935 * proc_setspecific --
1936 * Set proc-specific data corresponding to the specified key.
1937 */
1938 void
proc_setspecific(struct proc * p,specificdata_key_t key,void * data)1939 proc_setspecific(struct proc *p, specificdata_key_t key, void *data)
1940 {
1941
1942 specificdata_setspecific(proc_specificdata_domain,
1943 &p->p_specdataref, key, data);
1944 }
1945
1946 int
proc_uidmatch(kauth_cred_t cred,kauth_cred_t target)1947 proc_uidmatch(kauth_cred_t cred, kauth_cred_t target)
1948 {
1949 int r = 0;
1950
1951 if (kauth_cred_getuid(cred) != kauth_cred_getuid(target) ||
1952 kauth_cred_getuid(cred) != kauth_cred_getsvuid(target)) {
1953 /*
1954 * suid proc of ours or proc not ours
1955 */
1956 r = EPERM;
1957 } else if (kauth_cred_getgid(target) != kauth_cred_getsvgid(target)) {
1958 /*
1959 * sgid proc has sgid back to us temporarily
1960 */
1961 r = EPERM;
1962 } else {
1963 /*
1964 * our rgid must be in target's group list (ie,
1965 * sub-processes started by a sgid process)
1966 */
1967 int ismember = 0;
1968
1969 if (kauth_cred_ismember_gid(cred,
1970 kauth_cred_getgid(target), &ismember) != 0 ||
1971 !ismember)
1972 r = EPERM;
1973 }
1974
1975 return (r);
1976 }
1977
1978 /*
1979 * sysctl stuff
1980 */
1981
1982 #define KERN_PROCSLOP (5 * sizeof(struct kinfo_proc))
1983
1984 static const u_int sysctl_flagmap[] = {
1985 PK_ADVLOCK, P_ADVLOCK,
1986 PK_EXEC, P_EXEC,
1987 PK_NOCLDWAIT, P_NOCLDWAIT,
1988 PK_32, P_32,
1989 PK_CLDSIGIGN, P_CLDSIGIGN,
1990 PK_SUGID, P_SUGID,
1991 0
1992 };
1993
1994 static const u_int sysctl_sflagmap[] = {
1995 PS_NOCLDSTOP, P_NOCLDSTOP,
1996 PS_WEXIT, P_WEXIT,
1997 PS_STOPFORK, P_STOPFORK,
1998 PS_STOPEXEC, P_STOPEXEC,
1999 PS_STOPEXIT, P_STOPEXIT,
2000 0
2001 };
2002
2003 static const u_int sysctl_slflagmap[] = {
2004 PSL_TRACED, P_TRACED,
2005 PSL_CHTRACED, P_CHTRACED,
2006 PSL_SYSCALL, P_SYSCALL,
2007 0
2008 };
2009
2010 static const u_int sysctl_lflagmap[] = {
2011 PL_CONTROLT, P_CONTROLT,
2012 PL_PPWAIT, P_PPWAIT,
2013 0
2014 };
2015
2016 static const u_int sysctl_stflagmap[] = {
2017 PST_PROFIL, P_PROFIL,
2018 0
2019
2020 };
2021
2022 /* used by kern_lwp also */
2023 const u_int sysctl_lwpflagmap[] = {
2024 LW_SINTR, L_SINTR,
2025 LW_SYSTEM, L_SYSTEM,
2026 0
2027 };
2028
2029 /*
2030 * Find the most ``active'' lwp of a process and return it for ps display
2031 * purposes
2032 */
2033 static struct lwp *
proc_active_lwp(struct proc * p)2034 proc_active_lwp(struct proc *p)
2035 {
2036 static const int ostat[] = {
2037 0,
2038 2, /* LSIDL */
2039 6, /* LSRUN */
2040 5, /* LSSLEEP */
2041 4, /* LSSTOP */
2042 0, /* LSZOMB */
2043 1, /* LSDEAD */
2044 7, /* LSONPROC */
2045 3 /* LSSUSPENDED */
2046 };
2047
2048 struct lwp *l, *lp = NULL;
2049 LIST_FOREACH(l, &p->p_lwps, l_sibling) {
2050 KASSERT(l->l_stat >= 0);
2051 KASSERT(l->l_stat < __arraycount(ostat));
2052 if (lp == NULL ||
2053 ostat[l->l_stat] > ostat[lp->l_stat] ||
2054 (ostat[l->l_stat] == ostat[lp->l_stat] &&
2055 l->l_cpticks > lp->l_cpticks)) {
2056 lp = l;
2057 continue;
2058 }
2059 }
2060 return lp;
2061 }
2062
2063 static int
sysctl_doeproc(SYSCTLFN_ARGS)2064 sysctl_doeproc(SYSCTLFN_ARGS)
2065 {
2066 union {
2067 struct kinfo_proc kproc;
2068 struct kinfo_proc2 kproc2;
2069 } *kbuf;
2070 struct proc *p, *next, *marker;
2071 char *where, *dp;
2072 int type, op, arg, error;
2073 u_int elem_size, kelem_size, elem_count;
2074 size_t buflen, needed;
2075 bool match, zombie, mmmbrains;
2076 const bool allowaddr = get_expose_address(curproc);
2077
2078 if (namelen == 1 && name[0] == CTL_QUERY)
2079 return (sysctl_query(SYSCTLFN_CALL(rnode)));
2080
2081 dp = where = oldp;
2082 buflen = where != NULL ? *oldlenp : 0;
2083 error = 0;
2084 needed = 0;
2085 type = rnode->sysctl_num;
2086
2087 if (type == KERN_PROC) {
2088 if (namelen == 0)
2089 return EINVAL;
2090 switch (op = name[0]) {
2091 case KERN_PROC_ALL:
2092 if (namelen != 1)
2093 return EINVAL;
2094 arg = 0;
2095 break;
2096 default:
2097 if (namelen != 2)
2098 return EINVAL;
2099 arg = name[1];
2100 break;
2101 }
2102 elem_count = 0; /* Hush little compiler, don't you cry */
2103 kelem_size = elem_size = sizeof(kbuf->kproc);
2104 } else {
2105 if (namelen != 4)
2106 return EINVAL;
2107 op = name[0];
2108 arg = name[1];
2109 elem_size = name[2];
2110 elem_count = name[3];
2111 kelem_size = sizeof(kbuf->kproc2);
2112 }
2113
2114 sysctl_unlock();
2115
2116 kbuf = kmem_zalloc(sizeof(*kbuf), KM_SLEEP);
2117 marker = kmem_alloc(sizeof(*marker), KM_SLEEP);
2118 marker->p_flag = PK_MARKER;
2119
2120 mutex_enter(&proc_lock);
2121 /*
2122 * Start with zombies to prevent reporting processes twice, in case they
2123 * are dying and being moved from the list of alive processes to zombies.
2124 */
2125 mmmbrains = true;
2126 for (p = LIST_FIRST(&zombproc);; p = next) {
2127 if (p == NULL) {
2128 if (mmmbrains) {
2129 p = LIST_FIRST(&allproc);
2130 mmmbrains = false;
2131 }
2132 if (p == NULL)
2133 break;
2134 }
2135 next = LIST_NEXT(p, p_list);
2136 if ((p->p_flag & PK_MARKER) != 0)
2137 continue;
2138
2139 /*
2140 * Skip embryonic processes.
2141 */
2142 if (p->p_stat == SIDL)
2143 continue;
2144
2145 mutex_enter(p->p_lock);
2146 error = kauth_authorize_process(l->l_cred,
2147 KAUTH_PROCESS_CANSEE, p,
2148 KAUTH_ARG(KAUTH_REQ_PROCESS_CANSEE_EPROC), NULL, NULL);
2149 if (error != 0) {
2150 mutex_exit(p->p_lock);
2151 continue;
2152 }
2153
2154 /*
2155 * Hande all the operations in one switch on the cost of
2156 * algorithm complexity is on purpose. The win splitting this
2157 * function into several similar copies makes maintenance
2158 * burden, code grow and boost is negligible in practical
2159 * systems.
2160 */
2161 switch (op) {
2162 case KERN_PROC_PID:
2163 match = (p->p_pid == (pid_t)arg);
2164 break;
2165
2166 case KERN_PROC_PGRP:
2167 match = (p->p_pgrp->pg_id == (pid_t)arg);
2168 break;
2169
2170 case KERN_PROC_SESSION:
2171 match = (p->p_session->s_sid == (pid_t)arg);
2172 break;
2173
2174 case KERN_PROC_TTY:
2175 match = true;
2176 if (arg == (int) KERN_PROC_TTY_REVOKE) {
2177 if ((p->p_lflag & PL_CONTROLT) == 0 ||
2178 p->p_session->s_ttyp == NULL ||
2179 p->p_session->s_ttyvp != NULL) {
2180 match = false;
2181 }
2182 } else if ((p->p_lflag & PL_CONTROLT) == 0 ||
2183 p->p_session->s_ttyp == NULL) {
2184 if ((dev_t)arg != KERN_PROC_TTY_NODEV) {
2185 match = false;
2186 }
2187 } else if (p->p_session->s_ttyp->t_dev != (dev_t)arg) {
2188 match = false;
2189 }
2190 break;
2191
2192 case KERN_PROC_UID:
2193 match = (kauth_cred_geteuid(p->p_cred) == (uid_t)arg);
2194 break;
2195
2196 case KERN_PROC_RUID:
2197 match = (kauth_cred_getuid(p->p_cred) == (uid_t)arg);
2198 break;
2199
2200 case KERN_PROC_GID:
2201 match = (kauth_cred_getegid(p->p_cred) == (uid_t)arg);
2202 break;
2203
2204 case KERN_PROC_RGID:
2205 match = (kauth_cred_getgid(p->p_cred) == (uid_t)arg);
2206 break;
2207
2208 case KERN_PROC_ALL:
2209 match = true;
2210 /* allow everything */
2211 break;
2212
2213 default:
2214 error = EINVAL;
2215 mutex_exit(p->p_lock);
2216 goto cleanup;
2217 }
2218 if (!match) {
2219 mutex_exit(p->p_lock);
2220 continue;
2221 }
2222
2223 /*
2224 * Grab a hold on the process.
2225 */
2226 if (mmmbrains) {
2227 zombie = true;
2228 } else {
2229 zombie = !rw_tryenter(&p->p_reflock, RW_READER);
2230 }
2231 if (zombie) {
2232 LIST_INSERT_AFTER(p, marker, p_list);
2233 }
2234
2235 if (buflen >= elem_size &&
2236 (type == KERN_PROC || elem_count > 0)) {
2237 ruspace(p); /* Update process vm resource use */
2238
2239 if (type == KERN_PROC) {
2240 fill_proc(p, &kbuf->kproc.kp_proc, allowaddr);
2241 fill_eproc(p, &kbuf->kproc.kp_eproc, zombie,
2242 allowaddr);
2243 } else {
2244 fill_kproc2(p, &kbuf->kproc2, zombie,
2245 allowaddr);
2246 elem_count--;
2247 }
2248 mutex_exit(p->p_lock);
2249 mutex_exit(&proc_lock);
2250 /*
2251 * Copy out elem_size, but not larger than kelem_size
2252 */
2253 error = sysctl_copyout(l, kbuf, dp,
2254 uimin(kelem_size, elem_size));
2255 mutex_enter(&proc_lock);
2256 if (error) {
2257 goto bah;
2258 }
2259 dp += elem_size;
2260 buflen -= elem_size;
2261 } else {
2262 mutex_exit(p->p_lock);
2263 }
2264 needed += elem_size;
2265
2266 /*
2267 * Release reference to process.
2268 */
2269 if (zombie) {
2270 next = LIST_NEXT(marker, p_list);
2271 LIST_REMOVE(marker, p_list);
2272 } else {
2273 rw_exit(&p->p_reflock);
2274 next = LIST_NEXT(p, p_list);
2275 }
2276
2277 /*
2278 * Short-circuit break quickly!
2279 */
2280 if (op == KERN_PROC_PID)
2281 break;
2282 }
2283 mutex_exit(&proc_lock);
2284
2285 if (where != NULL) {
2286 *oldlenp = dp - where;
2287 if (needed > *oldlenp) {
2288 error = ENOMEM;
2289 goto out;
2290 }
2291 } else {
2292 needed += KERN_PROCSLOP;
2293 *oldlenp = needed;
2294 }
2295 kmem_free(kbuf, sizeof(*kbuf));
2296 kmem_free(marker, sizeof(*marker));
2297 sysctl_relock();
2298 return 0;
2299 bah:
2300 if (zombie)
2301 LIST_REMOVE(marker, p_list);
2302 else
2303 rw_exit(&p->p_reflock);
2304 cleanup:
2305 mutex_exit(&proc_lock);
2306 out:
2307 kmem_free(kbuf, sizeof(*kbuf));
2308 kmem_free(marker, sizeof(*marker));
2309 sysctl_relock();
2310 return error;
2311 }
2312
2313 int
copyin_psstrings(struct proc * p,struct ps_strings * arginfo)2314 copyin_psstrings(struct proc *p, struct ps_strings *arginfo)
2315 {
2316 #if !defined(_RUMPKERNEL)
2317 int retval;
2318
2319 if (p->p_flag & PK_32) {
2320 MODULE_HOOK_CALL(kern_proc32_copyin_hook, (p, arginfo),
2321 enosys(), retval);
2322 return retval;
2323 }
2324 #endif /* !defined(_RUMPKERNEL) */
2325
2326 return copyin_proc(p, (void *)p->p_psstrp, arginfo, sizeof(*arginfo));
2327 }
2328
2329 static int
copy_procargs_sysctl_cb(void * cookie_,const void * src,size_t off,size_t len)2330 copy_procargs_sysctl_cb(void *cookie_, const void *src, size_t off, size_t len)
2331 {
2332 void **cookie = cookie_;
2333 struct lwp *l = cookie[0];
2334 char *dst = cookie[1];
2335
2336 return sysctl_copyout(l, src, dst + off, len);
2337 }
2338
2339 /*
2340 * sysctl helper routine for kern.proc_args pseudo-subtree.
2341 */
2342 static int
sysctl_kern_proc_args(SYSCTLFN_ARGS)2343 sysctl_kern_proc_args(SYSCTLFN_ARGS)
2344 {
2345 struct ps_strings pss;
2346 struct proc *p;
2347 pid_t pid;
2348 int type, error;
2349 void *cookie[2];
2350
2351 if (namelen == 1 && name[0] == CTL_QUERY)
2352 return (sysctl_query(SYSCTLFN_CALL(rnode)));
2353
2354 if (newp != NULL || namelen != 2)
2355 return (EINVAL);
2356 pid = name[0];
2357 type = name[1];
2358
2359 switch (type) {
2360 case KERN_PROC_PATHNAME:
2361 sysctl_unlock();
2362 error = fill_pathname(l, pid, oldp, oldlenp);
2363 sysctl_relock();
2364 return error;
2365
2366 case KERN_PROC_CWD:
2367 sysctl_unlock();
2368 error = fill_cwd(l, pid, oldp, oldlenp);
2369 sysctl_relock();
2370 return error;
2371
2372 case KERN_PROC_ARGV:
2373 case KERN_PROC_NARGV:
2374 case KERN_PROC_ENV:
2375 case KERN_PROC_NENV:
2376 /* ok */
2377 break;
2378 default:
2379 return (EINVAL);
2380 }
2381
2382 sysctl_unlock();
2383
2384 /* check pid */
2385 mutex_enter(&proc_lock);
2386 if ((p = proc_find(pid)) == NULL) {
2387 error = EINVAL;
2388 goto out_locked;
2389 }
2390 mutex_enter(p->p_lock);
2391
2392 /* Check permission. */
2393 if (type == KERN_PROC_ARGV || type == KERN_PROC_NARGV)
2394 error = kauth_authorize_process(l->l_cred, KAUTH_PROCESS_CANSEE,
2395 p, KAUTH_ARG(KAUTH_REQ_PROCESS_CANSEE_ARGS), NULL, NULL);
2396 else if (type == KERN_PROC_ENV || type == KERN_PROC_NENV)
2397 error = kauth_authorize_process(l->l_cred, KAUTH_PROCESS_CANSEE,
2398 p, KAUTH_ARG(KAUTH_REQ_PROCESS_CANSEE_ENV), NULL, NULL);
2399 else
2400 error = EINVAL; /* XXXGCC */
2401 if (error) {
2402 mutex_exit(p->p_lock);
2403 goto out_locked;
2404 }
2405
2406 if (oldp == NULL) {
2407 if (type == KERN_PROC_NARGV || type == KERN_PROC_NENV)
2408 *oldlenp = sizeof (int);
2409 else
2410 *oldlenp = ARG_MAX; /* XXX XXX XXX */
2411 error = 0;
2412 mutex_exit(p->p_lock);
2413 goto out_locked;
2414 }
2415
2416 /*
2417 * Zombies don't have a stack, so we can't read their psstrings.
2418 * System processes also don't have a user stack.
2419 */
2420 if (P_ZOMBIE(p) || (p->p_flag & PK_SYSTEM) != 0) {
2421 error = EINVAL;
2422 mutex_exit(p->p_lock);
2423 goto out_locked;
2424 }
2425
2426 error = rw_tryenter(&p->p_reflock, RW_READER) ? 0 : EBUSY;
2427 mutex_exit(p->p_lock);
2428 if (error) {
2429 goto out_locked;
2430 }
2431 mutex_exit(&proc_lock);
2432
2433 if (type == KERN_PROC_NARGV || type == KERN_PROC_NENV) {
2434 int value;
2435 if ((error = copyin_psstrings(p, &pss)) == 0) {
2436 if (type == KERN_PROC_NARGV)
2437 value = pss.ps_nargvstr;
2438 else
2439 value = pss.ps_nenvstr;
2440 error = sysctl_copyout(l, &value, oldp, sizeof(value));
2441 *oldlenp = sizeof(value);
2442 }
2443 } else {
2444 cookie[0] = l;
2445 cookie[1] = oldp;
2446 error = copy_procargs(p, type, oldlenp,
2447 copy_procargs_sysctl_cb, cookie);
2448 }
2449 rw_exit(&p->p_reflock);
2450 sysctl_relock();
2451 return error;
2452
2453 out_locked:
2454 mutex_exit(&proc_lock);
2455 sysctl_relock();
2456 return error;
2457 }
2458
2459 int
copy_procargs(struct proc * p,int oid,size_t * limit,int (* cb)(void *,const void *,size_t,size_t),void * cookie)2460 copy_procargs(struct proc *p, int oid, size_t *limit,
2461 int (*cb)(void *, const void *, size_t, size_t), void *cookie)
2462 {
2463 struct ps_strings pss;
2464 size_t len, i, loaded, entry_len;
2465 struct uio auio;
2466 struct iovec aiov;
2467 int error, argvlen;
2468 char *arg;
2469 char **argv;
2470 vaddr_t user_argv;
2471 struct vmspace *vmspace;
2472
2473 /*
2474 * Allocate a temporary buffer to hold the argument vector and
2475 * the arguments themselve.
2476 */
2477 arg = kmem_alloc(PAGE_SIZE, KM_SLEEP);
2478 argv = kmem_alloc(PAGE_SIZE, KM_SLEEP);
2479
2480 /*
2481 * Lock the process down in memory.
2482 */
2483 vmspace = p->p_vmspace;
2484 uvmspace_addref(vmspace);
2485
2486 /*
2487 * Read in the ps_strings structure.
2488 */
2489 if ((error = copyin_psstrings(p, &pss)) != 0)
2490 goto done;
2491
2492 /*
2493 * Now read the address of the argument vector.
2494 */
2495 switch (oid) {
2496 case KERN_PROC_ARGV:
2497 user_argv = (uintptr_t)pss.ps_argvstr;
2498 argvlen = pss.ps_nargvstr;
2499 break;
2500 case KERN_PROC_ENV:
2501 user_argv = (uintptr_t)pss.ps_envstr;
2502 argvlen = pss.ps_nenvstr;
2503 break;
2504 default:
2505 error = EINVAL;
2506 goto done;
2507 }
2508
2509 if (argvlen < 0) {
2510 error = EIO;
2511 goto done;
2512 }
2513
2514
2515 /*
2516 * Now copy each string.
2517 */
2518 len = 0; /* bytes written to user buffer */
2519 loaded = 0; /* bytes from argv already processed */
2520 i = 0; /* To make compiler happy */
2521 entry_len = PROC_PTRSZ(p);
2522
2523 for (; argvlen; --argvlen) {
2524 int finished = 0;
2525 vaddr_t base;
2526 size_t xlen;
2527 int j;
2528
2529 if (loaded == 0) {
2530 size_t rem = entry_len * argvlen;
2531 loaded = MIN(rem, PAGE_SIZE);
2532 error = copyin_vmspace(vmspace,
2533 (const void *)user_argv, argv, loaded);
2534 if (error)
2535 break;
2536 user_argv += loaded;
2537 i = 0;
2538 }
2539
2540 #if !defined(_RUMPKERNEL)
2541 if (p->p_flag & PK_32)
2542 MODULE_HOOK_CALL(kern_proc32_base_hook,
2543 (argv, i++), 0, base);
2544 else
2545 #endif /* !defined(_RUMPKERNEL) */
2546 base = (vaddr_t)argv[i++];
2547 loaded -= entry_len;
2548
2549 /*
2550 * The program has messed around with its arguments,
2551 * possibly deleting some, and replacing them with
2552 * NULL's. Treat this as the last argument and not
2553 * a failure.
2554 */
2555 if (base == 0)
2556 break;
2557
2558 while (!finished) {
2559 xlen = PAGE_SIZE - (base & PAGE_MASK);
2560
2561 aiov.iov_base = arg;
2562 aiov.iov_len = PAGE_SIZE;
2563 auio.uio_iov = &aiov;
2564 auio.uio_iovcnt = 1;
2565 auio.uio_offset = base;
2566 auio.uio_resid = xlen;
2567 auio.uio_rw = UIO_READ;
2568 UIO_SETUP_SYSSPACE(&auio);
2569 error = uvm_io(&vmspace->vm_map, &auio, 0);
2570 if (error)
2571 goto done;
2572
2573 /* Look for the end of the string */
2574 for (j = 0; j < xlen; j++) {
2575 if (arg[j] == '\0') {
2576 xlen = j + 1;
2577 finished = 1;
2578 break;
2579 }
2580 }
2581
2582 /* Check for user buffer overflow */
2583 if (len + xlen > *limit) {
2584 finished = 1;
2585 if (len > *limit)
2586 xlen = 0;
2587 else
2588 xlen = *limit - len;
2589 }
2590
2591 /* Copyout the page */
2592 error = (*cb)(cookie, arg, len, xlen);
2593 if (error)
2594 goto done;
2595
2596 len += xlen;
2597 base += xlen;
2598 }
2599 }
2600 *limit = len;
2601
2602 done:
2603 kmem_free(argv, PAGE_SIZE);
2604 kmem_free(arg, PAGE_SIZE);
2605 uvmspace_free(vmspace);
2606 return error;
2607 }
2608
2609 /*
2610 * Fill in a proc structure for the specified process.
2611 */
2612 static void
fill_proc(const struct proc * psrc,struct proc * p,bool allowaddr)2613 fill_proc(const struct proc *psrc, struct proc *p, bool allowaddr)
2614 {
2615 COND_SET_STRUCT(p->p_list, psrc->p_list, allowaddr);
2616 memset(&p->p_auxlock, 0, sizeof(p->p_auxlock));
2617 COND_SET_STRUCT(p->p_lock, psrc->p_lock, allowaddr);
2618 memset(&p->p_stmutex, 0, sizeof(p->p_stmutex));
2619 memset(&p->p_reflock, 0, sizeof(p->p_reflock));
2620 COND_SET_STRUCT(p->p_waitcv, psrc->p_waitcv, allowaddr);
2621 COND_SET_STRUCT(p->p_lwpcv, psrc->p_lwpcv, allowaddr);
2622 COND_SET_PTR(p->p_cred, psrc->p_cred, allowaddr);
2623 COND_SET_PTR(p->p_fd, psrc->p_fd, allowaddr);
2624 COND_SET_PTR(p->p_cwdi, psrc->p_cwdi, allowaddr);
2625 COND_SET_PTR(p->p_stats, psrc->p_stats, allowaddr);
2626 COND_SET_PTR(p->p_limit, psrc->p_limit, allowaddr);
2627 COND_SET_PTR(p->p_vmspace, psrc->p_vmspace, allowaddr);
2628 COND_SET_PTR(p->p_sigacts, psrc->p_sigacts, allowaddr);
2629 COND_SET_PTR(p->p_aio, psrc->p_aio, allowaddr);
2630 p->p_mqueue_cnt = psrc->p_mqueue_cnt;
2631 memset(&p->p_specdataref, 0, sizeof(p->p_specdataref));
2632 p->p_exitsig = psrc->p_exitsig;
2633 p->p_flag = psrc->p_flag;
2634 p->p_sflag = psrc->p_sflag;
2635 p->p_slflag = psrc->p_slflag;
2636 p->p_lflag = psrc->p_lflag;
2637 p->p_stflag = psrc->p_stflag;
2638 p->p_stat = psrc->p_stat;
2639 p->p_trace_enabled = psrc->p_trace_enabled;
2640 p->p_pid = psrc->p_pid;
2641 COND_SET_STRUCT(p->p_pglist, psrc->p_pglist, allowaddr);
2642 COND_SET_PTR(p->p_pptr, psrc->p_pptr, allowaddr);
2643 COND_SET_STRUCT(p->p_sibling, psrc->p_sibling, allowaddr);
2644 COND_SET_STRUCT(p->p_children, psrc->p_children, allowaddr);
2645 COND_SET_STRUCT(p->p_lwps, psrc->p_lwps, allowaddr);
2646 COND_SET_PTR(p->p_raslist, psrc->p_raslist, allowaddr);
2647 p->p_nlwps = psrc->p_nlwps;
2648 p->p_nzlwps = psrc->p_nzlwps;
2649 p->p_nrlwps = psrc->p_nrlwps;
2650 p->p_nlwpwait = psrc->p_nlwpwait;
2651 p->p_ndlwps = psrc->p_ndlwps;
2652 p->p_nstopchild = psrc->p_nstopchild;
2653 p->p_waited = psrc->p_waited;
2654 COND_SET_PTR(p->p_zomblwp, psrc->p_zomblwp, allowaddr);
2655 COND_SET_PTR(p->p_vforklwp, psrc->p_vforklwp, allowaddr);
2656 COND_SET_PTR(p->p_sched_info, psrc->p_sched_info, allowaddr);
2657 p->p_estcpu = psrc->p_estcpu;
2658 p->p_estcpu_inherited = psrc->p_estcpu_inherited;
2659 p->p_forktime = psrc->p_forktime;
2660 p->p_pctcpu = psrc->p_pctcpu;
2661 COND_SET_PTR(p->p_opptr, psrc->p_opptr, allowaddr);
2662 COND_SET_PTR(p->p_timers, psrc->p_timers, allowaddr);
2663 p->p_rtime = psrc->p_rtime;
2664 p->p_uticks = psrc->p_uticks;
2665 p->p_sticks = psrc->p_sticks;
2666 p->p_iticks = psrc->p_iticks;
2667 p->p_xutime = psrc->p_xutime;
2668 p->p_xstime = psrc->p_xstime;
2669 p->p_traceflag = psrc->p_traceflag;
2670 COND_SET_PTR(p->p_tracep, psrc->p_tracep, allowaddr);
2671 COND_SET_PTR(p->p_textvp, psrc->p_textvp, allowaddr);
2672 COND_SET_PTR(p->p_emul, psrc->p_emul, allowaddr);
2673 COND_SET_PTR(p->p_emuldata, psrc->p_emuldata, allowaddr);
2674 COND_SET_CPTR(p->p_execsw, psrc->p_execsw, allowaddr);
2675 COND_SET_STRUCT(p->p_klist, psrc->p_klist, allowaddr);
2676 COND_SET_STRUCT(p->p_sigwaiters, psrc->p_sigwaiters, allowaddr);
2677 COND_SET_STRUCT(p->p_sigpend.sp_info, psrc->p_sigpend.sp_info,
2678 allowaddr);
2679 p->p_sigpend.sp_set = psrc->p_sigpend.sp_set;
2680 COND_SET_PTR(p->p_lwpctl, psrc->p_lwpctl, allowaddr);
2681 p->p_ppid = psrc->p_ppid;
2682 p->p_oppid = psrc->p_oppid;
2683 COND_SET_PTR(p->p_path, psrc->p_path, allowaddr);
2684 p->p_sigctx = psrc->p_sigctx;
2685 p->p_nice = psrc->p_nice;
2686 memcpy(p->p_comm, psrc->p_comm, sizeof(p->p_comm));
2687 COND_SET_PTR(p->p_pgrp, psrc->p_pgrp, allowaddr);
2688 COND_SET_VALUE(p->p_psstrp, psrc->p_psstrp, allowaddr);
2689 p->p_pax = psrc->p_pax;
2690 p->p_xexit = psrc->p_xexit;
2691 p->p_xsig = psrc->p_xsig;
2692 p->p_acflag = psrc->p_acflag;
2693 COND_SET_STRUCT(p->p_md, psrc->p_md, allowaddr);
2694 p->p_stackbase = psrc->p_stackbase;
2695 COND_SET_PTR(p->p_dtrace, psrc->p_dtrace, allowaddr);
2696 }
2697
2698 /*
2699 * Fill in an eproc structure for the specified process.
2700 */
2701 void
fill_eproc(struct proc * p,struct eproc * ep,bool zombie,bool allowaddr)2702 fill_eproc(struct proc *p, struct eproc *ep, bool zombie, bool allowaddr)
2703 {
2704 struct tty *tp;
2705 struct lwp *l;
2706
2707 KASSERT(mutex_owned(&proc_lock));
2708 KASSERT(mutex_owned(p->p_lock));
2709
2710 COND_SET_PTR(ep->e_paddr, p, allowaddr);
2711 COND_SET_PTR(ep->e_sess, p->p_session, allowaddr);
2712 if (p->p_cred) {
2713 kauth_cred_topcred(p->p_cred, &ep->e_pcred);
2714 kauth_cred_toucred(p->p_cred, &ep->e_ucred);
2715 }
2716 if (p->p_stat != SIDL && !P_ZOMBIE(p) && !zombie) {
2717 struct vmspace *vm = p->p_vmspace;
2718
2719 ep->e_vm.vm_rssize = vm_resident_count(vm);
2720 ep->e_vm.vm_tsize = vm->vm_tsize;
2721 ep->e_vm.vm_dsize = vm->vm_dsize;
2722 ep->e_vm.vm_ssize = vm->vm_ssize;
2723 ep->e_vm.vm_map.size = vm->vm_map.size;
2724
2725 /* Pick the primary (first) LWP */
2726 l = proc_active_lwp(p);
2727 KASSERT(l != NULL);
2728 lwp_lock(l);
2729 if (l->l_wchan)
2730 strncpy(ep->e_wmesg, l->l_wmesg, WMESGLEN);
2731 lwp_unlock(l);
2732 }
2733 ep->e_ppid = p->p_ppid;
2734 if (p->p_pgrp && p->p_session) {
2735 ep->e_pgid = p->p_pgrp->pg_id;
2736 ep->e_jobc = p->p_pgrp->pg_jobc;
2737 ep->e_sid = p->p_session->s_sid;
2738 if ((p->p_lflag & PL_CONTROLT) &&
2739 (tp = p->p_session->s_ttyp)) {
2740 ep->e_tdev = tp->t_dev;
2741 ep->e_tpgid = tp->t_pgrp ? tp->t_pgrp->pg_id : NO_PGID;
2742 COND_SET_PTR(ep->e_tsess, tp->t_session, allowaddr);
2743 } else
2744 ep->e_tdev = (uint32_t)NODEV;
2745 ep->e_flag = p->p_session->s_ttyvp ? EPROC_CTTY : 0;
2746 if (SESS_LEADER(p))
2747 ep->e_flag |= EPROC_SLEADER;
2748 strncpy(ep->e_login, p->p_session->s_login, MAXLOGNAME);
2749 }
2750 ep->e_xsize = ep->e_xrssize = 0;
2751 ep->e_xccount = ep->e_xswrss = 0;
2752 }
2753
2754 /*
2755 * Fill in a kinfo_proc2 structure for the specified process.
2756 */
2757 void
fill_kproc2(struct proc * p,struct kinfo_proc2 * ki,bool zombie,bool allowaddr)2758 fill_kproc2(struct proc *p, struct kinfo_proc2 *ki, bool zombie, bool allowaddr)
2759 {
2760 struct tty *tp;
2761 struct lwp *l;
2762 struct timeval ut, st, rt;
2763 sigset_t ss1, ss2;
2764 struct rusage ru;
2765 struct vmspace *vm;
2766
2767 KASSERT(mutex_owned(&proc_lock));
2768 KASSERT(mutex_owned(p->p_lock));
2769
2770 sigemptyset(&ss1);
2771 sigemptyset(&ss2);
2772
2773 COND_SET_VALUE(ki->p_paddr, PTRTOUINT64(p), allowaddr);
2774 COND_SET_VALUE(ki->p_fd, PTRTOUINT64(p->p_fd), allowaddr);
2775 COND_SET_VALUE(ki->p_cwdi, PTRTOUINT64(p->p_cwdi), allowaddr);
2776 COND_SET_VALUE(ki->p_stats, PTRTOUINT64(p->p_stats), allowaddr);
2777 COND_SET_VALUE(ki->p_limit, PTRTOUINT64(p->p_limit), allowaddr);
2778 COND_SET_VALUE(ki->p_vmspace, PTRTOUINT64(p->p_vmspace), allowaddr);
2779 COND_SET_VALUE(ki->p_sigacts, PTRTOUINT64(p->p_sigacts), allowaddr);
2780 COND_SET_VALUE(ki->p_sess, PTRTOUINT64(p->p_session), allowaddr);
2781 ki->p_tsess = 0; /* may be changed if controlling tty below */
2782 COND_SET_VALUE(ki->p_ru, PTRTOUINT64(&p->p_stats->p_ru), allowaddr);
2783 ki->p_eflag = 0;
2784 ki->p_exitsig = p->p_exitsig;
2785 ki->p_flag = L_INMEM; /* Process never swapped out */
2786 ki->p_flag |= sysctl_map_flags(sysctl_flagmap, p->p_flag);
2787 ki->p_flag |= sysctl_map_flags(sysctl_sflagmap, p->p_sflag);
2788 ki->p_flag |= sysctl_map_flags(sysctl_slflagmap, p->p_slflag);
2789 ki->p_flag |= sysctl_map_flags(sysctl_lflagmap, p->p_lflag);
2790 ki->p_flag |= sysctl_map_flags(sysctl_stflagmap, p->p_stflag);
2791 ki->p_pid = p->p_pid;
2792 ki->p_ppid = p->p_ppid;
2793 ki->p_uid = kauth_cred_geteuid(p->p_cred);
2794 ki->p_ruid = kauth_cred_getuid(p->p_cred);
2795 ki->p_gid = kauth_cred_getegid(p->p_cred);
2796 ki->p_rgid = kauth_cred_getgid(p->p_cred);
2797 ki->p_svuid = kauth_cred_getsvuid(p->p_cred);
2798 ki->p_svgid = kauth_cred_getsvgid(p->p_cred);
2799 ki->p_ngroups = kauth_cred_ngroups(p->p_cred);
2800 kauth_cred_getgroups(p->p_cred, ki->p_groups,
2801 uimin(ki->p_ngroups, sizeof(ki->p_groups) / sizeof(ki->p_groups[0])),
2802 UIO_SYSSPACE);
2803
2804 ki->p_uticks = p->p_uticks;
2805 ki->p_sticks = p->p_sticks;
2806 ki->p_iticks = p->p_iticks;
2807 ki->p_tpgid = NO_PGID; /* may be changed if controlling tty below */
2808 COND_SET_VALUE(ki->p_tracep, PTRTOUINT64(p->p_tracep), allowaddr);
2809 ki->p_traceflag = p->p_traceflag;
2810
2811 memcpy(&ki->p_sigignore, &p->p_sigctx.ps_sigignore,sizeof(ki_sigset_t));
2812 memcpy(&ki->p_sigcatch, &p->p_sigctx.ps_sigcatch, sizeof(ki_sigset_t));
2813
2814 ki->p_cpticks = 0;
2815 ki->p_pctcpu = p->p_pctcpu;
2816 ki->p_estcpu = 0;
2817 ki->p_stat = p->p_stat; /* Will likely be overridden by LWP status */
2818 ki->p_realstat = p->p_stat;
2819 ki->p_nice = p->p_nice;
2820 ki->p_xstat = P_WAITSTATUS(p);
2821 ki->p_acflag = p->p_acflag;
2822
2823 strncpy(ki->p_comm, p->p_comm,
2824 uimin(sizeof(ki->p_comm), sizeof(p->p_comm)));
2825 strncpy(ki->p_ename, p->p_emul->e_name, sizeof(ki->p_ename));
2826
2827 ki->p_nlwps = p->p_nlwps;
2828 ki->p_realflag = ki->p_flag;
2829
2830 if (p->p_stat != SIDL && !P_ZOMBIE(p) && !zombie) {
2831 vm = p->p_vmspace;
2832 ki->p_vm_rssize = vm_resident_count(vm);
2833 ki->p_vm_tsize = vm->vm_tsize;
2834 ki->p_vm_dsize = vm->vm_dsize;
2835 ki->p_vm_ssize = vm->vm_ssize;
2836 ki->p_vm_vsize = atop(vm->vm_map.size);
2837 /*
2838 * Since the stack is initially mapped mostly with
2839 * PROT_NONE and grown as needed, adjust the "mapped size"
2840 * to skip the unused stack portion.
2841 */
2842 ki->p_vm_msize =
2843 atop(vm->vm_map.size) - vm->vm_issize + vm->vm_ssize;
2844
2845 /* Pick the primary (first) LWP */
2846 l = proc_active_lwp(p);
2847 KASSERT(l != NULL);
2848 lwp_lock(l);
2849 ki->p_nrlwps = p->p_nrlwps;
2850 ki->p_forw = 0;
2851 ki->p_back = 0;
2852 COND_SET_VALUE(ki->p_addr, PTRTOUINT64(l->l_addr), allowaddr);
2853 ki->p_stat = l->l_stat;
2854 ki->p_flag |= sysctl_map_flags(sysctl_lwpflagmap, l->l_flag);
2855 ki->p_swtime = l->l_swtime;
2856 ki->p_slptime = l->l_slptime;
2857 if (l->l_stat == LSONPROC)
2858 ki->p_schedflags = l->l_cpu->ci_schedstate.spc_flags;
2859 else
2860 ki->p_schedflags = 0;
2861 ki->p_priority = lwp_eprio(l);
2862 ki->p_usrpri = l->l_priority;
2863 if (l->l_wchan)
2864 strncpy(ki->p_wmesg, l->l_wmesg, sizeof(ki->p_wmesg));
2865 COND_SET_VALUE(ki->p_wchan, PTRTOUINT64(l->l_wchan), allowaddr);
2866 ki->p_cpuid = cpu_index(l->l_cpu);
2867 lwp_unlock(l);
2868 LIST_FOREACH(l, &p->p_lwps, l_sibling) {
2869 /* This is hardly correct, but... */
2870 sigplusset(&l->l_sigpend.sp_set, &ss1);
2871 sigplusset(&l->l_sigmask, &ss2);
2872 ki->p_cpticks += l->l_cpticks;
2873 ki->p_pctcpu += l->l_pctcpu;
2874 ki->p_estcpu += l->l_estcpu;
2875 }
2876 }
2877 sigplusset(&p->p_sigpend.sp_set, &ss1);
2878 memcpy(&ki->p_siglist, &ss1, sizeof(ki_sigset_t));
2879 memcpy(&ki->p_sigmask, &ss2, sizeof(ki_sigset_t));
2880
2881 if (p->p_session != NULL) {
2882 ki->p_sid = p->p_session->s_sid;
2883 ki->p__pgid = p->p_pgrp->pg_id;
2884 if (p->p_session->s_ttyvp)
2885 ki->p_eflag |= EPROC_CTTY;
2886 if (SESS_LEADER(p))
2887 ki->p_eflag |= EPROC_SLEADER;
2888 strncpy(ki->p_login, p->p_session->s_login,
2889 uimin(sizeof ki->p_login - 1, sizeof p->p_session->s_login));
2890 ki->p_jobc = p->p_pgrp->pg_jobc;
2891 if ((p->p_lflag & PL_CONTROLT) && (tp = p->p_session->s_ttyp)) {
2892 ki->p_tdev = tp->t_dev;
2893 ki->p_tpgid = tp->t_pgrp ? tp->t_pgrp->pg_id : NO_PGID;
2894 COND_SET_VALUE(ki->p_tsess, PTRTOUINT64(tp->t_session),
2895 allowaddr);
2896 } else {
2897 ki->p_tdev = (int32_t)NODEV;
2898 }
2899 }
2900
2901 if (!P_ZOMBIE(p) && !zombie) {
2902 ki->p_uvalid = 1;
2903 ki->p_ustart_sec = p->p_stats->p_start.tv_sec;
2904 ki->p_ustart_usec = p->p_stats->p_start.tv_usec;
2905
2906 calcru(p, &ut, &st, NULL, &rt);
2907 ki->p_rtime_sec = rt.tv_sec;
2908 ki->p_rtime_usec = rt.tv_usec;
2909 ki->p_uutime_sec = ut.tv_sec;
2910 ki->p_uutime_usec = ut.tv_usec;
2911 ki->p_ustime_sec = st.tv_sec;
2912 ki->p_ustime_usec = st.tv_usec;
2913
2914 memcpy(&ru, &p->p_stats->p_ru, sizeof(ru));
2915 rulwps(p, &ru);
2916 ki->p_uru_nvcsw = ru.ru_nvcsw;
2917 ki->p_uru_nivcsw = ru.ru_nivcsw;
2918 ki->p_uru_maxrss = ru.ru_maxrss;
2919 ki->p_uru_ixrss = ru.ru_ixrss;
2920 ki->p_uru_idrss = ru.ru_idrss;
2921 ki->p_uru_isrss = ru.ru_isrss;
2922 ki->p_uru_minflt = ru.ru_minflt;
2923 ki->p_uru_majflt = ru.ru_majflt;
2924 ki->p_uru_nswap = ru.ru_nswap;
2925 ki->p_uru_inblock = ru.ru_inblock;
2926 ki->p_uru_oublock = ru.ru_oublock;
2927 ki->p_uru_msgsnd = ru.ru_msgsnd;
2928 ki->p_uru_msgrcv = ru.ru_msgrcv;
2929 ki->p_uru_nsignals = ru.ru_nsignals;
2930
2931 timeradd(&p->p_stats->p_cru.ru_utime,
2932 &p->p_stats->p_cru.ru_stime, &ut);
2933 ki->p_uctime_sec = ut.tv_sec;
2934 ki->p_uctime_usec = ut.tv_usec;
2935 }
2936 }
2937
2938
2939 int
proc_find_locked(struct lwp * l,struct proc ** p,pid_t pid)2940 proc_find_locked(struct lwp *l, struct proc **p, pid_t pid)
2941 {
2942 int error;
2943
2944 mutex_enter(&proc_lock);
2945 if (pid == -1)
2946 *p = l->l_proc;
2947 else
2948 *p = proc_find(pid);
2949
2950 if (*p == NULL) {
2951 if (pid != -1)
2952 mutex_exit(&proc_lock);
2953 return ESRCH;
2954 }
2955 if (pid != -1)
2956 mutex_enter((*p)->p_lock);
2957 mutex_exit(&proc_lock);
2958
2959 error = kauth_authorize_process(l->l_cred,
2960 KAUTH_PROCESS_CANSEE, *p,
2961 KAUTH_ARG(KAUTH_REQ_PROCESS_CANSEE_ENTRY), NULL, NULL);
2962 if (error) {
2963 if (pid != -1)
2964 mutex_exit((*p)->p_lock);
2965 }
2966 return error;
2967 }
2968
2969 static int
fill_pathname(struct lwp * l,pid_t pid,void * oldp,size_t * oldlenp)2970 fill_pathname(struct lwp *l, pid_t pid, void *oldp, size_t *oldlenp)
2971 {
2972 int error;
2973 struct proc *p;
2974
2975 if ((error = proc_find_locked(l, &p, pid)) != 0)
2976 return error;
2977
2978 if (p->p_path == NULL) {
2979 if (pid != -1)
2980 mutex_exit(p->p_lock);
2981 return ENOENT;
2982 }
2983
2984 size_t len = strlen(p->p_path) + 1;
2985 if (oldp != NULL) {
2986 size_t copylen = uimin(len, *oldlenp);
2987 error = sysctl_copyout(l, p->p_path, oldp, copylen);
2988 if (error == 0 && *oldlenp < len)
2989 error = ENOSPC;
2990 }
2991 *oldlenp = len;
2992 if (pid != -1)
2993 mutex_exit(p->p_lock);
2994 return error;
2995 }
2996
2997 static int
fill_cwd(struct lwp * l,pid_t pid,void * oldp,size_t * oldlenp)2998 fill_cwd(struct lwp *l, pid_t pid, void *oldp, size_t *oldlenp)
2999 {
3000 int error;
3001 struct proc *p;
3002 char *path;
3003 char *bp, *bend;
3004 struct cwdinfo *cwdi;
3005 struct vnode *vp;
3006 size_t len, lenused;
3007
3008 if ((error = proc_find_locked(l, &p, pid)) != 0)
3009 return error;
3010
3011 len = MAXPATHLEN * 4;
3012
3013 path = kmem_alloc(len, KM_SLEEP);
3014
3015 bp = &path[len];
3016 bend = bp;
3017 *(--bp) = '\0';
3018
3019 cwdi = p->p_cwdi;
3020 rw_enter(&cwdi->cwdi_lock, RW_READER);
3021 vp = cwdi->cwdi_cdir;
3022 error = getcwd_common(vp, NULL, &bp, path, len/2, 0, l);
3023 rw_exit(&cwdi->cwdi_lock);
3024
3025 if (error)
3026 goto out;
3027
3028 lenused = bend - bp;
3029
3030 if (oldp != NULL) {
3031 size_t copylen = uimin(lenused, *oldlenp);
3032 error = sysctl_copyout(l, bp, oldp, copylen);
3033 if (error == 0 && *oldlenp < lenused)
3034 error = ENOSPC;
3035 }
3036 *oldlenp = lenused;
3037 out:
3038 if (pid != -1)
3039 mutex_exit(p->p_lock);
3040 kmem_free(path, len);
3041 return error;
3042 }
3043
3044 int
proc_getauxv(struct proc * p,void ** buf,size_t * len)3045 proc_getauxv(struct proc *p, void **buf, size_t *len)
3046 {
3047 struct ps_strings pss;
3048 int error;
3049 void *uauxv, *kauxv;
3050 size_t size;
3051
3052 if ((error = copyin_psstrings(p, &pss)) != 0)
3053 return error;
3054 if (pss.ps_envstr == NULL)
3055 return EIO;
3056
3057 size = p->p_execsw->es_arglen;
3058 if (size == 0)
3059 return EIO;
3060
3061 size_t ptrsz = PROC_PTRSZ(p);
3062 uauxv = (void *)((char *)pss.ps_envstr + (pss.ps_nenvstr + 1) * ptrsz);
3063
3064 kauxv = kmem_alloc(size, KM_SLEEP);
3065
3066 error = copyin_proc(p, uauxv, kauxv, size);
3067 if (error) {
3068 kmem_free(kauxv, size);
3069 return error;
3070 }
3071
3072 *buf = kauxv;
3073 *len = size;
3074
3075 return 0;
3076 }
3077
3078
3079 static int
sysctl_security_expose_address(SYSCTLFN_ARGS)3080 sysctl_security_expose_address(SYSCTLFN_ARGS)
3081 {
3082 int expose_address, error;
3083 struct sysctlnode node;
3084
3085 node = *rnode;
3086 node.sysctl_data = &expose_address;
3087 expose_address = *(int *)rnode->sysctl_data;
3088 error = sysctl_lookup(SYSCTLFN_CALL(&node));
3089 if (error || newp == NULL)
3090 return error;
3091
3092 if (kauth_authorize_system(l->l_cred, KAUTH_SYSTEM_KERNADDR,
3093 0, NULL, NULL, NULL))
3094 return EPERM;
3095
3096 switch (expose_address) {
3097 case 0:
3098 case 1:
3099 case 2:
3100 break;
3101 default:
3102 return EINVAL;
3103 }
3104
3105 *(int *)rnode->sysctl_data = expose_address;
3106
3107 return 0;
3108 }
3109
3110 bool
get_expose_address(struct proc * p)3111 get_expose_address(struct proc *p)
3112 {
3113 /* allow only if sysctl variable is set or privileged */
3114 return kauth_authorize_process(kauth_cred_get(), KAUTH_PROCESS_CANSEE,
3115 p, KAUTH_ARG(KAUTH_REQ_PROCESS_CANSEE_KPTR), NULL, NULL) == 0;
3116 }
3117