xref: /netbsd-src/sys/kern/kern_proc.c (revision 75996a401adf173278b026a036cd3ac0756959c7)
1 /*	$NetBSD: kern_proc.c,v 1.276 2024/07/14 05:10:40 kre Exp $	*/
2 
3 /*-
4  * Copyright (c) 1999, 2006, 2007, 2008, 2020, 2023
5  *     The NetBSD Foundation, Inc.
6  * All rights reserved.
7  *
8  * This code is derived from software contributed to The NetBSD Foundation
9  * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
10  * NASA Ames Research Center, and by Andrew Doran.
11  *
12  * Redistribution and use in source and binary forms, with or without
13  * modification, are permitted provided that the following conditions
14  * are met:
15  * 1. Redistributions of source code must retain the above copyright
16  *    notice, this list of conditions and the following disclaimer.
17  * 2. Redistributions in binary form must reproduce the above copyright
18  *    notice, this list of conditions and the following disclaimer in the
19  *    documentation and/or other materials provided with the distribution.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
22  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
23  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
24  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
25  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
26  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
27  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
28  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
29  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
30  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
31  * POSSIBILITY OF SUCH DAMAGE.
32  */
33 
34 /*
35  * Copyright (c) 1982, 1986, 1989, 1991, 1993
36  *	The Regents of the University of California.  All rights reserved.
37  *
38  * Redistribution and use in source and binary forms, with or without
39  * modification, are permitted provided that the following conditions
40  * are met:
41  * 1. Redistributions of source code must retain the above copyright
42  *    notice, this list of conditions and the following disclaimer.
43  * 2. Redistributions in binary form must reproduce the above copyright
44  *    notice, this list of conditions and the following disclaimer in the
45  *    documentation and/or other materials provided with the distribution.
46  * 3. Neither the name of the University nor the names of its contributors
47  *    may be used to endorse or promote products derived from this software
48  *    without specific prior written permission.
49  *
50  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
51  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
52  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
53  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
54  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
55  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
56  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
57  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
58  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
59  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
60  * SUCH DAMAGE.
61  *
62  *	@(#)kern_proc.c	8.7 (Berkeley) 2/14/95
63  */
64 
65 #include <sys/cdefs.h>
66 __KERNEL_RCSID(0, "$NetBSD: kern_proc.c,v 1.276 2024/07/14 05:10:40 kre Exp $");
67 
68 #ifdef _KERNEL_OPT
69 #include "opt_kstack.h"
70 #include "opt_maxuprc.h"
71 #include "opt_dtrace.h"
72 #include "opt_compat_netbsd32.h"
73 #include "opt_kaslr.h"
74 #endif
75 
76 #if defined(__HAVE_COMPAT_NETBSD32) && !defined(COMPAT_NETBSD32) \
77     && !defined(_RUMPKERNEL)
78 #define COMPAT_NETBSD32
79 #endif
80 
81 #include <sys/param.h>
82 #include <sys/systm.h>
83 #include <sys/kernel.h>
84 #include <sys/proc.h>
85 #include <sys/resourcevar.h>
86 #include <sys/buf.h>
87 #include <sys/acct.h>
88 #include <sys/wait.h>
89 #include <sys/file.h>
90 #include <ufs/ufs/quota.h>
91 #include <sys/uio.h>
92 #include <sys/pool.h>
93 #include <sys/pset.h>
94 #include <sys/ioctl.h>
95 #include <sys/tty.h>
96 #include <sys/signalvar.h>
97 #include <sys/ras.h>
98 #include <sys/filedesc.h>
99 #include <sys/syscall_stats.h>
100 #include <sys/kauth.h>
101 #include <sys/sleepq.h>
102 #include <sys/atomic.h>
103 #include <sys/kmem.h>
104 #include <sys/namei.h>
105 #include <sys/dtrace_bsd.h>
106 #include <sys/sysctl.h>
107 #include <sys/exec.h>
108 #include <sys/cpu.h>
109 #include <sys/compat_stub.h>
110 #include <sys/futex.h>
111 #include <sys/pserialize.h>
112 
113 #include <uvm/uvm_extern.h>
114 
115 /*
116  * Process lists.
117  */
118 
119 struct proclist		allproc		__cacheline_aligned;
120 struct proclist		zombproc	__cacheline_aligned;
121 
122 kmutex_t		proc_lock	__cacheline_aligned;
123 static pserialize_t	proc_psz;
124 
125 /*
126  * pid to lwp/proc lookup is done by indexing the pid_table array.
127  * Since pid numbers are only allocated when an empty slot
128  * has been found, there is no need to search any lists ever.
129  * (an orphaned pgrp will lock the slot, a session will lock
130  * the pgrp with the same number.)
131  * If the table is too small it is reallocated with twice the
132  * previous size and the entries 'unzipped' into the two halves.
133  * A linked list of free entries is passed through the pt_lwp
134  * field of 'free' items - set odd to be an invalid ptr.  Two
135  * additional bits are also used to indicate if the slot is
136  * currently occupied by a proc or lwp, and if the PID is
137  * hidden from certain kinds of lookups.  We thus require a
138  * minimum alignment for proc and lwp structures (LWPs are
139  * at least 32-byte aligned).
140  */
141 
142 struct pid_table {
143 	uintptr_t	pt_slot;
144 	struct pgrp	*pt_pgrp;
145 	pid_t		pt_pid;
146 };
147 
148 #define	PT_F_FREE		((uintptr_t)__BIT(0))
149 #define	PT_F_LWP		0	/* pseudo-flag */
150 #define	PT_F_PROC		((uintptr_t)__BIT(1))
151 
152 #define	PT_F_TYPEBITS		(PT_F_FREE|PT_F_PROC)
153 #define	PT_F_ALLBITS		(PT_F_FREE|PT_F_PROC)
154 
155 #define	PT_VALID(s)		(((s) & PT_F_FREE) == 0)
156 #define	PT_RESERVED(s)		((s) == 0)
157 #define	PT_NEXT(s)		((u_int)(s) >> 1)
158 #define	PT_SET_FREE(pid)	(((pid) << 1) | PT_F_FREE)
159 #define	PT_SET_LWP(l)		((uintptr_t)(l))
160 #define	PT_SET_PROC(p)		(((uintptr_t)(p)) | PT_F_PROC)
161 #define	PT_SET_RESERVED		0
162 #define	PT_GET_LWP(s)		((struct lwp *)((s) & ~PT_F_ALLBITS))
163 #define	PT_GET_PROC(s)		((struct proc *)((s) & ~PT_F_ALLBITS))
164 #define	PT_GET_TYPE(s)		((s) & PT_F_TYPEBITS)
165 #define	PT_IS_LWP(s)		(PT_GET_TYPE(s) == PT_F_LWP && (s) != 0)
166 #define	PT_IS_PROC(s)		(PT_GET_TYPE(s) == PT_F_PROC)
167 
168 #define	MIN_PROC_ALIGNMENT	(PT_F_ALLBITS + 1)
169 
170 /*
171  * Table of process IDs (PIDs).
172  */
173 static struct pid_table *pid_table	__read_mostly;
174 
175 #define	INITIAL_PID_TABLE_SIZE		(1 << 5)
176 
177 /* Table mask, threshold for growing and number of allocated PIDs. */
178 static u_int		pid_tbl_mask	__read_mostly;
179 static u_int		pid_alloc_lim	__read_mostly;
180 static u_int		pid_alloc_cnt	__cacheline_aligned;
181 
182 /* Next free, last free and maximum PIDs. */
183 static u_int		next_free_pt	__cacheline_aligned;
184 static u_int		last_free_pt	__cacheline_aligned;
185 static pid_t		pid_max		__read_mostly;
186 
187 /* Components of the first process -- never freed. */
188 
189 struct session session0 = {
190 	.s_count = 1,
191 	.s_sid = 0,
192 };
193 struct pgrp pgrp0 = {
194 	.pg_members = LIST_HEAD_INITIALIZER(&pgrp0.pg_members),
195 	.pg_session = &session0,
196 };
197 filedesc_t filedesc0;
198 struct cwdinfo cwdi0 = {
199 	.cwdi_cmask = CMASK,
200 	.cwdi_refcnt = 1,
201 };
202 struct plimit limit0;
203 struct pstats pstat0;
204 struct vmspace vmspace0;
205 struct sigacts sigacts0;
206 struct proc proc0 = {
207 	.p_lwps = LIST_HEAD_INITIALIZER(&proc0.p_lwps),
208 	.p_sigwaiters = LIST_HEAD_INITIALIZER(&proc0.p_sigwaiters),
209 	.p_nlwps = 1,
210 	.p_nrlwps = 1,
211 	.p_pgrp = &pgrp0,
212 	.p_comm = "system",
213 	/*
214 	 * Set P_NOCLDWAIT so that kernel threads are reparented to init(8)
215 	 * when they exit.  init(8) can easily wait them out for us.
216 	 */
217 	.p_flag = PK_SYSTEM | PK_NOCLDWAIT,
218 	.p_stat = SACTIVE,
219 	.p_nice = NZERO,
220 	.p_emul = &emul_netbsd,
221 	.p_cwdi = &cwdi0,
222 	.p_limit = &limit0,
223 	.p_fd = &filedesc0,
224 	.p_vmspace = &vmspace0,
225 	.p_stats = &pstat0,
226 	.p_sigacts = &sigacts0,
227 #ifdef PROC0_MD_INITIALIZERS
228 	PROC0_MD_INITIALIZERS
229 #endif
230 };
231 kauth_cred_t cred0;
232 
233 static const int	nofile	= NOFILE;
234 static const int	maxuprc	= MAXUPRC;
235 
236 static int sysctl_doeproc(SYSCTLFN_PROTO);
237 static int sysctl_kern_proc_args(SYSCTLFN_PROTO);
238 static int sysctl_security_expose_address(SYSCTLFN_PROTO);
239 
240 #ifdef KASLR
241 static int kern_expose_address = 0;
242 #else
243 static int kern_expose_address = 1;
244 #endif
245 /*
246  * The process list descriptors, used during pid allocation and
247  * by sysctl.  No locking on this data structure is needed since
248  * it is completely static.
249  */
250 const struct proclist_desc proclists[] = {
251 	{ &allproc	},
252 	{ &zombproc	},
253 	{ NULL		},
254 };
255 
256 static struct pgrp *	pg_remove(pid_t);
257 static void		pg_delete(pid_t);
258 static void		orphanpg(struct pgrp *);
259 
260 static specificdata_domain_t proc_specificdata_domain;
261 
262 static pool_cache_t proc_cache;
263 
264 static kauth_listener_t proc_listener;
265 
266 static void fill_proc(const struct proc *, struct proc *, bool);
267 static int fill_pathname(struct lwp *, pid_t, void *, size_t *);
268 static int fill_cwd(struct lwp *, pid_t, void *, size_t *);
269 
270 static int
proc_listener_cb(kauth_cred_t cred,kauth_action_t action,void * cookie,void * arg0,void * arg1,void * arg2,void * arg3)271 proc_listener_cb(kauth_cred_t cred, kauth_action_t action, void *cookie,
272     void *arg0, void *arg1, void *arg2, void *arg3)
273 {
274 	struct proc *p;
275 	int result;
276 
277 	result = KAUTH_RESULT_DEFER;
278 	p = arg0;
279 
280 	switch (action) {
281 	case KAUTH_PROCESS_CANSEE: {
282 		enum kauth_process_req req;
283 
284 		req = (enum kauth_process_req)(uintptr_t)arg1;
285 
286 		switch (req) {
287 		case KAUTH_REQ_PROCESS_CANSEE_ARGS:
288 		case KAUTH_REQ_PROCESS_CANSEE_ENTRY:
289 		case KAUTH_REQ_PROCESS_CANSEE_OPENFILES:
290 		case KAUTH_REQ_PROCESS_CANSEE_EPROC:
291 			result = KAUTH_RESULT_ALLOW;
292 			break;
293 
294 		case KAUTH_REQ_PROCESS_CANSEE_ENV:
295 			if (kauth_cred_getuid(cred) !=
296 			    kauth_cred_getuid(p->p_cred) ||
297 			    kauth_cred_getuid(cred) !=
298 			    kauth_cred_getsvuid(p->p_cred))
299 				break;
300 
301 			result = KAUTH_RESULT_ALLOW;
302 
303 			break;
304 
305 		case KAUTH_REQ_PROCESS_CANSEE_KPTR:
306 			if (!kern_expose_address)
307 				break;
308 
309 			if (kern_expose_address == 1 && !(p->p_flag & PK_KMEM))
310 				break;
311 
312 			result = KAUTH_RESULT_ALLOW;
313 
314 			break;
315 
316 		default:
317 			break;
318 		}
319 
320 		break;
321 		}
322 
323 	case KAUTH_PROCESS_FORK: {
324 		int lnprocs = (int)(unsigned long)arg2;
325 
326 		/*
327 		 * Don't allow a nonprivileged user to use the last few
328 		 * processes. The variable lnprocs is the current number of
329 		 * processes, maxproc is the limit.
330 		 */
331 		if (__predict_false((lnprocs >= maxproc - 5)))
332 			break;
333 
334 		result = KAUTH_RESULT_ALLOW;
335 
336 		break;
337 		}
338 
339 	case KAUTH_PROCESS_CORENAME:
340 	case KAUTH_PROCESS_STOPFLAG:
341 		if (proc_uidmatch(cred, p->p_cred) == 0)
342 			result = KAUTH_RESULT_ALLOW;
343 
344 		break;
345 
346 	default:
347 		break;
348 	}
349 
350 	return result;
351 }
352 
353 static int
proc_ctor(void * arg __unused,void * obj,int flags __unused)354 proc_ctor(void *arg __unused, void *obj, int flags __unused)
355 {
356 	struct proc *p = obj;
357 
358 	memset(p, 0, sizeof(*p));
359 	klist_init(&p->p_klist);
360 
361 	/*
362 	 * There is no need for a proc_dtor() to do a klist_fini(),
363 	 * since knote_proc_exit() ensures that p->p_klist is empty
364 	 * when a process exits.
365 	 */
366 
367 	return 0;
368 }
369 
370 static pid_t proc_alloc_pid_slot(struct proc *, uintptr_t);
371 
372 /*
373  * Initialize global process hashing structures.
374  */
375 void
procinit(void)376 procinit(void)
377 {
378 	const struct proclist_desc *pd;
379 	u_int i;
380 #define	LINK_EMPTY ((PID_MAX + INITIAL_PID_TABLE_SIZE) & ~(INITIAL_PID_TABLE_SIZE - 1))
381 
382 	for (pd = proclists; pd->pd_list != NULL; pd++)
383 		LIST_INIT(pd->pd_list);
384 
385 	mutex_init(&proc_lock, MUTEX_DEFAULT, IPL_NONE);
386 
387 	proc_psz = pserialize_create();
388 
389 	pid_table = kmem_alloc(INITIAL_PID_TABLE_SIZE
390 	    * sizeof(struct pid_table), KM_SLEEP);
391 	pid_tbl_mask = INITIAL_PID_TABLE_SIZE - 1;
392 	pid_max = PID_MAX;
393 
394 	/* Set free list running through table...
395 	   Preset 'use count' above PID_MAX so we allocate pid 1 next. */
396 	for (i = 0; i <= pid_tbl_mask; i++) {
397 		pid_table[i].pt_slot = PT_SET_FREE(LINK_EMPTY + i + 1);
398 		pid_table[i].pt_pgrp = 0;
399 		pid_table[i].pt_pid = 0;
400 	}
401 	/* slot 0 is just grabbed */
402 	next_free_pt = 1;
403 	/* Need to fix last entry. */
404 	last_free_pt = pid_tbl_mask;
405 	pid_table[last_free_pt].pt_slot = PT_SET_FREE(LINK_EMPTY);
406 	/* point at which we grow table - to avoid reusing pids too often */
407 	pid_alloc_lim = pid_tbl_mask - 1;
408 #undef LINK_EMPTY
409 
410 	/* Reserve PID 1 for init(8). */	/* XXX slightly gross */
411 	mutex_enter(&proc_lock);
412 	if (proc_alloc_pid_slot(&proc0, PT_SET_RESERVED) != 1)
413 		panic("failed to reserve PID 1 for init(8)");
414 	mutex_exit(&proc_lock);
415 
416 	proc_specificdata_domain = specificdata_domain_create();
417 	KASSERT(proc_specificdata_domain != NULL);
418 
419 	size_t proc_alignment = coherency_unit;
420 	if (proc_alignment < MIN_PROC_ALIGNMENT)
421 		proc_alignment = MIN_PROC_ALIGNMENT;
422 
423 	proc_cache = pool_cache_init(sizeof(struct proc), proc_alignment, 0, 0,
424 	    "procpl", NULL, IPL_NONE, proc_ctor, NULL, NULL);
425 
426 	proc_listener = kauth_listen_scope(KAUTH_SCOPE_PROCESS,
427 	    proc_listener_cb, NULL);
428 }
429 
430 void
procinit_sysctl(void)431 procinit_sysctl(void)
432 {
433 	static struct sysctllog *clog;
434 
435 	sysctl_createv(&clog, 0, NULL, NULL,
436 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
437 		       CTLTYPE_INT, "expose_address",
438 		       SYSCTL_DESCR("Enable exposing kernel addresses"),
439 		       sysctl_security_expose_address, 0,
440 		       &kern_expose_address, 0, CTL_KERN, CTL_CREATE, CTL_EOL);
441 	sysctl_createv(&clog, 0, NULL, NULL,
442 		       CTLFLAG_PERMANENT,
443 		       CTLTYPE_NODE, "proc",
444 		       SYSCTL_DESCR("System-wide process information"),
445 		       sysctl_doeproc, 0, NULL, 0,
446 		       CTL_KERN, KERN_PROC, CTL_EOL);
447 	sysctl_createv(&clog, 0, NULL, NULL,
448 		       CTLFLAG_PERMANENT,
449 		       CTLTYPE_NODE, "proc2",
450 		       SYSCTL_DESCR("Machine-independent process information"),
451 		       sysctl_doeproc, 0, NULL, 0,
452 		       CTL_KERN, KERN_PROC2, CTL_EOL);
453 	sysctl_createv(&clog, 0, NULL, NULL,
454 		       CTLFLAG_PERMANENT,
455 		       CTLTYPE_NODE, "proc_args",
456 		       SYSCTL_DESCR("Process argument information"),
457 		       sysctl_kern_proc_args, 0, NULL, 0,
458 		       CTL_KERN, KERN_PROC_ARGS, CTL_EOL);
459 
460 	/*
461 	  "nodes" under these:
462 
463 	  KERN_PROC_ALL
464 	  KERN_PROC_PID pid
465 	  KERN_PROC_PGRP pgrp
466 	  KERN_PROC_SESSION sess
467 	  KERN_PROC_TTY tty
468 	  KERN_PROC_UID uid
469 	  KERN_PROC_RUID uid
470 	  KERN_PROC_GID gid
471 	  KERN_PROC_RGID gid
472 
473 	  all in all, probably not worth the effort...
474 	*/
475 }
476 
477 /*
478  * Initialize process 0.
479  */
480 void
proc0_init(void)481 proc0_init(void)
482 {
483 	struct proc *p;
484 	struct pgrp *pg;
485 	struct rlimit *rlim;
486 	rlim_t lim;
487 	int i;
488 
489 	p = &proc0;
490 	pg = &pgrp0;
491 
492 	mutex_init(&p->p_stmutex, MUTEX_DEFAULT, IPL_HIGH);
493 	mutex_init(&p->p_auxlock, MUTEX_DEFAULT, IPL_NONE);
494 	p->p_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NONE);
495 
496 	rw_init(&p->p_reflock);
497 	cv_init(&p->p_waitcv, "wait");
498 	cv_init(&p->p_lwpcv, "lwpwait");
499 
500 	LIST_INSERT_HEAD(&p->p_lwps, &lwp0, l_sibling);
501 
502 	KASSERT(lwp0.l_lid == 0);
503 	pid_table[lwp0.l_lid].pt_slot = PT_SET_LWP(&lwp0);
504 	LIST_INSERT_HEAD(&allproc, p, p_list);
505 
506 	pid_table[lwp0.l_lid].pt_pgrp = pg;
507 	LIST_INSERT_HEAD(&pg->pg_members, p, p_pglist);
508 
509 #ifdef __HAVE_SYSCALL_INTERN
510 	(*p->p_emul->e_syscall_intern)(p);
511 #endif
512 
513 	/* Create credentials. */
514 	cred0 = kauth_cred_alloc();
515 	p->p_cred = cred0;
516 
517 	/* Create the CWD info. */
518 	rw_init(&cwdi0.cwdi_lock);
519 
520 	/* Create the limits structures. */
521 	mutex_init(&limit0.pl_lock, MUTEX_DEFAULT, IPL_NONE);
522 
523 	rlim = limit0.pl_rlimit;
524 	for (i = 0; i < __arraycount(limit0.pl_rlimit); i++) {
525 		rlim[i].rlim_cur = RLIM_INFINITY;
526 		rlim[i].rlim_max = RLIM_INFINITY;
527 	}
528 
529 	rlim[RLIMIT_NOFILE].rlim_max = maxfiles;
530 	rlim[RLIMIT_NOFILE].rlim_cur = maxfiles < nofile ? maxfiles : nofile;
531 
532 	rlim[RLIMIT_NPROC].rlim_max = maxproc;
533 	rlim[RLIMIT_NPROC].rlim_cur = maxproc < maxuprc ? maxproc : maxuprc;
534 
535 	lim = MIN(VM_MAXUSER_ADDRESS, ctob((rlim_t)uvm_availmem(false)));
536 	rlim[RLIMIT_RSS].rlim_max = lim;
537 	rlim[RLIMIT_MEMLOCK].rlim_max = lim;
538 	rlim[RLIMIT_MEMLOCK].rlim_cur = lim / 3;
539 
540 	rlim[RLIMIT_NTHR].rlim_max = maxlwp;
541 	rlim[RLIMIT_NTHR].rlim_cur = maxlwp / 2;
542 
543 	/* Note that default core name has zero length. */
544 	limit0.pl_corename = defcorename;
545 	limit0.pl_cnlen = 0;
546 	limit0.pl_refcnt = 1;
547 	limit0.pl_writeable = false;
548 	limit0.pl_sv_limit = NULL;
549 
550 	/* Configure virtual memory system, set vm rlimits. */
551 	uvm_init_limits(p);
552 
553 	/* Initialize file descriptor table for proc0. */
554 	fd_init(&filedesc0);
555 
556 	/*
557 	 * Initialize proc0's vmspace, which uses the kernel pmap.
558 	 * All kernel processes (which never have user space mappings)
559 	 * share proc0's vmspace, and thus, the kernel pmap.
560 	 */
561 	uvmspace_init(&vmspace0, pmap_kernel(), round_page(VM_MIN_ADDRESS),
562 	    trunc_page(VM_MAXUSER_ADDRESS),
563 #ifdef __USE_TOPDOWN_VM
564 	    true
565 #else
566 	    false
567 #endif
568 	    );
569 
570 	/* Initialize signal state for proc0. XXX IPL_SCHED */
571 	mutex_init(&p->p_sigacts->sa_mutex, MUTEX_DEFAULT, IPL_SCHED);
572 	siginit(p);
573 
574 	proc_initspecific(p);
575 	kdtrace_proc_ctor(NULL, p);
576 }
577 
578 /*
579  * Session reference counting.
580  */
581 
582 void
proc_sesshold(struct session * ss)583 proc_sesshold(struct session *ss)
584 {
585 
586 	KASSERT(mutex_owned(&proc_lock));
587 	ss->s_count++;
588 }
589 
590 void
proc_sessrele(struct session * ss)591 proc_sessrele(struct session *ss)
592 {
593 	struct pgrp *pg;
594 
595 	KASSERT(mutex_owned(&proc_lock));
596 	KASSERT(ss->s_count > 0);
597 
598 	/*
599 	 * We keep the pgrp with the same id as the session in order to
600 	 * stop a process being given the same pid.  Since the pgrp holds
601 	 * a reference to the session, it must be a 'zombie' pgrp by now.
602 	 */
603 	if (--ss->s_count == 0) {
604 		pg = pg_remove(ss->s_sid);
605 	} else {
606 		pg = NULL;
607 		ss = NULL;
608 	}
609 
610 	mutex_exit(&proc_lock);
611 
612 	if (pg)
613 		kmem_free(pg, sizeof(struct pgrp));
614 	if (ss)
615 		kmem_free(ss, sizeof(struct session));
616 }
617 
618 /*
619  * Check that the specified process group is in the session of the
620  * specified process.
621  * Treats -ve ids as process ids.
622  * Used to validate TIOCSPGRP requests.
623  */
624 int
pgid_in_session(struct proc * p,pid_t pg_id)625 pgid_in_session(struct proc *p, pid_t pg_id)
626 {
627 	struct pgrp *pgrp;
628 	struct session *session;
629 	int error;
630 
631 	if (pg_id <= INT_MIN)
632 		return EINVAL;
633 
634 	mutex_enter(&proc_lock);
635 	if (pg_id < 0) {
636 		struct proc *p1 = proc_find(-pg_id);
637 		if (p1 == NULL) {
638 			error = EINVAL;
639 			goto fail;
640 		}
641 		pgrp = p1->p_pgrp;
642 	} else {
643 		pgrp = pgrp_find(pg_id);
644 		if (pgrp == NULL) {
645 			error = EINVAL;
646 			goto fail;
647 		}
648 	}
649 	session = pgrp->pg_session;
650 	error = (session != p->p_pgrp->pg_session) ? EPERM : 0;
651 fail:
652 	mutex_exit(&proc_lock);
653 	return error;
654 }
655 
656 /*
657  * p_inferior: is p an inferior of q?
658  */
659 static inline bool
p_inferior(struct proc * p,struct proc * q)660 p_inferior(struct proc *p, struct proc *q)
661 {
662 
663 	KASSERT(mutex_owned(&proc_lock));
664 
665 	for (; p != q; p = p->p_pptr)
666 		if (p->p_pid == 0)
667 			return false;
668 	return true;
669 }
670 
671 /*
672  * proc_find_lwp: locate an lwp in said proc by the ID.
673  *
674  * => Must be called with p::p_lock held.
675  * => LSIDL lwps are not returned because they are only partially
676  *    constructed while occupying the slot.
677  * => Callers need to be careful about lwp::l_stat of the returned
678  *    lwp.
679  */
680 struct lwp *
proc_find_lwp(proc_t * p,pid_t pid)681 proc_find_lwp(proc_t *p, pid_t pid)
682 {
683 	struct pid_table *pt;
684 	unsigned pt_mask;
685 	struct lwp *l = NULL;
686 	uintptr_t slot;
687 	int s;
688 
689 	KASSERT(mutex_owned(p->p_lock));
690 
691 	/*
692 	 * Look in the pid_table.  This is done unlocked inside a
693 	 * pserialize read section covering pid_table's memory
694 	 * allocation only, so take care to read things in the correct
695 	 * order:
696 	 *
697 	 * 1. First read the table mask -- this only ever increases, in
698 	 *    expand_pid_table, so a stale value is safely
699 	 *    conservative.
700 	 *
701 	 * 2. Next read the pid table -- this is always set _before_
702 	 *    the mask increases, so if we see a new table and stale
703 	 *    mask, the mask is still valid for the table.
704 	 */
705 	s = pserialize_read_enter();
706 	pt_mask = atomic_load_acquire(&pid_tbl_mask);
707 	pt = &atomic_load_consume(&pid_table)[pid & pt_mask];
708 	slot = atomic_load_consume(&pt->pt_slot);
709 	if (__predict_false(!PT_IS_LWP(slot))) {
710 		pserialize_read_exit(s);
711 		return NULL;
712 	}
713 
714 	/*
715 	 * Check to see if the LWP is from the correct process.  We won't
716 	 * see entries in pid_table from a prior process that also used "p",
717 	 * by virtue of the fact that allocating "p" means all prior updates
718 	 * to dependant data structures are visible to this thread.
719 	 */
720 	l = PT_GET_LWP(slot);
721 	if (__predict_false(atomic_load_relaxed(&l->l_proc) != p)) {
722 		pserialize_read_exit(s);
723 		return NULL;
724 	}
725 
726 	/*
727 	 * We now know that p->p_lock holds this LWP stable.
728 	 *
729 	 * If the status is not LSIDL, it means the LWP is intended to be
730 	 * findable by LID and l_lid cannot change behind us.
731 	 *
732 	 * No need to acquire the LWP's lock to check for LSIDL, as
733 	 * p->p_lock must be held to transition in and out of LSIDL.
734 	 * Any other observed state of is no particular interest.
735 	 */
736 	pserialize_read_exit(s);
737 	return l->l_stat != LSIDL && l->l_lid == pid ? l : NULL;
738 }
739 
740 /*
741  * proc_find_lwp_unlocked: locate an lwp in said proc by the ID.
742  *
743  * => Called in a pserialize read section with no locks held.
744  * => LSIDL lwps are not returned because they are only partially
745  *    constructed while occupying the slot.
746  * => Callers need to be careful about lwp::l_stat of the returned
747  *    lwp.
748  * => If an LWP is found, it's returned locked.
749  */
750 struct lwp *
proc_find_lwp_unlocked(proc_t * p,pid_t pid)751 proc_find_lwp_unlocked(proc_t *p, pid_t pid)
752 {
753 	struct pid_table *pt;
754 	unsigned pt_mask;
755 	struct lwp *l = NULL;
756 	uintptr_t slot;
757 
758 	KASSERT(pserialize_in_read_section());
759 
760 	/*
761 	 * Look in the pid_table.  This is done unlocked inside a
762 	 * pserialize read section covering pid_table's memory
763 	 * allocation only, so take care to read things in the correct
764 	 * order:
765 	 *
766 	 * 1. First read the table mask -- this only ever increases, in
767 	 *    expand_pid_table, so a stale value is safely
768 	 *    conservative.
769 	 *
770 	 * 2. Next read the pid table -- this is always set _before_
771 	 *    the mask increases, so if we see a new table and stale
772 	 *    mask, the mask is still valid for the table.
773 	 */
774 	pt_mask = atomic_load_acquire(&pid_tbl_mask);
775 	pt = &atomic_load_consume(&pid_table)[pid & pt_mask];
776 	slot = atomic_load_consume(&pt->pt_slot);
777 	if (__predict_false(!PT_IS_LWP(slot))) {
778 		return NULL;
779 	}
780 
781 	/*
782 	 * Lock the LWP we found to get it stable.  If it's embryonic or
783 	 * reaped (LSIDL) then none of the other fields can safely be
784 	 * checked.
785 	 */
786 	l = PT_GET_LWP(slot);
787 	lwp_lock(l);
788 	if (__predict_false(l->l_stat == LSIDL)) {
789 		lwp_unlock(l);
790 		return NULL;
791 	}
792 
793 	/*
794 	 * l_proc and l_lid are now known stable because the LWP is not
795 	 * LSIDL, so check those fields too to make sure we found the
796 	 * right thing.
797 	 */
798 	if (__predict_false(l->l_proc != p || l->l_lid != pid)) {
799 		lwp_unlock(l);
800 		return NULL;
801 	}
802 
803 	/* Everything checks out, return it locked. */
804 	return l;
805 }
806 
807 /*
808  * proc_find_lwp_acquire_proc: locate an lwp and acquire a lock
809  * on its containing proc.
810  *
811  * => Similar to proc_find_lwp(), but does not require you to have
812  *    the proc a priori.
813  * => Also returns proc * to caller, with p::p_lock held.
814  * => Same caveats apply.
815  */
816 struct lwp *
proc_find_lwp_acquire_proc(pid_t pid,struct proc ** pp)817 proc_find_lwp_acquire_proc(pid_t pid, struct proc **pp)
818 {
819 	struct pid_table *pt;
820 	struct proc *p = NULL;
821 	struct lwp *l = NULL;
822 	uintptr_t slot;
823 
824 	KASSERT(pp != NULL);
825 	mutex_enter(&proc_lock);
826 	pt = &pid_table[pid & pid_tbl_mask];
827 
828 	slot = pt->pt_slot;
829 	if (__predict_true(PT_IS_LWP(slot) && pt->pt_pid == pid)) {
830 		l = PT_GET_LWP(slot);
831 		p = l->l_proc;
832 		mutex_enter(p->p_lock);
833 		if (__predict_false(l->l_stat == LSIDL)) {
834 			mutex_exit(p->p_lock);
835 			l = NULL;
836 			p = NULL;
837 		}
838 	}
839 	mutex_exit(&proc_lock);
840 
841 	KASSERT(p == NULL || mutex_owned(p->p_lock));
842 	*pp = p;
843 	return l;
844 }
845 
846 /*
847  * proc_find_raw_pid_table_locked: locate a process by the ID.
848  *
849  * => Must be called with proc_lock held.
850  */
851 static proc_t *
proc_find_raw_pid_table_locked(pid_t pid,bool any_lwpid)852 proc_find_raw_pid_table_locked(pid_t pid, bool any_lwpid)
853 {
854 	struct pid_table *pt;
855 	proc_t *p = NULL;
856 	uintptr_t slot;
857 
858 	/* No - used by DDB.  KASSERT(mutex_owned(&proc_lock)); */
859 	pt = &pid_table[pid & pid_tbl_mask];
860 
861 	slot = pt->pt_slot;
862 	if (__predict_true(PT_IS_LWP(slot) && pt->pt_pid == pid)) {
863 		/*
864 		 * When looking up processes, require a direct match
865 		 * on the PID assigned to the proc, not just one of
866 		 * its LWPs.
867 		 *
868 		 * N.B. We require lwp::l_proc of LSIDL LWPs to be
869 		 * valid here.
870 		 */
871 		p = PT_GET_LWP(slot)->l_proc;
872 		if (__predict_false(p->p_pid != pid && !any_lwpid))
873 			p = NULL;
874 	} else if (PT_IS_PROC(slot) && pt->pt_pid == pid) {
875 		p = PT_GET_PROC(slot);
876 	}
877 	return p;
878 }
879 
880 proc_t *
proc_find_raw(pid_t pid)881 proc_find_raw(pid_t pid)
882 {
883 
884 	return proc_find_raw_pid_table_locked(pid, false);
885 }
886 
887 static proc_t *
proc_find_internal(pid_t pid,bool any_lwpid)888 proc_find_internal(pid_t pid, bool any_lwpid)
889 {
890 	proc_t *p;
891 
892 	KASSERT(mutex_owned(&proc_lock));
893 
894 	p = proc_find_raw_pid_table_locked(pid, any_lwpid);
895 	if (__predict_false(p == NULL)) {
896 		return NULL;
897 	}
898 
899 	/*
900 	 * Only allow live processes to be found by PID.
901 	 * XXX: p_stat might change, since proc unlocked.
902 	 */
903 	if (__predict_true(p->p_stat == SACTIVE || p->p_stat == SSTOP)) {
904 		return p;
905 	}
906 	return NULL;
907 }
908 
909 proc_t *
proc_find(pid_t pid)910 proc_find(pid_t pid)
911 {
912 	return proc_find_internal(pid, false);
913 }
914 
915 proc_t *
proc_find_lwpid(pid_t pid)916 proc_find_lwpid(pid_t pid)
917 {
918 	return proc_find_internal(pid, true);
919 }
920 
921 /*
922  * pgrp_find: locate a process group by the ID.
923  *
924  * => Must be called with proc_lock held.
925  */
926 struct pgrp *
pgrp_find(pid_t pgid)927 pgrp_find(pid_t pgid)
928 {
929 	struct pgrp *pg;
930 
931 	KASSERT(mutex_owned(&proc_lock));
932 
933 	pg = pid_table[pgid & pid_tbl_mask].pt_pgrp;
934 
935 	/*
936 	 * Cannot look up a process group that only exists because the
937 	 * session has not died yet (traditional).
938 	 */
939 	if (pg == NULL || pg->pg_id != pgid || LIST_EMPTY(&pg->pg_members)) {
940 		return NULL;
941 	}
942 	return pg;
943 }
944 
945 static void
expand_pid_table(void)946 expand_pid_table(void)
947 {
948 	size_t pt_size, tsz;
949 	struct pid_table *n_pt, *new_pt;
950 	uintptr_t slot;
951 	struct pgrp *pgrp;
952 	pid_t pid, rpid;
953 	u_int i;
954 	uint new_pt_mask;
955 
956 	KASSERT(mutex_owned(&proc_lock));
957 
958 	/* Unlock the pid_table briefly to allocate memory. */
959 	pt_size = pid_tbl_mask + 1;
960 	mutex_exit(&proc_lock);
961 
962 	tsz = pt_size * 2 * sizeof(struct pid_table);
963 	new_pt = kmem_alloc(tsz, KM_SLEEP);
964 	new_pt_mask = pt_size * 2 - 1;
965 
966 	/* XXX For now.  The pratical limit is much lower anyway. */
967 	KASSERT(new_pt_mask <= FUTEX_TID_MASK);
968 
969 	mutex_enter(&proc_lock);
970 	if (pt_size != pid_tbl_mask + 1) {
971 		/* Another process beat us to it... */
972 		mutex_exit(&proc_lock);
973 		kmem_free(new_pt, tsz);
974 		goto out;
975 	}
976 
977 	/*
978 	 * Copy entries from old table into new one.
979 	 * If 'pid' is 'odd' we need to place in the upper half,
980 	 * even pid's to the lower half.
981 	 * Free items stay in the low half so we don't have to
982 	 * fixup the reference to them.
983 	 * We stuff free items on the front of the freelist
984 	 * because we can't write to unmodified entries.
985 	 * Processing the table backwards maintains a semblance
986 	 * of issuing pid numbers that increase with time.
987 	 */
988 	i = pt_size - 1;
989 	n_pt = new_pt + i;
990 	for (; ; i--, n_pt--) {
991 		slot = pid_table[i].pt_slot;
992 		pgrp = pid_table[i].pt_pgrp;
993 		if (!PT_VALID(slot)) {
994 			/* Up 'use count' so that link is valid */
995 			pid = (PT_NEXT(slot) + pt_size) & ~pt_size;
996 			rpid = 0;
997 			slot = PT_SET_FREE(pid);
998 			if (pgrp)
999 				pid = pgrp->pg_id;
1000 		} else {
1001 			pid = pid_table[i].pt_pid;
1002 			rpid = pid;
1003 		}
1004 
1005 		/* Save entry in appropriate half of table */
1006 		n_pt[pid & pt_size].pt_slot = slot;
1007 		n_pt[pid & pt_size].pt_pgrp = pgrp;
1008 		n_pt[pid & pt_size].pt_pid = rpid;
1009 
1010 		/* Put other piece on start of free list */
1011 		pid = (pid ^ pt_size) & ~pid_tbl_mask;
1012 		n_pt[pid & pt_size].pt_slot =
1013 			PT_SET_FREE((pid & ~pt_size) | next_free_pt);
1014 		n_pt[pid & pt_size].pt_pgrp = 0;
1015 		n_pt[pid & pt_size].pt_pid = 0;
1016 
1017 		next_free_pt = i | (pid & pt_size);
1018 		if (i == 0)
1019 			break;
1020 	}
1021 
1022 	/* Save old table size and switch tables */
1023 	tsz = pt_size * sizeof(struct pid_table);
1024 	n_pt = pid_table;
1025 	atomic_store_release(&pid_table, new_pt);
1026 	KASSERT(new_pt_mask >= pid_tbl_mask);
1027 	atomic_store_release(&pid_tbl_mask, new_pt_mask);
1028 
1029 	/*
1030 	 * pid_max starts as PID_MAX (= 30000), once we have 16384
1031 	 * allocated pids we need it to be larger!
1032 	 */
1033 	if (pid_tbl_mask > PID_MAX) {
1034 		pid_max = pid_tbl_mask * 2 + 1;
1035 		pid_alloc_lim |= pid_alloc_lim << 1;
1036 	} else
1037 		pid_alloc_lim <<= 1;	/* doubles number of free slots... */
1038 
1039 	mutex_exit(&proc_lock);
1040 
1041 	/*
1042 	 * Make sure that unlocked access to the old pid_table is complete
1043 	 * and then free it.
1044 	 */
1045 	pserialize_perform(proc_psz);
1046 	kmem_free(n_pt, tsz);
1047 
1048  out:	/* Return with proc_lock held again. */
1049 	mutex_enter(&proc_lock);
1050 }
1051 
1052 struct proc *
proc_alloc(void)1053 proc_alloc(void)
1054 {
1055 	struct proc *p;
1056 
1057 	p = pool_cache_get(proc_cache, PR_WAITOK);
1058 	p->p_stat = SIDL;			/* protect against others */
1059 	proc_initspecific(p);
1060 	kdtrace_proc_ctor(NULL, p);
1061 
1062 	/*
1063 	 * Allocate a placeholder in the pid_table.  When we create the
1064 	 * first LWP for this process, it will take ownership of the
1065 	 * slot.
1066 	 */
1067 	if (__predict_false(proc_alloc_pid(p) == -1)) {
1068 		/* Allocating the PID failed; unwind. */
1069 		proc_finispecific(p);
1070 		proc_free_mem(p);
1071 		p = NULL;
1072 	}
1073 	return p;
1074 }
1075 
1076 /*
1077  * proc_alloc_pid_slot: allocate PID and record the occupant so that
1078  * proc_find_raw() can find it by the PID.
1079  */
1080 static pid_t __noinline
proc_alloc_pid_slot(struct proc * p,uintptr_t slot)1081 proc_alloc_pid_slot(struct proc *p, uintptr_t slot)
1082 {
1083 	struct pid_table *pt;
1084 	pid_t pid;
1085 	int nxt;
1086 
1087 	KASSERT(mutex_owned(&proc_lock));
1088 
1089 	for (;;expand_pid_table()) {
1090 		if (__predict_false(pid_alloc_cnt >= pid_alloc_lim)) {
1091 			/* ensure pids cycle through 2000+ values */
1092 			continue;
1093 		}
1094 		/*
1095 		 * The first user process *must* be given PID 1.
1096 		 * it has already been reserved for us.  This
1097 		 * will be coming in from the proc_alloc() call
1098 		 * above, and the entry will be usurped later when
1099 		 * the first user LWP is created.
1100 		 * XXX this is slightly gross.
1101 		 */
1102 		if (__predict_false(PT_RESERVED(pid_table[1].pt_slot) &&
1103 				    p != &proc0)) {
1104 			KASSERT(PT_IS_PROC(slot));
1105 			pt = &pid_table[1];
1106 			pt->pt_slot = slot;
1107 			return 1;
1108 		}
1109 		pt = &pid_table[next_free_pt];
1110 #ifdef DIAGNOSTIC
1111 		if (__predict_false(PT_VALID(pt->pt_slot) || pt->pt_pgrp))
1112 			panic("proc_alloc: slot busy");
1113 #endif
1114 		nxt = PT_NEXT(pt->pt_slot);
1115 		if (nxt & pid_tbl_mask)
1116 			break;
1117 		/* Table full - expand (NB last entry not used....) */
1118 	}
1119 
1120 	/* pid is 'saved use count' + 'size' + entry */
1121 	pid = (nxt & ~pid_tbl_mask) + pid_tbl_mask + 1 + next_free_pt;
1122 	if ((uint)pid > (uint)pid_max)
1123 		pid &= pid_tbl_mask;
1124 	next_free_pt = nxt & pid_tbl_mask;
1125 
1126 	/* XXX For now.  The pratical limit is much lower anyway. */
1127 	KASSERT(pid <= FUTEX_TID_MASK);
1128 
1129 	/* Grab table slot */
1130 	pt->pt_slot = slot;
1131 
1132 	KASSERT(pt->pt_pid == 0);
1133 	pt->pt_pid = pid;
1134 	pid_alloc_cnt++;
1135 
1136 	return pid;
1137 }
1138 
1139 pid_t
proc_alloc_pid(struct proc * p)1140 proc_alloc_pid(struct proc *p)
1141 {
1142 	pid_t pid;
1143 
1144 	KASSERT((((uintptr_t)p) & PT_F_ALLBITS) == 0);
1145 	KASSERT(p->p_stat == SIDL);
1146 
1147 	mutex_enter(&proc_lock);
1148 	pid = proc_alloc_pid_slot(p, PT_SET_PROC(p));
1149 	if (pid != -1)
1150 		p->p_pid = pid;
1151 	mutex_exit(&proc_lock);
1152 
1153 	return pid;
1154 }
1155 
1156 pid_t
proc_alloc_lwpid(struct proc * p,struct lwp * l)1157 proc_alloc_lwpid(struct proc *p, struct lwp *l)
1158 {
1159 	struct pid_table *pt;
1160 	pid_t pid;
1161 
1162 	KASSERT((((uintptr_t)l) & PT_F_ALLBITS) == 0);
1163 	KASSERT(l->l_proc == p);
1164 	KASSERT(l->l_stat == LSIDL);
1165 
1166 	/*
1167 	 * For unlocked lookup in proc_find_lwp(), make sure l->l_proc
1168 	 * is globally visible before the LWP becomes visible via the
1169 	 * pid_table.
1170 	 */
1171 #ifndef __HAVE_ATOMIC_AS_MEMBAR
1172 	membar_producer();
1173 #endif
1174 
1175 	/*
1176 	 * If the slot for p->p_pid currently points to the proc,
1177 	 * then we should usurp this ID for the LWP.  This happens
1178 	 * at least once per process (for the first LWP), and can
1179 	 * happen again if the first LWP for a process exits and
1180 	 * before the process creates another.
1181 	 */
1182 	mutex_enter(&proc_lock);
1183 	pid = p->p_pid;
1184 	pt = &pid_table[pid & pid_tbl_mask];
1185 	KASSERT(pt->pt_pid == pid);
1186 	if (PT_IS_PROC(pt->pt_slot)) {
1187 		KASSERT(PT_GET_PROC(pt->pt_slot) == p);
1188 		l->l_lid = pid;
1189 		pt->pt_slot = PT_SET_LWP(l);
1190 	} else {
1191 		/* Need to allocate a new slot. */
1192 		pid = proc_alloc_pid_slot(p, PT_SET_LWP(l));
1193 		if (pid != -1)
1194 			l->l_lid = pid;
1195 	}
1196 	mutex_exit(&proc_lock);
1197 
1198 	return pid;
1199 }
1200 
1201 static void __noinline
proc_free_pid_internal(pid_t pid,uintptr_t type __diagused)1202 proc_free_pid_internal(pid_t pid, uintptr_t type __diagused)
1203 {
1204 	struct pid_table *pt;
1205 
1206 	KASSERT(mutex_owned(&proc_lock));
1207 
1208 	pt = &pid_table[pid & pid_tbl_mask];
1209 
1210 	KASSERT(PT_GET_TYPE(pt->pt_slot) == type);
1211 	KASSERT(pt->pt_pid == pid);
1212 
1213 	/* save pid use count in slot */
1214 	pt->pt_slot = PT_SET_FREE(pid & ~pid_tbl_mask);
1215 	pt->pt_pid = 0;
1216 
1217 	if (pt->pt_pgrp == NULL) {
1218 		/* link last freed entry onto ours */
1219 		pid &= pid_tbl_mask;
1220 		pt = &pid_table[last_free_pt];
1221 		pt->pt_slot = PT_SET_FREE(PT_NEXT(pt->pt_slot) | pid);
1222 		pt->pt_pid = 0;
1223 		last_free_pt = pid;
1224 		pid_alloc_cnt--;
1225 	}
1226 }
1227 
1228 /*
1229  * Free a process id - called from proc_free (in kern_exit.c)
1230  *
1231  * Called with the proc_lock held.
1232  */
1233 void
proc_free_pid(pid_t pid)1234 proc_free_pid(pid_t pid)
1235 {
1236 
1237 	KASSERT(mutex_owned(&proc_lock));
1238 	proc_free_pid_internal(pid, PT_F_PROC);
1239 }
1240 
1241 /*
1242  * Free a process id used by an LWP.  If this was the process's
1243  * first LWP, we convert the slot to point to the process; the
1244  * entry will get cleaned up later when the process finishes exiting.
1245  *
1246  * If not, then it's the same as proc_free_pid().
1247  */
1248 void
proc_free_lwpid(struct proc * p,pid_t pid)1249 proc_free_lwpid(struct proc *p, pid_t pid)
1250 {
1251 
1252 	KASSERT(mutex_owned(&proc_lock));
1253 
1254 	if (__predict_true(p->p_pid == pid)) {
1255 		struct pid_table *pt;
1256 
1257 		pt = &pid_table[pid & pid_tbl_mask];
1258 
1259 		KASSERT(pt->pt_pid == pid);
1260 		KASSERT(PT_IS_LWP(pt->pt_slot));
1261 		KASSERT(PT_GET_LWP(pt->pt_slot)->l_proc == p);
1262 
1263 		pt->pt_slot = PT_SET_PROC(p);
1264 		return;
1265 	}
1266 	proc_free_pid_internal(pid, PT_F_LWP);
1267 }
1268 
1269 void
proc_free_mem(struct proc * p)1270 proc_free_mem(struct proc *p)
1271 {
1272 
1273 	kdtrace_proc_dtor(NULL, p);
1274 	pool_cache_put(proc_cache, p);
1275 }
1276 
1277 /*
1278  * proc_enterpgrp: move p to a new or existing process group (and session).
1279  *
1280  * If we are creating a new pgrp, the pgid should equal
1281  * the calling process' pid.
1282  * If is only valid to enter a process group that is in the session
1283  * of the process.
1284  * Also mksess should only be set if we are creating a process group
1285  *
1286  * Only called from sys_setsid, sys_setpgid and posix_spawn/spawn_return.
1287  */
1288 int
proc_enterpgrp(struct proc * curp,pid_t pid,pid_t pgid,bool mksess)1289 proc_enterpgrp(struct proc *curp, pid_t pid, pid_t pgid, bool mksess)
1290 {
1291 	struct pgrp *new_pgrp, *pgrp;
1292 	struct session *sess;
1293 	struct proc *p;
1294 	int rval;
1295 	pid_t pg_id = NO_PGID;
1296 
1297 	/* Allocate data areas we might need before doing any validity checks */
1298 	sess = mksess ? kmem_alloc(sizeof(*sess), KM_SLEEP) : NULL;
1299 	new_pgrp = kmem_alloc(sizeof(*new_pgrp), KM_SLEEP);
1300 
1301 	mutex_enter(&proc_lock);
1302 	rval = EPERM;	/* most common error (to save typing) */
1303 
1304 	/* Check pgrp exists or can be created */
1305 	pgrp = pid_table[pgid & pid_tbl_mask].pt_pgrp;
1306 	if (pgrp != NULL && pgrp->pg_id != pgid)
1307 		goto done;
1308 
1309 	/* Can only set another process under restricted circumstances. */
1310 	if (pid != curp->p_pid) {
1311 		/* Must exist and be one of our children... */
1312 		p = proc_find_internal(pid, false);
1313 		if (p == NULL || !p_inferior(p, curp)) {
1314 			rval = ESRCH;
1315 			goto done;
1316 		}
1317 		/* ... in the same session... */
1318 		if (sess != NULL || p->p_session != curp->p_session)
1319 			goto done;
1320 		/* ... existing pgid must be in same session ... */
1321 		if (pgrp != NULL && pgrp->pg_session != p->p_session)
1322 			goto done;
1323 		/* ... and not done an exec. */
1324 		if (p->p_flag & PK_EXEC) {
1325 			rval = EACCES;
1326 			goto done;
1327 		}
1328 	} else {
1329 		/* ... setsid() cannot re-enter a pgrp */
1330 		if (mksess && (curp->p_pgid == curp->p_pid ||
1331 		    pgrp_find(curp->p_pid)))
1332 			goto done;
1333 		p = curp;
1334 	}
1335 
1336 	/* Changing the process group/session of a session
1337 	   leader is definitely off limits. */
1338 	if (SESS_LEADER(p)) {
1339 		if (sess == NULL && p->p_pgrp == pgrp)
1340 			/* unless it's a definite noop */
1341 			rval = 0;
1342 		goto done;
1343 	}
1344 
1345 	/* Can only create a process group with id of process */
1346 	if (pgrp == NULL && pgid != pid)
1347 		goto done;
1348 
1349 	/* Can only create a session if creating pgrp */
1350 	if (sess != NULL && pgrp != NULL)
1351 		goto done;
1352 
1353 	/* Check we allocated memory for a pgrp... */
1354 	if (pgrp == NULL && new_pgrp == NULL)
1355 		goto done;
1356 
1357 	/* Don't attach to 'zombie' pgrp */
1358 	if (pgrp != NULL && LIST_EMPTY(&pgrp->pg_members))
1359 		goto done;
1360 
1361 	/* Expect to succeed now */
1362 	rval = 0;
1363 
1364 	if (pgrp == p->p_pgrp)
1365 		/* nothing to do */
1366 		goto done;
1367 
1368 	/* Ok all setup, link up required structures */
1369 
1370 	if (pgrp == NULL) {
1371 		pgrp = new_pgrp;
1372 		new_pgrp = NULL;
1373 		if (sess != NULL) {
1374 			sess->s_sid = p->p_pid;
1375 			sess->s_leader = p;
1376 			sess->s_count = 1;
1377 			sess->s_ttyvp = NULL;
1378 			sess->s_ttyp = NULL;
1379 			sess->s_flags = p->p_session->s_flags & ~S_LOGIN_SET;
1380 			memcpy(sess->s_login, p->p_session->s_login,
1381 			    sizeof(sess->s_login));
1382 			p->p_lflag &= ~PL_CONTROLT;
1383 		} else {
1384 			sess = p->p_pgrp->pg_session;
1385 			proc_sesshold(sess);
1386 		}
1387 		pgrp->pg_session = sess;
1388 		sess = NULL;
1389 
1390 		pgrp->pg_id = pgid;
1391 		LIST_INIT(&pgrp->pg_members);
1392 #ifdef DIAGNOSTIC
1393 		if (__predict_false(pid_table[pgid & pid_tbl_mask].pt_pgrp))
1394 			panic("enterpgrp: pgrp table slot in use");
1395 		if (__predict_false(mksess && p != curp))
1396 			panic("enterpgrp: mksession and p != curproc");
1397 #endif
1398 		pid_table[pgid & pid_tbl_mask].pt_pgrp = pgrp;
1399 		pgrp->pg_jobc = 0;
1400 	}
1401 
1402 	/*
1403 	 * Adjust eligibility of affected pgrps to participate in job control.
1404 	 * Increment eligibility counts before decrementing, otherwise we
1405 	 * could reach 0 spuriously during the first call.
1406 	 */
1407 	fixjobc(p, pgrp, 1);
1408 	fixjobc(p, p->p_pgrp, 0);
1409 
1410 	/* Interlock with ttread(). */
1411 	mutex_spin_enter(&tty_lock);
1412 
1413 	/* Move process to requested group. */
1414 	LIST_REMOVE(p, p_pglist);
1415 	if (LIST_EMPTY(&p->p_pgrp->pg_members))
1416 		/* defer delete until we've dumped the lock */
1417 		pg_id = p->p_pgrp->pg_id;
1418 	p->p_pgrp = pgrp;
1419 	LIST_INSERT_HEAD(&pgrp->pg_members, p, p_pglist);
1420 
1421 	/* Done with the swap; we can release the tty mutex. */
1422 	mutex_spin_exit(&tty_lock);
1423 
1424     done:
1425 	if (pg_id != NO_PGID) {
1426 		/* Releases proc_lock. */
1427 		pg_delete(pg_id);
1428 	} else {
1429 		mutex_exit(&proc_lock);
1430 	}
1431 	if (sess != NULL)
1432 		kmem_free(sess, sizeof(*sess));
1433 	if (new_pgrp != NULL)
1434 		kmem_free(new_pgrp, sizeof(*new_pgrp));
1435 #ifdef DEBUG_PGRP
1436 	if (__predict_false(rval))
1437 		printf("enterpgrp(%d,%d,%d), curproc %d, rval %d\n",
1438 			pid, pgid, mksess, curp->p_pid, rval);
1439 #endif
1440 	return rval;
1441 }
1442 
1443 /*
1444  * proc_leavepgrp: remove a process from its process group.
1445  *  => must be called with the proc_lock held, which will be released;
1446  */
1447 void
proc_leavepgrp(struct proc * p)1448 proc_leavepgrp(struct proc *p)
1449 {
1450 	struct pgrp *pgrp;
1451 
1452 	KASSERT(mutex_owned(&proc_lock));
1453 
1454 	/* Interlock with ttread() */
1455 	mutex_spin_enter(&tty_lock);
1456 	pgrp = p->p_pgrp;
1457 	LIST_REMOVE(p, p_pglist);
1458 	p->p_pgrp = NULL;
1459 	mutex_spin_exit(&tty_lock);
1460 
1461 	if (LIST_EMPTY(&pgrp->pg_members)) {
1462 		/* Releases proc_lock. */
1463 		pg_delete(pgrp->pg_id);
1464 	} else {
1465 		mutex_exit(&proc_lock);
1466 	}
1467 }
1468 
1469 /*
1470  * pg_remove: remove a process group from the table.
1471  *  => must be called with the proc_lock held;
1472  *  => returns process group to free;
1473  */
1474 static struct pgrp *
pg_remove(pid_t pg_id)1475 pg_remove(pid_t pg_id)
1476 {
1477 	struct pgrp *pgrp;
1478 	struct pid_table *pt;
1479 
1480 	KASSERT(mutex_owned(&proc_lock));
1481 
1482 	pt = &pid_table[pg_id & pid_tbl_mask];
1483 	pgrp = pt->pt_pgrp;
1484 
1485 	KASSERT(pgrp != NULL);
1486 	KASSERT(pgrp->pg_id == pg_id);
1487 	KASSERT(LIST_EMPTY(&pgrp->pg_members));
1488 
1489 	pt->pt_pgrp = NULL;
1490 
1491 	if (!PT_VALID(pt->pt_slot)) {
1492 		/* Orphaned pgrp, put slot onto free list. */
1493 		KASSERT((PT_NEXT(pt->pt_slot) & pid_tbl_mask) == 0);
1494 		pg_id &= pid_tbl_mask;
1495 		pt = &pid_table[last_free_pt];
1496 		pt->pt_slot = PT_SET_FREE(PT_NEXT(pt->pt_slot) | pg_id);
1497 		KASSERT(pt->pt_pid == 0);
1498 		last_free_pt = pg_id;
1499 		pid_alloc_cnt--;
1500 	}
1501 	return pgrp;
1502 }
1503 
1504 /*
1505  * pg_delete: delete and free a process group.
1506  *  => must be called with the proc_lock held, which will be released.
1507  */
1508 static void
pg_delete(pid_t pg_id)1509 pg_delete(pid_t pg_id)
1510 {
1511 	struct pgrp *pg;
1512 	struct tty *ttyp;
1513 	struct session *ss;
1514 
1515 	KASSERT(mutex_owned(&proc_lock));
1516 
1517 	pg = pid_table[pg_id & pid_tbl_mask].pt_pgrp;
1518 	if (pg == NULL || pg->pg_id != pg_id || !LIST_EMPTY(&pg->pg_members)) {
1519 		mutex_exit(&proc_lock);
1520 		return;
1521 	}
1522 
1523 	ss = pg->pg_session;
1524 
1525 	/* Remove reference (if any) from tty to this process group */
1526 	mutex_spin_enter(&tty_lock);
1527 	ttyp = ss->s_ttyp;
1528 	if (ttyp != NULL && ttyp->t_pgrp == pg) {
1529 		ttyp->t_pgrp = NULL;
1530 		KASSERT(ttyp->t_session == ss);
1531 	}
1532 	mutex_spin_exit(&tty_lock);
1533 
1534 	/*
1535 	 * The leading process group in a session is freed by proc_sessrele(),
1536 	 * if last reference.  It will also release the locks.
1537 	 */
1538 	pg = (ss->s_sid != pg->pg_id) ? pg_remove(pg_id) : NULL;
1539 	proc_sessrele(ss);
1540 
1541 	if (pg != NULL) {
1542 		/* Free it, if was not done above. */
1543 		kmem_free(pg, sizeof(struct pgrp));
1544 	}
1545 }
1546 
1547 /*
1548  * Adjust pgrp jobc counters when specified process changes process group.
1549  * We count the number of processes in each process group that "qualify"
1550  * the group for terminal job control (those with a parent in a different
1551  * process group of the same session).  If that count reaches zero, the
1552  * process group becomes orphaned.  Check both the specified process'
1553  * process group and that of its children.
1554  * entering == 0 => p is leaving specified group.
1555  * entering == 1 => p is entering specified group.
1556  *
1557  * Call with proc_lock held.
1558  */
1559 void
fixjobc(struct proc * p,struct pgrp * pgrp,int entering)1560 fixjobc(struct proc *p, struct pgrp *pgrp, int entering)
1561 {
1562 	struct pgrp *hispgrp;
1563 	struct session *mysession = pgrp->pg_session;
1564 	struct proc *child;
1565 
1566 	KASSERT(mutex_owned(&proc_lock));
1567 
1568 	/*
1569 	 * Check p's parent to see whether p qualifies its own process
1570 	 * group; if so, adjust count for p's process group.
1571 	 */
1572 	hispgrp = p->p_pptr->p_pgrp;
1573 	if (hispgrp != pgrp && hispgrp->pg_session == mysession) {
1574 		if (entering) {
1575 			pgrp->pg_jobc++;
1576 			p->p_lflag &= ~PL_ORPHANPG;
1577 		} else {
1578 			/* KASSERT(pgrp->pg_jobc > 0); */
1579 			if (--pgrp->pg_jobc == 0)
1580 				orphanpg(pgrp);
1581 		}
1582 	}
1583 
1584 	/*
1585 	 * Check this process' children to see whether they qualify
1586 	 * their process groups; if so, adjust counts for children's
1587 	 * process groups.
1588 	 */
1589 	LIST_FOREACH(child, &p->p_children, p_sibling) {
1590 		hispgrp = child->p_pgrp;
1591 		if (hispgrp != pgrp && hispgrp->pg_session == mysession &&
1592 		    !P_ZOMBIE(child)) {
1593 			if (entering) {
1594 				child->p_lflag &= ~PL_ORPHANPG;
1595 				hispgrp->pg_jobc++;
1596 			} else {
1597 				KASSERT(hispgrp->pg_jobc > 0);
1598 				if (--hispgrp->pg_jobc == 0)
1599 					orphanpg(hispgrp);
1600 			}
1601 		}
1602 	}
1603 }
1604 
1605 /*
1606  * A process group has become orphaned;
1607  * if there are any stopped processes in the group,
1608  * hang-up all process in that group.
1609  *
1610  * Call with proc_lock held.
1611  */
1612 static void
orphanpg(struct pgrp * pg)1613 orphanpg(struct pgrp *pg)
1614 {
1615 	struct proc *p;
1616 
1617 	KASSERT(mutex_owned(&proc_lock));
1618 
1619 	LIST_FOREACH(p, &pg->pg_members, p_pglist) {
1620 		if (p->p_stat == SSTOP) {
1621 			p->p_lflag |= PL_ORPHANPG;
1622 			psignal(p, SIGHUP);
1623 			psignal(p, SIGCONT);
1624 		}
1625 	}
1626 }
1627 
1628 #ifdef DDB
1629 #include <ddb/db_output.h>
1630 void pidtbl_dump(void);
1631 void
pidtbl_dump(void)1632 pidtbl_dump(void)
1633 {
1634 	struct pid_table *pt;
1635 	struct proc *p;
1636 	struct pgrp *pgrp;
1637 	uintptr_t slot;
1638 	int id;
1639 
1640 	db_printf("pid table %p size %x, next %x, last %x\n",
1641 		pid_table, pid_tbl_mask+1,
1642 		next_free_pt, last_free_pt);
1643 	for (pt = pid_table, id = 0; id <= pid_tbl_mask; id++, pt++) {
1644 		slot = pt->pt_slot;
1645 		if (!PT_VALID(slot) && !pt->pt_pgrp)
1646 			continue;
1647 		if (PT_IS_LWP(slot)) {
1648 			p = PT_GET_LWP(slot)->l_proc;
1649 		} else if (PT_IS_PROC(slot)) {
1650 			p = PT_GET_PROC(slot);
1651 		} else {
1652 			p = NULL;
1653 		}
1654 		db_printf("  id %x: ", id);
1655 		if (p != NULL)
1656 			db_printf("slotpid %d proc %p id %d (0x%x) %s\n",
1657 				pt->pt_pid, p, p->p_pid, p->p_pid, p->p_comm);
1658 		else
1659 			db_printf("next %x use %x\n",
1660 				PT_NEXT(slot) & pid_tbl_mask,
1661 				PT_NEXT(slot) & ~pid_tbl_mask);
1662 		if ((pgrp = pt->pt_pgrp)) {
1663 			db_printf("\tsession %p, sid %d, count %d, login %s\n",
1664 			    pgrp->pg_session, pgrp->pg_session->s_sid,
1665 			    pgrp->pg_session->s_count,
1666 			    pgrp->pg_session->s_login);
1667 			db_printf("\tpgrp %p, pg_id %d, pg_jobc %d, members %p\n",
1668 			    pgrp, pgrp->pg_id, pgrp->pg_jobc,
1669 			    LIST_FIRST(&pgrp->pg_members));
1670 			LIST_FOREACH(p, &pgrp->pg_members, p_pglist) {
1671 				db_printf("\t\tpid %d addr %p pgrp %p %s\n",
1672 				    p->p_pid, p, p->p_pgrp, p->p_comm);
1673 			}
1674 		}
1675 	}
1676 }
1677 #endif /* DDB */
1678 
1679 #ifdef KSTACK_CHECK_MAGIC
1680 
1681 #define	KSTACK_MAGIC	0xdeadbeaf
1682 
1683 /* XXX should be per process basis? */
1684 static int	kstackleftmin = KSTACK_SIZE;
1685 static int	kstackleftthres = KSTACK_SIZE / 8;
1686 
1687 void
kstack_setup_magic(const struct lwp * l)1688 kstack_setup_magic(const struct lwp *l)
1689 {
1690 	uint32_t *ip;
1691 	uint32_t const *end;
1692 
1693 	KASSERT(l != NULL);
1694 	KASSERT(l != &lwp0);
1695 
1696 	/*
1697 	 * fill all the stack with magic number
1698 	 * so that later modification on it can be detected.
1699 	 */
1700 	ip = (uint32_t *)KSTACK_LOWEST_ADDR(l);
1701 	end = (uint32_t *)((char *)KSTACK_LOWEST_ADDR(l) + KSTACK_SIZE);
1702 	for (; ip < end; ip++) {
1703 		*ip = KSTACK_MAGIC;
1704 	}
1705 }
1706 
1707 void
kstack_check_magic(const struct lwp * l)1708 kstack_check_magic(const struct lwp *l)
1709 {
1710 	uint32_t const *ip, *end;
1711 	int stackleft;
1712 
1713 	KASSERT(l != NULL);
1714 
1715 	/* don't check proc0 */ /*XXX*/
1716 	if (l == &lwp0)
1717 		return;
1718 
1719 #ifdef __MACHINE_STACK_GROWS_UP
1720 	/* stack grows upwards (eg. hppa) */
1721 	ip = (uint32_t *)((void *)KSTACK_LOWEST_ADDR(l) + KSTACK_SIZE);
1722 	end = (uint32_t *)KSTACK_LOWEST_ADDR(l);
1723 	for (ip--; ip >= end; ip--)
1724 		if (*ip != KSTACK_MAGIC)
1725 			break;
1726 
1727 	stackleft = (void *)KSTACK_LOWEST_ADDR(l) + KSTACK_SIZE - (void *)ip;
1728 #else /* __MACHINE_STACK_GROWS_UP */
1729 	/* stack grows downwards (eg. i386) */
1730 	ip = (uint32_t *)KSTACK_LOWEST_ADDR(l);
1731 	end = (uint32_t *)((char *)KSTACK_LOWEST_ADDR(l) + KSTACK_SIZE);
1732 	for (; ip < end; ip++)
1733 		if (*ip != KSTACK_MAGIC)
1734 			break;
1735 
1736 	stackleft = ((const char *)ip) - (const char *)KSTACK_LOWEST_ADDR(l);
1737 #endif /* __MACHINE_STACK_GROWS_UP */
1738 
1739 	if (kstackleftmin > stackleft) {
1740 		kstackleftmin = stackleft;
1741 		if (stackleft < kstackleftthres)
1742 			printf("warning: kernel stack left %d bytes"
1743 			    "(pid %u:lid %u)\n", stackleft,
1744 			    (u_int)l->l_proc->p_pid, (u_int)l->l_lid);
1745 	}
1746 
1747 	if (stackleft <= 0) {
1748 		panic("magic on the top of kernel stack changed for "
1749 		    "pid %u, lid %u: maybe kernel stack overflow",
1750 		    (u_int)l->l_proc->p_pid, (u_int)l->l_lid);
1751 	}
1752 }
1753 #endif /* KSTACK_CHECK_MAGIC */
1754 
1755 int
proclist_foreach_call(struct proclist * list,int (* callback)(struct proc *,void * arg),void * arg)1756 proclist_foreach_call(struct proclist *list,
1757     int (*callback)(struct proc *, void *arg), void *arg)
1758 {
1759 	struct proc marker;
1760 	struct proc *p;
1761 	int ret = 0;
1762 
1763 	marker.p_flag = PK_MARKER;
1764 	mutex_enter(&proc_lock);
1765 	for (p = LIST_FIRST(list); ret == 0 && p != NULL;) {
1766 		if (p->p_flag & PK_MARKER) {
1767 			p = LIST_NEXT(p, p_list);
1768 			continue;
1769 		}
1770 		LIST_INSERT_AFTER(p, &marker, p_list);
1771 		ret = (*callback)(p, arg);
1772 		KASSERT(mutex_owned(&proc_lock));
1773 		p = LIST_NEXT(&marker, p_list);
1774 		LIST_REMOVE(&marker, p_list);
1775 	}
1776 	mutex_exit(&proc_lock);
1777 
1778 	return ret;
1779 }
1780 
1781 int
proc_vmspace_getref(struct proc * p,struct vmspace ** vm)1782 proc_vmspace_getref(struct proc *p, struct vmspace **vm)
1783 {
1784 
1785 	/* XXXCDC: how should locking work here? */
1786 
1787 	/* curproc exception is for coredump. */
1788 
1789 	if ((p != curproc && (p->p_sflag & PS_WEXIT) != 0) ||
1790 	    (p->p_vmspace->vm_refcnt < 1)) {
1791 		return EFAULT;
1792 	}
1793 
1794 	uvmspace_addref(p->p_vmspace);
1795 	*vm = p->p_vmspace;
1796 
1797 	return 0;
1798 }
1799 
1800 /*
1801  * Acquire a write lock on the process credential.
1802  */
1803 void
proc_crmod_enter(void)1804 proc_crmod_enter(void)
1805 {
1806 	struct lwp *l = curlwp;
1807 	struct proc *p = l->l_proc;
1808 	kauth_cred_t oc;
1809 
1810 	/* Reset what needs to be reset in plimit. */
1811 	if (p->p_limit->pl_corename != defcorename) {
1812 		lim_setcorename(p, defcorename, 0);
1813 	}
1814 
1815 	mutex_enter(p->p_lock);
1816 
1817 	/* Ensure the LWP cached credentials are up to date. */
1818 	if ((oc = l->l_cred) != p->p_cred) {
1819 		l->l_cred = kauth_cred_hold(p->p_cred);
1820 		kauth_cred_free(oc);
1821 	}
1822 }
1823 
1824 /*
1825  * Set in a new process credential, and drop the write lock.  The credential
1826  * must have a reference already.  Optionally, free a no-longer required
1827  * credential.
1828  */
1829 void
proc_crmod_leave(kauth_cred_t scred,kauth_cred_t fcred,bool sugid)1830 proc_crmod_leave(kauth_cred_t scred, kauth_cred_t fcred, bool sugid)
1831 {
1832 	struct lwp *l = curlwp, *l2;
1833 	struct proc *p = l->l_proc;
1834 	kauth_cred_t oc;
1835 
1836 	KASSERT(mutex_owned(p->p_lock));
1837 
1838 	/* Is there a new credential to set in? */
1839 	if (scred != NULL) {
1840 		p->p_cred = scred;
1841 		LIST_FOREACH(l2, &p->p_lwps, l_sibling) {
1842 			if (l2 != l) {
1843 				lwp_lock(l2);
1844 				l2->l_flag |= LW_CACHECRED;
1845 				lwp_need_userret(l2);
1846 				lwp_unlock(l2);
1847 			}
1848 		}
1849 
1850 		/* Ensure the LWP cached credentials are up to date. */
1851 		if ((oc = l->l_cred) != scred) {
1852 			l->l_cred = kauth_cred_hold(scred);
1853 		}
1854 	} else
1855 		oc = NULL;	/* XXXgcc */
1856 
1857 	if (sugid) {
1858 		/*
1859 		 * Mark process as having changed credentials, stops
1860 		 * tracing etc.
1861 		 */
1862 		p->p_flag |= PK_SUGID;
1863 	}
1864 
1865 	mutex_exit(p->p_lock);
1866 
1867 	/* If there is a credential to be released, free it now. */
1868 	if (fcred != NULL) {
1869 		KASSERT(scred != NULL);
1870 		kauth_cred_free(fcred);
1871 		if (oc != scred)
1872 			kauth_cred_free(oc);
1873 	}
1874 }
1875 
1876 /*
1877  * proc_specific_key_create --
1878  *	Create a key for subsystem proc-specific data.
1879  */
1880 int
proc_specific_key_create(specificdata_key_t * keyp,specificdata_dtor_t dtor)1881 proc_specific_key_create(specificdata_key_t *keyp, specificdata_dtor_t dtor)
1882 {
1883 
1884 	return (specificdata_key_create(proc_specificdata_domain, keyp, dtor));
1885 }
1886 
1887 /*
1888  * proc_specific_key_delete --
1889  *	Delete a key for subsystem proc-specific data.
1890  */
1891 void
proc_specific_key_delete(specificdata_key_t key)1892 proc_specific_key_delete(specificdata_key_t key)
1893 {
1894 
1895 	specificdata_key_delete(proc_specificdata_domain, key);
1896 }
1897 
1898 /*
1899  * proc_initspecific --
1900  *	Initialize a proc's specificdata container.
1901  */
1902 void
proc_initspecific(struct proc * p)1903 proc_initspecific(struct proc *p)
1904 {
1905 	int error __diagused;
1906 
1907 	error = specificdata_init(proc_specificdata_domain, &p->p_specdataref);
1908 	KASSERT(error == 0);
1909 }
1910 
1911 /*
1912  * proc_finispecific --
1913  *	Finalize a proc's specificdata container.
1914  */
1915 void
proc_finispecific(struct proc * p)1916 proc_finispecific(struct proc *p)
1917 {
1918 
1919 	specificdata_fini(proc_specificdata_domain, &p->p_specdataref);
1920 }
1921 
1922 /*
1923  * proc_getspecific --
1924  *	Return proc-specific data corresponding to the specified key.
1925  */
1926 void *
proc_getspecific(struct proc * p,specificdata_key_t key)1927 proc_getspecific(struct proc *p, specificdata_key_t key)
1928 {
1929 
1930 	return (specificdata_getspecific(proc_specificdata_domain,
1931 					 &p->p_specdataref, key));
1932 }
1933 
1934 /*
1935  * proc_setspecific --
1936  *	Set proc-specific data corresponding to the specified key.
1937  */
1938 void
proc_setspecific(struct proc * p,specificdata_key_t key,void * data)1939 proc_setspecific(struct proc *p, specificdata_key_t key, void *data)
1940 {
1941 
1942 	specificdata_setspecific(proc_specificdata_domain,
1943 				 &p->p_specdataref, key, data);
1944 }
1945 
1946 int
proc_uidmatch(kauth_cred_t cred,kauth_cred_t target)1947 proc_uidmatch(kauth_cred_t cred, kauth_cred_t target)
1948 {
1949 	int r = 0;
1950 
1951 	if (kauth_cred_getuid(cred) != kauth_cred_getuid(target) ||
1952 	    kauth_cred_getuid(cred) != kauth_cred_getsvuid(target)) {
1953 		/*
1954 		 * suid proc of ours or proc not ours
1955 		 */
1956 		r = EPERM;
1957 	} else if (kauth_cred_getgid(target) != kauth_cred_getsvgid(target)) {
1958 		/*
1959 		 * sgid proc has sgid back to us temporarily
1960 		 */
1961 		r = EPERM;
1962 	} else {
1963 		/*
1964 		 * our rgid must be in target's group list (ie,
1965 		 * sub-processes started by a sgid process)
1966 		 */
1967 		int ismember = 0;
1968 
1969 		if (kauth_cred_ismember_gid(cred,
1970 		    kauth_cred_getgid(target), &ismember) != 0 ||
1971 		    !ismember)
1972 			r = EPERM;
1973 	}
1974 
1975 	return (r);
1976 }
1977 
1978 /*
1979  * sysctl stuff
1980  */
1981 
1982 #define KERN_PROCSLOP	(5 * sizeof(struct kinfo_proc))
1983 
1984 static const u_int sysctl_flagmap[] = {
1985 	PK_ADVLOCK, P_ADVLOCK,
1986 	PK_EXEC, P_EXEC,
1987 	PK_NOCLDWAIT, P_NOCLDWAIT,
1988 	PK_32, P_32,
1989 	PK_CLDSIGIGN, P_CLDSIGIGN,
1990 	PK_SUGID, P_SUGID,
1991 	0
1992 };
1993 
1994 static const u_int sysctl_sflagmap[] = {
1995 	PS_NOCLDSTOP, P_NOCLDSTOP,
1996 	PS_WEXIT, P_WEXIT,
1997 	PS_STOPFORK, P_STOPFORK,
1998 	PS_STOPEXEC, P_STOPEXEC,
1999 	PS_STOPEXIT, P_STOPEXIT,
2000 	0
2001 };
2002 
2003 static const u_int sysctl_slflagmap[] = {
2004 	PSL_TRACED, P_TRACED,
2005 	PSL_CHTRACED, P_CHTRACED,
2006 	PSL_SYSCALL, P_SYSCALL,
2007 	0
2008 };
2009 
2010 static const u_int sysctl_lflagmap[] = {
2011 	PL_CONTROLT, P_CONTROLT,
2012 	PL_PPWAIT, P_PPWAIT,
2013 	0
2014 };
2015 
2016 static const u_int sysctl_stflagmap[] = {
2017 	PST_PROFIL, P_PROFIL,
2018 	0
2019 
2020 };
2021 
2022 /* used by kern_lwp also */
2023 const u_int sysctl_lwpflagmap[] = {
2024 	LW_SINTR, L_SINTR,
2025 	LW_SYSTEM, L_SYSTEM,
2026 	0
2027 };
2028 
2029 /*
2030  * Find the most ``active'' lwp of a process and return it for ps display
2031  * purposes
2032  */
2033 static struct lwp *
proc_active_lwp(struct proc * p)2034 proc_active_lwp(struct proc *p)
2035 {
2036 	static const int ostat[] = {
2037 		0,
2038 		2,	/* LSIDL */
2039 		6,	/* LSRUN */
2040 		5,	/* LSSLEEP */
2041 		4,	/* LSSTOP */
2042 		0,	/* LSZOMB */
2043 		1,	/* LSDEAD */
2044 		7,	/* LSONPROC */
2045 		3	/* LSSUSPENDED */
2046 	};
2047 
2048 	struct lwp *l, *lp = NULL;
2049 	LIST_FOREACH(l, &p->p_lwps, l_sibling) {
2050 		KASSERT(l->l_stat >= 0);
2051 		KASSERT(l->l_stat < __arraycount(ostat));
2052 		if (lp == NULL ||
2053 		    ostat[l->l_stat] > ostat[lp->l_stat] ||
2054 		    (ostat[l->l_stat] == ostat[lp->l_stat] &&
2055 		    l->l_cpticks > lp->l_cpticks)) {
2056 			lp = l;
2057 			continue;
2058 		}
2059 	}
2060 	return lp;
2061 }
2062 
2063 static int
sysctl_doeproc(SYSCTLFN_ARGS)2064 sysctl_doeproc(SYSCTLFN_ARGS)
2065 {
2066 	union {
2067 		struct kinfo_proc kproc;
2068 		struct kinfo_proc2 kproc2;
2069 	} *kbuf;
2070 	struct proc *p, *next, *marker;
2071 	char *where, *dp;
2072 	int type, op, arg, error;
2073 	u_int elem_size, kelem_size, elem_count;
2074 	size_t buflen, needed;
2075 	bool match, zombie, mmmbrains;
2076 	const bool allowaddr = get_expose_address(curproc);
2077 
2078 	if (namelen == 1 && name[0] == CTL_QUERY)
2079 		return (sysctl_query(SYSCTLFN_CALL(rnode)));
2080 
2081 	dp = where = oldp;
2082 	buflen = where != NULL ? *oldlenp : 0;
2083 	error = 0;
2084 	needed = 0;
2085 	type = rnode->sysctl_num;
2086 
2087 	if (type == KERN_PROC) {
2088 		if (namelen == 0)
2089 			return EINVAL;
2090 		switch (op = name[0]) {
2091 		case KERN_PROC_ALL:
2092 			if (namelen != 1)
2093 				return EINVAL;
2094 			arg = 0;
2095 			break;
2096 		default:
2097 			if (namelen != 2)
2098 				return EINVAL;
2099 			arg = name[1];
2100 			break;
2101 		}
2102 		elem_count = 0;	/* Hush little compiler, don't you cry */
2103 		kelem_size = elem_size = sizeof(kbuf->kproc);
2104 	} else {
2105 		if (namelen != 4)
2106 			return EINVAL;
2107 		op = name[0];
2108 		arg = name[1];
2109 		elem_size = name[2];
2110 		elem_count = name[3];
2111 		kelem_size = sizeof(kbuf->kproc2);
2112 	}
2113 
2114 	sysctl_unlock();
2115 
2116 	kbuf = kmem_zalloc(sizeof(*kbuf), KM_SLEEP);
2117 	marker = kmem_alloc(sizeof(*marker), KM_SLEEP);
2118 	marker->p_flag = PK_MARKER;
2119 
2120 	mutex_enter(&proc_lock);
2121 	/*
2122 	 * Start with zombies to prevent reporting processes twice, in case they
2123 	 * are dying and being moved from the list of alive processes to zombies.
2124 	 */
2125 	mmmbrains = true;
2126 	for (p = LIST_FIRST(&zombproc);; p = next) {
2127 		if (p == NULL) {
2128 			if (mmmbrains) {
2129 				p = LIST_FIRST(&allproc);
2130 				mmmbrains = false;
2131 			}
2132 			if (p == NULL)
2133 				break;
2134 		}
2135 		next = LIST_NEXT(p, p_list);
2136 		if ((p->p_flag & PK_MARKER) != 0)
2137 			continue;
2138 
2139 		/*
2140 		 * Skip embryonic processes.
2141 		 */
2142 		if (p->p_stat == SIDL)
2143 			continue;
2144 
2145 		mutex_enter(p->p_lock);
2146 		error = kauth_authorize_process(l->l_cred,
2147 		    KAUTH_PROCESS_CANSEE, p,
2148 		    KAUTH_ARG(KAUTH_REQ_PROCESS_CANSEE_EPROC), NULL, NULL);
2149 		if (error != 0) {
2150 			mutex_exit(p->p_lock);
2151 			continue;
2152 		}
2153 
2154 		/*
2155 		 * Hande all the operations in one switch on the cost of
2156 		 * algorithm complexity is on purpose. The win splitting this
2157 		 * function into several similar copies makes maintenance
2158 		 * burden, code grow and boost is negligible in practical
2159 		 * systems.
2160 		 */
2161 		switch (op) {
2162 		case KERN_PROC_PID:
2163 			match = (p->p_pid == (pid_t)arg);
2164 			break;
2165 
2166 		case KERN_PROC_PGRP:
2167 			match = (p->p_pgrp->pg_id == (pid_t)arg);
2168 			break;
2169 
2170 		case KERN_PROC_SESSION:
2171 			match = (p->p_session->s_sid == (pid_t)arg);
2172 			break;
2173 
2174 		case KERN_PROC_TTY:
2175 			match = true;
2176 			if (arg == (int) KERN_PROC_TTY_REVOKE) {
2177 				if ((p->p_lflag & PL_CONTROLT) == 0 ||
2178 				    p->p_session->s_ttyp == NULL ||
2179 				    p->p_session->s_ttyvp != NULL) {
2180 				    	match = false;
2181 				}
2182 			} else if ((p->p_lflag & PL_CONTROLT) == 0 ||
2183 			    p->p_session->s_ttyp == NULL) {
2184 				if ((dev_t)arg != KERN_PROC_TTY_NODEV) {
2185 					match = false;
2186 				}
2187 			} else if (p->p_session->s_ttyp->t_dev != (dev_t)arg) {
2188 				match = false;
2189 			}
2190 			break;
2191 
2192 		case KERN_PROC_UID:
2193 			match = (kauth_cred_geteuid(p->p_cred) == (uid_t)arg);
2194 			break;
2195 
2196 		case KERN_PROC_RUID:
2197 			match = (kauth_cred_getuid(p->p_cred) == (uid_t)arg);
2198 			break;
2199 
2200 		case KERN_PROC_GID:
2201 			match = (kauth_cred_getegid(p->p_cred) == (uid_t)arg);
2202 			break;
2203 
2204 		case KERN_PROC_RGID:
2205 			match = (kauth_cred_getgid(p->p_cred) == (uid_t)arg);
2206 			break;
2207 
2208 		case KERN_PROC_ALL:
2209 			match = true;
2210 			/* allow everything */
2211 			break;
2212 
2213 		default:
2214 			error = EINVAL;
2215 			mutex_exit(p->p_lock);
2216 			goto cleanup;
2217 		}
2218 		if (!match) {
2219 			mutex_exit(p->p_lock);
2220 			continue;
2221 		}
2222 
2223 		/*
2224 		 * Grab a hold on the process.
2225 		 */
2226 		if (mmmbrains) {
2227 			zombie = true;
2228 		} else {
2229 			zombie = !rw_tryenter(&p->p_reflock, RW_READER);
2230 		}
2231 		if (zombie) {
2232 			LIST_INSERT_AFTER(p, marker, p_list);
2233 		}
2234 
2235 		if (buflen >= elem_size &&
2236 		    (type == KERN_PROC || elem_count > 0)) {
2237 			ruspace(p);	/* Update process vm resource use */
2238 
2239 			if (type == KERN_PROC) {
2240 				fill_proc(p, &kbuf->kproc.kp_proc, allowaddr);
2241 				fill_eproc(p, &kbuf->kproc.kp_eproc, zombie,
2242 				    allowaddr);
2243 			} else {
2244 				fill_kproc2(p, &kbuf->kproc2, zombie,
2245 				    allowaddr);
2246 				elem_count--;
2247 			}
2248 			mutex_exit(p->p_lock);
2249 			mutex_exit(&proc_lock);
2250 			/*
2251 			 * Copy out elem_size, but not larger than kelem_size
2252 			 */
2253 			error = sysctl_copyout(l, kbuf, dp,
2254 			    uimin(kelem_size, elem_size));
2255 			mutex_enter(&proc_lock);
2256 			if (error) {
2257 				goto bah;
2258 			}
2259 			dp += elem_size;
2260 			buflen -= elem_size;
2261 		} else {
2262 			mutex_exit(p->p_lock);
2263 		}
2264 		needed += elem_size;
2265 
2266 		/*
2267 		 * Release reference to process.
2268 		 */
2269 	 	if (zombie) {
2270 			next = LIST_NEXT(marker, p_list);
2271  			LIST_REMOVE(marker, p_list);
2272 		} else {
2273 			rw_exit(&p->p_reflock);
2274 			next = LIST_NEXT(p, p_list);
2275 		}
2276 
2277 		/*
2278 		 * Short-circuit break quickly!
2279 		 */
2280 		if (op == KERN_PROC_PID)
2281                 	break;
2282 	}
2283 	mutex_exit(&proc_lock);
2284 
2285 	if (where != NULL) {
2286 		*oldlenp = dp - where;
2287 		if (needed > *oldlenp) {
2288 			error = ENOMEM;
2289 			goto out;
2290 		}
2291 	} else {
2292 		needed += KERN_PROCSLOP;
2293 		*oldlenp = needed;
2294 	}
2295 	kmem_free(kbuf, sizeof(*kbuf));
2296 	kmem_free(marker, sizeof(*marker));
2297 	sysctl_relock();
2298 	return 0;
2299  bah:
2300  	if (zombie)
2301  		LIST_REMOVE(marker, p_list);
2302 	else
2303 		rw_exit(&p->p_reflock);
2304  cleanup:
2305 	mutex_exit(&proc_lock);
2306  out:
2307 	kmem_free(kbuf, sizeof(*kbuf));
2308 	kmem_free(marker, sizeof(*marker));
2309 	sysctl_relock();
2310 	return error;
2311 }
2312 
2313 int
copyin_psstrings(struct proc * p,struct ps_strings * arginfo)2314 copyin_psstrings(struct proc *p, struct ps_strings *arginfo)
2315 {
2316 #if !defined(_RUMPKERNEL)
2317 	int retval;
2318 
2319 	if (p->p_flag & PK_32) {
2320 		MODULE_HOOK_CALL(kern_proc32_copyin_hook, (p, arginfo),
2321 		    enosys(), retval);
2322 		return retval;
2323 	}
2324 #endif /* !defined(_RUMPKERNEL) */
2325 
2326 	return copyin_proc(p, (void *)p->p_psstrp, arginfo, sizeof(*arginfo));
2327 }
2328 
2329 static int
copy_procargs_sysctl_cb(void * cookie_,const void * src,size_t off,size_t len)2330 copy_procargs_sysctl_cb(void *cookie_, const void *src, size_t off, size_t len)
2331 {
2332 	void **cookie = cookie_;
2333 	struct lwp *l = cookie[0];
2334 	char *dst = cookie[1];
2335 
2336 	return sysctl_copyout(l, src, dst + off, len);
2337 }
2338 
2339 /*
2340  * sysctl helper routine for kern.proc_args pseudo-subtree.
2341  */
2342 static int
sysctl_kern_proc_args(SYSCTLFN_ARGS)2343 sysctl_kern_proc_args(SYSCTLFN_ARGS)
2344 {
2345 	struct ps_strings pss;
2346 	struct proc *p;
2347 	pid_t pid;
2348 	int type, error;
2349 	void *cookie[2];
2350 
2351 	if (namelen == 1 && name[0] == CTL_QUERY)
2352 		return (sysctl_query(SYSCTLFN_CALL(rnode)));
2353 
2354 	if (newp != NULL || namelen != 2)
2355 		return (EINVAL);
2356 	pid = name[0];
2357 	type = name[1];
2358 
2359 	switch (type) {
2360 	case KERN_PROC_PATHNAME:
2361 		sysctl_unlock();
2362 		error = fill_pathname(l, pid, oldp, oldlenp);
2363 		sysctl_relock();
2364 		return error;
2365 
2366 	case KERN_PROC_CWD:
2367 		sysctl_unlock();
2368 		error = fill_cwd(l, pid, oldp, oldlenp);
2369 		sysctl_relock();
2370 		return error;
2371 
2372 	case KERN_PROC_ARGV:
2373 	case KERN_PROC_NARGV:
2374 	case KERN_PROC_ENV:
2375 	case KERN_PROC_NENV:
2376 		/* ok */
2377 		break;
2378 	default:
2379 		return (EINVAL);
2380 	}
2381 
2382 	sysctl_unlock();
2383 
2384 	/* check pid */
2385 	mutex_enter(&proc_lock);
2386 	if ((p = proc_find(pid)) == NULL) {
2387 		error = EINVAL;
2388 		goto out_locked;
2389 	}
2390 	mutex_enter(p->p_lock);
2391 
2392 	/* Check permission. */
2393 	if (type == KERN_PROC_ARGV || type == KERN_PROC_NARGV)
2394 		error = kauth_authorize_process(l->l_cred, KAUTH_PROCESS_CANSEE,
2395 		    p, KAUTH_ARG(KAUTH_REQ_PROCESS_CANSEE_ARGS), NULL, NULL);
2396 	else if (type == KERN_PROC_ENV || type == KERN_PROC_NENV)
2397 		error = kauth_authorize_process(l->l_cred, KAUTH_PROCESS_CANSEE,
2398 		    p, KAUTH_ARG(KAUTH_REQ_PROCESS_CANSEE_ENV), NULL, NULL);
2399 	else
2400 		error = EINVAL; /* XXXGCC */
2401 	if (error) {
2402 		mutex_exit(p->p_lock);
2403 		goto out_locked;
2404 	}
2405 
2406 	if (oldp == NULL) {
2407 		if (type == KERN_PROC_NARGV || type == KERN_PROC_NENV)
2408 			*oldlenp = sizeof (int);
2409 		else
2410 			*oldlenp = ARG_MAX;	/* XXX XXX XXX */
2411 		error = 0;
2412 		mutex_exit(p->p_lock);
2413 		goto out_locked;
2414 	}
2415 
2416 	/*
2417 	 * Zombies don't have a stack, so we can't read their psstrings.
2418 	 * System processes also don't have a user stack.
2419 	 */
2420 	if (P_ZOMBIE(p) || (p->p_flag & PK_SYSTEM) != 0) {
2421 		error = EINVAL;
2422 		mutex_exit(p->p_lock);
2423 		goto out_locked;
2424 	}
2425 
2426 	error = rw_tryenter(&p->p_reflock, RW_READER) ? 0 : EBUSY;
2427 	mutex_exit(p->p_lock);
2428 	if (error) {
2429 		goto out_locked;
2430 	}
2431 	mutex_exit(&proc_lock);
2432 
2433 	if (type == KERN_PROC_NARGV || type == KERN_PROC_NENV) {
2434 		int value;
2435 		if ((error = copyin_psstrings(p, &pss)) == 0) {
2436 			if (type == KERN_PROC_NARGV)
2437 				value = pss.ps_nargvstr;
2438 			else
2439 				value = pss.ps_nenvstr;
2440 			error = sysctl_copyout(l, &value, oldp, sizeof(value));
2441 			*oldlenp = sizeof(value);
2442 		}
2443 	} else {
2444 		cookie[0] = l;
2445 		cookie[1] = oldp;
2446 		error = copy_procargs(p, type, oldlenp,
2447 		    copy_procargs_sysctl_cb, cookie);
2448 	}
2449 	rw_exit(&p->p_reflock);
2450 	sysctl_relock();
2451 	return error;
2452 
2453 out_locked:
2454 	mutex_exit(&proc_lock);
2455 	sysctl_relock();
2456 	return error;
2457 }
2458 
2459 int
copy_procargs(struct proc * p,int oid,size_t * limit,int (* cb)(void *,const void *,size_t,size_t),void * cookie)2460 copy_procargs(struct proc *p, int oid, size_t *limit,
2461     int (*cb)(void *, const void *, size_t, size_t), void *cookie)
2462 {
2463 	struct ps_strings pss;
2464 	size_t len, i, loaded, entry_len;
2465 	struct uio auio;
2466 	struct iovec aiov;
2467 	int error, argvlen;
2468 	char *arg;
2469 	char **argv;
2470 	vaddr_t user_argv;
2471 	struct vmspace *vmspace;
2472 
2473 	/*
2474 	 * Allocate a temporary buffer to hold the argument vector and
2475 	 * the arguments themselve.
2476 	 */
2477 	arg = kmem_alloc(PAGE_SIZE, KM_SLEEP);
2478 	argv = kmem_alloc(PAGE_SIZE, KM_SLEEP);
2479 
2480 	/*
2481 	 * Lock the process down in memory.
2482 	 */
2483 	vmspace = p->p_vmspace;
2484 	uvmspace_addref(vmspace);
2485 
2486 	/*
2487 	 * Read in the ps_strings structure.
2488 	 */
2489 	if ((error = copyin_psstrings(p, &pss)) != 0)
2490 		goto done;
2491 
2492 	/*
2493 	 * Now read the address of the argument vector.
2494 	 */
2495 	switch (oid) {
2496 	case KERN_PROC_ARGV:
2497 		user_argv = (uintptr_t)pss.ps_argvstr;
2498 		argvlen = pss.ps_nargvstr;
2499 		break;
2500 	case KERN_PROC_ENV:
2501 		user_argv = (uintptr_t)pss.ps_envstr;
2502 		argvlen = pss.ps_nenvstr;
2503 		break;
2504 	default:
2505 		error = EINVAL;
2506 		goto done;
2507 	}
2508 
2509 	if (argvlen < 0) {
2510 		error = EIO;
2511 		goto done;
2512 	}
2513 
2514 
2515 	/*
2516 	 * Now copy each string.
2517 	 */
2518 	len = 0; /* bytes written to user buffer */
2519 	loaded = 0; /* bytes from argv already processed */
2520 	i = 0; /* To make compiler happy */
2521 	entry_len = PROC_PTRSZ(p);
2522 
2523 	for (; argvlen; --argvlen) {
2524 		int finished = 0;
2525 		vaddr_t base;
2526 		size_t xlen;
2527 		int j;
2528 
2529 		if (loaded == 0) {
2530 			size_t rem = entry_len * argvlen;
2531 			loaded = MIN(rem, PAGE_SIZE);
2532 			error = copyin_vmspace(vmspace,
2533 			    (const void *)user_argv, argv, loaded);
2534 			if (error)
2535 				break;
2536 			user_argv += loaded;
2537 			i = 0;
2538 		}
2539 
2540 #if !defined(_RUMPKERNEL)
2541 		if (p->p_flag & PK_32)
2542 			MODULE_HOOK_CALL(kern_proc32_base_hook,
2543 			    (argv, i++), 0, base);
2544 		else
2545 #endif /* !defined(_RUMPKERNEL) */
2546 			base = (vaddr_t)argv[i++];
2547 		loaded -= entry_len;
2548 
2549 		/*
2550 		 * The program has messed around with its arguments,
2551 		 * possibly deleting some, and replacing them with
2552 		 * NULL's. Treat this as the last argument and not
2553 		 * a failure.
2554 		 */
2555 		if (base == 0)
2556 			break;
2557 
2558 		while (!finished) {
2559 			xlen = PAGE_SIZE - (base & PAGE_MASK);
2560 
2561 			aiov.iov_base = arg;
2562 			aiov.iov_len = PAGE_SIZE;
2563 			auio.uio_iov = &aiov;
2564 			auio.uio_iovcnt = 1;
2565 			auio.uio_offset = base;
2566 			auio.uio_resid = xlen;
2567 			auio.uio_rw = UIO_READ;
2568 			UIO_SETUP_SYSSPACE(&auio);
2569 			error = uvm_io(&vmspace->vm_map, &auio, 0);
2570 			if (error)
2571 				goto done;
2572 
2573 			/* Look for the end of the string */
2574 			for (j = 0; j < xlen; j++) {
2575 				if (arg[j] == '\0') {
2576 					xlen = j + 1;
2577 					finished = 1;
2578 					break;
2579 				}
2580 			}
2581 
2582 			/* Check for user buffer overflow */
2583 			if (len + xlen > *limit) {
2584 				finished = 1;
2585 				if (len > *limit)
2586 					xlen = 0;
2587 				else
2588 					xlen = *limit - len;
2589 			}
2590 
2591 			/* Copyout the page */
2592 			error = (*cb)(cookie, arg, len, xlen);
2593 			if (error)
2594 				goto done;
2595 
2596 			len += xlen;
2597 			base += xlen;
2598 		}
2599 	}
2600 	*limit = len;
2601 
2602 done:
2603 	kmem_free(argv, PAGE_SIZE);
2604 	kmem_free(arg, PAGE_SIZE);
2605 	uvmspace_free(vmspace);
2606 	return error;
2607 }
2608 
2609 /*
2610  * Fill in a proc structure for the specified process.
2611  */
2612 static void
fill_proc(const struct proc * psrc,struct proc * p,bool allowaddr)2613 fill_proc(const struct proc *psrc, struct proc *p, bool allowaddr)
2614 {
2615 	COND_SET_STRUCT(p->p_list, psrc->p_list, allowaddr);
2616 	memset(&p->p_auxlock, 0, sizeof(p->p_auxlock));
2617 	COND_SET_STRUCT(p->p_lock, psrc->p_lock, allowaddr);
2618 	memset(&p->p_stmutex, 0, sizeof(p->p_stmutex));
2619 	memset(&p->p_reflock, 0, sizeof(p->p_reflock));
2620 	COND_SET_STRUCT(p->p_waitcv, psrc->p_waitcv, allowaddr);
2621 	COND_SET_STRUCT(p->p_lwpcv, psrc->p_lwpcv, allowaddr);
2622 	COND_SET_PTR(p->p_cred, psrc->p_cred, allowaddr);
2623 	COND_SET_PTR(p->p_fd, psrc->p_fd, allowaddr);
2624 	COND_SET_PTR(p->p_cwdi, psrc->p_cwdi, allowaddr);
2625 	COND_SET_PTR(p->p_stats, psrc->p_stats, allowaddr);
2626 	COND_SET_PTR(p->p_limit, psrc->p_limit, allowaddr);
2627 	COND_SET_PTR(p->p_vmspace, psrc->p_vmspace, allowaddr);
2628 	COND_SET_PTR(p->p_sigacts, psrc->p_sigacts, allowaddr);
2629 	COND_SET_PTR(p->p_aio, psrc->p_aio, allowaddr);
2630 	p->p_mqueue_cnt = psrc->p_mqueue_cnt;
2631 	memset(&p->p_specdataref, 0, sizeof(p->p_specdataref));
2632 	p->p_exitsig = psrc->p_exitsig;
2633 	p->p_flag = psrc->p_flag;
2634 	p->p_sflag = psrc->p_sflag;
2635 	p->p_slflag = psrc->p_slflag;
2636 	p->p_lflag = psrc->p_lflag;
2637 	p->p_stflag = psrc->p_stflag;
2638 	p->p_stat = psrc->p_stat;
2639 	p->p_trace_enabled = psrc->p_trace_enabled;
2640 	p->p_pid = psrc->p_pid;
2641 	COND_SET_STRUCT(p->p_pglist, psrc->p_pglist, allowaddr);
2642 	COND_SET_PTR(p->p_pptr, psrc->p_pptr, allowaddr);
2643 	COND_SET_STRUCT(p->p_sibling, psrc->p_sibling, allowaddr);
2644 	COND_SET_STRUCT(p->p_children, psrc->p_children, allowaddr);
2645 	COND_SET_STRUCT(p->p_lwps, psrc->p_lwps, allowaddr);
2646 	COND_SET_PTR(p->p_raslist, psrc->p_raslist, allowaddr);
2647 	p->p_nlwps = psrc->p_nlwps;
2648 	p->p_nzlwps = psrc->p_nzlwps;
2649 	p->p_nrlwps = psrc->p_nrlwps;
2650 	p->p_nlwpwait = psrc->p_nlwpwait;
2651 	p->p_ndlwps = psrc->p_ndlwps;
2652 	p->p_nstopchild = psrc->p_nstopchild;
2653 	p->p_waited = psrc->p_waited;
2654 	COND_SET_PTR(p->p_zomblwp, psrc->p_zomblwp, allowaddr);
2655 	COND_SET_PTR(p->p_vforklwp, psrc->p_vforklwp, allowaddr);
2656 	COND_SET_PTR(p->p_sched_info, psrc->p_sched_info, allowaddr);
2657 	p->p_estcpu = psrc->p_estcpu;
2658 	p->p_estcpu_inherited = psrc->p_estcpu_inherited;
2659 	p->p_forktime = psrc->p_forktime;
2660 	p->p_pctcpu = psrc->p_pctcpu;
2661 	COND_SET_PTR(p->p_opptr, psrc->p_opptr, allowaddr);
2662 	COND_SET_PTR(p->p_timers, psrc->p_timers, allowaddr);
2663 	p->p_rtime = psrc->p_rtime;
2664 	p->p_uticks = psrc->p_uticks;
2665 	p->p_sticks = psrc->p_sticks;
2666 	p->p_iticks = psrc->p_iticks;
2667 	p->p_xutime = psrc->p_xutime;
2668 	p->p_xstime = psrc->p_xstime;
2669 	p->p_traceflag = psrc->p_traceflag;
2670 	COND_SET_PTR(p->p_tracep, psrc->p_tracep, allowaddr);
2671 	COND_SET_PTR(p->p_textvp, psrc->p_textvp, allowaddr);
2672 	COND_SET_PTR(p->p_emul, psrc->p_emul, allowaddr);
2673 	COND_SET_PTR(p->p_emuldata, psrc->p_emuldata, allowaddr);
2674 	COND_SET_CPTR(p->p_execsw, psrc->p_execsw, allowaddr);
2675 	COND_SET_STRUCT(p->p_klist, psrc->p_klist, allowaddr);
2676 	COND_SET_STRUCT(p->p_sigwaiters, psrc->p_sigwaiters, allowaddr);
2677 	COND_SET_STRUCT(p->p_sigpend.sp_info, psrc->p_sigpend.sp_info,
2678 	    allowaddr);
2679 	p->p_sigpend.sp_set = psrc->p_sigpend.sp_set;
2680 	COND_SET_PTR(p->p_lwpctl, psrc->p_lwpctl, allowaddr);
2681 	p->p_ppid = psrc->p_ppid;
2682 	p->p_oppid = psrc->p_oppid;
2683 	COND_SET_PTR(p->p_path, psrc->p_path, allowaddr);
2684 	p->p_sigctx = psrc->p_sigctx;
2685 	p->p_nice = psrc->p_nice;
2686 	memcpy(p->p_comm, psrc->p_comm, sizeof(p->p_comm));
2687 	COND_SET_PTR(p->p_pgrp, psrc->p_pgrp, allowaddr);
2688 	COND_SET_VALUE(p->p_psstrp, psrc->p_psstrp, allowaddr);
2689 	p->p_pax = psrc->p_pax;
2690 	p->p_xexit = psrc->p_xexit;
2691 	p->p_xsig = psrc->p_xsig;
2692 	p->p_acflag = psrc->p_acflag;
2693 	COND_SET_STRUCT(p->p_md, psrc->p_md, allowaddr);
2694 	p->p_stackbase = psrc->p_stackbase;
2695 	COND_SET_PTR(p->p_dtrace, psrc->p_dtrace, allowaddr);
2696 }
2697 
2698 /*
2699  * Fill in an eproc structure for the specified process.
2700  */
2701 void
fill_eproc(struct proc * p,struct eproc * ep,bool zombie,bool allowaddr)2702 fill_eproc(struct proc *p, struct eproc *ep, bool zombie, bool allowaddr)
2703 {
2704 	struct tty *tp;
2705 	struct lwp *l;
2706 
2707 	KASSERT(mutex_owned(&proc_lock));
2708 	KASSERT(mutex_owned(p->p_lock));
2709 
2710 	COND_SET_PTR(ep->e_paddr, p, allowaddr);
2711 	COND_SET_PTR(ep->e_sess, p->p_session, allowaddr);
2712 	if (p->p_cred) {
2713 		kauth_cred_topcred(p->p_cred, &ep->e_pcred);
2714 		kauth_cred_toucred(p->p_cred, &ep->e_ucred);
2715 	}
2716 	if (p->p_stat != SIDL && !P_ZOMBIE(p) && !zombie) {
2717 		struct vmspace *vm = p->p_vmspace;
2718 
2719 		ep->e_vm.vm_rssize = vm_resident_count(vm);
2720 		ep->e_vm.vm_tsize = vm->vm_tsize;
2721 		ep->e_vm.vm_dsize = vm->vm_dsize;
2722 		ep->e_vm.vm_ssize = vm->vm_ssize;
2723 		ep->e_vm.vm_map.size = vm->vm_map.size;
2724 
2725 		/* Pick the primary (first) LWP */
2726 		l = proc_active_lwp(p);
2727 		KASSERT(l != NULL);
2728 		lwp_lock(l);
2729 		if (l->l_wchan)
2730 			strncpy(ep->e_wmesg, l->l_wmesg, WMESGLEN);
2731 		lwp_unlock(l);
2732 	}
2733 	ep->e_ppid = p->p_ppid;
2734 	if (p->p_pgrp && p->p_session) {
2735 		ep->e_pgid = p->p_pgrp->pg_id;
2736 		ep->e_jobc = p->p_pgrp->pg_jobc;
2737 		ep->e_sid = p->p_session->s_sid;
2738 		if ((p->p_lflag & PL_CONTROLT) &&
2739 		    (tp = p->p_session->s_ttyp)) {
2740 			ep->e_tdev = tp->t_dev;
2741 			ep->e_tpgid = tp->t_pgrp ? tp->t_pgrp->pg_id : NO_PGID;
2742 			COND_SET_PTR(ep->e_tsess, tp->t_session, allowaddr);
2743 		} else
2744 			ep->e_tdev = (uint32_t)NODEV;
2745 		ep->e_flag = p->p_session->s_ttyvp ? EPROC_CTTY : 0;
2746 		if (SESS_LEADER(p))
2747 			ep->e_flag |= EPROC_SLEADER;
2748 		strncpy(ep->e_login, p->p_session->s_login, MAXLOGNAME);
2749 	}
2750 	ep->e_xsize = ep->e_xrssize = 0;
2751 	ep->e_xccount = ep->e_xswrss = 0;
2752 }
2753 
2754 /*
2755  * Fill in a kinfo_proc2 structure for the specified process.
2756  */
2757 void
fill_kproc2(struct proc * p,struct kinfo_proc2 * ki,bool zombie,bool allowaddr)2758 fill_kproc2(struct proc *p, struct kinfo_proc2 *ki, bool zombie, bool allowaddr)
2759 {
2760 	struct tty *tp;
2761 	struct lwp *l;
2762 	struct timeval ut, st, rt;
2763 	sigset_t ss1, ss2;
2764 	struct rusage ru;
2765 	struct vmspace *vm;
2766 
2767 	KASSERT(mutex_owned(&proc_lock));
2768 	KASSERT(mutex_owned(p->p_lock));
2769 
2770 	sigemptyset(&ss1);
2771 	sigemptyset(&ss2);
2772 
2773 	COND_SET_VALUE(ki->p_paddr, PTRTOUINT64(p), allowaddr);
2774 	COND_SET_VALUE(ki->p_fd, PTRTOUINT64(p->p_fd), allowaddr);
2775 	COND_SET_VALUE(ki->p_cwdi, PTRTOUINT64(p->p_cwdi), allowaddr);
2776 	COND_SET_VALUE(ki->p_stats, PTRTOUINT64(p->p_stats), allowaddr);
2777 	COND_SET_VALUE(ki->p_limit, PTRTOUINT64(p->p_limit), allowaddr);
2778 	COND_SET_VALUE(ki->p_vmspace, PTRTOUINT64(p->p_vmspace), allowaddr);
2779 	COND_SET_VALUE(ki->p_sigacts, PTRTOUINT64(p->p_sigacts), allowaddr);
2780 	COND_SET_VALUE(ki->p_sess, PTRTOUINT64(p->p_session), allowaddr);
2781 	ki->p_tsess = 0;	/* may be changed if controlling tty below */
2782 	COND_SET_VALUE(ki->p_ru, PTRTOUINT64(&p->p_stats->p_ru), allowaddr);
2783 	ki->p_eflag = 0;
2784 	ki->p_exitsig = p->p_exitsig;
2785 	ki->p_flag = L_INMEM;   /* Process never swapped out */
2786 	ki->p_flag |= sysctl_map_flags(sysctl_flagmap, p->p_flag);
2787 	ki->p_flag |= sysctl_map_flags(sysctl_sflagmap, p->p_sflag);
2788 	ki->p_flag |= sysctl_map_flags(sysctl_slflagmap, p->p_slflag);
2789 	ki->p_flag |= sysctl_map_flags(sysctl_lflagmap, p->p_lflag);
2790 	ki->p_flag |= sysctl_map_flags(sysctl_stflagmap, p->p_stflag);
2791 	ki->p_pid = p->p_pid;
2792 	ki->p_ppid = p->p_ppid;
2793 	ki->p_uid = kauth_cred_geteuid(p->p_cred);
2794 	ki->p_ruid = kauth_cred_getuid(p->p_cred);
2795 	ki->p_gid = kauth_cred_getegid(p->p_cred);
2796 	ki->p_rgid = kauth_cred_getgid(p->p_cred);
2797 	ki->p_svuid = kauth_cred_getsvuid(p->p_cred);
2798 	ki->p_svgid = kauth_cred_getsvgid(p->p_cred);
2799 	ki->p_ngroups = kauth_cred_ngroups(p->p_cred);
2800 	kauth_cred_getgroups(p->p_cred, ki->p_groups,
2801 	    uimin(ki->p_ngroups, sizeof(ki->p_groups) / sizeof(ki->p_groups[0])),
2802 	    UIO_SYSSPACE);
2803 
2804 	ki->p_uticks = p->p_uticks;
2805 	ki->p_sticks = p->p_sticks;
2806 	ki->p_iticks = p->p_iticks;
2807 	ki->p_tpgid = NO_PGID;	/* may be changed if controlling tty below */
2808 	COND_SET_VALUE(ki->p_tracep, PTRTOUINT64(p->p_tracep), allowaddr);
2809 	ki->p_traceflag = p->p_traceflag;
2810 
2811 	memcpy(&ki->p_sigignore, &p->p_sigctx.ps_sigignore,sizeof(ki_sigset_t));
2812 	memcpy(&ki->p_sigcatch, &p->p_sigctx.ps_sigcatch, sizeof(ki_sigset_t));
2813 
2814 	ki->p_cpticks = 0;
2815 	ki->p_pctcpu = p->p_pctcpu;
2816 	ki->p_estcpu = 0;
2817 	ki->p_stat = p->p_stat; /* Will likely be overridden by LWP status */
2818 	ki->p_realstat = p->p_stat;
2819 	ki->p_nice = p->p_nice;
2820 	ki->p_xstat = P_WAITSTATUS(p);
2821 	ki->p_acflag = p->p_acflag;
2822 
2823 	strncpy(ki->p_comm, p->p_comm,
2824 	    uimin(sizeof(ki->p_comm), sizeof(p->p_comm)));
2825 	strncpy(ki->p_ename, p->p_emul->e_name, sizeof(ki->p_ename));
2826 
2827 	ki->p_nlwps = p->p_nlwps;
2828 	ki->p_realflag = ki->p_flag;
2829 
2830 	if (p->p_stat != SIDL && !P_ZOMBIE(p) && !zombie) {
2831 		vm = p->p_vmspace;
2832 		ki->p_vm_rssize = vm_resident_count(vm);
2833 		ki->p_vm_tsize = vm->vm_tsize;
2834 		ki->p_vm_dsize = vm->vm_dsize;
2835 		ki->p_vm_ssize = vm->vm_ssize;
2836 		ki->p_vm_vsize = atop(vm->vm_map.size);
2837 		/*
2838 		 * Since the stack is initially mapped mostly with
2839 		 * PROT_NONE and grown as needed, adjust the "mapped size"
2840 		 * to skip the unused stack portion.
2841 		 */
2842 		ki->p_vm_msize =
2843 		    atop(vm->vm_map.size) - vm->vm_issize + vm->vm_ssize;
2844 
2845 		/* Pick the primary (first) LWP */
2846 		l = proc_active_lwp(p);
2847 		KASSERT(l != NULL);
2848 		lwp_lock(l);
2849 		ki->p_nrlwps = p->p_nrlwps;
2850 		ki->p_forw = 0;
2851 		ki->p_back = 0;
2852 		COND_SET_VALUE(ki->p_addr, PTRTOUINT64(l->l_addr), allowaddr);
2853 		ki->p_stat = l->l_stat;
2854 		ki->p_flag |= sysctl_map_flags(sysctl_lwpflagmap, l->l_flag);
2855 		ki->p_swtime = l->l_swtime;
2856 		ki->p_slptime = l->l_slptime;
2857 		if (l->l_stat == LSONPROC)
2858 			ki->p_schedflags = l->l_cpu->ci_schedstate.spc_flags;
2859 		else
2860 			ki->p_schedflags = 0;
2861 		ki->p_priority = lwp_eprio(l);
2862 		ki->p_usrpri = l->l_priority;
2863 		if (l->l_wchan)
2864 			strncpy(ki->p_wmesg, l->l_wmesg, sizeof(ki->p_wmesg));
2865 		COND_SET_VALUE(ki->p_wchan, PTRTOUINT64(l->l_wchan), allowaddr);
2866 		ki->p_cpuid = cpu_index(l->l_cpu);
2867 		lwp_unlock(l);
2868 		LIST_FOREACH(l, &p->p_lwps, l_sibling) {
2869 			/* This is hardly correct, but... */
2870 			sigplusset(&l->l_sigpend.sp_set, &ss1);
2871 			sigplusset(&l->l_sigmask, &ss2);
2872 			ki->p_cpticks += l->l_cpticks;
2873 			ki->p_pctcpu += l->l_pctcpu;
2874 			ki->p_estcpu += l->l_estcpu;
2875 		}
2876 	}
2877 	sigplusset(&p->p_sigpend.sp_set, &ss1);
2878 	memcpy(&ki->p_siglist, &ss1, sizeof(ki_sigset_t));
2879 	memcpy(&ki->p_sigmask, &ss2, sizeof(ki_sigset_t));
2880 
2881 	if (p->p_session != NULL) {
2882 		ki->p_sid = p->p_session->s_sid;
2883 		ki->p__pgid = p->p_pgrp->pg_id;
2884 		if (p->p_session->s_ttyvp)
2885 			ki->p_eflag |= EPROC_CTTY;
2886 		if (SESS_LEADER(p))
2887 			ki->p_eflag |= EPROC_SLEADER;
2888 		strncpy(ki->p_login, p->p_session->s_login,
2889 		    uimin(sizeof ki->p_login - 1, sizeof p->p_session->s_login));
2890 		ki->p_jobc = p->p_pgrp->pg_jobc;
2891 		if ((p->p_lflag & PL_CONTROLT) && (tp = p->p_session->s_ttyp)) {
2892 			ki->p_tdev = tp->t_dev;
2893 			ki->p_tpgid = tp->t_pgrp ? tp->t_pgrp->pg_id : NO_PGID;
2894 			COND_SET_VALUE(ki->p_tsess, PTRTOUINT64(tp->t_session),
2895 			    allowaddr);
2896 		} else {
2897 			ki->p_tdev = (int32_t)NODEV;
2898 		}
2899 	}
2900 
2901 	if (!P_ZOMBIE(p) && !zombie) {
2902 		ki->p_uvalid = 1;
2903 		ki->p_ustart_sec = p->p_stats->p_start.tv_sec;
2904 		ki->p_ustart_usec = p->p_stats->p_start.tv_usec;
2905 
2906 		calcru(p, &ut, &st, NULL, &rt);
2907 		ki->p_rtime_sec = rt.tv_sec;
2908 		ki->p_rtime_usec = rt.tv_usec;
2909 		ki->p_uutime_sec = ut.tv_sec;
2910 		ki->p_uutime_usec = ut.tv_usec;
2911 		ki->p_ustime_sec = st.tv_sec;
2912 		ki->p_ustime_usec = st.tv_usec;
2913 
2914 		memcpy(&ru, &p->p_stats->p_ru, sizeof(ru));
2915 		rulwps(p, &ru);
2916 		ki->p_uru_nvcsw = ru.ru_nvcsw;
2917 		ki->p_uru_nivcsw = ru.ru_nivcsw;
2918 		ki->p_uru_maxrss = ru.ru_maxrss;
2919 		ki->p_uru_ixrss = ru.ru_ixrss;
2920 		ki->p_uru_idrss = ru.ru_idrss;
2921 		ki->p_uru_isrss = ru.ru_isrss;
2922 		ki->p_uru_minflt = ru.ru_minflt;
2923 		ki->p_uru_majflt = ru.ru_majflt;
2924 		ki->p_uru_nswap = ru.ru_nswap;
2925 		ki->p_uru_inblock = ru.ru_inblock;
2926 		ki->p_uru_oublock = ru.ru_oublock;
2927 		ki->p_uru_msgsnd = ru.ru_msgsnd;
2928 		ki->p_uru_msgrcv = ru.ru_msgrcv;
2929 		ki->p_uru_nsignals = ru.ru_nsignals;
2930 
2931 		timeradd(&p->p_stats->p_cru.ru_utime,
2932 			 &p->p_stats->p_cru.ru_stime, &ut);
2933 		ki->p_uctime_sec = ut.tv_sec;
2934 		ki->p_uctime_usec = ut.tv_usec;
2935 	}
2936 }
2937 
2938 
2939 int
proc_find_locked(struct lwp * l,struct proc ** p,pid_t pid)2940 proc_find_locked(struct lwp *l, struct proc **p, pid_t pid)
2941 {
2942 	int error;
2943 
2944 	mutex_enter(&proc_lock);
2945 	if (pid == -1)
2946 		*p = l->l_proc;
2947 	else
2948 		*p = proc_find(pid);
2949 
2950 	if (*p == NULL) {
2951 		if (pid != -1)
2952 			mutex_exit(&proc_lock);
2953 		return ESRCH;
2954 	}
2955 	if (pid != -1)
2956 		mutex_enter((*p)->p_lock);
2957 	mutex_exit(&proc_lock);
2958 
2959 	error = kauth_authorize_process(l->l_cred,
2960 	    KAUTH_PROCESS_CANSEE, *p,
2961 	    KAUTH_ARG(KAUTH_REQ_PROCESS_CANSEE_ENTRY), NULL, NULL);
2962 	if (error) {
2963 		if (pid != -1)
2964 			mutex_exit((*p)->p_lock);
2965 	}
2966 	return error;
2967 }
2968 
2969 static int
fill_pathname(struct lwp * l,pid_t pid,void * oldp,size_t * oldlenp)2970 fill_pathname(struct lwp *l, pid_t pid, void *oldp, size_t *oldlenp)
2971 {
2972 	int error;
2973 	struct proc *p;
2974 
2975 	if ((error = proc_find_locked(l, &p, pid)) != 0)
2976 		return error;
2977 
2978 	if (p->p_path == NULL) {
2979 		if (pid != -1)
2980 			mutex_exit(p->p_lock);
2981 		return ENOENT;
2982 	}
2983 
2984 	size_t len = strlen(p->p_path) + 1;
2985 	if (oldp != NULL) {
2986 		size_t copylen = uimin(len, *oldlenp);
2987 		error = sysctl_copyout(l, p->p_path, oldp, copylen);
2988 		if (error == 0 && *oldlenp < len)
2989 			error = ENOSPC;
2990 	}
2991 	*oldlenp = len;
2992 	if (pid != -1)
2993 		mutex_exit(p->p_lock);
2994 	return error;
2995 }
2996 
2997 static int
fill_cwd(struct lwp * l,pid_t pid,void * oldp,size_t * oldlenp)2998 fill_cwd(struct lwp *l, pid_t pid, void *oldp, size_t *oldlenp)
2999 {
3000 	int error;
3001 	struct proc *p;
3002 	char *path;
3003 	char *bp, *bend;
3004 	struct cwdinfo *cwdi;
3005 	struct vnode *vp;
3006 	size_t len, lenused;
3007 
3008 	if ((error = proc_find_locked(l, &p, pid)) != 0)
3009 		return error;
3010 
3011 	len = MAXPATHLEN * 4;
3012 
3013 	path = kmem_alloc(len, KM_SLEEP);
3014 
3015 	bp = &path[len];
3016 	bend = bp;
3017 	*(--bp) = '\0';
3018 
3019 	cwdi = p->p_cwdi;
3020 	rw_enter(&cwdi->cwdi_lock, RW_READER);
3021 	vp = cwdi->cwdi_cdir;
3022 	error = getcwd_common(vp, NULL, &bp, path, len/2, 0, l);
3023 	rw_exit(&cwdi->cwdi_lock);
3024 
3025 	if (error)
3026 		goto out;
3027 
3028 	lenused = bend - bp;
3029 
3030 	if (oldp != NULL) {
3031 		size_t copylen = uimin(lenused, *oldlenp);
3032 		error = sysctl_copyout(l, bp, oldp, copylen);
3033 		if (error == 0 && *oldlenp < lenused)
3034 			error = ENOSPC;
3035 	}
3036 	*oldlenp = lenused;
3037 out:
3038 	if (pid != -1)
3039 		mutex_exit(p->p_lock);
3040 	kmem_free(path, len);
3041 	return error;
3042 }
3043 
3044 int
proc_getauxv(struct proc * p,void ** buf,size_t * len)3045 proc_getauxv(struct proc *p, void **buf, size_t *len)
3046 {
3047 	struct ps_strings pss;
3048 	int error;
3049 	void *uauxv, *kauxv;
3050 	size_t size;
3051 
3052 	if ((error = copyin_psstrings(p, &pss)) != 0)
3053 		return error;
3054 	if (pss.ps_envstr == NULL)
3055 		return EIO;
3056 
3057 	size = p->p_execsw->es_arglen;
3058 	if (size == 0)
3059 		return EIO;
3060 
3061 	size_t ptrsz = PROC_PTRSZ(p);
3062 	uauxv = (void *)((char *)pss.ps_envstr + (pss.ps_nenvstr + 1) * ptrsz);
3063 
3064 	kauxv = kmem_alloc(size, KM_SLEEP);
3065 
3066 	error = copyin_proc(p, uauxv, kauxv, size);
3067 	if (error) {
3068 		kmem_free(kauxv, size);
3069 		return error;
3070 	}
3071 
3072 	*buf = kauxv;
3073 	*len = size;
3074 
3075 	return 0;
3076 }
3077 
3078 
3079 static int
sysctl_security_expose_address(SYSCTLFN_ARGS)3080 sysctl_security_expose_address(SYSCTLFN_ARGS)
3081 {
3082 	int expose_address, error;
3083 	struct sysctlnode node;
3084 
3085 	node = *rnode;
3086 	node.sysctl_data = &expose_address;
3087 	expose_address = *(int *)rnode->sysctl_data;
3088 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
3089 	if (error || newp == NULL)
3090 		return error;
3091 
3092 	if (kauth_authorize_system(l->l_cred, KAUTH_SYSTEM_KERNADDR,
3093 	    0, NULL, NULL, NULL))
3094 		return EPERM;
3095 
3096 	switch (expose_address) {
3097 	case 0:
3098 	case 1:
3099 	case 2:
3100 		break;
3101 	default:
3102 		return EINVAL;
3103 	}
3104 
3105 	*(int *)rnode->sysctl_data = expose_address;
3106 
3107 	return 0;
3108 }
3109 
3110 bool
get_expose_address(struct proc * p)3111 get_expose_address(struct proc *p)
3112 {
3113 	/* allow only if sysctl variable is set or privileged */
3114 	return kauth_authorize_process(kauth_cred_get(), KAUTH_PROCESS_CANSEE,
3115 	    p, KAUTH_ARG(KAUTH_REQ_PROCESS_CANSEE_KPTR), NULL, NULL) == 0;
3116 }
3117