xref: /netbsd-src/sys/kern/kern_exec.c (revision 09bb7d6a704ecf9f9a99f5f2998802ab6b115e84)
1 /*	$NetBSD: kern_exec.c,v 1.525 2024/12/06 16:48:13 riastradh Exp $	*/
2 
3 /*-
4  * Copyright (c) 2008, 2019, 2020 The NetBSD Foundation, Inc.
5  * All rights reserved.
6  *
7  * This code is derived from software contributed to The NetBSD Foundation
8  * by Andrew Doran.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29  * POSSIBILITY OF SUCH DAMAGE.
30  */
31 
32 /*-
33  * Copyright (C) 1993, 1994, 1996 Christopher G. Demetriou
34  * Copyright (C) 1992 Wolfgang Solfrank.
35  * Copyright (C) 1992 TooLs GmbH.
36  * All rights reserved.
37  *
38  * Redistribution and use in source and binary forms, with or without
39  * modification, are permitted provided that the following conditions
40  * are met:
41  * 1. Redistributions of source code must retain the above copyright
42  *    notice, this list of conditions and the following disclaimer.
43  * 2. Redistributions in binary form must reproduce the above copyright
44  *    notice, this list of conditions and the following disclaimer in the
45  *    documentation and/or other materials provided with the distribution.
46  * 3. All advertising materials mentioning features or use of this software
47  *    must display the following acknowledgement:
48  *	This product includes software developed by TooLs GmbH.
49  * 4. The name of TooLs GmbH may not be used to endorse or promote products
50  *    derived from this software without specific prior written permission.
51  *
52  * THIS SOFTWARE IS PROVIDED BY TOOLS GMBH ``AS IS'' AND ANY EXPRESS OR
53  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
54  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
55  * IN NO EVENT SHALL TOOLS GMBH BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
56  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
57  * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
58  * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
59  * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
60  * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
61  * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
62  */
63 
64 #include <sys/cdefs.h>
65 __KERNEL_RCSID(0, "$NetBSD: kern_exec.c,v 1.525 2024/12/06 16:48:13 riastradh Exp $");
66 
67 #include "opt_exec.h"
68 #include "opt_execfmt.h"
69 #include "opt_ktrace.h"
70 #include "opt_modular.h"
71 #include "opt_pax.h"
72 #include "opt_syscall_debug.h"
73 #include "veriexec.h"
74 
75 #include <sys/param.h>
76 #include <sys/types.h>
77 
78 #include <sys/acct.h>
79 #include <sys/atomic.h>
80 #include <sys/cprng.h>
81 #include <sys/cpu.h>
82 #include <sys/exec.h>
83 #include <sys/file.h>
84 #include <sys/filedesc.h>
85 #include <sys/futex.h>
86 #include <sys/kauth.h>
87 #include <sys/kernel.h>
88 #include <sys/kmem.h>
89 #include <sys/ktrace.h>
90 #include <sys/lwpctl.h>
91 #include <sys/mman.h>
92 #include <sys/module.h>
93 #include <sys/mount.h>
94 #include <sys/namei.h>
95 #include <sys/pax.h>
96 #include <sys/proc.h>
97 #include <sys/prot.h>
98 #include <sys/ptrace.h>
99 #include <sys/ras.h>
100 #include <sys/sdt.h>
101 #include <sys/signalvar.h>
102 #include <sys/spawn.h>
103 #include <sys/stat.h>
104 #include <sys/syscall.h>
105 #include <sys/syscallargs.h>
106 #include <sys/syscallvar.h>
107 #include <sys/systm.h>
108 #include <sys/uidinfo.h>
109 #if NVERIEXEC > 0
110 #include <sys/verified_exec.h>
111 #endif /* NVERIEXEC > 0 */
112 #include <sys/vfs_syscalls.h>
113 #include <sys/vnode.h>
114 #include <sys/wait.h>
115 
116 #include <uvm/uvm_extern.h>
117 
118 #include <machine/reg.h>
119 
120 #include <compat/common/compat_util.h>
121 
122 #ifndef MD_TOPDOWN_INIT
123 #ifdef __USE_TOPDOWN_VM
124 #define	MD_TOPDOWN_INIT(epp)	(epp)->ep_flags |= EXEC_TOPDOWN_VM
125 #else
126 #define	MD_TOPDOWN_INIT(epp)
127 #endif
128 #endif
129 
130 struct execve_data;
131 
132 extern int user_va0_disable;
133 
134 static size_t calcargs(struct execve_data * restrict, const size_t);
135 static size_t calcstack(struct execve_data * restrict, const size_t);
136 static int copyoutargs(struct execve_data * restrict, struct lwp *,
137     char * const);
138 static int copyoutpsstrs(struct execve_data * restrict, struct proc *);
139 static int copyinargs(struct execve_data * restrict, char * const *,
140     char * const *, execve_fetch_element_t, char **);
141 static int copyinargstrs(struct execve_data * restrict, char * const *,
142     execve_fetch_element_t, char **, size_t *, void (*)(const void *, size_t));
143 static int exec_sigcode_map(struct proc *, const struct emul *);
144 
145 #if defined(DEBUG) && !defined(DEBUG_EXEC)
146 #define DEBUG_EXEC
147 #endif
148 #ifdef DEBUG_EXEC
149 #define DPRINTF(a) printf a
150 #define COPYPRINTF(s, a, b) printf("%s, %d: copyout%s @%p %zu\n", __func__, \
151     __LINE__, (s), (a), (b))
152 static void dump_vmcmds(const struct exec_package * const, size_t, int);
153 #define DUMPVMCMDS(p, x, e) do { dump_vmcmds((p), (x), (e)); } while (0)
154 #else
155 #define DPRINTF(a)
156 #define COPYPRINTF(s, a, b)
157 #define DUMPVMCMDS(p, x, e) do {} while (0)
158 #endif /* DEBUG_EXEC */
159 
160 /*
161  * DTrace SDT provider definitions
162  */
163 SDT_PROVIDER_DECLARE(proc);
164 SDT_PROBE_DEFINE1(proc, kernel, , exec, "char *");
165 SDT_PROBE_DEFINE1(proc, kernel, , exec__success, "char *");
166 SDT_PROBE_DEFINE1(proc, kernel, , exec__failure, "int");
167 
168 /*
169  * Exec function switch:
170  *
171  * Note that each makecmds function is responsible for loading the
172  * exec package with the necessary functions for any exec-type-specific
173  * handling.
174  *
175  * Functions for specific exec types should be defined in their own
176  * header file.
177  */
178 static const struct execsw	**execsw = NULL;
179 static int			nexecs;
180 
181 u_int	exec_maxhdrsz;	 /* must not be static - used by netbsd32 */
182 
183 /* list of dynamically loaded execsw entries */
184 static LIST_HEAD(execlist_head, exec_entry) ex_head =
185     LIST_HEAD_INITIALIZER(ex_head);
186 struct exec_entry {
187 	LIST_ENTRY(exec_entry)	ex_list;
188 	SLIST_ENTRY(exec_entry)	ex_slist;
189 	const struct execsw	*ex_sw;
190 };
191 
192 #ifndef __HAVE_SYSCALL_INTERN
193 void	syscall(void);
194 #endif
195 
196 /* NetBSD autoloadable syscalls */
197 #ifdef MODULAR
198 #include <kern/syscalls_autoload.c>
199 #endif
200 
201 /* NetBSD emul struct */
202 struct emul emul_netbsd = {
203 	.e_name =		"netbsd",
204 #ifdef EMUL_NATIVEROOT
205 	.e_path =		EMUL_NATIVEROOT,
206 #else
207 	.e_path =		NULL,
208 #endif
209 #ifndef __HAVE_MINIMAL_EMUL
210 	.e_flags =		EMUL_HAS_SYS___syscall,
211 	.e_errno =		NULL,
212 	.e_nosys =		SYS_syscall,
213 	.e_nsysent =		SYS_NSYSENT,
214 #endif
215 #ifdef MODULAR
216 	.e_sc_autoload =	netbsd_syscalls_autoload,
217 #endif
218 	.e_sysent =		sysent,
219 	.e_nomodbits =		sysent_nomodbits,
220 #ifdef SYSCALL_DEBUG
221 	.e_syscallnames =	syscallnames,
222 #else
223 	.e_syscallnames =	NULL,
224 #endif
225 	.e_sendsig =		sendsig,
226 	.e_trapsignal =		trapsignal,
227 	.e_sigcode =		NULL,
228 	.e_esigcode =		NULL,
229 	.e_sigobject =		NULL,
230 	.e_setregs =		setregs,
231 	.e_proc_exec =		NULL,
232 	.e_proc_fork =		NULL,
233 	.e_proc_exit =		NULL,
234 	.e_lwp_fork =		NULL,
235 	.e_lwp_exit =		NULL,
236 #ifdef __HAVE_SYSCALL_INTERN
237 	.e_syscall_intern =	syscall_intern,
238 #else
239 	.e_syscall =		syscall,
240 #endif
241 	.e_sysctlovly =		NULL,
242 	.e_vm_default_addr =	uvm_default_mapaddr,
243 	.e_usertrap =		NULL,
244 	.e_ucsize =		sizeof(ucontext_t),
245 	.e_startlwp =		startlwp
246 };
247 
248 /*
249  * Exec lock. Used to control access to execsw[] structures.
250  * This must not be static so that netbsd32 can access it, too.
251  */
252 krwlock_t exec_lock __cacheline_aligned;
253 
254 /*
255  * Data used between a loadvm and execve part of an "exec" operation
256  */
257 struct execve_data {
258 	struct exec_package	ed_pack;
259 	struct pathbuf		*ed_pathbuf;
260 	struct vattr		ed_attr;
261 	struct ps_strings	ed_arginfo;
262 	char			*ed_argp;
263 	const char		*ed_pathstring;
264 	char			*ed_resolvedname;
265 	size_t			ed_ps_strings_sz;
266 	int			ed_szsigcode;
267 	size_t			ed_argslen;
268 	long			ed_argc;
269 	long			ed_envc;
270 };
271 
272 /*
273  * data passed from parent lwp to child during a posix_spawn()
274  */
275 struct spawn_exec_data {
276 	struct execve_data	sed_exec;
277 	struct posix_spawn_file_actions
278 				*sed_actions;
279 	struct posix_spawnattr	*sed_attrs;
280 	struct proc		*sed_parent;
281 	kcondvar_t		sed_cv_child_ready;
282 	kmutex_t		sed_mtx_child;
283 	int			sed_error;
284 	volatile uint32_t	sed_refcnt;
285 };
286 
287 static struct vm_map *exec_map;
288 static struct pool exec_pool;
289 
290 static void *
291 exec_pool_alloc(struct pool *pp, int flags)
292 {
293 
294 	return (void *)uvm_km_alloc(exec_map, NCARGS, 0,
295 	    UVM_KMF_PAGEABLE | UVM_KMF_WAITVA);
296 }
297 
298 static void
299 exec_pool_free(struct pool *pp, void *addr)
300 {
301 
302 	uvm_km_free(exec_map, (vaddr_t)addr, NCARGS, UVM_KMF_PAGEABLE);
303 }
304 
305 static struct pool_allocator exec_palloc = {
306 	.pa_alloc = exec_pool_alloc,
307 	.pa_free = exec_pool_free,
308 	.pa_pagesz = NCARGS
309 };
310 
311 static void
312 exec_path_free(struct execve_data *data)
313 {
314 	pathbuf_stringcopy_put(data->ed_pathbuf, data->ed_pathstring);
315 	pathbuf_destroy(data->ed_pathbuf);
316 	if (data->ed_resolvedname)
317 		PNBUF_PUT(data->ed_resolvedname);
318 }
319 
320 static int
321 exec_resolvename(struct lwp *l, struct exec_package *epp, struct vnode *vp,
322     char **rpath)
323 {
324 	int error;
325 	char *p;
326 
327 	KASSERT(rpath != NULL);
328 
329 	*rpath = PNBUF_GET();
330 	error = vnode_to_path(*rpath, MAXPATHLEN, vp, l, l->l_proc);
331 	if (error) {
332 		DPRINTF(("%s: can't resolve name for %s, error %d\n",
333 		    __func__, epp->ep_kname, error));
334 		PNBUF_PUT(*rpath);
335 		*rpath = NULL;
336 		return error;
337 	}
338 	epp->ep_resolvedname = *rpath;
339 	if ((p = strrchr(*rpath, '/')) != NULL)
340 		epp->ep_kname = p + 1;
341 	return 0;
342 }
343 
344 
345 /*
346  * check exec:
347  * given an "executable" described in the exec package's namei info,
348  * see what we can do with it.
349  *
350  * ON ENTRY:
351  *	exec package with appropriate namei info
352  *	lwp pointer of exec'ing lwp
353  *	NO SELF-LOCKED VNODES
354  *
355  * ON EXIT:
356  *	error:	nothing held, etc.  exec header still allocated.
357  *	ok:	filled exec package, executable's vnode (unlocked).
358  *
359  * EXEC SWITCH ENTRY:
360  * 	Locked vnode to check, exec package, proc.
361  *
362  * EXEC SWITCH EXIT:
363  *	ok:	return 0, filled exec package, executable's vnode (unlocked).
364  *	error:	destructive:
365  *			everything deallocated execept exec header.
366  *		non-destructive:
367  *			error code, executable's vnode (unlocked),
368  *			exec header unmodified.
369  */
370 int
371 /*ARGSUSED*/
372 check_exec(struct lwp *l, struct exec_package *epp, struct pathbuf *pb,
373     char **rpath)
374 {
375 	int		error, i;
376 	struct vnode	*vp;
377 	size_t		resid;
378 
379 	if (epp->ep_resolvedname) {
380 		struct nameidata nd;
381 
382 		// grab the absolute pathbuf here before namei() trashes it.
383 		pathbuf_copystring(pb, epp->ep_resolvedname, PATH_MAX);
384 		NDINIT(&nd, LOOKUP, FOLLOW | LOCKLEAF | TRYEMULROOT, pb);
385 
386 		/* first get the vnode */
387 		if ((error = namei(&nd)) != 0)
388 			return error;
389 
390 		epp->ep_vp = vp = nd.ni_vp;
391 #ifdef DIAGNOSTIC
392 		/* paranoia (take this out once namei stuff stabilizes) */
393 		memset(nd.ni_pnbuf, '~', PATH_MAX);
394 #endif
395 	} else {
396 		struct file *fp;
397 
398 		if ((error = fd_getvnode(epp->ep_xfd, &fp)) != 0)
399 			return error;
400 		epp->ep_vp = vp = fp->f_vnode;
401 		vref(vp);
402 		fd_putfile(epp->ep_xfd);
403 		if ((error = exec_resolvename(l, epp, vp, rpath)) != 0)
404 			return error;
405 		vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
406 	}
407 
408 	/* check access and type */
409 	if (vp->v_type != VREG) {
410 		error = SET_ERROR(EACCES);
411 		goto bad1;
412 	}
413 	if ((error = VOP_ACCESS(vp, VEXEC, l->l_cred)) != 0)
414 		goto bad1;
415 
416 	/* get attributes */
417 	/* XXX VOP_GETATTR is the only thing that needs LK_EXCLUSIVE here */
418 	if ((error = VOP_GETATTR(vp, epp->ep_vap, l->l_cred)) != 0)
419 		goto bad1;
420 
421 	/* Check mount point */
422 	if (vp->v_mount->mnt_flag & MNT_NOEXEC) {
423 		error = SET_ERROR(EACCES);
424 		goto bad1;
425 	}
426 	if (vp->v_mount->mnt_flag & MNT_NOSUID)
427 		epp->ep_vap->va_mode &= ~(S_ISUID | S_ISGID);
428 
429 	/* try to open it */
430 	if ((error = VOP_OPEN(vp, FREAD, l->l_cred)) != 0)
431 		goto bad1;
432 
433 	/* now we have the file, get the exec header */
434 	error = vn_rdwr(UIO_READ, vp, epp->ep_hdr, epp->ep_hdrlen, 0,
435 			UIO_SYSSPACE, IO_NODELOCKED, l->l_cred, &resid, NULL);
436 	if (error)
437 		goto bad1;
438 
439 	/* unlock vp, since we need it unlocked from here on out. */
440 	VOP_UNLOCK(vp);
441 
442 #if NVERIEXEC > 0
443 	error = veriexec_verify(l, vp,
444 	    epp->ep_resolvedname ? epp->ep_resolvedname : epp->ep_kname,
445 	    epp->ep_flags & EXEC_INDIR ? VERIEXEC_INDIRECT : VERIEXEC_DIRECT,
446 	    NULL);
447 	if (error)
448 		goto bad2;
449 #endif /* NVERIEXEC > 0 */
450 
451 #ifdef PAX_SEGVGUARD
452 	error = pax_segvguard(l, vp, epp->ep_resolvedname, false);
453 	if (error)
454 		goto bad2;
455 #endif /* PAX_SEGVGUARD */
456 
457 	epp->ep_hdrvalid = epp->ep_hdrlen - resid;
458 
459 	/*
460 	 * Set up default address space limits.  Can be overridden
461 	 * by individual exec packages.
462 	 */
463 	epp->ep_vm_minaddr = exec_vm_minaddr(VM_MIN_ADDRESS);
464 	epp->ep_vm_maxaddr = VM_MAXUSER_ADDRESS;
465 
466 	/*
467 	 * set up the vmcmds for creation of the process
468 	 * address space
469 	 */
470 	error = nexecs == 0 ? SET_ERROR(ENOEXEC) : ENOEXEC;
471 	for (i = 0; i < nexecs; i++) {
472 		int newerror;
473 
474 		epp->ep_esch = execsw[i];
475 		newerror = (*execsw[i]->es_makecmds)(l, epp);
476 
477 		if (!newerror) {
478 			/* Seems ok: check that entry point is not too high */
479 			if (epp->ep_entry >= epp->ep_vm_maxaddr) {
480 #ifdef DIAGNOSTIC
481 				printf("%s: rejecting %p due to "
482 				    "too high entry address (>= %p)\n",
483 					 __func__, (void *)epp->ep_entry,
484 					 (void *)epp->ep_vm_maxaddr);
485 #endif
486 				error = SET_ERROR(ENOEXEC);
487 				break;
488 			}
489 			/* Seems ok: check that entry point is not too low */
490 			if (epp->ep_entry < epp->ep_vm_minaddr) {
491 #ifdef DIAGNOSTIC
492 				printf("%s: rejecting %p due to "
493 				    "too low entry address (< %p)\n",
494 				     __func__, (void *)epp->ep_entry,
495 				     (void *)epp->ep_vm_minaddr);
496 #endif
497 				error = SET_ERROR(ENOEXEC);
498 				break;
499 			}
500 
501 			/* check limits */
502 #ifdef DIAGNOSTIC
503 #define LMSG "%s: rejecting due to %s limit (%ju > %ju)\n"
504 #endif
505 #ifdef MAXTSIZ
506 			if (epp->ep_tsize > MAXTSIZ) {
507 #ifdef DIAGNOSTIC
508 				printf(LMSG, __func__, "text",
509 				    (uintmax_t)epp->ep_tsize,
510 				    (uintmax_t)MAXTSIZ);
511 #endif
512 				error = SET_ERROR(ENOMEM);
513 				break;
514 			}
515 #endif
516 			vsize_t dlimit =
517 			    (vsize_t)l->l_proc->p_rlimit[RLIMIT_DATA].rlim_cur;
518 			if (epp->ep_dsize > dlimit) {
519 #ifdef DIAGNOSTIC
520 				printf(LMSG, __func__, "data",
521 				    (uintmax_t)epp->ep_dsize,
522 				    (uintmax_t)dlimit);
523 #endif
524 				error = SET_ERROR(ENOMEM);
525 				break;
526 			}
527 			return 0;
528 		}
529 
530 		/*
531 		 * Reset all the fields that may have been modified by the
532 		 * loader.
533 		 */
534 		KASSERT(epp->ep_emul_arg == NULL);
535 		if (epp->ep_emul_root != NULL) {
536 			vrele(epp->ep_emul_root);
537 			epp->ep_emul_root = NULL;
538 		}
539 		if (epp->ep_interp != NULL) {
540 			vrele(epp->ep_interp);
541 			epp->ep_interp = NULL;
542 		}
543 		epp->ep_pax_flags = 0;
544 
545 		/* make sure the first "interesting" error code is saved. */
546 		if (error == ENOEXEC)
547 			error = newerror;
548 
549 		if (epp->ep_flags & EXEC_DESTR)
550 			/* Error from "#!" code, tidied up by recursive call */
551 			return error;
552 	}
553 
554 	/* not found, error */
555 
556 	/*
557 	 * free any vmspace-creation commands,
558 	 * and release their references
559 	 */
560 	kill_vmcmds(&epp->ep_vmcmds);
561 
562 #if NVERIEXEC > 0 || defined(PAX_SEGVGUARD)
563 bad2:
564 #endif
565 	/*
566 	 * close and release the vnode, restore the old one, free the
567 	 * pathname buf, and punt.
568 	 */
569 	vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
570 	VOP_CLOSE(vp, FREAD, l->l_cred);
571 	vput(vp);
572 	return error;
573 
574 bad1:
575 	/*
576 	 * free the namei pathname buffer, and put the vnode
577 	 * (which we don't yet have open).
578 	 */
579 	vput(vp);				/* was still locked */
580 	return error;
581 }
582 
583 #ifdef __MACHINE_STACK_GROWS_UP
584 #define STACK_PTHREADSPACE NBPG
585 #else
586 #define STACK_PTHREADSPACE 0
587 #endif
588 
589 static int
590 execve_fetch_element(char * const *array, size_t index, char **value)
591 {
592 	return copyin(array + index, value, sizeof(*value));
593 }
594 
595 /*
596  * exec system call
597  */
598 int
599 sys_execve(struct lwp *l, const struct sys_execve_args *uap, register_t *retval)
600 {
601 	/* {
602 		syscallarg(const char *)	path;
603 		syscallarg(char * const *)	argp;
604 		syscallarg(char * const *)	envp;
605 	} */
606 
607 	return execve1(l, true, SCARG(uap, path), -1, SCARG(uap, argp),
608 	    SCARG(uap, envp), execve_fetch_element);
609 }
610 
611 int
612 sys_fexecve(struct lwp *l, const struct sys_fexecve_args *uap,
613     register_t *retval)
614 {
615 	/* {
616 		syscallarg(int)			fd;
617 		syscallarg(char * const *)	argp;
618 		syscallarg(char * const *)	envp;
619 	} */
620 
621 	return execve1(l, false, NULL, SCARG(uap, fd), SCARG(uap, argp),
622 	    SCARG(uap, envp), execve_fetch_element);
623 }
624 
625 /*
626  * Load modules to try and execute an image that we do not understand.
627  * If no execsw entries are present, we load those likely to be needed
628  * in order to run native images only.  Otherwise, we autoload all
629  * possible modules that could let us run the binary.  XXX lame
630  */
631 static void
632 exec_autoload(void)
633 {
634 #ifdef MODULAR
635 	static const char * const native[] = {
636 		"exec_elf32",
637 		"exec_elf64",
638 		"exec_script",
639 		NULL
640 	};
641 	static const char * const compat[] = {
642 		"exec_elf32",
643 		"exec_elf64",
644 		"exec_script",
645 		"exec_aout",
646 		"exec_coff",
647 		"exec_ecoff",
648 		"compat_aoutm68k",
649 		"compat_netbsd32",
650 #if 0
651 		"compat_linux",
652 		"compat_linux32",
653 #endif
654 		"compat_sunos",
655 		"compat_sunos32",
656 		"compat_ultrix",
657 		NULL
658 	};
659 	char const * const *list;
660 	int i;
661 
662 	list = nexecs == 0 ? native : compat;
663 	for (i = 0; list[i] != NULL; i++) {
664 		if (module_autoload(list[i], MODULE_CLASS_EXEC) != 0) {
665 			continue;
666 		}
667 		yield();
668 	}
669 #endif
670 }
671 
672 /*
673  * Copy the user or kernel supplied upath to the allocated pathbuffer pbp
674  * making it absolute in the process, by prepending the current working
675  * directory if it is not. If offs is supplied it will contain the offset
676  * where the original supplied copy of upath starts.
677  */
678 int
679 exec_makepathbuf(struct lwp *l, const char *upath, enum uio_seg seg,
680     struct pathbuf **pbp, size_t *offs)
681 {
682 	char *path, *bp;
683 	size_t len, tlen;
684 	int error;
685 	struct cwdinfo *cwdi;
686 
687 	path = PNBUF_GET();
688 	if (seg == UIO_SYSSPACE) {
689 		error = copystr(upath, path, MAXPATHLEN, &len);
690 	} else {
691 		error = copyinstr(upath, path, MAXPATHLEN, &len);
692 	}
693 	if (error)
694 		goto err;
695 
696 	if (path[0] == '/') {
697 		if (offs)
698 			*offs = 0;
699 		goto out;
700 	}
701 
702 	len++;
703 	if (len + 1 >= MAXPATHLEN) {
704 		error = SET_ERROR(ENAMETOOLONG);
705 		goto err;
706 	}
707 	bp = path + MAXPATHLEN - len;
708 	memmove(bp, path, len);
709 	*(--bp) = '/';
710 
711 	cwdi = l->l_proc->p_cwdi;
712 	rw_enter(&cwdi->cwdi_lock, RW_READER);
713 	error = getcwd_common(cwdi->cwdi_cdir, NULL, &bp, path, MAXPATHLEN / 2,
714 	    GETCWD_CHECK_ACCESS, l);
715 	rw_exit(&cwdi->cwdi_lock);
716 
717 	if (error)
718 		goto err;
719 	tlen = path + MAXPATHLEN - bp;
720 
721 	memmove(path, bp, tlen);
722 	path[tlen - 1] = '\0';
723 	if (offs)
724 		*offs = tlen - len;
725 out:
726 	*pbp = pathbuf_assimilate(path);
727 	return 0;
728 err:
729 	PNBUF_PUT(path);
730 	return error;
731 }
732 
733 vaddr_t
734 exec_vm_minaddr(vaddr_t va_min)
735 {
736 	/*
737 	 * Increase va_min if we don't want NULL to be mappable by the
738 	 * process.
739 	 */
740 #define VM_MIN_GUARD	PAGE_SIZE
741 	if (user_va0_disable && (va_min < VM_MIN_GUARD))
742 		return VM_MIN_GUARD;
743 	return va_min;
744 }
745 
746 static int
747 execve_loadvm(struct lwp *l, bool has_path, const char *path, int fd,
748 	char * const *args, char * const *envs,
749 	execve_fetch_element_t fetch_element,
750 	struct execve_data * restrict data)
751 {
752 	struct exec_package	* const epp = &data->ed_pack;
753 	int			error;
754 	struct proc		*p;
755 	char			*dp;
756 	u_int			modgen;
757 
758 	KASSERT(data != NULL);
759 
760 	p = l->l_proc;
761 	modgen = 0;
762 
763 	SDT_PROBE(proc, kernel, , exec, path, 0, 0, 0, 0);
764 
765 	/*
766 	 * Check if we have exceeded our number of processes limit.
767 	 * This is so that we handle the case where a root daemon
768 	 * forked, ran setuid to become the desired user and is trying
769 	 * to exec. The obvious place to do the reference counting check
770 	 * is setuid(), but we don't do the reference counting check there
771 	 * like other OS's do because then all the programs that use setuid()
772 	 * must be modified to check the return code of setuid() and exit().
773 	 * It is dangerous to make setuid() fail, because it fails open and
774 	 * the program will continue to run as root. If we make it succeed
775 	 * and return an error code, again we are not enforcing the limit.
776 	 * The best place to enforce the limit is here, when the process tries
777 	 * to execute a new image, because eventually the process will need
778 	 * to call exec in order to do something useful.
779 	 */
780  retry:
781 	if (p->p_flag & PK_SUGID) {
782 		if (kauth_authorize_process(l->l_cred, KAUTH_PROCESS_RLIMIT,
783 			p, KAUTH_ARG(KAUTH_REQ_PROCESS_RLIMIT_BYPASS),
784 			&p->p_rlimit[RLIMIT_NPROC],
785 			KAUTH_ARG(RLIMIT_NPROC)) != 0 &&
786 		    chgproccnt(kauth_cred_getuid(l->l_cred), 0) >
787 		    p->p_rlimit[RLIMIT_NPROC].rlim_cur)
788 			return SET_ERROR(EAGAIN);
789 	}
790 
791 	/*
792 	 * Drain existing references and forbid new ones.  The process
793 	 * should be left alone until we're done here.  This is necessary
794 	 * to avoid race conditions - e.g. in ptrace() - that might allow
795 	 * a local user to illicitly obtain elevated privileges.
796 	 */
797 	rw_enter(&p->p_reflock, RW_WRITER);
798 
799 	if (has_path) {
800 		size_t	offs;
801 		/*
802 		 * Init the namei data to point the file user's program name.
803 		 * This is done here rather than in check_exec(), so that it's
804 		 * possible to override this settings if any of makecmd/probe
805 		 * functions call check_exec() recursively - for example,
806 		 * see exec_script_makecmds().
807 		 */
808 		if ((error = exec_makepathbuf(l, path, UIO_USERSPACE,
809 		    &data->ed_pathbuf, &offs)) != 0)
810 			goto clrflg;
811 		data->ed_pathstring = pathbuf_stringcopy_get(data->ed_pathbuf);
812 		epp->ep_kname = data->ed_pathstring + offs;
813 		data->ed_resolvedname = PNBUF_GET();
814 		epp->ep_resolvedname = data->ed_resolvedname;
815 		epp->ep_xfd = -1;
816 	} else {
817 		data->ed_pathbuf = pathbuf_assimilate(strcpy(PNBUF_GET(), "/"));
818 		data->ed_pathstring = pathbuf_stringcopy_get(data->ed_pathbuf);
819 		epp->ep_kname = "*fexecve*";
820 		data->ed_resolvedname = NULL;
821 		epp->ep_resolvedname = NULL;
822 		epp->ep_xfd = fd;
823 	}
824 
825 
826 	/*
827 	 * initialize the fields of the exec package.
828 	 */
829 	epp->ep_hdr = kmem_alloc(exec_maxhdrsz, KM_SLEEP);
830 	epp->ep_hdrlen = exec_maxhdrsz;
831 	epp->ep_hdrvalid = 0;
832 	epp->ep_emul_arg = NULL;
833 	epp->ep_emul_arg_free = NULL;
834 	memset(&epp->ep_vmcmds, 0, sizeof(epp->ep_vmcmds));
835 	epp->ep_vap = &data->ed_attr;
836 	epp->ep_flags = (p->p_flag & PK_32) ? EXEC_FROM32 : 0;
837 	MD_TOPDOWN_INIT(epp);
838 	epp->ep_emul_root = NULL;
839 	epp->ep_interp = NULL;
840 	epp->ep_esch = NULL;
841 	epp->ep_pax_flags = 0;
842 	memset(epp->ep_machine_arch, 0, sizeof(epp->ep_machine_arch));
843 
844 	rw_enter(&exec_lock, RW_READER);
845 
846 	/* see if we can run it. */
847 	if ((error = check_exec(l, epp, data->ed_pathbuf,
848 	    &data->ed_resolvedname)) != 0) {
849 		if (error != ENOENT && error != EACCES && error != ENOEXEC) {
850 			DPRINTF(("%s: check exec failed for %s, error %d\n",
851 			    __func__, epp->ep_kname, error));
852 		}
853 		goto freehdr;
854 	}
855 
856 	/* allocate an argument buffer */
857 	data->ed_argp = pool_get(&exec_pool, PR_WAITOK);
858 	KASSERT(data->ed_argp != NULL);
859 	dp = data->ed_argp;
860 
861 	if ((error = copyinargs(data, args, envs, fetch_element, &dp)) != 0) {
862 		goto bad;
863 	}
864 
865 	/*
866 	 * Calculate the new stack size.
867 	 */
868 
869 #ifdef __MACHINE_STACK_GROWS_UP
870 /*
871  * copyargs() fills argc/argv/envp from the lower address even on
872  * __MACHINE_STACK_GROWS_UP machines.  Reserve a few words just below the SP
873  * so that _rtld() use it.
874  */
875 #define	RTLD_GAP	32
876 #else
877 #define	RTLD_GAP	0
878 #endif
879 
880 	const size_t argenvstrlen = (char *)ALIGN(dp) - data->ed_argp;
881 
882 	data->ed_argslen = calcargs(data, argenvstrlen);
883 
884 	const size_t len = calcstack(data, pax_aslr_stack_gap(epp) + RTLD_GAP);
885 
886 	if (len > epp->ep_ssize) {
887 		/* in effect, compare to initial limit */
888 		DPRINTF(("%s: stack limit exceeded %zu\n", __func__, len));
889 		error = SET_ERROR(ENOMEM);
890 		goto bad;
891 	}
892 	/* adjust "active stack depth" for process VSZ */
893 	epp->ep_ssize = len;
894 
895 	return 0;
896 
897  bad:
898 	/* free the vmspace-creation commands, and release their references */
899 	kill_vmcmds(&epp->ep_vmcmds);
900 	/* kill any opened file descriptor, if necessary */
901 	if (epp->ep_flags & EXEC_HASFD) {
902 		epp->ep_flags &= ~EXEC_HASFD;
903 		fd_close(epp->ep_fd);
904 	}
905 	/* close and put the exec'd file */
906 	vn_lock(epp->ep_vp, LK_EXCLUSIVE | LK_RETRY);
907 	VOP_CLOSE(epp->ep_vp, FREAD, l->l_cred);
908 	vput(epp->ep_vp);
909 	pool_put(&exec_pool, data->ed_argp);
910 
911  freehdr:
912 	kmem_free(epp->ep_hdr, epp->ep_hdrlen);
913 	if (epp->ep_emul_root != NULL)
914 		vrele(epp->ep_emul_root);
915 	if (epp->ep_interp != NULL)
916 		vrele(epp->ep_interp);
917 
918 	rw_exit(&exec_lock);
919 
920 	exec_path_free(data);
921 
922  clrflg:
923 	rw_exit(&p->p_reflock);
924 
925 	if (modgen != module_gen && error == ENOEXEC) {
926 		modgen = module_gen;
927 		exec_autoload();
928 		goto retry;
929 	}
930 
931 	SDT_PROBE(proc, kernel, , exec__failure, error, 0, 0, 0, 0);
932 	return error;
933 }
934 
935 static int
936 execve_dovmcmds(struct lwp *l, struct execve_data * restrict data)
937 {
938 	struct exec_package	* const epp = &data->ed_pack;
939 	struct proc		*p = l->l_proc;
940 	struct exec_vmcmd	*base_vcp;
941 	int			error = 0;
942 	size_t			i;
943 
944 	/* record proc's vnode, for use by procfs and others */
945 	if (p->p_textvp)
946 		vrele(p->p_textvp);
947 	vref(epp->ep_vp);
948 	p->p_textvp = epp->ep_vp;
949 
950 	/* create the new process's VM space by running the vmcmds */
951 	KASSERTMSG(epp->ep_vmcmds.evs_used != 0, "%s: no vmcmds", __func__);
952 
953 #ifdef TRACE_EXEC
954 	DUMPVMCMDS(epp, 0, 0);
955 #endif
956 
957 	base_vcp = NULL;
958 
959 	for (i = 0; i < epp->ep_vmcmds.evs_used && !error; i++) {
960 		struct exec_vmcmd *vcp;
961 
962 		vcp = &epp->ep_vmcmds.evs_cmds[i];
963 		if (vcp->ev_flags & VMCMD_RELATIVE) {
964 			KASSERTMSG(base_vcp != NULL,
965 			    "%s: relative vmcmd with no base", __func__);
966 			KASSERTMSG((vcp->ev_flags & VMCMD_BASE) == 0,
967 			    "%s: illegal base & relative vmcmd", __func__);
968 			vcp->ev_addr += base_vcp->ev_addr;
969 		}
970 		error = (*vcp->ev_proc)(l, vcp);
971 		if (error)
972 			DUMPVMCMDS(epp, i, error);
973 		if (vcp->ev_flags & VMCMD_BASE)
974 			base_vcp = vcp;
975 	}
976 
977 	/* free the vmspace-creation commands, and release their references */
978 	kill_vmcmds(&epp->ep_vmcmds);
979 
980 	vn_lock(epp->ep_vp, LK_EXCLUSIVE | LK_RETRY);
981 	VOP_CLOSE(epp->ep_vp, FREAD, l->l_cred);
982 	vput(epp->ep_vp);
983 
984 	/* if an error happened, deallocate and punt */
985 	if (error != 0) {
986 		DPRINTF(("%s: vmcmd %zu failed: %d\n", __func__, i - 1, error));
987 	}
988 	return error;
989 }
990 
991 static void
992 execve_free_data(struct execve_data *data)
993 {
994 	struct exec_package	* const epp = &data->ed_pack;
995 
996 	/* free the vmspace-creation commands, and release their references */
997 	kill_vmcmds(&epp->ep_vmcmds);
998 	/* kill any opened file descriptor, if necessary */
999 	if (epp->ep_flags & EXEC_HASFD) {
1000 		epp->ep_flags &= ~EXEC_HASFD;
1001 		fd_close(epp->ep_fd);
1002 	}
1003 
1004 	/* close and put the exec'd file */
1005 	vn_lock(epp->ep_vp, LK_EXCLUSIVE | LK_RETRY);
1006 	VOP_CLOSE(epp->ep_vp, FREAD, curlwp->l_cred);
1007 	vput(epp->ep_vp);
1008 	pool_put(&exec_pool, data->ed_argp);
1009 
1010 	kmem_free(epp->ep_hdr, epp->ep_hdrlen);
1011 	if (epp->ep_emul_root != NULL)
1012 		vrele(epp->ep_emul_root);
1013 	if (epp->ep_interp != NULL)
1014 		vrele(epp->ep_interp);
1015 
1016 	exec_path_free(data);
1017 }
1018 
1019 static void
1020 pathexec(struct proc *p, const char *resolvedname)
1021 {
1022 	/* set command name & other accounting info */
1023 	const char *cmdname;
1024 
1025 	if (resolvedname == NULL) {
1026 		cmdname = "*fexecve*";
1027 		resolvedname = "/";
1028 	} else {
1029 		cmdname = strrchr(resolvedname, '/') + 1;
1030 	}
1031 	KASSERTMSG(resolvedname[0] == '/', "bad resolvedname `%s'",
1032 	    resolvedname);
1033 
1034 	strlcpy(p->p_comm, cmdname, sizeof(p->p_comm));
1035 
1036 	kmem_strfree(p->p_path);
1037 	p->p_path = kmem_strdupsize(resolvedname, NULL, KM_SLEEP);
1038 }
1039 
1040 /* XXX elsewhere */
1041 static int
1042 credexec(struct lwp *l, struct execve_data *data)
1043 {
1044 	struct proc *p = l->l_proc;
1045 	struct vattr *attr = &data->ed_attr;
1046 	int error;
1047 
1048 	/*
1049 	 * Deal with set[ug]id.  MNT_NOSUID has already been used to disable
1050 	 * s[ug]id.  It's OK to check for PSL_TRACED here as we have blocked
1051 	 * out additional references on the process for the moment.
1052 	 */
1053 	if ((p->p_slflag & PSL_TRACED) == 0 &&
1054 
1055 	    (((attr->va_mode & S_ISUID) != 0 &&
1056 	      kauth_cred_geteuid(l->l_cred) != attr->va_uid) ||
1057 
1058 	     ((attr->va_mode & S_ISGID) != 0 &&
1059 	      kauth_cred_getegid(l->l_cred) != attr->va_gid))) {
1060 		/*
1061 		 * Mark the process as SUGID before we do
1062 		 * anything that might block.
1063 		 */
1064 		proc_crmod_enter();
1065 		proc_crmod_leave(NULL, NULL, true);
1066 		if (data->ed_argc == 0) {
1067 			DPRINTF((
1068 			    "%s: not executing set[ug]id binary with no args\n",
1069 			    __func__));
1070 			return SET_ERROR(EINVAL);
1071 		}
1072 
1073 		/* Make sure file descriptors 0..2 are in use. */
1074 		if ((error = fd_checkstd()) != 0) {
1075 			DPRINTF(("%s: fdcheckstd failed %d\n",
1076 			    __func__, error));
1077 			return error;
1078 		}
1079 
1080 		/*
1081 		 * Copy the credential so other references don't see our
1082 		 * changes.
1083 		 */
1084 		l->l_cred = kauth_cred_copy(l->l_cred);
1085 #ifdef KTRACE
1086 		/*
1087 		 * If the persistent trace flag isn't set, turn off.
1088 		 */
1089 		if (p->p_tracep) {
1090 			mutex_enter(&ktrace_lock);
1091 			if (!(p->p_traceflag & KTRFAC_PERSISTENT))
1092 				ktrderef(p);
1093 			mutex_exit(&ktrace_lock);
1094 		}
1095 #endif
1096 		if (attr->va_mode & S_ISUID)
1097 			kauth_cred_seteuid(l->l_cred, attr->va_uid);
1098 		if (attr->va_mode & S_ISGID)
1099 			kauth_cred_setegid(l->l_cred, attr->va_gid);
1100 	} else {
1101 		if (kauth_cred_geteuid(l->l_cred) ==
1102 		    kauth_cred_getuid(l->l_cred) &&
1103 		    kauth_cred_getegid(l->l_cred) ==
1104 		    kauth_cred_getgid(l->l_cred))
1105 			p->p_flag &= ~PK_SUGID;
1106 	}
1107 
1108 	/*
1109 	 * Copy the credential so other references don't see our changes.
1110 	 * Test to see if this is necessary first, since in the common case
1111 	 * we won't need a private reference.
1112 	 */
1113 	if (kauth_cred_geteuid(l->l_cred) != kauth_cred_getsvuid(l->l_cred) ||
1114 	    kauth_cred_getegid(l->l_cred) != kauth_cred_getsvgid(l->l_cred)) {
1115 		l->l_cred = kauth_cred_copy(l->l_cred);
1116 		kauth_cred_setsvuid(l->l_cred, kauth_cred_geteuid(l->l_cred));
1117 		kauth_cred_setsvgid(l->l_cred, kauth_cred_getegid(l->l_cred));
1118 	}
1119 
1120 	/* Update the master credentials. */
1121 	if (l->l_cred != p->p_cred) {
1122 		kauth_cred_t ocred;
1123 		mutex_enter(p->p_lock);
1124 		ocred = p->p_cred;
1125 		p->p_cred = kauth_cred_hold(l->l_cred);
1126 		mutex_exit(p->p_lock);
1127 		kauth_cred_free(ocred);
1128 	}
1129 
1130 	return 0;
1131 }
1132 
1133 static void
1134 emulexec(struct lwp *l, struct exec_package *epp)
1135 {
1136 	struct proc		*p = l->l_proc;
1137 
1138 	/* The emulation root will usually have been found when we looked
1139 	 * for the elf interpreter (or similar), if not look now. */
1140 	if (epp->ep_esch->es_emul->e_path != NULL &&
1141 	    epp->ep_emul_root == NULL)
1142 		emul_find_root(l, epp);
1143 
1144 	/* Any old emulation root got removed by fdcloseexec */
1145 	rw_enter(&p->p_cwdi->cwdi_lock, RW_WRITER);
1146 	p->p_cwdi->cwdi_edir = epp->ep_emul_root;
1147 	rw_exit(&p->p_cwdi->cwdi_lock);
1148 	epp->ep_emul_root = NULL;
1149 	if (epp->ep_interp != NULL)
1150 		vrele(epp->ep_interp);
1151 
1152 	/*
1153 	 * Call emulation specific exec hook. This can setup per-process
1154 	 * p->p_emuldata or do any other per-process stuff an emulation needs.
1155 	 *
1156 	 * If we are executing process of different emulation than the
1157 	 * original forked process, call e_proc_exit() of the old emulation
1158 	 * first, then e_proc_exec() of new emulation. If the emulation is
1159 	 * same, the exec hook code should deallocate any old emulation
1160 	 * resources held previously by this process.
1161 	 */
1162 	if (p->p_emul && p->p_emul->e_proc_exit
1163 	    && p->p_emul != epp->ep_esch->es_emul)
1164 		(*p->p_emul->e_proc_exit)(p);
1165 
1166 	/*
1167 	 * Call exec hook. Emulation code may NOT store reference to anything
1168 	 * from &pack.
1169 	 */
1170 	if (epp->ep_esch->es_emul->e_proc_exec)
1171 		(*epp->ep_esch->es_emul->e_proc_exec)(p, epp);
1172 
1173 	/* update p_emul, the old value is no longer needed */
1174 	p->p_emul = epp->ep_esch->es_emul;
1175 
1176 	/* ...and the same for p_execsw */
1177 	p->p_execsw = epp->ep_esch;
1178 
1179 #ifdef __HAVE_SYSCALL_INTERN
1180 	(*p->p_emul->e_syscall_intern)(p);
1181 #endif
1182 	ktremul();
1183 }
1184 
1185 static int
1186 execve_runproc(struct lwp *l, struct execve_data * restrict data,
1187 	bool no_local_exec_lock, bool is_spawn)
1188 {
1189 	struct exec_package	* const epp = &data->ed_pack;
1190 	int error = 0;
1191 	struct proc		*p;
1192 	struct vmspace		*vm;
1193 
1194 	/*
1195 	 * In case of a posix_spawn operation, the child doing the exec
1196 	 * might not hold the reader lock on exec_lock, but the parent
1197 	 * will do this instead.
1198 	 */
1199 	KASSERT(no_local_exec_lock || rw_lock_held(&exec_lock));
1200 	KASSERT(!no_local_exec_lock || is_spawn);
1201 	KASSERT(data != NULL);
1202 
1203 	p = l->l_proc;
1204 
1205 	/* Get rid of other LWPs. */
1206 	if (p->p_nlwps > 1) {
1207 		mutex_enter(p->p_lock);
1208 		exit_lwps(l);
1209 		mutex_exit(p->p_lock);
1210 	}
1211 	KDASSERT(p->p_nlwps == 1);
1212 
1213 	/*
1214 	 * All of the other LWPs got rid of their robust futexes
1215 	 * when they exited above, but we might still have some
1216 	 * to dispose of.  Do that now.
1217 	 */
1218 	if (__predict_false(l->l_robust_head != 0)) {
1219 		futex_release_all_lwp(l);
1220 		/*
1221 		 * Since this LWP will live on with a different
1222 		 * program image, we need to clear the robust
1223 		 * futex list pointer here.
1224 		 */
1225 		l->l_robust_head = 0;
1226 	}
1227 
1228 	/* Destroy any lwpctl info. */
1229 	if (p->p_lwpctl != NULL)
1230 		lwp_ctl_exit();
1231 
1232 	/* Remove POSIX timers */
1233 	ptimers_free(p, TIMERS_POSIX);
1234 
1235 	/* Set the PaX flags. */
1236 	pax_set_flags(epp, p);
1237 
1238 	/*
1239 	 * Do whatever is necessary to prepare the address space
1240 	 * for remapping.  Note that this might replace the current
1241 	 * vmspace with another!
1242 	 *
1243 	 * vfork(): do not touch any user space data in the new child
1244 	 * until we have awoken the parent below, or it will defeat
1245 	 * lazy pmap switching (on x86).
1246 	 */
1247 	if (is_spawn)
1248 		uvmspace_spawn(l, epp->ep_vm_minaddr,
1249 		    epp->ep_vm_maxaddr,
1250 		    epp->ep_flags & EXEC_TOPDOWN_VM);
1251 	else
1252 		uvmspace_exec(l, epp->ep_vm_minaddr,
1253 		    epp->ep_vm_maxaddr,
1254 		    epp->ep_flags & EXEC_TOPDOWN_VM);
1255 	vm = p->p_vmspace;
1256 
1257 	vm->vm_taddr = (void *)epp->ep_taddr;
1258 	vm->vm_tsize = btoc(epp->ep_tsize);
1259 	vm->vm_daddr = (void*)epp->ep_daddr;
1260 	vm->vm_dsize = btoc(epp->ep_dsize);
1261 	vm->vm_ssize = btoc(epp->ep_ssize);
1262 	vm->vm_issize = 0;
1263 	vm->vm_maxsaddr = (void *)epp->ep_maxsaddr;
1264 	vm->vm_minsaddr = (void *)epp->ep_minsaddr;
1265 
1266 	pax_aslr_init_vm(l, vm, epp);
1267 
1268 	cwdexec(p);
1269 	fd_closeexec();		/* handle close on exec */
1270 
1271 	if (__predict_false(ktrace_on))
1272 		fd_ktrexecfd();
1273 
1274 	execsigs(p);		/* reset caught signals */
1275 
1276 	mutex_enter(p->p_lock);
1277 	l->l_ctxlink = NULL;	/* reset ucontext link */
1278 	p->p_acflag &= ~AFORK;
1279 	p->p_flag |= PK_EXEC;
1280 	mutex_exit(p->p_lock);
1281 
1282 	error = credexec(l, data);
1283 	if (error)
1284 		goto exec_abort;
1285 
1286 #if defined(__HAVE_RAS)
1287 	/*
1288 	 * Remove all RASs from the address space.
1289 	 */
1290 	ras_purgeall();
1291 #endif
1292 
1293 	/*
1294 	 * Stop profiling.
1295 	 */
1296 	if ((p->p_stflag & PST_PROFIL) != 0) {
1297 		mutex_spin_enter(&p->p_stmutex);
1298 		stopprofclock(p);
1299 		mutex_spin_exit(&p->p_stmutex);
1300 	}
1301 
1302 	/*
1303 	 * It's OK to test PL_PPWAIT unlocked here, as other LWPs have
1304 	 * exited and exec()/exit() are the only places it will be cleared.
1305 	 *
1306 	 * Once the parent has been awoken, curlwp may teleport to a new CPU
1307 	 * in sched_vforkexec(), and it's then OK to start messing with user
1308 	 * data.  See comment above.
1309 	 */
1310 	if ((p->p_lflag & PL_PPWAIT) != 0) {
1311 		bool samecpu;
1312 		lwp_t *lp;
1313 
1314 		mutex_enter(&proc_lock);
1315 		lp = p->p_vforklwp;
1316 		p->p_vforklwp = NULL;
1317 		l->l_lwpctl = NULL; /* was on loan from blocked parent */
1318 
1319 		/* Clear flags after cv_broadcast() (scheduler needs them). */
1320 		p->p_lflag &= ~PL_PPWAIT;
1321 		lp->l_vforkwaiting = false;
1322 
1323 		/* If parent is still on same CPU, teleport curlwp elsewhere. */
1324 		samecpu = (lp->l_cpu == curlwp->l_cpu);
1325 		cv_broadcast(&lp->l_waitcv);
1326 		mutex_exit(&proc_lock);
1327 
1328 		/* Give the parent its CPU back - find a new home. */
1329 		KASSERT(!is_spawn);
1330 		sched_vforkexec(l, samecpu);
1331 	}
1332 
1333 	/* Now map address space. */
1334 	error = execve_dovmcmds(l, data);
1335 	if (error != 0)
1336 		goto exec_abort;
1337 
1338 	pathexec(p, epp->ep_resolvedname);
1339 
1340 	char * const newstack = STACK_GROW(vm->vm_minsaddr, epp->ep_ssize);
1341 
1342 	error = copyoutargs(data, l, newstack);
1343 	if (error != 0)
1344 		goto exec_abort;
1345 
1346 	doexechooks(p);
1347 
1348 	/*
1349 	 * Set initial SP at the top of the stack.
1350 	 *
1351 	 * Note that on machines where stack grows up (e.g. hppa), SP points to
1352 	 * the end of arg/env strings.  Userland guesses the address of argc
1353 	 * via ps_strings::ps_argvstr.
1354 	 */
1355 
1356 	/* Setup new registers and do misc. setup. */
1357 	(*epp->ep_esch->es_emul->e_setregs)(l, epp, (vaddr_t)newstack);
1358 	if (epp->ep_esch->es_setregs)
1359 		(*epp->ep_esch->es_setregs)(l, epp, (vaddr_t)newstack);
1360 
1361 	/* Provide a consistent LWP private setting */
1362 	(void)lwp_setprivate(l, NULL);
1363 
1364 	/* Discard all PCU state; need to start fresh */
1365 	pcu_discard_all(l);
1366 
1367 	/* map the process's signal trampoline code */
1368 	if ((error = exec_sigcode_map(p, epp->ep_esch->es_emul)) != 0) {
1369 		DPRINTF(("%s: map sigcode failed %d\n", __func__, error));
1370 		goto exec_abort;
1371 	}
1372 
1373 	pool_put(&exec_pool, data->ed_argp);
1374 
1375 	/*
1376 	 * Notify anyone who might care that we've exec'd.
1377 	 *
1378 	 * This is slightly racy; someone could sneak in and
1379 	 * attach a knote after we've decided not to notify,
1380 	 * or vice-versa, but that's not particularly bothersome.
1381 	 * knote_proc_exec() will acquire p->p_lock as needed.
1382 	 */
1383 	if (!SLIST_EMPTY(&p->p_klist)) {
1384 		knote_proc_exec(p);
1385 	}
1386 
1387 	kmem_free(epp->ep_hdr, epp->ep_hdrlen);
1388 
1389 	SDT_PROBE(proc, kernel, , exec__success, epp->ep_kname, 0, 0, 0, 0);
1390 
1391 	emulexec(l, epp);
1392 
1393 	/* Allow new references from the debugger/procfs. */
1394 	rw_exit(&p->p_reflock);
1395 	if (!no_local_exec_lock)
1396 		rw_exit(&exec_lock);
1397 
1398 	mutex_enter(&proc_lock);
1399 
1400 	/* posix_spawn(3) reports a single event with implied exec(3) */
1401 	if ((p->p_slflag & PSL_TRACED) && !is_spawn) {
1402 		mutex_enter(p->p_lock);
1403 		eventswitch(TRAP_EXEC, 0, 0);
1404 		mutex_enter(&proc_lock);
1405 	}
1406 
1407 	if (p->p_sflag & PS_STOPEXEC) {
1408 		ksiginfoq_t kq;
1409 
1410 		KASSERT(l->l_blcnt == 0);
1411 		p->p_pptr->p_nstopchild++;
1412 		p->p_waited = 0;
1413 		mutex_enter(p->p_lock);
1414 		ksiginfo_queue_init(&kq);
1415 		sigclearall(p, &contsigmask, &kq);
1416 		lwp_lock(l);
1417 		l->l_stat = LSSTOP;
1418 		p->p_stat = SSTOP;
1419 		p->p_nrlwps--;
1420 		lwp_unlock(l);
1421 		mutex_exit(p->p_lock);
1422 		mutex_exit(&proc_lock);
1423 		lwp_lock(l);
1424 		spc_lock(l->l_cpu);
1425 		mi_switch(l);
1426 		ksiginfo_queue_drain(&kq);
1427 	} else {
1428 		mutex_exit(&proc_lock);
1429 	}
1430 
1431 	exec_path_free(data);
1432 #ifdef TRACE_EXEC
1433 	DPRINTF(("%s finished\n", __func__));
1434 #endif
1435 	return EJUSTRETURN;
1436 
1437  exec_abort:
1438 	SDT_PROBE(proc, kernel, , exec__failure, error, 0, 0, 0, 0);
1439 	rw_exit(&p->p_reflock);
1440 	if (!no_local_exec_lock)
1441 		rw_exit(&exec_lock);
1442 
1443 	exec_path_free(data);
1444 
1445 	/*
1446 	 * the old process doesn't exist anymore.  exit gracefully.
1447 	 * get rid of the (new) address space we have created, if any, get rid
1448 	 * of our namei data and vnode, and exit noting failure
1449 	 */
1450 	if (vm != NULL) {
1451 		uvm_deallocate(&vm->vm_map, VM_MIN_ADDRESS,
1452 			VM_MAXUSER_ADDRESS - VM_MIN_ADDRESS);
1453 	}
1454 
1455 	exec_free_emul_arg(epp);
1456 	pool_put(&exec_pool, data->ed_argp);
1457 	kmem_free(epp->ep_hdr, epp->ep_hdrlen);
1458 	if (epp->ep_emul_root != NULL)
1459 		vrele(epp->ep_emul_root);
1460 	if (epp->ep_interp != NULL)
1461 		vrele(epp->ep_interp);
1462 
1463 	/* Acquire the sched-state mutex (exit1() will release it). */
1464 	if (!is_spawn) {
1465 		mutex_enter(p->p_lock);
1466 		exit1(l, error, SIGABRT);
1467 	}
1468 
1469 	return error;
1470 }
1471 
1472 int
1473 execve1(struct lwp *l, bool has_path, const char *path, int fd,
1474     char * const *args, char * const *envs,
1475     execve_fetch_element_t fetch_element)
1476 {
1477 	struct execve_data data;
1478 	int error;
1479 
1480 	error = execve_loadvm(l, has_path, path, fd, args, envs, fetch_element,
1481 	    &data);
1482 	if (error)
1483 		return error;
1484 	error = execve_runproc(l, &data, false, false);
1485 	return error;
1486 }
1487 
1488 static size_t
1489 fromptrsz(const struct exec_package *epp)
1490 {
1491 	return (epp->ep_flags & EXEC_FROM32) ? sizeof(int) : sizeof(char *);
1492 }
1493 
1494 static size_t
1495 ptrsz(const struct exec_package *epp)
1496 {
1497 	return (epp->ep_flags & EXEC_32) ? sizeof(int) : sizeof(char *);
1498 }
1499 
1500 static size_t
1501 calcargs(struct execve_data * restrict data, const size_t argenvstrlen)
1502 {
1503 	struct exec_package	* const epp = &data->ed_pack;
1504 
1505 	const size_t nargenvptrs =
1506 	    1 +				/* long argc */
1507 	    data->ed_argc +		/* char *argv[] */
1508 	    1 +				/* \0 */
1509 	    data->ed_envc +		/* char *env[] */
1510 	    1;				/* \0 */
1511 
1512 	return (nargenvptrs * ptrsz(epp))	/* pointers */
1513 	    + argenvstrlen			/* strings */
1514 	    + epp->ep_esch->es_arglen;		/* auxinfo */
1515 }
1516 
1517 static size_t
1518 calcstack(struct execve_data * restrict data, const size_t gaplen)
1519 {
1520 	struct exec_package	* const epp = &data->ed_pack;
1521 
1522 	data->ed_szsigcode = epp->ep_esch->es_emul->e_esigcode -
1523 	    epp->ep_esch->es_emul->e_sigcode;
1524 
1525 	data->ed_ps_strings_sz = (epp->ep_flags & EXEC_32) ?
1526 	    sizeof(struct ps_strings32) : sizeof(struct ps_strings);
1527 
1528 	const size_t sigcode_psstr_sz =
1529 	    data->ed_szsigcode +	/* sigcode */
1530 	    data->ed_ps_strings_sz +	/* ps_strings */
1531 	    STACK_PTHREADSPACE;		/* pthread space */
1532 
1533 	const size_t stacklen =
1534 	    data->ed_argslen +
1535 	    gaplen +
1536 	    sigcode_psstr_sz;
1537 
1538 	/* make the stack "safely" aligned */
1539 	return STACK_LEN_ALIGN(stacklen, STACK_ALIGNBYTES);
1540 }
1541 
1542 static int
1543 copyoutargs(struct execve_data * restrict data, struct lwp *l,
1544     char * const newstack)
1545 {
1546 	struct exec_package	* const epp = &data->ed_pack;
1547 	struct proc		*p = l->l_proc;
1548 	int			error;
1549 
1550 	memset(&data->ed_arginfo, 0, sizeof(data->ed_arginfo));
1551 
1552 	/* remember information about the process */
1553 	data->ed_arginfo.ps_nargvstr = data->ed_argc;
1554 	data->ed_arginfo.ps_nenvstr = data->ed_envc;
1555 
1556 	/*
1557 	 * Allocate the stack address passed to the newly execve()'ed process.
1558 	 *
1559 	 * The new stack address will be set to the SP (stack pointer) register
1560 	 * in setregs().
1561 	 */
1562 
1563 	char *newargs = STACK_ALLOC(
1564 	    STACK_SHRINK(newstack, data->ed_argslen), data->ed_argslen);
1565 
1566 	error = (*epp->ep_esch->es_copyargs)(l, epp,
1567 	    &data->ed_arginfo, &newargs, data->ed_argp);
1568 
1569 	if (error) {
1570 		DPRINTF(("%s: copyargs failed %d\n", __func__, error));
1571 		return error;
1572 	}
1573 
1574 	error = copyoutpsstrs(data, p);
1575 	if (error != 0)
1576 		return error;
1577 
1578 	return 0;
1579 }
1580 
1581 static int
1582 copyoutpsstrs(struct execve_data * restrict data, struct proc *p)
1583 {
1584 	struct exec_package	* const epp = &data->ed_pack;
1585 	struct ps_strings32	arginfo32;
1586 	void			*aip;
1587 	int			error;
1588 
1589 	/* fill process ps_strings info */
1590 	p->p_psstrp = (vaddr_t)STACK_ALLOC(STACK_GROW(epp->ep_minsaddr,
1591 	    STACK_PTHREADSPACE), data->ed_ps_strings_sz);
1592 
1593 	if (epp->ep_flags & EXEC_32) {
1594 		aip = &arginfo32;
1595 		arginfo32.ps_argvstr = (vaddr_t)data->ed_arginfo.ps_argvstr;
1596 		arginfo32.ps_nargvstr = data->ed_arginfo.ps_nargvstr;
1597 		arginfo32.ps_envstr = (vaddr_t)data->ed_arginfo.ps_envstr;
1598 		arginfo32.ps_nenvstr = data->ed_arginfo.ps_nenvstr;
1599 	} else
1600 		aip = &data->ed_arginfo;
1601 
1602 	/* copy out the process's ps_strings structure */
1603 	if ((error = copyout(aip, (void *)p->p_psstrp, data->ed_ps_strings_sz))
1604 	    != 0) {
1605 		DPRINTF(("%s: ps_strings copyout %p->%p size %zu failed\n",
1606 		    __func__, aip, (void *)p->p_psstrp, data->ed_ps_strings_sz));
1607 		return error;
1608 	}
1609 
1610 	return 0;
1611 }
1612 
1613 static int
1614 copyinargs(struct execve_data * restrict data, char * const *args,
1615     char * const *envs, execve_fetch_element_t fetch_element, char **dpp)
1616 {
1617 	struct exec_package	* const epp = &data->ed_pack;
1618 	char			*dp;
1619 	size_t			i;
1620 	int			error;
1621 
1622 	dp = *dpp;
1623 
1624 	data->ed_argc = 0;
1625 
1626 	/* copy the fake args list, if there's one, freeing it as we go */
1627 	if (epp->ep_flags & EXEC_HASARGL) {
1628 		struct exec_fakearg	*fa = epp->ep_fa;
1629 
1630 		while (fa->fa_arg != NULL) {
1631 			const size_t maxlen = ARG_MAX - (dp - data->ed_argp);
1632 			size_t len;
1633 
1634 			len = strlcpy(dp, fa->fa_arg, maxlen);
1635 			/* Count NUL into len. */
1636 			if (len < maxlen)
1637 				len++;
1638 			else {
1639 				while (fa->fa_arg != NULL) {
1640 					kmem_free(fa->fa_arg, fa->fa_len);
1641 					fa++;
1642 				}
1643 				kmem_free(epp->ep_fa, epp->ep_fa_len);
1644 				epp->ep_flags &= ~EXEC_HASARGL;
1645 				return SET_ERROR(E2BIG);
1646 			}
1647 			ktrexecarg(fa->fa_arg, len - 1);
1648 			dp += len;
1649 
1650 			kmem_free(fa->fa_arg, fa->fa_len);
1651 			fa++;
1652 			data->ed_argc++;
1653 		}
1654 		kmem_free(epp->ep_fa, epp->ep_fa_len);
1655 		epp->ep_flags &= ~EXEC_HASARGL;
1656 	}
1657 
1658 	/*
1659 	 * Read and count argument strings from user.
1660 	 */
1661 
1662 	if (args == NULL) {
1663 		DPRINTF(("%s: null args\n", __func__));
1664 		return SET_ERROR(EINVAL);
1665 	}
1666 	if (epp->ep_flags & EXEC_SKIPARG)
1667 		args = (const void *)((const char *)args + fromptrsz(epp));
1668 	i = 0;
1669 	error = copyinargstrs(data, args, fetch_element, &dp, &i, ktr_execarg);
1670 	if (error != 0) {
1671 		DPRINTF(("%s: copyin arg %d\n", __func__, error));
1672 		return error;
1673 	}
1674 	data->ed_argc += i;
1675 
1676 	/*
1677 	 * Read and count environment strings from user.
1678 	 */
1679 
1680 	data->ed_envc = 0;
1681 	/* environment need not be there */
1682 	if (envs == NULL)
1683 		goto done;
1684 	i = 0;
1685 	error = copyinargstrs(data, envs, fetch_element, &dp, &i, ktr_execenv);
1686 	if (error != 0) {
1687 		DPRINTF(("%s: copyin env %d\n", __func__, error));
1688 		return error;
1689 	}
1690 	data->ed_envc += i;
1691 
1692 done:
1693 	*dpp = dp;
1694 
1695 	return 0;
1696 }
1697 
1698 static int
1699 copyinargstrs(struct execve_data * restrict data, char * const *strs,
1700     execve_fetch_element_t fetch_element, char **dpp, size_t *ip,
1701     void (*ktr)(const void *, size_t))
1702 {
1703 	char			*dp, *sp;
1704 	size_t			i;
1705 	int			error;
1706 
1707 	dp = *dpp;
1708 
1709 	i = 0;
1710 	while (1) {
1711 		const size_t maxlen = ARG_MAX - (dp - data->ed_argp);
1712 		size_t len;
1713 
1714 		if ((error = (*fetch_element)(strs, i, &sp)) != 0) {
1715 			return error;
1716 		}
1717 		if (!sp)
1718 			break;
1719 		if ((error = copyinstr(sp, dp, maxlen, &len)) != 0) {
1720 			if (error == ENAMETOOLONG)
1721 				error = SET_ERROR(E2BIG);
1722 			return error;
1723 		}
1724 		if (__predict_false(ktrace_on))
1725 			(*ktr)(dp, len - 1);
1726 		dp += len;
1727 		i++;
1728 	}
1729 
1730 	*dpp = dp;
1731 	*ip = i;
1732 
1733 	return 0;
1734 }
1735 
1736 /*
1737  * Copy argv and env strings from kernel buffer (argp) to the new stack.
1738  * Those strings are located just after auxinfo.
1739  */
1740 int
1741 copyargs(struct lwp *l, struct exec_package *pack, struct ps_strings *arginfo,
1742     char **stackp, void *argp)
1743 {
1744 	char	**cpp, *dp, *sp;
1745 	size_t	len;
1746 	void	*nullp;
1747 	long	argc, envc;
1748 	int	error;
1749 
1750 	cpp = (char **)*stackp;
1751 	nullp = NULL;
1752 	argc = arginfo->ps_nargvstr;
1753 	envc = arginfo->ps_nenvstr;
1754 
1755 	/* argc on stack is long */
1756 	CTASSERT(sizeof(*cpp) == sizeof(argc));
1757 
1758 	dp = (char *)(cpp +
1759 	    1 +				/* long argc */
1760 	    argc +			/* char *argv[] */
1761 	    1 +				/* \0 */
1762 	    envc +			/* char *env[] */
1763 	    1) +			/* \0 */
1764 	    pack->ep_esch->es_arglen;	/* auxinfo */
1765 	sp = argp;
1766 
1767 	if ((error = copyout(&argc, cpp++, sizeof(argc))) != 0) {
1768 		COPYPRINTF("", cpp - 1, sizeof(argc));
1769 		return error;
1770 	}
1771 
1772 	/* XXX don't copy them out, remap them! */
1773 	arginfo->ps_argvstr = cpp; /* remember location of argv for later */
1774 
1775 	for (; --argc >= 0; sp += len, dp += len) {
1776 		if ((error = copyout(&dp, cpp++, sizeof(dp))) != 0) {
1777 			COPYPRINTF("", cpp - 1, sizeof(dp));
1778 			return error;
1779 		}
1780 		if ((error = copyoutstr(sp, dp, ARG_MAX, &len)) != 0) {
1781 			COPYPRINTF("str", dp, (size_t)ARG_MAX);
1782 			return error;
1783 		}
1784 	}
1785 
1786 	if ((error = copyout(&nullp, cpp++, sizeof(nullp))) != 0) {
1787 		COPYPRINTF("", cpp - 1, sizeof(nullp));
1788 		return error;
1789 	}
1790 
1791 	arginfo->ps_envstr = cpp; /* remember location of envp for later */
1792 
1793 	for (; --envc >= 0; sp += len, dp += len) {
1794 		if ((error = copyout(&dp, cpp++, sizeof(dp))) != 0) {
1795 			COPYPRINTF("", cpp - 1, sizeof(dp));
1796 			return error;
1797 		}
1798 		if ((error = copyoutstr(sp, dp, ARG_MAX, &len)) != 0) {
1799 			COPYPRINTF("str", dp, (size_t)ARG_MAX);
1800 			return error;
1801 		}
1802 
1803 	}
1804 
1805 	if ((error = copyout(&nullp, cpp++, sizeof(nullp))) != 0) {
1806 		COPYPRINTF("", cpp - 1, sizeof(nullp));
1807 		return error;
1808 	}
1809 
1810 	*stackp = (char *)cpp;
1811 	return 0;
1812 }
1813 
1814 
1815 /*
1816  * Add execsw[] entries.
1817  */
1818 int
1819 exec_add(struct execsw *esp, int count)
1820 {
1821 	struct exec_entry	*it;
1822 	int			i, error = 0;
1823 
1824 	if (count == 0) {
1825 		return 0;
1826 	}
1827 
1828 	/* Check for duplicates. */
1829 	rw_enter(&exec_lock, RW_WRITER);
1830 	for (i = 0; i < count; i++) {
1831 		LIST_FOREACH(it, &ex_head, ex_list) {
1832 			/* assume unique (makecmds, probe_func, emulation) */
1833 			if (it->ex_sw->es_makecmds == esp[i].es_makecmds &&
1834 			    it->ex_sw->u.elf_probe_func ==
1835 			    esp[i].u.elf_probe_func &&
1836 			    it->ex_sw->es_emul == esp[i].es_emul) {
1837 				rw_exit(&exec_lock);
1838 				return SET_ERROR(EEXIST);
1839 			}
1840 		}
1841 	}
1842 
1843 	/* Allocate new entries. */
1844 	for (i = 0; i < count; i++) {
1845 		it = kmem_alloc(sizeof(*it), KM_SLEEP);
1846 		it->ex_sw = &esp[i];
1847 		error = exec_sigcode_alloc(it->ex_sw->es_emul);
1848 		if (error != 0) {
1849 			kmem_free(it, sizeof(*it));
1850 			break;
1851 		}
1852 		LIST_INSERT_HEAD(&ex_head, it, ex_list);
1853 	}
1854 	/* If even one fails, remove them all back. */
1855 	if (error != 0) {
1856 		for (i--; i >= 0; i--) {
1857 			it = LIST_FIRST(&ex_head);
1858 			LIST_REMOVE(it, ex_list);
1859 			exec_sigcode_free(it->ex_sw->es_emul);
1860 			kmem_free(it, sizeof(*it));
1861 		}
1862 		rw_exit(&exec_lock);
1863 		return error;
1864 	}
1865 
1866 	/* update execsw[] */
1867 	exec_init(0);
1868 	rw_exit(&exec_lock);
1869 	return 0;
1870 }
1871 
1872 /*
1873  * Remove execsw[] entry.
1874  */
1875 int
1876 exec_remove(struct execsw *esp, int count)
1877 {
1878 	struct exec_entry	*it, *next;
1879 	int			i;
1880 	const struct proclist_desc *pd;
1881 	proc_t			*p;
1882 
1883 	if (count == 0) {
1884 		return 0;
1885 	}
1886 
1887 	/* Abort if any are busy. */
1888 	rw_enter(&exec_lock, RW_WRITER);
1889 	for (i = 0; i < count; i++) {
1890 		mutex_enter(&proc_lock);
1891 		for (pd = proclists; pd->pd_list != NULL; pd++) {
1892 			PROCLIST_FOREACH(p, pd->pd_list) {
1893 				if (p->p_execsw == &esp[i]) {
1894 					mutex_exit(&proc_lock);
1895 					rw_exit(&exec_lock);
1896 					return SET_ERROR(EBUSY);
1897 				}
1898 			}
1899 		}
1900 		mutex_exit(&proc_lock);
1901 	}
1902 
1903 	/* None are busy, so remove them all. */
1904 	for (i = 0; i < count; i++) {
1905 		for (it = LIST_FIRST(&ex_head); it != NULL; it = next) {
1906 			next = LIST_NEXT(it, ex_list);
1907 			if (it->ex_sw == &esp[i]) {
1908 				LIST_REMOVE(it, ex_list);
1909 				exec_sigcode_free(it->ex_sw->es_emul);
1910 				kmem_free(it, sizeof(*it));
1911 				break;
1912 			}
1913 		}
1914 	}
1915 
1916 	/* update execsw[] */
1917 	exec_init(0);
1918 	rw_exit(&exec_lock);
1919 	return 0;
1920 }
1921 
1922 /*
1923  * Initialize exec structures. If init_boot is true, also does necessary
1924  * one-time initialization (it's called from main() that way).
1925  * Once system is multiuser, this should be called with exec_lock held,
1926  * i.e. via exec_{add|remove}().
1927  */
1928 int
1929 exec_init(int init_boot)
1930 {
1931 	const struct execsw 	**sw;
1932 	struct exec_entry	*ex;
1933 	SLIST_HEAD(,exec_entry)	first;
1934 	SLIST_HEAD(,exec_entry)	any;
1935 	SLIST_HEAD(,exec_entry)	last;
1936 	int			i, sz;
1937 
1938 	if (init_boot) {
1939 		/* do one-time initializations */
1940 		vaddr_t vmin = 0, vmax;
1941 
1942 		rw_init(&exec_lock);
1943 		exec_map = uvm_km_suballoc(kernel_map, &vmin, &vmax,
1944 		    maxexec*NCARGS, VM_MAP_PAGEABLE, false, NULL);
1945 		pool_init(&exec_pool, NCARGS, 0, 0, PR_NOALIGN|PR_NOTOUCH,
1946 		    "execargs", &exec_palloc, IPL_NONE);
1947 		pool_sethardlimit(&exec_pool, maxexec, "should not happen", 0);
1948 	} else {
1949 		KASSERT(rw_write_held(&exec_lock));
1950 	}
1951 
1952 	/* Sort each entry onto the appropriate queue. */
1953 	SLIST_INIT(&first);
1954 	SLIST_INIT(&any);
1955 	SLIST_INIT(&last);
1956 	sz = 0;
1957 	LIST_FOREACH(ex, &ex_head, ex_list) {
1958 		switch(ex->ex_sw->es_prio) {
1959 		case EXECSW_PRIO_FIRST:
1960 			SLIST_INSERT_HEAD(&first, ex, ex_slist);
1961 			break;
1962 		case EXECSW_PRIO_ANY:
1963 			SLIST_INSERT_HEAD(&any, ex, ex_slist);
1964 			break;
1965 		case EXECSW_PRIO_LAST:
1966 			SLIST_INSERT_HEAD(&last, ex, ex_slist);
1967 			break;
1968 		default:
1969 			panic("%s", __func__);
1970 			break;
1971 		}
1972 		sz++;
1973 	}
1974 
1975 	/*
1976 	 * Create new execsw[].  Ensure we do not try a zero-sized
1977 	 * allocation.
1978 	 */
1979 	sw = kmem_alloc(sz * sizeof(struct execsw *) + 1, KM_SLEEP);
1980 	i = 0;
1981 	SLIST_FOREACH(ex, &first, ex_slist) {
1982 		sw[i++] = ex->ex_sw;
1983 	}
1984 	SLIST_FOREACH(ex, &any, ex_slist) {
1985 		sw[i++] = ex->ex_sw;
1986 	}
1987 	SLIST_FOREACH(ex, &last, ex_slist) {
1988 		sw[i++] = ex->ex_sw;
1989 	}
1990 
1991 	/* Replace old execsw[] and free used memory. */
1992 	if (execsw != NULL) {
1993 		kmem_free(__UNCONST(execsw),
1994 		    nexecs * sizeof(struct execsw *) + 1);
1995 	}
1996 	execsw = sw;
1997 	nexecs = sz;
1998 
1999 	/* Figure out the maximum size of an exec header. */
2000 	exec_maxhdrsz = sizeof(int);
2001 	for (i = 0; i < nexecs; i++) {
2002 		if (execsw[i]->es_hdrsz > exec_maxhdrsz)
2003 			exec_maxhdrsz = execsw[i]->es_hdrsz;
2004 	}
2005 
2006 	return 0;
2007 }
2008 
2009 int
2010 exec_sigcode_alloc(const struct emul *e)
2011 {
2012 	vaddr_t va;
2013 	vsize_t sz;
2014 	int error;
2015 	struct uvm_object *uobj;
2016 
2017 	KASSERT(rw_lock_held(&exec_lock));
2018 
2019 	if (e == NULL || e->e_sigobject == NULL)
2020 		return 0;
2021 
2022 	sz = (vaddr_t)e->e_esigcode - (vaddr_t)e->e_sigcode;
2023 	if (sz == 0)
2024 		return 0;
2025 
2026 	/*
2027 	 * Create a sigobject for this emulation.
2028 	 *
2029 	 * sigobject is an anonymous memory object (just like SYSV shared
2030 	 * memory) that we keep a permanent reference to and that we map
2031 	 * in all processes that need this sigcode. The creation is simple,
2032 	 * we create an object, add a permanent reference to it, map it in
2033 	 * kernel space, copy out the sigcode to it and unmap it.
2034 	 * We map it with PROT_READ|PROT_EXEC into the process just
2035 	 * the way sys_mmap() would map it.
2036 	 */
2037 	if (*e->e_sigobject == NULL) {
2038 		uobj = uao_create(sz, 0);
2039 		(*uobj->pgops->pgo_reference)(uobj);
2040 		va = vm_map_min(kernel_map);
2041 		if ((error = uvm_map(kernel_map, &va, round_page(sz),
2042 		    uobj, 0, 0,
2043 		    UVM_MAPFLAG(UVM_PROT_RW, UVM_PROT_RW,
2044 		    UVM_INH_SHARE, UVM_ADV_RANDOM, 0)))) {
2045 			printf("sigcode kernel mapping failed %d\n", error);
2046 			(*uobj->pgops->pgo_detach)(uobj);
2047 			return error;
2048 		}
2049 		memcpy((void *)va, e->e_sigcode, sz);
2050 #ifdef PMAP_NEED_PROCWR
2051 		pmap_procwr(&proc0, va, sz);
2052 #endif
2053 		uvm_unmap(kernel_map, va, va + round_page(sz));
2054 		*e->e_sigobject = uobj;
2055 		KASSERT(uobj->uo_refs == 1);
2056 	} else {
2057 		/* if already created, reference++ */
2058 		uobj = *e->e_sigobject;
2059 		(*uobj->pgops->pgo_reference)(uobj);
2060 	}
2061 
2062 	return 0;
2063 }
2064 
2065 void
2066 exec_sigcode_free(const struct emul *e)
2067 {
2068 	struct uvm_object *uobj;
2069 
2070 	KASSERT(rw_lock_held(&exec_lock));
2071 
2072 	if (e == NULL || e->e_sigobject == NULL)
2073 		return;
2074 
2075 	uobj = *e->e_sigobject;
2076 	if (uobj == NULL)
2077 		return;
2078 
2079 	if (uobj->uo_refs == 1)
2080 		*e->e_sigobject = NULL;	/* I'm the last person to reference. */
2081 	(*uobj->pgops->pgo_detach)(uobj);
2082 }
2083 
2084 static int
2085 exec_sigcode_map(struct proc *p, const struct emul *e)
2086 {
2087 	vaddr_t va;
2088 	vsize_t sz;
2089 	int error;
2090 	struct uvm_object *uobj;
2091 
2092 	sz = (vaddr_t)e->e_esigcode - (vaddr_t)e->e_sigcode;
2093 	if (e->e_sigobject == NULL || sz == 0)
2094 		return 0;
2095 
2096 	uobj = *e->e_sigobject;
2097 	if (uobj == NULL)
2098 		return 0;
2099 
2100 	/* Just a hint to uvm_map where to put it. */
2101 	va = e->e_vm_default_addr(p, (vaddr_t)p->p_vmspace->vm_daddr,
2102 	    round_page(sz), p->p_vmspace->vm_map.flags & VM_MAP_TOPDOWN);
2103 
2104 #ifdef __alpha__
2105 	/*
2106 	 * Tru64 puts /sbin/loader at the end of user virtual memory,
2107 	 * which causes the above calculation to put the sigcode at
2108 	 * an invalid address.  Put it just below the text instead.
2109 	 */
2110 	if (va == (vaddr_t)vm_map_max(&p->p_vmspace->vm_map)) {
2111 		va = (vaddr_t)p->p_vmspace->vm_taddr - round_page(sz);
2112 	}
2113 #endif
2114 
2115 	(*uobj->pgops->pgo_reference)(uobj);
2116 	error = uvm_map(&p->p_vmspace->vm_map, &va, round_page(sz),
2117 			uobj, 0, 0,
2118 			UVM_MAPFLAG(UVM_PROT_RX, UVM_PROT_RX, UVM_INH_SHARE,
2119 				    UVM_ADV_RANDOM, 0));
2120 	if (error) {
2121 		DPRINTF(("%s, %d: map %p "
2122 		    "uvm_map %#"PRIxVSIZE"@%#"PRIxVADDR" failed %d\n",
2123 		    __func__, __LINE__, &p->p_vmspace->vm_map, round_page(sz),
2124 		    va, error));
2125 		(*uobj->pgops->pgo_detach)(uobj);
2126 		return error;
2127 	}
2128 	p->p_sigctx.ps_sigcode = (void *)va;
2129 	return 0;
2130 }
2131 
2132 /*
2133  * Release a refcount on spawn_exec_data and destroy memory, if this
2134  * was the last one.
2135  */
2136 static void
2137 spawn_exec_data_release(struct spawn_exec_data *data)
2138 {
2139 
2140 	membar_release();
2141 	if (atomic_dec_32_nv(&data->sed_refcnt) != 0)
2142 		return;
2143 	membar_acquire();
2144 
2145 	cv_destroy(&data->sed_cv_child_ready);
2146 	mutex_destroy(&data->sed_mtx_child);
2147 
2148 	if (data->sed_actions)
2149 		posix_spawn_fa_free(data->sed_actions,
2150 		    data->sed_actions->len);
2151 	if (data->sed_attrs)
2152 		kmem_free(data->sed_attrs,
2153 		    sizeof(*data->sed_attrs));
2154 	kmem_free(data, sizeof(*data));
2155 }
2156 
2157 static int
2158 handle_posix_spawn_file_actions(struct posix_spawn_file_actions *actions)
2159 {
2160 	struct lwp *l = curlwp;
2161 	register_t retval;
2162 	int error, newfd;
2163 
2164 	if (actions == NULL)
2165 		return 0;
2166 
2167 	for (size_t i = 0; i < actions->len; i++) {
2168 		const struct posix_spawn_file_actions_entry *fae =
2169 		    &actions->fae[i];
2170 		switch (fae->fae_action) {
2171 		case FAE_OPEN:
2172 			if (fd_getfile(fae->fae_fildes) != NULL) {
2173 				error = fd_close(fae->fae_fildes);
2174 				if (error)
2175 					return error;
2176 			}
2177 			error = fd_open(fae->fae_path, fae->fae_oflag,
2178 			    fae->fae_mode, &newfd);
2179 			if (error)
2180 				return error;
2181 			if (newfd != fae->fae_fildes) {
2182 				error = dodup(l, newfd,
2183 				    fae->fae_fildes, 0, &retval);
2184 				if (fd_getfile(newfd) != NULL)
2185 					fd_close(newfd);
2186 			}
2187 			break;
2188 		case FAE_DUP2:
2189 			error = dodup(l, fae->fae_fildes,
2190 			    fae->fae_newfildes, 0, &retval);
2191 			break;
2192 		case FAE_CLOSE:
2193 			if (fd_getfile(fae->fae_fildes) == NULL) {
2194 				return SET_ERROR(EBADF);
2195 			}
2196 			error = fd_close(fae->fae_fildes);
2197 			break;
2198 		case FAE_CHDIR:
2199 			error = do_sys_chdir(l, fae->fae_chdir_path,
2200 			    UIO_SYSSPACE, &retval);
2201 			break;
2202 		case FAE_FCHDIR:
2203 			error = do_sys_fchdir(l, fae->fae_fildes, &retval);
2204 			break;
2205 		}
2206 		if (error)
2207 			return error;
2208 	}
2209 	return 0;
2210 }
2211 
2212 static int
2213 handle_posix_spawn_attrs(struct posix_spawnattr *attrs, struct proc *parent)
2214 {
2215 	struct sigaction sigact;
2216 	int error;
2217 	struct proc *p = curproc;
2218 	struct lwp *l = curlwp;
2219 
2220 	if (attrs == NULL)
2221 		return 0;
2222 
2223 	memset(&sigact, 0, sizeof(sigact));
2224 	sigact._sa_u._sa_handler = SIG_DFL;
2225 	sigact.sa_flags = 0;
2226 
2227 	/*
2228 	 * set state to SSTOP so that this proc can be found by pid.
2229 	 * see proc_enterprp, do_sched_setparam below
2230 	 */
2231 	mutex_enter(&proc_lock);
2232 	/*
2233 	 * p_stat should be SACTIVE, so we need to adjust the
2234 	 * parent's p_nstopchild here.  For safety, just make
2235 	 * we're on the good side of SDEAD before we adjust.
2236 	 */
2237 	int ostat = p->p_stat;
2238 	KASSERT(ostat < SSTOP);
2239 	p->p_stat = SSTOP;
2240 	p->p_waited = 0;
2241 	p->p_pptr->p_nstopchild++;
2242 	mutex_exit(&proc_lock);
2243 
2244 	/* Set process group */
2245 	if (attrs->sa_flags & POSIX_SPAWN_SETPGROUP) {
2246 		pid_t mypid = p->p_pid;
2247 		pid_t pgrp = attrs->sa_pgroup;
2248 
2249 		if (pgrp == 0)
2250 			pgrp = mypid;
2251 
2252 		error = proc_enterpgrp(parent, mypid, pgrp, false);
2253 		if (error)
2254 			goto out;
2255 	}
2256 
2257 	/* Set scheduler policy */
2258 	if (attrs->sa_flags & POSIX_SPAWN_SETSCHEDULER)
2259 		error = do_sched_setparam(p->p_pid, 0, attrs->sa_schedpolicy,
2260 		    &attrs->sa_schedparam);
2261 	else if (attrs->sa_flags & POSIX_SPAWN_SETSCHEDPARAM) {
2262 		error = do_sched_setparam(parent->p_pid, 0,
2263 		    SCHED_NONE, &attrs->sa_schedparam);
2264 	}
2265 	if (error)
2266 		goto out;
2267 
2268 	/* Reset user ID's */
2269 	if (attrs->sa_flags & POSIX_SPAWN_RESETIDS) {
2270 		error = do_setresgid(l, -1, kauth_cred_getgid(l->l_cred), -1,
2271 		     ID_E_EQ_R | ID_E_EQ_S);
2272 		if (error)
2273 			return error;
2274 		error = do_setresuid(l, -1, kauth_cred_getuid(l->l_cred), -1,
2275 		    ID_E_EQ_R | ID_E_EQ_S);
2276 		if (error)
2277 			goto out;
2278 	}
2279 
2280 	/* Set signal masks/defaults */
2281 	if (attrs->sa_flags & POSIX_SPAWN_SETSIGMASK) {
2282 		mutex_enter(p->p_lock);
2283 		error = sigprocmask1(l, SIG_SETMASK, &attrs->sa_sigmask, NULL);
2284 		mutex_exit(p->p_lock);
2285 		if (error)
2286 			goto out;
2287 	}
2288 
2289 	if (attrs->sa_flags & POSIX_SPAWN_SETSIGDEF) {
2290 		/*
2291 		 * The following sigaction call is using a sigaction
2292 		 * version 0 trampoline which is in the compatibility
2293 		 * code only. This is not a problem because for SIG_DFL
2294 		 * and SIG_IGN, the trampolines are now ignored. If they
2295 		 * were not, this would be a problem because we are
2296 		 * holding the exec_lock, and the compat code needs
2297 		 * to do the same in order to replace the trampoline
2298 		 * code of the process.
2299 		 */
2300 		for (int i = 1; i <= NSIG; i++) {
2301 			if (sigismember(&attrs->sa_sigdefault, i))
2302 				sigaction1(l, i, &sigact, NULL, NULL, 0);
2303 		}
2304 	}
2305 	error = 0;
2306 out:
2307 	mutex_enter(&proc_lock);
2308 	p->p_stat = ostat;
2309 	p->p_pptr->p_nstopchild--;
2310 	mutex_exit(&proc_lock);
2311 	return error;
2312 }
2313 
2314 /*
2315  * A child lwp of a posix_spawn operation starts here and ends up in
2316  * cpu_spawn_return, dealing with all filedescriptor and scheduler
2317  * manipulations in between.
2318  * The parent waits for the child, as it is not clear whether the child
2319  * will be able to acquire its own exec_lock. If it can, the parent can
2320  * be released early and continue running in parallel. If not (or if the
2321  * magic debug flag is passed in the scheduler attribute struct), the
2322  * child rides on the parent's exec lock until it is ready to return to
2323  * to userland - and only then releases the parent. This method loses
2324  * concurrency, but improves error reporting.
2325  */
2326 static void
2327 spawn_return(void *arg)
2328 {
2329 	struct spawn_exec_data *spawn_data = arg;
2330 	struct lwp *l = curlwp;
2331 	struct proc *p = l->l_proc;
2332 	int error;
2333 	bool have_reflock;
2334 	bool parent_is_waiting = true;
2335 
2336 	/*
2337 	 * Check if we can release parent early.
2338 	 * We either need to have no sed_attrs, or sed_attrs does not
2339 	 * have POSIX_SPAWN_RETURNERROR or one of the flags, that require
2340 	 * safe access to the parent proc (passed in sed_parent).
2341 	 * We then try to get the exec_lock, and only if that works, we can
2342 	 * release the parent here already.
2343 	 */
2344 	struct posix_spawnattr *attrs = spawn_data->sed_attrs;
2345 	if ((!attrs || (attrs->sa_flags
2346 		& (POSIX_SPAWN_RETURNERROR|POSIX_SPAWN_SETPGROUP)) == 0)
2347 	    && rw_tryenter(&exec_lock, RW_READER)) {
2348 		parent_is_waiting = false;
2349 		mutex_enter(&spawn_data->sed_mtx_child);
2350 		cv_signal(&spawn_data->sed_cv_child_ready);
2351 		mutex_exit(&spawn_data->sed_mtx_child);
2352 	}
2353 
2354 	/* don't allow debugger access yet */
2355 	rw_enter(&p->p_reflock, RW_WRITER);
2356 	have_reflock = true;
2357 
2358 	/* handle posix_spawnattr */
2359 	error = handle_posix_spawn_attrs(attrs, spawn_data->sed_parent);
2360 	if (error)
2361 		goto report_error;
2362 
2363 	/* handle posix_spawn_file_actions */
2364 	error = handle_posix_spawn_file_actions(spawn_data->sed_actions);
2365 	if (error)
2366 		goto report_error;
2367 
2368 	/* now do the real exec */
2369 	error = execve_runproc(l, &spawn_data->sed_exec, parent_is_waiting,
2370 	    true);
2371 	have_reflock = false;
2372 	if (error == EJUSTRETURN)
2373 		error = 0;
2374 	else if (error)
2375 		goto report_error;
2376 
2377 	if (parent_is_waiting) {
2378 		mutex_enter(&spawn_data->sed_mtx_child);
2379 		cv_signal(&spawn_data->sed_cv_child_ready);
2380 		mutex_exit(&spawn_data->sed_mtx_child);
2381 	}
2382 
2383 	/* release our refcount on the data */
2384 	spawn_exec_data_release(spawn_data);
2385 
2386 	if ((p->p_slflag & (PSL_TRACED|PSL_TRACEDCHILD)) ==
2387 	    (PSL_TRACED|PSL_TRACEDCHILD)) {
2388 		eventswitchchild(p, TRAP_CHLD, PTRACE_POSIX_SPAWN);
2389 	}
2390 
2391 	/* and finally: leave to userland for the first time */
2392 	cpu_spawn_return(l);
2393 
2394 	/* NOTREACHED */
2395 	return;
2396 
2397  report_error:
2398 	if (have_reflock) {
2399 		/*
2400 		 * We have not passed through execve_runproc(),
2401 		 * which would have released the p_reflock and also
2402 		 * taken ownership of the sed_exec part of spawn_data,
2403 		 * so release/free both here.
2404 		 */
2405 		rw_exit(&p->p_reflock);
2406 		execve_free_data(&spawn_data->sed_exec);
2407 	}
2408 
2409 	if (parent_is_waiting) {
2410 		/* pass error to parent */
2411 		mutex_enter(&spawn_data->sed_mtx_child);
2412 		spawn_data->sed_error = error;
2413 		cv_signal(&spawn_data->sed_cv_child_ready);
2414 		mutex_exit(&spawn_data->sed_mtx_child);
2415 	} else {
2416 		rw_exit(&exec_lock);
2417 	}
2418 
2419 	/* release our refcount on the data */
2420 	spawn_exec_data_release(spawn_data);
2421 
2422 	/* done, exit */
2423 	mutex_enter(p->p_lock);
2424 	/*
2425 	 * Posix explicitly asks for an exit code of 127 if we report
2426 	 * errors from the child process - so, unfortunately, there
2427 	 * is no way to report a more exact error code.
2428 	 * A NetBSD specific workaround is POSIX_SPAWN_RETURNERROR as
2429 	 * flag bit in the attrp argument to posix_spawn(2), see above.
2430 	 */
2431 	exit1(l, 127, 0);
2432 }
2433 
2434 static __inline char **
2435 posix_spawn_fae_path(struct posix_spawn_file_actions_entry *fae)
2436 {
2437 	switch (fae->fae_action) {
2438 	case FAE_OPEN:
2439 		return &fae->fae_path;
2440 	case FAE_CHDIR:
2441 		return &fae->fae_chdir_path;
2442 	default:
2443 		return NULL;
2444 	}
2445 }
2446 
2447 void
2448 posix_spawn_fa_free(struct posix_spawn_file_actions *fa, size_t len)
2449 {
2450 
2451 	for (size_t i = 0; i < len; i++) {
2452 		char **pathp = posix_spawn_fae_path(&fa->fae[i]);
2453 		if (pathp)
2454 			kmem_strfree(*pathp);
2455 	}
2456 	if (fa->len > 0)
2457 		kmem_free(fa->fae, sizeof(*fa->fae) * fa->len);
2458 	kmem_free(fa, sizeof(*fa));
2459 }
2460 
2461 static int
2462 posix_spawn_fa_alloc(struct posix_spawn_file_actions **fap,
2463     const struct posix_spawn_file_actions *ufa, rlim_t lim)
2464 {
2465 	struct posix_spawn_file_actions *fa;
2466 	struct posix_spawn_file_actions_entry *fae;
2467 	char *pbuf = NULL;
2468 	int error;
2469 	size_t i = 0;
2470 
2471 	fa = kmem_alloc(sizeof(*fa), KM_SLEEP);
2472 	error = copyin(ufa, fa, sizeof(*fa));
2473 	if (error || fa->len == 0) {
2474 		kmem_free(fa, sizeof(*fa));
2475 		return error;	/* 0 if not an error, and len == 0 */
2476 	}
2477 
2478 	if (fa->len > lim) {
2479 		kmem_free(fa, sizeof(*fa));
2480 		return SET_ERROR(EINVAL);
2481 	}
2482 
2483 	fa->size = fa->len;
2484 	size_t fal = fa->len * sizeof(*fae);
2485 	fae = fa->fae;
2486 	fa->fae = kmem_alloc(fal, KM_SLEEP);
2487 	error = copyin(fae, fa->fae, fal);
2488 	if (error)
2489 		goto out;
2490 
2491 	pbuf = PNBUF_GET();
2492 	for (; i < fa->len; i++) {
2493 		char **pathp = posix_spawn_fae_path(&fa->fae[i]);
2494 		if (pathp == NULL)
2495 			continue;
2496 		error = copyinstr(*pathp, pbuf, MAXPATHLEN, &fal);
2497 		if (error)
2498 			goto out;
2499 		*pathp = kmem_alloc(fal, KM_SLEEP);
2500 		memcpy(*pathp, pbuf, fal);
2501 	}
2502 	PNBUF_PUT(pbuf);
2503 
2504 	*fap = fa;
2505 	return 0;
2506 out:
2507 	if (pbuf)
2508 		PNBUF_PUT(pbuf);
2509 	posix_spawn_fa_free(fa, i);
2510 	return error;
2511 }
2512 
2513 /*
2514  * N.B. increments nprocs upon success.  Callers need to drop nprocs if
2515  * they fail for some other reason.
2516  */
2517 int
2518 check_posix_spawn(struct lwp *l1)
2519 {
2520 	int error, tnprocs, count;
2521 	uid_t uid;
2522 	struct proc *p1;
2523 
2524 	p1 = l1->l_proc;
2525 	uid = kauth_cred_getuid(l1->l_cred);
2526 	tnprocs = atomic_inc_uint_nv(&nprocs);
2527 
2528 	/*
2529 	 * Although process entries are dynamically created, we still keep
2530 	 * a global limit on the maximum number we will create.
2531 	 */
2532 	if (__predict_false(tnprocs >= maxproc))
2533 		error = -1;
2534 	else
2535 		error = kauth_authorize_process(l1->l_cred,
2536 		    KAUTH_PROCESS_FORK, p1, KAUTH_ARG(tnprocs), NULL, NULL);
2537 
2538 	if (error) {
2539 		atomic_dec_uint(&nprocs);
2540 		return SET_ERROR(EAGAIN);
2541 	}
2542 
2543 	/*
2544 	 * Enforce limits.
2545 	 */
2546 	count = chgproccnt(uid, 1);
2547 	if (kauth_authorize_process(l1->l_cred, KAUTH_PROCESS_RLIMIT,
2548 	     p1, KAUTH_ARG(KAUTH_REQ_PROCESS_RLIMIT_BYPASS),
2549 	     &p1->p_rlimit[RLIMIT_NPROC], KAUTH_ARG(RLIMIT_NPROC)) != 0 &&
2550 	    __predict_false(count > p1->p_rlimit[RLIMIT_NPROC].rlim_cur)) {
2551 		(void)chgproccnt(uid, -1);
2552 		atomic_dec_uint(&nprocs);
2553 		return SET_ERROR(EAGAIN);
2554 	}
2555 
2556 	return 0;
2557 }
2558 
2559 int
2560 do_posix_spawn(struct lwp *l1, pid_t *pid_res, bool *child_ok, const char *path,
2561 	struct posix_spawn_file_actions *fa,
2562 	struct posix_spawnattr *sa,
2563 	char *const *argv, char *const *envp,
2564 	execve_fetch_element_t fetch)
2565 {
2566 
2567 	struct proc *p1, *p2;
2568 	struct lwp *l2;
2569 	int error;
2570 	struct spawn_exec_data *spawn_data;
2571 	vaddr_t uaddr = 0;
2572 	pid_t pid;
2573 	bool have_exec_lock = false;
2574 
2575 	p1 = l1->l_proc;
2576 
2577 	/* Allocate and init spawn_data */
2578 	spawn_data = kmem_zalloc(sizeof(*spawn_data), KM_SLEEP);
2579 	spawn_data->sed_refcnt = 1; /* only parent so far */
2580 	cv_init(&spawn_data->sed_cv_child_ready, "pspawn");
2581 	mutex_init(&spawn_data->sed_mtx_child, MUTEX_DEFAULT, IPL_NONE);
2582 	mutex_enter(&spawn_data->sed_mtx_child);
2583 
2584 	/*
2585 	 * Do the first part of the exec now, collect state
2586 	 * in spawn_data.
2587 	 */
2588 	error = execve_loadvm(l1, true, path, -1, argv,
2589 	    envp, fetch, &spawn_data->sed_exec);
2590 	if (error == EJUSTRETURN)
2591 		error = 0;
2592 	else if (error)
2593 		goto error_exit;
2594 
2595 	have_exec_lock = true;
2596 
2597 	/*
2598 	 * Allocate virtual address space for the U-area now, while it
2599 	 * is still easy to abort the fork operation if we're out of
2600 	 * kernel virtual address space.
2601 	 */
2602 	uaddr = uvm_uarea_alloc();
2603 	if (__predict_false(uaddr == 0)) {
2604 		error = SET_ERROR(ENOMEM);
2605 		goto error_exit;
2606 	}
2607 
2608 	/*
2609 	 * Allocate new proc. Borrow proc0 vmspace for it, we will
2610 	 * replace it with its own before returning to userland
2611 	 * in the child.
2612 	 */
2613 	p2 = proc_alloc();
2614 	if (p2 == NULL) {
2615 		/* We were unable to allocate a process ID. */
2616 		error = SET_ERROR(EAGAIN);
2617 		goto error_exit;
2618 	}
2619 
2620 	/*
2621 	 * This is a point of no return, we will have to go through
2622 	 * the child proc to properly clean it up past this point.
2623 	 */
2624 	pid = p2->p_pid;
2625 
2626 	/*
2627 	 * Make a proc table entry for the new process.
2628 	 * Start by zeroing the section of proc that is zero-initialized,
2629 	 * then copy the section that is copied directly from the parent.
2630 	 */
2631 	memset(&p2->p_startzero, 0,
2632 	    (unsigned) ((char *)&p2->p_endzero - (char *)&p2->p_startzero));
2633 	memcpy(&p2->p_startcopy, &p1->p_startcopy,
2634 	    (unsigned) ((char *)&p2->p_endcopy - (char *)&p2->p_startcopy));
2635 	p2->p_vmspace = proc0.p_vmspace;
2636 
2637 	TAILQ_INIT(&p2->p_sigpend.sp_info);
2638 
2639 	LIST_INIT(&p2->p_lwps);
2640 	LIST_INIT(&p2->p_sigwaiters);
2641 
2642 	/*
2643 	 * Duplicate sub-structures as needed.
2644 	 * Increase reference counts on shared objects.
2645 	 * Inherit flags we want to keep.  The flags related to SIGCHLD
2646 	 * handling are important in order to keep a consistent behaviour
2647 	 * for the child after the fork.  If we are a 32-bit process, the
2648 	 * child will be too.
2649 	 */
2650 	p2->p_flag =
2651 	    p1->p_flag & (PK_SUGID | PK_NOCLDWAIT | PK_CLDSIGIGN | PK_32);
2652 	p2->p_emul = p1->p_emul;
2653 	p2->p_execsw = p1->p_execsw;
2654 
2655 	mutex_init(&p2->p_stmutex, MUTEX_DEFAULT, IPL_HIGH);
2656 	mutex_init(&p2->p_auxlock, MUTEX_DEFAULT, IPL_NONE);
2657 	rw_init(&p2->p_reflock);
2658 	cv_init(&p2->p_waitcv, "wait");
2659 	cv_init(&p2->p_lwpcv, "lwpwait");
2660 
2661 	p2->p_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NONE);
2662 
2663 	kauth_proc_fork(p1, p2);
2664 
2665 	p2->p_raslist = NULL;
2666 	p2->p_fd = fd_copy();
2667 
2668 	/* XXX racy */
2669 	p2->p_mqueue_cnt = p1->p_mqueue_cnt;
2670 
2671 	p2->p_cwdi = cwdinit();
2672 
2673 	/*
2674 	 * Note: p_limit (rlimit stuff) is copy-on-write, so normally
2675 	 * we just need increase pl_refcnt.
2676 	 */
2677 	if (!p1->p_limit->pl_writeable) {
2678 		lim_addref(p1->p_limit);
2679 		p2->p_limit = p1->p_limit;
2680 	} else {
2681 		p2->p_limit = lim_copy(p1->p_limit);
2682 	}
2683 
2684 	p2->p_lflag = 0;
2685 	l1->l_vforkwaiting = false;
2686 	p2->p_sflag = 0;
2687 	p2->p_slflag = 0;
2688 	p2->p_pptr = p1;
2689 	p2->p_ppid = p1->p_pid;
2690 	LIST_INIT(&p2->p_children);
2691 
2692 	p2->p_aio = NULL;
2693 
2694 #ifdef KTRACE
2695 	/*
2696 	 * Copy traceflag and tracefile if enabled.
2697 	 * If not inherited, these were zeroed above.
2698 	 */
2699 	if (p1->p_traceflag & KTRFAC_INHERIT) {
2700 		mutex_enter(&ktrace_lock);
2701 		p2->p_traceflag = p1->p_traceflag;
2702 		if ((p2->p_tracep = p1->p_tracep) != NULL)
2703 			ktradref(p2);
2704 		mutex_exit(&ktrace_lock);
2705 	}
2706 #endif
2707 
2708 	/*
2709 	 * Create signal actions for the child process.
2710 	 */
2711 	p2->p_sigacts = sigactsinit(p1, 0);
2712 	mutex_enter(p1->p_lock);
2713 	p2->p_sflag |=
2714 	    (p1->p_sflag & (PS_STOPFORK | PS_STOPEXEC | PS_NOCLDSTOP));
2715 	sched_proc_fork(p1, p2);
2716 	mutex_exit(p1->p_lock);
2717 
2718 	p2->p_stflag = p1->p_stflag;
2719 
2720 	/*
2721 	 * p_stats.
2722 	 * Copy parts of p_stats, and zero out the rest.
2723 	 */
2724 	p2->p_stats = pstatscopy(p1->p_stats);
2725 
2726 	/* copy over machdep flags to the new proc */
2727 	cpu_proc_fork(p1, p2);
2728 
2729 	/*
2730 	 * Prepare remaining parts of spawn data
2731 	 */
2732 	spawn_data->sed_actions = fa;
2733 	spawn_data->sed_attrs = sa;
2734 
2735 	spawn_data->sed_parent = p1;
2736 
2737 	/* create LWP */
2738 	lwp_create(l1, p2, uaddr, 0, NULL, 0, spawn_return, spawn_data,
2739 	    &l2, l1->l_class, &l1->l_sigmask, &l1->l_sigstk);
2740 	l2->l_ctxlink = NULL;	/* reset ucontext link */
2741 
2742 	/*
2743 	 * Copy the credential so other references don't see our changes.
2744 	 * Test to see if this is necessary first, since in the common case
2745 	 * we won't need a private reference.
2746 	 */
2747 	if (kauth_cred_geteuid(l2->l_cred) != kauth_cred_getsvuid(l2->l_cred) ||
2748 	    kauth_cred_getegid(l2->l_cred) != kauth_cred_getsvgid(l2->l_cred)) {
2749 		l2->l_cred = kauth_cred_copy(l2->l_cred);
2750 		kauth_cred_setsvuid(l2->l_cred, kauth_cred_geteuid(l2->l_cred));
2751 		kauth_cred_setsvgid(l2->l_cred, kauth_cred_getegid(l2->l_cred));
2752 	}
2753 
2754 	/* Update the master credentials. */
2755 	if (l2->l_cred != p2->p_cred) {
2756 		kauth_cred_t ocred;
2757 		mutex_enter(p2->p_lock);
2758 		ocred = p2->p_cred;
2759 		p2->p_cred = kauth_cred_hold(l2->l_cred);
2760 		mutex_exit(p2->p_lock);
2761 		kauth_cred_free(ocred);
2762 	}
2763 
2764 	*child_ok = true;
2765 	spawn_data->sed_refcnt = 2;	/* child gets it as well */
2766 #if 0
2767 	l2->l_nopreempt = 1; /* start it non-preemptable */
2768 #endif
2769 
2770 	/*
2771 	 * It's now safe for the scheduler and other processes to see the
2772 	 * child process.
2773 	 */
2774 	mutex_enter(&proc_lock);
2775 
2776 	if (p1->p_session->s_ttyvp != NULL && p1->p_lflag & PL_CONTROLT)
2777 		p2->p_lflag |= PL_CONTROLT;
2778 
2779 	LIST_INSERT_HEAD(&p1->p_children, p2, p_sibling);
2780 	p2->p_exitsig = SIGCHLD;	/* signal for parent on exit */
2781 
2782 	if ((p1->p_slflag & (PSL_TRACEPOSIX_SPAWN|PSL_TRACED)) ==
2783 	    (PSL_TRACEPOSIX_SPAWN|PSL_TRACED)) {
2784 		proc_changeparent(p2, p1->p_pptr);
2785 		SET(p2->p_slflag, PSL_TRACEDCHILD);
2786 	}
2787 
2788 	p2->p_oppid = p1->p_pid;  /* Remember the original parent id. */
2789 
2790 	LIST_INSERT_AFTER(p1, p2, p_pglist);
2791 	LIST_INSERT_HEAD(&allproc, p2, p_list);
2792 
2793 	p2->p_trace_enabled = trace_is_enabled(p2);
2794 #ifdef __HAVE_SYSCALL_INTERN
2795 	(*p2->p_emul->e_syscall_intern)(p2);
2796 #endif
2797 
2798 	/*
2799 	 * Make child runnable, set start time, and add to run queue except
2800 	 * if the parent requested the child to start in SSTOP state.
2801 	 */
2802 	mutex_enter(p2->p_lock);
2803 
2804 	getmicrotime(&p2->p_stats->p_start);
2805 
2806 	lwp_lock(l2);
2807 	KASSERT(p2->p_nrlwps == 1);
2808 	KASSERT(l2->l_stat == LSIDL);
2809 	p2->p_nrlwps = 1;
2810 	p2->p_stat = SACTIVE;
2811 	setrunnable(l2);
2812 	/* LWP now unlocked */
2813 
2814 	mutex_exit(p2->p_lock);
2815 	mutex_exit(&proc_lock);
2816 
2817 	cv_wait(&spawn_data->sed_cv_child_ready, &spawn_data->sed_mtx_child);
2818 	error = spawn_data->sed_error;
2819 	mutex_exit(&spawn_data->sed_mtx_child);
2820 	spawn_exec_data_release(spawn_data);
2821 
2822 	rw_exit(&p1->p_reflock);
2823 	rw_exit(&exec_lock);
2824 	have_exec_lock = false;
2825 
2826 	*pid_res = pid;
2827 
2828 	if (error)
2829 		return error;
2830 
2831 	if (p1->p_slflag & PSL_TRACED) {
2832 		/* Paranoid check */
2833 		mutex_enter(&proc_lock);
2834 		if ((p1->p_slflag & (PSL_TRACEPOSIX_SPAWN|PSL_TRACED)) !=
2835 		    (PSL_TRACEPOSIX_SPAWN|PSL_TRACED)) {
2836 			mutex_exit(&proc_lock);
2837 			return 0;
2838 		}
2839 
2840 		mutex_enter(p1->p_lock);
2841 		eventswitch(TRAP_CHLD, PTRACE_POSIX_SPAWN, pid);
2842 	}
2843 	return 0;
2844 
2845  error_exit:
2846 	if (have_exec_lock) {
2847 		execve_free_data(&spawn_data->sed_exec);
2848 		rw_exit(&p1->p_reflock);
2849 		rw_exit(&exec_lock);
2850 	}
2851 	mutex_exit(&spawn_data->sed_mtx_child);
2852 	spawn_exec_data_release(spawn_data);
2853 	if (uaddr != 0)
2854 		uvm_uarea_free(uaddr);
2855 
2856 	return error;
2857 }
2858 
2859 int
2860 sys_posix_spawn(struct lwp *l1, const struct sys_posix_spawn_args *uap,
2861     register_t *retval)
2862 {
2863 	/* {
2864 		syscallarg(pid_t *) pid;
2865 		syscallarg(const char *) path;
2866 		syscallarg(const struct posix_spawn_file_actions *) file_actions;
2867 		syscallarg(const struct posix_spawnattr *) attrp;
2868 		syscallarg(char *const *) argv;
2869 		syscallarg(char *const *) envp;
2870 	} */
2871 
2872 	int error;
2873 	struct posix_spawn_file_actions *fa = NULL;
2874 	struct posix_spawnattr *sa = NULL;
2875 	pid_t pid;
2876 	bool child_ok = false;
2877 	rlim_t max_fileactions;
2878 	proc_t *p = l1->l_proc;
2879 
2880 	/* check_posix_spawn() increments nprocs for us. */
2881 	error = check_posix_spawn(l1);
2882 	if (error) {
2883 		*retval = error;
2884 		return 0;
2885 	}
2886 
2887 	/* copy in file_actions struct */
2888 	if (SCARG(uap, file_actions) != NULL) {
2889 		max_fileactions = 2 * uimin(p->p_rlimit[RLIMIT_NOFILE].rlim_cur,
2890 		    maxfiles);
2891 		error = posix_spawn_fa_alloc(&fa, SCARG(uap, file_actions),
2892 		    max_fileactions);
2893 		if (error)
2894 			goto error_exit;
2895 	}
2896 
2897 	/* copyin posix_spawnattr struct */
2898 	if (SCARG(uap, attrp) != NULL) {
2899 		sa = kmem_alloc(sizeof(*sa), KM_SLEEP);
2900 		error = copyin(SCARG(uap, attrp), sa, sizeof(*sa));
2901 		if (error)
2902 			goto error_exit;
2903 	}
2904 
2905 	/*
2906 	 * Do the spawn
2907 	 */
2908 	error = do_posix_spawn(l1, &pid, &child_ok, SCARG(uap, path), fa, sa,
2909 	    SCARG(uap, argv), SCARG(uap, envp), execve_fetch_element);
2910 	if (error)
2911 		goto error_exit;
2912 
2913 	if (error == 0 && SCARG(uap, pid) != NULL)
2914 		error = copyout(&pid, SCARG(uap, pid), sizeof(pid));
2915 
2916 	*retval = error;
2917 	return 0;
2918 
2919  error_exit:
2920 	if (!child_ok) {
2921 		(void)chgproccnt(kauth_cred_getuid(l1->l_cred), -1);
2922 		atomic_dec_uint(&nprocs);
2923 
2924 		if (sa)
2925 			kmem_free(sa, sizeof(*sa));
2926 		if (fa)
2927 			posix_spawn_fa_free(fa, fa->len);
2928 	}
2929 
2930 	*retval = error;
2931 	return 0;
2932 }
2933 
2934 void
2935 exec_free_emul_arg(struct exec_package *epp)
2936 {
2937 	if (epp->ep_emul_arg_free != NULL) {
2938 		KASSERT(epp->ep_emul_arg != NULL);
2939 		(*epp->ep_emul_arg_free)(epp->ep_emul_arg);
2940 		epp->ep_emul_arg_free = NULL;
2941 		epp->ep_emul_arg = NULL;
2942 	} else {
2943 		KASSERT(epp->ep_emul_arg == NULL);
2944 	}
2945 }
2946 
2947 #ifdef DEBUG_EXEC
2948 static void
2949 dump_vmcmds(const struct exec_package * const epp, size_t x, int error)
2950 {
2951 	struct exec_vmcmd *vp = &epp->ep_vmcmds.evs_cmds[0];
2952 	size_t j;
2953 
2954 	if (error == 0)
2955 		DPRINTF(("vmcmds %u\n", epp->ep_vmcmds.evs_used));
2956 	else
2957 		DPRINTF(("vmcmds %zu/%u, error %d\n", x,
2958 		    epp->ep_vmcmds.evs_used, error));
2959 
2960 	for (j = 0; j < epp->ep_vmcmds.evs_used; j++) {
2961 		DPRINTF(("vmcmd[%zu] = vmcmd_map_%s %#"
2962 		    PRIxVADDR"/%#"PRIxVSIZE" fd@%#"
2963 		    PRIxVSIZE" prot=0%o flags=%d\n", j,
2964 		    vp[j].ev_proc == vmcmd_map_pagedvn ?
2965 		    "pagedvn" :
2966 		    vp[j].ev_proc == vmcmd_map_readvn ?
2967 		    "readvn" :
2968 		    vp[j].ev_proc == vmcmd_map_zero ?
2969 		    "zero" : "*unknown*",
2970 		    vp[j].ev_addr, vp[j].ev_len,
2971 		    vp[j].ev_offset, vp[j].ev_prot,
2972 		    vp[j].ev_flags));
2973 		if (error != 0 && j == x)
2974 			DPRINTF(("     ^--- failed\n"));
2975 	}
2976 }
2977 #endif
2978