xref: /netbsd-src/lib/libm/src/k_rem_pio2.c (revision 195e7a08953ee6aa4e84889c1ab5095dbe9bee0f)
1 
2 /* @(#)k_rem_pio2.c 1.3 95/01/18 */
3 /*
4  * ====================================================
5  * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
6  *
7  * Developed at SunSoft, a Sun Microsystems, Inc. business.
8  * Permission to use, copy, modify, and distribute this
9  * software is freely granted, provided that this notice
10  * is preserved.
11  * ====================================================
12  */
13 
14 #include <sys/cdefs.h>
15 #if 0
16 __FBSDID("$FreeBSD: head/lib/msun/src/k_rem_pio2.c 342651 2018-12-31 15:43:06Z pfg $");
17 #endif
18 #if defined(LIBM_SCCS) && !defined(lint)
19 __RCSID("$NetBSD: k_rem_pio2.c,v 1.15 2023/08/08 06:31:17 mrg Exp $");
20 #endif
21 
22 /*
23  * __kernel_rem_pio2(x,y,e0,nx,prec)
24  * double x[],y[]; int e0,nx,prec;
25  *
26  * __kernel_rem_pio2 return the last three digits of N with
27  *		y = x - N*pi/2
28  * so that |y| < pi/2.
29  *
30  * The method is to compute the integer (mod 8) and fraction parts of
31  * (2/pi)*x without doing the full multiplication. In general we
32  * skip the part of the product that are known to be a huge integer (
33  * more accurately, = 0 mod 8 ). Thus the number of operations are
34  * independent of the exponent of the input.
35  *
36  * (2/pi) is represented by an array of 24-bit integers in ipio2[].
37  *
38  * Input parameters:
39  * 	x[]	The input value (must be positive) is broken into nx
40  *		pieces of 24-bit integers in double precision format.
41  *		x[i] will be the i-th 24 bit of x. The scaled exponent
42  *		of x[0] is given in input parameter e0 (i.e., x[0]*2^e0
43  *		match x's up to 24 bits.
44  *
45  *		Example of breaking a double positive z into x[0]+x[1]+x[2]:
46  *			e0 = ilogb(z)-23
47  *			z  = scalbn(z,-e0)
48  *		for i = 0,1,2
49  *			x[i] = floor(z)
50  *			z    = (z-x[i])*2**24
51  *
52  *
53  *	y[]	output result in an array of double precision numbers.
54  *		The dimension of y[] is:
55  *			24-bit  precision	1
56  *			53-bit  precision	2
57  *			64-bit  precision	2
58  *			113-bit precision	3
59  *		The actual value is the sum of them. Thus for 113-bit
60  *		precision, one may have to do something like:
61  *
62  *		long double t,w,r_head, r_tail;
63  *		t = (long double)y[2] + (long double)y[1];
64  *		w = (long double)y[0];
65  *		r_head = t+w;
66  *		r_tail = w - (r_head - t);
67  *
68  *	e0	The exponent of x[0]. Must be <= 16360 or you need to
69  *              expand the ipio2 table.
70  *
71  *	nx	dimension of x[]
72  *
73  *  	prec	an integer indicating the precision:
74  *			0	24  bits (single)
75  *			1	53  bits (double)
76  *			2	64  bits (extended)
77  *			3	113 bits (quad)
78  *
79  * External function:
80  *	double scalbn(), floor();
81  *
82  *
83  * Here is the description of some local variables:
84  *
85  * 	jk	jk+1 is the initial number of terms of ipio2[] needed
86  *		in the computation. The minimum and recommended value
87  *		for jk is 3,4,4,6 for single, double, extended, and quad.
88  *		jk+1 must be 2 larger than you might expect so that our
89  *		recomputation test works. (Up to 24 bits in the integer
90  *		part (the 24 bits of it that we compute) and 23 bits in
91  *		the fraction part may be lost to cancellation before we
92  *		recompute.)
93  *
94  * 	jz	local integer variable indicating the number of
95  *		terms of ipio2[] used.
96  *
97  *	jx	nx - 1
98  *
99  *	jv	index for pointing to the suitable ipio2[] for the
100  *		computation. In general, we want
101  *			( 2^e0*x[0] * ipio2[jv-1]*2^(-24jv) )/8
102  *		is an integer. Thus
103  *			e0-3-24*jv >= 0 or (e0-3)/24 >= jv
104  *		Hence jv = max(0,(e0-3)/24).
105  *
106  *	jp	jp+1 is the number of terms in PIo2[] needed, jp = jk.
107  *
108  * 	q[]	double array with integral value, representing the
109  *		24-bits chunk of the product of x and 2/pi.
110  *
111  *	q0	the corresponding exponent of q[0]. Note that the
112  *		exponent for q[i] would be q0-24*i.
113  *
114  *	PIo2[]	double precision array, obtained by cutting pi/2
115  *		into 24 bits chunks.
116  *
117  *	f[]	ipio2[] in floating point
118  *
119  *	iq[]	integer array by breaking up q[] in 24-bits chunk.
120  *
121  *	fq[]	final product of x*(2/pi) in fq[0],..,fq[jk]
122  *
123  *	ih	integer. If >0 it indicates q[] is >= 0.5, hence
124  *		it also indicates the *sign* of the result.
125  *
126  */
127 
128 
129 /*
130  * Constants:
131  * The hexadecimal values are the intended ones for the following
132  * constants. The decimal values may be used, provided that the
133  * compiler will convert from decimal to binary accurately enough
134  * to produce the hexadecimal values shown.
135  */
136 
137 #include "namespace.h"
138 #include <float.h>
139 
140 #include "math.h"
141 #include "math_private.h"
142 
143 static const int init_jk[] = {3,4,4,6}; /* initial value for jk */
144 
145 /*
146  * Table of constants for 2/pi, 396 Hex digits (476 decimal) of 2/pi
147  *
148  *		integer array, contains the (24*i)-th to (24*i+23)-th
149  *		bit of 2/pi after binary point. The corresponding
150  *		floating value is
151  *
152  *			ipio2[i] * 2^(-24(i+1)).
153  *
154  * NB: This table must have at least (e0-3)/24 + jk terms.
155  *     For quad precision (e0 <= 16360, jk = 6), this is 686.
156  */
157 static const int32_t ipio2[] = {
158 0xA2F983, 0x6E4E44, 0x1529FC, 0x2757D1, 0xF534DD, 0xC0DB62,
159 0x95993C, 0x439041, 0xFE5163, 0xABDEBB, 0xC561B7, 0x246E3A,
160 0x424DD2, 0xE00649, 0x2EEA09, 0xD1921C, 0xFE1DEB, 0x1CB129,
161 0xA73EE8, 0x8235F5, 0x2EBB44, 0x84E99C, 0x7026B4, 0x5F7E41,
162 0x3991D6, 0x398353, 0x39F49C, 0x845F8B, 0xBDF928, 0x3B1FF8,
163 0x97FFDE, 0x05980F, 0xEF2F11, 0x8B5A0A, 0x6D1F6D, 0x367ECF,
164 0x27CB09, 0xB74F46, 0x3F669E, 0x5FEA2D, 0x7527BA, 0xC7EBE5,
165 0xF17B3D, 0x0739F7, 0x8A5292, 0xEA6BFB, 0x5FB11F, 0x8D5D08,
166 0x560330, 0x46FC7B, 0x6BABF0, 0xCFBC20, 0x9AF436, 0x1DA9E3,
167 0x91615E, 0xE61B08, 0x659985, 0x5F14A0, 0x68408D, 0xFFD880,
168 0x4D7327, 0x310606, 0x1556CA, 0x73A8C9, 0x60E27B, 0xC08C6B,
169 
170 #if LDBL_MAX_EXP > 1024
171 #if LDBL_MAX_EXP > 16384
172 #error "ipio2 table needs to be expanded"
173 #endif
174 0x47C419, 0xC367CD, 0xDCE809, 0x2A8359, 0xC4768B, 0x961CA6,
175 0xDDAF44, 0xD15719, 0x053EA5, 0xFF0705, 0x3F7E33, 0xE832C2,
176 0xDE4F98, 0x327DBB, 0xC33D26, 0xEF6B1E, 0x5EF89F, 0x3A1F35,
177 0xCAF27F, 0x1D87F1, 0x21907C, 0x7C246A, 0xFA6ED5, 0x772D30,
178 0x433B15, 0xC614B5, 0x9D19C3, 0xC2C4AD, 0x414D2C, 0x5D000C,
179 0x467D86, 0x2D71E3, 0x9AC69B, 0x006233, 0x7CD2B4, 0x97A7B4,
180 0xD55537, 0xF63ED7, 0x1810A3, 0xFC764D, 0x2A9D64, 0xABD770,
181 0xF87C63, 0x57B07A, 0xE71517, 0x5649C0, 0xD9D63B, 0x3884A7,
182 0xCB2324, 0x778AD6, 0x23545A, 0xB91F00, 0x1B0AF1, 0xDFCE19,
183 0xFF319F, 0x6A1E66, 0x615799, 0x47FBAC, 0xD87F7E, 0xB76522,
184 0x89E832, 0x60BFE6, 0xCDC4EF, 0x09366C, 0xD43F5D, 0xD7DE16,
185 0xDE3B58, 0x929BDE, 0x2822D2, 0xE88628, 0x4D58E2, 0x32CAC6,
186 0x16E308, 0xCB7DE0, 0x50C017, 0xA71DF3, 0x5BE018, 0x34132E,
187 0x621283, 0x014883, 0x5B8EF5, 0x7FB0AD, 0xF2E91E, 0x434A48,
188 0xD36710, 0xD8DDAA, 0x425FAE, 0xCE616A, 0xA4280A, 0xB499D3,
189 0xF2A606, 0x7F775C, 0x83C2A3, 0x883C61, 0x78738A, 0x5A8CAF,
190 0xBDD76F, 0x63A62D, 0xCBBFF4, 0xEF818D, 0x67C126, 0x45CA55,
191 0x36D9CA, 0xD2A828, 0x8D61C2, 0x77C912, 0x142604, 0x9B4612,
192 0xC459C4, 0x44C5C8, 0x91B24D, 0xF31700, 0xAD43D4, 0xE54929,
193 0x10D5FD, 0xFCBE00, 0xCC941E, 0xEECE70, 0xF53E13, 0x80F1EC,
194 0xC3E7B3, 0x28F8C7, 0x940593, 0x3E71C1, 0xB3092E, 0xF3450B,
195 0x9C1288, 0x7B20AB, 0x9FB52E, 0xC29247, 0x2F327B, 0x6D550C,
196 0x90A772, 0x1FE76B, 0x96CB31, 0x4A1679, 0xE27941, 0x89DFF4,
197 0x9794E8, 0x84E6E2, 0x973199, 0x6BED88, 0x365F5F, 0x0EFDBB,
198 0xB49A48, 0x6CA467, 0x427271, 0x325D8D, 0xB8159F, 0x09E5BC,
199 0x25318D, 0x3974F7, 0x1C0530, 0x010C0D, 0x68084B, 0x58EE2C,
200 0x90AA47, 0x02E774, 0x24D6BD, 0xA67DF7, 0x72486E, 0xEF169F,
201 0xA6948E, 0xF691B4, 0x5153D1, 0xF20ACF, 0x339820, 0x7E4BF5,
202 0x6863B2, 0x5F3EDD, 0x035D40, 0x7F8985, 0x295255, 0xC06437,
203 0x10D86D, 0x324832, 0x754C5B, 0xD4714E, 0x6E5445, 0xC1090B,
204 0x69F52A, 0xD56614, 0x9D0727, 0x50045D, 0xDB3BB4, 0xC576EA,
205 0x17F987, 0x7D6B49, 0xBA271D, 0x296996, 0xACCCC6, 0x5414AD,
206 0x6AE290, 0x89D988, 0x50722C, 0xBEA404, 0x940777, 0x7030F3,
207 0x27FC00, 0xA871EA, 0x49C266, 0x3DE064, 0x83DD97, 0x973FA3,
208 0xFD9443, 0x8C860D, 0xDE4131, 0x9D3992, 0x8C70DD, 0xE7B717,
209 0x3BDF08, 0x2B3715, 0xA0805C, 0x93805A, 0x921110, 0xD8E80F,
210 0xAF806C, 0x4BFFDB, 0x0F9038, 0x761859, 0x15A562, 0xBBCB61,
211 0xB989C7, 0xBD4010, 0x04F2D2, 0x277549, 0xF6B6EB, 0xBB22DB,
212 0xAA140A, 0x2F2689, 0x768364, 0x333B09, 0x1A940E, 0xAA3A51,
213 0xC2A31D, 0xAEEDAF, 0x12265C, 0x4DC26D, 0x9C7A2D, 0x9756C0,
214 0x833F03, 0xF6F009, 0x8C402B, 0x99316D, 0x07B439, 0x15200C,
215 0x5BC3D8, 0xC492F5, 0x4BADC6, 0xA5CA4E, 0xCD37A7, 0x36A9E6,
216 0x9492AB, 0x6842DD, 0xDE6319, 0xEF8C76, 0x528B68, 0x37DBFC,
217 0xABA1AE, 0x3115DF, 0xA1AE00, 0xDAFB0C, 0x664D64, 0xB705ED,
218 0x306529, 0xBF5657, 0x3AFF47, 0xB9F96A, 0xF3BE75, 0xDF9328,
219 0x3080AB, 0xF68C66, 0x15CB04, 0x0622FA, 0x1DE4D9, 0xA4B33D,
220 0x8F1B57, 0x09CD36, 0xE9424E, 0xA4BE13, 0xB52333, 0x1AAAF0,
221 0xA8654F, 0xA5C1D2, 0x0F3F0B, 0xCD785B, 0x76F923, 0x048B7B,
222 0x721789, 0x53A6C6, 0xE26E6F, 0x00EBEF, 0x584A9B, 0xB7DAC4,
223 0xBA66AA, 0xCFCF76, 0x1D02D1, 0x2DF1B1, 0xC1998C, 0x77ADC3,
224 0xDA4886, 0xA05DF7, 0xF480C6, 0x2FF0AC, 0x9AECDD, 0xBC5C3F,
225 0x6DDED0, 0x1FC790, 0xB6DB2A, 0x3A25A3, 0x9AAF00, 0x9353AD,
226 0x0457B6, 0xB42D29, 0x7E804B, 0xA707DA, 0x0EAA76, 0xA1597B,
227 0x2A1216, 0x2DB7DC, 0xFDE5FA, 0xFEDB89, 0xFDBE89, 0x6C76E4,
228 0xFCA906, 0x70803E, 0x156E85, 0xFF87FD, 0x073E28, 0x336761,
229 0x86182A, 0xEABD4D, 0xAFE7B3, 0x6E6D8F, 0x396795, 0x5BBF31,
230 0x48D784, 0x16DF30, 0x432DC7, 0x356125, 0xCE70C9, 0xB8CB30,
231 0xFD6CBF, 0xA200A4, 0xE46C05, 0xA0DD5A, 0x476F21, 0xD21262,
232 0x845CB9, 0x496170, 0xE0566B, 0x015299, 0x375550, 0xB7D51E,
233 0xC4F133, 0x5F6E13, 0xE4305D, 0xA92E85, 0xC3B21D, 0x3632A1,
234 0xA4B708, 0xD4B1EA, 0x21F716, 0xE4698F, 0x77FF27, 0x80030C,
235 0x2D408D, 0xA0CD4F, 0x99A520, 0xD3A2B3, 0x0A5D2F, 0x42F9B4,
236 0xCBDA11, 0xD0BE7D, 0xC1DB9B, 0xBD17AB, 0x81A2CA, 0x5C6A08,
237 0x17552E, 0x550027, 0xF0147F, 0x8607E1, 0x640B14, 0x8D4196,
238 0xDEBE87, 0x2AFDDA, 0xB6256B, 0x34897B, 0xFEF305, 0x9EBFB9,
239 0x4F6A68, 0xA82A4A, 0x5AC44F, 0xBCF82D, 0x985AD7, 0x95C7F4,
240 0x8D4D0D, 0xA63A20, 0x5F57A4, 0xB13F14, 0x953880, 0x0120CC,
241 0x86DD71, 0xB6DEC9, 0xF560BF, 0x11654D, 0x6B0701, 0xACB08C,
242 0xD0C0B2, 0x485551, 0x0EFB1E, 0xC37295, 0x3B06A3, 0x3540C0,
243 0x7BDC06, 0xCC45E0, 0xFA294E, 0xC8CAD6, 0x41F3E8, 0xDE647C,
244 0xD8649B, 0x31BED9, 0xC397A4, 0xD45877, 0xC5E369, 0x13DAF0,
245 0x3C3ABA, 0x461846, 0x5F7555, 0xF5BDD2, 0xC6926E, 0x5D2EAC,
246 0xED440E, 0x423E1C, 0x87C461, 0xE9FD29, 0xF3D6E7, 0xCA7C22,
247 0x35916F, 0xC5E008, 0x8DD7FF, 0xE26A6E, 0xC6FDB0, 0xC10893,
248 0x745D7C, 0xB2AD6B, 0x9D6ECD, 0x7B723E, 0x6A11C6, 0xA9CFF7,
249 0xDF7329, 0xBAC9B5, 0x5100B7, 0x0DB2E2, 0x24BA74, 0x607DE5,
250 0x8AD874, 0x2C150D, 0x0C1881, 0x94667E, 0x162901, 0x767A9F,
251 0xBEFDFD, 0xEF4556, 0x367ED9, 0x13D9EC, 0xB9BA8B, 0xFC97C4,
252 0x27A831, 0xC36EF1, 0x36C594, 0x56A8D8, 0xB5A8B4, 0x0ECCCF,
253 0x2D8912, 0x34576F, 0x89562C, 0xE3CE99, 0xB920D6, 0xAA5E6B,
254 0x9C2A3E, 0xCC5F11, 0x4A0BFD, 0xFBF4E1, 0x6D3B8E, 0x2C86E2,
255 0x84D4E9, 0xA9B4FC, 0xD1EEEF, 0xC9352E, 0x61392F, 0x442138,
256 0xC8D91B, 0x0AFC81, 0x6A4AFB, 0xD81C2F, 0x84B453, 0x8C994E,
257 0xCC2254, 0xDC552A, 0xD6C6C0, 0x96190B, 0xB8701A, 0x649569,
258 0x605A26, 0xEE523F, 0x0F117F, 0x11B5F4, 0xF5CBFC, 0x2DBC34,
259 0xEEBC34, 0xCC5DE8, 0x605EDD, 0x9B8E67, 0xEF3392, 0xB817C9,
260 0x9B5861, 0xBC57E1, 0xC68351, 0x103ED8, 0x4871DD, 0xDD1C2D,
261 0xA118AF, 0x462C21, 0xD7F359, 0x987AD9, 0xC0549E, 0xFA864F,
262 0xFC0656, 0xAE79E5, 0x362289, 0x22AD38, 0xDC9367, 0xAAE855,
263 0x382682, 0x9BE7CA, 0xA40D51, 0xB13399, 0x0ED7A9, 0x480569,
264 0xF0B265, 0xA7887F, 0x974C88, 0x36D1F9, 0xB39221, 0x4A827B,
265 0x21CF98, 0xDC9F40, 0x5547DC, 0x3A74E1, 0x42EB67, 0xDF9DFE,
266 0x5FD45E, 0xA4677B, 0x7AACBA, 0xA2F655, 0x23882B, 0x55BA41,
267 0x086E59, 0x862A21, 0x834739, 0xE6E389, 0xD49EE5, 0x40FB49,
268 0xE956FF, 0xCA0F1C, 0x8A59C5, 0x2BFA94, 0xC5C1D3, 0xCFC50F,
269 0xAE5ADB, 0x86C547, 0x624385, 0x3B8621, 0x94792C, 0x876110,
270 0x7B4C2A, 0x1A2C80, 0x12BF43, 0x902688, 0x893C78, 0xE4C4A8,
271 0x7BDBE5, 0xC23AC4, 0xEAF426, 0x8A67F7, 0xBF920D, 0x2BA365,
272 0xB1933D, 0x0B7CBD, 0xDC51A4, 0x63DD27, 0xDDE169, 0x19949A,
273 0x9529A8, 0x28CE68, 0xB4ED09, 0x209F44, 0xCA984E, 0x638270,
274 0x237C7E, 0x32B90F, 0x8EF5A7, 0xE75614, 0x08F121, 0x2A9DB5,
275 0x4D7E6F, 0x5119A5, 0xABF9B5, 0xD6DF82, 0x61DD96, 0x023616,
276 0x9F3AC4, 0xA1A283, 0x6DED72, 0x7A8D39, 0xA9B882, 0x5C326B,
277 0x5B2746, 0xED3400, 0x7700D2, 0x55F4FC, 0x4D5901, 0x8071E0,
278 #endif
279 
280 };
281 
282 static const double PIo2[] = {
283   1.57079625129699707031e+00, /* 0x3FF921FB, 0x40000000 */
284   7.54978941586159635335e-08, /* 0x3E74442D, 0x00000000 */
285   5.39030252995776476554e-15, /* 0x3CF84698, 0x80000000 */
286   3.28200341580791294123e-22, /* 0x3B78CC51, 0x60000000 */
287   1.27065575308067607349e-29, /* 0x39F01B83, 0x80000000 */
288   1.22933308981111328932e-36, /* 0x387A2520, 0x40000000 */
289   2.73370053816464559624e-44, /* 0x36E38222, 0x80000000 */
290   2.16741683877804819444e-51, /* 0x3569F31D, 0x00000000 */
291 };
292 
293 static const double
294 zero   = 0.0,
295 one    = 1.0,
296 two24   =  1.67772160000000000000e+07, /* 0x41700000, 0x00000000 */
297 twon24  =  5.96046447753906250000e-08; /* 0x3E700000, 0x00000000 */
298 
299 int
__kernel_rem_pio2(double * x,double * y,int e0,int nx,int prec)300 __kernel_rem_pio2(double *x, double *y, int e0, int nx, int prec)
301 {
302 	int32_t jz,jx,jv,jp,jk,carry,n,iq[20],i,j,k,m,q0,ih;
303 	double z,fw,f[20],fq[20],q[20];
304 
305     /* if nx < 2, fq[0] may be accessed uninitialised */
306 	if (nx < 2) {
307 	    fq[0] = 0;
308 	}
309 
310     /* initialize jk*/
311 	jk = init_jk[prec];
312 	jp = jk;
313 
314     /* determine jx,jv,q0, note that 3>q0 */
315 	jx =  nx-1;
316 	jv = (e0-3)/24; if(jv<0) jv=0;
317 	q0 =  e0-24*(jv+1);
318 
319     /* set up f[0] to f[jx+jk] where f[jx+jk] = ipio2[jv+jk] */
320 	j = jv-jx; m = jx+jk;
321 	for(i=0;i<=m;i++,j++) f[i] = (j<0)? zero : (double) ipio2[j];
322 
323     /* compute q[0],q[1],...q[jk] */
324 	for (i=0;i<=jk;i++) {
325 	    for(j=0,fw=0.0;j<=jx;j++)
326 		    fw += x[j]*f[jx+i-j];
327 	    q[i] = fw;
328 	}
329 
330 	jz = jk;
331 recompute:
332     /* distill q[] into iq[] reversingly */
333 	for(i=0,j=jz,z=q[jz];j>0;i++,j--) {
334 	    fw    =  (double)((int32_t)(twon24* z));
335 	    iq[i] =  (int32_t)(z-two24*fw);
336 	    z     =  q[j-1]+fw;
337 	}
338 
339     /* compute n */
340 	z  = scalbn(z,q0);		/* actual value of z */
341 	z -= 8.0*floor(z*0.125);		/* trim off integer >= 8 */
342 	n  = (int32_t) z;
343 	z -= (double)n;
344 	ih = 0;
345 	if(q0>0) {	/* need iq[jz-1] to determine n */
346 	    i  = (iq[jz-1]>>(24-q0)); n += i;
347 	    iq[jz-1] -= i<<(24-q0);
348 	    ih = iq[jz-1]>>(23-q0);
349 	}
350 	else if(q0==0) ih = iq[jz-1]>>23;
351 	else if(z>=0.5) ih=2;
352 
353 	if(ih>0) {	/* q > 0.5 */
354 	    n += 1; carry = 0;
355 	    for(i=0;i<jz ;i++) {	/* compute 1-q */
356 		j = iq[i];
357 		if(carry==0) {
358 		    if(j!=0) {
359 			carry = 1; iq[i] = 0x1000000- j;
360 		    }
361 		} else  iq[i] = 0xffffff - j;
362 	    }
363 	    if(q0>0) {		/* rare case: chance is 1 in 12 */
364 	        switch(q0) {
365 	        case 1:
366 	    	   iq[jz-1] &= 0x7fffff; break;
367 	    	case 2:
368 	    	   iq[jz-1] &= 0x3fffff; break;
369 	        }
370 	    }
371 	    if(ih==2) {
372 		z = one - z;
373 		if(carry!=0) z -= scalbn(one,q0);
374 	    }
375 	}
376 
377     /* check if recomputation is needed */
378 	if(z==zero) {
379 	    j = 0;
380 	    for (i=jz-1;i>=jk;i--) j |= iq[i];
381 	    if(j==0) { /* need recomputation */
382 		for(k=1;iq[jk-k]==0;k++);   /* k = no. of terms needed */
383 
384 		for(i=jz+1;i<=jz+k;i++) {   /* add q[jz+1] to q[jz+k] */
385 		    f[jx+i] = (double) ipio2[jv+i];
386 		    for(j=0,fw=0.0;j<=jx;j++) fw += x[j]*f[jx+i-j];
387 		    q[i] = fw;
388 		}
389 		jz += k;
390 		goto recompute;
391 	    }
392 	}
393 
394     /* chop off zero terms */
395 	if(z==0.0) {
396 	    jz -= 1; q0 -= 24;
397 	    while(iq[jz]==0) { jz--; q0-=24;}
398 	} else { /* break z into 24-bit if necessary */
399 	    z = scalbn(z,-q0);
400 	    if(z>=two24) {
401 		fw = (double)((int32_t)(twon24*z));
402 		iq[jz] = (int32_t)(z-two24*fw);
403 		jz += 1; q0 += 24;
404 		iq[jz] = (int32_t) fw;
405 	    } else iq[jz] = (int32_t) z ;
406 	}
407 
408     /* convert integer "bit" chunk to floating-point value */
409 	fw = scalbn(one,q0);
410 	for(i=jz;i>=0;i--) {
411 	    q[i] = fw*(double)iq[i]; fw*=twon24;
412 	}
413 
414     /* compute PIo2[0,...,jp]*q[jz,...,0] */
415 	for(i=jz;i>=0;i--) {
416 	    for(fw=0.0,k=0;k<=jp&&k<=jz-i;k++) fw += PIo2[k]*q[i+k];
417 	    fq[jz-i] = fw;
418 	}
419 
420     /* compress fq[] into y[] */
421 	switch(prec) {
422 	    case 0:
423 		fw = 0.0;
424 		for (i=jz;i>=0;i--) fw += fq[i];
425 		y[0] = (ih==0)? fw: -fw;
426 		break;
427 	    case 1:
428 	    case 2:
429 		fw = 0.0;
430 		for (i=jz;i>=0;i--) fw += fq[i];
431 		STRICT_ASSIGN(double,fw,fw);
432 		y[0] = (ih==0)? fw: -fw;
433 		fw = fq[0]-fw;
434 		for (i=1;i<=jz;i++) fw += fq[i];
435 		y[1] = (ih==0)? fw: -fw;
436 		break;
437 	    case 3:	/* painful */
438 		for (i=jz;i>0;i--) {
439 		    fw      = fq[i-1]+fq[i];
440 		    fq[i]  += fq[i-1]-fw;
441 		    fq[i-1] = fw;
442 		}
443 		for (i=jz;i>1;i--) {
444 		    fw      = fq[i-1]+fq[i];
445 		    fq[i]  += fq[i-1]-fw;
446 		    fq[i-1] = fw;
447 		}
448 		for (fw=0.0,i=jz;i>=2;i--) fw += fq[i];
449 		if(ih==0) {
450 		    y[0] =  fq[0]; y[1] =  fq[1]; y[2] =  fw;
451 		} else {
452 		    y[0] = -fq[0]; y[1] = -fq[1]; y[2] = -fw;
453 		}
454 	}
455 	return n&7;
456 }
457