xref: /netbsd-src/external/mit/isl/dist/isl_tab_pip.c (revision 5971e316fdea024efff6be8f03536623db06833e)
1 /*
2  * Copyright 2008-2009 Katholieke Universiteit Leuven
3  * Copyright 2010      INRIA Saclay
4  * Copyright 2016-2017 Sven Verdoolaege
5  *
6  * Use of this software is governed by the MIT license
7  *
8  * Written by Sven Verdoolaege, K.U.Leuven, Departement
9  * Computerwetenschappen, Celestijnenlaan 200A, B-3001 Leuven, Belgium
10  * and INRIA Saclay - Ile-de-France, Parc Club Orsay Universite,
11  * ZAC des vignes, 4 rue Jacques Monod, 91893 Orsay, France
12  */
13 
14 #include <isl_ctx_private.h>
15 #include "isl_map_private.h"
16 #include <isl_seq.h>
17 #include "isl_tab.h"
18 #include "isl_sample.h"
19 #include <isl_mat_private.h>
20 #include <isl_vec_private.h>
21 #include <isl_aff_private.h>
22 #include <isl_constraint_private.h>
23 #include <isl_options_private.h>
24 #include <isl_config.h>
25 
26 #include <bset_to_bmap.c>
27 
28 /*
29  * The implementation of parametric integer linear programming in this file
30  * was inspired by the paper "Parametric Integer Programming" and the
31  * report "Solving systems of affine (in)equalities" by Paul Feautrier
32  * (and others).
33  *
34  * The strategy used for obtaining a feasible solution is different
35  * from the one used in isl_tab.c.  In particular, in isl_tab.c,
36  * upon finding a constraint that is not yet satisfied, we pivot
37  * in a row that increases the constant term of the row holding the
38  * constraint, making sure the sample solution remains feasible
39  * for all the constraints it already satisfied.
40  * Here, we always pivot in the row holding the constraint,
41  * choosing a column that induces the lexicographically smallest
42  * increment to the sample solution.
43  *
44  * By starting out from a sample value that is lexicographically
45  * smaller than any integer point in the problem space, the first
46  * feasible integer sample point we find will also be the lexicographically
47  * smallest.  If all variables can be assumed to be non-negative,
48  * then the initial sample value may be chosen equal to zero.
49  * However, we will not make this assumption.  Instead, we apply
50  * the "big parameter" trick.  Any variable x is then not directly
51  * used in the tableau, but instead it is represented by another
52  * variable x' = M + x, where M is an arbitrarily large (positive)
53  * value.  x' is therefore always non-negative, whatever the value of x.
54  * Taking as initial sample value x' = 0 corresponds to x = -M,
55  * which is always smaller than any possible value of x.
56  *
57  * The big parameter trick is used in the main tableau and
58  * also in the context tableau if isl_context_lex is used.
59  * In this case, each tableaus has its own big parameter.
60  * Before doing any real work, we check if all the parameters
61  * happen to be non-negative.  If so, we drop the column corresponding
62  * to M from the initial context tableau.
63  * If isl_context_gbr is used, then the big parameter trick is only
64  * used in the main tableau.
65  */
66 
67 struct isl_context;
68 struct isl_context_op {
69 	/* detect nonnegative parameters in context and mark them in tab */
70 	struct isl_tab *(*detect_nonnegative_parameters)(
71 			struct isl_context *context, struct isl_tab *tab);
72 	/* return temporary reference to basic set representation of context */
73 	struct isl_basic_set *(*peek_basic_set)(struct isl_context *context);
74 	/* return temporary reference to tableau representation of context */
75 	struct isl_tab *(*peek_tab)(struct isl_context *context);
76 	/* add equality; check is 1 if eq may not be valid;
77 	 * update is 1 if we may want to call ineq_sign on context later.
78 	 */
79 	void (*add_eq)(struct isl_context *context, isl_int *eq,
80 			int check, int update);
81 	/* add inequality; check is 1 if ineq may not be valid;
82 	 * update is 1 if we may want to call ineq_sign on context later.
83 	 */
84 	void (*add_ineq)(struct isl_context *context, isl_int *ineq,
85 			int check, int update);
86 	/* check sign of ineq based on previous information.
87 	 * strict is 1 if saturation should be treated as a positive sign.
88 	 */
89 	enum isl_tab_row_sign (*ineq_sign)(struct isl_context *context,
90 			isl_int *ineq, int strict);
91 	/* check if inequality maintains feasibility */
92 	int (*test_ineq)(struct isl_context *context, isl_int *ineq);
93 	/* return index of a div that corresponds to "div" */
94 	int (*get_div)(struct isl_context *context, struct isl_tab *tab,
95 			struct isl_vec *div);
96 	/* insert div "div" to context at "pos" and return non-negativity */
97 	isl_bool (*insert_div)(struct isl_context *context, int pos,
98 		__isl_keep isl_vec *div);
99 	int (*detect_equalities)(struct isl_context *context,
100 			struct isl_tab *tab);
101 	/* return row index of "best" split */
102 	int (*best_split)(struct isl_context *context, struct isl_tab *tab);
103 	/* check if context has already been determined to be empty */
104 	int (*is_empty)(struct isl_context *context);
105 	/* check if context is still usable */
106 	int (*is_ok)(struct isl_context *context);
107 	/* save a copy/snapshot of context */
108 	void *(*save)(struct isl_context *context);
109 	/* restore saved context */
110 	void (*restore)(struct isl_context *context, void *);
111 	/* discard saved context */
112 	void (*discard)(void *);
113 	/* invalidate context */
114 	void (*invalidate)(struct isl_context *context);
115 	/* free context */
116 	__isl_null struct isl_context *(*free)(struct isl_context *context);
117 };
118 
119 /* Shared parts of context representation.
120  *
121  * "n_unknown" is the number of final unknown integer divisions
122  * in the input domain.
123  */
124 struct isl_context {
125 	struct isl_context_op *op;
126 	int n_unknown;
127 };
128 
129 struct isl_context_lex {
130 	struct isl_context context;
131 	struct isl_tab *tab;
132 };
133 
134 /* A stack (linked list) of solutions of subtrees of the search space.
135  *
136  * "ma" describes the solution as a function of "dom".
137  * In particular, the domain space of "ma" is equal to the space of "dom".
138  *
139  * If "ma" is NULL, then there is no solution on "dom".
140  */
141 struct isl_partial_sol {
142 	int level;
143 	struct isl_basic_set *dom;
144 	isl_multi_aff *ma;
145 
146 	struct isl_partial_sol *next;
147 };
148 
149 struct isl_sol;
150 struct isl_sol_callback {
151 	struct isl_tab_callback callback;
152 	struct isl_sol *sol;
153 };
154 
155 /* isl_sol is an interface for constructing a solution to
156  * a parametric integer linear programming problem.
157  * Every time the algorithm reaches a state where a solution
158  * can be read off from the tableau, the function "add" is called
159  * on the isl_sol passed to find_solutions_main.  In a state where
160  * the tableau is empty, "add_empty" is called instead.
161  * "free" is called to free the implementation specific fields, if any.
162  *
163  * "error" is set if some error has occurred.  This flag invalidates
164  * the remainder of the data structure.
165  * If "rational" is set, then a rational optimization is being performed.
166  * "level" is the current level in the tree with nodes for each
167  * split in the context.
168  * If "max" is set, then a maximization problem is being solved, rather than
169  * a minimization problem, which means that the variables in the
170  * tableau have value "M - x" rather than "M + x".
171  * "n_out" is the number of output dimensions in the input.
172  * "space" is the space in which the solution (and also the input) lives.
173  *
174  * The context tableau is owned by isl_sol and is updated incrementally.
175  *
176  * There are currently two implementations of this interface,
177  * isl_sol_map, which simply collects the solutions in an isl_map
178  * and (optionally) the parts of the context where there is no solution
179  * in an isl_set, and
180  * isl_sol_pma, which collects an isl_pw_multi_aff instead.
181  */
182 struct isl_sol {
183 	int error;
184 	int rational;
185 	int level;
186 	int max;
187 	isl_size n_out;
188 	isl_space *space;
189 	struct isl_context *context;
190 	struct isl_partial_sol *partial;
191 	void (*add)(struct isl_sol *sol,
192 		__isl_take isl_basic_set *dom, __isl_take isl_multi_aff *ma);
193 	void (*add_empty)(struct isl_sol *sol, struct isl_basic_set *bset);
194 	void (*free)(struct isl_sol *sol);
195 	struct isl_sol_callback	dec_level;
196 };
197 
sol_free(struct isl_sol * sol)198 static void sol_free(struct isl_sol *sol)
199 {
200 	struct isl_partial_sol *partial, *next;
201 	if (!sol)
202 		return;
203 	for (partial = sol->partial; partial; partial = next) {
204 		next = partial->next;
205 		isl_basic_set_free(partial->dom);
206 		isl_multi_aff_free(partial->ma);
207 		free(partial);
208 	}
209 	isl_space_free(sol->space);
210 	if (sol->context)
211 		sol->context->op->free(sol->context);
212 	sol->free(sol);
213 	free(sol);
214 }
215 
216 /* Add equality constraint "eq" to the context of "sol".
217  * "check" is set if "eq" is not known to be a valid constraint.
218  * "update" is set if ineq_sign() may still get called on the context.
219  */
sol_context_add_eq(struct isl_sol * sol,isl_int * eq,int check,int update)220 static void sol_context_add_eq(struct isl_sol *sol, isl_int *eq, int check,
221 	int update)
222 {
223 	sol->context->op->add_eq(sol->context, eq, check, update);
224 	if (!sol->context->op->is_ok(sol->context))
225 		sol->error = 1;
226 }
227 
228 /* Add inequality constraint "ineq" to the context of "sol".
229  * "check" is set if "ineq" is not known to be a valid constraint.
230  * "update" is set if ineq_sign() may still get called on the context.
231  */
sol_context_add_ineq(struct isl_sol * sol,isl_int * ineq,int check,int update)232 static void sol_context_add_ineq(struct isl_sol *sol, isl_int *ineq, int check,
233 	int update)
234 {
235 	if (sol->error)
236 		return;
237 	sol->context->op->add_ineq(sol->context, ineq, check, update);
238 	if (!sol->context->op->is_ok(sol->context))
239 		sol->error = 1;
240 }
241 
242 /* Push a partial solution represented by a domain and function "ma"
243  * onto the stack of partial solutions.
244  * If "ma" is NULL, then "dom" represents a part of the domain
245  * with no solution.
246  */
sol_push_sol(struct isl_sol * sol,__isl_take isl_basic_set * dom,__isl_take isl_multi_aff * ma)247 static void sol_push_sol(struct isl_sol *sol,
248 	__isl_take isl_basic_set *dom, __isl_take isl_multi_aff *ma)
249 {
250 	struct isl_partial_sol *partial;
251 
252 	if (sol->error || !dom)
253 		goto error;
254 
255 	partial = isl_alloc_type(dom->ctx, struct isl_partial_sol);
256 	if (!partial)
257 		goto error;
258 
259 	partial->level = sol->level;
260 	partial->dom = dom;
261 	partial->ma = ma;
262 	partial->next = sol->partial;
263 
264 	sol->partial = partial;
265 
266 	return;
267 error:
268 	isl_basic_set_free(dom);
269 	isl_multi_aff_free(ma);
270 	sol->error = 1;
271 }
272 
273 /* Check that the final columns of "M", starting at "first", are zero.
274  */
check_final_columns_are_zero(__isl_keep isl_mat * M,unsigned first)275 static isl_stat check_final_columns_are_zero(__isl_keep isl_mat *M,
276 	unsigned first)
277 {
278 	int i;
279 	isl_size rows, cols;
280 	unsigned n;
281 
282 	rows = isl_mat_rows(M);
283 	cols = isl_mat_cols(M);
284 	if (rows < 0 || cols < 0)
285 		return isl_stat_error;
286 	n = cols - first;
287 	for (i = 0; i < rows; ++i)
288 		if (isl_seq_first_non_zero(M->row[i] + first, n) != -1)
289 			isl_die(isl_mat_get_ctx(M), isl_error_internal,
290 				"final columns should be zero",
291 				return isl_stat_error);
292 	return isl_stat_ok;
293 }
294 
295 /* Set the affine expressions in "ma" according to the rows in "M", which
296  * are defined over the local space "ls".
297  * The matrix "M" may have extra (zero) columns beyond the number
298  * of variables in "ls".
299  */
set_from_affine_matrix(__isl_take isl_multi_aff * ma,__isl_take isl_local_space * ls,__isl_take isl_mat * M)300 static __isl_give isl_multi_aff *set_from_affine_matrix(
301 	__isl_take isl_multi_aff *ma, __isl_take isl_local_space *ls,
302 	__isl_take isl_mat *M)
303 {
304 	int i;
305 	isl_size dim;
306 	isl_aff *aff;
307 
308 	dim = isl_local_space_dim(ls, isl_dim_all);
309 	if (!ma || dim < 0 || !M)
310 		goto error;
311 
312 	if (check_final_columns_are_zero(M, 1 + dim) < 0)
313 		goto error;
314 	for (i = 1; i < M->n_row; ++i) {
315 		aff = isl_aff_alloc(isl_local_space_copy(ls));
316 		if (aff) {
317 			isl_int_set(aff->v->el[0], M->row[0][0]);
318 			isl_seq_cpy(aff->v->el + 1, M->row[i], 1 + dim);
319 		}
320 		aff = isl_aff_normalize(aff);
321 		ma = isl_multi_aff_set_aff(ma, i - 1, aff);
322 	}
323 	isl_local_space_free(ls);
324 	isl_mat_free(M);
325 
326 	return ma;
327 error:
328 	isl_local_space_free(ls);
329 	isl_mat_free(M);
330 	isl_multi_aff_free(ma);
331 	return NULL;
332 }
333 
334 /* Push a partial solution represented by a domain and mapping M
335  * onto the stack of partial solutions.
336  *
337  * The affine matrix "M" maps the dimensions of the context
338  * to the output variables.  Convert it into an isl_multi_aff and
339  * then call sol_push_sol.
340  *
341  * Note that the description of the initial context may have involved
342  * existentially quantified variables, in which case they also appear
343  * in "dom".  These need to be removed before creating the affine
344  * expression because an affine expression cannot be defined in terms
345  * of existentially quantified variables without a known representation.
346  * Since newly added integer divisions are inserted before these
347  * existentially quantified variables, they are still in the final
348  * positions and the corresponding final columns of "M" are zero
349  * because align_context_divs adds the existentially quantified
350  * variables of the context to the main tableau without any constraints and
351  * any equality constraints that are added later on can only serve
352  * to eliminate these existentially quantified variables.
353  */
sol_push_sol_mat(struct isl_sol * sol,__isl_take isl_basic_set * dom,__isl_take isl_mat * M)354 static void sol_push_sol_mat(struct isl_sol *sol,
355 	__isl_take isl_basic_set *dom, __isl_take isl_mat *M)
356 {
357 	isl_local_space *ls;
358 	isl_multi_aff *ma;
359 	isl_size n_div;
360 	int n_known;
361 
362 	n_div = isl_basic_set_dim(dom, isl_dim_div);
363 	if (n_div < 0)
364 		goto error;
365 	n_known = n_div - sol->context->n_unknown;
366 
367 	ma = isl_multi_aff_alloc(isl_space_copy(sol->space));
368 	ls = isl_basic_set_get_local_space(dom);
369 	ls = isl_local_space_drop_dims(ls, isl_dim_div,
370 					n_known, n_div - n_known);
371 	ma = set_from_affine_matrix(ma, ls, M);
372 
373 	if (!ma)
374 		dom = isl_basic_set_free(dom);
375 	sol_push_sol(sol, dom, ma);
376 	return;
377 error:
378 	isl_basic_set_free(dom);
379 	isl_mat_free(M);
380 	sol_push_sol(sol, NULL, NULL);
381 }
382 
383 /* Pop one partial solution from the partial solution stack and
384  * pass it on to sol->add or sol->add_empty.
385  */
sol_pop_one(struct isl_sol * sol)386 static void sol_pop_one(struct isl_sol *sol)
387 {
388 	struct isl_partial_sol *partial;
389 
390 	partial = sol->partial;
391 	sol->partial = partial->next;
392 
393 	if (partial->ma)
394 		sol->add(sol, partial->dom, partial->ma);
395 	else
396 		sol->add_empty(sol, partial->dom);
397 	free(partial);
398 }
399 
400 /* Return a fresh copy of the domain represented by the context tableau.
401  */
sol_domain(struct isl_sol * sol)402 static struct isl_basic_set *sol_domain(struct isl_sol *sol)
403 {
404 	struct isl_basic_set *bset;
405 
406 	if (sol->error)
407 		return NULL;
408 
409 	bset = isl_basic_set_dup(sol->context->op->peek_basic_set(sol->context));
410 	bset = isl_basic_set_update_from_tab(bset,
411 			sol->context->op->peek_tab(sol->context));
412 
413 	return bset;
414 }
415 
416 /* Check whether two partial solutions have the same affine expressions.
417  */
same_solution(struct isl_partial_sol * s1,struct isl_partial_sol * s2)418 static isl_bool same_solution(struct isl_partial_sol *s1,
419 	struct isl_partial_sol *s2)
420 {
421 	if (!s1->ma != !s2->ma)
422 		return isl_bool_false;
423 	if (!s1->ma)
424 		return isl_bool_true;
425 
426 	return isl_multi_aff_plain_is_equal(s1->ma, s2->ma);
427 }
428 
429 /* Swap the initial two partial solutions in "sol".
430  *
431  * That is, go from
432  *
433  *	sol->partial = p1; p1->next = p2; p2->next = p3
434  *
435  * to
436  *
437  *	sol->partial = p2; p2->next = p1; p1->next = p3
438  */
swap_initial(struct isl_sol * sol)439 static void swap_initial(struct isl_sol *sol)
440 {
441 	struct isl_partial_sol *partial;
442 
443 	partial = sol->partial;
444 	sol->partial = partial->next;
445 	partial->next = partial->next->next;
446 	sol->partial->next = partial;
447 }
448 
449 /* Combine the initial two partial solution of "sol" into
450  * a partial solution with the current context domain of "sol" and
451  * the function description of the second partial solution in the list.
452  * The level of the new partial solution is set to the current level.
453  *
454  * That is, the first two partial solutions (D1,M1) and (D2,M2) are
455  * replaced by (D,M2), where D is the domain of "sol", which is assumed
456  * to be the union of D1 and D2, while M1 is assumed to be equal to M2
457  * (at least on D1).
458  */
combine_initial_into_second(struct isl_sol * sol)459 static isl_stat combine_initial_into_second(struct isl_sol *sol)
460 {
461 	struct isl_partial_sol *partial;
462 	isl_basic_set *bset;
463 
464 	partial = sol->partial;
465 
466 	bset = sol_domain(sol);
467 	isl_basic_set_free(partial->next->dom);
468 	partial->next->dom = bset;
469 	partial->next->level = sol->level;
470 
471 	if (!bset)
472 		return isl_stat_error;
473 
474 	sol->partial = partial->next;
475 	isl_basic_set_free(partial->dom);
476 	isl_multi_aff_free(partial->ma);
477 	free(partial);
478 
479 	return isl_stat_ok;
480 }
481 
482 /* Are "ma1" and "ma2" equal to each other on "dom"?
483  *
484  * Combine "ma1" and "ma2" with "dom" and check if the results are the same.
485  * "dom" may have existentially quantified variables.  Eliminate them first
486  * as otherwise they would have to be eliminated twice, in a more complicated
487  * context.
488  */
equal_on_domain(__isl_keep isl_multi_aff * ma1,__isl_keep isl_multi_aff * ma2,__isl_keep isl_basic_set * dom)489 static isl_bool equal_on_domain(__isl_keep isl_multi_aff *ma1,
490 	__isl_keep isl_multi_aff *ma2, __isl_keep isl_basic_set *dom)
491 {
492 	isl_set *set;
493 	isl_pw_multi_aff *pma1, *pma2;
494 	isl_bool equal;
495 
496 	set = isl_basic_set_compute_divs(isl_basic_set_copy(dom));
497 	pma1 = isl_pw_multi_aff_alloc(isl_set_copy(set),
498 					isl_multi_aff_copy(ma1));
499 	pma2 = isl_pw_multi_aff_alloc(set, isl_multi_aff_copy(ma2));
500 	equal = isl_pw_multi_aff_is_equal(pma1, pma2);
501 	isl_pw_multi_aff_free(pma1);
502 	isl_pw_multi_aff_free(pma2);
503 
504 	return equal;
505 }
506 
507 /* The initial two partial solutions of "sol" are known to be at
508  * the same level.
509  * If they represent the same solution (on different parts of the domain),
510  * then combine them into a single solution at the current level.
511  * Otherwise, pop them both.
512  *
513  * Even if the two partial solution are not obviously the same,
514  * one may still be a simplification of the other over its own domain.
515  * Also check if the two sets of affine functions are equal when
516  * restricted to one of the domains.  If so, combine the two
517  * using the set of affine functions on the other domain.
518  * That is, for two partial solutions (D1,M1) and (D2,M2),
519  * if M1 = M2 on D1, then the pair of partial solutions can
520  * be replaced by (D1+D2,M2) and similarly when M1 = M2 on D2.
521  */
combine_initial_if_equal(struct isl_sol * sol)522 static isl_stat combine_initial_if_equal(struct isl_sol *sol)
523 {
524 	struct isl_partial_sol *partial;
525 	isl_bool same;
526 
527 	partial = sol->partial;
528 
529 	same = same_solution(partial, partial->next);
530 	if (same < 0)
531 		return isl_stat_error;
532 	if (same)
533 		return combine_initial_into_second(sol);
534 	if (partial->ma && partial->next->ma) {
535 		same = equal_on_domain(partial->ma, partial->next->ma,
536 					partial->dom);
537 		if (same < 0)
538 			return isl_stat_error;
539 		if (same)
540 			return combine_initial_into_second(sol);
541 		same = equal_on_domain(partial->ma, partial->next->ma,
542 					partial->next->dom);
543 		if (same) {
544 			swap_initial(sol);
545 			return combine_initial_into_second(sol);
546 		}
547 	}
548 
549 	sol_pop_one(sol);
550 	sol_pop_one(sol);
551 
552 	return isl_stat_ok;
553 }
554 
555 /* Pop all solutions from the partial solution stack that were pushed onto
556  * the stack at levels that are deeper than the current level.
557  * If the two topmost elements on the stack have the same level
558  * and represent the same solution, then their domains are combined.
559  * This combined domain is the same as the current context domain
560  * as sol_pop is called each time we move back to a higher level.
561  * If the outer level (0) has been reached, then all partial solutions
562  * at the current level are also popped off.
563  */
sol_pop(struct isl_sol * sol)564 static void sol_pop(struct isl_sol *sol)
565 {
566 	struct isl_partial_sol *partial;
567 
568 	if (sol->error)
569 		return;
570 
571 	partial = sol->partial;
572 	if (!partial)
573 		return;
574 
575 	if (partial->level == 0 && sol->level == 0) {
576 		for (partial = sol->partial; partial; partial = sol->partial)
577 			sol_pop_one(sol);
578 		return;
579 	}
580 
581 	if (partial->level <= sol->level)
582 		return;
583 
584 	if (partial->next && partial->next->level == partial->level) {
585 		if (combine_initial_if_equal(sol) < 0)
586 			goto error;
587 	} else
588 		sol_pop_one(sol);
589 
590 	if (sol->level == 0) {
591 		for (partial = sol->partial; partial; partial = sol->partial)
592 			sol_pop_one(sol);
593 		return;
594 	}
595 
596 	if (0)
597 error:		sol->error = 1;
598 }
599 
sol_dec_level(struct isl_sol * sol)600 static void sol_dec_level(struct isl_sol *sol)
601 {
602 	if (sol->error)
603 		return;
604 
605 	sol->level--;
606 
607 	sol_pop(sol);
608 }
609 
sol_dec_level_wrap(struct isl_tab_callback * cb)610 static isl_stat sol_dec_level_wrap(struct isl_tab_callback *cb)
611 {
612 	struct isl_sol_callback *callback = (struct isl_sol_callback *)cb;
613 
614 	sol_dec_level(callback->sol);
615 
616 	return callback->sol->error ? isl_stat_error : isl_stat_ok;
617 }
618 
619 /* Move down to next level and push callback onto context tableau
620  * to decrease the level again when it gets rolled back across
621  * the current state.  That is, dec_level will be called with
622  * the context tableau in the same state as it is when inc_level
623  * is called.
624  */
sol_inc_level(struct isl_sol * sol)625 static void sol_inc_level(struct isl_sol *sol)
626 {
627 	struct isl_tab *tab;
628 
629 	if (sol->error)
630 		return;
631 
632 	sol->level++;
633 	tab = sol->context->op->peek_tab(sol->context);
634 	if (isl_tab_push_callback(tab, &sol->dec_level.callback) < 0)
635 		sol->error = 1;
636 }
637 
scale_rows(struct isl_mat * mat,isl_int m,int n_row)638 static void scale_rows(struct isl_mat *mat, isl_int m, int n_row)
639 {
640 	int i;
641 
642 	if (isl_int_is_one(m))
643 		return;
644 
645 	for (i = 0; i < n_row; ++i)
646 		isl_seq_scale(mat->row[i], mat->row[i], m, mat->n_col);
647 }
648 
649 /* Add the solution identified by the tableau and the context tableau.
650  *
651  * The layout of the variables is as follows.
652  *	tab->n_var is equal to the total number of variables in the input
653  *			map (including divs that were copied from the context)
654  *			+ the number of extra divs constructed
655  *      Of these, the first tab->n_param and the last tab->n_div variables
656  *	correspond to the variables in the context, i.e.,
657  *		tab->n_param + tab->n_div = context_tab->n_var
658  *	tab->n_param is equal to the number of parameters and input
659  *			dimensions in the input map
660  *	tab->n_div is equal to the number of divs in the context
661  *
662  * If there is no solution, then call add_empty with a basic set
663  * that corresponds to the context tableau.  (If add_empty is NULL,
664  * then do nothing).
665  *
666  * If there is a solution, then first construct a matrix that maps
667  * all dimensions of the context to the output variables, i.e.,
668  * the output dimensions in the input map.
669  * The divs in the input map (if any) that do not correspond to any
670  * div in the context do not appear in the solution.
671  * The algorithm will make sure that they have an integer value,
672  * but these values themselves are of no interest.
673  * We have to be careful not to drop or rearrange any divs in the
674  * context because that would change the meaning of the matrix.
675  *
676  * To extract the value of the output variables, it should be noted
677  * that we always use a big parameter M in the main tableau and so
678  * the variable stored in this tableau is not an output variable x itself, but
679  *	x' = M + x (in case of minimization)
680  * or
681  *	x' = M - x (in case of maximization)
682  * If x' appears in a column, then its optimal value is zero,
683  * which means that the optimal value of x is an unbounded number
684  * (-M for minimization and M for maximization).
685  * We currently assume that the output dimensions in the original map
686  * are bounded, so this cannot occur.
687  * Similarly, when x' appears in a row, then the coefficient of M in that
688  * row is necessarily 1.
689  * If the row in the tableau represents
690  *	d x' = c + d M + e(y)
691  * then, in case of minimization, the corresponding row in the matrix
692  * will be
693  *	a c + a e(y)
694  * with a d = m, the (updated) common denominator of the matrix.
695  * In case of maximization, the row will be
696  *	-a c - a e(y)
697  */
sol_add(struct isl_sol * sol,struct isl_tab * tab)698 static void sol_add(struct isl_sol *sol, struct isl_tab *tab)
699 {
700 	struct isl_basic_set *bset = NULL;
701 	struct isl_mat *mat = NULL;
702 	unsigned off;
703 	int row;
704 	isl_int m;
705 
706 	if (sol->error || !tab)
707 		goto error;
708 
709 	if (tab->empty && !sol->add_empty)
710 		return;
711 	if (sol->context->op->is_empty(sol->context))
712 		return;
713 
714 	bset = sol_domain(sol);
715 
716 	if (tab->empty) {
717 		sol_push_sol(sol, bset, NULL);
718 		return;
719 	}
720 
721 	off = 2 + tab->M;
722 
723 	mat = isl_mat_alloc(tab->mat->ctx, 1 + sol->n_out,
724 					    1 + tab->n_param + tab->n_div);
725 	if (!mat)
726 		goto error;
727 
728 	isl_int_init(m);
729 
730 	isl_seq_clr(mat->row[0] + 1, mat->n_col - 1);
731 	isl_int_set_si(mat->row[0][0], 1);
732 	for (row = 0; row < sol->n_out; ++row) {
733 		int i = tab->n_param + row;
734 		int r, j;
735 
736 		isl_seq_clr(mat->row[1 + row], mat->n_col);
737 		if (!tab->var[i].is_row) {
738 			if (tab->M)
739 				isl_die(mat->ctx, isl_error_invalid,
740 					"unbounded optimum", goto error2);
741 			continue;
742 		}
743 
744 		r = tab->var[i].index;
745 		if (tab->M &&
746 		    isl_int_ne(tab->mat->row[r][2], tab->mat->row[r][0]))
747 			isl_die(mat->ctx, isl_error_invalid,
748 				"unbounded optimum", goto error2);
749 		isl_int_gcd(m, mat->row[0][0], tab->mat->row[r][0]);
750 		isl_int_divexact(m, tab->mat->row[r][0], m);
751 		scale_rows(mat, m, 1 + row);
752 		isl_int_divexact(m, mat->row[0][0], tab->mat->row[r][0]);
753 		isl_int_mul(mat->row[1 + row][0], m, tab->mat->row[r][1]);
754 		for (j = 0; j < tab->n_param; ++j) {
755 			int col;
756 			if (tab->var[j].is_row)
757 				continue;
758 			col = tab->var[j].index;
759 			isl_int_mul(mat->row[1 + row][1 + j], m,
760 				    tab->mat->row[r][off + col]);
761 		}
762 		for (j = 0; j < tab->n_div; ++j) {
763 			int col;
764 			if (tab->var[tab->n_var - tab->n_div+j].is_row)
765 				continue;
766 			col = tab->var[tab->n_var - tab->n_div+j].index;
767 			isl_int_mul(mat->row[1 + row][1 + tab->n_param + j], m,
768 				    tab->mat->row[r][off + col]);
769 		}
770 		if (sol->max)
771 			isl_seq_neg(mat->row[1 + row], mat->row[1 + row],
772 				    mat->n_col);
773 	}
774 
775 	isl_int_clear(m);
776 
777 	sol_push_sol_mat(sol, bset, mat);
778 	return;
779 error2:
780 	isl_int_clear(m);
781 error:
782 	isl_basic_set_free(bset);
783 	isl_mat_free(mat);
784 	sol->error = 1;
785 }
786 
787 struct isl_sol_map {
788 	struct isl_sol	sol;
789 	struct isl_map	*map;
790 	struct isl_set	*empty;
791 };
792 
sol_map_free(struct isl_sol * sol)793 static void sol_map_free(struct isl_sol *sol)
794 {
795 	struct isl_sol_map *sol_map = (struct isl_sol_map *) sol;
796 	isl_map_free(sol_map->map);
797 	isl_set_free(sol_map->empty);
798 }
799 
800 /* This function is called for parts of the context where there is
801  * no solution, with "bset" corresponding to the context tableau.
802  * Simply add the basic set to the set "empty".
803  */
sol_map_add_empty(struct isl_sol_map * sol,struct isl_basic_set * bset)804 static void sol_map_add_empty(struct isl_sol_map *sol,
805 	struct isl_basic_set *bset)
806 {
807 	if (!bset || !sol->empty)
808 		goto error;
809 
810 	sol->empty = isl_set_grow(sol->empty, 1);
811 	bset = isl_basic_set_simplify(bset);
812 	bset = isl_basic_set_finalize(bset);
813 	sol->empty = isl_set_add_basic_set(sol->empty, isl_basic_set_copy(bset));
814 	if (!sol->empty)
815 		goto error;
816 	isl_basic_set_free(bset);
817 	return;
818 error:
819 	isl_basic_set_free(bset);
820 	sol->sol.error = 1;
821 }
822 
sol_map_add_empty_wrap(struct isl_sol * sol,struct isl_basic_set * bset)823 static void sol_map_add_empty_wrap(struct isl_sol *sol,
824 	struct isl_basic_set *bset)
825 {
826 	sol_map_add_empty((struct isl_sol_map *)sol, bset);
827 }
828 
829 /* Given a basic set "dom" that represents the context and a tuple of
830  * affine expressions "ma" defined over this domain, construct a basic map
831  * that expresses this function on the domain.
832  */
sol_map_add(struct isl_sol_map * sol,__isl_take isl_basic_set * dom,__isl_take isl_multi_aff * ma)833 static void sol_map_add(struct isl_sol_map *sol,
834 	__isl_take isl_basic_set *dom, __isl_take isl_multi_aff *ma)
835 {
836 	isl_basic_map *bmap;
837 
838 	if (sol->sol.error || !dom || !ma)
839 		goto error;
840 
841 	bmap = isl_basic_map_from_multi_aff2(ma, sol->sol.rational);
842 	bmap = isl_basic_map_intersect_domain(bmap, dom);
843 	sol->map = isl_map_grow(sol->map, 1);
844 	sol->map = isl_map_add_basic_map(sol->map, bmap);
845 	if (!sol->map)
846 		sol->sol.error = 1;
847 	return;
848 error:
849 	isl_basic_set_free(dom);
850 	isl_multi_aff_free(ma);
851 	sol->sol.error = 1;
852 }
853 
sol_map_add_wrap(struct isl_sol * sol,__isl_take isl_basic_set * dom,__isl_take isl_multi_aff * ma)854 static void sol_map_add_wrap(struct isl_sol *sol,
855 	__isl_take isl_basic_set *dom, __isl_take isl_multi_aff *ma)
856 {
857 	sol_map_add((struct isl_sol_map *)sol, dom, ma);
858 }
859 
860 
861 /* Store the "parametric constant" of row "row" of tableau "tab" in "line",
862  * i.e., the constant term and the coefficients of all variables that
863  * appear in the context tableau.
864  * Note that the coefficient of the big parameter M is NOT copied.
865  * The context tableau may not have a big parameter and even when it
866  * does, it is a different big parameter.
867  */
get_row_parameter_line(struct isl_tab * tab,int row,isl_int * line)868 static void get_row_parameter_line(struct isl_tab *tab, int row, isl_int *line)
869 {
870 	int i;
871 	unsigned off = 2 + tab->M;
872 
873 	isl_int_set(line[0], tab->mat->row[row][1]);
874 	for (i = 0; i < tab->n_param; ++i) {
875 		if (tab->var[i].is_row)
876 			isl_int_set_si(line[1 + i], 0);
877 		else {
878 			int col = tab->var[i].index;
879 			isl_int_set(line[1 + i], tab->mat->row[row][off + col]);
880 		}
881 	}
882 	for (i = 0; i < tab->n_div; ++i) {
883 		if (tab->var[tab->n_var - tab->n_div + i].is_row)
884 			isl_int_set_si(line[1 + tab->n_param + i], 0);
885 		else {
886 			int col = tab->var[tab->n_var - tab->n_div + i].index;
887 			isl_int_set(line[1 + tab->n_param + i],
888 				    tab->mat->row[row][off + col]);
889 		}
890 	}
891 }
892 
893 /* Check if rows "row1" and "row2" have identical "parametric constants",
894  * as explained above.
895  * In this case, we also insist that the coefficients of the big parameter
896  * be the same as the values of the constants will only be the same
897  * if these coefficients are also the same.
898  */
identical_parameter_line(struct isl_tab * tab,int row1,int row2)899 static int identical_parameter_line(struct isl_tab *tab, int row1, int row2)
900 {
901 	int i;
902 	unsigned off = 2 + tab->M;
903 
904 	if (isl_int_ne(tab->mat->row[row1][1], tab->mat->row[row2][1]))
905 		return 0;
906 
907 	if (tab->M && isl_int_ne(tab->mat->row[row1][2],
908 				 tab->mat->row[row2][2]))
909 		return 0;
910 
911 	for (i = 0; i < tab->n_param + tab->n_div; ++i) {
912 		int pos = i < tab->n_param ? i :
913 			tab->n_var - tab->n_div + i - tab->n_param;
914 		int col;
915 
916 		if (tab->var[pos].is_row)
917 			continue;
918 		col = tab->var[pos].index;
919 		if (isl_int_ne(tab->mat->row[row1][off + col],
920 			       tab->mat->row[row2][off + col]))
921 			return 0;
922 	}
923 	return 1;
924 }
925 
926 /* Return an inequality that expresses that the "parametric constant"
927  * should be non-negative.
928  * This function is only called when the coefficient of the big parameter
929  * is equal to zero.
930  */
get_row_parameter_ineq(struct isl_tab * tab,int row)931 static struct isl_vec *get_row_parameter_ineq(struct isl_tab *tab, int row)
932 {
933 	struct isl_vec *ineq;
934 
935 	ineq = isl_vec_alloc(tab->mat->ctx, 1 + tab->n_param + tab->n_div);
936 	if (!ineq)
937 		return NULL;
938 
939 	get_row_parameter_line(tab, row, ineq->el);
940 	if (ineq)
941 		ineq = isl_vec_normalize(ineq);
942 
943 	return ineq;
944 }
945 
946 /* Normalize a div expression of the form
947  *
948  *	[(g*f(x) + c)/(g * m)]
949  *
950  * with c the constant term and f(x) the remaining coefficients, to
951  *
952  *	[(f(x) + [c/g])/m]
953  */
normalize_div(__isl_keep isl_vec * div)954 static void normalize_div(__isl_keep isl_vec *div)
955 {
956 	isl_ctx *ctx = isl_vec_get_ctx(div);
957 	int len = div->size - 2;
958 
959 	isl_seq_gcd(div->el + 2, len, &ctx->normalize_gcd);
960 	isl_int_gcd(ctx->normalize_gcd, ctx->normalize_gcd, div->el[0]);
961 
962 	if (isl_int_is_one(ctx->normalize_gcd))
963 		return;
964 
965 	isl_int_divexact(div->el[0], div->el[0], ctx->normalize_gcd);
966 	isl_int_fdiv_q(div->el[1], div->el[1], ctx->normalize_gcd);
967 	isl_seq_scale_down(div->el + 2, div->el + 2, ctx->normalize_gcd, len);
968 }
969 
970 /* Return an integer division for use in a parametric cut based
971  * on the given row.
972  * In particular, let the parametric constant of the row be
973  *
974  *		\sum_i a_i y_i
975  *
976  * where y_0 = 1, but none of the y_i corresponds to the big parameter M.
977  * The div returned is equal to
978  *
979  *		floor(\sum_i {-a_i} y_i) = floor((\sum_i (-a_i mod d) y_i)/d)
980  */
get_row_parameter_div(struct isl_tab * tab,int row)981 static struct isl_vec *get_row_parameter_div(struct isl_tab *tab, int row)
982 {
983 	struct isl_vec *div;
984 
985 	div = isl_vec_alloc(tab->mat->ctx, 1 + 1 + tab->n_param + tab->n_div);
986 	if (!div)
987 		return NULL;
988 
989 	isl_int_set(div->el[0], tab->mat->row[row][0]);
990 	get_row_parameter_line(tab, row, div->el + 1);
991 	isl_seq_neg(div->el + 1, div->el + 1, div->size - 1);
992 	normalize_div(div);
993 	isl_seq_fdiv_r(div->el + 1, div->el + 1, div->el[0], div->size - 1);
994 
995 	return div;
996 }
997 
998 /* Return an integer division for use in transferring an integrality constraint
999  * to the context.
1000  * In particular, let the parametric constant of the row be
1001  *
1002  *		\sum_i a_i y_i
1003  *
1004  * where y_0 = 1, but none of the y_i corresponds to the big parameter M.
1005  * The the returned div is equal to
1006  *
1007  *		floor(\sum_i {a_i} y_i) = floor((\sum_i (a_i mod d) y_i)/d)
1008  */
get_row_split_div(struct isl_tab * tab,int row)1009 static struct isl_vec *get_row_split_div(struct isl_tab *tab, int row)
1010 {
1011 	struct isl_vec *div;
1012 
1013 	div = isl_vec_alloc(tab->mat->ctx, 1 + 1 + tab->n_param + tab->n_div);
1014 	if (!div)
1015 		return NULL;
1016 
1017 	isl_int_set(div->el[0], tab->mat->row[row][0]);
1018 	get_row_parameter_line(tab, row, div->el + 1);
1019 	normalize_div(div);
1020 	isl_seq_fdiv_r(div->el + 1, div->el + 1, div->el[0], div->size - 1);
1021 
1022 	return div;
1023 }
1024 
1025 /* Construct and return an inequality that expresses an upper bound
1026  * on the given div.
1027  * In particular, if the div is given by
1028  *
1029  *	d = floor(e/m)
1030  *
1031  * then the inequality expresses
1032  *
1033  *	m d <= e
1034  */
ineq_for_div(__isl_keep isl_basic_set * bset,unsigned div)1035 static __isl_give isl_vec *ineq_for_div(__isl_keep isl_basic_set *bset,
1036 	unsigned div)
1037 {
1038 	isl_size total;
1039 	unsigned div_pos;
1040 	struct isl_vec *ineq;
1041 
1042 	total = isl_basic_set_dim(bset, isl_dim_all);
1043 	if (total < 0)
1044 		return NULL;
1045 
1046 	div_pos = 1 + total - bset->n_div + div;
1047 
1048 	ineq = isl_vec_alloc(bset->ctx, 1 + total);
1049 	if (!ineq)
1050 		return NULL;
1051 
1052 	isl_seq_cpy(ineq->el, bset->div[div] + 1, 1 + total);
1053 	isl_int_neg(ineq->el[div_pos], bset->div[div][0]);
1054 	return ineq;
1055 }
1056 
1057 /* Given a row in the tableau and a div that was created
1058  * using get_row_split_div and that has been constrained to equality, i.e.,
1059  *
1060  *		d = floor(\sum_i {a_i} y_i) = \sum_i {a_i} y_i
1061  *
1062  * replace the expression "\sum_i {a_i} y_i" in the row by d,
1063  * i.e., we subtract "\sum_i {a_i} y_i" and add 1 d.
1064  * The coefficients of the non-parameters in the tableau have been
1065  * verified to be integral.  We can therefore simply replace coefficient b
1066  * by floor(b).  For the coefficients of the parameters we have
1067  * floor(a_i) = a_i - {a_i}, while for the other coefficients, we have
1068  * floor(b) = b.
1069  */
set_row_cst_to_div(struct isl_tab * tab,int row,int div)1070 static struct isl_tab *set_row_cst_to_div(struct isl_tab *tab, int row, int div)
1071 {
1072 	isl_seq_fdiv_q(tab->mat->row[row] + 1, tab->mat->row[row] + 1,
1073 			tab->mat->row[row][0], 1 + tab->M + tab->n_col);
1074 
1075 	isl_int_set_si(tab->mat->row[row][0], 1);
1076 
1077 	if (tab->var[tab->n_var - tab->n_div + div].is_row) {
1078 		int drow = tab->var[tab->n_var - tab->n_div + div].index;
1079 
1080 		isl_assert(tab->mat->ctx,
1081 			isl_int_is_one(tab->mat->row[drow][0]), goto error);
1082 		isl_seq_combine(tab->mat->row[row] + 1,
1083 			tab->mat->ctx->one, tab->mat->row[row] + 1,
1084 			tab->mat->ctx->one, tab->mat->row[drow] + 1,
1085 			1 + tab->M + tab->n_col);
1086 	} else {
1087 		int dcol = tab->var[tab->n_var - tab->n_div + div].index;
1088 
1089 		isl_int_add_ui(tab->mat->row[row][2 + tab->M + dcol],
1090 				tab->mat->row[row][2 + tab->M + dcol], 1);
1091 	}
1092 
1093 	return tab;
1094 error:
1095 	isl_tab_free(tab);
1096 	return NULL;
1097 }
1098 
1099 /* Check if the (parametric) constant of the given row is obviously
1100  * negative, meaning that we don't need to consult the context tableau.
1101  * If there is a big parameter and its coefficient is non-zero,
1102  * then this coefficient determines the outcome.
1103  * Otherwise, we check whether the constant is negative and
1104  * all non-zero coefficients of parameters are negative and
1105  * belong to non-negative parameters.
1106  */
is_obviously_neg(struct isl_tab * tab,int row)1107 static int is_obviously_neg(struct isl_tab *tab, int row)
1108 {
1109 	int i;
1110 	int col;
1111 	unsigned off = 2 + tab->M;
1112 
1113 	if (tab->M) {
1114 		if (isl_int_is_pos(tab->mat->row[row][2]))
1115 			return 0;
1116 		if (isl_int_is_neg(tab->mat->row[row][2]))
1117 			return 1;
1118 	}
1119 
1120 	if (isl_int_is_nonneg(tab->mat->row[row][1]))
1121 		return 0;
1122 	for (i = 0; i < tab->n_param; ++i) {
1123 		/* Eliminated parameter */
1124 		if (tab->var[i].is_row)
1125 			continue;
1126 		col = tab->var[i].index;
1127 		if (isl_int_is_zero(tab->mat->row[row][off + col]))
1128 			continue;
1129 		if (!tab->var[i].is_nonneg)
1130 			return 0;
1131 		if (isl_int_is_pos(tab->mat->row[row][off + col]))
1132 			return 0;
1133 	}
1134 	for (i = 0; i < tab->n_div; ++i) {
1135 		if (tab->var[tab->n_var - tab->n_div + i].is_row)
1136 			continue;
1137 		col = tab->var[tab->n_var - tab->n_div + i].index;
1138 		if (isl_int_is_zero(tab->mat->row[row][off + col]))
1139 			continue;
1140 		if (!tab->var[tab->n_var - tab->n_div + i].is_nonneg)
1141 			return 0;
1142 		if (isl_int_is_pos(tab->mat->row[row][off + col]))
1143 			return 0;
1144 	}
1145 	return 1;
1146 }
1147 
1148 /* Check if the (parametric) constant of the given row is obviously
1149  * non-negative, meaning that we don't need to consult the context tableau.
1150  * If there is a big parameter and its coefficient is non-zero,
1151  * then this coefficient determines the outcome.
1152  * Otherwise, we check whether the constant is non-negative and
1153  * all non-zero coefficients of parameters are positive and
1154  * belong to non-negative parameters.
1155  */
is_obviously_nonneg(struct isl_tab * tab,int row)1156 static int is_obviously_nonneg(struct isl_tab *tab, int row)
1157 {
1158 	int i;
1159 	int col;
1160 	unsigned off = 2 + tab->M;
1161 
1162 	if (tab->M) {
1163 		if (isl_int_is_pos(tab->mat->row[row][2]))
1164 			return 1;
1165 		if (isl_int_is_neg(tab->mat->row[row][2]))
1166 			return 0;
1167 	}
1168 
1169 	if (isl_int_is_neg(tab->mat->row[row][1]))
1170 		return 0;
1171 	for (i = 0; i < tab->n_param; ++i) {
1172 		/* Eliminated parameter */
1173 		if (tab->var[i].is_row)
1174 			continue;
1175 		col = tab->var[i].index;
1176 		if (isl_int_is_zero(tab->mat->row[row][off + col]))
1177 			continue;
1178 		if (!tab->var[i].is_nonneg)
1179 			return 0;
1180 		if (isl_int_is_neg(tab->mat->row[row][off + col]))
1181 			return 0;
1182 	}
1183 	for (i = 0; i < tab->n_div; ++i) {
1184 		if (tab->var[tab->n_var - tab->n_div + i].is_row)
1185 			continue;
1186 		col = tab->var[tab->n_var - tab->n_div + i].index;
1187 		if (isl_int_is_zero(tab->mat->row[row][off + col]))
1188 			continue;
1189 		if (!tab->var[tab->n_var - tab->n_div + i].is_nonneg)
1190 			return 0;
1191 		if (isl_int_is_neg(tab->mat->row[row][off + col]))
1192 			return 0;
1193 	}
1194 	return 1;
1195 }
1196 
1197 /* Given a row r and two columns, return the column that would
1198  * lead to the lexicographically smallest increment in the sample
1199  * solution when leaving the basis in favor of the row.
1200  * Pivoting with column c will increment the sample value by a non-negative
1201  * constant times a_{V,c}/a_{r,c}, with a_{V,c} the elements of column c
1202  * corresponding to the non-parametric variables.
1203  * If variable v appears in a column c_v, then a_{v,c} = 1 iff c = c_v,
1204  * with all other entries in this virtual row equal to zero.
1205  * If variable v appears in a row, then a_{v,c} is the element in column c
1206  * of that row.
1207  *
1208  * Let v be the first variable with a_{v,c1}/a_{r,c1} != a_{v,c2}/a_{r,c2}.
1209  * Then if a_{v,c1}/a_{r,c1} < a_{v,c2}/a_{r,c2}, i.e.,
1210  * a_{v,c2} a_{r,c1} - a_{v,c1} a_{r,c2} > 0, c1 results in the minimal
1211  * increment.  Otherwise, it's c2.
1212  */
lexmin_col_pair(struct isl_tab * tab,int row,int col1,int col2,isl_int tmp)1213 static int lexmin_col_pair(struct isl_tab *tab,
1214 	int row, int col1, int col2, isl_int tmp)
1215 {
1216 	int i;
1217 	isl_int *tr;
1218 
1219 	tr = tab->mat->row[row] + 2 + tab->M;
1220 
1221 	for (i = tab->n_param; i < tab->n_var - tab->n_div; ++i) {
1222 		int s1, s2;
1223 		isl_int *r;
1224 
1225 		if (!tab->var[i].is_row) {
1226 			if (tab->var[i].index == col1)
1227 				return col2;
1228 			if (tab->var[i].index == col2)
1229 				return col1;
1230 			continue;
1231 		}
1232 
1233 		if (tab->var[i].index == row)
1234 			continue;
1235 
1236 		r = tab->mat->row[tab->var[i].index] + 2 + tab->M;
1237 		s1 = isl_int_sgn(r[col1]);
1238 		s2 = isl_int_sgn(r[col2]);
1239 		if (s1 == 0 && s2 == 0)
1240 			continue;
1241 		if (s1 < s2)
1242 			return col1;
1243 		if (s2 < s1)
1244 			return col2;
1245 
1246 		isl_int_mul(tmp, r[col2], tr[col1]);
1247 		isl_int_submul(tmp, r[col1], tr[col2]);
1248 		if (isl_int_is_pos(tmp))
1249 			return col1;
1250 		if (isl_int_is_neg(tmp))
1251 			return col2;
1252 	}
1253 	return -1;
1254 }
1255 
1256 /* Does the index into the tab->var or tab->con array "index"
1257  * correspond to a variable in the context tableau?
1258  * In particular, it needs to be an index into the tab->var array and
1259  * it needs to refer to either one of the first tab->n_param variables or
1260  * one of the last tab->n_div variables.
1261  */
is_parameter_var(struct isl_tab * tab,int index)1262 static int is_parameter_var(struct isl_tab *tab, int index)
1263 {
1264 	if (index < 0)
1265 		return 0;
1266 	if (index < tab->n_param)
1267 		return 1;
1268 	if (index >= tab->n_var - tab->n_div)
1269 		return 1;
1270 	return 0;
1271 }
1272 
1273 /* Does column "col" of "tab" refer to a variable in the context tableau?
1274  */
col_is_parameter_var(struct isl_tab * tab,int col)1275 static int col_is_parameter_var(struct isl_tab *tab, int col)
1276 {
1277 	return is_parameter_var(tab, tab->col_var[col]);
1278 }
1279 
1280 /* Does row "row" of "tab" refer to a variable in the context tableau?
1281  */
row_is_parameter_var(struct isl_tab * tab,int row)1282 static int row_is_parameter_var(struct isl_tab *tab, int row)
1283 {
1284 	return is_parameter_var(tab, tab->row_var[row]);
1285 }
1286 
1287 /* Given a row in the tableau, find and return the column that would
1288  * result in the lexicographically smallest, but positive, increment
1289  * in the sample point.
1290  * If there is no such column, then return tab->n_col.
1291  * If anything goes wrong, return -1.
1292  */
lexmin_pivot_col(struct isl_tab * tab,int row)1293 static int lexmin_pivot_col(struct isl_tab *tab, int row)
1294 {
1295 	int j;
1296 	int col = tab->n_col;
1297 	isl_int *tr;
1298 	isl_int tmp;
1299 
1300 	tr = tab->mat->row[row] + 2 + tab->M;
1301 
1302 	isl_int_init(tmp);
1303 
1304 	for (j = tab->n_dead; j < tab->n_col; ++j) {
1305 		if (col_is_parameter_var(tab, j))
1306 			continue;
1307 
1308 		if (!isl_int_is_pos(tr[j]))
1309 			continue;
1310 
1311 		if (col == tab->n_col)
1312 			col = j;
1313 		else
1314 			col = lexmin_col_pair(tab, row, col, j, tmp);
1315 		isl_assert(tab->mat->ctx, col >= 0, goto error);
1316 	}
1317 
1318 	isl_int_clear(tmp);
1319 	return col;
1320 error:
1321 	isl_int_clear(tmp);
1322 	return -1;
1323 }
1324 
1325 /* Return the first known violated constraint, i.e., a non-negative
1326  * constraint that currently has an either obviously negative value
1327  * or a previously determined to be negative value.
1328  *
1329  * If any constraint has a negative coefficient for the big parameter,
1330  * if any, then we return one of these first.
1331  */
first_neg(struct isl_tab * tab)1332 static int first_neg(struct isl_tab *tab)
1333 {
1334 	int row;
1335 
1336 	if (tab->M)
1337 		for (row = tab->n_redundant; row < tab->n_row; ++row) {
1338 			if (!isl_tab_var_from_row(tab, row)->is_nonneg)
1339 				continue;
1340 			if (!isl_int_is_neg(tab->mat->row[row][2]))
1341 				continue;
1342 			if (tab->row_sign)
1343 				tab->row_sign[row] = isl_tab_row_neg;
1344 			return row;
1345 		}
1346 	for (row = tab->n_redundant; row < tab->n_row; ++row) {
1347 		if (!isl_tab_var_from_row(tab, row)->is_nonneg)
1348 			continue;
1349 		if (tab->row_sign) {
1350 			if (tab->row_sign[row] == 0 &&
1351 			    is_obviously_neg(tab, row))
1352 				tab->row_sign[row] = isl_tab_row_neg;
1353 			if (tab->row_sign[row] != isl_tab_row_neg)
1354 				continue;
1355 		} else if (!is_obviously_neg(tab, row))
1356 			continue;
1357 		return row;
1358 	}
1359 	return -1;
1360 }
1361 
1362 /* Check whether the invariant that all columns are lexico-positive
1363  * is satisfied.  This function is not called from the current code
1364  * but is useful during debugging.
1365  */
1366 static void check_lexpos(struct isl_tab *tab) __attribute__ ((unused));
check_lexpos(struct isl_tab * tab)1367 static void check_lexpos(struct isl_tab *tab)
1368 {
1369 	unsigned off = 2 + tab->M;
1370 	int col;
1371 	int var;
1372 	int row;
1373 
1374 	for (col = tab->n_dead; col < tab->n_col; ++col) {
1375 		if (col_is_parameter_var(tab, col))
1376 			continue;
1377 		for (var = tab->n_param; var < tab->n_var - tab->n_div; ++var) {
1378 			if (!tab->var[var].is_row) {
1379 				if (tab->var[var].index == col)
1380 					break;
1381 				else
1382 					continue;
1383 			}
1384 			row = tab->var[var].index;
1385 			if (isl_int_is_zero(tab->mat->row[row][off + col]))
1386 				continue;
1387 			if (isl_int_is_pos(tab->mat->row[row][off + col]))
1388 				break;
1389 			fprintf(stderr, "lexneg column %d (row %d)\n",
1390 				col, row);
1391 		}
1392 		if (var >= tab->n_var - tab->n_div)
1393 			fprintf(stderr, "zero column %d\n", col);
1394 	}
1395 }
1396 
1397 /* Report to the caller that the given constraint is part of an encountered
1398  * conflict.
1399  */
report_conflicting_constraint(struct isl_tab * tab,int con)1400 static int report_conflicting_constraint(struct isl_tab *tab, int con)
1401 {
1402 	return tab->conflict(con, tab->conflict_user);
1403 }
1404 
1405 /* Given a conflicting row in the tableau, report all constraints
1406  * involved in the row to the caller.  That is, the row itself
1407  * (if it represents a constraint) and all constraint columns with
1408  * non-zero (and therefore negative) coefficients.
1409  */
report_conflict(struct isl_tab * tab,int row)1410 static int report_conflict(struct isl_tab *tab, int row)
1411 {
1412 	int j;
1413 	isl_int *tr;
1414 
1415 	if (!tab->conflict)
1416 		return 0;
1417 
1418 	if (tab->row_var[row] < 0 &&
1419 	    report_conflicting_constraint(tab, ~tab->row_var[row]) < 0)
1420 		return -1;
1421 
1422 	tr = tab->mat->row[row] + 2 + tab->M;
1423 
1424 	for (j = tab->n_dead; j < tab->n_col; ++j) {
1425 		if (col_is_parameter_var(tab, j))
1426 			continue;
1427 
1428 		if (!isl_int_is_neg(tr[j]))
1429 			continue;
1430 
1431 		if (tab->col_var[j] < 0 &&
1432 		    report_conflicting_constraint(tab, ~tab->col_var[j]) < 0)
1433 			return -1;
1434 	}
1435 
1436 	return 0;
1437 }
1438 
1439 /* Resolve all known or obviously violated constraints through pivoting.
1440  * In particular, as long as we can find any violated constraint, we
1441  * look for a pivoting column that would result in the lexicographically
1442  * smallest increment in the sample point.  If there is no such column
1443  * then the tableau is infeasible.
1444  */
1445 static int restore_lexmin(struct isl_tab *tab) WARN_UNUSED;
restore_lexmin(struct isl_tab * tab)1446 static int restore_lexmin(struct isl_tab *tab)
1447 {
1448 	int row, col;
1449 
1450 	if (!tab)
1451 		return -1;
1452 	if (tab->empty)
1453 		return 0;
1454 	while ((row = first_neg(tab)) != -1) {
1455 		col = lexmin_pivot_col(tab, row);
1456 		if (col >= tab->n_col) {
1457 			if (report_conflict(tab, row) < 0)
1458 				return -1;
1459 			if (isl_tab_mark_empty(tab) < 0)
1460 				return -1;
1461 			return 0;
1462 		}
1463 		if (col < 0)
1464 			return -1;
1465 		if (isl_tab_pivot(tab, row, col) < 0)
1466 			return -1;
1467 	}
1468 	return 0;
1469 }
1470 
1471 /* Given a row that represents an equality, look for an appropriate
1472  * pivoting column.
1473  * In particular, if there are any non-zero coefficients among
1474  * the non-parameter variables, then we take the last of these
1475  * variables.  Eliminating this variable in terms of the other
1476  * variables and/or parameters does not influence the property
1477  * that all column in the initial tableau are lexicographically
1478  * positive.  The row corresponding to the eliminated variable
1479  * will only have non-zero entries below the diagonal of the
1480  * initial tableau.  That is, we transform
1481  *
1482  *		I				I
1483  *		  1		into		a
1484  *		    I				  I
1485  *
1486  * If there is no such non-parameter variable, then we are dealing with
1487  * pure parameter equality and we pick any parameter with coefficient 1 or -1
1488  * for elimination.  This will ensure that the eliminated parameter
1489  * always has an integer value whenever all the other parameters are integral.
1490  * If there is no such parameter then we return -1.
1491  */
last_var_col_or_int_par_col(struct isl_tab * tab,int row)1492 static int last_var_col_or_int_par_col(struct isl_tab *tab, int row)
1493 {
1494 	unsigned off = 2 + tab->M;
1495 	int i;
1496 
1497 	for (i = tab->n_var - tab->n_div - 1; i >= 0 && i >= tab->n_param; --i) {
1498 		int col;
1499 		if (tab->var[i].is_row)
1500 			continue;
1501 		col = tab->var[i].index;
1502 		if (col <= tab->n_dead)
1503 			continue;
1504 		if (!isl_int_is_zero(tab->mat->row[row][off + col]))
1505 			return col;
1506 	}
1507 	for (i = tab->n_dead; i < tab->n_col; ++i) {
1508 		if (isl_int_is_one(tab->mat->row[row][off + i]))
1509 			return i;
1510 		if (isl_int_is_negone(tab->mat->row[row][off + i]))
1511 			return i;
1512 	}
1513 	return -1;
1514 }
1515 
1516 /* Add an equality that is known to be valid to the tableau.
1517  * We first check if we can eliminate a variable or a parameter.
1518  * If not, we add the equality as two inequalities.
1519  * In this case, the equality was a pure parameter equality and there
1520  * is no need to resolve any constraint violations.
1521  *
1522  * This function assumes that at least two more rows and at least
1523  * two more elements in the constraint array are available in the tableau.
1524  */
add_lexmin_valid_eq(struct isl_tab * tab,isl_int * eq)1525 static struct isl_tab *add_lexmin_valid_eq(struct isl_tab *tab, isl_int *eq)
1526 {
1527 	int i;
1528 	int r;
1529 
1530 	if (!tab)
1531 		return NULL;
1532 	r = isl_tab_add_row(tab, eq);
1533 	if (r < 0)
1534 		goto error;
1535 
1536 	r = tab->con[r].index;
1537 	i = last_var_col_or_int_par_col(tab, r);
1538 	if (i < 0) {
1539 		tab->con[r].is_nonneg = 1;
1540 		if (isl_tab_push_var(tab, isl_tab_undo_nonneg, &tab->con[r]) < 0)
1541 			goto error;
1542 		isl_seq_neg(eq, eq, 1 + tab->n_var);
1543 		r = isl_tab_add_row(tab, eq);
1544 		if (r < 0)
1545 			goto error;
1546 		tab->con[r].is_nonneg = 1;
1547 		if (isl_tab_push_var(tab, isl_tab_undo_nonneg, &tab->con[r]) < 0)
1548 			goto error;
1549 	} else {
1550 		if (isl_tab_pivot(tab, r, i) < 0)
1551 			goto error;
1552 		if (isl_tab_kill_col(tab, i) < 0)
1553 			goto error;
1554 		tab->n_eq++;
1555 	}
1556 
1557 	return tab;
1558 error:
1559 	isl_tab_free(tab);
1560 	return NULL;
1561 }
1562 
1563 /* Check if the given row is a pure constant.
1564  */
is_constant(struct isl_tab * tab,int row)1565 static int is_constant(struct isl_tab *tab, int row)
1566 {
1567 	unsigned off = 2 + tab->M;
1568 
1569 	return isl_seq_first_non_zero(tab->mat->row[row] + off + tab->n_dead,
1570 					tab->n_col - tab->n_dead) == -1;
1571 }
1572 
1573 /* Is the given row a parametric constant?
1574  * That is, does it only involve variables that also appear in the context?
1575  */
is_parametric_constant(struct isl_tab * tab,int row)1576 static int is_parametric_constant(struct isl_tab *tab, int row)
1577 {
1578 	unsigned off = 2 + tab->M;
1579 	int col;
1580 
1581 	for (col = tab->n_dead; col < tab->n_col; ++col) {
1582 		if (col_is_parameter_var(tab, col))
1583 			continue;
1584 		if (isl_int_is_zero(tab->mat->row[row][off + col]))
1585 			continue;
1586 		return 0;
1587 	}
1588 
1589 	return 1;
1590 }
1591 
1592 /* Add an equality that may or may not be valid to the tableau.
1593  * If the resulting row is a pure constant, then it must be zero.
1594  * Otherwise, the resulting tableau is empty.
1595  *
1596  * If the row is not a pure constant, then we add two inequalities,
1597  * each time checking that they can be satisfied.
1598  * In the end we try to use one of the two constraints to eliminate
1599  * a column.
1600  *
1601  * This function assumes that at least two more rows and at least
1602  * two more elements in the constraint array are available in the tableau.
1603  */
1604 static int add_lexmin_eq(struct isl_tab *tab, isl_int *eq) WARN_UNUSED;
add_lexmin_eq(struct isl_tab * tab,isl_int * eq)1605 static int add_lexmin_eq(struct isl_tab *tab, isl_int *eq)
1606 {
1607 	int r1, r2;
1608 	int row;
1609 	struct isl_tab_undo *snap;
1610 
1611 	if (!tab)
1612 		return -1;
1613 	snap = isl_tab_snap(tab);
1614 	r1 = isl_tab_add_row(tab, eq);
1615 	if (r1 < 0)
1616 		return -1;
1617 	tab->con[r1].is_nonneg = 1;
1618 	if (isl_tab_push_var(tab, isl_tab_undo_nonneg, &tab->con[r1]) < 0)
1619 		return -1;
1620 
1621 	row = tab->con[r1].index;
1622 	if (is_constant(tab, row)) {
1623 		if (!isl_int_is_zero(tab->mat->row[row][1]) ||
1624 		    (tab->M && !isl_int_is_zero(tab->mat->row[row][2]))) {
1625 			if (isl_tab_mark_empty(tab) < 0)
1626 				return -1;
1627 			return 0;
1628 		}
1629 		if (isl_tab_rollback(tab, snap) < 0)
1630 			return -1;
1631 		return 0;
1632 	}
1633 
1634 	if (restore_lexmin(tab) < 0)
1635 		return -1;
1636 	if (tab->empty)
1637 		return 0;
1638 
1639 	isl_seq_neg(eq, eq, 1 + tab->n_var);
1640 
1641 	r2 = isl_tab_add_row(tab, eq);
1642 	if (r2 < 0)
1643 		return -1;
1644 	tab->con[r2].is_nonneg = 1;
1645 	if (isl_tab_push_var(tab, isl_tab_undo_nonneg, &tab->con[r2]) < 0)
1646 		return -1;
1647 
1648 	if (restore_lexmin(tab) < 0)
1649 		return -1;
1650 	if (tab->empty)
1651 		return 0;
1652 
1653 	if (!tab->con[r1].is_row) {
1654 		if (isl_tab_kill_col(tab, tab->con[r1].index) < 0)
1655 			return -1;
1656 	} else if (!tab->con[r2].is_row) {
1657 		if (isl_tab_kill_col(tab, tab->con[r2].index) < 0)
1658 			return -1;
1659 	}
1660 
1661 	if (tab->bmap) {
1662 		tab->bmap = isl_basic_map_add_ineq(tab->bmap, eq);
1663 		if (isl_tab_push(tab, isl_tab_undo_bmap_ineq) < 0)
1664 			return -1;
1665 		isl_seq_neg(eq, eq, 1 + tab->n_var);
1666 		tab->bmap = isl_basic_map_add_ineq(tab->bmap, eq);
1667 		isl_seq_neg(eq, eq, 1 + tab->n_var);
1668 		if (isl_tab_push(tab, isl_tab_undo_bmap_ineq) < 0)
1669 			return -1;
1670 		if (!tab->bmap)
1671 			return -1;
1672 	}
1673 
1674 	return 0;
1675 }
1676 
1677 /* Add an inequality to the tableau, resolving violations using
1678  * restore_lexmin.
1679  *
1680  * This function assumes that at least one more row and at least
1681  * one more element in the constraint array are available in the tableau.
1682  */
add_lexmin_ineq(struct isl_tab * tab,isl_int * ineq)1683 static struct isl_tab *add_lexmin_ineq(struct isl_tab *tab, isl_int *ineq)
1684 {
1685 	int r;
1686 
1687 	if (!tab)
1688 		return NULL;
1689 	if (tab->bmap) {
1690 		tab->bmap = isl_basic_map_add_ineq(tab->bmap, ineq);
1691 		if (isl_tab_push(tab, isl_tab_undo_bmap_ineq) < 0)
1692 			goto error;
1693 		if (!tab->bmap)
1694 			goto error;
1695 	}
1696 	r = isl_tab_add_row(tab, ineq);
1697 	if (r < 0)
1698 		goto error;
1699 	tab->con[r].is_nonneg = 1;
1700 	if (isl_tab_push_var(tab, isl_tab_undo_nonneg, &tab->con[r]) < 0)
1701 		goto error;
1702 	if (isl_tab_row_is_redundant(tab, tab->con[r].index)) {
1703 		if (isl_tab_mark_redundant(tab, tab->con[r].index) < 0)
1704 			goto error;
1705 		return tab;
1706 	}
1707 
1708 	if (restore_lexmin(tab) < 0)
1709 		goto error;
1710 	if (!tab->empty && tab->con[r].is_row &&
1711 		 isl_tab_row_is_redundant(tab, tab->con[r].index))
1712 		if (isl_tab_mark_redundant(tab, tab->con[r].index) < 0)
1713 			goto error;
1714 	return tab;
1715 error:
1716 	isl_tab_free(tab);
1717 	return NULL;
1718 }
1719 
1720 /* Check if the coefficients of the parameters are all integral.
1721  */
integer_parameter(struct isl_tab * tab,int row)1722 static int integer_parameter(struct isl_tab *tab, int row)
1723 {
1724 	int i;
1725 	int col;
1726 	unsigned off = 2 + tab->M;
1727 
1728 	for (i = 0; i < tab->n_param; ++i) {
1729 		/* Eliminated parameter */
1730 		if (tab->var[i].is_row)
1731 			continue;
1732 		col = tab->var[i].index;
1733 		if (!isl_int_is_divisible_by(tab->mat->row[row][off + col],
1734 						tab->mat->row[row][0]))
1735 			return 0;
1736 	}
1737 	for (i = 0; i < tab->n_div; ++i) {
1738 		if (tab->var[tab->n_var - tab->n_div + i].is_row)
1739 			continue;
1740 		col = tab->var[tab->n_var - tab->n_div + i].index;
1741 		if (!isl_int_is_divisible_by(tab->mat->row[row][off + col],
1742 						tab->mat->row[row][0]))
1743 			return 0;
1744 	}
1745 	return 1;
1746 }
1747 
1748 /* Check if the coefficients of the non-parameter variables are all integral.
1749  */
integer_variable(struct isl_tab * tab,int row)1750 static int integer_variable(struct isl_tab *tab, int row)
1751 {
1752 	int i;
1753 	unsigned off = 2 + tab->M;
1754 
1755 	for (i = tab->n_dead; i < tab->n_col; ++i) {
1756 		if (col_is_parameter_var(tab, i))
1757 			continue;
1758 		if (!isl_int_is_divisible_by(tab->mat->row[row][off + i],
1759 						tab->mat->row[row][0]))
1760 			return 0;
1761 	}
1762 	return 1;
1763 }
1764 
1765 /* Check if the constant term is integral.
1766  */
integer_constant(struct isl_tab * tab,int row)1767 static int integer_constant(struct isl_tab *tab, int row)
1768 {
1769 	return isl_int_is_divisible_by(tab->mat->row[row][1],
1770 					tab->mat->row[row][0]);
1771 }
1772 
1773 #define I_CST	1 << 0
1774 #define I_PAR	1 << 1
1775 #define I_VAR	1 << 2
1776 
1777 /* Check for next (non-parameter) variable after "var" (first if var == -1)
1778  * that is non-integer and therefore requires a cut and return
1779  * the index of the variable.
1780  * For parametric tableaus, there are three parts in a row,
1781  * the constant, the coefficients of the parameters and the rest.
1782  * For each part, we check whether the coefficients in that part
1783  * are all integral and if so, set the corresponding flag in *f.
1784  * If the constant and the parameter part are integral, then the
1785  * current sample value is integral and no cut is required
1786  * (irrespective of whether the variable part is integral).
1787  */
next_non_integer_var(struct isl_tab * tab,int var,int * f)1788 static int next_non_integer_var(struct isl_tab *tab, int var, int *f)
1789 {
1790 	var = var < 0 ? tab->n_param : var + 1;
1791 
1792 	for (; var < tab->n_var - tab->n_div; ++var) {
1793 		int flags = 0;
1794 		int row;
1795 		if (!tab->var[var].is_row)
1796 			continue;
1797 		row = tab->var[var].index;
1798 		if (integer_constant(tab, row))
1799 			ISL_FL_SET(flags, I_CST);
1800 		if (integer_parameter(tab, row))
1801 			ISL_FL_SET(flags, I_PAR);
1802 		if (ISL_FL_ISSET(flags, I_CST) && ISL_FL_ISSET(flags, I_PAR))
1803 			continue;
1804 		if (integer_variable(tab, row))
1805 			ISL_FL_SET(flags, I_VAR);
1806 		*f = flags;
1807 		return var;
1808 	}
1809 	return -1;
1810 }
1811 
1812 /* Check for first (non-parameter) variable that is non-integer and
1813  * therefore requires a cut and return the corresponding row.
1814  * For parametric tableaus, there are three parts in a row,
1815  * the constant, the coefficients of the parameters and the rest.
1816  * For each part, we check whether the coefficients in that part
1817  * are all integral and if so, set the corresponding flag in *f.
1818  * If the constant and the parameter part are integral, then the
1819  * current sample value is integral and no cut is required
1820  * (irrespective of whether the variable part is integral).
1821  */
first_non_integer_row(struct isl_tab * tab,int * f)1822 static int first_non_integer_row(struct isl_tab *tab, int *f)
1823 {
1824 	int var = next_non_integer_var(tab, -1, f);
1825 
1826 	return var < 0 ? -1 : tab->var[var].index;
1827 }
1828 
1829 /* Add a (non-parametric) cut to cut away the non-integral sample
1830  * value of the given row.
1831  *
1832  * If the row is given by
1833  *
1834  *	m r = f + \sum_i a_i y_i
1835  *
1836  * then the cut is
1837  *
1838  *	c = - {-f/m} + \sum_i {a_i/m} y_i >= 0
1839  *
1840  * The big parameter, if any, is ignored, since it is assumed to be big
1841  * enough to be divisible by any integer.
1842  * If the tableau is actually a parametric tableau, then this function
1843  * is only called when all coefficients of the parameters are integral.
1844  * The cut therefore has zero coefficients for the parameters.
1845  *
1846  * The current value is known to be negative, so row_sign, if it
1847  * exists, is set accordingly.
1848  *
1849  * Return the row of the cut or -1.
1850  */
add_cut(struct isl_tab * tab,int row)1851 static int add_cut(struct isl_tab *tab, int row)
1852 {
1853 	int i;
1854 	int r;
1855 	isl_int *r_row;
1856 	unsigned off = 2 + tab->M;
1857 
1858 	if (isl_tab_extend_cons(tab, 1) < 0)
1859 		return -1;
1860 	r = isl_tab_allocate_con(tab);
1861 	if (r < 0)
1862 		return -1;
1863 
1864 	r_row = tab->mat->row[tab->con[r].index];
1865 	isl_int_set(r_row[0], tab->mat->row[row][0]);
1866 	isl_int_neg(r_row[1], tab->mat->row[row][1]);
1867 	isl_int_fdiv_r(r_row[1], r_row[1], tab->mat->row[row][0]);
1868 	isl_int_neg(r_row[1], r_row[1]);
1869 	if (tab->M)
1870 		isl_int_set_si(r_row[2], 0);
1871 	for (i = 0; i < tab->n_col; ++i)
1872 		isl_int_fdiv_r(r_row[off + i],
1873 			tab->mat->row[row][off + i], tab->mat->row[row][0]);
1874 
1875 	tab->con[r].is_nonneg = 1;
1876 	if (isl_tab_push_var(tab, isl_tab_undo_nonneg, &tab->con[r]) < 0)
1877 		return -1;
1878 	if (tab->row_sign)
1879 		tab->row_sign[tab->con[r].index] = isl_tab_row_neg;
1880 
1881 	return tab->con[r].index;
1882 }
1883 
1884 #define CUT_ALL 1
1885 #define CUT_ONE 0
1886 
1887 /* Given a non-parametric tableau, add cuts until an integer
1888  * sample point is obtained or until the tableau is determined
1889  * to be integer infeasible.
1890  * As long as there is any non-integer value in the sample point,
1891  * we add appropriate cuts, if possible, for each of these
1892  * non-integer values and then resolve the violated
1893  * cut constraints using restore_lexmin.
1894  * If one of the corresponding rows is equal to an integral
1895  * combination of variables/constraints plus a non-integral constant,
1896  * then there is no way to obtain an integer point and we return
1897  * a tableau that is marked empty.
1898  * The parameter cutting_strategy controls the strategy used when adding cuts
1899  * to remove non-integer points. CUT_ALL adds all possible cuts
1900  * before continuing the search. CUT_ONE adds only one cut at a time.
1901  */
cut_to_integer_lexmin(struct isl_tab * tab,int cutting_strategy)1902 static struct isl_tab *cut_to_integer_lexmin(struct isl_tab *tab,
1903 	int cutting_strategy)
1904 {
1905 	int var;
1906 	int row;
1907 	int flags;
1908 
1909 	if (!tab)
1910 		return NULL;
1911 	if (tab->empty)
1912 		return tab;
1913 
1914 	while ((var = next_non_integer_var(tab, -1, &flags)) != -1) {
1915 		do {
1916 			if (ISL_FL_ISSET(flags, I_VAR)) {
1917 				if (isl_tab_mark_empty(tab) < 0)
1918 					goto error;
1919 				return tab;
1920 			}
1921 			row = tab->var[var].index;
1922 			row = add_cut(tab, row);
1923 			if (row < 0)
1924 				goto error;
1925 			if (cutting_strategy == CUT_ONE)
1926 				break;
1927 		} while ((var = next_non_integer_var(tab, var, &flags)) != -1);
1928 		if (restore_lexmin(tab) < 0)
1929 			goto error;
1930 		if (tab->empty)
1931 			break;
1932 	}
1933 	return tab;
1934 error:
1935 	isl_tab_free(tab);
1936 	return NULL;
1937 }
1938 
1939 /* Check whether all the currently active samples also satisfy the inequality
1940  * "ineq" (treated as an equality if eq is set).
1941  * Remove those samples that do not.
1942  */
check_samples(struct isl_tab * tab,isl_int * ineq,int eq)1943 static struct isl_tab *check_samples(struct isl_tab *tab, isl_int *ineq, int eq)
1944 {
1945 	int i;
1946 	isl_int v;
1947 
1948 	if (!tab)
1949 		return NULL;
1950 
1951 	isl_assert(tab->mat->ctx, tab->bmap, goto error);
1952 	isl_assert(tab->mat->ctx, tab->samples, goto error);
1953 	isl_assert(tab->mat->ctx, tab->samples->n_col == 1 + tab->n_var, goto error);
1954 
1955 	isl_int_init(v);
1956 	for (i = tab->n_outside; i < tab->n_sample; ++i) {
1957 		int sgn;
1958 		isl_seq_inner_product(ineq, tab->samples->row[i],
1959 					1 + tab->n_var, &v);
1960 		sgn = isl_int_sgn(v);
1961 		if (eq ? (sgn == 0) : (sgn >= 0))
1962 			continue;
1963 		tab = isl_tab_drop_sample(tab, i);
1964 		if (!tab)
1965 			break;
1966 	}
1967 	isl_int_clear(v);
1968 
1969 	return tab;
1970 error:
1971 	isl_tab_free(tab);
1972 	return NULL;
1973 }
1974 
1975 /* Check whether the sample value of the tableau is finite,
1976  * i.e., either the tableau does not use a big parameter, or
1977  * all values of the variables are equal to the big parameter plus
1978  * some constant.  This constant is the actual sample value.
1979  */
sample_is_finite(struct isl_tab * tab)1980 static int sample_is_finite(struct isl_tab *tab)
1981 {
1982 	int i;
1983 
1984 	if (!tab->M)
1985 		return 1;
1986 
1987 	for (i = 0; i < tab->n_var; ++i) {
1988 		int row;
1989 		if (!tab->var[i].is_row)
1990 			return 0;
1991 		row = tab->var[i].index;
1992 		if (isl_int_ne(tab->mat->row[row][0], tab->mat->row[row][2]))
1993 			return 0;
1994 	}
1995 	return 1;
1996 }
1997 
1998 /* Check if the context tableau of sol has any integer points.
1999  * Leave tab in empty state if no integer point can be found.
2000  * If an integer point can be found and if moreover it is finite,
2001  * then it is added to the list of sample values.
2002  *
2003  * This function is only called when none of the currently active sample
2004  * values satisfies the most recently added constraint.
2005  */
check_integer_feasible(struct isl_tab * tab)2006 static struct isl_tab *check_integer_feasible(struct isl_tab *tab)
2007 {
2008 	struct isl_tab_undo *snap;
2009 
2010 	if (!tab)
2011 		return NULL;
2012 
2013 	snap = isl_tab_snap(tab);
2014 	if (isl_tab_push_basis(tab) < 0)
2015 		goto error;
2016 
2017 	tab = cut_to_integer_lexmin(tab, CUT_ALL);
2018 	if (!tab)
2019 		goto error;
2020 
2021 	if (!tab->empty && sample_is_finite(tab)) {
2022 		struct isl_vec *sample;
2023 
2024 		sample = isl_tab_get_sample_value(tab);
2025 
2026 		if (isl_tab_add_sample(tab, sample) < 0)
2027 			goto error;
2028 	}
2029 
2030 	if (!tab->empty && isl_tab_rollback(tab, snap) < 0)
2031 		goto error;
2032 
2033 	return tab;
2034 error:
2035 	isl_tab_free(tab);
2036 	return NULL;
2037 }
2038 
2039 /* Check if any of the currently active sample values satisfies
2040  * the inequality "ineq" (an equality if eq is set).
2041  */
tab_has_valid_sample(struct isl_tab * tab,isl_int * ineq,int eq)2042 static int tab_has_valid_sample(struct isl_tab *tab, isl_int *ineq, int eq)
2043 {
2044 	int i;
2045 	isl_int v;
2046 
2047 	if (!tab)
2048 		return -1;
2049 
2050 	isl_assert(tab->mat->ctx, tab->bmap, return -1);
2051 	isl_assert(tab->mat->ctx, tab->samples, return -1);
2052 	isl_assert(tab->mat->ctx, tab->samples->n_col == 1 + tab->n_var, return -1);
2053 
2054 	isl_int_init(v);
2055 	for (i = tab->n_outside; i < tab->n_sample; ++i) {
2056 		int sgn;
2057 		isl_seq_inner_product(ineq, tab->samples->row[i],
2058 					1 + tab->n_var, &v);
2059 		sgn = isl_int_sgn(v);
2060 		if (eq ? (sgn == 0) : (sgn >= 0))
2061 			break;
2062 	}
2063 	isl_int_clear(v);
2064 
2065 	return i < tab->n_sample;
2066 }
2067 
2068 /* Insert a div specified by "div" to the tableau "tab" at position "pos" and
2069  * return isl_bool_true if the div is obviously non-negative.
2070  */
context_tab_insert_div(struct isl_tab * tab,int pos,__isl_keep isl_vec * div,isl_stat (* add_ineq)(void * user,isl_int *),void * user)2071 static isl_bool context_tab_insert_div(struct isl_tab *tab, int pos,
2072 	__isl_keep isl_vec *div,
2073 	isl_stat (*add_ineq)(void *user, isl_int *), void *user)
2074 {
2075 	int i;
2076 	int r;
2077 	struct isl_mat *samples;
2078 	int nonneg;
2079 
2080 	r = isl_tab_insert_div(tab, pos, div, add_ineq, user);
2081 	if (r < 0)
2082 		return isl_bool_error;
2083 	nonneg = tab->var[r].is_nonneg;
2084 	tab->var[r].frozen = 1;
2085 
2086 	samples = isl_mat_extend(tab->samples,
2087 			tab->n_sample, 1 + tab->n_var);
2088 	tab->samples = samples;
2089 	if (!samples)
2090 		return isl_bool_error;
2091 	for (i = tab->n_outside; i < samples->n_row; ++i) {
2092 		isl_seq_inner_product(div->el + 1, samples->row[i],
2093 			div->size - 1, &samples->row[i][samples->n_col - 1]);
2094 		isl_int_fdiv_q(samples->row[i][samples->n_col - 1],
2095 			       samples->row[i][samples->n_col - 1], div->el[0]);
2096 	}
2097 	tab->samples = isl_mat_move_cols(tab->samples, 1 + pos,
2098 					1 + tab->n_var - 1, 1);
2099 	if (!tab->samples)
2100 		return isl_bool_error;
2101 
2102 	return isl_bool_ok(nonneg);
2103 }
2104 
2105 /* Add a div specified by "div" to both the main tableau and
2106  * the context tableau.  In case of the main tableau, we only
2107  * need to add an extra div.  In the context tableau, we also
2108  * need to express the meaning of the div.
2109  * Return the index of the div or -1 if anything went wrong.
2110  *
2111  * The new integer division is added before any unknown integer
2112  * divisions in the context to ensure that it does not get
2113  * equated to some linear combination involving unknown integer
2114  * divisions.
2115  */
add_div(struct isl_tab * tab,struct isl_context * context,__isl_keep isl_vec * div)2116 static int add_div(struct isl_tab *tab, struct isl_context *context,
2117 	__isl_keep isl_vec *div)
2118 {
2119 	int r;
2120 	int pos;
2121 	isl_bool nonneg;
2122 	struct isl_tab *context_tab = context->op->peek_tab(context);
2123 
2124 	if (!tab || !context_tab)
2125 		goto error;
2126 
2127 	pos = context_tab->n_var - context->n_unknown;
2128 	if ((nonneg = context->op->insert_div(context, pos, div)) < 0)
2129 		goto error;
2130 
2131 	if (!context->op->is_ok(context))
2132 		goto error;
2133 
2134 	pos = tab->n_var - context->n_unknown;
2135 	if (isl_tab_extend_vars(tab, 1) < 0)
2136 		goto error;
2137 	r = isl_tab_insert_var(tab, pos);
2138 	if (r < 0)
2139 		goto error;
2140 	if (nonneg)
2141 		tab->var[r].is_nonneg = 1;
2142 	tab->var[r].frozen = 1;
2143 	tab->n_div++;
2144 
2145 	return tab->n_div - 1 - context->n_unknown;
2146 error:
2147 	context->op->invalidate(context);
2148 	return -1;
2149 }
2150 
2151 /* Return the position of the integer division that is equal to div/denom
2152  * if there is one.  Otherwise, return a position beyond the integer divisions.
2153  */
find_div(struct isl_tab * tab,isl_int * div,isl_int denom)2154 static int find_div(struct isl_tab *tab, isl_int *div, isl_int denom)
2155 {
2156 	int i;
2157 	isl_size total = isl_basic_map_dim(tab->bmap, isl_dim_all);
2158 	isl_size n_div;
2159 
2160 	n_div = isl_basic_map_dim(tab->bmap, isl_dim_div);
2161 	if (total < 0 || n_div < 0)
2162 		return -1;
2163 	for (i = 0; i < n_div; ++i) {
2164 		if (isl_int_ne(tab->bmap->div[i][0], denom))
2165 			continue;
2166 		if (!isl_seq_eq(tab->bmap->div[i] + 1, div, 1 + total))
2167 			continue;
2168 		return i;
2169 	}
2170 	return n_div;
2171 }
2172 
2173 /* Return the index of a div that corresponds to "div".
2174  * We first check if we already have such a div and if not, we create one.
2175  */
get_div(struct isl_tab * tab,struct isl_context * context,struct isl_vec * div)2176 static int get_div(struct isl_tab *tab, struct isl_context *context,
2177 	struct isl_vec *div)
2178 {
2179 	int d;
2180 	struct isl_tab *context_tab = context->op->peek_tab(context);
2181 	unsigned n_div;
2182 
2183 	if (!context_tab)
2184 		return -1;
2185 
2186 	n_div = isl_basic_map_dim(context_tab->bmap, isl_dim_div);
2187 	d = find_div(context_tab, div->el + 1, div->el[0]);
2188 	if (d < 0)
2189 		return -1;
2190 	if (d < n_div)
2191 		return d;
2192 
2193 	return add_div(tab, context, div);
2194 }
2195 
2196 /* Add a parametric cut to cut away the non-integral sample value
2197  * of the given row.
2198  * Let a_i be the coefficients of the constant term and the parameters
2199  * and let b_i be the coefficients of the variables or constraints
2200  * in basis of the tableau.
2201  * Let q be the div q = floor(\sum_i {-a_i} y_i).
2202  *
2203  * The cut is expressed as
2204  *
2205  *	c = \sum_i -{-a_i} y_i + \sum_i {b_i} x_i + q >= 0
2206  *
2207  * If q did not already exist in the context tableau, then it is added first.
2208  * If q is in a column of the main tableau then the "+ q" can be accomplished
2209  * by setting the corresponding entry to the denominator of the constraint.
2210  * If q happens to be in a row of the main tableau, then the corresponding
2211  * row needs to be added instead (taking care of the denominators).
2212  * Note that this is very unlikely, but perhaps not entirely impossible.
2213  *
2214  * The current value of the cut is known to be negative (or at least
2215  * non-positive), so row_sign is set accordingly.
2216  *
2217  * Return the row of the cut or -1.
2218  */
add_parametric_cut(struct isl_tab * tab,int row,struct isl_context * context)2219 static int add_parametric_cut(struct isl_tab *tab, int row,
2220 	struct isl_context *context)
2221 {
2222 	struct isl_vec *div;
2223 	int d;
2224 	int i;
2225 	int r;
2226 	isl_int *r_row;
2227 	int col;
2228 	int n;
2229 	unsigned off = 2 + tab->M;
2230 
2231 	if (!context)
2232 		return -1;
2233 
2234 	div = get_row_parameter_div(tab, row);
2235 	if (!div)
2236 		return -1;
2237 
2238 	n = tab->n_div - context->n_unknown;
2239 	d = context->op->get_div(context, tab, div);
2240 	isl_vec_free(div);
2241 	if (d < 0)
2242 		return -1;
2243 
2244 	if (isl_tab_extend_cons(tab, 1) < 0)
2245 		return -1;
2246 	r = isl_tab_allocate_con(tab);
2247 	if (r < 0)
2248 		return -1;
2249 
2250 	r_row = tab->mat->row[tab->con[r].index];
2251 	isl_int_set(r_row[0], tab->mat->row[row][0]);
2252 	isl_int_neg(r_row[1], tab->mat->row[row][1]);
2253 	isl_int_fdiv_r(r_row[1], r_row[1], tab->mat->row[row][0]);
2254 	isl_int_neg(r_row[1], r_row[1]);
2255 	if (tab->M)
2256 		isl_int_set_si(r_row[2], 0);
2257 	for (i = 0; i < tab->n_param; ++i) {
2258 		if (tab->var[i].is_row)
2259 			continue;
2260 		col = tab->var[i].index;
2261 		isl_int_neg(r_row[off + col], tab->mat->row[row][off + col]);
2262 		isl_int_fdiv_r(r_row[off + col], r_row[off + col],
2263 				tab->mat->row[row][0]);
2264 		isl_int_neg(r_row[off + col], r_row[off + col]);
2265 	}
2266 	for (i = 0; i < tab->n_div; ++i) {
2267 		if (tab->var[tab->n_var - tab->n_div + i].is_row)
2268 			continue;
2269 		col = tab->var[tab->n_var - tab->n_div + i].index;
2270 		isl_int_neg(r_row[off + col], tab->mat->row[row][off + col]);
2271 		isl_int_fdiv_r(r_row[off + col], r_row[off + col],
2272 				tab->mat->row[row][0]);
2273 		isl_int_neg(r_row[off + col], r_row[off + col]);
2274 	}
2275 	for (i = 0; i < tab->n_col; ++i) {
2276 		if (tab->col_var[i] >= 0 &&
2277 		    (tab->col_var[i] < tab->n_param ||
2278 		     tab->col_var[i] >= tab->n_var - tab->n_div))
2279 			continue;
2280 		isl_int_fdiv_r(r_row[off + i],
2281 			tab->mat->row[row][off + i], tab->mat->row[row][0]);
2282 	}
2283 	if (tab->var[tab->n_var - tab->n_div + d].is_row) {
2284 		isl_int gcd;
2285 		int d_row = tab->var[tab->n_var - tab->n_div + d].index;
2286 		isl_int_init(gcd);
2287 		isl_int_gcd(gcd, tab->mat->row[d_row][0], r_row[0]);
2288 		isl_int_divexact(r_row[0], r_row[0], gcd);
2289 		isl_int_divexact(gcd, tab->mat->row[d_row][0], gcd);
2290 		isl_seq_combine(r_row + 1, gcd, r_row + 1,
2291 				r_row[0], tab->mat->row[d_row] + 1,
2292 				off - 1 + tab->n_col);
2293 		isl_int_mul(r_row[0], r_row[0], tab->mat->row[d_row][0]);
2294 		isl_int_clear(gcd);
2295 	} else {
2296 		col = tab->var[tab->n_var - tab->n_div + d].index;
2297 		isl_int_set(r_row[off + col], tab->mat->row[row][0]);
2298 	}
2299 
2300 	tab->con[r].is_nonneg = 1;
2301 	if (isl_tab_push_var(tab, isl_tab_undo_nonneg, &tab->con[r]) < 0)
2302 		return -1;
2303 	if (tab->row_sign)
2304 		tab->row_sign[tab->con[r].index] = isl_tab_row_neg;
2305 
2306 	row = tab->con[r].index;
2307 
2308 	if (d >= n && context->op->detect_equalities(context, tab) < 0)
2309 		return -1;
2310 
2311 	return row;
2312 }
2313 
2314 /* Construct a tableau for bmap that can be used for computing
2315  * the lexicographic minimum (or maximum) of bmap.
2316  * If not NULL, then dom is the domain where the minimum
2317  * should be computed.  In this case, we set up a parametric
2318  * tableau with row signs (initialized to "unknown").
2319  * If M is set, then the tableau will use a big parameter.
2320  * If max is set, then a maximum should be computed instead of a minimum.
2321  * This means that for each variable x, the tableau will contain the variable
2322  * x' = M - x, rather than x' = M + x.  This in turn means that the coefficient
2323  * of the variables in all constraints are negated prior to adding them
2324  * to the tableau.
2325  */
tab_for_lexmin(__isl_keep isl_basic_map * bmap,__isl_keep isl_basic_set * dom,unsigned M,int max)2326 static __isl_give struct isl_tab *tab_for_lexmin(__isl_keep isl_basic_map *bmap,
2327 	__isl_keep isl_basic_set *dom, unsigned M, int max)
2328 {
2329 	int i;
2330 	struct isl_tab *tab;
2331 	unsigned n_var;
2332 	unsigned o_var;
2333 	isl_size total;
2334 
2335 	total = isl_basic_map_dim(bmap, isl_dim_all);
2336 	if (total < 0)
2337 		return NULL;
2338 	tab = isl_tab_alloc(bmap->ctx, 2 * bmap->n_eq + bmap->n_ineq + 1,
2339 			    total, M);
2340 	if (!tab)
2341 		return NULL;
2342 
2343 	tab->rational = ISL_F_ISSET(bmap, ISL_BASIC_MAP_RATIONAL);
2344 	if (dom) {
2345 		isl_size dom_total;
2346 		dom_total = isl_basic_set_dim(dom, isl_dim_all);
2347 		if (dom_total < 0)
2348 			goto error;
2349 		tab->n_param = dom_total - dom->n_div;
2350 		tab->n_div = dom->n_div;
2351 		tab->row_sign = isl_calloc_array(bmap->ctx,
2352 					enum isl_tab_row_sign, tab->mat->n_row);
2353 		if (tab->mat->n_row && !tab->row_sign)
2354 			goto error;
2355 	}
2356 	if (ISL_F_ISSET(bmap, ISL_BASIC_MAP_EMPTY)) {
2357 		if (isl_tab_mark_empty(tab) < 0)
2358 			goto error;
2359 		return tab;
2360 	}
2361 
2362 	for (i = tab->n_param; i < tab->n_var - tab->n_div; ++i) {
2363 		tab->var[i].is_nonneg = 1;
2364 		tab->var[i].frozen = 1;
2365 	}
2366 	o_var = 1 + tab->n_param;
2367 	n_var = tab->n_var - tab->n_param - tab->n_div;
2368 	for (i = 0; i < bmap->n_eq; ++i) {
2369 		if (max)
2370 			isl_seq_neg(bmap->eq[i] + o_var,
2371 				    bmap->eq[i] + o_var, n_var);
2372 		tab = add_lexmin_valid_eq(tab, bmap->eq[i]);
2373 		if (max)
2374 			isl_seq_neg(bmap->eq[i] + o_var,
2375 				    bmap->eq[i] + o_var, n_var);
2376 		if (!tab || tab->empty)
2377 			return tab;
2378 	}
2379 	if (bmap->n_eq && restore_lexmin(tab) < 0)
2380 		goto error;
2381 	for (i = 0; i < bmap->n_ineq; ++i) {
2382 		if (max)
2383 			isl_seq_neg(bmap->ineq[i] + o_var,
2384 				    bmap->ineq[i] + o_var, n_var);
2385 		tab = add_lexmin_ineq(tab, bmap->ineq[i]);
2386 		if (max)
2387 			isl_seq_neg(bmap->ineq[i] + o_var,
2388 				    bmap->ineq[i] + o_var, n_var);
2389 		if (!tab || tab->empty)
2390 			return tab;
2391 	}
2392 	return tab;
2393 error:
2394 	isl_tab_free(tab);
2395 	return NULL;
2396 }
2397 
2398 /* Given a main tableau where more than one row requires a split,
2399  * determine and return the "best" row to split on.
2400  *
2401  * If any of the rows requiring a split only involves
2402  * variables that also appear in the context tableau,
2403  * then the negative part is guaranteed not to have a solution.
2404  * It is therefore best to split on any of these rows first.
2405  *
2406  * Otherwise,
2407  * given two rows in the main tableau, if the inequality corresponding
2408  * to the first row is redundant with respect to that of the second row
2409  * in the current tableau, then it is better to split on the second row,
2410  * since in the positive part, both rows will be positive.
2411  * (In the negative part a pivot will have to be performed and just about
2412  * anything can happen to the sign of the other row.)
2413  *
2414  * As a simple heuristic, we therefore select the row that makes the most
2415  * of the other rows redundant.
2416  *
2417  * Perhaps it would also be useful to look at the number of constraints
2418  * that conflict with any given constraint.
2419  *
2420  * best is the best row so far (-1 when we have not found any row yet).
2421  * best_r is the number of other rows made redundant by row best.
2422  * When best is still -1, bset_r is meaningless, but it is initialized
2423  * to some arbitrary value (0) anyway.  Without this redundant initialization
2424  * valgrind may warn about uninitialized memory accesses when isl
2425  * is compiled with some versions of gcc.
2426  */
best_split(struct isl_tab * tab,struct isl_tab * context_tab)2427 static int best_split(struct isl_tab *tab, struct isl_tab *context_tab)
2428 {
2429 	struct isl_tab_undo *snap;
2430 	int split;
2431 	int row;
2432 	int best = -1;
2433 	int best_r = 0;
2434 
2435 	if (isl_tab_extend_cons(context_tab, 2) < 0)
2436 		return -1;
2437 
2438 	snap = isl_tab_snap(context_tab);
2439 
2440 	for (split = tab->n_redundant; split < tab->n_row; ++split) {
2441 		struct isl_tab_undo *snap2;
2442 		struct isl_vec *ineq = NULL;
2443 		int r = 0;
2444 		int ok;
2445 
2446 		if (!isl_tab_var_from_row(tab, split)->is_nonneg)
2447 			continue;
2448 		if (tab->row_sign[split] != isl_tab_row_any)
2449 			continue;
2450 
2451 		if (is_parametric_constant(tab, split))
2452 			return split;
2453 
2454 		ineq = get_row_parameter_ineq(tab, split);
2455 		if (!ineq)
2456 			return -1;
2457 		ok = isl_tab_add_ineq(context_tab, ineq->el) >= 0;
2458 		isl_vec_free(ineq);
2459 		if (!ok)
2460 			return -1;
2461 
2462 		snap2 = isl_tab_snap(context_tab);
2463 
2464 		for (row = tab->n_redundant; row < tab->n_row; ++row) {
2465 			struct isl_tab_var *var;
2466 
2467 			if (row == split)
2468 				continue;
2469 			if (!isl_tab_var_from_row(tab, row)->is_nonneg)
2470 				continue;
2471 			if (tab->row_sign[row] != isl_tab_row_any)
2472 				continue;
2473 
2474 			ineq = get_row_parameter_ineq(tab, row);
2475 			if (!ineq)
2476 				return -1;
2477 			ok = isl_tab_add_ineq(context_tab, ineq->el) >= 0;
2478 			isl_vec_free(ineq);
2479 			if (!ok)
2480 				return -1;
2481 			var = &context_tab->con[context_tab->n_con - 1];
2482 			if (!context_tab->empty &&
2483 			    !isl_tab_min_at_most_neg_one(context_tab, var))
2484 				r++;
2485 			if (isl_tab_rollback(context_tab, snap2) < 0)
2486 				return -1;
2487 		}
2488 		if (best == -1 || r > best_r) {
2489 			best = split;
2490 			best_r = r;
2491 		}
2492 		if (isl_tab_rollback(context_tab, snap) < 0)
2493 			return -1;
2494 	}
2495 
2496 	return best;
2497 }
2498 
context_lex_peek_basic_set(struct isl_context * context)2499 static struct isl_basic_set *context_lex_peek_basic_set(
2500 	struct isl_context *context)
2501 {
2502 	struct isl_context_lex *clex = (struct isl_context_lex *)context;
2503 	if (!clex->tab)
2504 		return NULL;
2505 	return isl_tab_peek_bset(clex->tab);
2506 }
2507 
context_lex_peek_tab(struct isl_context * context)2508 static struct isl_tab *context_lex_peek_tab(struct isl_context *context)
2509 {
2510 	struct isl_context_lex *clex = (struct isl_context_lex *)context;
2511 	return clex->tab;
2512 }
2513 
context_lex_add_eq(struct isl_context * context,isl_int * eq,int check,int update)2514 static void context_lex_add_eq(struct isl_context *context, isl_int *eq,
2515 		int check, int update)
2516 {
2517 	struct isl_context_lex *clex = (struct isl_context_lex *)context;
2518 	if (isl_tab_extend_cons(clex->tab, 2) < 0)
2519 		goto error;
2520 	if (add_lexmin_eq(clex->tab, eq) < 0)
2521 		goto error;
2522 	if (check) {
2523 		int v = tab_has_valid_sample(clex->tab, eq, 1);
2524 		if (v < 0)
2525 			goto error;
2526 		if (!v)
2527 			clex->tab = check_integer_feasible(clex->tab);
2528 	}
2529 	if (update)
2530 		clex->tab = check_samples(clex->tab, eq, 1);
2531 	return;
2532 error:
2533 	isl_tab_free(clex->tab);
2534 	clex->tab = NULL;
2535 }
2536 
context_lex_add_ineq(struct isl_context * context,isl_int * ineq,int check,int update)2537 static void context_lex_add_ineq(struct isl_context *context, isl_int *ineq,
2538 		int check, int update)
2539 {
2540 	struct isl_context_lex *clex = (struct isl_context_lex *)context;
2541 	if (isl_tab_extend_cons(clex->tab, 1) < 0)
2542 		goto error;
2543 	clex->tab = add_lexmin_ineq(clex->tab, ineq);
2544 	if (check) {
2545 		int v = tab_has_valid_sample(clex->tab, ineq, 0);
2546 		if (v < 0)
2547 			goto error;
2548 		if (!v)
2549 			clex->tab = check_integer_feasible(clex->tab);
2550 	}
2551 	if (update)
2552 		clex->tab = check_samples(clex->tab, ineq, 0);
2553 	return;
2554 error:
2555 	isl_tab_free(clex->tab);
2556 	clex->tab = NULL;
2557 }
2558 
context_lex_add_ineq_wrap(void * user,isl_int * ineq)2559 static isl_stat context_lex_add_ineq_wrap(void *user, isl_int *ineq)
2560 {
2561 	struct isl_context *context = (struct isl_context *)user;
2562 	context_lex_add_ineq(context, ineq, 0, 0);
2563 	return context->op->is_ok(context) ? isl_stat_ok : isl_stat_error;
2564 }
2565 
2566 /* Check which signs can be obtained by "ineq" on all the currently
2567  * active sample values.  See row_sign for more information.
2568  */
tab_ineq_sign(struct isl_tab * tab,isl_int * ineq,int strict)2569 static enum isl_tab_row_sign tab_ineq_sign(struct isl_tab *tab, isl_int *ineq,
2570 	int strict)
2571 {
2572 	int i;
2573 	int sgn;
2574 	isl_int tmp;
2575 	enum isl_tab_row_sign res = isl_tab_row_unknown;
2576 
2577 	isl_assert(tab->mat->ctx, tab->samples, return isl_tab_row_unknown);
2578 	isl_assert(tab->mat->ctx, tab->samples->n_col == 1 + tab->n_var,
2579 			return isl_tab_row_unknown);
2580 
2581 	isl_int_init(tmp);
2582 	for (i = tab->n_outside; i < tab->n_sample; ++i) {
2583 		isl_seq_inner_product(tab->samples->row[i], ineq,
2584 					1 + tab->n_var, &tmp);
2585 		sgn = isl_int_sgn(tmp);
2586 		if (sgn > 0 || (sgn == 0 && strict)) {
2587 			if (res == isl_tab_row_unknown)
2588 				res = isl_tab_row_pos;
2589 			if (res == isl_tab_row_neg)
2590 				res = isl_tab_row_any;
2591 		}
2592 		if (sgn < 0) {
2593 			if (res == isl_tab_row_unknown)
2594 				res = isl_tab_row_neg;
2595 			if (res == isl_tab_row_pos)
2596 				res = isl_tab_row_any;
2597 		}
2598 		if (res == isl_tab_row_any)
2599 			break;
2600 	}
2601 	isl_int_clear(tmp);
2602 
2603 	return res;
2604 }
2605 
context_lex_ineq_sign(struct isl_context * context,isl_int * ineq,int strict)2606 static enum isl_tab_row_sign context_lex_ineq_sign(struct isl_context *context,
2607 			isl_int *ineq, int strict)
2608 {
2609 	struct isl_context_lex *clex = (struct isl_context_lex *)context;
2610 	return tab_ineq_sign(clex->tab, ineq, strict);
2611 }
2612 
2613 /* Check whether "ineq" can be added to the tableau without rendering
2614  * it infeasible.
2615  */
context_lex_test_ineq(struct isl_context * context,isl_int * ineq)2616 static int context_lex_test_ineq(struct isl_context *context, isl_int *ineq)
2617 {
2618 	struct isl_context_lex *clex = (struct isl_context_lex *)context;
2619 	struct isl_tab_undo *snap;
2620 	int feasible;
2621 
2622 	if (!clex->tab)
2623 		return -1;
2624 
2625 	if (isl_tab_extend_cons(clex->tab, 1) < 0)
2626 		return -1;
2627 
2628 	snap = isl_tab_snap(clex->tab);
2629 	if (isl_tab_push_basis(clex->tab) < 0)
2630 		return -1;
2631 	clex->tab = add_lexmin_ineq(clex->tab, ineq);
2632 	clex->tab = check_integer_feasible(clex->tab);
2633 	if (!clex->tab)
2634 		return -1;
2635 	feasible = !clex->tab->empty;
2636 	if (isl_tab_rollback(clex->tab, snap) < 0)
2637 		return -1;
2638 
2639 	return feasible;
2640 }
2641 
context_lex_get_div(struct isl_context * context,struct isl_tab * tab,struct isl_vec * div)2642 static int context_lex_get_div(struct isl_context *context, struct isl_tab *tab,
2643 		struct isl_vec *div)
2644 {
2645 	return get_div(tab, context, div);
2646 }
2647 
2648 /* Insert a div specified by "div" to the context tableau at position "pos" and
2649  * return isl_bool_true if the div is obviously non-negative.
2650  * context_tab_add_div will always return isl_bool_true, because all variables
2651  * in a isl_context_lex tableau are non-negative.
2652  * However, if we are using a big parameter in the context, then this only
2653  * reflects the non-negativity of the variable used to _encode_ the
2654  * div, i.e., div' = M + div, so we can't draw any conclusions.
2655  */
context_lex_insert_div(struct isl_context * context,int pos,__isl_keep isl_vec * div)2656 static isl_bool context_lex_insert_div(struct isl_context *context, int pos,
2657 	__isl_keep isl_vec *div)
2658 {
2659 	struct isl_context_lex *clex = (struct isl_context_lex *)context;
2660 	isl_bool nonneg;
2661 	nonneg = context_tab_insert_div(clex->tab, pos, div,
2662 					context_lex_add_ineq_wrap, context);
2663 	if (nonneg < 0)
2664 		return isl_bool_error;
2665 	if (clex->tab->M)
2666 		return isl_bool_false;
2667 	return nonneg;
2668 }
2669 
context_lex_detect_equalities(struct isl_context * context,struct isl_tab * tab)2670 static int context_lex_detect_equalities(struct isl_context *context,
2671 		struct isl_tab *tab)
2672 {
2673 	return 0;
2674 }
2675 
context_lex_best_split(struct isl_context * context,struct isl_tab * tab)2676 static int context_lex_best_split(struct isl_context *context,
2677 		struct isl_tab *tab)
2678 {
2679 	struct isl_context_lex *clex = (struct isl_context_lex *)context;
2680 	struct isl_tab_undo *snap;
2681 	int r;
2682 
2683 	snap = isl_tab_snap(clex->tab);
2684 	if (isl_tab_push_basis(clex->tab) < 0)
2685 		return -1;
2686 	r = best_split(tab, clex->tab);
2687 
2688 	if (r >= 0 && isl_tab_rollback(clex->tab, snap) < 0)
2689 		return -1;
2690 
2691 	return r;
2692 }
2693 
context_lex_is_empty(struct isl_context * context)2694 static int context_lex_is_empty(struct isl_context *context)
2695 {
2696 	struct isl_context_lex *clex = (struct isl_context_lex *)context;
2697 	if (!clex->tab)
2698 		return -1;
2699 	return clex->tab->empty;
2700 }
2701 
context_lex_save(struct isl_context * context)2702 static void *context_lex_save(struct isl_context *context)
2703 {
2704 	struct isl_context_lex *clex = (struct isl_context_lex *)context;
2705 	struct isl_tab_undo *snap;
2706 
2707 	snap = isl_tab_snap(clex->tab);
2708 	if (isl_tab_push_basis(clex->tab) < 0)
2709 		return NULL;
2710 	if (isl_tab_save_samples(clex->tab) < 0)
2711 		return NULL;
2712 
2713 	return snap;
2714 }
2715 
context_lex_restore(struct isl_context * context,void * save)2716 static void context_lex_restore(struct isl_context *context, void *save)
2717 {
2718 	struct isl_context_lex *clex = (struct isl_context_lex *)context;
2719 	if (isl_tab_rollback(clex->tab, (struct isl_tab_undo *)save) < 0) {
2720 		isl_tab_free(clex->tab);
2721 		clex->tab = NULL;
2722 	}
2723 }
2724 
context_lex_discard(void * save)2725 static void context_lex_discard(void *save)
2726 {
2727 }
2728 
context_lex_is_ok(struct isl_context * context)2729 static int context_lex_is_ok(struct isl_context *context)
2730 {
2731 	struct isl_context_lex *clex = (struct isl_context_lex *)context;
2732 	return !!clex->tab;
2733 }
2734 
2735 /* For each variable in the context tableau, check if the variable can
2736  * only attain non-negative values.  If so, mark the parameter as non-negative
2737  * in the main tableau.  This allows for a more direct identification of some
2738  * cases of violated constraints.
2739  */
tab_detect_nonnegative_parameters(struct isl_tab * tab,struct isl_tab * context_tab)2740 static struct isl_tab *tab_detect_nonnegative_parameters(struct isl_tab *tab,
2741 	struct isl_tab *context_tab)
2742 {
2743 	int i;
2744 	struct isl_tab_undo *snap;
2745 	struct isl_vec *ineq = NULL;
2746 	struct isl_tab_var *var;
2747 	int n;
2748 
2749 	if (context_tab->n_var == 0)
2750 		return tab;
2751 
2752 	ineq = isl_vec_alloc(tab->mat->ctx, 1 + context_tab->n_var);
2753 	if (!ineq)
2754 		goto error;
2755 
2756 	if (isl_tab_extend_cons(context_tab, 1) < 0)
2757 		goto error;
2758 
2759 	snap = isl_tab_snap(context_tab);
2760 
2761 	n = 0;
2762 	isl_seq_clr(ineq->el, ineq->size);
2763 	for (i = 0; i < context_tab->n_var; ++i) {
2764 		isl_int_set_si(ineq->el[1 + i], 1);
2765 		if (isl_tab_add_ineq(context_tab, ineq->el) < 0)
2766 			goto error;
2767 		var = &context_tab->con[context_tab->n_con - 1];
2768 		if (!context_tab->empty &&
2769 		    !isl_tab_min_at_most_neg_one(context_tab, var)) {
2770 			int j = i;
2771 			if (i >= tab->n_param)
2772 				j = i - tab->n_param + tab->n_var - tab->n_div;
2773 			tab->var[j].is_nonneg = 1;
2774 			n++;
2775 		}
2776 		isl_int_set_si(ineq->el[1 + i], 0);
2777 		if (isl_tab_rollback(context_tab, snap) < 0)
2778 			goto error;
2779 	}
2780 
2781 	if (context_tab->M && n == context_tab->n_var) {
2782 		context_tab->mat = isl_mat_drop_cols(context_tab->mat, 2, 1);
2783 		context_tab->M = 0;
2784 	}
2785 
2786 	isl_vec_free(ineq);
2787 	return tab;
2788 error:
2789 	isl_vec_free(ineq);
2790 	isl_tab_free(tab);
2791 	return NULL;
2792 }
2793 
context_lex_detect_nonnegative_parameters(struct isl_context * context,struct isl_tab * tab)2794 static struct isl_tab *context_lex_detect_nonnegative_parameters(
2795 	struct isl_context *context, struct isl_tab *tab)
2796 {
2797 	struct isl_context_lex *clex = (struct isl_context_lex *)context;
2798 	struct isl_tab_undo *snap;
2799 
2800 	if (!tab)
2801 		return NULL;
2802 
2803 	snap = isl_tab_snap(clex->tab);
2804 	if (isl_tab_push_basis(clex->tab) < 0)
2805 		goto error;
2806 
2807 	tab = tab_detect_nonnegative_parameters(tab, clex->tab);
2808 
2809 	if (isl_tab_rollback(clex->tab, snap) < 0)
2810 		goto error;
2811 
2812 	return tab;
2813 error:
2814 	isl_tab_free(tab);
2815 	return NULL;
2816 }
2817 
context_lex_invalidate(struct isl_context * context)2818 static void context_lex_invalidate(struct isl_context *context)
2819 {
2820 	struct isl_context_lex *clex = (struct isl_context_lex *)context;
2821 	isl_tab_free(clex->tab);
2822 	clex->tab = NULL;
2823 }
2824 
context_lex_free(struct isl_context * context)2825 static __isl_null struct isl_context *context_lex_free(
2826 	struct isl_context *context)
2827 {
2828 	struct isl_context_lex *clex = (struct isl_context_lex *)context;
2829 	isl_tab_free(clex->tab);
2830 	free(clex);
2831 
2832 	return NULL;
2833 }
2834 
2835 struct isl_context_op isl_context_lex_op = {
2836 	context_lex_detect_nonnegative_parameters,
2837 	context_lex_peek_basic_set,
2838 	context_lex_peek_tab,
2839 	context_lex_add_eq,
2840 	context_lex_add_ineq,
2841 	context_lex_ineq_sign,
2842 	context_lex_test_ineq,
2843 	context_lex_get_div,
2844 	context_lex_insert_div,
2845 	context_lex_detect_equalities,
2846 	context_lex_best_split,
2847 	context_lex_is_empty,
2848 	context_lex_is_ok,
2849 	context_lex_save,
2850 	context_lex_restore,
2851 	context_lex_discard,
2852 	context_lex_invalidate,
2853 	context_lex_free,
2854 };
2855 
context_tab_for_lexmin(__isl_take isl_basic_set * bset)2856 static struct isl_tab *context_tab_for_lexmin(__isl_take isl_basic_set *bset)
2857 {
2858 	struct isl_tab *tab;
2859 
2860 	if (!bset)
2861 		return NULL;
2862 	tab = tab_for_lexmin(bset_to_bmap(bset), NULL, 1, 0);
2863 	if (isl_tab_track_bset(tab, bset) < 0)
2864 		goto error;
2865 	tab = isl_tab_init_samples(tab);
2866 	return tab;
2867 error:
2868 	isl_tab_free(tab);
2869 	return NULL;
2870 }
2871 
isl_context_lex_alloc(struct isl_basic_set * dom)2872 static struct isl_context *isl_context_lex_alloc(struct isl_basic_set *dom)
2873 {
2874 	struct isl_context_lex *clex;
2875 
2876 	if (!dom)
2877 		return NULL;
2878 
2879 	clex = isl_alloc_type(dom->ctx, struct isl_context_lex);
2880 	if (!clex)
2881 		return NULL;
2882 
2883 	clex->context.op = &isl_context_lex_op;
2884 
2885 	clex->tab = context_tab_for_lexmin(isl_basic_set_copy(dom));
2886 	if (restore_lexmin(clex->tab) < 0)
2887 		goto error;
2888 	clex->tab = check_integer_feasible(clex->tab);
2889 	if (!clex->tab)
2890 		goto error;
2891 
2892 	return &clex->context;
2893 error:
2894 	clex->context.op->free(&clex->context);
2895 	return NULL;
2896 }
2897 
2898 /* Representation of the context when using generalized basis reduction.
2899  *
2900  * "shifted" contains the offsets of the unit hypercubes that lie inside the
2901  * context.  Any rational point in "shifted" can therefore be rounded
2902  * up to an integer point in the context.
2903  * If the context is constrained by any equality, then "shifted" is not used
2904  * as it would be empty.
2905  */
2906 struct isl_context_gbr {
2907 	struct isl_context context;
2908 	struct isl_tab *tab;
2909 	struct isl_tab *shifted;
2910 	struct isl_tab *cone;
2911 };
2912 
context_gbr_detect_nonnegative_parameters(struct isl_context * context,struct isl_tab * tab)2913 static struct isl_tab *context_gbr_detect_nonnegative_parameters(
2914 	struct isl_context *context, struct isl_tab *tab)
2915 {
2916 	struct isl_context_gbr *cgbr = (struct isl_context_gbr *)context;
2917 	if (!tab)
2918 		return NULL;
2919 	return tab_detect_nonnegative_parameters(tab, cgbr->tab);
2920 }
2921 
context_gbr_peek_basic_set(struct isl_context * context)2922 static struct isl_basic_set *context_gbr_peek_basic_set(
2923 	struct isl_context *context)
2924 {
2925 	struct isl_context_gbr *cgbr = (struct isl_context_gbr *)context;
2926 	if (!cgbr->tab)
2927 		return NULL;
2928 	return isl_tab_peek_bset(cgbr->tab);
2929 }
2930 
context_gbr_peek_tab(struct isl_context * context)2931 static struct isl_tab *context_gbr_peek_tab(struct isl_context *context)
2932 {
2933 	struct isl_context_gbr *cgbr = (struct isl_context_gbr *)context;
2934 	return cgbr->tab;
2935 }
2936 
2937 /* Initialize the "shifted" tableau of the context, which
2938  * contains the constraints of the original tableau shifted
2939  * by the sum of all negative coefficients.  This ensures
2940  * that any rational point in the shifted tableau can
2941  * be rounded up to yield an integer point in the original tableau.
2942  */
gbr_init_shifted(struct isl_context_gbr * cgbr)2943 static void gbr_init_shifted(struct isl_context_gbr *cgbr)
2944 {
2945 	int i, j;
2946 	struct isl_vec *cst;
2947 	struct isl_basic_set *bset = isl_tab_peek_bset(cgbr->tab);
2948 	isl_size dim = isl_basic_set_dim(bset, isl_dim_all);
2949 
2950 	if (dim < 0)
2951 		return;
2952 	cst = isl_vec_alloc(cgbr->tab->mat->ctx, bset->n_ineq);
2953 	if (!cst)
2954 		return;
2955 
2956 	for (i = 0; i < bset->n_ineq; ++i) {
2957 		isl_int_set(cst->el[i], bset->ineq[i][0]);
2958 		for (j = 0; j < dim; ++j) {
2959 			if (!isl_int_is_neg(bset->ineq[i][1 + j]))
2960 				continue;
2961 			isl_int_add(bset->ineq[i][0], bset->ineq[i][0],
2962 				    bset->ineq[i][1 + j]);
2963 		}
2964 	}
2965 
2966 	cgbr->shifted = isl_tab_from_basic_set(bset, 0);
2967 
2968 	for (i = 0; i < bset->n_ineq; ++i)
2969 		isl_int_set(bset->ineq[i][0], cst->el[i]);
2970 
2971 	isl_vec_free(cst);
2972 }
2973 
2974 /* Check if the shifted tableau is non-empty, and if so
2975  * use the sample point to construct an integer point
2976  * of the context tableau.
2977  */
gbr_get_shifted_sample(struct isl_context_gbr * cgbr)2978 static struct isl_vec *gbr_get_shifted_sample(struct isl_context_gbr *cgbr)
2979 {
2980 	struct isl_vec *sample;
2981 
2982 	if (!cgbr->shifted)
2983 		gbr_init_shifted(cgbr);
2984 	if (!cgbr->shifted)
2985 		return NULL;
2986 	if (cgbr->shifted->empty)
2987 		return isl_vec_alloc(cgbr->tab->mat->ctx, 0);
2988 
2989 	sample = isl_tab_get_sample_value(cgbr->shifted);
2990 	sample = isl_vec_ceil(sample);
2991 
2992 	return sample;
2993 }
2994 
drop_constant_terms(__isl_take isl_basic_set * bset)2995 static __isl_give isl_basic_set *drop_constant_terms(
2996 	__isl_take isl_basic_set *bset)
2997 {
2998 	int i;
2999 
3000 	if (!bset)
3001 		return NULL;
3002 
3003 	for (i = 0; i < bset->n_eq; ++i)
3004 		isl_int_set_si(bset->eq[i][0], 0);
3005 
3006 	for (i = 0; i < bset->n_ineq; ++i)
3007 		isl_int_set_si(bset->ineq[i][0], 0);
3008 
3009 	return bset;
3010 }
3011 
use_shifted(struct isl_context_gbr * cgbr)3012 static int use_shifted(struct isl_context_gbr *cgbr)
3013 {
3014 	if (!cgbr->tab)
3015 		return 0;
3016 	return cgbr->tab->bmap->n_eq == 0 && cgbr->tab->bmap->n_div == 0;
3017 }
3018 
gbr_get_sample(struct isl_context_gbr * cgbr)3019 static struct isl_vec *gbr_get_sample(struct isl_context_gbr *cgbr)
3020 {
3021 	struct isl_basic_set *bset;
3022 	struct isl_basic_set *cone;
3023 
3024 	if (isl_tab_sample_is_integer(cgbr->tab))
3025 		return isl_tab_get_sample_value(cgbr->tab);
3026 
3027 	if (use_shifted(cgbr)) {
3028 		struct isl_vec *sample;
3029 
3030 		sample = gbr_get_shifted_sample(cgbr);
3031 		if (!sample || sample->size > 0)
3032 			return sample;
3033 
3034 		isl_vec_free(sample);
3035 	}
3036 
3037 	if (!cgbr->cone) {
3038 		bset = isl_tab_peek_bset(cgbr->tab);
3039 		cgbr->cone = isl_tab_from_recession_cone(bset, 0);
3040 		if (!cgbr->cone)
3041 			return NULL;
3042 		if (isl_tab_track_bset(cgbr->cone,
3043 					isl_basic_set_copy(bset)) < 0)
3044 			return NULL;
3045 	}
3046 	if (isl_tab_detect_implicit_equalities(cgbr->cone) < 0)
3047 		return NULL;
3048 
3049 	if (cgbr->cone->n_dead == cgbr->cone->n_col) {
3050 		struct isl_vec *sample;
3051 		struct isl_tab_undo *snap;
3052 
3053 		if (cgbr->tab->basis) {
3054 			if (cgbr->tab->basis->n_col != 1 + cgbr->tab->n_var) {
3055 				isl_mat_free(cgbr->tab->basis);
3056 				cgbr->tab->basis = NULL;
3057 			}
3058 			cgbr->tab->n_zero = 0;
3059 			cgbr->tab->n_unbounded = 0;
3060 		}
3061 
3062 		snap = isl_tab_snap(cgbr->tab);
3063 
3064 		sample = isl_tab_sample(cgbr->tab);
3065 
3066 		if (!sample || isl_tab_rollback(cgbr->tab, snap) < 0) {
3067 			isl_vec_free(sample);
3068 			return NULL;
3069 		}
3070 
3071 		return sample;
3072 	}
3073 
3074 	cone = isl_basic_set_dup(isl_tab_peek_bset(cgbr->cone));
3075 	cone = drop_constant_terms(cone);
3076 	cone = isl_basic_set_update_from_tab(cone, cgbr->cone);
3077 	cone = isl_basic_set_underlying_set(cone);
3078 	cone = isl_basic_set_gauss(cone, NULL);
3079 
3080 	bset = isl_basic_set_dup(isl_tab_peek_bset(cgbr->tab));
3081 	bset = isl_basic_set_update_from_tab(bset, cgbr->tab);
3082 	bset = isl_basic_set_underlying_set(bset);
3083 	bset = isl_basic_set_gauss(bset, NULL);
3084 
3085 	return isl_basic_set_sample_with_cone(bset, cone);
3086 }
3087 
check_gbr_integer_feasible(struct isl_context_gbr * cgbr)3088 static void check_gbr_integer_feasible(struct isl_context_gbr *cgbr)
3089 {
3090 	struct isl_vec *sample;
3091 
3092 	if (!cgbr->tab)
3093 		return;
3094 
3095 	if (cgbr->tab->empty)
3096 		return;
3097 
3098 	sample = gbr_get_sample(cgbr);
3099 	if (!sample)
3100 		goto error;
3101 
3102 	if (sample->size == 0) {
3103 		isl_vec_free(sample);
3104 		if (isl_tab_mark_empty(cgbr->tab) < 0)
3105 			goto error;
3106 		return;
3107 	}
3108 
3109 	if (isl_tab_add_sample(cgbr->tab, sample) < 0)
3110 		goto error;
3111 
3112 	return;
3113 error:
3114 	isl_tab_free(cgbr->tab);
3115 	cgbr->tab = NULL;
3116 }
3117 
add_gbr_eq(struct isl_tab * tab,isl_int * eq)3118 static struct isl_tab *add_gbr_eq(struct isl_tab *tab, isl_int *eq)
3119 {
3120 	if (!tab)
3121 		return NULL;
3122 
3123 	if (isl_tab_extend_cons(tab, 2) < 0)
3124 		goto error;
3125 
3126 	if (isl_tab_add_eq(tab, eq) < 0)
3127 		goto error;
3128 
3129 	return tab;
3130 error:
3131 	isl_tab_free(tab);
3132 	return NULL;
3133 }
3134 
3135 /* Add the equality described by "eq" to the context.
3136  * If "check" is set, then we check if the context is empty after
3137  * adding the equality.
3138  * If "update" is set, then we check if the samples are still valid.
3139  *
3140  * We do not explicitly add shifted copies of the equality to
3141  * cgbr->shifted since they would conflict with each other.
3142  * Instead, we directly mark cgbr->shifted empty.
3143  */
context_gbr_add_eq(struct isl_context * context,isl_int * eq,int check,int update)3144 static void context_gbr_add_eq(struct isl_context *context, isl_int *eq,
3145 		int check, int update)
3146 {
3147 	struct isl_context_gbr *cgbr = (struct isl_context_gbr *)context;
3148 
3149 	cgbr->tab = add_gbr_eq(cgbr->tab, eq);
3150 
3151 	if (cgbr->shifted && !cgbr->shifted->empty && use_shifted(cgbr)) {
3152 		if (isl_tab_mark_empty(cgbr->shifted) < 0)
3153 			goto error;
3154 	}
3155 
3156 	if (cgbr->cone && cgbr->cone->n_col != cgbr->cone->n_dead) {
3157 		if (isl_tab_extend_cons(cgbr->cone, 2) < 0)
3158 			goto error;
3159 		if (isl_tab_add_eq(cgbr->cone, eq) < 0)
3160 			goto error;
3161 	}
3162 
3163 	if (check) {
3164 		int v = tab_has_valid_sample(cgbr->tab, eq, 1);
3165 		if (v < 0)
3166 			goto error;
3167 		if (!v)
3168 			check_gbr_integer_feasible(cgbr);
3169 	}
3170 	if (update)
3171 		cgbr->tab = check_samples(cgbr->tab, eq, 1);
3172 	return;
3173 error:
3174 	isl_tab_free(cgbr->tab);
3175 	cgbr->tab = NULL;
3176 }
3177 
add_gbr_ineq(struct isl_context_gbr * cgbr,isl_int * ineq)3178 static void add_gbr_ineq(struct isl_context_gbr *cgbr, isl_int *ineq)
3179 {
3180 	if (!cgbr->tab)
3181 		return;
3182 
3183 	if (isl_tab_extend_cons(cgbr->tab, 1) < 0)
3184 		goto error;
3185 
3186 	if (isl_tab_add_ineq(cgbr->tab, ineq) < 0)
3187 		goto error;
3188 
3189 	if (cgbr->shifted && !cgbr->shifted->empty && use_shifted(cgbr)) {
3190 		int i;
3191 		isl_size dim;
3192 		dim = isl_basic_map_dim(cgbr->tab->bmap, isl_dim_all);
3193 		if (dim < 0)
3194 			goto error;
3195 
3196 		if (isl_tab_extend_cons(cgbr->shifted, 1) < 0)
3197 			goto error;
3198 
3199 		for (i = 0; i < dim; ++i) {
3200 			if (!isl_int_is_neg(ineq[1 + i]))
3201 				continue;
3202 			isl_int_add(ineq[0], ineq[0], ineq[1 + i]);
3203 		}
3204 
3205 		if (isl_tab_add_ineq(cgbr->shifted, ineq) < 0)
3206 			goto error;
3207 
3208 		for (i = 0; i < dim; ++i) {
3209 			if (!isl_int_is_neg(ineq[1 + i]))
3210 				continue;
3211 			isl_int_sub(ineq[0], ineq[0], ineq[1 + i]);
3212 		}
3213 	}
3214 
3215 	if (cgbr->cone && cgbr->cone->n_col != cgbr->cone->n_dead) {
3216 		if (isl_tab_extend_cons(cgbr->cone, 1) < 0)
3217 			goto error;
3218 		if (isl_tab_add_ineq(cgbr->cone, ineq) < 0)
3219 			goto error;
3220 	}
3221 
3222 	return;
3223 error:
3224 	isl_tab_free(cgbr->tab);
3225 	cgbr->tab = NULL;
3226 }
3227 
context_gbr_add_ineq(struct isl_context * context,isl_int * ineq,int check,int update)3228 static void context_gbr_add_ineq(struct isl_context *context, isl_int *ineq,
3229 		int check, int update)
3230 {
3231 	struct isl_context_gbr *cgbr = (struct isl_context_gbr *)context;
3232 
3233 	add_gbr_ineq(cgbr, ineq);
3234 	if (!cgbr->tab)
3235 		return;
3236 
3237 	if (check) {
3238 		int v = tab_has_valid_sample(cgbr->tab, ineq, 0);
3239 		if (v < 0)
3240 			goto error;
3241 		if (!v)
3242 			check_gbr_integer_feasible(cgbr);
3243 	}
3244 	if (update)
3245 		cgbr->tab = check_samples(cgbr->tab, ineq, 0);
3246 	return;
3247 error:
3248 	isl_tab_free(cgbr->tab);
3249 	cgbr->tab = NULL;
3250 }
3251 
context_gbr_add_ineq_wrap(void * user,isl_int * ineq)3252 static isl_stat context_gbr_add_ineq_wrap(void *user, isl_int *ineq)
3253 {
3254 	struct isl_context *context = (struct isl_context *)user;
3255 	context_gbr_add_ineq(context, ineq, 0, 0);
3256 	return context->op->is_ok(context) ? isl_stat_ok : isl_stat_error;
3257 }
3258 
context_gbr_ineq_sign(struct isl_context * context,isl_int * ineq,int strict)3259 static enum isl_tab_row_sign context_gbr_ineq_sign(struct isl_context *context,
3260 			isl_int *ineq, int strict)
3261 {
3262 	struct isl_context_gbr *cgbr = (struct isl_context_gbr *)context;
3263 	return tab_ineq_sign(cgbr->tab, ineq, strict);
3264 }
3265 
3266 /* Check whether "ineq" can be added to the tableau without rendering
3267  * it infeasible.
3268  */
context_gbr_test_ineq(struct isl_context * context,isl_int * ineq)3269 static int context_gbr_test_ineq(struct isl_context *context, isl_int *ineq)
3270 {
3271 	struct isl_context_gbr *cgbr = (struct isl_context_gbr *)context;
3272 	struct isl_tab_undo *snap;
3273 	struct isl_tab_undo *shifted_snap = NULL;
3274 	struct isl_tab_undo *cone_snap = NULL;
3275 	int feasible;
3276 
3277 	if (!cgbr->tab)
3278 		return -1;
3279 
3280 	if (isl_tab_extend_cons(cgbr->tab, 1) < 0)
3281 		return -1;
3282 
3283 	snap = isl_tab_snap(cgbr->tab);
3284 	if (cgbr->shifted)
3285 		shifted_snap = isl_tab_snap(cgbr->shifted);
3286 	if (cgbr->cone)
3287 		cone_snap = isl_tab_snap(cgbr->cone);
3288 	add_gbr_ineq(cgbr, ineq);
3289 	check_gbr_integer_feasible(cgbr);
3290 	if (!cgbr->tab)
3291 		return -1;
3292 	feasible = !cgbr->tab->empty;
3293 	if (isl_tab_rollback(cgbr->tab, snap) < 0)
3294 		return -1;
3295 	if (shifted_snap) {
3296 		if (isl_tab_rollback(cgbr->shifted, shifted_snap))
3297 			return -1;
3298 	} else if (cgbr->shifted) {
3299 		isl_tab_free(cgbr->shifted);
3300 		cgbr->shifted = NULL;
3301 	}
3302 	if (cone_snap) {
3303 		if (isl_tab_rollback(cgbr->cone, cone_snap))
3304 			return -1;
3305 	} else if (cgbr->cone) {
3306 		isl_tab_free(cgbr->cone);
3307 		cgbr->cone = NULL;
3308 	}
3309 
3310 	return feasible;
3311 }
3312 
3313 /* Return the column of the last of the variables associated to
3314  * a column that has a non-zero coefficient.
3315  * This function is called in a context where only coefficients
3316  * of parameters or divs can be non-zero.
3317  */
last_non_zero_var_col(struct isl_tab * tab,isl_int * p)3318 static int last_non_zero_var_col(struct isl_tab *tab, isl_int *p)
3319 {
3320 	int i;
3321 	int col;
3322 
3323 	if (tab->n_var == 0)
3324 		return -1;
3325 
3326 	for (i = tab->n_var - 1; i >= 0; --i) {
3327 		if (i >= tab->n_param && i < tab->n_var - tab->n_div)
3328 			continue;
3329 		if (tab->var[i].is_row)
3330 			continue;
3331 		col = tab->var[i].index;
3332 		if (!isl_int_is_zero(p[col]))
3333 			return col;
3334 	}
3335 
3336 	return -1;
3337 }
3338 
3339 /* Look through all the recently added equalities in the context
3340  * to see if we can propagate any of them to the main tableau.
3341  *
3342  * The newly added equalities in the context are encoded as pairs
3343  * of inequalities starting at inequality "first".
3344  *
3345  * We tentatively add each of these equalities to the main tableau
3346  * and if this happens to result in a row with a final coefficient
3347  * that is one or negative one, we use it to kill a column
3348  * in the main tableau.  Otherwise, we discard the tentatively
3349  * added row.
3350  * This tentative addition of equality constraints turns
3351  * on the undo facility of the tableau.  Turn it off again
3352  * at the end, assuming it was turned off to begin with.
3353  *
3354  * Return 0 on success and -1 on failure.
3355  */
propagate_equalities(struct isl_context_gbr * cgbr,struct isl_tab * tab,unsigned first)3356 static int propagate_equalities(struct isl_context_gbr *cgbr,
3357 	struct isl_tab *tab, unsigned first)
3358 {
3359 	int i;
3360 	struct isl_vec *eq = NULL;
3361 	isl_bool needs_undo;
3362 
3363 	needs_undo = isl_tab_need_undo(tab);
3364 	if (needs_undo < 0)
3365 		goto error;
3366 	eq = isl_vec_alloc(tab->mat->ctx, 1 + tab->n_var);
3367 	if (!eq)
3368 		goto error;
3369 
3370 	if (isl_tab_extend_cons(tab, (cgbr->tab->bmap->n_ineq - first)/2) < 0)
3371 		goto error;
3372 
3373 	isl_seq_clr(eq->el + 1 + tab->n_param,
3374 		    tab->n_var - tab->n_param - tab->n_div);
3375 	for (i = first; i < cgbr->tab->bmap->n_ineq; i += 2) {
3376 		int j;
3377 		int r;
3378 		struct isl_tab_undo *snap;
3379 		snap = isl_tab_snap(tab);
3380 
3381 		isl_seq_cpy(eq->el, cgbr->tab->bmap->ineq[i], 1 + tab->n_param);
3382 		isl_seq_cpy(eq->el + 1 + tab->n_var - tab->n_div,
3383 			    cgbr->tab->bmap->ineq[i] + 1 + tab->n_param,
3384 			    tab->n_div);
3385 
3386 		r = isl_tab_add_row(tab, eq->el);
3387 		if (r < 0)
3388 			goto error;
3389 		r = tab->con[r].index;
3390 		j = last_non_zero_var_col(tab, tab->mat->row[r] + 2 + tab->M);
3391 		if (j < 0 || j < tab->n_dead ||
3392 		    !isl_int_is_one(tab->mat->row[r][0]) ||
3393 		    (!isl_int_is_one(tab->mat->row[r][2 + tab->M + j]) &&
3394 		     !isl_int_is_negone(tab->mat->row[r][2 + tab->M + j]))) {
3395 			if (isl_tab_rollback(tab, snap) < 0)
3396 				goto error;
3397 			continue;
3398 		}
3399 		if (isl_tab_pivot(tab, r, j) < 0)
3400 			goto error;
3401 		if (isl_tab_kill_col(tab, j) < 0)
3402 			goto error;
3403 
3404 		if (restore_lexmin(tab) < 0)
3405 			goto error;
3406 	}
3407 
3408 	if (!needs_undo)
3409 		isl_tab_clear_undo(tab);
3410 	isl_vec_free(eq);
3411 
3412 	return 0;
3413 error:
3414 	isl_vec_free(eq);
3415 	isl_tab_free(cgbr->tab);
3416 	cgbr->tab = NULL;
3417 	return -1;
3418 }
3419 
context_gbr_detect_equalities(struct isl_context * context,struct isl_tab * tab)3420 static int context_gbr_detect_equalities(struct isl_context *context,
3421 	struct isl_tab *tab)
3422 {
3423 	struct isl_context_gbr *cgbr = (struct isl_context_gbr *)context;
3424 	unsigned n_ineq;
3425 
3426 	if (!cgbr->cone) {
3427 		struct isl_basic_set *bset = isl_tab_peek_bset(cgbr->tab);
3428 		cgbr->cone = isl_tab_from_recession_cone(bset, 0);
3429 		if (!cgbr->cone)
3430 			goto error;
3431 		if (isl_tab_track_bset(cgbr->cone,
3432 					isl_basic_set_copy(bset)) < 0)
3433 			goto error;
3434 	}
3435 	if (isl_tab_detect_implicit_equalities(cgbr->cone) < 0)
3436 		goto error;
3437 
3438 	n_ineq = cgbr->tab->bmap->n_ineq;
3439 	cgbr->tab = isl_tab_detect_equalities(cgbr->tab, cgbr->cone);
3440 	if (!cgbr->tab)
3441 		return -1;
3442 	if (cgbr->tab->bmap->n_ineq > n_ineq &&
3443 	    propagate_equalities(cgbr, tab, n_ineq) < 0)
3444 		return -1;
3445 
3446 	return 0;
3447 error:
3448 	isl_tab_free(cgbr->tab);
3449 	cgbr->tab = NULL;
3450 	return -1;
3451 }
3452 
context_gbr_get_div(struct isl_context * context,struct isl_tab * tab,struct isl_vec * div)3453 static int context_gbr_get_div(struct isl_context *context, struct isl_tab *tab,
3454 		struct isl_vec *div)
3455 {
3456 	return get_div(tab, context, div);
3457 }
3458 
context_gbr_insert_div(struct isl_context * context,int pos,__isl_keep isl_vec * div)3459 static isl_bool context_gbr_insert_div(struct isl_context *context, int pos,
3460 	__isl_keep isl_vec *div)
3461 {
3462 	struct isl_context_gbr *cgbr = (struct isl_context_gbr *)context;
3463 	if (cgbr->cone) {
3464 		int r, o_div;
3465 		isl_size n_div;
3466 
3467 		n_div = isl_basic_map_dim(cgbr->cone->bmap, isl_dim_div);
3468 		if (n_div < 0)
3469 			return isl_bool_error;
3470 		o_div = cgbr->cone->n_var - n_div;
3471 
3472 		if (isl_tab_extend_cons(cgbr->cone, 3) < 0)
3473 			return isl_bool_error;
3474 		if (isl_tab_extend_vars(cgbr->cone, 1) < 0)
3475 			return isl_bool_error;
3476 		if ((r = isl_tab_insert_var(cgbr->cone, pos)) <0)
3477 			return isl_bool_error;
3478 
3479 		cgbr->cone->bmap = isl_basic_map_insert_div(cgbr->cone->bmap,
3480 						    r - o_div, div);
3481 		if (!cgbr->cone->bmap)
3482 			return isl_bool_error;
3483 		if (isl_tab_push_var(cgbr->cone, isl_tab_undo_bmap_div,
3484 				    &cgbr->cone->var[r]) < 0)
3485 			return isl_bool_error;
3486 	}
3487 	return context_tab_insert_div(cgbr->tab, pos, div,
3488 					context_gbr_add_ineq_wrap, context);
3489 }
3490 
context_gbr_best_split(struct isl_context * context,struct isl_tab * tab)3491 static int context_gbr_best_split(struct isl_context *context,
3492 		struct isl_tab *tab)
3493 {
3494 	struct isl_context_gbr *cgbr = (struct isl_context_gbr *)context;
3495 	struct isl_tab_undo *snap;
3496 	int r;
3497 
3498 	snap = isl_tab_snap(cgbr->tab);
3499 	r = best_split(tab, cgbr->tab);
3500 
3501 	if (r >= 0 && isl_tab_rollback(cgbr->tab, snap) < 0)
3502 		return -1;
3503 
3504 	return r;
3505 }
3506 
context_gbr_is_empty(struct isl_context * context)3507 static int context_gbr_is_empty(struct isl_context *context)
3508 {
3509 	struct isl_context_gbr *cgbr = (struct isl_context_gbr *)context;
3510 	if (!cgbr->tab)
3511 		return -1;
3512 	return cgbr->tab->empty;
3513 }
3514 
3515 struct isl_gbr_tab_undo {
3516 	struct isl_tab_undo *tab_snap;
3517 	struct isl_tab_undo *shifted_snap;
3518 	struct isl_tab_undo *cone_snap;
3519 };
3520 
context_gbr_save(struct isl_context * context)3521 static void *context_gbr_save(struct isl_context *context)
3522 {
3523 	struct isl_context_gbr *cgbr = (struct isl_context_gbr *)context;
3524 	struct isl_gbr_tab_undo *snap;
3525 
3526 	if (!cgbr->tab)
3527 		return NULL;
3528 
3529 	snap = isl_alloc_type(cgbr->tab->mat->ctx, struct isl_gbr_tab_undo);
3530 	if (!snap)
3531 		return NULL;
3532 
3533 	snap->tab_snap = isl_tab_snap(cgbr->tab);
3534 	if (isl_tab_save_samples(cgbr->tab) < 0)
3535 		goto error;
3536 
3537 	if (cgbr->shifted)
3538 		snap->shifted_snap = isl_tab_snap(cgbr->shifted);
3539 	else
3540 		snap->shifted_snap = NULL;
3541 
3542 	if (cgbr->cone)
3543 		snap->cone_snap = isl_tab_snap(cgbr->cone);
3544 	else
3545 		snap->cone_snap = NULL;
3546 
3547 	return snap;
3548 error:
3549 	free(snap);
3550 	return NULL;
3551 }
3552 
context_gbr_restore(struct isl_context * context,void * save)3553 static void context_gbr_restore(struct isl_context *context, void *save)
3554 {
3555 	struct isl_context_gbr *cgbr = (struct isl_context_gbr *)context;
3556 	struct isl_gbr_tab_undo *snap = (struct isl_gbr_tab_undo *)save;
3557 	if (!snap)
3558 		goto error;
3559 	if (isl_tab_rollback(cgbr->tab, snap->tab_snap) < 0)
3560 		goto error;
3561 
3562 	if (snap->shifted_snap) {
3563 		if (isl_tab_rollback(cgbr->shifted, snap->shifted_snap) < 0)
3564 			goto error;
3565 	} else if (cgbr->shifted) {
3566 		isl_tab_free(cgbr->shifted);
3567 		cgbr->shifted = NULL;
3568 	}
3569 
3570 	if (snap->cone_snap) {
3571 		if (isl_tab_rollback(cgbr->cone, snap->cone_snap) < 0)
3572 			goto error;
3573 	} else if (cgbr->cone) {
3574 		isl_tab_free(cgbr->cone);
3575 		cgbr->cone = NULL;
3576 	}
3577 
3578 	free(snap);
3579 
3580 	return;
3581 error:
3582 	free(snap);
3583 	isl_tab_free(cgbr->tab);
3584 	cgbr->tab = NULL;
3585 }
3586 
context_gbr_discard(void * save)3587 static void context_gbr_discard(void *save)
3588 {
3589 	struct isl_gbr_tab_undo *snap = (struct isl_gbr_tab_undo *)save;
3590 	free(snap);
3591 }
3592 
context_gbr_is_ok(struct isl_context * context)3593 static int context_gbr_is_ok(struct isl_context *context)
3594 {
3595 	struct isl_context_gbr *cgbr = (struct isl_context_gbr *)context;
3596 	return !!cgbr->tab;
3597 }
3598 
context_gbr_invalidate(struct isl_context * context)3599 static void context_gbr_invalidate(struct isl_context *context)
3600 {
3601 	struct isl_context_gbr *cgbr = (struct isl_context_gbr *)context;
3602 	isl_tab_free(cgbr->tab);
3603 	cgbr->tab = NULL;
3604 }
3605 
context_gbr_free(struct isl_context * context)3606 static __isl_null struct isl_context *context_gbr_free(
3607 	struct isl_context *context)
3608 {
3609 	struct isl_context_gbr *cgbr = (struct isl_context_gbr *)context;
3610 	isl_tab_free(cgbr->tab);
3611 	isl_tab_free(cgbr->shifted);
3612 	isl_tab_free(cgbr->cone);
3613 	free(cgbr);
3614 
3615 	return NULL;
3616 }
3617 
3618 struct isl_context_op isl_context_gbr_op = {
3619 	context_gbr_detect_nonnegative_parameters,
3620 	context_gbr_peek_basic_set,
3621 	context_gbr_peek_tab,
3622 	context_gbr_add_eq,
3623 	context_gbr_add_ineq,
3624 	context_gbr_ineq_sign,
3625 	context_gbr_test_ineq,
3626 	context_gbr_get_div,
3627 	context_gbr_insert_div,
3628 	context_gbr_detect_equalities,
3629 	context_gbr_best_split,
3630 	context_gbr_is_empty,
3631 	context_gbr_is_ok,
3632 	context_gbr_save,
3633 	context_gbr_restore,
3634 	context_gbr_discard,
3635 	context_gbr_invalidate,
3636 	context_gbr_free,
3637 };
3638 
isl_context_gbr_alloc(__isl_keep isl_basic_set * dom)3639 static struct isl_context *isl_context_gbr_alloc(__isl_keep isl_basic_set *dom)
3640 {
3641 	struct isl_context_gbr *cgbr;
3642 
3643 	if (!dom)
3644 		return NULL;
3645 
3646 	cgbr = isl_calloc_type(dom->ctx, struct isl_context_gbr);
3647 	if (!cgbr)
3648 		return NULL;
3649 
3650 	cgbr->context.op = &isl_context_gbr_op;
3651 
3652 	cgbr->shifted = NULL;
3653 	cgbr->cone = NULL;
3654 	cgbr->tab = isl_tab_from_basic_set(dom, 1);
3655 	cgbr->tab = isl_tab_init_samples(cgbr->tab);
3656 	if (!cgbr->tab)
3657 		goto error;
3658 	check_gbr_integer_feasible(cgbr);
3659 
3660 	return &cgbr->context;
3661 error:
3662 	cgbr->context.op->free(&cgbr->context);
3663 	return NULL;
3664 }
3665 
3666 /* Allocate a context corresponding to "dom".
3667  * The representation specific fields are initialized by
3668  * isl_context_lex_alloc or isl_context_gbr_alloc.
3669  * The shared "n_unknown" field is initialized to the number
3670  * of final unknown integer divisions in "dom".
3671  */
isl_context_alloc(__isl_keep isl_basic_set * dom)3672 static struct isl_context *isl_context_alloc(__isl_keep isl_basic_set *dom)
3673 {
3674 	struct isl_context *context;
3675 	int first;
3676 	isl_size n_div;
3677 
3678 	if (!dom)
3679 		return NULL;
3680 
3681 	if (dom->ctx->opt->context == ISL_CONTEXT_LEXMIN)
3682 		context = isl_context_lex_alloc(dom);
3683 	else
3684 		context = isl_context_gbr_alloc(dom);
3685 
3686 	if (!context)
3687 		return NULL;
3688 
3689 	first = isl_basic_set_first_unknown_div(dom);
3690 	n_div = isl_basic_set_dim(dom, isl_dim_div);
3691 	if (first < 0 || n_div < 0)
3692 		return context->op->free(context);
3693 	context->n_unknown = n_div - first;
3694 
3695 	return context;
3696 }
3697 
3698 /* Initialize some common fields of "sol", which keeps track
3699  * of the solution of an optimization problem on "bmap" over
3700  * the domain "dom".
3701  * If "max" is set, then a maximization problem is being solved, rather than
3702  * a minimization problem, which means that the variables in the
3703  * tableau have value "M - x" rather than "M + x".
3704  */
sol_init(struct isl_sol * sol,__isl_keep isl_basic_map * bmap,__isl_keep isl_basic_set * dom,int max)3705 static isl_stat sol_init(struct isl_sol *sol, __isl_keep isl_basic_map *bmap,
3706 	__isl_keep isl_basic_set *dom, int max)
3707 {
3708 	sol->rational = ISL_F_ISSET(bmap, ISL_BASIC_MAP_RATIONAL);
3709 	sol->dec_level.callback.run = &sol_dec_level_wrap;
3710 	sol->dec_level.sol = sol;
3711 	sol->max = max;
3712 	sol->n_out = isl_basic_map_dim(bmap, isl_dim_out);
3713 	sol->space = isl_basic_map_get_space(bmap);
3714 
3715 	sol->context = isl_context_alloc(dom);
3716 	if (sol->n_out < 0 || !sol->space || !sol->context)
3717 		return isl_stat_error;
3718 
3719 	return isl_stat_ok;
3720 }
3721 
3722 /* Construct an isl_sol_map structure for accumulating the solution.
3723  * If track_empty is set, then we also keep track of the parts
3724  * of the context where there is no solution.
3725  * If max is set, then we are solving a maximization, rather than
3726  * a minimization problem, which means that the variables in the
3727  * tableau have value "M - x" rather than "M + x".
3728  */
sol_map_init(__isl_keep isl_basic_map * bmap,__isl_take isl_basic_set * dom,int track_empty,int max)3729 static struct isl_sol *sol_map_init(__isl_keep isl_basic_map *bmap,
3730 	__isl_take isl_basic_set *dom, int track_empty, int max)
3731 {
3732 	struct isl_sol_map *sol_map = NULL;
3733 	isl_space *space;
3734 
3735 	if (!bmap)
3736 		goto error;
3737 
3738 	sol_map = isl_calloc_type(bmap->ctx, struct isl_sol_map);
3739 	if (!sol_map)
3740 		goto error;
3741 
3742 	sol_map->sol.free = &sol_map_free;
3743 	if (sol_init(&sol_map->sol, bmap, dom, max) < 0)
3744 		goto error;
3745 	sol_map->sol.add = &sol_map_add_wrap;
3746 	sol_map->sol.add_empty = track_empty ? &sol_map_add_empty_wrap : NULL;
3747 	space = isl_space_copy(sol_map->sol.space);
3748 	sol_map->map = isl_map_alloc_space(space, 1, ISL_MAP_DISJOINT);
3749 	if (!sol_map->map)
3750 		goto error;
3751 
3752 	if (track_empty) {
3753 		sol_map->empty = isl_set_alloc_space(isl_basic_set_get_space(dom),
3754 							1, ISL_SET_DISJOINT);
3755 		if (!sol_map->empty)
3756 			goto error;
3757 	}
3758 
3759 	isl_basic_set_free(dom);
3760 	return &sol_map->sol;
3761 error:
3762 	isl_basic_set_free(dom);
3763 	sol_free(&sol_map->sol);
3764 	return NULL;
3765 }
3766 
3767 /* Check whether all coefficients of (non-parameter) variables
3768  * are non-positive, meaning that no pivots can be performed on the row.
3769  */
is_critical(struct isl_tab * tab,int row)3770 static int is_critical(struct isl_tab *tab, int row)
3771 {
3772 	int j;
3773 	unsigned off = 2 + tab->M;
3774 
3775 	for (j = tab->n_dead; j < tab->n_col; ++j) {
3776 		if (col_is_parameter_var(tab, j))
3777 			continue;
3778 
3779 		if (isl_int_is_pos(tab->mat->row[row][off + j]))
3780 			return 0;
3781 	}
3782 
3783 	return 1;
3784 }
3785 
3786 /* Check whether the inequality represented by vec is strict over the integers,
3787  * i.e., there are no integer values satisfying the constraint with
3788  * equality.  This happens if the gcd of the coefficients is not a divisor
3789  * of the constant term.  If so, scale the constraint down by the gcd
3790  * of the coefficients.
3791  */
is_strict(struct isl_vec * vec)3792 static int is_strict(struct isl_vec *vec)
3793 {
3794 	isl_int gcd;
3795 	int strict = 0;
3796 
3797 	isl_int_init(gcd);
3798 	isl_seq_gcd(vec->el + 1, vec->size - 1, &gcd);
3799 	if (!isl_int_is_one(gcd)) {
3800 		strict = !isl_int_is_divisible_by(vec->el[0], gcd);
3801 		isl_int_fdiv_q(vec->el[0], vec->el[0], gcd);
3802 		isl_seq_scale_down(vec->el + 1, vec->el + 1, gcd, vec->size-1);
3803 	}
3804 	isl_int_clear(gcd);
3805 
3806 	return strict;
3807 }
3808 
3809 /* Determine the sign of the given row of the main tableau.
3810  * The result is one of
3811  *	isl_tab_row_pos: always non-negative; no pivot needed
3812  *	isl_tab_row_neg: always non-positive; pivot
3813  *	isl_tab_row_any: can be both positive and negative; split
3814  *
3815  * We first handle some simple cases
3816  *	- the row sign may be known already
3817  *	- the row may be obviously non-negative
3818  *	- the parametric constant may be equal to that of another row
3819  *	  for which we know the sign.  This sign will be either "pos" or
3820  *	  "any".  If it had been "neg" then we would have pivoted before.
3821  *
3822  * If none of these cases hold, we check the value of the row for each
3823  * of the currently active samples.  Based on the signs of these values
3824  * we make an initial determination of the sign of the row.
3825  *
3826  *	all zero			->	unk(nown)
3827  *	all non-negative		->	pos
3828  *	all non-positive		->	neg
3829  *	both negative and positive	->	all
3830  *
3831  * If we end up with "all", we are done.
3832  * Otherwise, we perform a check for positive and/or negative
3833  * values as follows.
3834  *
3835  *	samples	       neg	       unk	       pos
3836  *	<0 ?			    Y        N	    Y        N
3837  *					    pos    any      pos
3838  *	>0 ?	     Y      N	 Y     N
3839  *		    any    neg  any   neg
3840  *
3841  * There is no special sign for "zero", because we can usually treat zero
3842  * as either non-negative or non-positive, whatever works out best.
3843  * However, if the row is "critical", meaning that pivoting is impossible
3844  * then we don't want to limp zero with the non-positive case, because
3845  * then we we would lose the solution for those values of the parameters
3846  * where the value of the row is zero.  Instead, we treat 0 as non-negative
3847  * ensuring a split if the row can attain both zero and negative values.
3848  * The same happens when the original constraint was one that could not
3849  * be satisfied with equality by any integer values of the parameters.
3850  * In this case, we normalize the constraint, but then a value of zero
3851  * for the normalized constraint is actually a positive value for the
3852  * original constraint, so again we need to treat zero as non-negative.
3853  * In both these cases, we have the following decision tree instead:
3854  *
3855  *	all non-negative		->	pos
3856  *	all negative			->	neg
3857  *	both negative and non-negative	->	all
3858  *
3859  *	samples	       neg	          	       pos
3860  *	<0 ?			             	    Y        N
3861  *					           any      pos
3862  *	>=0 ?	     Y      N
3863  *		    any    neg
3864  */
row_sign(struct isl_tab * tab,struct isl_sol * sol,int row)3865 static enum isl_tab_row_sign row_sign(struct isl_tab *tab,
3866 	struct isl_sol *sol, int row)
3867 {
3868 	struct isl_vec *ineq = NULL;
3869 	enum isl_tab_row_sign res = isl_tab_row_unknown;
3870 	int critical;
3871 	int strict;
3872 	int row2;
3873 
3874 	if (tab->row_sign[row] != isl_tab_row_unknown)
3875 		return tab->row_sign[row];
3876 	if (is_obviously_nonneg(tab, row))
3877 		return isl_tab_row_pos;
3878 	for (row2 = tab->n_redundant; row2 < tab->n_row; ++row2) {
3879 		if (tab->row_sign[row2] == isl_tab_row_unknown)
3880 			continue;
3881 		if (identical_parameter_line(tab, row, row2))
3882 			return tab->row_sign[row2];
3883 	}
3884 
3885 	critical = is_critical(tab, row);
3886 
3887 	ineq = get_row_parameter_ineq(tab, row);
3888 	if (!ineq)
3889 		goto error;
3890 
3891 	strict = is_strict(ineq);
3892 
3893 	res = sol->context->op->ineq_sign(sol->context, ineq->el,
3894 					  critical || strict);
3895 
3896 	if (res == isl_tab_row_unknown || res == isl_tab_row_pos) {
3897 		/* test for negative values */
3898 		int feasible;
3899 		isl_seq_neg(ineq->el, ineq->el, ineq->size);
3900 		isl_int_sub_ui(ineq->el[0], ineq->el[0], 1);
3901 
3902 		feasible = sol->context->op->test_ineq(sol->context, ineq->el);
3903 		if (feasible < 0)
3904 			goto error;
3905 		if (!feasible)
3906 			res = isl_tab_row_pos;
3907 		else
3908 			res = (res == isl_tab_row_unknown) ? isl_tab_row_neg
3909 							   : isl_tab_row_any;
3910 		if (res == isl_tab_row_neg) {
3911 			isl_seq_neg(ineq->el, ineq->el, ineq->size);
3912 			isl_int_sub_ui(ineq->el[0], ineq->el[0], 1);
3913 		}
3914 	}
3915 
3916 	if (res == isl_tab_row_neg) {
3917 		/* test for positive values */
3918 		int feasible;
3919 		if (!critical && !strict)
3920 			isl_int_sub_ui(ineq->el[0], ineq->el[0], 1);
3921 
3922 		feasible = sol->context->op->test_ineq(sol->context, ineq->el);
3923 		if (feasible < 0)
3924 			goto error;
3925 		if (feasible)
3926 			res = isl_tab_row_any;
3927 	}
3928 
3929 	isl_vec_free(ineq);
3930 	return res;
3931 error:
3932 	isl_vec_free(ineq);
3933 	return isl_tab_row_unknown;
3934 }
3935 
3936 static void find_solutions(struct isl_sol *sol, struct isl_tab *tab);
3937 
3938 /* Find solutions for values of the parameters that satisfy the given
3939  * inequality.
3940  *
3941  * We currently take a snapshot of the context tableau that is reset
3942  * when we return from this function, while we make a copy of the main
3943  * tableau, leaving the original main tableau untouched.
3944  * These are fairly arbitrary choices.  Making a copy also of the context
3945  * tableau would obviate the need to undo any changes made to it later,
3946  * while taking a snapshot of the main tableau could reduce memory usage.
3947  * If we were to switch to taking a snapshot of the main tableau,
3948  * we would have to keep in mind that we need to save the row signs
3949  * and that we need to do this before saving the current basis
3950  * such that the basis has been restore before we restore the row signs.
3951  */
find_in_pos(struct isl_sol * sol,struct isl_tab * tab,isl_int * ineq)3952 static void find_in_pos(struct isl_sol *sol, struct isl_tab *tab, isl_int *ineq)
3953 {
3954 	void *saved;
3955 
3956 	if (!sol->context)
3957 		goto error;
3958 
3959 	tab = isl_tab_dup(tab);
3960 	if (!tab)
3961 		goto error;
3962 
3963 	saved = sol->context->op->save(sol->context);
3964 
3965 	sol_context_add_ineq(sol, ineq, 0, 1);
3966 
3967 	find_solutions(sol, tab);
3968 
3969 	if (!sol->error)
3970 		sol->context->op->restore(sol->context, saved);
3971 	else
3972 		sol->context->op->discard(saved);
3973 	return;
3974 error:
3975 	sol->error = 1;
3976 }
3977 
3978 /* Record the absence of solutions for those values of the parameters
3979  * that do not satisfy the given inequality with equality.
3980  */
no_sol_in_strict(struct isl_sol * sol,struct isl_tab * tab,struct isl_vec * ineq)3981 static void no_sol_in_strict(struct isl_sol *sol,
3982 	struct isl_tab *tab, struct isl_vec *ineq)
3983 {
3984 	int empty;
3985 	void *saved;
3986 
3987 	if (!sol->context || sol->error)
3988 		goto error;
3989 	saved = sol->context->op->save(sol->context);
3990 
3991 	isl_int_sub_ui(ineq->el[0], ineq->el[0], 1);
3992 
3993 	sol_context_add_ineq(sol, ineq->el, 1, 0);
3994 
3995 	empty = tab->empty;
3996 	tab->empty = 1;
3997 	sol_add(sol, tab);
3998 	tab->empty = empty;
3999 
4000 	isl_int_add_ui(ineq->el[0], ineq->el[0], 1);
4001 
4002 	sol->context->op->restore(sol->context, saved);
4003 	if (!sol->context->op->is_ok(sol->context))
4004 		goto error;
4005 	return;
4006 error:
4007 	sol->error = 1;
4008 }
4009 
4010 /* Reset all row variables that are marked to have a sign that may
4011  * be both positive and negative to have an unknown sign.
4012  */
reset_any_to_unknown(struct isl_tab * tab)4013 static void reset_any_to_unknown(struct isl_tab *tab)
4014 {
4015 	int row;
4016 
4017 	for (row = tab->n_redundant; row < tab->n_row; ++row) {
4018 		if (!isl_tab_var_from_row(tab, row)->is_nonneg)
4019 			continue;
4020 		if (tab->row_sign[row] == isl_tab_row_any)
4021 			tab->row_sign[row] = isl_tab_row_unknown;
4022 	}
4023 }
4024 
4025 /* Compute the lexicographic minimum of the set represented by the main
4026  * tableau "tab" within the context "sol->context_tab".
4027  * On entry the sample value of the main tableau is lexicographically
4028  * less than or equal to this lexicographic minimum.
4029  * Pivots are performed until a feasible point is found, which is then
4030  * necessarily equal to the minimum, or until the tableau is found to
4031  * be infeasible.  Some pivots may need to be performed for only some
4032  * feasible values of the context tableau.  If so, the context tableau
4033  * is split into a part where the pivot is needed and a part where it is not.
4034  *
4035  * Whenever we enter the main loop, the main tableau is such that no
4036  * "obvious" pivots need to be performed on it, where "obvious" means
4037  * that the given row can be seen to be negative without looking at
4038  * the context tableau.  In particular, for non-parametric problems,
4039  * no pivots need to be performed on the main tableau.
4040  * The caller of find_solutions is responsible for making this property
4041  * hold prior to the first iteration of the loop, while restore_lexmin
4042  * is called before every other iteration.
4043  *
4044  * Inside the main loop, we first examine the signs of the rows of
4045  * the main tableau within the context of the context tableau.
4046  * If we find a row that is always non-positive for all values of
4047  * the parameters satisfying the context tableau and negative for at
4048  * least one value of the parameters, we perform the appropriate pivot
4049  * and start over.  An exception is the case where no pivot can be
4050  * performed on the row.  In this case, we require that the sign of
4051  * the row is negative for all values of the parameters (rather than just
4052  * non-positive).  This special case is handled inside row_sign, which
4053  * will say that the row can have any sign if it determines that it can
4054  * attain both negative and zero values.
4055  *
4056  * If we can't find a row that always requires a pivot, but we can find
4057  * one or more rows that require a pivot for some values of the parameters
4058  * (i.e., the row can attain both positive and negative signs), then we split
4059  * the context tableau into two parts, one where we force the sign to be
4060  * non-negative and one where we force is to be negative.
4061  * The non-negative part is handled by a recursive call (through find_in_pos).
4062  * Upon returning from this call, we continue with the negative part and
4063  * perform the required pivot.
4064  *
4065  * If no such rows can be found, all rows are non-negative and we have
4066  * found a (rational) feasible point.  If we only wanted a rational point
4067  * then we are done.
4068  * Otherwise, we check if all values of the sample point of the tableau
4069  * are integral for the variables.  If so, we have found the minimal
4070  * integral point and we are done.
4071  * If the sample point is not integral, then we need to make a distinction
4072  * based on whether the constant term is non-integral or the coefficients
4073  * of the parameters.  Furthermore, in order to decide how to handle
4074  * the non-integrality, we also need to know whether the coefficients
4075  * of the other columns in the tableau are integral.  This leads
4076  * to the following table.  The first two rows do not correspond
4077  * to a non-integral sample point and are only mentioned for completeness.
4078  *
4079  *	constant	parameters	other
4080  *
4081  *	int		int		int	|
4082  *	int		int		rat	| -> no problem
4083  *
4084  *	rat		int		int	  -> fail
4085  *
4086  *	rat		int		rat	  -> cut
4087  *
4088  *	int		rat		rat	|
4089  *	rat		rat		rat	| -> parametric cut
4090  *
4091  *	int		rat		int	|
4092  *	rat		rat		int	| -> split context
4093  *
4094  * If the parametric constant is completely integral, then there is nothing
4095  * to be done.  If the constant term is non-integral, but all the other
4096  * coefficient are integral, then there is nothing that can be done
4097  * and the tableau has no integral solution.
4098  * If, on the other hand, one or more of the other columns have rational
4099  * coefficients, but the parameter coefficients are all integral, then
4100  * we can perform a regular (non-parametric) cut.
4101  * Finally, if there is any parameter coefficient that is non-integral,
4102  * then we need to involve the context tableau.  There are two cases here.
4103  * If at least one other column has a rational coefficient, then we
4104  * can perform a parametric cut in the main tableau by adding a new
4105  * integer division in the context tableau.
4106  * If all other columns have integral coefficients, then we need to
4107  * enforce that the rational combination of parameters (c + \sum a_i y_i)/m
4108  * is always integral.  We do this by introducing an integer division
4109  * q = floor((c + \sum a_i y_i)/m) and stipulating that its argument should
4110  * always be integral in the context tableau, i.e., m q = c + \sum a_i y_i.
4111  * Since q is expressed in the tableau as
4112  *	c + \sum a_i y_i - m q >= 0
4113  *	-c - \sum a_i y_i + m q + m - 1 >= 0
4114  * it is sufficient to add the inequality
4115  *	-c - \sum a_i y_i + m q >= 0
4116  * In the part of the context where this inequality does not hold, the
4117  * main tableau is marked as being empty.
4118  */
find_solutions(struct isl_sol * sol,struct isl_tab * tab)4119 static void find_solutions(struct isl_sol *sol, struct isl_tab *tab)
4120 {
4121 	struct isl_context *context;
4122 	int r;
4123 
4124 	if (!tab || sol->error)
4125 		goto error;
4126 
4127 	context = sol->context;
4128 
4129 	if (tab->empty)
4130 		goto done;
4131 	if (context->op->is_empty(context))
4132 		goto done;
4133 
4134 	for (r = 0; r >= 0 && tab && !tab->empty; r = restore_lexmin(tab)) {
4135 		int flags;
4136 		int row;
4137 		enum isl_tab_row_sign sgn;
4138 		int split = -1;
4139 		int n_split = 0;
4140 
4141 		for (row = tab->n_redundant; row < tab->n_row; ++row) {
4142 			if (!isl_tab_var_from_row(tab, row)->is_nonneg)
4143 				continue;
4144 			sgn = row_sign(tab, sol, row);
4145 			if (!sgn)
4146 				goto error;
4147 			tab->row_sign[row] = sgn;
4148 			if (sgn == isl_tab_row_any)
4149 				n_split++;
4150 			if (sgn == isl_tab_row_any && split == -1)
4151 				split = row;
4152 			if (sgn == isl_tab_row_neg)
4153 				break;
4154 		}
4155 		if (row < tab->n_row)
4156 			continue;
4157 		if (split != -1) {
4158 			struct isl_vec *ineq;
4159 			if (n_split != 1)
4160 				split = context->op->best_split(context, tab);
4161 			if (split < 0)
4162 				goto error;
4163 			ineq = get_row_parameter_ineq(tab, split);
4164 			if (!ineq)
4165 				goto error;
4166 			is_strict(ineq);
4167 			reset_any_to_unknown(tab);
4168 			tab->row_sign[split] = isl_tab_row_pos;
4169 			sol_inc_level(sol);
4170 			find_in_pos(sol, tab, ineq->el);
4171 			tab->row_sign[split] = isl_tab_row_neg;
4172 			isl_seq_neg(ineq->el, ineq->el, ineq->size);
4173 			isl_int_sub_ui(ineq->el[0], ineq->el[0], 1);
4174 			sol_context_add_ineq(sol, ineq->el, 0, 1);
4175 			isl_vec_free(ineq);
4176 			if (sol->error)
4177 				goto error;
4178 			continue;
4179 		}
4180 		if (tab->rational)
4181 			break;
4182 		row = first_non_integer_row(tab, &flags);
4183 		if (row < 0)
4184 			break;
4185 		if (ISL_FL_ISSET(flags, I_PAR)) {
4186 			if (ISL_FL_ISSET(flags, I_VAR)) {
4187 				if (isl_tab_mark_empty(tab) < 0)
4188 					goto error;
4189 				break;
4190 			}
4191 			row = add_cut(tab, row);
4192 		} else if (ISL_FL_ISSET(flags, I_VAR)) {
4193 			struct isl_vec *div;
4194 			struct isl_vec *ineq;
4195 			int d;
4196 			div = get_row_split_div(tab, row);
4197 			if (!div)
4198 				goto error;
4199 			d = context->op->get_div(context, tab, div);
4200 			isl_vec_free(div);
4201 			if (d < 0)
4202 				goto error;
4203 			ineq = ineq_for_div(context->op->peek_basic_set(context), d);
4204 			if (!ineq)
4205 				goto error;
4206 			sol_inc_level(sol);
4207 			no_sol_in_strict(sol, tab, ineq);
4208 			isl_seq_neg(ineq->el, ineq->el, ineq->size);
4209 			sol_context_add_ineq(sol, ineq->el, 1, 1);
4210 			isl_vec_free(ineq);
4211 			if (sol->error || !context->op->is_ok(context))
4212 				goto error;
4213 			tab = set_row_cst_to_div(tab, row, d);
4214 			if (context->op->is_empty(context))
4215 				break;
4216 		} else
4217 			row = add_parametric_cut(tab, row, context);
4218 		if (row < 0)
4219 			goto error;
4220 	}
4221 	if (r < 0)
4222 		goto error;
4223 done:
4224 	sol_add(sol, tab);
4225 	isl_tab_free(tab);
4226 	return;
4227 error:
4228 	isl_tab_free(tab);
4229 	sol->error = 1;
4230 }
4231 
4232 /* Does "sol" contain a pair of partial solutions that could potentially
4233  * be merged?
4234  *
4235  * We currently only check that "sol" is not in an error state
4236  * and that there are at least two partial solutions of which the final two
4237  * are defined at the same level.
4238  */
sol_has_mergeable_solutions(struct isl_sol * sol)4239 static int sol_has_mergeable_solutions(struct isl_sol *sol)
4240 {
4241 	if (sol->error)
4242 		return 0;
4243 	if (!sol->partial)
4244 		return 0;
4245 	if (!sol->partial->next)
4246 		return 0;
4247 	return sol->partial->level == sol->partial->next->level;
4248 }
4249 
4250 /* Compute the lexicographic minimum of the set represented by the main
4251  * tableau "tab" within the context "sol->context_tab".
4252  *
4253  * As a preprocessing step, we first transfer all the purely parametric
4254  * equalities from the main tableau to the context tableau, i.e.,
4255  * parameters that have been pivoted to a row.
4256  * These equalities are ignored by the main algorithm, because the
4257  * corresponding rows may not be marked as being non-negative.
4258  * In parts of the context where the added equality does not hold,
4259  * the main tableau is marked as being empty.
4260  *
4261  * Before we embark on the actual computation, we save a copy
4262  * of the context.  When we return, we check if there are any
4263  * partial solutions that can potentially be merged.  If so,
4264  * we perform a rollback to the initial state of the context.
4265  * The merging of partial solutions happens inside calls to
4266  * sol_dec_level that are pushed onto the undo stack of the context.
4267  * If there are no partial solutions that can potentially be merged
4268  * then the rollback is skipped as it would just be wasted effort.
4269  */
find_solutions_main(struct isl_sol * sol,struct isl_tab * tab)4270 static void find_solutions_main(struct isl_sol *sol, struct isl_tab *tab)
4271 {
4272 	int row;
4273 	void *saved;
4274 
4275 	if (!tab)
4276 		goto error;
4277 
4278 	sol->level = 0;
4279 
4280 	for (row = tab->n_redundant; row < tab->n_row; ++row) {
4281 		int p;
4282 		struct isl_vec *eq;
4283 
4284 		if (!row_is_parameter_var(tab, row))
4285 			continue;
4286 		if (tab->row_var[row] < tab->n_param)
4287 			p = tab->row_var[row];
4288 		else
4289 			p = tab->row_var[row]
4290 				+ tab->n_param - (tab->n_var - tab->n_div);
4291 
4292 		eq = isl_vec_alloc(tab->mat->ctx, 1+tab->n_param+tab->n_div);
4293 		if (!eq)
4294 			goto error;
4295 		get_row_parameter_line(tab, row, eq->el);
4296 		isl_int_neg(eq->el[1 + p], tab->mat->row[row][0]);
4297 		eq = isl_vec_normalize(eq);
4298 
4299 		sol_inc_level(sol);
4300 		no_sol_in_strict(sol, tab, eq);
4301 
4302 		isl_seq_neg(eq->el, eq->el, eq->size);
4303 		sol_inc_level(sol);
4304 		no_sol_in_strict(sol, tab, eq);
4305 		isl_seq_neg(eq->el, eq->el, eq->size);
4306 
4307 		sol_context_add_eq(sol, eq->el, 1, 1);
4308 
4309 		isl_vec_free(eq);
4310 
4311 		if (isl_tab_mark_redundant(tab, row) < 0)
4312 			goto error;
4313 
4314 		if (sol->context->op->is_empty(sol->context))
4315 			break;
4316 
4317 		row = tab->n_redundant - 1;
4318 	}
4319 
4320 	saved = sol->context->op->save(sol->context);
4321 
4322 	find_solutions(sol, tab);
4323 
4324 	if (sol_has_mergeable_solutions(sol))
4325 		sol->context->op->restore(sol->context, saved);
4326 	else
4327 		sol->context->op->discard(saved);
4328 
4329 	sol->level = 0;
4330 	sol_pop(sol);
4331 
4332 	return;
4333 error:
4334 	isl_tab_free(tab);
4335 	sol->error = 1;
4336 }
4337 
4338 /* Check if integer division "div" of "dom" also occurs in "bmap".
4339  * If so, return its position within the divs.
4340  * Otherwise, return a position beyond the integer divisions.
4341  */
find_context_div(__isl_keep isl_basic_map * bmap,__isl_keep isl_basic_set * dom,unsigned div)4342 static int find_context_div(__isl_keep isl_basic_map *bmap,
4343 	__isl_keep isl_basic_set *dom, unsigned div)
4344 {
4345 	int i;
4346 	isl_size b_v_div, d_v_div;
4347 	isl_size n_div;
4348 
4349 	b_v_div = isl_basic_map_var_offset(bmap, isl_dim_div);
4350 	d_v_div = isl_basic_set_var_offset(dom, isl_dim_div);
4351 	n_div = isl_basic_map_dim(bmap, isl_dim_div);
4352 	if (b_v_div < 0 || d_v_div < 0 || n_div < 0)
4353 		return -1;
4354 
4355 	if (isl_int_is_zero(dom->div[div][0]))
4356 		return n_div;
4357 	if (isl_seq_first_non_zero(dom->div[div] + 2 + d_v_div,
4358 				    dom->n_div) != -1)
4359 		return n_div;
4360 
4361 	for (i = 0; i < n_div; ++i) {
4362 		if (isl_int_is_zero(bmap->div[i][0]))
4363 			continue;
4364 		if (isl_seq_first_non_zero(bmap->div[i] + 2 + d_v_div,
4365 					   (b_v_div - d_v_div) + n_div) != -1)
4366 			continue;
4367 		if (isl_seq_eq(bmap->div[i], dom->div[div], 2 + d_v_div))
4368 			return i;
4369 	}
4370 	return n_div;
4371 }
4372 
4373 /* The correspondence between the variables in the main tableau,
4374  * the context tableau, and the input map and domain is as follows.
4375  * The first n_param and the last n_div variables of the main tableau
4376  * form the variables of the context tableau.
4377  * In the basic map, these n_param variables correspond to the
4378  * parameters and the input dimensions.  In the domain, they correspond
4379  * to the parameters and the set dimensions.
4380  * The n_div variables correspond to the integer divisions in the domain.
4381  * To ensure that everything lines up, we may need to copy some of the
4382  * integer divisions of the domain to the map.  These have to be placed
4383  * in the same order as those in the context and they have to be placed
4384  * after any other integer divisions that the map may have.
4385  * This function performs the required reordering.
4386  */
align_context_divs(__isl_take isl_basic_map * bmap,__isl_keep isl_basic_set * dom)4387 static __isl_give isl_basic_map *align_context_divs(
4388 	__isl_take isl_basic_map *bmap, __isl_keep isl_basic_set *dom)
4389 {
4390 	int i;
4391 	int common = 0;
4392 	int other;
4393 	unsigned bmap_n_div;
4394 
4395 	bmap_n_div = isl_basic_map_dim(bmap, isl_dim_div);
4396 
4397 	for (i = 0; i < dom->n_div; ++i) {
4398 		int pos;
4399 
4400 		pos = find_context_div(bmap, dom, i);
4401 		if (pos < 0)
4402 			return isl_basic_map_free(bmap);
4403 		if (pos < bmap_n_div)
4404 			common++;
4405 	}
4406 	other = bmap_n_div - common;
4407 	if (dom->n_div - common > 0) {
4408 		bmap = isl_basic_map_cow(bmap);
4409 		bmap = isl_basic_map_extend(bmap, dom->n_div - common, 0, 0);
4410 		if (!bmap)
4411 			return NULL;
4412 	}
4413 	for (i = 0; i < dom->n_div; ++i) {
4414 		int pos = find_context_div(bmap, dom, i);
4415 		if (pos < 0)
4416 			bmap = isl_basic_map_free(bmap);
4417 		if (pos >= bmap_n_div) {
4418 			pos = isl_basic_map_alloc_div(bmap);
4419 			if (pos < 0)
4420 				goto error;
4421 			isl_int_set_si(bmap->div[pos][0], 0);
4422 			bmap_n_div++;
4423 		}
4424 		if (pos != other + i)
4425 			bmap = isl_basic_map_swap_div(bmap, pos, other + i);
4426 	}
4427 	return bmap;
4428 error:
4429 	isl_basic_map_free(bmap);
4430 	return NULL;
4431 }
4432 
4433 /* Base case of isl_tab_basic_map_partial_lexopt, after removing
4434  * some obvious symmetries.
4435  *
4436  * We make sure the divs in the domain are properly ordered,
4437  * because they will be added one by one in the given order
4438  * during the construction of the solution map.
4439  * Furthermore, make sure that the known integer divisions
4440  * appear before any unknown integer division because the solution
4441  * may depend on the known integer divisions, while anything that
4442  * depends on any variable starting from the first unknown integer
4443  * division is ignored in sol_pma_add.
4444  */
basic_map_partial_lexopt_base_sol(__isl_take isl_basic_map * bmap,__isl_take isl_basic_set * dom,__isl_give isl_set ** empty,int max,struct isl_sol * (* init)(__isl_keep isl_basic_map * bmap,__isl_take isl_basic_set * dom,int track_empty,int max))4445 static struct isl_sol *basic_map_partial_lexopt_base_sol(
4446 	__isl_take isl_basic_map *bmap, __isl_take isl_basic_set *dom,
4447 	__isl_give isl_set **empty, int max,
4448 	struct isl_sol *(*init)(__isl_keep isl_basic_map *bmap,
4449 		    __isl_take isl_basic_set *dom, int track_empty, int max))
4450 {
4451 	struct isl_tab *tab;
4452 	struct isl_sol *sol = NULL;
4453 	struct isl_context *context;
4454 
4455 	if (dom->n_div) {
4456 		dom = isl_basic_set_sort_divs(dom);
4457 		bmap = align_context_divs(bmap, dom);
4458 	}
4459 	sol = init(bmap, dom, !!empty, max);
4460 	if (!sol)
4461 		goto error;
4462 
4463 	context = sol->context;
4464 	if (isl_basic_set_plain_is_empty(context->op->peek_basic_set(context)))
4465 		/* nothing */;
4466 	else if (isl_basic_map_plain_is_empty(bmap)) {
4467 		if (sol->add_empty)
4468 			sol->add_empty(sol,
4469 		    isl_basic_set_copy(context->op->peek_basic_set(context)));
4470 	} else {
4471 		tab = tab_for_lexmin(bmap,
4472 				    context->op->peek_basic_set(context), 1, max);
4473 		tab = context->op->detect_nonnegative_parameters(context, tab);
4474 		find_solutions_main(sol, tab);
4475 	}
4476 	if (sol->error)
4477 		goto error;
4478 
4479 	isl_basic_map_free(bmap);
4480 	return sol;
4481 error:
4482 	sol_free(sol);
4483 	isl_basic_map_free(bmap);
4484 	return NULL;
4485 }
4486 
4487 /* Base case of isl_tab_basic_map_partial_lexopt, after removing
4488  * some obvious symmetries.
4489  *
4490  * We call basic_map_partial_lexopt_base_sol and extract the results.
4491  */
basic_map_partial_lexopt_base(__isl_take isl_basic_map * bmap,__isl_take isl_basic_set * dom,__isl_give isl_set ** empty,int max)4492 static __isl_give isl_map *basic_map_partial_lexopt_base(
4493 	__isl_take isl_basic_map *bmap, __isl_take isl_basic_set *dom,
4494 	__isl_give isl_set **empty, int max)
4495 {
4496 	isl_map *result = NULL;
4497 	struct isl_sol *sol;
4498 	struct isl_sol_map *sol_map;
4499 
4500 	sol = basic_map_partial_lexopt_base_sol(bmap, dom, empty, max,
4501 						&sol_map_init);
4502 	if (!sol)
4503 		return NULL;
4504 	sol_map = (struct isl_sol_map *) sol;
4505 
4506 	result = isl_map_copy(sol_map->map);
4507 	if (empty)
4508 		*empty = isl_set_copy(sol_map->empty);
4509 	sol_free(&sol_map->sol);
4510 	return result;
4511 }
4512 
4513 /* Return a count of the number of occurrences of the "n" first
4514  * variables in the inequality constraints of "bmap".
4515  */
count_occurrences(__isl_keep isl_basic_map * bmap,int n)4516 static __isl_give int *count_occurrences(__isl_keep isl_basic_map *bmap,
4517 	int n)
4518 {
4519 	int i, j;
4520 	isl_ctx *ctx;
4521 	int *occurrences;
4522 
4523 	if (!bmap)
4524 		return NULL;
4525 	ctx = isl_basic_map_get_ctx(bmap);
4526 	occurrences = isl_calloc_array(ctx, int, n);
4527 	if (!occurrences)
4528 		return NULL;
4529 
4530 	for (i = 0; i < bmap->n_ineq; ++i) {
4531 		for (j = 0; j < n; ++j) {
4532 			if (!isl_int_is_zero(bmap->ineq[i][1 + j]))
4533 				occurrences[j]++;
4534 		}
4535 	}
4536 
4537 	return occurrences;
4538 }
4539 
4540 /* Do all of the "n" variables with non-zero coefficients in "c"
4541  * occur in exactly a single constraint.
4542  * "occurrences" is an array of length "n" containing the number
4543  * of occurrences of each of the variables in the inequality constraints.
4544  */
single_occurrence(int n,isl_int * c,int * occurrences)4545 static int single_occurrence(int n, isl_int *c, int *occurrences)
4546 {
4547 	int i;
4548 
4549 	for (i = 0; i < n; ++i) {
4550 		if (isl_int_is_zero(c[i]))
4551 			continue;
4552 		if (occurrences[i] != 1)
4553 			return 0;
4554 	}
4555 
4556 	return 1;
4557 }
4558 
4559 /* Do all of the "n" initial variables that occur in inequality constraint
4560  * "ineq" of "bmap" only occur in that constraint?
4561  */
all_single_occurrence(__isl_keep isl_basic_map * bmap,int ineq,int n)4562 static int all_single_occurrence(__isl_keep isl_basic_map *bmap, int ineq,
4563 	int n)
4564 {
4565 	int i, j;
4566 
4567 	for (i = 0; i < n; ++i) {
4568 		if (isl_int_is_zero(bmap->ineq[ineq][1 + i]))
4569 			continue;
4570 		for (j = 0; j < bmap->n_ineq; ++j) {
4571 			if (j == ineq)
4572 				continue;
4573 			if (!isl_int_is_zero(bmap->ineq[j][1 + i]))
4574 				return 0;
4575 		}
4576 	}
4577 
4578 	return 1;
4579 }
4580 
4581 /* Structure used during detection of parallel constraints.
4582  * n_in: number of "input" variables: isl_dim_param + isl_dim_in
4583  * n_out: number of "output" variables: isl_dim_out + isl_dim_div
4584  * val: the coefficients of the output variables
4585  */
4586 struct isl_constraint_equal_info {
4587 	unsigned n_in;
4588 	unsigned n_out;
4589 	isl_int *val;
4590 };
4591 
4592 /* Check whether the coefficients of the output variables
4593  * of the constraint in "entry" are equal to info->val.
4594  */
constraint_equal(const void * entry,const void * val)4595 static isl_bool constraint_equal(const void *entry, const void *val)
4596 {
4597 	isl_int **row = (isl_int **)entry;
4598 	const struct isl_constraint_equal_info *info = val;
4599 	int eq;
4600 
4601 	eq = isl_seq_eq((*row) + 1 + info->n_in, info->val, info->n_out);
4602 	return isl_bool_ok(eq);
4603 }
4604 
4605 /* Check whether "bmap" has a pair of constraints that have
4606  * the same coefficients for the output variables.
4607  * Note that the coefficients of the existentially quantified
4608  * variables need to be zero since the existentially quantified
4609  * of the result are usually not the same as those of the input.
4610  * Furthermore, check that each of the input variables that occur
4611  * in those constraints does not occur in any other constraint.
4612  * If so, return true and return the row indices of the two constraints
4613  * in *first and *second.
4614  */
parallel_constraints(__isl_keep isl_basic_map * bmap,int * first,int * second)4615 static isl_bool parallel_constraints(__isl_keep isl_basic_map *bmap,
4616 	int *first, int *second)
4617 {
4618 	int i;
4619 	isl_ctx *ctx;
4620 	int *occurrences = NULL;
4621 	struct isl_hash_table *table = NULL;
4622 	struct isl_hash_table_entry *entry;
4623 	struct isl_constraint_equal_info info;
4624 	isl_size nparam, n_in, n_out, n_div;
4625 
4626 	ctx = isl_basic_map_get_ctx(bmap);
4627 	table = isl_hash_table_alloc(ctx, bmap->n_ineq);
4628 	if (!table)
4629 		goto error;
4630 
4631 	nparam = isl_basic_map_dim(bmap, isl_dim_param);
4632 	n_in = isl_basic_map_dim(bmap, isl_dim_in);
4633 	n_out = isl_basic_map_dim(bmap, isl_dim_out);
4634 	n_div = isl_basic_map_dim(bmap, isl_dim_div);
4635 	if (nparam < 0 || n_in < 0 || n_out < 0 || n_div < 0)
4636 		goto error;
4637 	info.n_in = nparam + n_in;
4638 	occurrences = count_occurrences(bmap, info.n_in);
4639 	if (info.n_in && !occurrences)
4640 		goto error;
4641 	info.n_out = n_out + n_div;
4642 	for (i = 0; i < bmap->n_ineq; ++i) {
4643 		uint32_t hash;
4644 
4645 		info.val = bmap->ineq[i] + 1 + info.n_in;
4646 		if (isl_seq_first_non_zero(info.val, n_out) < 0)
4647 			continue;
4648 		if (isl_seq_first_non_zero(info.val + n_out, n_div) >= 0)
4649 			continue;
4650 		if (!single_occurrence(info.n_in, bmap->ineq[i] + 1,
4651 					occurrences))
4652 			continue;
4653 		hash = isl_seq_get_hash(info.val, info.n_out);
4654 		entry = isl_hash_table_find(ctx, table, hash,
4655 					    constraint_equal, &info, 1);
4656 		if (!entry)
4657 			goto error;
4658 		if (entry->data)
4659 			break;
4660 		entry->data = &bmap->ineq[i];
4661 	}
4662 
4663 	if (i < bmap->n_ineq) {
4664 		*first = ((isl_int **)entry->data) - bmap->ineq;
4665 		*second = i;
4666 	}
4667 
4668 	isl_hash_table_free(ctx, table);
4669 	free(occurrences);
4670 
4671 	return isl_bool_ok(i < bmap->n_ineq);
4672 error:
4673 	isl_hash_table_free(ctx, table);
4674 	free(occurrences);
4675 	return isl_bool_error;
4676 }
4677 
4678 /* Given a set of upper bounds in "var", add constraints to "bset"
4679  * that make the i-th bound smallest.
4680  *
4681  * In particular, if there are n bounds b_i, then add the constraints
4682  *
4683  *	b_i <= b_j	for j > i
4684  *	b_i <  b_j	for j < i
4685  */
select_minimum(__isl_take isl_basic_set * bset,__isl_keep isl_mat * var,int i)4686 static __isl_give isl_basic_set *select_minimum(__isl_take isl_basic_set *bset,
4687 	__isl_keep isl_mat *var, int i)
4688 {
4689 	isl_ctx *ctx;
4690 	int j, k;
4691 
4692 	ctx = isl_mat_get_ctx(var);
4693 
4694 	for (j = 0; j < var->n_row; ++j) {
4695 		if (j == i)
4696 			continue;
4697 		k = isl_basic_set_alloc_inequality(bset);
4698 		if (k < 0)
4699 			goto error;
4700 		isl_seq_combine(bset->ineq[k], ctx->one, var->row[j],
4701 				ctx->negone, var->row[i], var->n_col);
4702 		isl_int_set_si(bset->ineq[k][var->n_col], 0);
4703 		if (j < i)
4704 			isl_int_sub_ui(bset->ineq[k][0], bset->ineq[k][0], 1);
4705 	}
4706 
4707 	bset = isl_basic_set_finalize(bset);
4708 
4709 	return bset;
4710 error:
4711 	isl_basic_set_free(bset);
4712 	return NULL;
4713 }
4714 
4715 /* Given a set of upper bounds on the last "input" variable m,
4716  * construct a set that assigns the minimal upper bound to m, i.e.,
4717  * construct a set that divides the space into cells where one
4718  * of the upper bounds is smaller than all the others and assign
4719  * this upper bound to m.
4720  *
4721  * In particular, if there are n bounds b_i, then the result
4722  * consists of n basic sets, each one of the form
4723  *
4724  *	m = b_i
4725  *	b_i <= b_j	for j > i
4726  *	b_i <  b_j	for j < i
4727  */
set_minimum(__isl_take isl_space * space,__isl_take isl_mat * var)4728 static __isl_give isl_set *set_minimum(__isl_take isl_space *space,
4729 	__isl_take isl_mat *var)
4730 {
4731 	int i, k;
4732 	isl_basic_set *bset = NULL;
4733 	isl_set *set = NULL;
4734 
4735 	if (!space || !var)
4736 		goto error;
4737 
4738 	set = isl_set_alloc_space(isl_space_copy(space),
4739 				var->n_row, ISL_SET_DISJOINT);
4740 
4741 	for (i = 0; i < var->n_row; ++i) {
4742 		bset = isl_basic_set_alloc_space(isl_space_copy(space), 0,
4743 					       1, var->n_row - 1);
4744 		k = isl_basic_set_alloc_equality(bset);
4745 		if (k < 0)
4746 			goto error;
4747 		isl_seq_cpy(bset->eq[k], var->row[i], var->n_col);
4748 		isl_int_set_si(bset->eq[k][var->n_col], -1);
4749 		bset = select_minimum(bset, var, i);
4750 		set = isl_set_add_basic_set(set, bset);
4751 	}
4752 
4753 	isl_space_free(space);
4754 	isl_mat_free(var);
4755 	return set;
4756 error:
4757 	isl_basic_set_free(bset);
4758 	isl_set_free(set);
4759 	isl_space_free(space);
4760 	isl_mat_free(var);
4761 	return NULL;
4762 }
4763 
4764 /* Given that the last input variable of "bmap" represents the minimum
4765  * of the bounds in "cst", check whether we need to split the domain
4766  * based on which bound attains the minimum.
4767  *
4768  * A split is needed when the minimum appears in an integer division
4769  * or in an equality.  Otherwise, it is only needed if it appears in
4770  * an upper bound that is different from the upper bounds on which it
4771  * is defined.
4772  */
need_split_basic_map(__isl_keep isl_basic_map * bmap,__isl_keep isl_mat * cst)4773 static isl_bool need_split_basic_map(__isl_keep isl_basic_map *bmap,
4774 	__isl_keep isl_mat *cst)
4775 {
4776 	int i, j;
4777 	isl_size total;
4778 	unsigned pos;
4779 
4780 	pos = cst->n_col - 1;
4781 	total = isl_basic_map_dim(bmap, isl_dim_all);
4782 	if (total < 0)
4783 		return isl_bool_error;
4784 
4785 	for (i = 0; i < bmap->n_div; ++i)
4786 		if (!isl_int_is_zero(bmap->div[i][2 + pos]))
4787 			return isl_bool_true;
4788 
4789 	for (i = 0; i < bmap->n_eq; ++i)
4790 		if (!isl_int_is_zero(bmap->eq[i][1 + pos]))
4791 			return isl_bool_true;
4792 
4793 	for (i = 0; i < bmap->n_ineq; ++i) {
4794 		if (isl_int_is_nonneg(bmap->ineq[i][1 + pos]))
4795 			continue;
4796 		if (!isl_int_is_negone(bmap->ineq[i][1 + pos]))
4797 			return isl_bool_true;
4798 		if (isl_seq_first_non_zero(bmap->ineq[i] + 1 + pos + 1,
4799 					   total - pos - 1) >= 0)
4800 			return isl_bool_true;
4801 
4802 		for (j = 0; j < cst->n_row; ++j)
4803 			if (isl_seq_eq(bmap->ineq[i], cst->row[j], cst->n_col))
4804 				break;
4805 		if (j >= cst->n_row)
4806 			return isl_bool_true;
4807 	}
4808 
4809 	return isl_bool_false;
4810 }
4811 
4812 /* Given that the last set variable of "bset" represents the minimum
4813  * of the bounds in "cst", check whether we need to split the domain
4814  * based on which bound attains the minimum.
4815  *
4816  * We simply call need_split_basic_map here.  This is safe because
4817  * the position of the minimum is computed from "cst" and not
4818  * from "bmap".
4819  */
need_split_basic_set(__isl_keep isl_basic_set * bset,__isl_keep isl_mat * cst)4820 static isl_bool need_split_basic_set(__isl_keep isl_basic_set *bset,
4821 	__isl_keep isl_mat *cst)
4822 {
4823 	return need_split_basic_map(bset_to_bmap(bset), cst);
4824 }
4825 
4826 /* Given that the last set variable of "set" represents the minimum
4827  * of the bounds in "cst", check whether we need to split the domain
4828  * based on which bound attains the minimum.
4829  */
need_split_set(__isl_keep isl_set * set,__isl_keep isl_mat * cst)4830 static isl_bool need_split_set(__isl_keep isl_set *set, __isl_keep isl_mat *cst)
4831 {
4832 	int i;
4833 
4834 	for (i = 0; i < set->n; ++i) {
4835 		isl_bool split;
4836 
4837 		split = need_split_basic_set(set->p[i], cst);
4838 		if (split < 0 || split)
4839 			return split;
4840 	}
4841 
4842 	return isl_bool_false;
4843 }
4844 
4845 /* Given a map of which the last input variable is the minimum
4846  * of the bounds in "cst", split each basic set in the set
4847  * in pieces where one of the bounds is (strictly) smaller than the others.
4848  * This subdivision is given in "min_expr".
4849  * The variable is subsequently projected out.
4850  *
4851  * We only do the split when it is needed.
4852  * For example if the last input variable m = min(a,b) and the only
4853  * constraints in the given basic set are lower bounds on m,
4854  * i.e., l <= m = min(a,b), then we can simply project out m
4855  * to obtain l <= a and l <= b, without having to split on whether
4856  * m is equal to a or b.
4857  */
split_domain(__isl_take isl_map * opt,__isl_take isl_set * min_expr,__isl_take isl_mat * cst)4858 static __isl_give isl_map *split_domain(__isl_take isl_map *opt,
4859 	__isl_take isl_set *min_expr, __isl_take isl_mat *cst)
4860 {
4861 	isl_size n_in;
4862 	int i;
4863 	isl_space *space;
4864 	isl_map *res;
4865 
4866 	n_in = isl_map_dim(opt, isl_dim_in);
4867 	if (n_in < 0 || !min_expr || !cst)
4868 		goto error;
4869 
4870 	space = isl_map_get_space(opt);
4871 	space = isl_space_drop_dims(space, isl_dim_in, n_in - 1, 1);
4872 	res = isl_map_empty(space);
4873 
4874 	for (i = 0; i < opt->n; ++i) {
4875 		isl_map *map;
4876 		isl_bool split;
4877 
4878 		map = isl_map_from_basic_map(isl_basic_map_copy(opt->p[i]));
4879 		split = need_split_basic_map(opt->p[i], cst);
4880 		if (split < 0)
4881 			map = isl_map_free(map);
4882 		else if (split)
4883 			map = isl_map_intersect_domain(map,
4884 						       isl_set_copy(min_expr));
4885 		map = isl_map_remove_dims(map, isl_dim_in, n_in - 1, 1);
4886 
4887 		res = isl_map_union_disjoint(res, map);
4888 	}
4889 
4890 	isl_map_free(opt);
4891 	isl_set_free(min_expr);
4892 	isl_mat_free(cst);
4893 	return res;
4894 error:
4895 	isl_map_free(opt);
4896 	isl_set_free(min_expr);
4897 	isl_mat_free(cst);
4898 	return NULL;
4899 }
4900 
4901 /* Given a set of which the last set variable is the minimum
4902  * of the bounds in "cst", split each basic set in the set
4903  * in pieces where one of the bounds is (strictly) smaller than the others.
4904  * This subdivision is given in "min_expr".
4905  * The variable is subsequently projected out.
4906  */
split(__isl_take isl_set * empty,__isl_take isl_set * min_expr,__isl_take isl_mat * cst)4907 static __isl_give isl_set *split(__isl_take isl_set *empty,
4908 	__isl_take isl_set *min_expr, __isl_take isl_mat *cst)
4909 {
4910 	isl_map *map;
4911 
4912 	map = isl_map_from_domain(empty);
4913 	map = split_domain(map, min_expr, cst);
4914 	empty = isl_map_domain(map);
4915 
4916 	return empty;
4917 }
4918 
4919 static __isl_give isl_map *basic_map_partial_lexopt(
4920 	__isl_take isl_basic_map *bmap, __isl_take isl_basic_set *dom,
4921 	__isl_give isl_set **empty, int max);
4922 
4923 /* This function is called from basic_map_partial_lexopt_symm.
4924  * The last variable of "bmap" and "dom" corresponds to the minimum
4925  * of the bounds in "cst".  "map_space" is the space of the original
4926  * input relation (of basic_map_partial_lexopt_symm) and "set_space"
4927  * is the space of the original domain.
4928  *
4929  * We recursively call basic_map_partial_lexopt and then plug in
4930  * the definition of the minimum in the result.
4931  */
basic_map_partial_lexopt_symm_core(__isl_take isl_basic_map * bmap,__isl_take isl_basic_set * dom,__isl_give isl_set ** empty,int max,__isl_take isl_mat * cst,__isl_take isl_space * map_space,__isl_take isl_space * set_space)4932 static __isl_give isl_map *basic_map_partial_lexopt_symm_core(
4933 	__isl_take isl_basic_map *bmap, __isl_take isl_basic_set *dom,
4934 	__isl_give isl_set **empty, int max, __isl_take isl_mat *cst,
4935 	__isl_take isl_space *map_space, __isl_take isl_space *set_space)
4936 {
4937 	isl_map *opt;
4938 	isl_set *min_expr;
4939 
4940 	min_expr = set_minimum(isl_basic_set_get_space(dom), isl_mat_copy(cst));
4941 
4942 	opt = basic_map_partial_lexopt(bmap, dom, empty, max);
4943 
4944 	if (empty) {
4945 		*empty = split(*empty,
4946 			       isl_set_copy(min_expr), isl_mat_copy(cst));
4947 		*empty = isl_set_reset_space(*empty, set_space);
4948 	}
4949 
4950 	opt = split_domain(opt, min_expr, cst);
4951 	opt = isl_map_reset_space(opt, map_space);
4952 
4953 	return opt;
4954 }
4955 
4956 /* Extract a domain from "bmap" for the purpose of computing
4957  * a lexicographic optimum.
4958  *
4959  * This function is only called when the caller wants to compute a full
4960  * lexicographic optimum, i.e., without specifying a domain.  In this case,
4961  * the caller is not interested in the part of the domain space where
4962  * there is no solution and the domain can be initialized to those constraints
4963  * of "bmap" that only involve the parameters and the input dimensions.
4964  * This relieves the parametric programming engine from detecting those
4965  * inequalities and transferring them to the context.  More importantly,
4966  * it ensures that those inequalities are transferred first and not
4967  * intermixed with inequalities that actually split the domain.
4968  *
4969  * If the caller does not require the absence of existentially quantified
4970  * variables in the result (i.e., if ISL_OPT_QE is not set in "flags"),
4971  * then the actual domain of "bmap" can be used.  This ensures that
4972  * the domain does not need to be split at all just to separate out
4973  * pieces of the domain that do not have a solution from piece that do.
4974  * This domain cannot be used in general because it may involve
4975  * (unknown) existentially quantified variables which will then also
4976  * appear in the solution.
4977  */
extract_domain(__isl_keep isl_basic_map * bmap,unsigned flags)4978 static __isl_give isl_basic_set *extract_domain(__isl_keep isl_basic_map *bmap,
4979 	unsigned flags)
4980 {
4981 	isl_size n_div;
4982 	isl_size n_out;
4983 
4984 	n_div = isl_basic_map_dim(bmap, isl_dim_div);
4985 	n_out = isl_basic_map_dim(bmap, isl_dim_out);
4986 	if (n_div < 0 || n_out < 0)
4987 		return NULL;
4988 	bmap = isl_basic_map_copy(bmap);
4989 	if (ISL_FL_ISSET(flags, ISL_OPT_QE)) {
4990 		bmap = isl_basic_map_drop_constraints_involving_dims(bmap,
4991 							isl_dim_div, 0, n_div);
4992 		bmap = isl_basic_map_drop_constraints_involving_dims(bmap,
4993 							isl_dim_out, 0, n_out);
4994 	}
4995 	return isl_basic_map_domain(bmap);
4996 }
4997 
4998 #undef TYPE
4999 #define TYPE	isl_map
5000 #undef SUFFIX
5001 #define SUFFIX
5002 #include "isl_tab_lexopt_templ.c"
5003 
5004 /* Extract the subsequence of the sample value of "tab"
5005  * starting at "pos" and of length "len".
5006  */
extract_sample_sequence(struct isl_tab * tab,int pos,int len)5007 static __isl_give isl_vec *extract_sample_sequence(struct isl_tab *tab,
5008 	int pos, int len)
5009 {
5010 	int i;
5011 	isl_ctx *ctx;
5012 	isl_vec *v;
5013 
5014 	ctx = isl_tab_get_ctx(tab);
5015 	v = isl_vec_alloc(ctx, len);
5016 	if (!v)
5017 		return NULL;
5018 	for (i = 0; i < len; ++i) {
5019 		if (!tab->var[pos + i].is_row) {
5020 			isl_int_set_si(v->el[i], 0);
5021 		} else {
5022 			int row;
5023 
5024 			row = tab->var[pos + i].index;
5025 			isl_int_divexact(v->el[i], tab->mat->row[row][1],
5026 					tab->mat->row[row][0]);
5027 		}
5028 	}
5029 
5030 	return v;
5031 }
5032 
5033 /* Check if the sequence of variables starting at "pos"
5034  * represents a trivial solution according to "trivial".
5035  * That is, is the result of applying "trivial" to this sequence
5036  * equal to the zero vector?
5037  */
region_is_trivial(struct isl_tab * tab,int pos,__isl_keep isl_mat * trivial)5038 static isl_bool region_is_trivial(struct isl_tab *tab, int pos,
5039 	__isl_keep isl_mat *trivial)
5040 {
5041 	isl_size n, len;
5042 	isl_vec *v;
5043 	isl_bool is_trivial;
5044 
5045 	n = isl_mat_rows(trivial);
5046 	if (n < 0)
5047 		return isl_bool_error;
5048 
5049 	if (n == 0)
5050 		return isl_bool_false;
5051 
5052 	len = isl_mat_cols(trivial);
5053 	if (len < 0)
5054 		return isl_bool_error;
5055 	v = extract_sample_sequence(tab, pos, len);
5056 	v = isl_mat_vec_product(isl_mat_copy(trivial), v);
5057 	is_trivial = isl_vec_is_zero(v);
5058 	isl_vec_free(v);
5059 
5060 	return is_trivial;
5061 }
5062 
5063 /* Global internal data for isl_tab_basic_set_non_trivial_lexmin.
5064  *
5065  * "n_op" is the number of initial coordinates to optimize,
5066  * as passed to isl_tab_basic_set_non_trivial_lexmin.
5067  * "region" is the "n_region"-sized array of regions passed
5068  * to isl_tab_basic_set_non_trivial_lexmin.
5069  *
5070  * "tab" is the tableau that corresponds to the ILP problem.
5071  * "local" is an array of local data structure, one for each
5072  * (potential) level of the backtracking procedure of
5073  * isl_tab_basic_set_non_trivial_lexmin.
5074  * "v" is a pre-allocated vector that can be used for adding
5075  * constraints to the tableau.
5076  *
5077  * "sol" contains the best solution found so far.
5078  * It is initialized to a vector of size zero.
5079  */
5080 struct isl_lexmin_data {
5081 	int n_op;
5082 	int n_region;
5083 	struct isl_trivial_region *region;
5084 
5085 	struct isl_tab *tab;
5086 	struct isl_local_region *local;
5087 	isl_vec *v;
5088 
5089 	isl_vec *sol;
5090 };
5091 
5092 /* Return the index of the first trivial region, "n_region" if all regions
5093  * are non-trivial or -1 in case of error.
5094  */
first_trivial_region(struct isl_lexmin_data * data)5095 static int first_trivial_region(struct isl_lexmin_data *data)
5096 {
5097 	int i;
5098 
5099 	for (i = 0; i < data->n_region; ++i) {
5100 		isl_bool trivial;
5101 		trivial = region_is_trivial(data->tab, data->region[i].pos,
5102 					data->region[i].trivial);
5103 		if (trivial < 0)
5104 			return -1;
5105 		if (trivial)
5106 			return i;
5107 	}
5108 
5109 	return data->n_region;
5110 }
5111 
5112 /* Check if the solution is optimal, i.e., whether the first
5113  * n_op entries are zero.
5114  */
is_optimal(__isl_keep isl_vec * sol,int n_op)5115 static int is_optimal(__isl_keep isl_vec *sol, int n_op)
5116 {
5117 	int i;
5118 
5119 	for (i = 0; i < n_op; ++i)
5120 		if (!isl_int_is_zero(sol->el[1 + i]))
5121 			return 0;
5122 	return 1;
5123 }
5124 
5125 /* Add constraints to "tab" that ensure that any solution is significantly
5126  * better than that represented by "sol".  That is, find the first
5127  * relevant (within first n_op) non-zero coefficient and force it (along
5128  * with all previous coefficients) to be zero.
5129  * If the solution is already optimal (all relevant coefficients are zero),
5130  * then just mark the table as empty.
5131  * "n_zero" is the number of coefficients that have been forced zero
5132  * by previous calls to this function at the same level.
5133  * Return the updated number of forced zero coefficients or -1 on error.
5134  *
5135  * This function assumes that at least 2 * (n_op - n_zero) more rows and
5136  * at least 2 * (n_op - n_zero) more elements in the constraint array
5137  * are available in the tableau.
5138  */
force_better_solution(struct isl_tab * tab,__isl_keep isl_vec * sol,int n_op,int n_zero)5139 static int force_better_solution(struct isl_tab *tab,
5140 	__isl_keep isl_vec *sol, int n_op, int n_zero)
5141 {
5142 	int i, n;
5143 	isl_ctx *ctx;
5144 	isl_vec *v = NULL;
5145 
5146 	if (!sol)
5147 		return -1;
5148 
5149 	for (i = n_zero; i < n_op; ++i)
5150 		if (!isl_int_is_zero(sol->el[1 + i]))
5151 			break;
5152 
5153 	if (i == n_op) {
5154 		if (isl_tab_mark_empty(tab) < 0)
5155 			return -1;
5156 		return n_op;
5157 	}
5158 
5159 	ctx = isl_vec_get_ctx(sol);
5160 	v = isl_vec_alloc(ctx, 1 + tab->n_var);
5161 	if (!v)
5162 		return -1;
5163 
5164 	n = i + 1;
5165 	for (; i >= n_zero; --i) {
5166 		v = isl_vec_clr(v);
5167 		isl_int_set_si(v->el[1 + i], -1);
5168 		if (add_lexmin_eq(tab, v->el) < 0)
5169 			goto error;
5170 	}
5171 
5172 	isl_vec_free(v);
5173 	return n;
5174 error:
5175 	isl_vec_free(v);
5176 	return -1;
5177 }
5178 
5179 /* Fix triviality direction "dir" of the given region to zero.
5180  *
5181  * This function assumes that at least two more rows and at least
5182  * two more elements in the constraint array are available in the tableau.
5183  */
fix_zero(struct isl_tab * tab,struct isl_trivial_region * region,int dir,struct isl_lexmin_data * data)5184 static isl_stat fix_zero(struct isl_tab *tab, struct isl_trivial_region *region,
5185 	int dir, struct isl_lexmin_data *data)
5186 {
5187 	isl_size len;
5188 
5189 	data->v = isl_vec_clr(data->v);
5190 	if (!data->v)
5191 		return isl_stat_error;
5192 	len = isl_mat_cols(region->trivial);
5193 	if (len < 0)
5194 		return isl_stat_error;
5195 	isl_seq_cpy(data->v->el + 1 + region->pos, region->trivial->row[dir],
5196 		    len);
5197 	if (add_lexmin_eq(tab, data->v->el) < 0)
5198 		return isl_stat_error;
5199 
5200 	return isl_stat_ok;
5201 }
5202 
5203 /* This function selects case "side" for non-triviality region "region",
5204  * assuming all the equality constraints have been imposed already.
5205  * In particular, the triviality direction side/2 is made positive
5206  * if side is even and made negative if side is odd.
5207  *
5208  * This function assumes that at least one more row and at least
5209  * one more element in the constraint array are available in the tableau.
5210  */
pos_neg(struct isl_tab * tab,struct isl_trivial_region * region,int side,struct isl_lexmin_data * data)5211 static struct isl_tab *pos_neg(struct isl_tab *tab,
5212 	struct isl_trivial_region *region,
5213 	int side, struct isl_lexmin_data *data)
5214 {
5215 	isl_size len;
5216 
5217 	data->v = isl_vec_clr(data->v);
5218 	if (!data->v)
5219 		goto error;
5220 	isl_int_set_si(data->v->el[0], -1);
5221 	len = isl_mat_cols(region->trivial);
5222 	if (len < 0)
5223 		goto error;
5224 	if (side % 2 == 0)
5225 		isl_seq_cpy(data->v->el + 1 + region->pos,
5226 			    region->trivial->row[side / 2], len);
5227 	else
5228 		isl_seq_neg(data->v->el + 1 + region->pos,
5229 			    region->trivial->row[side / 2], len);
5230 	return add_lexmin_ineq(tab, data->v->el);
5231 error:
5232 	isl_tab_free(tab);
5233 	return NULL;
5234 }
5235 
5236 /* Local data at each level of the backtracking procedure of
5237  * isl_tab_basic_set_non_trivial_lexmin.
5238  *
5239  * "update" is set if a solution has been found in the current case
5240  * of this level, such that a better solution needs to be enforced
5241  * in the next case.
5242  * "n_zero" is the number of initial coordinates that have already
5243  * been forced to be zero at this level.
5244  * "region" is the non-triviality region considered at this level.
5245  * "side" is the index of the current case at this level.
5246  * "n" is the number of triviality directions.
5247  * "snap" is a snapshot of the tableau holding a state that needs
5248  * to be satisfied by all subsequent cases.
5249  */
5250 struct isl_local_region {
5251 	int update;
5252 	int n_zero;
5253 	int region;
5254 	int side;
5255 	int n;
5256 	struct isl_tab_undo *snap;
5257 };
5258 
5259 /* Initialize the global data structure "data" used while solving
5260  * the ILP problem "bset".
5261  */
init_lexmin_data(struct isl_lexmin_data * data,__isl_keep isl_basic_set * bset)5262 static isl_stat init_lexmin_data(struct isl_lexmin_data *data,
5263 	__isl_keep isl_basic_set *bset)
5264 {
5265 	isl_ctx *ctx;
5266 
5267 	ctx = isl_basic_set_get_ctx(bset);
5268 
5269 	data->tab = tab_for_lexmin(bset, NULL, 0, 0);
5270 	if (!data->tab)
5271 		return isl_stat_error;
5272 
5273 	data->v = isl_vec_alloc(ctx, 1 + data->tab->n_var);
5274 	if (!data->v)
5275 		return isl_stat_error;
5276 	data->local = isl_calloc_array(ctx, struct isl_local_region,
5277 					data->n_region);
5278 	if (data->n_region && !data->local)
5279 		return isl_stat_error;
5280 
5281 	data->sol = isl_vec_alloc(ctx, 0);
5282 
5283 	return isl_stat_ok;
5284 }
5285 
5286 /* Mark all outer levels as requiring a better solution
5287  * in the next cases.
5288  */
update_outer_levels(struct isl_lexmin_data * data,int level)5289 static void update_outer_levels(struct isl_lexmin_data *data, int level)
5290 {
5291 	int i;
5292 
5293 	for (i = 0; i < level; ++i)
5294 		data->local[i].update = 1;
5295 }
5296 
5297 /* Initialize "local" to refer to region "region" and
5298  * to initiate processing at this level.
5299  */
init_local_region(struct isl_local_region * local,int region,struct isl_lexmin_data * data)5300 static isl_stat init_local_region(struct isl_local_region *local, int region,
5301 	struct isl_lexmin_data *data)
5302 {
5303 	isl_size n = isl_mat_rows(data->region[region].trivial);
5304 
5305 	if (n < 0)
5306 		return isl_stat_error;
5307 	local->n = n;
5308 	local->region = region;
5309 	local->side = 0;
5310 	local->update = 0;
5311 	local->n_zero = 0;
5312 
5313 	return isl_stat_ok;
5314 }
5315 
5316 /* What to do next after entering a level of the backtracking procedure.
5317  *
5318  * error: some error has occurred; abort
5319  * done: an optimal solution has been found; stop search
5320  * backtrack: backtrack to the previous level
5321  * handle: add the constraints for the current level and
5322  * 	move to the next level
5323  */
5324 enum isl_next {
5325 	isl_next_error = -1,
5326 	isl_next_done,
5327 	isl_next_backtrack,
5328 	isl_next_handle,
5329 };
5330 
5331 /* Have all cases of the current region been considered?
5332  * If there are n directions, then there are 2n cases.
5333  *
5334  * The constraints in the current tableau are imposed
5335  * in all subsequent cases.  This means that if the current
5336  * tableau is empty, then none of those cases should be considered
5337  * anymore and all cases have effectively been considered.
5338  */
finished_all_cases(struct isl_local_region * local,struct isl_lexmin_data * data)5339 static int finished_all_cases(struct isl_local_region *local,
5340 	struct isl_lexmin_data *data)
5341 {
5342 	if (data->tab->empty)
5343 		return 1;
5344 	return local->side >= 2 * local->n;
5345 }
5346 
5347 /* Enter level "level" of the backtracking search and figure out
5348  * what to do next.  "init" is set if the level was entered
5349  * from a higher level and needs to be initialized.
5350  * Otherwise, the level is entered as a result of backtracking and
5351  * the tableau needs to be restored to a position that can
5352  * be used for the next case at this level.
5353  * The snapshot is assumed to have been saved in the previous case,
5354  * before the constraints specific to that case were added.
5355  *
5356  * In the initialization case, the local region is initialized
5357  * to point to the first violated region.
5358  * If the constraints of all regions are satisfied by the current
5359  * sample of the tableau, then tell the caller to continue looking
5360  * for a better solution or to stop searching if an optimal solution
5361  * has been found.
5362  *
5363  * If the tableau is empty or if all cases at the current level
5364  * have been considered, then the caller needs to backtrack as well.
5365  */
enter_level(int level,int init,struct isl_lexmin_data * data)5366 static enum isl_next enter_level(int level, int init,
5367 	struct isl_lexmin_data *data)
5368 {
5369 	struct isl_local_region *local = &data->local[level];
5370 
5371 	if (init) {
5372 		int r;
5373 
5374 		data->tab = cut_to_integer_lexmin(data->tab, CUT_ONE);
5375 		if (!data->tab)
5376 			return isl_next_error;
5377 		if (data->tab->empty)
5378 			return isl_next_backtrack;
5379 		r = first_trivial_region(data);
5380 		if (r < 0)
5381 			return isl_next_error;
5382 		if (r == data->n_region) {
5383 			update_outer_levels(data, level);
5384 			isl_vec_free(data->sol);
5385 			data->sol = isl_tab_get_sample_value(data->tab);
5386 			if (!data->sol)
5387 				return isl_next_error;
5388 			if (is_optimal(data->sol, data->n_op))
5389 				return isl_next_done;
5390 			return isl_next_backtrack;
5391 		}
5392 		if (level >= data->n_region)
5393 			isl_die(isl_vec_get_ctx(data->v), isl_error_internal,
5394 				"nesting level too deep",
5395 				return isl_next_error);
5396 		if (init_local_region(local, r, data) < 0)
5397 			return isl_next_error;
5398 		if (isl_tab_extend_cons(data->tab,
5399 				    2 * local->n + 2 * data->n_op) < 0)
5400 			return isl_next_error;
5401 	} else {
5402 		if (isl_tab_rollback(data->tab, local->snap) < 0)
5403 			return isl_next_error;
5404 	}
5405 
5406 	if (finished_all_cases(local, data))
5407 		return isl_next_backtrack;
5408 	return isl_next_handle;
5409 }
5410 
5411 /* If a solution has been found in the previous case at this level
5412  * (marked by local->update being set), then add constraints
5413  * that enforce a better solution in the present and all following cases.
5414  * The constraints only need to be imposed once because they are
5415  * included in the snapshot (taken in pick_side) that will be used in
5416  * subsequent cases.
5417  */
better_next_side(struct isl_local_region * local,struct isl_lexmin_data * data)5418 static isl_stat better_next_side(struct isl_local_region *local,
5419 	struct isl_lexmin_data *data)
5420 {
5421 	if (!local->update)
5422 		return isl_stat_ok;
5423 
5424 	local->n_zero = force_better_solution(data->tab,
5425 				data->sol, data->n_op, local->n_zero);
5426 	if (local->n_zero < 0)
5427 		return isl_stat_error;
5428 
5429 	local->update = 0;
5430 
5431 	return isl_stat_ok;
5432 }
5433 
5434 /* Add constraints to data->tab that select the current case (local->side)
5435  * at the current level.
5436  *
5437  * If the linear combinations v should not be zero, then the cases are
5438  *	v_0 >= 1
5439  *	v_0 <= -1
5440  *	v_0 = 0 and v_1 >= 1
5441  *	v_0 = 0 and v_1 <= -1
5442  *	v_0 = 0 and v_1 = 0 and v_2 >= 1
5443  *	v_0 = 0 and v_1 = 0 and v_2 <= -1
5444  *	...
5445  * in this order.
5446  *
5447  * A snapshot is taken after the equality constraint (if any) has been added
5448  * such that the next case can start off from this position.
5449  * The rollback to this position is performed in enter_level.
5450  */
pick_side(struct isl_local_region * local,struct isl_lexmin_data * data)5451 static isl_stat pick_side(struct isl_local_region *local,
5452 	struct isl_lexmin_data *data)
5453 {
5454 	struct isl_trivial_region *region;
5455 	int side, base;
5456 
5457 	region = &data->region[local->region];
5458 	side = local->side;
5459 	base = 2 * (side/2);
5460 
5461 	if (side == base && base >= 2 &&
5462 	    fix_zero(data->tab, region, base / 2 - 1, data) < 0)
5463 		return isl_stat_error;
5464 
5465 	local->snap = isl_tab_snap(data->tab);
5466 	if (isl_tab_push_basis(data->tab) < 0)
5467 		return isl_stat_error;
5468 
5469 	data->tab = pos_neg(data->tab, region, side, data);
5470 	if (!data->tab)
5471 		return isl_stat_error;
5472 	return isl_stat_ok;
5473 }
5474 
5475 /* Free the memory associated to "data".
5476  */
clear_lexmin_data(struct isl_lexmin_data * data)5477 static void clear_lexmin_data(struct isl_lexmin_data *data)
5478 {
5479 	free(data->local);
5480 	isl_vec_free(data->v);
5481 	isl_tab_free(data->tab);
5482 }
5483 
5484 /* Return the lexicographically smallest non-trivial solution of the
5485  * given ILP problem.
5486  *
5487  * All variables are assumed to be non-negative.
5488  *
5489  * n_op is the number of initial coordinates to optimize.
5490  * That is, once a solution has been found, we will only continue looking
5491  * for solutions that result in significantly better values for those
5492  * initial coordinates.  That is, we only continue looking for solutions
5493  * that increase the number of initial zeros in this sequence.
5494  *
5495  * A solution is non-trivial, if it is non-trivial on each of the
5496  * specified regions.  Each region represents a sequence of
5497  * triviality directions on a sequence of variables that starts
5498  * at a given position.  A solution is non-trivial on such a region if
5499  * at least one of the triviality directions is non-zero
5500  * on that sequence of variables.
5501  *
5502  * Whenever a conflict is encountered, all constraints involved are
5503  * reported to the caller through a call to "conflict".
5504  *
5505  * We perform a simple branch-and-bound backtracking search.
5506  * Each level in the search represents an initially trivial region
5507  * that is forced to be non-trivial.
5508  * At each level we consider 2 * n cases, where n
5509  * is the number of triviality directions.
5510  * In terms of those n directions v_i, we consider the cases
5511  *	v_0 >= 1
5512  *	v_0 <= -1
5513  *	v_0 = 0 and v_1 >= 1
5514  *	v_0 = 0 and v_1 <= -1
5515  *	v_0 = 0 and v_1 = 0 and v_2 >= 1
5516  *	v_0 = 0 and v_1 = 0 and v_2 <= -1
5517  *	...
5518  * in this order.
5519  */
isl_tab_basic_set_non_trivial_lexmin(__isl_take isl_basic_set * bset,int n_op,int n_region,struct isl_trivial_region * region,int (* conflict)(int con,void * user),void * user)5520 __isl_give isl_vec *isl_tab_basic_set_non_trivial_lexmin(
5521 	__isl_take isl_basic_set *bset, int n_op, int n_region,
5522 	struct isl_trivial_region *region,
5523 	int (*conflict)(int con, void *user), void *user)
5524 {
5525 	struct isl_lexmin_data data = { n_op, n_region, region };
5526 	int level, init;
5527 
5528 	if (!bset)
5529 		return NULL;
5530 
5531 	if (init_lexmin_data(&data, bset) < 0)
5532 		goto error;
5533 	data.tab->conflict = conflict;
5534 	data.tab->conflict_user = user;
5535 
5536 	level = 0;
5537 	init = 1;
5538 
5539 	while (level >= 0) {
5540 		enum isl_next next;
5541 		struct isl_local_region *local = &data.local[level];
5542 
5543 		next = enter_level(level, init, &data);
5544 		if (next < 0)
5545 			goto error;
5546 		if (next == isl_next_done)
5547 			break;
5548 		if (next == isl_next_backtrack) {
5549 			level--;
5550 			init = 0;
5551 			continue;
5552 		}
5553 
5554 		if (better_next_side(local, &data) < 0)
5555 			goto error;
5556 		if (pick_side(local, &data) < 0)
5557 			goto error;
5558 
5559 		local->side++;
5560 		level++;
5561 		init = 1;
5562 	}
5563 
5564 	clear_lexmin_data(&data);
5565 	isl_basic_set_free(bset);
5566 
5567 	return data.sol;
5568 error:
5569 	clear_lexmin_data(&data);
5570 	isl_basic_set_free(bset);
5571 	isl_vec_free(data.sol);
5572 	return NULL;
5573 }
5574 
5575 /* Wrapper for a tableau that is used for computing
5576  * the lexicographically smallest rational point of a non-negative set.
5577  * This point is represented by the sample value of "tab",
5578  * unless "tab" is empty.
5579  */
5580 struct isl_tab_lexmin {
5581 	isl_ctx *ctx;
5582 	struct isl_tab *tab;
5583 };
5584 
5585 /* Free "tl" and return NULL.
5586  */
isl_tab_lexmin_free(__isl_take isl_tab_lexmin * tl)5587 __isl_null isl_tab_lexmin *isl_tab_lexmin_free(__isl_take isl_tab_lexmin *tl)
5588 {
5589 	if (!tl)
5590 		return NULL;
5591 	isl_ctx_deref(tl->ctx);
5592 	isl_tab_free(tl->tab);
5593 	free(tl);
5594 
5595 	return NULL;
5596 }
5597 
5598 /* Construct an isl_tab_lexmin for computing
5599  * the lexicographically smallest rational point in "bset",
5600  * assuming that all variables are non-negative.
5601  */
isl_tab_lexmin_from_basic_set(__isl_take isl_basic_set * bset)5602 __isl_give isl_tab_lexmin *isl_tab_lexmin_from_basic_set(
5603 	__isl_take isl_basic_set *bset)
5604 {
5605 	isl_ctx *ctx;
5606 	isl_tab_lexmin *tl;
5607 
5608 	if (!bset)
5609 		return NULL;
5610 
5611 	ctx = isl_basic_set_get_ctx(bset);
5612 	tl = isl_calloc_type(ctx, struct isl_tab_lexmin);
5613 	if (!tl)
5614 		goto error;
5615 	tl->ctx = ctx;
5616 	isl_ctx_ref(ctx);
5617 	tl->tab = tab_for_lexmin(bset, NULL, 0, 0);
5618 	isl_basic_set_free(bset);
5619 	if (!tl->tab)
5620 		return isl_tab_lexmin_free(tl);
5621 	return tl;
5622 error:
5623 	isl_basic_set_free(bset);
5624 	isl_tab_lexmin_free(tl);
5625 	return NULL;
5626 }
5627 
5628 /* Return the dimension of the set represented by "tl".
5629  */
isl_tab_lexmin_dim(__isl_keep isl_tab_lexmin * tl)5630 int isl_tab_lexmin_dim(__isl_keep isl_tab_lexmin *tl)
5631 {
5632 	return tl ? tl->tab->n_var : -1;
5633 }
5634 
5635 /* Add the equality with coefficients "eq" to "tl", updating the optimal
5636  * solution if needed.
5637  * The equality is added as two opposite inequality constraints.
5638  */
isl_tab_lexmin_add_eq(__isl_take isl_tab_lexmin * tl,isl_int * eq)5639 __isl_give isl_tab_lexmin *isl_tab_lexmin_add_eq(__isl_take isl_tab_lexmin *tl,
5640 	isl_int *eq)
5641 {
5642 	unsigned n_var;
5643 
5644 	if (!tl || !eq)
5645 		return isl_tab_lexmin_free(tl);
5646 
5647 	if (isl_tab_extend_cons(tl->tab, 2) < 0)
5648 		return isl_tab_lexmin_free(tl);
5649 	n_var = tl->tab->n_var;
5650 	isl_seq_neg(eq, eq, 1 + n_var);
5651 	tl->tab = add_lexmin_ineq(tl->tab, eq);
5652 	isl_seq_neg(eq, eq, 1 + n_var);
5653 	tl->tab = add_lexmin_ineq(tl->tab, eq);
5654 
5655 	if (!tl->tab)
5656 		return isl_tab_lexmin_free(tl);
5657 
5658 	return tl;
5659 }
5660 
5661 /* Add cuts to "tl" until the sample value reaches an integer value or
5662  * until the result becomes empty.
5663  */
isl_tab_lexmin_cut_to_integer(__isl_take isl_tab_lexmin * tl)5664 __isl_give isl_tab_lexmin *isl_tab_lexmin_cut_to_integer(
5665 	__isl_take isl_tab_lexmin *tl)
5666 {
5667 	if (!tl)
5668 		return NULL;
5669 	tl->tab = cut_to_integer_lexmin(tl->tab, CUT_ONE);
5670 	if (!tl->tab)
5671 		return isl_tab_lexmin_free(tl);
5672 	return tl;
5673 }
5674 
5675 /* Return the lexicographically smallest rational point in the basic set
5676  * from which "tl" was constructed.
5677  * If the original input was empty, then return a zero-length vector.
5678  */
isl_tab_lexmin_get_solution(__isl_keep isl_tab_lexmin * tl)5679 __isl_give isl_vec *isl_tab_lexmin_get_solution(__isl_keep isl_tab_lexmin *tl)
5680 {
5681 	if (!tl)
5682 		return NULL;
5683 	if (tl->tab->empty)
5684 		return isl_vec_alloc(tl->ctx, 0);
5685 	else
5686 		return isl_tab_get_sample_value(tl->tab);
5687 }
5688 
5689 struct isl_sol_pma {
5690 	struct isl_sol	sol;
5691 	isl_pw_multi_aff *pma;
5692 	isl_set *empty;
5693 };
5694 
sol_pma_free(struct isl_sol * sol)5695 static void sol_pma_free(struct isl_sol *sol)
5696 {
5697 	struct isl_sol_pma *sol_pma = (struct isl_sol_pma *) sol;
5698 	isl_pw_multi_aff_free(sol_pma->pma);
5699 	isl_set_free(sol_pma->empty);
5700 }
5701 
5702 /* This function is called for parts of the context where there is
5703  * no solution, with "bset" corresponding to the context tableau.
5704  * Simply add the basic set to the set "empty".
5705  */
sol_pma_add_empty(struct isl_sol_pma * sol,__isl_take isl_basic_set * bset)5706 static void sol_pma_add_empty(struct isl_sol_pma *sol,
5707 	__isl_take isl_basic_set *bset)
5708 {
5709 	if (!bset || !sol->empty)
5710 		goto error;
5711 
5712 	sol->empty = isl_set_grow(sol->empty, 1);
5713 	bset = isl_basic_set_simplify(bset);
5714 	bset = isl_basic_set_finalize(bset);
5715 	sol->empty = isl_set_add_basic_set(sol->empty, bset);
5716 	if (!sol->empty)
5717 		sol->sol.error = 1;
5718 	return;
5719 error:
5720 	isl_basic_set_free(bset);
5721 	sol->sol.error = 1;
5722 }
5723 
5724 /* Given a basic set "dom" that represents the context and a tuple of
5725  * affine expressions "maff" defined over this domain, construct
5726  * an isl_pw_multi_aff with a single cell corresponding to "dom" and
5727  * the affine expressions in "maff".
5728  */
sol_pma_add(struct isl_sol_pma * sol,__isl_take isl_basic_set * dom,__isl_take isl_multi_aff * maff)5729 static void sol_pma_add(struct isl_sol_pma *sol,
5730 	__isl_take isl_basic_set *dom, __isl_take isl_multi_aff *maff)
5731 {
5732 	isl_pw_multi_aff *pma;
5733 
5734 	dom = isl_basic_set_simplify(dom);
5735 	dom = isl_basic_set_finalize(dom);
5736 	pma = isl_pw_multi_aff_alloc(isl_set_from_basic_set(dom), maff);
5737 	sol->pma = isl_pw_multi_aff_add_disjoint(sol->pma, pma);
5738 	if (!sol->pma)
5739 		sol->sol.error = 1;
5740 }
5741 
sol_pma_add_empty_wrap(struct isl_sol * sol,__isl_take isl_basic_set * bset)5742 static void sol_pma_add_empty_wrap(struct isl_sol *sol,
5743 	__isl_take isl_basic_set *bset)
5744 {
5745 	sol_pma_add_empty((struct isl_sol_pma *)sol, bset);
5746 }
5747 
sol_pma_add_wrap(struct isl_sol * sol,__isl_take isl_basic_set * dom,__isl_take isl_multi_aff * ma)5748 static void sol_pma_add_wrap(struct isl_sol *sol,
5749 	__isl_take isl_basic_set *dom, __isl_take isl_multi_aff *ma)
5750 {
5751 	sol_pma_add((struct isl_sol_pma *)sol, dom, ma);
5752 }
5753 
5754 /* Construct an isl_sol_pma structure for accumulating the solution.
5755  * If track_empty is set, then we also keep track of the parts
5756  * of the context where there is no solution.
5757  * If max is set, then we are solving a maximization, rather than
5758  * a minimization problem, which means that the variables in the
5759  * tableau have value "M - x" rather than "M + x".
5760  */
sol_pma_init(__isl_keep isl_basic_map * bmap,__isl_take isl_basic_set * dom,int track_empty,int max)5761 static struct isl_sol *sol_pma_init(__isl_keep isl_basic_map *bmap,
5762 	__isl_take isl_basic_set *dom, int track_empty, int max)
5763 {
5764 	struct isl_sol_pma *sol_pma = NULL;
5765 	isl_space *space;
5766 
5767 	if (!bmap)
5768 		goto error;
5769 
5770 	sol_pma = isl_calloc_type(bmap->ctx, struct isl_sol_pma);
5771 	if (!sol_pma)
5772 		goto error;
5773 
5774 	sol_pma->sol.free = &sol_pma_free;
5775 	if (sol_init(&sol_pma->sol, bmap, dom, max) < 0)
5776 		goto error;
5777 	sol_pma->sol.add = &sol_pma_add_wrap;
5778 	sol_pma->sol.add_empty = track_empty ? &sol_pma_add_empty_wrap : NULL;
5779 	space = isl_space_copy(sol_pma->sol.space);
5780 	sol_pma->pma = isl_pw_multi_aff_empty(space);
5781 	if (!sol_pma->pma)
5782 		goto error;
5783 
5784 	if (track_empty) {
5785 		sol_pma->empty = isl_set_alloc_space(isl_basic_set_get_space(dom),
5786 							1, ISL_SET_DISJOINT);
5787 		if (!sol_pma->empty)
5788 			goto error;
5789 	}
5790 
5791 	isl_basic_set_free(dom);
5792 	return &sol_pma->sol;
5793 error:
5794 	isl_basic_set_free(dom);
5795 	sol_free(&sol_pma->sol);
5796 	return NULL;
5797 }
5798 
5799 /* Base case of isl_tab_basic_map_partial_lexopt, after removing
5800  * some obvious symmetries.
5801  *
5802  * We call basic_map_partial_lexopt_base_sol and extract the results.
5803  */
basic_map_partial_lexopt_base_pw_multi_aff(__isl_take isl_basic_map * bmap,__isl_take isl_basic_set * dom,__isl_give isl_set ** empty,int max)5804 static __isl_give isl_pw_multi_aff *basic_map_partial_lexopt_base_pw_multi_aff(
5805 	__isl_take isl_basic_map *bmap, __isl_take isl_basic_set *dom,
5806 	__isl_give isl_set **empty, int max)
5807 {
5808 	isl_pw_multi_aff *result = NULL;
5809 	struct isl_sol *sol;
5810 	struct isl_sol_pma *sol_pma;
5811 
5812 	sol = basic_map_partial_lexopt_base_sol(bmap, dom, empty, max,
5813 						&sol_pma_init);
5814 	if (!sol)
5815 		return NULL;
5816 	sol_pma = (struct isl_sol_pma *) sol;
5817 
5818 	result = isl_pw_multi_aff_copy(sol_pma->pma);
5819 	if (empty)
5820 		*empty = isl_set_copy(sol_pma->empty);
5821 	sol_free(&sol_pma->sol);
5822 	return result;
5823 }
5824 
5825 /* Given that the last input variable of "maff" represents the minimum
5826  * of some bounds, check whether we need to plug in the expression
5827  * of the minimum.
5828  *
5829  * In particular, check if the last input variable appears in any
5830  * of the expressions in "maff".
5831  */
need_substitution(__isl_keep isl_multi_aff * maff)5832 static isl_bool need_substitution(__isl_keep isl_multi_aff *maff)
5833 {
5834 	int i;
5835 	isl_size n_in;
5836 	unsigned pos;
5837 
5838 	n_in = isl_multi_aff_dim(maff, isl_dim_in);
5839 	if (n_in < 0)
5840 		return isl_bool_error;
5841 	pos = n_in - 1;
5842 
5843 	for (i = 0; i < maff->n; ++i) {
5844 		isl_bool involves;
5845 
5846 		involves = isl_aff_involves_dims(maff->u.p[i],
5847 						isl_dim_in, pos, 1);
5848 		if (involves < 0 || involves)
5849 			return involves;
5850 	}
5851 
5852 	return isl_bool_false;
5853 }
5854 
5855 /* Given a set of upper bounds on the last "input" variable m,
5856  * construct a piecewise affine expression that selects
5857  * the minimal upper bound to m, i.e.,
5858  * divide the space into cells where one
5859  * of the upper bounds is smaller than all the others and select
5860  * this upper bound on that cell.
5861  *
5862  * In particular, if there are n bounds b_i, then the result
5863  * consists of n cell, each one of the form
5864  *
5865  *	b_i <= b_j	for j > i
5866  *	b_i <  b_j	for j < i
5867  *
5868  * The affine expression on this cell is
5869  *
5870  *	b_i
5871  */
set_minimum_pa(__isl_take isl_space * space,__isl_take isl_mat * var)5872 static __isl_give isl_pw_aff *set_minimum_pa(__isl_take isl_space *space,
5873 	__isl_take isl_mat *var)
5874 {
5875 	int i;
5876 	isl_aff *aff = NULL;
5877 	isl_basic_set *bset = NULL;
5878 	isl_pw_aff *paff = NULL;
5879 	isl_space *pw_space;
5880 	isl_local_space *ls = NULL;
5881 
5882 	if (!space || !var)
5883 		goto error;
5884 
5885 	ls = isl_local_space_from_space(isl_space_copy(space));
5886 	pw_space = isl_space_copy(space);
5887 	pw_space = isl_space_from_domain(pw_space);
5888 	pw_space = isl_space_add_dims(pw_space, isl_dim_out, 1);
5889 	paff = isl_pw_aff_alloc_size(pw_space, var->n_row);
5890 
5891 	for (i = 0; i < var->n_row; ++i) {
5892 		isl_pw_aff *paff_i;
5893 
5894 		aff = isl_aff_alloc(isl_local_space_copy(ls));
5895 		bset = isl_basic_set_alloc_space(isl_space_copy(space), 0,
5896 					       0, var->n_row - 1);
5897 		if (!aff || !bset)
5898 			goto error;
5899 		isl_int_set_si(aff->v->el[0], 1);
5900 		isl_seq_cpy(aff->v->el + 1, var->row[i], var->n_col);
5901 		isl_int_set_si(aff->v->el[1 + var->n_col], 0);
5902 		bset = select_minimum(bset, var, i);
5903 		paff_i = isl_pw_aff_alloc(isl_set_from_basic_set(bset), aff);
5904 		paff = isl_pw_aff_add_disjoint(paff, paff_i);
5905 	}
5906 
5907 	isl_local_space_free(ls);
5908 	isl_space_free(space);
5909 	isl_mat_free(var);
5910 	return paff;
5911 error:
5912 	isl_aff_free(aff);
5913 	isl_basic_set_free(bset);
5914 	isl_pw_aff_free(paff);
5915 	isl_local_space_free(ls);
5916 	isl_space_free(space);
5917 	isl_mat_free(var);
5918 	return NULL;
5919 }
5920 
5921 /* Given a piecewise multi-affine expression of which the last input variable
5922  * is the minimum of the bounds in "cst", plug in the value of the minimum.
5923  * This minimum expression is given in "min_expr_pa".
5924  * The set "min_expr" contains the same information, but in the form of a set.
5925  * The variable is subsequently projected out.
5926  *
5927  * The implementation is similar to those of "split" and "split_domain".
5928  * If the variable appears in a given expression, then minimum expression
5929  * is plugged in.  Otherwise, if the variable appears in the constraints
5930  * and a split is required, then the domain is split.  Otherwise, no split
5931  * is performed.
5932  */
split_domain_pma(__isl_take isl_pw_multi_aff * opt,__isl_take isl_pw_aff * min_expr_pa,__isl_take isl_set * min_expr,__isl_take isl_mat * cst)5933 static __isl_give isl_pw_multi_aff *split_domain_pma(
5934 	__isl_take isl_pw_multi_aff *opt, __isl_take isl_pw_aff *min_expr_pa,
5935 	__isl_take isl_set *min_expr, __isl_take isl_mat *cst)
5936 {
5937 	isl_size n_in;
5938 	int i;
5939 	isl_space *space;
5940 	isl_pw_multi_aff *res;
5941 
5942 	if (!opt || !min_expr || !cst)
5943 		goto error;
5944 
5945 	n_in = isl_pw_multi_aff_dim(opt, isl_dim_in);
5946 	if (n_in < 0)
5947 		goto error;
5948 	space = isl_pw_multi_aff_get_space(opt);
5949 	space = isl_space_drop_dims(space, isl_dim_in, n_in - 1, 1);
5950 	res = isl_pw_multi_aff_empty(space);
5951 
5952 	for (i = 0; i < opt->n; ++i) {
5953 		isl_bool subs;
5954 		isl_pw_multi_aff *pma;
5955 
5956 		pma = isl_pw_multi_aff_alloc(isl_set_copy(opt->p[i].set),
5957 					 isl_multi_aff_copy(opt->p[i].maff));
5958 		subs = need_substitution(opt->p[i].maff);
5959 		if (subs < 0) {
5960 			pma = isl_pw_multi_aff_free(pma);
5961 		} else if (subs) {
5962 			pma = isl_pw_multi_aff_substitute(pma,
5963 					n_in - 1, min_expr_pa);
5964 		} else {
5965 			isl_bool split;
5966 			split = need_split_set(opt->p[i].set, cst);
5967 			if (split < 0)
5968 				pma = isl_pw_multi_aff_free(pma);
5969 			else if (split)
5970 				pma = isl_pw_multi_aff_intersect_domain(pma,
5971 						       isl_set_copy(min_expr));
5972 		}
5973 		pma = isl_pw_multi_aff_project_out(pma,
5974 						    isl_dim_in, n_in - 1, 1);
5975 
5976 		res = isl_pw_multi_aff_add_disjoint(res, pma);
5977 	}
5978 
5979 	isl_pw_multi_aff_free(opt);
5980 	isl_pw_aff_free(min_expr_pa);
5981 	isl_set_free(min_expr);
5982 	isl_mat_free(cst);
5983 	return res;
5984 error:
5985 	isl_pw_multi_aff_free(opt);
5986 	isl_pw_aff_free(min_expr_pa);
5987 	isl_set_free(min_expr);
5988 	isl_mat_free(cst);
5989 	return NULL;
5990 }
5991 
5992 static __isl_give isl_pw_multi_aff *basic_map_partial_lexopt_pw_multi_aff(
5993 	__isl_take isl_basic_map *bmap, __isl_take isl_basic_set *dom,
5994 	__isl_give isl_set **empty, int max);
5995 
5996 /* This function is called from basic_map_partial_lexopt_symm.
5997  * The last variable of "bmap" and "dom" corresponds to the minimum
5998  * of the bounds in "cst".  "map_space" is the space of the original
5999  * input relation (of basic_map_partial_lexopt_symm) and "set_space"
6000  * is the space of the original domain.
6001  *
6002  * We recursively call basic_map_partial_lexopt and then plug in
6003  * the definition of the minimum in the result.
6004  */
6005 static __isl_give isl_pw_multi_aff *
basic_map_partial_lexopt_symm_core_pw_multi_aff(__isl_take isl_basic_map * bmap,__isl_take isl_basic_set * dom,__isl_give isl_set ** empty,int max,__isl_take isl_mat * cst,__isl_take isl_space * map_space,__isl_take isl_space * set_space)6006 basic_map_partial_lexopt_symm_core_pw_multi_aff(
6007 	__isl_take isl_basic_map *bmap, __isl_take isl_basic_set *dom,
6008 	__isl_give isl_set **empty, int max, __isl_take isl_mat *cst,
6009 	__isl_take isl_space *map_space, __isl_take isl_space *set_space)
6010 {
6011 	isl_pw_multi_aff *opt;
6012 	isl_pw_aff *min_expr_pa;
6013 	isl_set *min_expr;
6014 
6015 	min_expr = set_minimum(isl_basic_set_get_space(dom), isl_mat_copy(cst));
6016 	min_expr_pa = set_minimum_pa(isl_basic_set_get_space(dom),
6017 					isl_mat_copy(cst));
6018 
6019 	opt = basic_map_partial_lexopt_pw_multi_aff(bmap, dom, empty, max);
6020 
6021 	if (empty) {
6022 		*empty = split(*empty,
6023 			       isl_set_copy(min_expr), isl_mat_copy(cst));
6024 		*empty = isl_set_reset_space(*empty, set_space);
6025 	}
6026 
6027 	opt = split_domain_pma(opt, min_expr_pa, min_expr, cst);
6028 	opt = isl_pw_multi_aff_reset_space(opt, map_space);
6029 
6030 	return opt;
6031 }
6032 
6033 #undef TYPE
6034 #define TYPE	isl_pw_multi_aff
6035 #undef SUFFIX
6036 #define SUFFIX	_pw_multi_aff
6037 #include "isl_tab_lexopt_templ.c"
6038