xref: /netbsd-src/external/gpl3/gcc.old/dist/gcc/ifcvt.c (revision 23f5f46327e37e7811da3520f4bb933f9489322f)
1 /* If-conversion support.
2    Copyright (C) 2000-2020 Free Software Foundation, Inc.
3 
4    This file is part of GCC.
5 
6    GCC is free software; you can redistribute it and/or modify it
7    under the terms of the GNU General Public License as published by
8    the Free Software Foundation; either version 3, or (at your option)
9    any later version.
10 
11    GCC is distributed in the hope that it will be useful, but WITHOUT
12    ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
13    or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public
14    License for more details.
15 
16    You should have received a copy of the GNU General Public License
17    along with GCC; see the file COPYING3.  If not see
18    <http://www.gnu.org/licenses/>.  */
19 
20 #include "config.h"
21 #include "system.h"
22 #include "coretypes.h"
23 #include "backend.h"
24 #include "target.h"
25 #include "rtl.h"
26 #include "tree.h"
27 #include "cfghooks.h"
28 #include "df.h"
29 #include "memmodel.h"
30 #include "tm_p.h"
31 #include "expmed.h"
32 #include "optabs.h"
33 #include "regs.h"
34 #include "emit-rtl.h"
35 #include "recog.h"
36 
37 #include "cfgrtl.h"
38 #include "cfganal.h"
39 #include "cfgcleanup.h"
40 #include "expr.h"
41 #include "output.h"
42 #include "cfgloop.h"
43 #include "tree-pass.h"
44 #include "dbgcnt.h"
45 #include "shrink-wrap.h"
46 #include "rtl-iter.h"
47 #include "ifcvt.h"
48 
49 #ifndef MAX_CONDITIONAL_EXECUTE
50 #define MAX_CONDITIONAL_EXECUTE \
51   (BRANCH_COST (optimize_function_for_speed_p (cfun), false) \
52    + 1)
53 #endif
54 
55 #define IFCVT_MULTIPLE_DUMPS 1
56 
57 #define NULL_BLOCK	((basic_block) NULL)
58 
59 /* True if after combine pass.  */
60 static bool ifcvt_after_combine;
61 
62 /* True if the target has the cbranchcc4 optab.  */
63 static bool have_cbranchcc4;
64 
65 /* # of IF-THEN or IF-THEN-ELSE blocks we looked at  */
66 static int num_possible_if_blocks;
67 
68 /* # of IF-THEN or IF-THEN-ELSE blocks were converted to conditional
69    execution.  */
70 static int num_updated_if_blocks;
71 
72 /* # of changes made.  */
73 static int num_true_changes;
74 
75 /* Whether conditional execution changes were made.  */
76 static int cond_exec_changed_p;
77 
78 /* Forward references.  */
79 static int count_bb_insns (const_basic_block);
80 static bool cheap_bb_rtx_cost_p (const_basic_block, profile_probability, int);
81 static rtx_insn *first_active_insn (basic_block);
82 static rtx_insn *last_active_insn (basic_block, int);
83 static rtx_insn *find_active_insn_before (basic_block, rtx_insn *);
84 static rtx_insn *find_active_insn_after (basic_block, rtx_insn *);
85 static basic_block block_fallthru (basic_block);
86 static rtx cond_exec_get_condition (rtx_insn *);
87 static rtx noce_get_condition (rtx_insn *, rtx_insn **, bool);
88 static int noce_operand_ok (const_rtx);
89 static void merge_if_block (ce_if_block *);
90 static int find_cond_trap (basic_block, edge, edge);
91 static basic_block find_if_header (basic_block, int);
92 static int block_jumps_and_fallthru_p (basic_block, basic_block);
93 static int noce_find_if_block (basic_block, edge, edge, int);
94 static int cond_exec_find_if_block (ce_if_block *);
95 static int find_if_case_1 (basic_block, edge, edge);
96 static int find_if_case_2 (basic_block, edge, edge);
97 static int dead_or_predicable (basic_block, basic_block, basic_block,
98 			       edge, int);
99 static void noce_emit_move_insn (rtx, rtx);
100 static rtx_insn *block_has_only_trap (basic_block);
101 
102 /* Count the number of non-jump active insns in BB.  */
103 
104 static int
count_bb_insns(const_basic_block bb)105 count_bb_insns (const_basic_block bb)
106 {
107   int count = 0;
108   rtx_insn *insn = BB_HEAD (bb);
109 
110   while (1)
111     {
112       if (active_insn_p (insn) && !JUMP_P (insn))
113 	count++;
114 
115       if (insn == BB_END (bb))
116 	break;
117       insn = NEXT_INSN (insn);
118     }
119 
120   return count;
121 }
122 
123 /* Determine whether the total insn_cost on non-jump insns in
124    basic block BB is less than MAX_COST.  This function returns
125    false if the cost of any instruction could not be estimated.
126 
127    The cost of the non-jump insns in BB is scaled by REG_BR_PROB_BASE
128    as those insns are being speculated.  MAX_COST is scaled with SCALE
129    plus a small fudge factor.  */
130 
131 static bool
cheap_bb_rtx_cost_p(const_basic_block bb,profile_probability prob,int max_cost)132 cheap_bb_rtx_cost_p (const_basic_block bb,
133 		     profile_probability prob, int max_cost)
134 {
135   int count = 0;
136   rtx_insn *insn = BB_HEAD (bb);
137   bool speed = optimize_bb_for_speed_p (bb);
138   int scale = prob.initialized_p () ? prob.to_reg_br_prob_base ()
139 	      : REG_BR_PROB_BASE;
140 
141   /* Set scale to REG_BR_PROB_BASE to void the identical scaling
142      applied to insn_cost when optimizing for size.  Only do
143      this after combine because if-conversion might interfere with
144      passes before combine.
145 
146      Use optimize_function_for_speed_p instead of the pre-defined
147      variable speed to make sure it is set to same value for all
148      basic blocks in one if-conversion transformation.  */
149   if (!optimize_function_for_speed_p (cfun) && ifcvt_after_combine)
150     scale = REG_BR_PROB_BASE;
151   /* Our branch probability/scaling factors are just estimates and don't
152      account for cases where we can get speculation for free and other
153      secondary benefits.  So we fudge the scale factor to make speculating
154      appear a little more profitable when optimizing for performance.  */
155   else
156     scale += REG_BR_PROB_BASE / 8;
157 
158 
159   max_cost *= scale;
160 
161   while (1)
162     {
163       if (NONJUMP_INSN_P (insn))
164 	{
165 	  int cost = insn_cost (insn, speed) * REG_BR_PROB_BASE;
166 	  if (cost == 0)
167 	    return false;
168 
169 	  /* If this instruction is the load or set of a "stack" register,
170 	     such as a floating point register on x87, then the cost of
171 	     speculatively executing this insn may need to include
172 	     the additional cost of popping its result off of the
173 	     register stack.  Unfortunately, correctly recognizing and
174 	     accounting for this additional overhead is tricky, so for
175 	     now we simply prohibit such speculative execution.  */
176 #ifdef STACK_REGS
177 	  {
178 	    rtx set = single_set (insn);
179 	    if (set && STACK_REG_P (SET_DEST (set)))
180 	      return false;
181 	  }
182 #endif
183 
184 	  count += cost;
185 	  if (count >= max_cost)
186 	    return false;
187 	}
188       else if (CALL_P (insn))
189 	return false;
190 
191       if (insn == BB_END (bb))
192 	break;
193       insn = NEXT_INSN (insn);
194     }
195 
196   return true;
197 }
198 
199 /* Return the first non-jump active insn in the basic block.  */
200 
201 static rtx_insn *
first_active_insn(basic_block bb)202 first_active_insn (basic_block bb)
203 {
204   rtx_insn *insn = BB_HEAD (bb);
205 
206   if (LABEL_P (insn))
207     {
208       if (insn == BB_END (bb))
209 	return NULL;
210       insn = NEXT_INSN (insn);
211     }
212 
213   while (NOTE_P (insn) || DEBUG_INSN_P (insn))
214     {
215       if (insn == BB_END (bb))
216 	return NULL;
217       insn = NEXT_INSN (insn);
218     }
219 
220   if (JUMP_P (insn))
221     return NULL;
222 
223   return insn;
224 }
225 
226 /* Return the last non-jump active (non-jump) insn in the basic block.  */
227 
228 static rtx_insn *
last_active_insn(basic_block bb,int skip_use_p)229 last_active_insn (basic_block bb, int skip_use_p)
230 {
231   rtx_insn *insn = BB_END (bb);
232   rtx_insn *head = BB_HEAD (bb);
233 
234   while (NOTE_P (insn)
235 	 || JUMP_P (insn)
236 	 || DEBUG_INSN_P (insn)
237 	 || (skip_use_p
238 	     && NONJUMP_INSN_P (insn)
239 	     && GET_CODE (PATTERN (insn)) == USE))
240     {
241       if (insn == head)
242 	return NULL;
243       insn = PREV_INSN (insn);
244     }
245 
246   if (LABEL_P (insn))
247     return NULL;
248 
249   return insn;
250 }
251 
252 /* Return the active insn before INSN inside basic block CURR_BB. */
253 
254 static rtx_insn *
find_active_insn_before(basic_block curr_bb,rtx_insn * insn)255 find_active_insn_before (basic_block curr_bb, rtx_insn *insn)
256 {
257   if (!insn || insn == BB_HEAD (curr_bb))
258     return NULL;
259 
260   while ((insn = PREV_INSN (insn)) != NULL_RTX)
261     {
262       if (NONJUMP_INSN_P (insn) || JUMP_P (insn) || CALL_P (insn))
263         break;
264 
265       /* No other active insn all the way to the start of the basic block. */
266       if (insn == BB_HEAD (curr_bb))
267         return NULL;
268     }
269 
270   return insn;
271 }
272 
273 /* Return the active insn after INSN inside basic block CURR_BB. */
274 
275 static rtx_insn *
find_active_insn_after(basic_block curr_bb,rtx_insn * insn)276 find_active_insn_after (basic_block curr_bb, rtx_insn *insn)
277 {
278   if (!insn || insn == BB_END (curr_bb))
279     return NULL;
280 
281   while ((insn = NEXT_INSN (insn)) != NULL_RTX)
282     {
283       if (NONJUMP_INSN_P (insn) || JUMP_P (insn) || CALL_P (insn))
284         break;
285 
286       /* No other active insn all the way to the end of the basic block. */
287       if (insn == BB_END (curr_bb))
288         return NULL;
289     }
290 
291   return insn;
292 }
293 
294 /* Return the basic block reached by falling though the basic block BB.  */
295 
296 static basic_block
block_fallthru(basic_block bb)297 block_fallthru (basic_block bb)
298 {
299   edge e = find_fallthru_edge (bb->succs);
300 
301   return (e) ? e->dest : NULL_BLOCK;
302 }
303 
304 /* Return true if RTXs A and B can be safely interchanged.  */
305 
306 static bool
rtx_interchangeable_p(const_rtx a,const_rtx b)307 rtx_interchangeable_p (const_rtx a, const_rtx b)
308 {
309   if (!rtx_equal_p (a, b))
310     return false;
311 
312   if (GET_CODE (a) != MEM)
313     return true;
314 
315   /* A dead type-unsafe memory reference is legal, but a live type-unsafe memory
316      reference is not.  Interchanging a dead type-unsafe memory reference with
317      a live type-safe one creates a live type-unsafe memory reference, in other
318      words, it makes the program illegal.
319      We check here conservatively whether the two memory references have equal
320      memory attributes.  */
321 
322   return mem_attrs_eq_p (get_mem_attrs (a), get_mem_attrs (b));
323 }
324 
325 
326 /* Go through a bunch of insns, converting them to conditional
327    execution format if possible.  Return TRUE if all of the non-note
328    insns were processed.  */
329 
330 static int
cond_exec_process_insns(ce_if_block * ce_info ATTRIBUTE_UNUSED,rtx_insn * start,rtx end,rtx test,profile_probability prob_val,int mod_ok)331 cond_exec_process_insns (ce_if_block *ce_info ATTRIBUTE_UNUSED,
332 			 /* if block information */rtx_insn *start,
333 			 /* first insn to look at */rtx end,
334 			 /* last insn to look at */rtx test,
335 			 /* conditional execution test */profile_probability
336 							    prob_val,
337 			 /* probability of branch taken. */int mod_ok)
338 {
339   int must_be_last = FALSE;
340   rtx_insn *insn;
341   rtx xtest;
342   rtx pattern;
343 
344   if (!start || !end)
345     return FALSE;
346 
347   for (insn = start; ; insn = NEXT_INSN (insn))
348     {
349       /* dwarf2out can't cope with conditional prologues.  */
350       if (NOTE_P (insn) && NOTE_KIND (insn) == NOTE_INSN_PROLOGUE_END)
351 	return FALSE;
352 
353       if (NOTE_P (insn) || DEBUG_INSN_P (insn))
354 	goto insn_done;
355 
356       gcc_assert (NONJUMP_INSN_P (insn) || CALL_P (insn));
357 
358       /* dwarf2out can't cope with conditional unwind info.  */
359       if (RTX_FRAME_RELATED_P (insn))
360 	return FALSE;
361 
362       /* Remove USE insns that get in the way.  */
363       if (reload_completed && GET_CODE (PATTERN (insn)) == USE)
364 	{
365 	  /* ??? Ug.  Actually unlinking the thing is problematic,
366 	     given what we'd have to coordinate with our callers.  */
367 	  SET_INSN_DELETED (insn);
368 	  goto insn_done;
369 	}
370 
371       /* Last insn wasn't last?  */
372       if (must_be_last)
373 	return FALSE;
374 
375       if (modified_in_p (test, insn))
376 	{
377 	  if (!mod_ok)
378 	    return FALSE;
379 	  must_be_last = TRUE;
380 	}
381 
382       /* Now build the conditional form of the instruction.  */
383       pattern = PATTERN (insn);
384       xtest = copy_rtx (test);
385 
386       /* If this is already a COND_EXEC, rewrite the test to be an AND of the
387          two conditions.  */
388       if (GET_CODE (pattern) == COND_EXEC)
389 	{
390 	  if (GET_MODE (xtest) != GET_MODE (COND_EXEC_TEST (pattern)))
391 	    return FALSE;
392 
393 	  xtest = gen_rtx_AND (GET_MODE (xtest), xtest,
394 			       COND_EXEC_TEST (pattern));
395 	  pattern = COND_EXEC_CODE (pattern);
396 	}
397 
398       pattern = gen_rtx_COND_EXEC (VOIDmode, xtest, pattern);
399 
400       /* If the machine needs to modify the insn being conditionally executed,
401          say for example to force a constant integer operand into a temp
402          register, do so here.  */
403 #ifdef IFCVT_MODIFY_INSN
404       IFCVT_MODIFY_INSN (ce_info, pattern, insn);
405       if (! pattern)
406 	return FALSE;
407 #endif
408 
409       validate_change (insn, &PATTERN (insn), pattern, 1);
410 
411       if (CALL_P (insn) && prob_val.initialized_p ())
412 	validate_change (insn, &REG_NOTES (insn),
413 			 gen_rtx_INT_LIST ((machine_mode) REG_BR_PROB,
414 					   prob_val.to_reg_br_prob_note (),
415 					   REG_NOTES (insn)), 1);
416 
417     insn_done:
418       if (insn == end)
419 	break;
420     }
421 
422   return TRUE;
423 }
424 
425 /* Return the condition for a jump.  Do not do any special processing.  */
426 
427 static rtx
cond_exec_get_condition(rtx_insn * jump)428 cond_exec_get_condition (rtx_insn *jump)
429 {
430   rtx test_if, cond;
431 
432   if (any_condjump_p (jump))
433     test_if = SET_SRC (pc_set (jump));
434   else
435     return NULL_RTX;
436   cond = XEXP (test_if, 0);
437 
438   /* If this branches to JUMP_LABEL when the condition is false,
439      reverse the condition.  */
440   if (GET_CODE (XEXP (test_if, 2)) == LABEL_REF
441       && label_ref_label (XEXP (test_if, 2)) == JUMP_LABEL (jump))
442     {
443       enum rtx_code rev = reversed_comparison_code (cond, jump);
444       if (rev == UNKNOWN)
445 	return NULL_RTX;
446 
447       cond = gen_rtx_fmt_ee (rev, GET_MODE (cond), XEXP (cond, 0),
448 			     XEXP (cond, 1));
449     }
450 
451   return cond;
452 }
453 
454 /* Given a simple IF-THEN or IF-THEN-ELSE block, attempt to convert it
455    to conditional execution.  Return TRUE if we were successful at
456    converting the block.  */
457 
458 static int
cond_exec_process_if_block(ce_if_block * ce_info,int do_multiple_p)459 cond_exec_process_if_block (ce_if_block * ce_info,
460 			    /* if block information */int do_multiple_p)
461 {
462   basic_block test_bb = ce_info->test_bb;	/* last test block */
463   basic_block then_bb = ce_info->then_bb;	/* THEN */
464   basic_block else_bb = ce_info->else_bb;	/* ELSE or NULL */
465   rtx test_expr;		/* expression in IF_THEN_ELSE that is tested */
466   rtx_insn *then_start;		/* first insn in THEN block */
467   rtx_insn *then_end;		/* last insn + 1 in THEN block */
468   rtx_insn *else_start = NULL;	/* first insn in ELSE block or NULL */
469   rtx_insn *else_end = NULL;	/* last insn + 1 in ELSE block */
470   int max;			/* max # of insns to convert.  */
471   int then_mod_ok;		/* whether conditional mods are ok in THEN */
472   rtx true_expr;		/* test for else block insns */
473   rtx false_expr;		/* test for then block insns */
474   profile_probability true_prob_val;/* probability of else block */
475   profile_probability false_prob_val;/* probability of then block */
476   rtx_insn *then_last_head = NULL;	/* Last match at the head of THEN */
477   rtx_insn *else_last_head = NULL;	/* Last match at the head of ELSE */
478   rtx_insn *then_first_tail = NULL;	/* First match at the tail of THEN */
479   rtx_insn *else_first_tail = NULL;	/* First match at the tail of ELSE */
480   int then_n_insns, else_n_insns, n_insns;
481   enum rtx_code false_code;
482   rtx note;
483 
484   /* If test is comprised of && or || elements, and we've failed at handling
485      all of them together, just use the last test if it is the special case of
486      && elements without an ELSE block.  */
487   if (!do_multiple_p && ce_info->num_multiple_test_blocks)
488     {
489       if (else_bb || ! ce_info->and_and_p)
490 	return FALSE;
491 
492       ce_info->test_bb = test_bb = ce_info->last_test_bb;
493       ce_info->num_multiple_test_blocks = 0;
494       ce_info->num_and_and_blocks = 0;
495       ce_info->num_or_or_blocks = 0;
496     }
497 
498   /* Find the conditional jump to the ELSE or JOIN part, and isolate
499      the test.  */
500   test_expr = cond_exec_get_condition (BB_END (test_bb));
501   if (! test_expr)
502     return FALSE;
503 
504   /* If the conditional jump is more than just a conditional jump,
505      then we cannot do conditional execution conversion on this block.  */
506   if (! onlyjump_p (BB_END (test_bb)))
507     return FALSE;
508 
509   /* Collect the bounds of where we're to search, skipping any labels, jumps
510      and notes at the beginning and end of the block.  Then count the total
511      number of insns and see if it is small enough to convert.  */
512   then_start = first_active_insn (then_bb);
513   then_end = last_active_insn (then_bb, TRUE);
514   then_n_insns = ce_info->num_then_insns = count_bb_insns (then_bb);
515   n_insns = then_n_insns;
516   max = MAX_CONDITIONAL_EXECUTE;
517 
518   if (else_bb)
519     {
520       int n_matching;
521 
522       max *= 2;
523       else_start = first_active_insn (else_bb);
524       else_end = last_active_insn (else_bb, TRUE);
525       else_n_insns = ce_info->num_else_insns = count_bb_insns (else_bb);
526       n_insns += else_n_insns;
527 
528       /* Look for matching sequences at the head and tail of the two blocks,
529 	 and limit the range of insns to be converted if possible.  */
530       n_matching = flow_find_cross_jump (then_bb, else_bb,
531 					 &then_first_tail, &else_first_tail,
532 					 NULL);
533       if (then_first_tail == BB_HEAD (then_bb))
534 	then_start = then_end = NULL;
535       if (else_first_tail == BB_HEAD (else_bb))
536 	else_start = else_end = NULL;
537 
538       if (n_matching > 0)
539 	{
540 	  if (then_end)
541 	    then_end = find_active_insn_before (then_bb, then_first_tail);
542 	  if (else_end)
543 	    else_end = find_active_insn_before (else_bb, else_first_tail);
544 	  n_insns -= 2 * n_matching;
545 	}
546 
547       if (then_start
548 	  && else_start
549 	  && then_n_insns > n_matching
550 	  && else_n_insns > n_matching)
551 	{
552 	  int longest_match = MIN (then_n_insns - n_matching,
553 				   else_n_insns - n_matching);
554 	  n_matching
555 	    = flow_find_head_matching_sequence (then_bb, else_bb,
556 						&then_last_head,
557 						&else_last_head,
558 						longest_match);
559 
560 	  if (n_matching > 0)
561 	    {
562 	      rtx_insn *insn;
563 
564 	      /* We won't pass the insns in the head sequence to
565 		 cond_exec_process_insns, so we need to test them here
566 		 to make sure that they don't clobber the condition.  */
567 	      for (insn = BB_HEAD (then_bb);
568 		   insn != NEXT_INSN (then_last_head);
569 		   insn = NEXT_INSN (insn))
570 		if (!LABEL_P (insn) && !NOTE_P (insn)
571 		    && !DEBUG_INSN_P (insn)
572 		    && modified_in_p (test_expr, insn))
573 		  return FALSE;
574 	    }
575 
576 	  if (then_last_head == then_end)
577 	    then_start = then_end = NULL;
578 	  if (else_last_head == else_end)
579 	    else_start = else_end = NULL;
580 
581 	  if (n_matching > 0)
582 	    {
583 	      if (then_start)
584 		then_start = find_active_insn_after (then_bb, then_last_head);
585 	      if (else_start)
586 		else_start = find_active_insn_after (else_bb, else_last_head);
587 	      n_insns -= 2 * n_matching;
588 	    }
589 	}
590     }
591 
592   if (n_insns > max)
593     return FALSE;
594 
595   /* Map test_expr/test_jump into the appropriate MD tests to use on
596      the conditionally executed code.  */
597 
598   true_expr = test_expr;
599 
600   false_code = reversed_comparison_code (true_expr, BB_END (test_bb));
601   if (false_code != UNKNOWN)
602     false_expr = gen_rtx_fmt_ee (false_code, GET_MODE (true_expr),
603 				 XEXP (true_expr, 0), XEXP (true_expr, 1));
604   else
605     false_expr = NULL_RTX;
606 
607 #ifdef IFCVT_MODIFY_TESTS
608   /* If the machine description needs to modify the tests, such as setting a
609      conditional execution register from a comparison, it can do so here.  */
610   IFCVT_MODIFY_TESTS (ce_info, true_expr, false_expr);
611 
612   /* See if the conversion failed.  */
613   if (!true_expr || !false_expr)
614     goto fail;
615 #endif
616 
617   note = find_reg_note (BB_END (test_bb), REG_BR_PROB, NULL_RTX);
618   if (note)
619     {
620       true_prob_val = profile_probability::from_reg_br_prob_note (XINT (note, 0));
621       false_prob_val = true_prob_val.invert ();
622     }
623   else
624     {
625       true_prob_val = profile_probability::uninitialized ();
626       false_prob_val = profile_probability::uninitialized ();
627     }
628 
629   /* If we have && or || tests, do them here.  These tests are in the adjacent
630      blocks after the first block containing the test.  */
631   if (ce_info->num_multiple_test_blocks > 0)
632     {
633       basic_block bb = test_bb;
634       basic_block last_test_bb = ce_info->last_test_bb;
635 
636       if (! false_expr)
637 	goto fail;
638 
639       do
640 	{
641 	  rtx_insn *start, *end;
642 	  rtx t, f;
643 	  enum rtx_code f_code;
644 
645 	  bb = block_fallthru (bb);
646 	  start = first_active_insn (bb);
647 	  end = last_active_insn (bb, TRUE);
648 	  if (start
649 	      && ! cond_exec_process_insns (ce_info, start, end, false_expr,
650 					    false_prob_val, FALSE))
651 	    goto fail;
652 
653 	  /* If the conditional jump is more than just a conditional jump, then
654 	     we cannot do conditional execution conversion on this block.  */
655 	  if (! onlyjump_p (BB_END (bb)))
656 	    goto fail;
657 
658 	  /* Find the conditional jump and isolate the test.  */
659 	  t = cond_exec_get_condition (BB_END (bb));
660 	  if (! t)
661 	    goto fail;
662 
663 	  f_code = reversed_comparison_code (t, BB_END (bb));
664 	  if (f_code == UNKNOWN)
665 	    goto fail;
666 
667 	  f = gen_rtx_fmt_ee (f_code, GET_MODE (t), XEXP (t, 0), XEXP (t, 1));
668 	  if (ce_info->and_and_p)
669 	    {
670 	      t = gen_rtx_AND (GET_MODE (t), true_expr, t);
671 	      f = gen_rtx_IOR (GET_MODE (t), false_expr, f);
672 	    }
673 	  else
674 	    {
675 	      t = gen_rtx_IOR (GET_MODE (t), true_expr, t);
676 	      f = gen_rtx_AND (GET_MODE (t), false_expr, f);
677 	    }
678 
679 	  /* If the machine description needs to modify the tests, such as
680 	     setting a conditional execution register from a comparison, it can
681 	     do so here.  */
682 #ifdef IFCVT_MODIFY_MULTIPLE_TESTS
683 	  IFCVT_MODIFY_MULTIPLE_TESTS (ce_info, bb, t, f);
684 
685 	  /* See if the conversion failed.  */
686 	  if (!t || !f)
687 	    goto fail;
688 #endif
689 
690 	  true_expr = t;
691 	  false_expr = f;
692 	}
693       while (bb != last_test_bb);
694     }
695 
696   /* For IF-THEN-ELSE blocks, we don't allow modifications of the test
697      on then THEN block.  */
698   then_mod_ok = (else_bb == NULL_BLOCK);
699 
700   /* Go through the THEN and ELSE blocks converting the insns if possible
701      to conditional execution.  */
702 
703   if (then_end
704       && (! false_expr
705 	  || ! cond_exec_process_insns (ce_info, then_start, then_end,
706 					false_expr, false_prob_val,
707 					then_mod_ok)))
708     goto fail;
709 
710   if (else_bb && else_end
711       && ! cond_exec_process_insns (ce_info, else_start, else_end,
712 				    true_expr, true_prob_val, TRUE))
713     goto fail;
714 
715   /* If we cannot apply the changes, fail.  Do not go through the normal fail
716      processing, since apply_change_group will call cancel_changes.  */
717   if (! apply_change_group ())
718     {
719 #ifdef IFCVT_MODIFY_CANCEL
720       /* Cancel any machine dependent changes.  */
721       IFCVT_MODIFY_CANCEL (ce_info);
722 #endif
723       return FALSE;
724     }
725 
726 #ifdef IFCVT_MODIFY_FINAL
727   /* Do any machine dependent final modifications.  */
728   IFCVT_MODIFY_FINAL (ce_info);
729 #endif
730 
731   /* Conversion succeeded.  */
732   if (dump_file)
733     fprintf (dump_file, "%d insn%s converted to conditional execution.\n",
734 	     n_insns, (n_insns == 1) ? " was" : "s were");
735 
736   /* Merge the blocks!  If we had matching sequences, make sure to delete one
737      copy at the appropriate location first: delete the copy in the THEN branch
738      for a tail sequence so that the remaining one is executed last for both
739      branches, and delete the copy in the ELSE branch for a head sequence so
740      that the remaining one is executed first for both branches.  */
741   if (then_first_tail)
742     {
743       rtx_insn *from = then_first_tail;
744       if (!INSN_P (from))
745 	from = find_active_insn_after (then_bb, from);
746       delete_insn_chain (from, get_last_bb_insn (then_bb), false);
747     }
748   if (else_last_head)
749     delete_insn_chain (first_active_insn (else_bb), else_last_head, false);
750 
751   merge_if_block (ce_info);
752   cond_exec_changed_p = TRUE;
753   return TRUE;
754 
755  fail:
756 #ifdef IFCVT_MODIFY_CANCEL
757   /* Cancel any machine dependent changes.  */
758   IFCVT_MODIFY_CANCEL (ce_info);
759 #endif
760 
761   cancel_changes (0);
762   return FALSE;
763 }
764 
765 static rtx noce_emit_store_flag (struct noce_if_info *, rtx, int, int);
766 static int noce_try_move (struct noce_if_info *);
767 static int noce_try_ifelse_collapse (struct noce_if_info *);
768 static int noce_try_store_flag (struct noce_if_info *);
769 static int noce_try_addcc (struct noce_if_info *);
770 static int noce_try_store_flag_constants (struct noce_if_info *);
771 static int noce_try_store_flag_mask (struct noce_if_info *);
772 static rtx noce_emit_cmove (struct noce_if_info *, rtx, enum rtx_code, rtx,
773 			    rtx, rtx, rtx);
774 static int noce_try_cmove (struct noce_if_info *);
775 static int noce_try_cmove_arith (struct noce_if_info *);
776 static rtx noce_get_alt_condition (struct noce_if_info *, rtx, rtx_insn **);
777 static int noce_try_minmax (struct noce_if_info *);
778 static int noce_try_abs (struct noce_if_info *);
779 static int noce_try_sign_mask (struct noce_if_info *);
780 
781 /* Return the comparison code for reversed condition for IF_INFO,
782    or UNKNOWN if reversing the condition is not possible.  */
783 
784 static inline enum rtx_code
noce_reversed_cond_code(struct noce_if_info * if_info)785 noce_reversed_cond_code (struct noce_if_info *if_info)
786 {
787   if (if_info->rev_cond)
788     return GET_CODE (if_info->rev_cond);
789   return reversed_comparison_code (if_info->cond, if_info->jump);
790 }
791 
792 /* Return true if SEQ is a good candidate as a replacement for the
793    if-convertible sequence described in IF_INFO.
794    This is the default implementation that targets can override
795    through a target hook.  */
796 
797 bool
default_noce_conversion_profitable_p(rtx_insn * seq,struct noce_if_info * if_info)798 default_noce_conversion_profitable_p (rtx_insn *seq,
799 				      struct noce_if_info *if_info)
800 {
801   bool speed_p = if_info->speed_p;
802 
803   /* Cost up the new sequence.  */
804   unsigned int cost = seq_cost (seq, speed_p);
805 
806   if (cost <= if_info->original_cost)
807     return true;
808 
809   /* When compiling for size, we can make a reasonably accurately guess
810      at the size growth.  When compiling for speed, use the maximum.  */
811   return speed_p && cost <= if_info->max_seq_cost;
812 }
813 
814 /* Helper function for noce_try_store_flag*.  */
815 
816 static rtx
noce_emit_store_flag(struct noce_if_info * if_info,rtx x,int reversep,int normalize)817 noce_emit_store_flag (struct noce_if_info *if_info, rtx x, int reversep,
818 		      int normalize)
819 {
820   rtx cond = if_info->cond;
821   int cond_complex;
822   enum rtx_code code;
823 
824   cond_complex = (! general_operand (XEXP (cond, 0), VOIDmode)
825 		  || ! general_operand (XEXP (cond, 1), VOIDmode));
826 
827   /* If earliest == jump, or when the condition is complex, try to
828      build the store_flag insn directly.  */
829 
830   if (cond_complex)
831     {
832       rtx set = pc_set (if_info->jump);
833       cond = XEXP (SET_SRC (set), 0);
834       if (GET_CODE (XEXP (SET_SRC (set), 2)) == LABEL_REF
835 	  && label_ref_label (XEXP (SET_SRC (set), 2)) == JUMP_LABEL (if_info->jump))
836 	reversep = !reversep;
837       if (if_info->then_else_reversed)
838 	reversep = !reversep;
839     }
840   else if (reversep
841 	   && if_info->rev_cond
842 	   && general_operand (XEXP (if_info->rev_cond, 0), VOIDmode)
843 	   && general_operand (XEXP (if_info->rev_cond, 1), VOIDmode))
844     {
845       cond = if_info->rev_cond;
846       reversep = false;
847     }
848 
849   if (reversep)
850     code = reversed_comparison_code (cond, if_info->jump);
851   else
852     code = GET_CODE (cond);
853 
854   if ((if_info->cond_earliest == if_info->jump || cond_complex)
855       && (normalize == 0 || STORE_FLAG_VALUE == normalize))
856     {
857       rtx src = gen_rtx_fmt_ee (code, GET_MODE (x), XEXP (cond, 0),
858 				XEXP (cond, 1));
859       rtx set = gen_rtx_SET (x, src);
860 
861       start_sequence ();
862       rtx_insn *insn = emit_insn (set);
863 
864       if (recog_memoized (insn) >= 0)
865 	{
866 	  rtx_insn *seq = get_insns ();
867 	  end_sequence ();
868 	  emit_insn (seq);
869 
870 	  if_info->cond_earliest = if_info->jump;
871 
872 	  return x;
873 	}
874 
875       end_sequence ();
876     }
877 
878   /* Don't even try if the comparison operands or the mode of X are weird.  */
879   if (cond_complex || !SCALAR_INT_MODE_P (GET_MODE (x)))
880     return NULL_RTX;
881 
882   return emit_store_flag (x, code, XEXP (cond, 0),
883 			  XEXP (cond, 1), VOIDmode,
884 			  (code == LTU || code == LEU
885 			   || code == GEU || code == GTU), normalize);
886 }
887 
888 /* Return true if X can be safely forced into a register by copy_to_mode_reg
889    / force_operand.  */
890 
891 static bool
noce_can_force_operand(rtx x)892 noce_can_force_operand (rtx x)
893 {
894   if (general_operand (x, VOIDmode))
895     return true;
896   if (SUBREG_P (x))
897     {
898       if (!noce_can_force_operand (SUBREG_REG (x)))
899 	return false;
900       return true;
901     }
902   if (ARITHMETIC_P (x))
903     {
904       if (!noce_can_force_operand (XEXP (x, 0))
905 	  || !noce_can_force_operand (XEXP (x, 1)))
906 	return false;
907       switch (GET_CODE (x))
908 	{
909 	case MULT:
910 	case DIV:
911 	case MOD:
912 	case UDIV:
913 	case UMOD:
914 	  return true;
915 	default:
916 	  return code_to_optab (GET_CODE (x));
917 	}
918     }
919   if (UNARY_P (x))
920     {
921       if (!noce_can_force_operand (XEXP (x, 0)))
922 	return false;
923       switch (GET_CODE (x))
924 	{
925 	case ZERO_EXTEND:
926 	case SIGN_EXTEND:
927 	case TRUNCATE:
928 	case FLOAT_EXTEND:
929 	case FLOAT_TRUNCATE:
930 	case FIX:
931 	case UNSIGNED_FIX:
932 	case FLOAT:
933 	case UNSIGNED_FLOAT:
934 	  return true;
935 	default:
936 	  return code_to_optab (GET_CODE (x));
937 	}
938     }
939   return false;
940 }
941 
942 /* Emit instruction to move an rtx, possibly into STRICT_LOW_PART.
943    X is the destination/target and Y is the value to copy.  */
944 
945 static void
noce_emit_move_insn(rtx x,rtx y)946 noce_emit_move_insn (rtx x, rtx y)
947 {
948   machine_mode outmode;
949   rtx outer, inner;
950   poly_int64 bitpos;
951 
952   if (GET_CODE (x) != STRICT_LOW_PART)
953     {
954       rtx_insn *seq, *insn;
955       rtx target;
956       optab ot;
957 
958       start_sequence ();
959       /* Check that the SET_SRC is reasonable before calling emit_move_insn,
960 	 otherwise construct a suitable SET pattern ourselves.  */
961       insn = (OBJECT_P (y) || CONSTANT_P (y) || GET_CODE (y) == SUBREG)
962 	     ? emit_move_insn (x, y)
963 	     : emit_insn (gen_rtx_SET (x, y));
964       seq = get_insns ();
965       end_sequence ();
966 
967       if (recog_memoized (insn) <= 0)
968 	{
969 	  if (GET_CODE (x) == ZERO_EXTRACT)
970 	    {
971 	      rtx op = XEXP (x, 0);
972 	      unsigned HOST_WIDE_INT size = INTVAL (XEXP (x, 1));
973 	      unsigned HOST_WIDE_INT start = INTVAL (XEXP (x, 2));
974 
975 	      /* store_bit_field expects START to be relative to
976 		 BYTES_BIG_ENDIAN and adjusts this value for machines with
977 		 BITS_BIG_ENDIAN != BYTES_BIG_ENDIAN.  In order to be able to
978 		 invoke store_bit_field again it is necessary to have the START
979 		 value from the first call.  */
980 	      if (BITS_BIG_ENDIAN != BYTES_BIG_ENDIAN)
981 		{
982 		  if (MEM_P (op))
983 		    start = BITS_PER_UNIT - start - size;
984 		  else
985 		    {
986 		      gcc_assert (REG_P (op));
987 		      start = BITS_PER_WORD - start - size;
988 		    }
989 		}
990 
991 	      gcc_assert (start < (MEM_P (op) ? BITS_PER_UNIT : BITS_PER_WORD));
992 	      store_bit_field (op, size, start, 0, 0, GET_MODE (x), y, false);
993 	      return;
994 	    }
995 
996 	  switch (GET_RTX_CLASS (GET_CODE (y)))
997 	    {
998 	    case RTX_UNARY:
999 	      ot = code_to_optab (GET_CODE (y));
1000 	      if (ot && noce_can_force_operand (XEXP (y, 0)))
1001 		{
1002 		  start_sequence ();
1003 		  target = expand_unop (GET_MODE (y), ot, XEXP (y, 0), x, 0);
1004 		  if (target != NULL_RTX)
1005 		    {
1006 		      if (target != x)
1007 			emit_move_insn (x, target);
1008 		      seq = get_insns ();
1009 		    }
1010 		  end_sequence ();
1011 		}
1012 	      break;
1013 
1014 	    case RTX_BIN_ARITH:
1015 	    case RTX_COMM_ARITH:
1016 	      ot = code_to_optab (GET_CODE (y));
1017 	      if (ot
1018 		  && noce_can_force_operand (XEXP (y, 0))
1019 		  && noce_can_force_operand (XEXP (y, 1)))
1020 		{
1021 		  start_sequence ();
1022 		  target = expand_binop (GET_MODE (y), ot,
1023 					 XEXP (y, 0), XEXP (y, 1),
1024 					 x, 0, OPTAB_DIRECT);
1025 		  if (target != NULL_RTX)
1026 		    {
1027 		      if (target != x)
1028 			  emit_move_insn (x, target);
1029 		      seq = get_insns ();
1030 		    }
1031 		  end_sequence ();
1032 		}
1033 	      break;
1034 
1035 	    default:
1036 	      break;
1037 	    }
1038 	}
1039 
1040       emit_insn (seq);
1041       return;
1042     }
1043 
1044   outer = XEXP (x, 0);
1045   inner = XEXP (outer, 0);
1046   outmode = GET_MODE (outer);
1047   bitpos = SUBREG_BYTE (outer) * BITS_PER_UNIT;
1048   store_bit_field (inner, GET_MODE_BITSIZE (outmode), bitpos,
1049 		   0, 0, outmode, y, false);
1050 }
1051 
1052 /* Return the CC reg if it is used in COND.  */
1053 
1054 static rtx
cc_in_cond(rtx cond)1055 cc_in_cond (rtx cond)
1056 {
1057   if (have_cbranchcc4 && cond
1058       && GET_MODE_CLASS (GET_MODE (XEXP (cond, 0))) == MODE_CC)
1059     return XEXP (cond, 0);
1060 
1061   return NULL_RTX;
1062 }
1063 
1064 /* Return sequence of instructions generated by if conversion.  This
1065    function calls end_sequence() to end the current stream, ensures
1066    that the instructions are unshared, recognizable non-jump insns.
1067    On failure, this function returns a NULL_RTX.  */
1068 
1069 static rtx_insn *
end_ifcvt_sequence(struct noce_if_info * if_info)1070 end_ifcvt_sequence (struct noce_if_info *if_info)
1071 {
1072   rtx_insn *insn;
1073   rtx_insn *seq = get_insns ();
1074   rtx cc = cc_in_cond (if_info->cond);
1075 
1076   set_used_flags (if_info->x);
1077   set_used_flags (if_info->cond);
1078   set_used_flags (if_info->a);
1079   set_used_flags (if_info->b);
1080 
1081   for (insn = seq; insn; insn = NEXT_INSN (insn))
1082     set_used_flags (insn);
1083 
1084   unshare_all_rtl_in_chain (seq);
1085   end_sequence ();
1086 
1087   /* Make sure that all of the instructions emitted are recognizable,
1088      and that we haven't introduced a new jump instruction.
1089      As an exercise for the reader, build a general mechanism that
1090      allows proper placement of required clobbers.  */
1091   for (insn = seq; insn; insn = NEXT_INSN (insn))
1092     if (JUMP_P (insn)
1093 	|| recog_memoized (insn) == -1
1094 	   /* Make sure new generated code does not clobber CC.  */
1095 	|| (cc && set_of (cc, insn)))
1096       return NULL;
1097 
1098   return seq;
1099 }
1100 
1101 /* Return true iff the then and else basic block (if it exists)
1102    consist of a single simple set instruction.  */
1103 
1104 static bool
noce_simple_bbs(struct noce_if_info * if_info)1105 noce_simple_bbs (struct noce_if_info *if_info)
1106 {
1107   if (!if_info->then_simple)
1108     return false;
1109 
1110   if (if_info->else_bb)
1111     return if_info->else_simple;
1112 
1113   return true;
1114 }
1115 
1116 /* Convert "if (a != b) x = a; else x = b" into "x = a" and
1117    "if (a == b) x = a; else x = b" into "x = b".  */
1118 
1119 static int
noce_try_move(struct noce_if_info * if_info)1120 noce_try_move (struct noce_if_info *if_info)
1121 {
1122   rtx cond = if_info->cond;
1123   enum rtx_code code = GET_CODE (cond);
1124   rtx y;
1125   rtx_insn *seq;
1126 
1127   if (code != NE && code != EQ)
1128     return FALSE;
1129 
1130   if (!noce_simple_bbs (if_info))
1131     return FALSE;
1132 
1133   /* This optimization isn't valid if either A or B could be a NaN
1134      or a signed zero.  */
1135   if (HONOR_NANS (if_info->x)
1136       || HONOR_SIGNED_ZEROS (if_info->x))
1137     return FALSE;
1138 
1139   /* Check whether the operands of the comparison are A and in
1140      either order.  */
1141   if ((rtx_equal_p (if_info->a, XEXP (cond, 0))
1142        && rtx_equal_p (if_info->b, XEXP (cond, 1)))
1143       || (rtx_equal_p (if_info->a, XEXP (cond, 1))
1144 	  && rtx_equal_p (if_info->b, XEXP (cond, 0))))
1145     {
1146       if (!rtx_interchangeable_p (if_info->a, if_info->b))
1147 	return FALSE;
1148 
1149       y = (code == EQ) ? if_info->a : if_info->b;
1150 
1151       /* Avoid generating the move if the source is the destination.  */
1152       if (! rtx_equal_p (if_info->x, y))
1153 	{
1154 	  start_sequence ();
1155 	  noce_emit_move_insn (if_info->x, y);
1156 	  seq = end_ifcvt_sequence (if_info);
1157 	  if (!seq)
1158 	    return FALSE;
1159 
1160 	  emit_insn_before_setloc (seq, if_info->jump,
1161 				   INSN_LOCATION (if_info->insn_a));
1162 	}
1163       if_info->transform_name = "noce_try_move";
1164       return TRUE;
1165     }
1166   return FALSE;
1167 }
1168 
1169 /* Try forming an IF_THEN_ELSE (cond, b, a) and collapsing that
1170    through simplify_rtx.  Sometimes that can eliminate the IF_THEN_ELSE.
1171    If that is the case, emit the result into x.  */
1172 
1173 static int
noce_try_ifelse_collapse(struct noce_if_info * if_info)1174 noce_try_ifelse_collapse (struct noce_if_info * if_info)
1175 {
1176   if (!noce_simple_bbs (if_info))
1177     return FALSE;
1178 
1179   machine_mode mode = GET_MODE (if_info->x);
1180   rtx if_then_else = simplify_gen_ternary (IF_THEN_ELSE, mode, mode,
1181 					    if_info->cond, if_info->b,
1182 					    if_info->a);
1183 
1184   if (GET_CODE (if_then_else) == IF_THEN_ELSE)
1185     return FALSE;
1186 
1187   rtx_insn *seq;
1188   start_sequence ();
1189   noce_emit_move_insn (if_info->x, if_then_else);
1190   seq = end_ifcvt_sequence (if_info);
1191   if (!seq)
1192     return FALSE;
1193 
1194   emit_insn_before_setloc (seq, if_info->jump,
1195 			  INSN_LOCATION (if_info->insn_a));
1196 
1197   if_info->transform_name = "noce_try_ifelse_collapse";
1198   return TRUE;
1199 }
1200 
1201 
1202 /* Convert "if (test) x = 1; else x = 0".
1203 
1204    Only try 0 and STORE_FLAG_VALUE here.  Other combinations will be
1205    tried in noce_try_store_flag_constants after noce_try_cmove has had
1206    a go at the conversion.  */
1207 
1208 static int
noce_try_store_flag(struct noce_if_info * if_info)1209 noce_try_store_flag (struct noce_if_info *if_info)
1210 {
1211   int reversep;
1212   rtx target;
1213   rtx_insn *seq;
1214 
1215   if (!noce_simple_bbs (if_info))
1216     return FALSE;
1217 
1218   if (CONST_INT_P (if_info->b)
1219       && INTVAL (if_info->b) == STORE_FLAG_VALUE
1220       && if_info->a == const0_rtx)
1221     reversep = 0;
1222   else if (if_info->b == const0_rtx
1223 	   && CONST_INT_P (if_info->a)
1224 	   && INTVAL (if_info->a) == STORE_FLAG_VALUE
1225 	   && noce_reversed_cond_code (if_info) != UNKNOWN)
1226     reversep = 1;
1227   else
1228     return FALSE;
1229 
1230   start_sequence ();
1231 
1232   target = noce_emit_store_flag (if_info, if_info->x, reversep, 0);
1233   if (target)
1234     {
1235       if (target != if_info->x)
1236 	noce_emit_move_insn (if_info->x, target);
1237 
1238       seq = end_ifcvt_sequence (if_info);
1239       if (! seq)
1240 	return FALSE;
1241 
1242       emit_insn_before_setloc (seq, if_info->jump,
1243 			       INSN_LOCATION (if_info->insn_a));
1244       if_info->transform_name = "noce_try_store_flag";
1245       return TRUE;
1246     }
1247   else
1248     {
1249       end_sequence ();
1250       return FALSE;
1251     }
1252 }
1253 
1254 
1255 /* Convert "if (test) x = -A; else x = A" into
1256    x = A; if (test) x = -x if the machine can do the
1257    conditional negate form of this cheaply.
1258    Try this before noce_try_cmove that will just load the
1259    immediates into two registers and do a conditional select
1260    between them.  If the target has a conditional negate or
1261    conditional invert operation we can save a potentially
1262    expensive constant synthesis.  */
1263 
1264 static bool
noce_try_inverse_constants(struct noce_if_info * if_info)1265 noce_try_inverse_constants (struct noce_if_info *if_info)
1266 {
1267   if (!noce_simple_bbs (if_info))
1268     return false;
1269 
1270   if (!CONST_INT_P (if_info->a)
1271       || !CONST_INT_P (if_info->b)
1272       || !REG_P (if_info->x))
1273     return false;
1274 
1275   machine_mode mode = GET_MODE (if_info->x);
1276 
1277   HOST_WIDE_INT val_a = INTVAL (if_info->a);
1278   HOST_WIDE_INT val_b = INTVAL (if_info->b);
1279 
1280   rtx cond = if_info->cond;
1281 
1282   rtx x = if_info->x;
1283   rtx target;
1284 
1285   start_sequence ();
1286 
1287   rtx_code code;
1288   if (val_b != HOST_WIDE_INT_MIN && val_a == -val_b)
1289     code = NEG;
1290   else if (val_a == ~val_b)
1291     code = NOT;
1292   else
1293     {
1294       end_sequence ();
1295       return false;
1296     }
1297 
1298   rtx tmp = gen_reg_rtx (mode);
1299   noce_emit_move_insn (tmp, if_info->a);
1300 
1301   target = emit_conditional_neg_or_complement (x, code, mode, cond, tmp, tmp);
1302 
1303   if (target)
1304     {
1305       rtx_insn *seq = get_insns ();
1306 
1307       if (!seq)
1308 	{
1309 	  end_sequence ();
1310 	  return false;
1311 	}
1312 
1313       if (target != if_info->x)
1314 	noce_emit_move_insn (if_info->x, target);
1315 
1316       seq = end_ifcvt_sequence (if_info);
1317 
1318       if (!seq)
1319 	return false;
1320 
1321       emit_insn_before_setloc (seq, if_info->jump,
1322 			       INSN_LOCATION (if_info->insn_a));
1323       if_info->transform_name = "noce_try_inverse_constants";
1324       return true;
1325     }
1326 
1327   end_sequence ();
1328   return false;
1329 }
1330 
1331 
1332 /* Convert "if (test) x = a; else x = b", for A and B constant.
1333    Also allow A = y + c1, B = y + c2, with a common y between A
1334    and B.  */
1335 
1336 static int
noce_try_store_flag_constants(struct noce_if_info * if_info)1337 noce_try_store_flag_constants (struct noce_if_info *if_info)
1338 {
1339   rtx target;
1340   rtx_insn *seq;
1341   bool reversep;
1342   HOST_WIDE_INT itrue, ifalse, diff, tmp;
1343   int normalize;
1344   bool can_reverse;
1345   machine_mode mode = GET_MODE (if_info->x);
1346   rtx common = NULL_RTX;
1347 
1348   rtx a = if_info->a;
1349   rtx b = if_info->b;
1350 
1351   /* Handle cases like x := test ? y + 3 : y + 4.  */
1352   if (GET_CODE (a) == PLUS
1353       && GET_CODE (b) == PLUS
1354       && CONST_INT_P (XEXP (a, 1))
1355       && CONST_INT_P (XEXP (b, 1))
1356       && rtx_equal_p (XEXP (a, 0), XEXP (b, 0))
1357       /* Allow expressions that are not using the result or plain
1358          registers where we handle overlap below.  */
1359       && (REG_P (XEXP (a, 0))
1360 	  || (noce_operand_ok (XEXP (a, 0))
1361 	      && ! reg_overlap_mentioned_p (if_info->x, XEXP (a, 0)))))
1362     {
1363       common = XEXP (a, 0);
1364       a = XEXP (a, 1);
1365       b = XEXP (b, 1);
1366     }
1367 
1368   if (!noce_simple_bbs (if_info))
1369     return FALSE;
1370 
1371   if (CONST_INT_P (a)
1372       && CONST_INT_P (b))
1373     {
1374       ifalse = INTVAL (a);
1375       itrue = INTVAL (b);
1376       bool subtract_flag_p = false;
1377 
1378       diff = (unsigned HOST_WIDE_INT) itrue - ifalse;
1379       /* Make sure we can represent the difference between the two values.  */
1380       if ((diff > 0)
1381 	  != ((ifalse < 0) != (itrue < 0) ? ifalse < 0 : ifalse < itrue))
1382 	return FALSE;
1383 
1384       diff = trunc_int_for_mode (diff, mode);
1385 
1386       can_reverse = noce_reversed_cond_code (if_info) != UNKNOWN;
1387       reversep = false;
1388       if (diff == STORE_FLAG_VALUE || diff == -STORE_FLAG_VALUE)
1389 	{
1390 	  normalize = 0;
1391 	  /* We could collapse these cases but it is easier to follow the
1392 	     diff/STORE_FLAG_VALUE combinations when they are listed
1393 	     explicitly.  */
1394 
1395 	  /* test ? 3 : 4
1396 	     => 4 + (test != 0).  */
1397 	  if (diff < 0 && STORE_FLAG_VALUE < 0)
1398 	      reversep = false;
1399 	  /* test ? 4 : 3
1400 	     => can_reverse  | 4 + (test == 0)
1401 		!can_reverse | 3 - (test != 0).  */
1402 	  else if (diff > 0 && STORE_FLAG_VALUE < 0)
1403 	    {
1404 	      reversep = can_reverse;
1405 	      subtract_flag_p = !can_reverse;
1406 	      /* If we need to subtract the flag and we have PLUS-immediate
1407 		 A and B then it is unlikely to be beneficial to play tricks
1408 		 here.  */
1409 	      if (subtract_flag_p && common)
1410 		return FALSE;
1411 	    }
1412 	  /* test ? 3 : 4
1413 	     => can_reverse  | 3 + (test == 0)
1414 		!can_reverse | 4 - (test != 0).  */
1415 	  else if (diff < 0 && STORE_FLAG_VALUE > 0)
1416 	    {
1417 	      reversep = can_reverse;
1418 	      subtract_flag_p = !can_reverse;
1419 	      /* If we need to subtract the flag and we have PLUS-immediate
1420 		 A and B then it is unlikely to be beneficial to play tricks
1421 		 here.  */
1422 	      if (subtract_flag_p && common)
1423 		return FALSE;
1424 	    }
1425 	  /* test ? 4 : 3
1426 	     => 4 + (test != 0).  */
1427 	  else if (diff > 0 && STORE_FLAG_VALUE > 0)
1428 	    reversep = false;
1429 	  else
1430 	    gcc_unreachable ();
1431 	}
1432       /* Is this (cond) ? 2^n : 0?  */
1433       else if (ifalse == 0 && pow2p_hwi (itrue)
1434 	       && STORE_FLAG_VALUE == 1)
1435 	normalize = 1;
1436       /* Is this (cond) ? 0 : 2^n?  */
1437       else if (itrue == 0 && pow2p_hwi (ifalse) && can_reverse
1438 	       && STORE_FLAG_VALUE == 1)
1439 	{
1440 	  normalize = 1;
1441 	  reversep = true;
1442 	}
1443       /* Is this (cond) ? -1 : x?  */
1444       else if (itrue == -1
1445 	       && STORE_FLAG_VALUE == -1)
1446 	normalize = -1;
1447       /* Is this (cond) ? x : -1?  */
1448       else if (ifalse == -1 && can_reverse
1449 	       && STORE_FLAG_VALUE == -1)
1450 	{
1451 	  normalize = -1;
1452 	  reversep = true;
1453 	}
1454       else
1455 	return FALSE;
1456 
1457       if (reversep)
1458 	{
1459 	  std::swap (itrue, ifalse);
1460 	  diff = trunc_int_for_mode (-(unsigned HOST_WIDE_INT) diff, mode);
1461 	}
1462 
1463       start_sequence ();
1464 
1465       /* If we have x := test ? x + 3 : x + 4 then move the original
1466 	 x out of the way while we store flags.  */
1467       if (common && rtx_equal_p (common, if_info->x))
1468 	{
1469 	  common = gen_reg_rtx (mode);
1470 	  noce_emit_move_insn (common, if_info->x);
1471 	}
1472 
1473       target = noce_emit_store_flag (if_info, if_info->x, reversep, normalize);
1474       if (! target)
1475 	{
1476 	  end_sequence ();
1477 	  return FALSE;
1478 	}
1479 
1480       /* if (test) x = 3; else x = 4;
1481 	 =>   x = 3 + (test == 0);  */
1482       if (diff == STORE_FLAG_VALUE || diff == -STORE_FLAG_VALUE)
1483 	{
1484 	  /* Add the common part now.  This may allow combine to merge this
1485 	     with the store flag operation earlier into some sort of conditional
1486 	     increment/decrement if the target allows it.  */
1487 	  if (common)
1488 	    target = expand_simple_binop (mode, PLUS,
1489 					   target, common,
1490 					   target, 0, OPTAB_WIDEN);
1491 
1492 	  /* Always use ifalse here.  It should have been swapped with itrue
1493 	     when appropriate when reversep is true.  */
1494 	  target = expand_simple_binop (mode, subtract_flag_p ? MINUS : PLUS,
1495 					gen_int_mode (ifalse, mode), target,
1496 					if_info->x, 0, OPTAB_WIDEN);
1497 	}
1498       /* Other cases are not beneficial when the original A and B are PLUS
1499 	 expressions.  */
1500       else if (common)
1501 	{
1502 	  end_sequence ();
1503 	  return FALSE;
1504 	}
1505       /* if (test) x = 8; else x = 0;
1506 	 =>   x = (test != 0) << 3;  */
1507       else if (ifalse == 0 && (tmp = exact_log2 (itrue)) >= 0)
1508 	{
1509 	  target = expand_simple_binop (mode, ASHIFT,
1510 					target, GEN_INT (tmp), if_info->x, 0,
1511 					OPTAB_WIDEN);
1512 	}
1513 
1514       /* if (test) x = -1; else x = b;
1515 	 =>   x = -(test != 0) | b;  */
1516       else if (itrue == -1)
1517 	{
1518 	  target = expand_simple_binop (mode, IOR,
1519 					target, gen_int_mode (ifalse, mode),
1520 					if_info->x, 0, OPTAB_WIDEN);
1521 	}
1522       else
1523 	{
1524 	  end_sequence ();
1525 	  return FALSE;
1526 	}
1527 
1528       if (! target)
1529 	{
1530 	  end_sequence ();
1531 	  return FALSE;
1532 	}
1533 
1534       if (target != if_info->x)
1535 	noce_emit_move_insn (if_info->x, target);
1536 
1537       seq = end_ifcvt_sequence (if_info);
1538       if (!seq || !targetm.noce_conversion_profitable_p (seq, if_info))
1539 	return FALSE;
1540 
1541       emit_insn_before_setloc (seq, if_info->jump,
1542 			       INSN_LOCATION (if_info->insn_a));
1543       if_info->transform_name = "noce_try_store_flag_constants";
1544 
1545       return TRUE;
1546     }
1547 
1548   return FALSE;
1549 }
1550 
1551 /* Convert "if (test) foo++" into "foo += (test != 0)", and
1552    similarly for "foo--".  */
1553 
1554 static int
noce_try_addcc(struct noce_if_info * if_info)1555 noce_try_addcc (struct noce_if_info *if_info)
1556 {
1557   rtx target;
1558   rtx_insn *seq;
1559   int subtract, normalize;
1560 
1561   if (!noce_simple_bbs (if_info))
1562     return FALSE;
1563 
1564   if (GET_CODE (if_info->a) == PLUS
1565       && rtx_equal_p (XEXP (if_info->a, 0), if_info->b)
1566       && noce_reversed_cond_code (if_info) != UNKNOWN)
1567     {
1568       rtx cond = if_info->rev_cond;
1569       enum rtx_code code;
1570 
1571       if (cond == NULL_RTX)
1572 	{
1573 	  cond = if_info->cond;
1574 	  code = reversed_comparison_code (cond, if_info->jump);
1575 	}
1576       else
1577 	code = GET_CODE (cond);
1578 
1579       /* First try to use addcc pattern.  */
1580       if (general_operand (XEXP (cond, 0), VOIDmode)
1581 	  && general_operand (XEXP (cond, 1), VOIDmode))
1582 	{
1583 	  start_sequence ();
1584 	  target = emit_conditional_add (if_info->x, code,
1585 					 XEXP (cond, 0),
1586 					 XEXP (cond, 1),
1587 					 VOIDmode,
1588 					 if_info->b,
1589 					 XEXP (if_info->a, 1),
1590 					 GET_MODE (if_info->x),
1591 					 (code == LTU || code == GEU
1592 					  || code == LEU || code == GTU));
1593 	  if (target)
1594 	    {
1595 	      if (target != if_info->x)
1596 		noce_emit_move_insn (if_info->x, target);
1597 
1598 	      seq = end_ifcvt_sequence (if_info);
1599 	      if (!seq || !targetm.noce_conversion_profitable_p (seq, if_info))
1600 		return FALSE;
1601 
1602 	      emit_insn_before_setloc (seq, if_info->jump,
1603 				       INSN_LOCATION (if_info->insn_a));
1604 	      if_info->transform_name = "noce_try_addcc";
1605 
1606 	      return TRUE;
1607 	    }
1608 	  end_sequence ();
1609 	}
1610 
1611       /* If that fails, construct conditional increment or decrement using
1612 	 setcc.  We're changing a branch and an increment to a comparison and
1613 	 an ADD/SUB.  */
1614       if (XEXP (if_info->a, 1) == const1_rtx
1615 	  || XEXP (if_info->a, 1) == constm1_rtx)
1616         {
1617 	  start_sequence ();
1618 	  if (STORE_FLAG_VALUE == INTVAL (XEXP (if_info->a, 1)))
1619 	    subtract = 0, normalize = 0;
1620 	  else if (-STORE_FLAG_VALUE == INTVAL (XEXP (if_info->a, 1)))
1621 	    subtract = 1, normalize = 0;
1622 	  else
1623 	    subtract = 0, normalize = INTVAL (XEXP (if_info->a, 1));
1624 
1625 
1626 	  target = noce_emit_store_flag (if_info,
1627 					 gen_reg_rtx (GET_MODE (if_info->x)),
1628 					 1, normalize);
1629 
1630 	  if (target)
1631 	    target = expand_simple_binop (GET_MODE (if_info->x),
1632 					  subtract ? MINUS : PLUS,
1633 					  if_info->b, target, if_info->x,
1634 					  0, OPTAB_WIDEN);
1635 	  if (target)
1636 	    {
1637 	      if (target != if_info->x)
1638 		noce_emit_move_insn (if_info->x, target);
1639 
1640 	      seq = end_ifcvt_sequence (if_info);
1641 	      if (!seq || !targetm.noce_conversion_profitable_p (seq, if_info))
1642 		return FALSE;
1643 
1644 	      emit_insn_before_setloc (seq, if_info->jump,
1645 				       INSN_LOCATION (if_info->insn_a));
1646 	      if_info->transform_name = "noce_try_addcc";
1647 	      return TRUE;
1648 	    }
1649 	  end_sequence ();
1650 	}
1651     }
1652 
1653   return FALSE;
1654 }
1655 
1656 /* Convert "if (test) x = 0;" to "x &= -(test == 0);"  */
1657 
1658 static int
noce_try_store_flag_mask(struct noce_if_info * if_info)1659 noce_try_store_flag_mask (struct noce_if_info *if_info)
1660 {
1661   rtx target;
1662   rtx_insn *seq;
1663   int reversep;
1664 
1665   if (!noce_simple_bbs (if_info))
1666     return FALSE;
1667 
1668   reversep = 0;
1669 
1670   if ((if_info->a == const0_rtx
1671        && rtx_equal_p (if_info->b, if_info->x))
1672       || ((reversep = (noce_reversed_cond_code (if_info) != UNKNOWN))
1673 	  && if_info->b == const0_rtx
1674 	  && rtx_equal_p (if_info->a, if_info->x)))
1675     {
1676       start_sequence ();
1677       target = noce_emit_store_flag (if_info,
1678 				     gen_reg_rtx (GET_MODE (if_info->x)),
1679 				     reversep, -1);
1680       if (target)
1681         target = expand_simple_binop (GET_MODE (if_info->x), AND,
1682 				      if_info->x,
1683 				      target, if_info->x, 0,
1684 				      OPTAB_WIDEN);
1685 
1686       if (target)
1687 	{
1688 	  if (target != if_info->x)
1689 	    noce_emit_move_insn (if_info->x, target);
1690 
1691 	  seq = end_ifcvt_sequence (if_info);
1692 	  if (!seq || !targetm.noce_conversion_profitable_p (seq, if_info))
1693 	    return FALSE;
1694 
1695 	  emit_insn_before_setloc (seq, if_info->jump,
1696 				   INSN_LOCATION (if_info->insn_a));
1697 	  if_info->transform_name = "noce_try_store_flag_mask";
1698 
1699 	  return TRUE;
1700 	}
1701 
1702       end_sequence ();
1703     }
1704 
1705   return FALSE;
1706 }
1707 
1708 /* Helper function for noce_try_cmove and noce_try_cmove_arith.  */
1709 
1710 static rtx
noce_emit_cmove(struct noce_if_info * if_info,rtx x,enum rtx_code code,rtx cmp_a,rtx cmp_b,rtx vfalse,rtx vtrue)1711 noce_emit_cmove (struct noce_if_info *if_info, rtx x, enum rtx_code code,
1712 		 rtx cmp_a, rtx cmp_b, rtx vfalse, rtx vtrue)
1713 {
1714   rtx target ATTRIBUTE_UNUSED;
1715   int unsignedp ATTRIBUTE_UNUSED;
1716 
1717   /* If earliest == jump, try to build the cmove insn directly.
1718      This is helpful when combine has created some complex condition
1719      (like for alpha's cmovlbs) that we can't hope to regenerate
1720      through the normal interface.  */
1721 
1722   if (if_info->cond_earliest == if_info->jump)
1723     {
1724       rtx cond = gen_rtx_fmt_ee (code, GET_MODE (if_info->cond), cmp_a, cmp_b);
1725       rtx if_then_else = gen_rtx_IF_THEN_ELSE (GET_MODE (x),
1726 					       cond, vtrue, vfalse);
1727       rtx set = gen_rtx_SET (x, if_then_else);
1728 
1729       start_sequence ();
1730       rtx_insn *insn = emit_insn (set);
1731 
1732       if (recog_memoized (insn) >= 0)
1733 	{
1734 	  rtx_insn *seq = get_insns ();
1735 	  end_sequence ();
1736 	  emit_insn (seq);
1737 
1738 	  return x;
1739 	}
1740 
1741       end_sequence ();
1742     }
1743 
1744   /* Don't even try if the comparison operands are weird
1745      except that the target supports cbranchcc4.  */
1746   if (! general_operand (cmp_a, GET_MODE (cmp_a))
1747       || ! general_operand (cmp_b, GET_MODE (cmp_b)))
1748     {
1749       if (!have_cbranchcc4
1750 	  || GET_MODE_CLASS (GET_MODE (cmp_a)) != MODE_CC
1751 	  || cmp_b != const0_rtx)
1752 	return NULL_RTX;
1753     }
1754 
1755   unsignedp = (code == LTU || code == GEU
1756 	       || code == LEU || code == GTU);
1757 
1758   target = emit_conditional_move (x, code, cmp_a, cmp_b, VOIDmode,
1759 				  vtrue, vfalse, GET_MODE (x),
1760 				  unsignedp);
1761   if (target)
1762     return target;
1763 
1764   /* We might be faced with a situation like:
1765 
1766      x = (reg:M TARGET)
1767      vtrue = (subreg:M (reg:N VTRUE) BYTE)
1768      vfalse = (subreg:M (reg:N VFALSE) BYTE)
1769 
1770      We can't do a conditional move in mode M, but it's possible that we
1771      could do a conditional move in mode N instead and take a subreg of
1772      the result.
1773 
1774      If we can't create new pseudos, though, don't bother.  */
1775   if (reload_completed)
1776     return NULL_RTX;
1777 
1778   if (GET_CODE (vtrue) == SUBREG && GET_CODE (vfalse) == SUBREG)
1779     {
1780       rtx reg_vtrue = SUBREG_REG (vtrue);
1781       rtx reg_vfalse = SUBREG_REG (vfalse);
1782       poly_uint64 byte_vtrue = SUBREG_BYTE (vtrue);
1783       poly_uint64 byte_vfalse = SUBREG_BYTE (vfalse);
1784       rtx promoted_target;
1785 
1786       if (GET_MODE (reg_vtrue) != GET_MODE (reg_vfalse)
1787 	  || maybe_ne (byte_vtrue, byte_vfalse)
1788 	  || (SUBREG_PROMOTED_VAR_P (vtrue)
1789 	      != SUBREG_PROMOTED_VAR_P (vfalse))
1790 	  || (SUBREG_PROMOTED_GET (vtrue)
1791 	      != SUBREG_PROMOTED_GET (vfalse)))
1792 	return NULL_RTX;
1793 
1794       promoted_target = gen_reg_rtx (GET_MODE (reg_vtrue));
1795 
1796       target = emit_conditional_move (promoted_target, code, cmp_a, cmp_b,
1797 				      VOIDmode, reg_vtrue, reg_vfalse,
1798 				      GET_MODE (reg_vtrue), unsignedp);
1799       /* Nope, couldn't do it in that mode either.  */
1800       if (!target)
1801 	return NULL_RTX;
1802 
1803       target = gen_rtx_SUBREG (GET_MODE (vtrue), promoted_target, byte_vtrue);
1804       SUBREG_PROMOTED_VAR_P (target) = SUBREG_PROMOTED_VAR_P (vtrue);
1805       SUBREG_PROMOTED_SET (target, SUBREG_PROMOTED_GET (vtrue));
1806       emit_move_insn (x, target);
1807       return x;
1808     }
1809   else
1810     return NULL_RTX;
1811 }
1812 
1813 /* Try only simple constants and registers here.  More complex cases
1814    are handled in noce_try_cmove_arith after noce_try_store_flag_arith
1815    has had a go at it.  */
1816 
1817 static int
noce_try_cmove(struct noce_if_info * if_info)1818 noce_try_cmove (struct noce_if_info *if_info)
1819 {
1820   enum rtx_code code;
1821   rtx target;
1822   rtx_insn *seq;
1823 
1824   if (!noce_simple_bbs (if_info))
1825     return FALSE;
1826 
1827   if ((CONSTANT_P (if_info->a) || register_operand (if_info->a, VOIDmode))
1828       && (CONSTANT_P (if_info->b) || register_operand (if_info->b, VOIDmode)))
1829     {
1830       start_sequence ();
1831 
1832       code = GET_CODE (if_info->cond);
1833       target = noce_emit_cmove (if_info, if_info->x, code,
1834 				XEXP (if_info->cond, 0),
1835 				XEXP (if_info->cond, 1),
1836 				if_info->a, if_info->b);
1837 
1838       if (target)
1839 	{
1840 	  if (target != if_info->x)
1841 	    noce_emit_move_insn (if_info->x, target);
1842 
1843 	  seq = end_ifcvt_sequence (if_info);
1844 	  if (!seq || !targetm.noce_conversion_profitable_p (seq, if_info))
1845 	    return FALSE;
1846 
1847 	  emit_insn_before_setloc (seq, if_info->jump,
1848 				   INSN_LOCATION (if_info->insn_a));
1849 	  if_info->transform_name = "noce_try_cmove";
1850 
1851 	  return TRUE;
1852 	}
1853       /* If both a and b are constants try a last-ditch transformation:
1854 	 if (test) x = a; else x = b;
1855 	 =>   x = (-(test != 0) & (b - a)) + a;
1856 	 Try this only if the target-specific expansion above has failed.
1857 	 The target-specific expander may want to generate sequences that
1858 	 we don't know about, so give them a chance before trying this
1859 	 approach.  */
1860       else if (!targetm.have_conditional_execution ()
1861 		&& CONST_INT_P (if_info->a) && CONST_INT_P (if_info->b))
1862 	{
1863 	  machine_mode mode = GET_MODE (if_info->x);
1864 	  HOST_WIDE_INT ifalse = INTVAL (if_info->a);
1865 	  HOST_WIDE_INT itrue = INTVAL (if_info->b);
1866 	  rtx target = noce_emit_store_flag (if_info, if_info->x, false, -1);
1867 	  if (!target)
1868 	    {
1869 	      end_sequence ();
1870 	      return FALSE;
1871 	    }
1872 
1873 	  HOST_WIDE_INT diff = (unsigned HOST_WIDE_INT) itrue - ifalse;
1874 	  /* Make sure we can represent the difference
1875 	     between the two values.  */
1876 	  if ((diff > 0)
1877 	      != ((ifalse < 0) != (itrue < 0) ? ifalse < 0 : ifalse < itrue))
1878 	    {
1879 	      end_sequence ();
1880 	      return FALSE;
1881 	    }
1882 
1883 	  diff = trunc_int_for_mode (diff, mode);
1884 	  target = expand_simple_binop (mode, AND,
1885 					target, gen_int_mode (diff, mode),
1886 					if_info->x, 0, OPTAB_WIDEN);
1887 	  if (target)
1888 	    target = expand_simple_binop (mode, PLUS,
1889 					  target, gen_int_mode (ifalse, mode),
1890 					  if_info->x, 0, OPTAB_WIDEN);
1891 	  if (target)
1892 	    {
1893 	      if (target != if_info->x)
1894 		noce_emit_move_insn (if_info->x, target);
1895 
1896 	      seq = end_ifcvt_sequence (if_info);
1897 	      if (!seq || !targetm.noce_conversion_profitable_p (seq, if_info))
1898 		return FALSE;
1899 
1900 	      emit_insn_before_setloc (seq, if_info->jump,
1901 				   INSN_LOCATION (if_info->insn_a));
1902 	      if_info->transform_name = "noce_try_cmove";
1903 	      return TRUE;
1904 	    }
1905 	  else
1906 	    {
1907 	      end_sequence ();
1908 	      return FALSE;
1909 	    }
1910 	}
1911       else
1912 	end_sequence ();
1913     }
1914 
1915   return FALSE;
1916 }
1917 
1918 /* Return true if X contains a conditional code mode rtx.  */
1919 
1920 static bool
contains_ccmode_rtx_p(rtx x)1921 contains_ccmode_rtx_p (rtx x)
1922 {
1923   subrtx_iterator::array_type array;
1924   FOR_EACH_SUBRTX (iter, array, x, ALL)
1925     if (GET_MODE_CLASS (GET_MODE (*iter)) == MODE_CC)
1926       return true;
1927 
1928   return false;
1929 }
1930 
1931 /* Helper for bb_valid_for_noce_process_p.  Validate that
1932    the rtx insn INSN is a single set that does not set
1933    the conditional register CC and is in general valid for
1934    if-conversion.  */
1935 
1936 static bool
insn_valid_noce_process_p(rtx_insn * insn,rtx cc)1937 insn_valid_noce_process_p (rtx_insn *insn, rtx cc)
1938 {
1939   if (!insn
1940       || !NONJUMP_INSN_P (insn)
1941       || (cc && set_of (cc, insn)))
1942       return false;
1943 
1944   rtx sset = single_set (insn);
1945 
1946   /* Currently support only simple single sets in test_bb.  */
1947   if (!sset
1948       || !noce_operand_ok (SET_DEST (sset))
1949       || contains_ccmode_rtx_p (SET_DEST (sset))
1950       || !noce_operand_ok (SET_SRC (sset)))
1951     return false;
1952 
1953   return true;
1954 }
1955 
1956 
1957 /* Return true iff the registers that the insns in BB_A set do not get
1958    used in BB_B.  If TO_RENAME is non-NULL then it is a location that will be
1959    renamed later by the caller and so conflicts on it should be ignored
1960    in this function.  */
1961 
1962 static bool
bbs_ok_for_cmove_arith(basic_block bb_a,basic_block bb_b,rtx to_rename)1963 bbs_ok_for_cmove_arith (basic_block bb_a, basic_block bb_b, rtx to_rename)
1964 {
1965   rtx_insn *a_insn;
1966   bitmap bba_sets = BITMAP_ALLOC (&reg_obstack);
1967 
1968   df_ref def;
1969   df_ref use;
1970 
1971   FOR_BB_INSNS (bb_a, a_insn)
1972     {
1973       if (!active_insn_p (a_insn))
1974 	continue;
1975 
1976       rtx sset_a = single_set (a_insn);
1977 
1978       if (!sset_a)
1979 	{
1980 	  BITMAP_FREE (bba_sets);
1981 	  return false;
1982 	}
1983       /* Record all registers that BB_A sets.  */
1984       FOR_EACH_INSN_DEF (def, a_insn)
1985 	if (!(to_rename && DF_REF_REG (def) == to_rename))
1986 	  bitmap_set_bit (bba_sets, DF_REF_REGNO (def));
1987     }
1988 
1989   rtx_insn *b_insn;
1990 
1991   FOR_BB_INSNS (bb_b, b_insn)
1992     {
1993       if (!active_insn_p (b_insn))
1994 	continue;
1995 
1996       rtx sset_b = single_set (b_insn);
1997 
1998       if (!sset_b)
1999 	{
2000 	  BITMAP_FREE (bba_sets);
2001 	  return false;
2002 	}
2003 
2004       /* Make sure this is a REG and not some instance
2005 	 of ZERO_EXTRACT or SUBREG or other dangerous stuff.
2006 	 If we have a memory destination then we have a pair of simple
2007 	 basic blocks performing an operation of the form [addr] = c ? a : b.
2008 	 bb_valid_for_noce_process_p will have ensured that these are
2009 	 the only stores present.  In that case [addr] should be the location
2010 	 to be renamed.  Assert that the callers set this up properly.  */
2011       if (MEM_P (SET_DEST (sset_b)))
2012 	gcc_assert (rtx_equal_p (SET_DEST (sset_b), to_rename));
2013       else if (!REG_P (SET_DEST (sset_b)))
2014 	{
2015 	  BITMAP_FREE (bba_sets);
2016 	  return false;
2017 	}
2018 
2019       /* If the insn uses a reg set in BB_A return false.  */
2020       FOR_EACH_INSN_USE (use, b_insn)
2021 	{
2022 	  if (bitmap_bit_p (bba_sets, DF_REF_REGNO (use)))
2023 	    {
2024 	      BITMAP_FREE (bba_sets);
2025 	      return false;
2026 	    }
2027 	}
2028 
2029     }
2030 
2031   BITMAP_FREE (bba_sets);
2032   return true;
2033 }
2034 
2035 /* Emit copies of all the active instructions in BB except the last.
2036    This is a helper for noce_try_cmove_arith.  */
2037 
2038 static void
noce_emit_all_but_last(basic_block bb)2039 noce_emit_all_but_last (basic_block bb)
2040 {
2041   rtx_insn *last = last_active_insn (bb, FALSE);
2042   rtx_insn *insn;
2043   FOR_BB_INSNS (bb, insn)
2044     {
2045       if (insn != last && active_insn_p (insn))
2046 	{
2047 	  rtx_insn *to_emit = as_a <rtx_insn *> (copy_rtx (insn));
2048 
2049 	  emit_insn (PATTERN (to_emit));
2050 	}
2051     }
2052 }
2053 
2054 /* Helper for noce_try_cmove_arith.  Emit the pattern TO_EMIT and return
2055    the resulting insn or NULL if it's not a valid insn.  */
2056 
2057 static rtx_insn *
noce_emit_insn(rtx to_emit)2058 noce_emit_insn (rtx to_emit)
2059 {
2060   gcc_assert (to_emit);
2061   rtx_insn *insn = emit_insn (to_emit);
2062 
2063   if (recog_memoized (insn) < 0)
2064     return NULL;
2065 
2066   return insn;
2067 }
2068 
2069 /* Helper for noce_try_cmove_arith.  Emit a copy of the insns up to
2070    and including the penultimate one in BB if it is not simple
2071    (as indicated by SIMPLE).  Then emit LAST_INSN as the last
2072    insn in the block.  The reason for that is that LAST_INSN may
2073    have been modified by the preparation in noce_try_cmove_arith.  */
2074 
2075 static bool
noce_emit_bb(rtx last_insn,basic_block bb,bool simple)2076 noce_emit_bb (rtx last_insn, basic_block bb, bool simple)
2077 {
2078   if (bb && !simple)
2079     noce_emit_all_but_last (bb);
2080 
2081   if (last_insn && !noce_emit_insn (last_insn))
2082     return false;
2083 
2084   return true;
2085 }
2086 
2087 /* Try more complex cases involving conditional_move.  */
2088 
2089 static int
noce_try_cmove_arith(struct noce_if_info * if_info)2090 noce_try_cmove_arith (struct noce_if_info *if_info)
2091 {
2092   rtx a = if_info->a;
2093   rtx b = if_info->b;
2094   rtx x = if_info->x;
2095   rtx orig_a, orig_b;
2096   rtx_insn *insn_a, *insn_b;
2097   bool a_simple = if_info->then_simple;
2098   bool b_simple = if_info->else_simple;
2099   basic_block then_bb = if_info->then_bb;
2100   basic_block else_bb = if_info->else_bb;
2101   rtx target;
2102   int is_mem = 0;
2103   enum rtx_code code;
2104   rtx cond = if_info->cond;
2105   rtx_insn *ifcvt_seq;
2106 
2107   /* A conditional move from two memory sources is equivalent to a
2108      conditional on their addresses followed by a load.  Don't do this
2109      early because it'll screw alias analysis.  Note that we've
2110      already checked for no side effects.  */
2111   if (cse_not_expected
2112       && MEM_P (a) && MEM_P (b)
2113       && MEM_ADDR_SPACE (a) == MEM_ADDR_SPACE (b))
2114     {
2115       machine_mode address_mode = get_address_mode (a);
2116 
2117       a = XEXP (a, 0);
2118       b = XEXP (b, 0);
2119       x = gen_reg_rtx (address_mode);
2120       is_mem = 1;
2121     }
2122 
2123   /* ??? We could handle this if we knew that a load from A or B could
2124      not trap or fault.  This is also true if we've already loaded
2125      from the address along the path from ENTRY.  */
2126   else if (may_trap_or_fault_p (a) || may_trap_or_fault_p (b))
2127     return FALSE;
2128 
2129   /* if (test) x = a + b; else x = c - d;
2130      => y = a + b;
2131         x = c - d;
2132 	if (test)
2133 	  x = y;
2134   */
2135 
2136   code = GET_CODE (cond);
2137   insn_a = if_info->insn_a;
2138   insn_b = if_info->insn_b;
2139 
2140   machine_mode x_mode = GET_MODE (x);
2141 
2142   if (!can_conditionally_move_p (x_mode))
2143     return FALSE;
2144 
2145   /* Possibly rearrange operands to make things come out more natural.  */
2146   if (noce_reversed_cond_code (if_info) != UNKNOWN)
2147     {
2148       int reversep = 0;
2149       if (rtx_equal_p (b, x))
2150 	reversep = 1;
2151       else if (general_operand (b, GET_MODE (b)))
2152 	reversep = 1;
2153 
2154       if (reversep)
2155 	{
2156 	  if (if_info->rev_cond)
2157 	    {
2158 	      cond = if_info->rev_cond;
2159 	      code = GET_CODE (cond);
2160 	    }
2161 	  else
2162 	    code = reversed_comparison_code (cond, if_info->jump);
2163 	  std::swap (a, b);
2164 	  std::swap (insn_a, insn_b);
2165 	  std::swap (a_simple, b_simple);
2166 	  std::swap (then_bb, else_bb);
2167 	}
2168     }
2169 
2170   if (then_bb && else_bb
2171       && (!bbs_ok_for_cmove_arith (then_bb, else_bb,  if_info->orig_x)
2172 	  || !bbs_ok_for_cmove_arith (else_bb, then_bb,  if_info->orig_x)))
2173     return FALSE;
2174 
2175   start_sequence ();
2176 
2177   /* If one of the blocks is empty then the corresponding B or A value
2178      came from the test block.  The non-empty complex block that we will
2179      emit might clobber the register used by B or A, so move it to a pseudo
2180      first.  */
2181 
2182   rtx tmp_a = NULL_RTX;
2183   rtx tmp_b = NULL_RTX;
2184 
2185   if (b_simple || !else_bb)
2186     tmp_b = gen_reg_rtx (x_mode);
2187 
2188   if (a_simple || !then_bb)
2189     tmp_a = gen_reg_rtx (x_mode);
2190 
2191   orig_a = a;
2192   orig_b = b;
2193 
2194   rtx emit_a = NULL_RTX;
2195   rtx emit_b = NULL_RTX;
2196   rtx_insn *tmp_insn = NULL;
2197   bool modified_in_a = false;
2198   bool modified_in_b = false;
2199   /* If either operand is complex, load it into a register first.
2200      The best way to do this is to copy the original insn.  In this
2201      way we preserve any clobbers etc that the insn may have had.
2202      This is of course not possible in the IS_MEM case.  */
2203 
2204   if (! general_operand (a, GET_MODE (a)) || tmp_a)
2205     {
2206 
2207       if (is_mem)
2208 	{
2209 	  rtx reg = gen_reg_rtx (GET_MODE (a));
2210 	  emit_a = gen_rtx_SET (reg, a);
2211 	}
2212       else
2213 	{
2214 	  if (insn_a)
2215 	    {
2216 	      a = tmp_a ? tmp_a : gen_reg_rtx (GET_MODE (a));
2217 
2218 	      rtx_insn *copy_of_a = as_a <rtx_insn *> (copy_rtx (insn_a));
2219 	      rtx set = single_set (copy_of_a);
2220 	      SET_DEST (set) = a;
2221 
2222 	      emit_a = PATTERN (copy_of_a);
2223 	    }
2224 	  else
2225 	    {
2226 	      rtx tmp_reg = tmp_a ? tmp_a : gen_reg_rtx (GET_MODE (a));
2227 	      emit_a = gen_rtx_SET (tmp_reg, a);
2228 	      a = tmp_reg;
2229 	    }
2230 	}
2231     }
2232 
2233   if (! general_operand (b, GET_MODE (b)) || tmp_b)
2234     {
2235       if (is_mem)
2236 	{
2237           rtx reg = gen_reg_rtx (GET_MODE (b));
2238 	  emit_b = gen_rtx_SET (reg, b);
2239 	}
2240       else
2241 	{
2242 	  if (insn_b)
2243 	    {
2244 	      b = tmp_b ? tmp_b : gen_reg_rtx (GET_MODE (b));
2245 	      rtx_insn *copy_of_b = as_a <rtx_insn *> (copy_rtx (insn_b));
2246 	      rtx set = single_set (copy_of_b);
2247 
2248 	      SET_DEST (set) = b;
2249 	      emit_b = PATTERN (copy_of_b);
2250 	    }
2251 	  else
2252 	    {
2253 	      rtx tmp_reg = tmp_b ? tmp_b : gen_reg_rtx (GET_MODE (b));
2254 	      emit_b = gen_rtx_SET (tmp_reg, b);
2255 	      b = tmp_reg;
2256 	    }
2257 	}
2258     }
2259 
2260   modified_in_a = emit_a != NULL_RTX && modified_in_p (orig_b, emit_a);
2261   if (tmp_b && then_bb)
2262     {
2263       FOR_BB_INSNS (then_bb, tmp_insn)
2264 	/* Don't check inside insn_a.  We will have changed it to emit_a
2265 	   with a destination that doesn't conflict.  */
2266 	if (!(insn_a && tmp_insn == insn_a)
2267 	    && modified_in_p (orig_b, tmp_insn))
2268 	  {
2269 	    modified_in_a = true;
2270 	    break;
2271 	  }
2272 
2273     }
2274 
2275   modified_in_b = emit_b != NULL_RTX && modified_in_p (orig_a, emit_b);
2276   if (tmp_a && else_bb)
2277     {
2278       FOR_BB_INSNS (else_bb, tmp_insn)
2279       /* Don't check inside insn_b.  We will have changed it to emit_b
2280 	 with a destination that doesn't conflict.  */
2281       if (!(insn_b && tmp_insn == insn_b)
2282 	  && modified_in_p (orig_a, tmp_insn))
2283 	{
2284 	  modified_in_b = true;
2285 	  break;
2286 	}
2287     }
2288 
2289   /* If insn to set up A clobbers any registers B depends on, try to
2290      swap insn that sets up A with the one that sets up B.  If even
2291      that doesn't help, punt.  */
2292   if (modified_in_a && !modified_in_b)
2293     {
2294       if (!noce_emit_bb (emit_b, else_bb, b_simple))
2295 	goto end_seq_and_fail;
2296 
2297       if (!noce_emit_bb (emit_a, then_bb, a_simple))
2298 	goto end_seq_and_fail;
2299     }
2300   else if (!modified_in_a)
2301     {
2302       if (!noce_emit_bb (emit_a, then_bb, a_simple))
2303 	goto end_seq_and_fail;
2304 
2305       if (!noce_emit_bb (emit_b, else_bb, b_simple))
2306 	goto end_seq_and_fail;
2307     }
2308   else
2309     goto end_seq_and_fail;
2310 
2311   target = noce_emit_cmove (if_info, x, code, XEXP (cond, 0), XEXP (cond, 1),
2312 			    a, b);
2313 
2314   if (! target)
2315     goto end_seq_and_fail;
2316 
2317   /* If we're handling a memory for above, emit the load now.  */
2318   if (is_mem)
2319     {
2320       rtx mem = gen_rtx_MEM (GET_MODE (if_info->x), target);
2321 
2322       /* Copy over flags as appropriate.  */
2323       if (MEM_VOLATILE_P (if_info->a) || MEM_VOLATILE_P (if_info->b))
2324 	MEM_VOLATILE_P (mem) = 1;
2325       if (MEM_ALIAS_SET (if_info->a) == MEM_ALIAS_SET (if_info->b))
2326 	set_mem_alias_set (mem, MEM_ALIAS_SET (if_info->a));
2327       set_mem_align (mem,
2328 		     MIN (MEM_ALIGN (if_info->a), MEM_ALIGN (if_info->b)));
2329 
2330       gcc_assert (MEM_ADDR_SPACE (if_info->a) == MEM_ADDR_SPACE (if_info->b));
2331       set_mem_addr_space (mem, MEM_ADDR_SPACE (if_info->a));
2332 
2333       noce_emit_move_insn (if_info->x, mem);
2334     }
2335   else if (target != x)
2336     noce_emit_move_insn (x, target);
2337 
2338   ifcvt_seq = end_ifcvt_sequence (if_info);
2339   if (!ifcvt_seq || !targetm.noce_conversion_profitable_p (ifcvt_seq, if_info))
2340     return FALSE;
2341 
2342   emit_insn_before_setloc (ifcvt_seq, if_info->jump,
2343 			   INSN_LOCATION (if_info->insn_a));
2344   if_info->transform_name = "noce_try_cmove_arith";
2345   return TRUE;
2346 
2347  end_seq_and_fail:
2348   end_sequence ();
2349   return FALSE;
2350 }
2351 
2352 /* For most cases, the simplified condition we found is the best
2353    choice, but this is not the case for the min/max/abs transforms.
2354    For these we wish to know that it is A or B in the condition.  */
2355 
2356 static rtx
noce_get_alt_condition(struct noce_if_info * if_info,rtx target,rtx_insn ** earliest)2357 noce_get_alt_condition (struct noce_if_info *if_info, rtx target,
2358 			rtx_insn **earliest)
2359 {
2360   rtx cond, set;
2361   rtx_insn *insn;
2362   int reverse;
2363 
2364   /* If target is already mentioned in the known condition, return it.  */
2365   if (reg_mentioned_p (target, if_info->cond))
2366     {
2367       *earliest = if_info->cond_earliest;
2368       return if_info->cond;
2369     }
2370 
2371   set = pc_set (if_info->jump);
2372   cond = XEXP (SET_SRC (set), 0);
2373   reverse
2374     = GET_CODE (XEXP (SET_SRC (set), 2)) == LABEL_REF
2375       && label_ref_label (XEXP (SET_SRC (set), 2)) == JUMP_LABEL (if_info->jump);
2376   if (if_info->then_else_reversed)
2377     reverse = !reverse;
2378 
2379   /* If we're looking for a constant, try to make the conditional
2380      have that constant in it.  There are two reasons why it may
2381      not have the constant we want:
2382 
2383      1. GCC may have needed to put the constant in a register, because
2384         the target can't compare directly against that constant.  For
2385         this case, we look for a SET immediately before the comparison
2386         that puts a constant in that register.
2387 
2388      2. GCC may have canonicalized the conditional, for example
2389 	replacing "if x < 4" with "if x <= 3".  We can undo that (or
2390 	make equivalent types of changes) to get the constants we need
2391 	if they're off by one in the right direction.  */
2392 
2393   if (CONST_INT_P (target))
2394     {
2395       enum rtx_code code = GET_CODE (if_info->cond);
2396       rtx op_a = XEXP (if_info->cond, 0);
2397       rtx op_b = XEXP (if_info->cond, 1);
2398       rtx_insn *prev_insn;
2399 
2400       /* First, look to see if we put a constant in a register.  */
2401       prev_insn = prev_nonnote_insn (if_info->cond_earliest);
2402       if (prev_insn
2403 	  && BLOCK_FOR_INSN (prev_insn)
2404 	     == BLOCK_FOR_INSN (if_info->cond_earliest)
2405 	  && INSN_P (prev_insn)
2406 	  && GET_CODE (PATTERN (prev_insn)) == SET)
2407 	{
2408 	  rtx src = find_reg_equal_equiv_note (prev_insn);
2409 	  if (!src)
2410 	    src = SET_SRC (PATTERN (prev_insn));
2411 	  if (CONST_INT_P (src))
2412 	    {
2413 	      if (rtx_equal_p (op_a, SET_DEST (PATTERN (prev_insn))))
2414 		op_a = src;
2415 	      else if (rtx_equal_p (op_b, SET_DEST (PATTERN (prev_insn))))
2416 		op_b = src;
2417 
2418 	      if (CONST_INT_P (op_a))
2419 		{
2420 		  std::swap (op_a, op_b);
2421 		  code = swap_condition (code);
2422 		}
2423 	    }
2424 	}
2425 
2426       /* Now, look to see if we can get the right constant by
2427 	 adjusting the conditional.  */
2428       if (CONST_INT_P (op_b))
2429 	{
2430 	  HOST_WIDE_INT desired_val = INTVAL (target);
2431 	  HOST_WIDE_INT actual_val = INTVAL (op_b);
2432 
2433 	  switch (code)
2434 	    {
2435 	    case LT:
2436 	      if (desired_val != HOST_WIDE_INT_MAX
2437 		  && actual_val == desired_val + 1)
2438 		{
2439 		  code = LE;
2440 		  op_b = GEN_INT (desired_val);
2441 		}
2442 	      break;
2443 	    case LE:
2444 	      if (desired_val != HOST_WIDE_INT_MIN
2445 		  && actual_val == desired_val - 1)
2446 		{
2447 		  code = LT;
2448 		  op_b = GEN_INT (desired_val);
2449 		}
2450 	      break;
2451 	    case GT:
2452 	      if (desired_val != HOST_WIDE_INT_MIN
2453 		  && actual_val == desired_val - 1)
2454 		{
2455 		  code = GE;
2456 		  op_b = GEN_INT (desired_val);
2457 		}
2458 	      break;
2459 	    case GE:
2460 	      if (desired_val != HOST_WIDE_INT_MAX
2461 		  && actual_val == desired_val + 1)
2462 		{
2463 		  code = GT;
2464 		  op_b = GEN_INT (desired_val);
2465 		}
2466 	      break;
2467 	    default:
2468 	      break;
2469 	    }
2470 	}
2471 
2472       /* If we made any changes, generate a new conditional that is
2473 	 equivalent to what we started with, but has the right
2474 	 constants in it.  */
2475       if (code != GET_CODE (if_info->cond)
2476 	  || op_a != XEXP (if_info->cond, 0)
2477 	  || op_b != XEXP (if_info->cond, 1))
2478 	{
2479 	  cond = gen_rtx_fmt_ee (code, GET_MODE (cond), op_a, op_b);
2480 	  *earliest = if_info->cond_earliest;
2481 	  return cond;
2482 	}
2483     }
2484 
2485   cond = canonicalize_condition (if_info->jump, cond, reverse,
2486 				 earliest, target, have_cbranchcc4, true);
2487   if (! cond || ! reg_mentioned_p (target, cond))
2488     return NULL;
2489 
2490   /* We almost certainly searched back to a different place.
2491      Need to re-verify correct lifetimes.  */
2492 
2493   /* X may not be mentioned in the range (cond_earliest, jump].  */
2494   for (insn = if_info->jump; insn != *earliest; insn = PREV_INSN (insn))
2495     if (INSN_P (insn) && reg_overlap_mentioned_p (if_info->x, PATTERN (insn)))
2496       return NULL;
2497 
2498   /* A and B may not be modified in the range [cond_earliest, jump).  */
2499   for (insn = *earliest; insn != if_info->jump; insn = NEXT_INSN (insn))
2500     if (INSN_P (insn)
2501 	&& (modified_in_p (if_info->a, insn)
2502 	    || modified_in_p (if_info->b, insn)))
2503       return NULL;
2504 
2505   return cond;
2506 }
2507 
2508 /* Convert "if (a < b) x = a; else x = b;" to "x = min(a, b);", etc.  */
2509 
2510 static int
noce_try_minmax(struct noce_if_info * if_info)2511 noce_try_minmax (struct noce_if_info *if_info)
2512 {
2513   rtx cond, target;
2514   rtx_insn *earliest, *seq;
2515   enum rtx_code code, op;
2516   int unsignedp;
2517 
2518   if (!noce_simple_bbs (if_info))
2519     return FALSE;
2520 
2521   /* ??? Reject modes with NaNs or signed zeros since we don't know how
2522      they will be resolved with an SMIN/SMAX.  It wouldn't be too hard
2523      to get the target to tell us...  */
2524   if (HONOR_SIGNED_ZEROS (if_info->x)
2525       || HONOR_NANS (if_info->x))
2526     return FALSE;
2527 
2528   cond = noce_get_alt_condition (if_info, if_info->a, &earliest);
2529   if (!cond)
2530     return FALSE;
2531 
2532   /* Verify the condition is of the form we expect, and canonicalize
2533      the comparison code.  */
2534   code = GET_CODE (cond);
2535   if (rtx_equal_p (XEXP (cond, 0), if_info->a))
2536     {
2537       if (! rtx_equal_p (XEXP (cond, 1), if_info->b))
2538 	return FALSE;
2539     }
2540   else if (rtx_equal_p (XEXP (cond, 1), if_info->a))
2541     {
2542       if (! rtx_equal_p (XEXP (cond, 0), if_info->b))
2543 	return FALSE;
2544       code = swap_condition (code);
2545     }
2546   else
2547     return FALSE;
2548 
2549   /* Determine what sort of operation this is.  Note that the code is for
2550      a taken branch, so the code->operation mapping appears backwards.  */
2551   switch (code)
2552     {
2553     case LT:
2554     case LE:
2555     case UNLT:
2556     case UNLE:
2557       op = SMAX;
2558       unsignedp = 0;
2559       break;
2560     case GT:
2561     case GE:
2562     case UNGT:
2563     case UNGE:
2564       op = SMIN;
2565       unsignedp = 0;
2566       break;
2567     case LTU:
2568     case LEU:
2569       op = UMAX;
2570       unsignedp = 1;
2571       break;
2572     case GTU:
2573     case GEU:
2574       op = UMIN;
2575       unsignedp = 1;
2576       break;
2577     default:
2578       return FALSE;
2579     }
2580 
2581   start_sequence ();
2582 
2583   target = expand_simple_binop (GET_MODE (if_info->x), op,
2584 				if_info->a, if_info->b,
2585 				if_info->x, unsignedp, OPTAB_WIDEN);
2586   if (! target)
2587     {
2588       end_sequence ();
2589       return FALSE;
2590     }
2591   if (target != if_info->x)
2592     noce_emit_move_insn (if_info->x, target);
2593 
2594   seq = end_ifcvt_sequence (if_info);
2595   if (!seq)
2596     return FALSE;
2597 
2598   emit_insn_before_setloc (seq, if_info->jump, INSN_LOCATION (if_info->insn_a));
2599   if_info->cond = cond;
2600   if_info->cond_earliest = earliest;
2601   if_info->rev_cond = NULL_RTX;
2602   if_info->transform_name = "noce_try_minmax";
2603 
2604   return TRUE;
2605 }
2606 
2607 /* Convert "if (a < 0) x = -a; else x = a;" to "x = abs(a);",
2608    "if (a < 0) x = ~a; else x = a;" to "x = one_cmpl_abs(a);",
2609    etc.  */
2610 
2611 static int
noce_try_abs(struct noce_if_info * if_info)2612 noce_try_abs (struct noce_if_info *if_info)
2613 {
2614   rtx cond, target, a, b, c;
2615   rtx_insn *earliest, *seq;
2616   int negate;
2617   bool one_cmpl = false;
2618 
2619   if (!noce_simple_bbs (if_info))
2620     return FALSE;
2621 
2622   /* Reject modes with signed zeros.  */
2623   if (HONOR_SIGNED_ZEROS (if_info->x))
2624     return FALSE;
2625 
2626   /* Recognize A and B as constituting an ABS or NABS.  The canonical
2627      form is a branch around the negation, taken when the object is the
2628      first operand of a comparison against 0 that evaluates to true.  */
2629   a = if_info->a;
2630   b = if_info->b;
2631   if (GET_CODE (a) == NEG && rtx_equal_p (XEXP (a, 0), b))
2632     negate = 0;
2633   else if (GET_CODE (b) == NEG && rtx_equal_p (XEXP (b, 0), a))
2634     {
2635       std::swap (a, b);
2636       negate = 1;
2637     }
2638   else if (GET_CODE (a) == NOT && rtx_equal_p (XEXP (a, 0), b))
2639     {
2640       negate = 0;
2641       one_cmpl = true;
2642     }
2643   else if (GET_CODE (b) == NOT && rtx_equal_p (XEXP (b, 0), a))
2644     {
2645       std::swap (a, b);
2646       negate = 1;
2647       one_cmpl = true;
2648     }
2649   else
2650     return FALSE;
2651 
2652   cond = noce_get_alt_condition (if_info, b, &earliest);
2653   if (!cond)
2654     return FALSE;
2655 
2656   /* Verify the condition is of the form we expect.  */
2657   if (rtx_equal_p (XEXP (cond, 0), b))
2658     c = XEXP (cond, 1);
2659   else if (rtx_equal_p (XEXP (cond, 1), b))
2660     {
2661       c = XEXP (cond, 0);
2662       negate = !negate;
2663     }
2664   else
2665     return FALSE;
2666 
2667   /* Verify that C is zero.  Search one step backward for a
2668      REG_EQUAL note or a simple source if necessary.  */
2669   if (REG_P (c))
2670     {
2671       rtx set;
2672       rtx_insn *insn = prev_nonnote_insn (earliest);
2673       if (insn
2674 	  && BLOCK_FOR_INSN (insn) == BLOCK_FOR_INSN (earliest)
2675 	  && (set = single_set (insn))
2676 	  && rtx_equal_p (SET_DEST (set), c))
2677 	{
2678 	  rtx note = find_reg_equal_equiv_note (insn);
2679 	  if (note)
2680 	    c = XEXP (note, 0);
2681 	  else
2682 	    c = SET_SRC (set);
2683 	}
2684       else
2685 	return FALSE;
2686     }
2687   if (MEM_P (c)
2688       && GET_CODE (XEXP (c, 0)) == SYMBOL_REF
2689       && CONSTANT_POOL_ADDRESS_P (XEXP (c, 0)))
2690     c = get_pool_constant (XEXP (c, 0));
2691 
2692   /* Work around funny ideas get_condition has wrt canonicalization.
2693      Note that these rtx constants are known to be CONST_INT, and
2694      therefore imply integer comparisons.
2695      The one_cmpl case is more complicated, as we want to handle
2696      only x < 0 ? ~x : x or x >= 0 ? x : ~x to one_cmpl_abs (x)
2697      and x < 0 ? x : ~x or x >= 0 ? ~x : x to ~one_cmpl_abs (x),
2698      but not other cases (x > -1 is equivalent of x >= 0).  */
2699   if (c == constm1_rtx && GET_CODE (cond) == GT)
2700     ;
2701   else if (c == const1_rtx && GET_CODE (cond) == LT)
2702     {
2703       if (one_cmpl)
2704 	return FALSE;
2705     }
2706   else if (c == CONST0_RTX (GET_MODE (b)))
2707     {
2708       if (one_cmpl
2709 	  && GET_CODE (cond) != GE
2710 	  && GET_CODE (cond) != LT)
2711 	return FALSE;
2712     }
2713   else
2714     return FALSE;
2715 
2716   /* Determine what sort of operation this is.  */
2717   switch (GET_CODE (cond))
2718     {
2719     case LT:
2720     case LE:
2721     case UNLT:
2722     case UNLE:
2723       negate = !negate;
2724       break;
2725     case GT:
2726     case GE:
2727     case UNGT:
2728     case UNGE:
2729       break;
2730     default:
2731       return FALSE;
2732     }
2733 
2734   start_sequence ();
2735   if (one_cmpl)
2736     target = expand_one_cmpl_abs_nojump (GET_MODE (if_info->x), b,
2737                                          if_info->x);
2738   else
2739     target = expand_abs_nojump (GET_MODE (if_info->x), b, if_info->x, 1);
2740 
2741   /* ??? It's a quandary whether cmove would be better here, especially
2742      for integers.  Perhaps combine will clean things up.  */
2743   if (target && negate)
2744     {
2745       if (one_cmpl)
2746         target = expand_simple_unop (GET_MODE (target), NOT, target,
2747                                      if_info->x, 0);
2748       else
2749         target = expand_simple_unop (GET_MODE (target), NEG, target,
2750                                      if_info->x, 0);
2751     }
2752 
2753   if (! target)
2754     {
2755       end_sequence ();
2756       return FALSE;
2757     }
2758 
2759   if (target != if_info->x)
2760     noce_emit_move_insn (if_info->x, target);
2761 
2762   seq = end_ifcvt_sequence (if_info);
2763   if (!seq)
2764     return FALSE;
2765 
2766   emit_insn_before_setloc (seq, if_info->jump, INSN_LOCATION (if_info->insn_a));
2767   if_info->cond = cond;
2768   if_info->cond_earliest = earliest;
2769   if_info->rev_cond = NULL_RTX;
2770   if_info->transform_name = "noce_try_abs";
2771 
2772   return TRUE;
2773 }
2774 
2775 /* Convert "if (m < 0) x = b; else x = 0;" to "x = (m >> C) & b;".  */
2776 
2777 static int
noce_try_sign_mask(struct noce_if_info * if_info)2778 noce_try_sign_mask (struct noce_if_info *if_info)
2779 {
2780   rtx cond, t, m, c;
2781   rtx_insn *seq;
2782   machine_mode mode;
2783   enum rtx_code code;
2784   bool t_unconditional;
2785 
2786   if (!noce_simple_bbs (if_info))
2787     return FALSE;
2788 
2789   cond = if_info->cond;
2790   code = GET_CODE (cond);
2791   m = XEXP (cond, 0);
2792   c = XEXP (cond, 1);
2793 
2794   t = NULL_RTX;
2795   if (if_info->a == const0_rtx)
2796     {
2797       if ((code == LT && c == const0_rtx)
2798 	  || (code == LE && c == constm1_rtx))
2799 	t = if_info->b;
2800     }
2801   else if (if_info->b == const0_rtx)
2802     {
2803       if ((code == GE && c == const0_rtx)
2804 	  || (code == GT && c == constm1_rtx))
2805 	t = if_info->a;
2806     }
2807 
2808   if (! t || side_effects_p (t))
2809     return FALSE;
2810 
2811   /* We currently don't handle different modes.  */
2812   mode = GET_MODE (t);
2813   if (GET_MODE (m) != mode)
2814     return FALSE;
2815 
2816   /* This is only profitable if T is unconditionally executed/evaluated in the
2817      original insn sequence or T is cheap and can't trap or fault.  The former
2818      happens if B is the non-zero (T) value and if INSN_B was taken from
2819      TEST_BB, or there was no INSN_B which can happen for e.g. conditional
2820      stores to memory.  For the cost computation use the block TEST_BB where
2821      the evaluation will end up after the transformation.  */
2822   t_unconditional
2823     = (t == if_info->b
2824        && (if_info->insn_b == NULL_RTX
2825 	   || BLOCK_FOR_INSN (if_info->insn_b) == if_info->test_bb));
2826   if (!(t_unconditional
2827 	|| ((set_src_cost (t, mode, if_info->speed_p)
2828 	     < COSTS_N_INSNS (2))
2829 	    && !may_trap_or_fault_p (t))))
2830     return FALSE;
2831 
2832   if (!noce_can_force_operand (t))
2833     return FALSE;
2834 
2835   start_sequence ();
2836   /* Use emit_store_flag to generate "m < 0 ? -1 : 0" instead of expanding
2837      "(signed) m >> 31" directly.  This benefits targets with specialized
2838      insns to obtain the signmask, but still uses ashr_optab otherwise.  */
2839   m = emit_store_flag (gen_reg_rtx (mode), LT, m, const0_rtx, mode, 0, -1);
2840   t = m ? expand_binop (mode, and_optab, m, t, NULL_RTX, 0, OPTAB_DIRECT)
2841 	: NULL_RTX;
2842 
2843   if (!t)
2844     {
2845       end_sequence ();
2846       return FALSE;
2847     }
2848 
2849   noce_emit_move_insn (if_info->x, t);
2850 
2851   seq = end_ifcvt_sequence (if_info);
2852   if (!seq)
2853     return FALSE;
2854 
2855   emit_insn_before_setloc (seq, if_info->jump, INSN_LOCATION (if_info->insn_a));
2856   if_info->transform_name = "noce_try_sign_mask";
2857 
2858   return TRUE;
2859 }
2860 
2861 
2862 /* Optimize away "if (x & C) x |= C" and similar bit manipulation
2863    transformations.  */
2864 
2865 static int
noce_try_bitop(struct noce_if_info * if_info)2866 noce_try_bitop (struct noce_if_info *if_info)
2867 {
2868   rtx cond, x, a, result;
2869   rtx_insn *seq;
2870   scalar_int_mode mode;
2871   enum rtx_code code;
2872   int bitnum;
2873 
2874   x = if_info->x;
2875   cond = if_info->cond;
2876   code = GET_CODE (cond);
2877 
2878   /* Check for an integer operation.  */
2879   if (!is_a <scalar_int_mode> (GET_MODE (x), &mode))
2880     return FALSE;
2881 
2882   if (!noce_simple_bbs (if_info))
2883     return FALSE;
2884 
2885   /* Check for no else condition.  */
2886   if (! rtx_equal_p (x, if_info->b))
2887     return FALSE;
2888 
2889   /* Check for a suitable condition.  */
2890   if (code != NE && code != EQ)
2891     return FALSE;
2892   if (XEXP (cond, 1) != const0_rtx)
2893     return FALSE;
2894   cond = XEXP (cond, 0);
2895 
2896   /* ??? We could also handle AND here.  */
2897   if (GET_CODE (cond) == ZERO_EXTRACT)
2898     {
2899       if (XEXP (cond, 1) != const1_rtx
2900 	  || !CONST_INT_P (XEXP (cond, 2))
2901 	  || ! rtx_equal_p (x, XEXP (cond, 0)))
2902 	return FALSE;
2903       bitnum = INTVAL (XEXP (cond, 2));
2904       if (BITS_BIG_ENDIAN)
2905 	bitnum = GET_MODE_BITSIZE (mode) - 1 - bitnum;
2906       if (bitnum < 0 || bitnum >= HOST_BITS_PER_WIDE_INT)
2907 	return FALSE;
2908     }
2909   else
2910     return FALSE;
2911 
2912   a = if_info->a;
2913   if (GET_CODE (a) == IOR || GET_CODE (a) == XOR)
2914     {
2915       /* Check for "if (X & C) x = x op C".  */
2916       if (! rtx_equal_p (x, XEXP (a, 0))
2917           || !CONST_INT_P (XEXP (a, 1))
2918 	  || (INTVAL (XEXP (a, 1)) & GET_MODE_MASK (mode))
2919 	     != HOST_WIDE_INT_1U << bitnum)
2920         return FALSE;
2921 
2922       /* if ((x & C) == 0) x |= C; is transformed to x |= C.   */
2923       /* if ((x & C) != 0) x |= C; is transformed to nothing.  */
2924       if (GET_CODE (a) == IOR)
2925 	result = (code == NE) ? a : NULL_RTX;
2926       else if (code == NE)
2927 	{
2928 	  /* if ((x & C) == 0) x ^= C; is transformed to x |= C.   */
2929 	  result = gen_int_mode (HOST_WIDE_INT_1 << bitnum, mode);
2930 	  result = simplify_gen_binary (IOR, mode, x, result);
2931 	}
2932       else
2933 	{
2934 	  /* if ((x & C) != 0) x ^= C; is transformed to x &= ~C.  */
2935 	  result = gen_int_mode (~(HOST_WIDE_INT_1 << bitnum), mode);
2936 	  result = simplify_gen_binary (AND, mode, x, result);
2937 	}
2938     }
2939   else if (GET_CODE (a) == AND)
2940     {
2941       /* Check for "if (X & C) x &= ~C".  */
2942       if (! rtx_equal_p (x, XEXP (a, 0))
2943 	  || !CONST_INT_P (XEXP (a, 1))
2944 	  || (INTVAL (XEXP (a, 1)) & GET_MODE_MASK (mode))
2945 	     != (~(HOST_WIDE_INT_1 << bitnum) & GET_MODE_MASK (mode)))
2946         return FALSE;
2947 
2948       /* if ((x & C) == 0) x &= ~C; is transformed to nothing.  */
2949       /* if ((x & C) != 0) x &= ~C; is transformed to x &= ~C.  */
2950       result = (code == EQ) ? a : NULL_RTX;
2951     }
2952   else
2953     return FALSE;
2954 
2955   if (result)
2956     {
2957       start_sequence ();
2958       noce_emit_move_insn (x, result);
2959       seq = end_ifcvt_sequence (if_info);
2960       if (!seq)
2961 	return FALSE;
2962 
2963       emit_insn_before_setloc (seq, if_info->jump,
2964 			       INSN_LOCATION (if_info->insn_a));
2965     }
2966   if_info->transform_name = "noce_try_bitop";
2967   return TRUE;
2968 }
2969 
2970 
2971 /* Similar to get_condition, only the resulting condition must be
2972    valid at JUMP, instead of at EARLIEST.
2973 
2974    If THEN_ELSE_REVERSED is true, the fallthrough does not go to the
2975    THEN block of the caller, and we have to reverse the condition.  */
2976 
2977 static rtx
noce_get_condition(rtx_insn * jump,rtx_insn ** earliest,bool then_else_reversed)2978 noce_get_condition (rtx_insn *jump, rtx_insn **earliest, bool then_else_reversed)
2979 {
2980   rtx cond, set, tmp;
2981   bool reverse;
2982 
2983   if (! any_condjump_p (jump))
2984     return NULL_RTX;
2985 
2986   set = pc_set (jump);
2987 
2988   /* If this branches to JUMP_LABEL when the condition is false,
2989      reverse the condition.  */
2990   reverse = (GET_CODE (XEXP (SET_SRC (set), 2)) == LABEL_REF
2991 	     && label_ref_label (XEXP (SET_SRC (set), 2)) == JUMP_LABEL (jump));
2992 
2993   /* We may have to reverse because the caller's if block is not canonical,
2994      i.e. the THEN block isn't the fallthrough block for the TEST block
2995      (see find_if_header).  */
2996   if (then_else_reversed)
2997     reverse = !reverse;
2998 
2999   /* If the condition variable is a register and is MODE_INT, accept it.  */
3000 
3001   cond = XEXP (SET_SRC (set), 0);
3002   tmp = XEXP (cond, 0);
3003   if (REG_P (tmp) && GET_MODE_CLASS (GET_MODE (tmp)) == MODE_INT
3004       && (GET_MODE (tmp) != BImode
3005           || !targetm.small_register_classes_for_mode_p (BImode)))
3006     {
3007       *earliest = jump;
3008 
3009       if (reverse)
3010 	cond = gen_rtx_fmt_ee (reverse_condition (GET_CODE (cond)),
3011 			       GET_MODE (cond), tmp, XEXP (cond, 1));
3012       return cond;
3013     }
3014 
3015   /* Otherwise, fall back on canonicalize_condition to do the dirty
3016      work of manipulating MODE_CC values and COMPARE rtx codes.  */
3017   tmp = canonicalize_condition (jump, cond, reverse, earliest,
3018 				NULL_RTX, have_cbranchcc4, true);
3019 
3020   /* We don't handle side-effects in the condition, like handling
3021      REG_INC notes and making sure no duplicate conditions are emitted.  */
3022   if (tmp != NULL_RTX && side_effects_p (tmp))
3023     return NULL_RTX;
3024 
3025   return tmp;
3026 }
3027 
3028 /* Return true if OP is ok for if-then-else processing.  */
3029 
3030 static int
noce_operand_ok(const_rtx op)3031 noce_operand_ok (const_rtx op)
3032 {
3033   if (side_effects_p (op))
3034     return FALSE;
3035 
3036   /* We special-case memories, so handle any of them with
3037      no address side effects.  */
3038   if (MEM_P (op))
3039     return ! side_effects_p (XEXP (op, 0));
3040 
3041   return ! may_trap_p (op);
3042 }
3043 
3044 /* Return true iff basic block TEST_BB is valid for noce if-conversion.
3045    The condition used in this if-conversion is in COND.
3046    In practice, check that TEST_BB ends with a single set
3047    x := a and all previous computations
3048    in TEST_BB don't produce any values that are live after TEST_BB.
3049    In other words, all the insns in TEST_BB are there only
3050    to compute a value for x.  Add the rtx cost of the insns
3051    in TEST_BB to COST.  Record whether TEST_BB is a single simple
3052    set instruction in SIMPLE_P.  */
3053 
3054 static bool
bb_valid_for_noce_process_p(basic_block test_bb,rtx cond,unsigned int * cost,bool * simple_p)3055 bb_valid_for_noce_process_p (basic_block test_bb, rtx cond,
3056 			      unsigned int *cost, bool *simple_p)
3057 {
3058   if (!test_bb)
3059     return false;
3060 
3061   rtx_insn *last_insn = last_active_insn (test_bb, FALSE);
3062   rtx last_set = NULL_RTX;
3063 
3064   rtx cc = cc_in_cond (cond);
3065 
3066   if (!insn_valid_noce_process_p (last_insn, cc))
3067     return false;
3068 
3069   /* Punt on blocks ending with asm goto or jumps with other side-effects,
3070      last_active_insn ignores JUMP_INSNs.  */
3071   if (JUMP_P (BB_END (test_bb)) && !onlyjump_p (BB_END (test_bb)))
3072     return false;
3073 
3074   last_set = single_set (last_insn);
3075 
3076   rtx x = SET_DEST (last_set);
3077   rtx_insn *first_insn = first_active_insn (test_bb);
3078   rtx first_set = single_set (first_insn);
3079 
3080   if (!first_set)
3081     return false;
3082 
3083   /* We have a single simple set, that's okay.  */
3084   bool speed_p = optimize_bb_for_speed_p (test_bb);
3085 
3086   if (first_insn == last_insn)
3087     {
3088       *simple_p = noce_operand_ok (SET_DEST (first_set));
3089       *cost += pattern_cost (first_set, speed_p);
3090       return *simple_p;
3091     }
3092 
3093   rtx_insn *prev_last_insn = PREV_INSN (last_insn);
3094   gcc_assert (prev_last_insn);
3095 
3096   /* For now, disallow setting x multiple times in test_bb.  */
3097   if (REG_P (x) && reg_set_between_p (x, first_insn, prev_last_insn))
3098     return false;
3099 
3100   bitmap test_bb_temps = BITMAP_ALLOC (&reg_obstack);
3101 
3102   /* The regs that are live out of test_bb.  */
3103   bitmap test_bb_live_out = df_get_live_out (test_bb);
3104 
3105   int potential_cost = pattern_cost (last_set, speed_p);
3106   rtx_insn *insn;
3107   FOR_BB_INSNS (test_bb, insn)
3108     {
3109       if (insn != last_insn)
3110 	{
3111 	  if (!active_insn_p (insn))
3112 	    continue;
3113 
3114 	  if (!insn_valid_noce_process_p (insn, cc))
3115 	    goto free_bitmap_and_fail;
3116 
3117 	  rtx sset = single_set (insn);
3118 	  gcc_assert (sset);
3119 
3120 	  if (contains_mem_rtx_p (SET_SRC (sset))
3121 	      || !REG_P (SET_DEST (sset))
3122 	      || reg_overlap_mentioned_p (SET_DEST (sset), cond))
3123 	    goto free_bitmap_and_fail;
3124 
3125 	  potential_cost += pattern_cost (sset, speed_p);
3126 	  bitmap_set_bit (test_bb_temps, REGNO (SET_DEST (sset)));
3127 	}
3128     }
3129 
3130   /* If any of the intermediate results in test_bb are live after test_bb
3131      then fail.  */
3132   if (bitmap_intersect_p (test_bb_live_out, test_bb_temps))
3133     goto free_bitmap_and_fail;
3134 
3135   BITMAP_FREE (test_bb_temps);
3136   *cost += potential_cost;
3137   *simple_p = false;
3138   return true;
3139 
3140  free_bitmap_and_fail:
3141   BITMAP_FREE (test_bb_temps);
3142   return false;
3143 }
3144 
3145 /* We have something like:
3146 
3147      if (x > y)
3148        { i = a; j = b; k = c; }
3149 
3150    Make it:
3151 
3152      tmp_i = (x > y) ? a : i;
3153      tmp_j = (x > y) ? b : j;
3154      tmp_k = (x > y) ? c : k;
3155      i = tmp_i;
3156      j = tmp_j;
3157      k = tmp_k;
3158 
3159    Subsequent passes are expected to clean up the extra moves.
3160 
3161    Look for special cases such as writes to one register which are
3162    read back in another SET, as might occur in a swap idiom or
3163    similar.
3164 
3165    These look like:
3166 
3167    if (x > y)
3168      i = a;
3169      j = i;
3170 
3171    Which we want to rewrite to:
3172 
3173      tmp_i = (x > y) ? a : i;
3174      tmp_j = (x > y) ? tmp_i : j;
3175      i = tmp_i;
3176      j = tmp_j;
3177 
3178    We can catch these when looking at (SET x y) by keeping a list of the
3179    registers we would have targeted before if-conversion and looking back
3180    through it for an overlap with Y.  If we find one, we rewire the
3181    conditional set to use the temporary we introduced earlier.
3182 
3183    IF_INFO contains the useful information about the block structure and
3184    jump instructions.  */
3185 
3186 static int
noce_convert_multiple_sets(struct noce_if_info * if_info)3187 noce_convert_multiple_sets (struct noce_if_info *if_info)
3188 {
3189   basic_block test_bb = if_info->test_bb;
3190   basic_block then_bb = if_info->then_bb;
3191   basic_block join_bb = if_info->join_bb;
3192   rtx_insn *jump = if_info->jump;
3193   rtx_insn *cond_earliest;
3194   rtx_insn *insn;
3195 
3196   start_sequence ();
3197 
3198   /* Decompose the condition attached to the jump.  */
3199   rtx cond = noce_get_condition (jump, &cond_earliest, false);
3200   rtx x = XEXP (cond, 0);
3201   rtx y = XEXP (cond, 1);
3202   rtx_code cond_code = GET_CODE (cond);
3203 
3204   /* The true targets for a conditional move.  */
3205   auto_vec<rtx> targets;
3206   /* The temporaries introduced to allow us to not consider register
3207      overlap.  */
3208   auto_vec<rtx> temporaries;
3209   /* The insns we've emitted.  */
3210   auto_vec<rtx_insn *> unmodified_insns;
3211   int count = 0;
3212 
3213   FOR_BB_INSNS (then_bb, insn)
3214     {
3215       /* Skip over non-insns.  */
3216       if (!active_insn_p (insn))
3217 	continue;
3218 
3219       rtx set = single_set (insn);
3220       gcc_checking_assert (set);
3221 
3222       rtx target = SET_DEST (set);
3223       rtx temp = gen_reg_rtx (GET_MODE (target));
3224       rtx new_val = SET_SRC (set);
3225       rtx old_val = target;
3226 
3227       /* If we were supposed to read from an earlier write in this block,
3228 	 we've changed the register allocation.  Rewire the read.  While
3229 	 we are looking, also try to catch a swap idiom.  */
3230       for (int i = count - 1; i >= 0; --i)
3231 	if (reg_overlap_mentioned_p (new_val, targets[i]))
3232 	  {
3233 	    /* Catch a "swap" style idiom.  */
3234 	    if (find_reg_note (insn, REG_DEAD, new_val) != NULL_RTX)
3235 	      /* The write to targets[i] is only live until the read
3236 		 here.  As the condition codes match, we can propagate
3237 		 the set to here.  */
3238 	      new_val = SET_SRC (single_set (unmodified_insns[i]));
3239 	    else
3240 	      new_val = temporaries[i];
3241 	    break;
3242 	  }
3243 
3244       /* If we had a non-canonical conditional jump (i.e. one where
3245 	 the fallthrough is to the "else" case) we need to reverse
3246 	 the conditional select.  */
3247       if (if_info->then_else_reversed)
3248 	std::swap (old_val, new_val);
3249 
3250 
3251       /* We allow simple lowpart register subreg SET sources in
3252 	 bb_ok_for_noce_convert_multiple_sets.  Be careful when processing
3253 	 sequences like:
3254 	 (set (reg:SI r1) (reg:SI r2))
3255 	 (set (reg:HI r3) (subreg:HI (r1)))
3256 	 For the second insn new_val or old_val (r1 in this example) will be
3257 	 taken from the temporaries and have the wider mode which will not
3258 	 match with the mode of the other source of the conditional move, so
3259 	 we'll end up trying to emit r4:HI = cond ? (r1:SI) : (r3:HI).
3260 	 Wrap the two cmove operands into subregs if appropriate to prevent
3261 	 that.  */
3262       if (GET_MODE (new_val) != GET_MODE (temp))
3263 	{
3264 	  machine_mode src_mode = GET_MODE (new_val);
3265 	  machine_mode dst_mode = GET_MODE (temp);
3266 	  if (!partial_subreg_p (dst_mode, src_mode))
3267 	    {
3268 	      end_sequence ();
3269 	      return FALSE;
3270 	    }
3271 	  new_val = lowpart_subreg (dst_mode, new_val, src_mode);
3272 	}
3273       if (GET_MODE (old_val) != GET_MODE (temp))
3274 	{
3275 	  machine_mode src_mode = GET_MODE (old_val);
3276 	  machine_mode dst_mode = GET_MODE (temp);
3277 	  if (!partial_subreg_p (dst_mode, src_mode))
3278 	    {
3279 	      end_sequence ();
3280 	      return FALSE;
3281 	    }
3282 	  old_val = lowpart_subreg (dst_mode, old_val, src_mode);
3283 	}
3284 
3285       /* Actually emit the conditional move.  */
3286       rtx temp_dest = noce_emit_cmove (if_info, temp, cond_code,
3287 				       x, y, new_val, old_val);
3288 
3289       /* If we failed to expand the conditional move, drop out and don't
3290 	 try to continue.  */
3291       if (temp_dest == NULL_RTX)
3292 	{
3293 	  end_sequence ();
3294 	  return FALSE;
3295 	}
3296 
3297       /* Bookkeeping.  */
3298       count++;
3299       targets.safe_push (target);
3300       temporaries.safe_push (temp_dest);
3301       unmodified_insns.safe_push (insn);
3302     }
3303 
3304   /* We must have seen some sort of insn to insert, otherwise we were
3305      given an empty BB to convert, and we can't handle that.  */
3306   gcc_assert (!unmodified_insns.is_empty ());
3307 
3308   /* Now fixup the assignments.  */
3309   for (int i = 0; i < count; i++)
3310     noce_emit_move_insn (targets[i], temporaries[i]);
3311 
3312   /* Actually emit the sequence if it isn't too expensive.  */
3313   rtx_insn *seq = get_insns ();
3314 
3315   if (!targetm.noce_conversion_profitable_p (seq, if_info))
3316     {
3317       end_sequence ();
3318       return FALSE;
3319     }
3320 
3321   for (insn = seq; insn; insn = NEXT_INSN (insn))
3322     set_used_flags (insn);
3323 
3324   /* Mark all our temporaries and targets as used.  */
3325   for (int i = 0; i < count; i++)
3326     {
3327       set_used_flags (temporaries[i]);
3328       set_used_flags (targets[i]);
3329     }
3330 
3331   set_used_flags (cond);
3332   set_used_flags (x);
3333   set_used_flags (y);
3334 
3335   unshare_all_rtl_in_chain (seq);
3336   end_sequence ();
3337 
3338   if (!seq)
3339     return FALSE;
3340 
3341   for (insn = seq; insn; insn = NEXT_INSN (insn))
3342     if (JUMP_P (insn)
3343 	|| recog_memoized (insn) == -1)
3344       return FALSE;
3345 
3346   emit_insn_before_setloc (seq, if_info->jump,
3347 			   INSN_LOCATION (unmodified_insns.last ()));
3348 
3349   /* Clean up THEN_BB and the edges in and out of it.  */
3350   remove_edge (find_edge (test_bb, join_bb));
3351   remove_edge (find_edge (then_bb, join_bb));
3352   redirect_edge_and_branch_force (single_succ_edge (test_bb), join_bb);
3353   delete_basic_block (then_bb);
3354   num_true_changes++;
3355 
3356   /* Maybe merge blocks now the jump is simple enough.  */
3357   if (can_merge_blocks_p (test_bb, join_bb))
3358     {
3359       merge_blocks (test_bb, join_bb);
3360       num_true_changes++;
3361     }
3362 
3363   num_updated_if_blocks++;
3364   if_info->transform_name = "noce_convert_multiple_sets";
3365   return TRUE;
3366 }
3367 
3368 /* Return true iff basic block TEST_BB is comprised of only
3369    (SET (REG) (REG)) insns suitable for conversion to a series
3370    of conditional moves.  Also check that we have more than one set
3371    (other routines can handle a single set better than we would), and
3372    fewer than PARAM_MAX_RTL_IF_CONVERSION_INSNS sets.  */
3373 
3374 static bool
bb_ok_for_noce_convert_multiple_sets(basic_block test_bb)3375 bb_ok_for_noce_convert_multiple_sets (basic_block test_bb)
3376 {
3377   rtx_insn *insn;
3378   unsigned count = 0;
3379   unsigned param = param_max_rtl_if_conversion_insns;
3380 
3381   FOR_BB_INSNS (test_bb, insn)
3382     {
3383       /* Skip over notes etc.  */
3384       if (!active_insn_p (insn))
3385 	continue;
3386 
3387       /* We only handle SET insns.  */
3388       rtx set = single_set (insn);
3389       if (set == NULL_RTX)
3390 	return false;
3391 
3392       rtx dest = SET_DEST (set);
3393       rtx src = SET_SRC (set);
3394 
3395       /* We can possibly relax this, but for now only handle REG to REG
3396 	 (including subreg) moves.  This avoids any issues that might come
3397 	 from introducing loads/stores that might violate data-race-freedom
3398 	 guarantees.  */
3399       if (!REG_P (dest))
3400 	return false;
3401 
3402       if (!(REG_P (src)
3403 	   || (GET_CODE (src) == SUBREG && REG_P (SUBREG_REG (src))
3404 	       && subreg_lowpart_p (src))))
3405 	return false;
3406 
3407       /* Destination must be appropriate for a conditional write.  */
3408       if (!noce_operand_ok (dest))
3409 	return false;
3410 
3411       /* We must be able to conditionally move in this mode.  */
3412       if (!can_conditionally_move_p (GET_MODE (dest)))
3413 	return false;
3414 
3415       count++;
3416     }
3417 
3418   /* If we would only put out one conditional move, the other strategies
3419      this pass tries are better optimized and will be more appropriate.
3420      Some targets want to strictly limit the number of conditional moves
3421      that are emitted, they set this through PARAM, we need to respect
3422      that.  */
3423   return count > 1 && count <= param;
3424 }
3425 
3426 /* Compute average of two given costs weighted by relative probabilities
3427    of respective basic blocks in an IF-THEN-ELSE.  E is the IF-THEN edge.
3428    With P as the probability to take the IF-THEN branch, return
3429    P * THEN_COST + (1 - P) * ELSE_COST.  */
3430 static unsigned
average_cost(unsigned then_cost,unsigned else_cost,edge e)3431 average_cost (unsigned then_cost, unsigned else_cost, edge e)
3432 {
3433   return else_cost + e->probability.apply ((signed) (then_cost - else_cost));
3434 }
3435 
3436 /* Given a simple IF-THEN-JOIN or IF-THEN-ELSE-JOIN block, attempt to convert
3437    it without using conditional execution.  Return TRUE if we were successful
3438    at converting the block.  */
3439 
3440 static int
noce_process_if_block(struct noce_if_info * if_info)3441 noce_process_if_block (struct noce_if_info *if_info)
3442 {
3443   basic_block test_bb = if_info->test_bb;	/* test block */
3444   basic_block then_bb = if_info->then_bb;	/* THEN */
3445   basic_block else_bb = if_info->else_bb;	/* ELSE or NULL */
3446   basic_block join_bb = if_info->join_bb;	/* JOIN */
3447   rtx_insn *jump = if_info->jump;
3448   rtx cond = if_info->cond;
3449   rtx_insn *insn_a, *insn_b;
3450   rtx set_a, set_b;
3451   rtx orig_x, x, a, b;
3452 
3453   /* We're looking for patterns of the form
3454 
3455      (1) if (...) x = a; else x = b;
3456      (2) x = b; if (...) x = a;
3457      (3) if (...) x = a;   // as if with an initial x = x.
3458      (4) if (...) { x = a; y = b; z = c; }  // Like 3, for multiple SETS.
3459      The later patterns require jumps to be more expensive.
3460      For the if (...) x = a; else x = b; case we allow multiple insns
3461      inside the then and else blocks as long as their only effect is
3462      to calculate a value for x.
3463      ??? For future expansion, further expand the "multiple X" rules.  */
3464 
3465   /* First look for multiple SETS.  */
3466   if (!else_bb
3467       && HAVE_conditional_move
3468       && !HAVE_cc0
3469       && bb_ok_for_noce_convert_multiple_sets (then_bb))
3470     {
3471       if (noce_convert_multiple_sets (if_info))
3472 	{
3473 	  if (dump_file && if_info->transform_name)
3474 	    fprintf (dump_file, "if-conversion succeeded through %s\n",
3475 		     if_info->transform_name);
3476 	  return TRUE;
3477 	}
3478     }
3479 
3480   bool speed_p = optimize_bb_for_speed_p (test_bb);
3481   unsigned int then_cost = 0, else_cost = 0;
3482   if (!bb_valid_for_noce_process_p (then_bb, cond, &then_cost,
3483 				    &if_info->then_simple))
3484     return false;
3485 
3486   if (else_bb
3487       && !bb_valid_for_noce_process_p (else_bb, cond, &else_cost,
3488 				       &if_info->else_simple))
3489     return false;
3490 
3491   if (speed_p)
3492     if_info->original_cost += average_cost (then_cost, else_cost,
3493 					    find_edge (test_bb, then_bb));
3494   else
3495     if_info->original_cost += then_cost + else_cost;
3496 
3497   insn_a = last_active_insn (then_bb, FALSE);
3498   set_a = single_set (insn_a);
3499   gcc_assert (set_a);
3500 
3501   x = SET_DEST (set_a);
3502   a = SET_SRC (set_a);
3503 
3504   /* Look for the other potential set.  Make sure we've got equivalent
3505      destinations.  */
3506   /* ??? This is overconservative.  Storing to two different mems is
3507      as easy as conditionally computing the address.  Storing to a
3508      single mem merely requires a scratch memory to use as one of the
3509      destination addresses; often the memory immediately below the
3510      stack pointer is available for this.  */
3511   set_b = NULL_RTX;
3512   if (else_bb)
3513     {
3514       insn_b = last_active_insn (else_bb, FALSE);
3515       set_b = single_set (insn_b);
3516       gcc_assert (set_b);
3517 
3518       if (!rtx_interchangeable_p (x, SET_DEST (set_b)))
3519 	return FALSE;
3520     }
3521   else
3522     {
3523       insn_b = if_info->cond_earliest;
3524       do
3525 	insn_b = prev_nonnote_nondebug_insn (insn_b);
3526       while (insn_b
3527 	     && (BLOCK_FOR_INSN (insn_b)
3528 		 == BLOCK_FOR_INSN (if_info->cond_earliest))
3529 	     && !modified_in_p (x, insn_b));
3530 
3531       /* We're going to be moving the evaluation of B down from above
3532 	 COND_EARLIEST to JUMP.  Make sure the relevant data is still
3533 	 intact.  */
3534       if (! insn_b
3535 	  || BLOCK_FOR_INSN (insn_b) != BLOCK_FOR_INSN (if_info->cond_earliest)
3536 	  || !NONJUMP_INSN_P (insn_b)
3537 	  || (set_b = single_set (insn_b)) == NULL_RTX
3538 	  || ! rtx_interchangeable_p (x, SET_DEST (set_b))
3539 	  || ! noce_operand_ok (SET_SRC (set_b))
3540 	  || reg_overlap_mentioned_p (x, SET_SRC (set_b))
3541 	  || modified_between_p (SET_SRC (set_b), insn_b, jump)
3542 	  /* Avoid extending the lifetime of hard registers on small
3543 	     register class machines.  */
3544 	  || (REG_P (SET_SRC (set_b))
3545 	      && HARD_REGISTER_P (SET_SRC (set_b))
3546 	      && targetm.small_register_classes_for_mode_p
3547 		   (GET_MODE (SET_SRC (set_b))))
3548 	  /* Likewise with X.  In particular this can happen when
3549 	     noce_get_condition looks farther back in the instruction
3550 	     stream than one might expect.  */
3551 	  || reg_overlap_mentioned_p (x, cond)
3552 	  || reg_overlap_mentioned_p (x, a)
3553 	  || modified_between_p (x, insn_b, jump))
3554 	{
3555 	  insn_b = NULL;
3556 	  set_b = NULL_RTX;
3557 	}
3558     }
3559 
3560   /* If x has side effects then only the if-then-else form is safe to
3561      convert.  But even in that case we would need to restore any notes
3562      (such as REG_INC) at then end.  That can be tricky if
3563      noce_emit_move_insn expands to more than one insn, so disable the
3564      optimization entirely for now if there are side effects.  */
3565   if (side_effects_p (x))
3566     return FALSE;
3567 
3568   b = (set_b ? SET_SRC (set_b) : x);
3569 
3570   /* Only operate on register destinations, and even then avoid extending
3571      the lifetime of hard registers on small register class machines.  */
3572   orig_x = x;
3573   if_info->orig_x = orig_x;
3574   if (!REG_P (x)
3575       || (HARD_REGISTER_P (x)
3576 	  && targetm.small_register_classes_for_mode_p (GET_MODE (x))))
3577     {
3578       if (GET_MODE (x) == BLKmode)
3579 	return FALSE;
3580 
3581       if (GET_CODE (x) == ZERO_EXTRACT
3582 	  && (!CONST_INT_P (XEXP (x, 1))
3583 	      || !CONST_INT_P (XEXP (x, 2))))
3584 	return FALSE;
3585 
3586       x = gen_reg_rtx (GET_MODE (GET_CODE (x) == STRICT_LOW_PART
3587 				 ? XEXP (x, 0) : x));
3588     }
3589 
3590   /* Don't operate on sources that may trap or are volatile.  */
3591   if (! noce_operand_ok (a) || ! noce_operand_ok (b))
3592     return FALSE;
3593 
3594  retry:
3595   /* Set up the info block for our subroutines.  */
3596   if_info->insn_a = insn_a;
3597   if_info->insn_b = insn_b;
3598   if_info->x = x;
3599   if_info->a = a;
3600   if_info->b = b;
3601 
3602   /* Try optimizations in some approximation of a useful order.  */
3603   /* ??? Should first look to see if X is live incoming at all.  If it
3604      isn't, we don't need anything but an unconditional set.  */
3605 
3606   /* Look and see if A and B are really the same.  Avoid creating silly
3607      cmove constructs that no one will fix up later.  */
3608   if (noce_simple_bbs (if_info)
3609       && rtx_interchangeable_p (a, b))
3610     {
3611       /* If we have an INSN_B, we don't have to create any new rtl.  Just
3612 	 move the instruction that we already have.  If we don't have an
3613 	 INSN_B, that means that A == X, and we've got a noop move.  In
3614 	 that case don't do anything and let the code below delete INSN_A.  */
3615       if (insn_b && else_bb)
3616 	{
3617 	  rtx note;
3618 
3619 	  if (else_bb && insn_b == BB_END (else_bb))
3620 	    BB_END (else_bb) = PREV_INSN (insn_b);
3621 	  reorder_insns (insn_b, insn_b, PREV_INSN (jump));
3622 
3623 	  /* If there was a REG_EQUAL note, delete it since it may have been
3624 	     true due to this insn being after a jump.  */
3625 	  if ((note = find_reg_note (insn_b, REG_EQUAL, NULL_RTX)) != 0)
3626 	    remove_note (insn_b, note);
3627 
3628 	  insn_b = NULL;
3629 	}
3630       /* If we have "x = b; if (...) x = a;", and x has side-effects, then
3631 	 x must be executed twice.  */
3632       else if (insn_b && side_effects_p (orig_x))
3633 	return FALSE;
3634 
3635       x = orig_x;
3636       goto success;
3637     }
3638 
3639   if (!set_b && MEM_P (orig_x))
3640     /* We want to avoid store speculation to avoid cases like
3641 	 if (pthread_mutex_trylock(mutex))
3642 	   ++global_variable;
3643        Rather than go to much effort here, we rely on the SSA optimizers,
3644        which do a good enough job these days.  */
3645     return FALSE;
3646 
3647   if (noce_try_move (if_info))
3648     goto success;
3649   if (noce_try_ifelse_collapse (if_info))
3650     goto success;
3651   if (noce_try_store_flag (if_info))
3652     goto success;
3653   if (noce_try_bitop (if_info))
3654     goto success;
3655   if (noce_try_minmax (if_info))
3656     goto success;
3657   if (noce_try_abs (if_info))
3658     goto success;
3659   if (noce_try_inverse_constants (if_info))
3660     goto success;
3661   if (!targetm.have_conditional_execution ()
3662       && noce_try_store_flag_constants (if_info))
3663     goto success;
3664   if (HAVE_conditional_move
3665       && noce_try_cmove (if_info))
3666     goto success;
3667   if (! targetm.have_conditional_execution ())
3668     {
3669       if (noce_try_addcc (if_info))
3670 	goto success;
3671       if (noce_try_store_flag_mask (if_info))
3672 	goto success;
3673       if (HAVE_conditional_move
3674 	  && noce_try_cmove_arith (if_info))
3675 	goto success;
3676       if (noce_try_sign_mask (if_info))
3677 	goto success;
3678     }
3679 
3680   if (!else_bb && set_b)
3681     {
3682       insn_b = NULL;
3683       set_b = NULL_RTX;
3684       b = orig_x;
3685       goto retry;
3686     }
3687 
3688   return FALSE;
3689 
3690  success:
3691   if (dump_file && if_info->transform_name)
3692     fprintf (dump_file, "if-conversion succeeded through %s\n",
3693 	     if_info->transform_name);
3694 
3695   /* If we used a temporary, fix it up now.  */
3696   if (orig_x != x)
3697     {
3698       rtx_insn *seq;
3699 
3700       start_sequence ();
3701       noce_emit_move_insn (orig_x, x);
3702       seq = get_insns ();
3703       set_used_flags (orig_x);
3704       unshare_all_rtl_in_chain (seq);
3705       end_sequence ();
3706 
3707       emit_insn_before_setloc (seq, BB_END (test_bb), INSN_LOCATION (insn_a));
3708     }
3709 
3710   /* The original THEN and ELSE blocks may now be removed.  The test block
3711      must now jump to the join block.  If the test block and the join block
3712      can be merged, do so.  */
3713   if (else_bb)
3714     {
3715       delete_basic_block (else_bb);
3716       num_true_changes++;
3717     }
3718   else
3719     remove_edge (find_edge (test_bb, join_bb));
3720 
3721   remove_edge (find_edge (then_bb, join_bb));
3722   redirect_edge_and_branch_force (single_succ_edge (test_bb), join_bb);
3723   delete_basic_block (then_bb);
3724   num_true_changes++;
3725 
3726   if (can_merge_blocks_p (test_bb, join_bb))
3727     {
3728       merge_blocks (test_bb, join_bb);
3729       num_true_changes++;
3730     }
3731 
3732   num_updated_if_blocks++;
3733   return TRUE;
3734 }
3735 
3736 /* Check whether a block is suitable for conditional move conversion.
3737    Every insn must be a simple set of a register to a constant or a
3738    register.  For each assignment, store the value in the pointer map
3739    VALS, keyed indexed by register pointer, then store the register
3740    pointer in REGS.  COND is the condition we will test.  */
3741 
3742 static int
check_cond_move_block(basic_block bb,hash_map<rtx,rtx> * vals,vec<rtx> * regs,rtx cond)3743 check_cond_move_block (basic_block bb,
3744 		       hash_map<rtx, rtx> *vals,
3745 		       vec<rtx> *regs,
3746 		       rtx cond)
3747 {
3748   rtx_insn *insn;
3749   rtx cc = cc_in_cond (cond);
3750 
3751    /* We can only handle simple jumps at the end of the basic block.
3752       It is almost impossible to update the CFG otherwise.  */
3753   insn = BB_END (bb);
3754   if (JUMP_P (insn) && !onlyjump_p (insn))
3755     return FALSE;
3756 
3757   FOR_BB_INSNS (bb, insn)
3758     {
3759       rtx set, dest, src;
3760 
3761       if (!NONDEBUG_INSN_P (insn) || JUMP_P (insn))
3762 	continue;
3763       set = single_set (insn);
3764       if (!set)
3765 	return FALSE;
3766 
3767       dest = SET_DEST (set);
3768       src = SET_SRC (set);
3769       if (!REG_P (dest)
3770 	  || (HARD_REGISTER_P (dest)
3771 	      && targetm.small_register_classes_for_mode_p (GET_MODE (dest))))
3772 	return FALSE;
3773 
3774       if (!CONSTANT_P (src) && !register_operand (src, VOIDmode))
3775 	return FALSE;
3776 
3777       if (side_effects_p (src) || side_effects_p (dest))
3778 	return FALSE;
3779 
3780       if (may_trap_p (src) || may_trap_p (dest))
3781 	return FALSE;
3782 
3783       /* Don't try to handle this if the source register was
3784 	 modified earlier in the block.  */
3785       if ((REG_P (src)
3786 	   && vals->get (src))
3787 	  || (GET_CODE (src) == SUBREG && REG_P (SUBREG_REG (src))
3788 	      && vals->get (SUBREG_REG (src))))
3789 	return FALSE;
3790 
3791       /* Don't try to handle this if the destination register was
3792 	 modified earlier in the block.  */
3793       if (vals->get (dest))
3794 	return FALSE;
3795 
3796       /* Don't try to handle this if the condition uses the
3797 	 destination register.  */
3798       if (reg_overlap_mentioned_p (dest, cond))
3799 	return FALSE;
3800 
3801       /* Don't try to handle this if the source register is modified
3802 	 later in the block.  */
3803       if (!CONSTANT_P (src)
3804 	  && modified_between_p (src, insn, NEXT_INSN (BB_END (bb))))
3805 	return FALSE;
3806 
3807       /* Skip it if the instruction to be moved might clobber CC.  */
3808       if (cc && set_of (cc, insn))
3809 	return FALSE;
3810 
3811       vals->put (dest, src);
3812 
3813       regs->safe_push (dest);
3814     }
3815 
3816   return TRUE;
3817 }
3818 
3819 /* Given a basic block BB suitable for conditional move conversion,
3820    a condition COND, and pointer maps THEN_VALS and ELSE_VALS containing
3821    the register values depending on COND, emit the insns in the block as
3822    conditional moves.  If ELSE_BLOCK is true, THEN_BB was already
3823    processed.  The caller has started a sequence for the conversion.
3824    Return true if successful, false if something goes wrong.  */
3825 
3826 static bool
cond_move_convert_if_block(struct noce_if_info * if_infop,basic_block bb,rtx cond,hash_map<rtx,rtx> * then_vals,hash_map<rtx,rtx> * else_vals,bool else_block_p)3827 cond_move_convert_if_block (struct noce_if_info *if_infop,
3828 			    basic_block bb, rtx cond,
3829 			    hash_map<rtx, rtx> *then_vals,
3830 			    hash_map<rtx, rtx> *else_vals,
3831 			    bool else_block_p)
3832 {
3833   enum rtx_code code;
3834   rtx_insn *insn;
3835   rtx cond_arg0, cond_arg1;
3836 
3837   code = GET_CODE (cond);
3838   cond_arg0 = XEXP (cond, 0);
3839   cond_arg1 = XEXP (cond, 1);
3840 
3841   FOR_BB_INSNS (bb, insn)
3842     {
3843       rtx set, target, dest, t, e;
3844 
3845       /* ??? Maybe emit conditional debug insn?  */
3846       if (!NONDEBUG_INSN_P (insn) || JUMP_P (insn))
3847 	continue;
3848       set = single_set (insn);
3849       gcc_assert (set && REG_P (SET_DEST (set)));
3850 
3851       dest = SET_DEST (set);
3852 
3853       rtx *then_slot = then_vals->get (dest);
3854       rtx *else_slot = else_vals->get (dest);
3855       t = then_slot ? *then_slot : NULL_RTX;
3856       e = else_slot ? *else_slot : NULL_RTX;
3857 
3858       if (else_block_p)
3859 	{
3860 	  /* If this register was set in the then block, we already
3861 	     handled this case there.  */
3862 	  if (t)
3863 	    continue;
3864 	  t = dest;
3865 	  gcc_assert (e);
3866 	}
3867       else
3868 	{
3869 	  gcc_assert (t);
3870 	  if (!e)
3871 	    e = dest;
3872 	}
3873 
3874       target = noce_emit_cmove (if_infop, dest, code, cond_arg0, cond_arg1,
3875 				t, e);
3876       if (!target)
3877 	return false;
3878 
3879       if (target != dest)
3880 	noce_emit_move_insn (dest, target);
3881     }
3882 
3883   return true;
3884 }
3885 
3886 /* Given a simple IF-THEN-JOIN or IF-THEN-ELSE-JOIN block, attempt to convert
3887    it using only conditional moves.  Return TRUE if we were successful at
3888    converting the block.  */
3889 
3890 static int
cond_move_process_if_block(struct noce_if_info * if_info)3891 cond_move_process_if_block (struct noce_if_info *if_info)
3892 {
3893   basic_block test_bb = if_info->test_bb;
3894   basic_block then_bb = if_info->then_bb;
3895   basic_block else_bb = if_info->else_bb;
3896   basic_block join_bb = if_info->join_bb;
3897   rtx_insn *jump = if_info->jump;
3898   rtx cond = if_info->cond;
3899   rtx_insn *seq, *loc_insn;
3900   rtx reg;
3901   int c;
3902   vec<rtx> then_regs = vNULL;
3903   vec<rtx> else_regs = vNULL;
3904   unsigned int i;
3905   int success_p = FALSE;
3906   int limit = param_max_rtl_if_conversion_insns;
3907 
3908   /* Build a mapping for each block to the value used for each
3909      register.  */
3910   hash_map<rtx, rtx> then_vals;
3911   hash_map<rtx, rtx> else_vals;
3912 
3913   /* Make sure the blocks are suitable.  */
3914   if (!check_cond_move_block (then_bb, &then_vals, &then_regs, cond)
3915       || (else_bb
3916 	  && !check_cond_move_block (else_bb, &else_vals, &else_regs, cond)))
3917     goto done;
3918 
3919   /* Make sure the blocks can be used together.  If the same register
3920      is set in both blocks, and is not set to a constant in both
3921      cases, then both blocks must set it to the same register.  We
3922      have already verified that if it is set to a register, that the
3923      source register does not change after the assignment.  Also count
3924      the number of registers set in only one of the blocks.  */
3925   c = 0;
3926   FOR_EACH_VEC_ELT (then_regs, i, reg)
3927     {
3928       rtx *then_slot = then_vals.get (reg);
3929       rtx *else_slot = else_vals.get (reg);
3930 
3931       gcc_checking_assert (then_slot);
3932       if (!else_slot)
3933 	++c;
3934       else
3935 	{
3936 	  rtx then_val = *then_slot;
3937 	  rtx else_val = *else_slot;
3938 	  if (!CONSTANT_P (then_val) && !CONSTANT_P (else_val)
3939 	      && !rtx_equal_p (then_val, else_val))
3940 	    goto done;
3941 	}
3942     }
3943 
3944   /* Finish off c for MAX_CONDITIONAL_EXECUTE.  */
3945   FOR_EACH_VEC_ELT (else_regs, i, reg)
3946     {
3947       gcc_checking_assert (else_vals.get (reg));
3948       if (!then_vals.get (reg))
3949 	++c;
3950     }
3951 
3952   /* Make sure it is reasonable to convert this block.  What matters
3953      is the number of assignments currently made in only one of the
3954      branches, since if we convert we are going to always execute
3955      them.  */
3956   if (c > MAX_CONDITIONAL_EXECUTE
3957       || c > limit)
3958     goto done;
3959 
3960   /* Try to emit the conditional moves.  First do the then block,
3961      then do anything left in the else blocks.  */
3962   start_sequence ();
3963   if (!cond_move_convert_if_block (if_info, then_bb, cond,
3964 				   &then_vals, &else_vals, false)
3965       || (else_bb
3966 	  && !cond_move_convert_if_block (if_info, else_bb, cond,
3967 					  &then_vals, &else_vals, true)))
3968     {
3969       end_sequence ();
3970       goto done;
3971     }
3972   seq = end_ifcvt_sequence (if_info);
3973   if (!seq)
3974     goto done;
3975 
3976   loc_insn = first_active_insn (then_bb);
3977   if (!loc_insn)
3978     {
3979       loc_insn = first_active_insn (else_bb);
3980       gcc_assert (loc_insn);
3981     }
3982   emit_insn_before_setloc (seq, jump, INSN_LOCATION (loc_insn));
3983 
3984   if (else_bb)
3985     {
3986       delete_basic_block (else_bb);
3987       num_true_changes++;
3988     }
3989   else
3990     remove_edge (find_edge (test_bb, join_bb));
3991 
3992   remove_edge (find_edge (then_bb, join_bb));
3993   redirect_edge_and_branch_force (single_succ_edge (test_bb), join_bb);
3994   delete_basic_block (then_bb);
3995   num_true_changes++;
3996 
3997   if (can_merge_blocks_p (test_bb, join_bb))
3998     {
3999       merge_blocks (test_bb, join_bb);
4000       num_true_changes++;
4001     }
4002 
4003   num_updated_if_blocks++;
4004   success_p = TRUE;
4005 
4006 done:
4007   then_regs.release ();
4008   else_regs.release ();
4009   return success_p;
4010 }
4011 
4012 
4013 /* Determine if a given basic block heads a simple IF-THEN-JOIN or an
4014    IF-THEN-ELSE-JOIN block.
4015 
4016    If so, we'll try to convert the insns to not require the branch,
4017    using only transformations that do not require conditional execution.
4018 
4019    Return TRUE if we were successful at converting the block.  */
4020 
4021 static int
noce_find_if_block(basic_block test_bb,edge then_edge,edge else_edge,int pass)4022 noce_find_if_block (basic_block test_bb, edge then_edge, edge else_edge,
4023 		    int pass)
4024 {
4025   basic_block then_bb, else_bb, join_bb;
4026   bool then_else_reversed = false;
4027   rtx_insn *jump;
4028   rtx cond;
4029   rtx_insn *cond_earliest;
4030   struct noce_if_info if_info;
4031   bool speed_p = optimize_bb_for_speed_p (test_bb);
4032 
4033   /* We only ever should get here before reload.  */
4034   gcc_assert (!reload_completed);
4035 
4036   /* Recognize an IF-THEN-ELSE-JOIN block.  */
4037   if (single_pred_p (then_edge->dest)
4038       && single_succ_p (then_edge->dest)
4039       && single_pred_p (else_edge->dest)
4040       && single_succ_p (else_edge->dest)
4041       && single_succ (then_edge->dest) == single_succ (else_edge->dest))
4042     {
4043       then_bb = then_edge->dest;
4044       else_bb = else_edge->dest;
4045       join_bb = single_succ (then_bb);
4046     }
4047   /* Recognize an IF-THEN-JOIN block.  */
4048   else if (single_pred_p (then_edge->dest)
4049 	   && single_succ_p (then_edge->dest)
4050 	   && single_succ (then_edge->dest) == else_edge->dest)
4051     {
4052       then_bb = then_edge->dest;
4053       else_bb = NULL_BLOCK;
4054       join_bb = else_edge->dest;
4055     }
4056   /* Recognize an IF-ELSE-JOIN block.  We can have those because the order
4057      of basic blocks in cfglayout mode does not matter, so the fallthrough
4058      edge can go to any basic block (and not just to bb->next_bb, like in
4059      cfgrtl mode).  */
4060   else if (single_pred_p (else_edge->dest)
4061 	   && single_succ_p (else_edge->dest)
4062 	   && single_succ (else_edge->dest) == then_edge->dest)
4063     {
4064       /* The noce transformations do not apply to IF-ELSE-JOIN blocks.
4065 	 To make this work, we have to invert the THEN and ELSE blocks
4066 	 and reverse the jump condition.  */
4067       then_bb = else_edge->dest;
4068       else_bb = NULL_BLOCK;
4069       join_bb = single_succ (then_bb);
4070       then_else_reversed = true;
4071     }
4072   else
4073     /* Not a form we can handle.  */
4074     return FALSE;
4075 
4076   /* The edges of the THEN and ELSE blocks cannot have complex edges.  */
4077   if (single_succ_edge (then_bb)->flags & EDGE_COMPLEX)
4078     return FALSE;
4079   if (else_bb
4080       && single_succ_edge (else_bb)->flags & EDGE_COMPLEX)
4081     return FALSE;
4082 
4083   num_possible_if_blocks++;
4084 
4085   if (dump_file)
4086     {
4087       fprintf (dump_file,
4088 	       "\nIF-THEN%s-JOIN block found, pass %d, test %d, then %d",
4089 	       (else_bb) ? "-ELSE" : "",
4090 	       pass, test_bb->index, then_bb->index);
4091 
4092       if (else_bb)
4093 	fprintf (dump_file, ", else %d", else_bb->index);
4094 
4095       fprintf (dump_file, ", join %d\n", join_bb->index);
4096     }
4097 
4098   /* If the conditional jump is more than just a conditional
4099      jump, then we cannot do if-conversion on this block.  */
4100   jump = BB_END (test_bb);
4101   if (! onlyjump_p (jump))
4102     return FALSE;
4103 
4104   /* If this is not a standard conditional jump, we can't parse it.  */
4105   cond = noce_get_condition (jump, &cond_earliest, then_else_reversed);
4106   if (!cond)
4107     return FALSE;
4108 
4109   /* We must be comparing objects whose modes imply the size.  */
4110   if (GET_MODE (XEXP (cond, 0)) == BLKmode)
4111     return FALSE;
4112 
4113   /* Initialize an IF_INFO struct to pass around.  */
4114   memset (&if_info, 0, sizeof if_info);
4115   if_info.test_bb = test_bb;
4116   if_info.then_bb = then_bb;
4117   if_info.else_bb = else_bb;
4118   if_info.join_bb = join_bb;
4119   if_info.cond = cond;
4120   rtx_insn *rev_cond_earliest;
4121   if_info.rev_cond = noce_get_condition (jump, &rev_cond_earliest,
4122 					 !then_else_reversed);
4123   gcc_assert (if_info.rev_cond == NULL_RTX
4124 	      || rev_cond_earliest == cond_earliest);
4125   if_info.cond_earliest = cond_earliest;
4126   if_info.jump = jump;
4127   if_info.then_else_reversed = then_else_reversed;
4128   if_info.speed_p = speed_p;
4129   if_info.max_seq_cost
4130     = targetm.max_noce_ifcvt_seq_cost (then_edge);
4131   /* We'll add in the cost of THEN_BB and ELSE_BB later, when we check
4132      that they are valid to transform.  We can't easily get back to the insn
4133      for COND (and it may not exist if we had to canonicalize to get COND),
4134      and jump_insns are always given a cost of 1 by seq_cost, so treat
4135      both instructions as having cost COSTS_N_INSNS (1).  */
4136   if_info.original_cost = COSTS_N_INSNS (2);
4137 
4138 
4139   /* Do the real work.  */
4140 
4141   if (noce_process_if_block (&if_info))
4142     return TRUE;
4143 
4144   if (HAVE_conditional_move
4145       && cond_move_process_if_block (&if_info))
4146     return TRUE;
4147 
4148   return FALSE;
4149 }
4150 
4151 
4152 /* Merge the blocks and mark for local life update.  */
4153 
4154 static void
merge_if_block(struct ce_if_block * ce_info)4155 merge_if_block (struct ce_if_block * ce_info)
4156 {
4157   basic_block test_bb = ce_info->test_bb;	/* last test block */
4158   basic_block then_bb = ce_info->then_bb;	/* THEN */
4159   basic_block else_bb = ce_info->else_bb;	/* ELSE or NULL */
4160   basic_block join_bb = ce_info->join_bb;	/* join block */
4161   basic_block combo_bb;
4162 
4163   /* All block merging is done into the lower block numbers.  */
4164 
4165   combo_bb = test_bb;
4166   df_set_bb_dirty (test_bb);
4167 
4168   /* Merge any basic blocks to handle && and || subtests.  Each of
4169      the blocks are on the fallthru path from the predecessor block.  */
4170   if (ce_info->num_multiple_test_blocks > 0)
4171     {
4172       basic_block bb = test_bb;
4173       basic_block last_test_bb = ce_info->last_test_bb;
4174       basic_block fallthru = block_fallthru (bb);
4175 
4176       do
4177 	{
4178 	  bb = fallthru;
4179 	  fallthru = block_fallthru (bb);
4180 	  merge_blocks (combo_bb, bb);
4181 	  num_true_changes++;
4182 	}
4183       while (bb != last_test_bb);
4184     }
4185 
4186   /* Merge TEST block into THEN block.  Normally the THEN block won't have a
4187      label, but it might if there were || tests.  That label's count should be
4188      zero, and it normally should be removed.  */
4189 
4190   if (then_bb)
4191     {
4192       /* If THEN_BB has no successors, then there's a BARRIER after it.
4193 	 If COMBO_BB has more than one successor (THEN_BB), then that BARRIER
4194 	 is no longer needed, and in fact it is incorrect to leave it in
4195 	 the insn stream.  */
4196       if (EDGE_COUNT (then_bb->succs) == 0
4197 	  && EDGE_COUNT (combo_bb->succs) > 1)
4198 	{
4199 	  rtx_insn *end = NEXT_INSN (BB_END (then_bb));
4200 	  while (end && NOTE_P (end) && !NOTE_INSN_BASIC_BLOCK_P (end))
4201 	    end = NEXT_INSN (end);
4202 
4203 	  if (end && BARRIER_P (end))
4204 	    delete_insn (end);
4205 	}
4206       merge_blocks (combo_bb, then_bb);
4207       num_true_changes++;
4208     }
4209 
4210   /* The ELSE block, if it existed, had a label.  That label count
4211      will almost always be zero, but odd things can happen when labels
4212      get their addresses taken.  */
4213   if (else_bb)
4214     {
4215       /* If ELSE_BB has no successors, then there's a BARRIER after it.
4216 	 If COMBO_BB has more than one successor (ELSE_BB), then that BARRIER
4217 	 is no longer needed, and in fact it is incorrect to leave it in
4218 	 the insn stream.  */
4219       if (EDGE_COUNT (else_bb->succs) == 0
4220 	  && EDGE_COUNT (combo_bb->succs) > 1)
4221 	{
4222 	  rtx_insn *end = NEXT_INSN (BB_END (else_bb));
4223 	  while (end && NOTE_P (end) && !NOTE_INSN_BASIC_BLOCK_P (end))
4224 	    end = NEXT_INSN (end);
4225 
4226 	  if (end && BARRIER_P (end))
4227 	    delete_insn (end);
4228 	}
4229       merge_blocks (combo_bb, else_bb);
4230       num_true_changes++;
4231     }
4232 
4233   /* If there was no join block reported, that means it was not adjacent
4234      to the others, and so we cannot merge them.  */
4235 
4236   if (! join_bb)
4237     {
4238       rtx_insn *last = BB_END (combo_bb);
4239 
4240       /* The outgoing edge for the current COMBO block should already
4241 	 be correct.  Verify this.  */
4242       if (EDGE_COUNT (combo_bb->succs) == 0)
4243 	gcc_assert (find_reg_note (last, REG_NORETURN, NULL)
4244 		    || (NONJUMP_INSN_P (last)
4245 			&& GET_CODE (PATTERN (last)) == TRAP_IF
4246 			&& (TRAP_CONDITION (PATTERN (last))
4247 			    == const_true_rtx)));
4248 
4249       else
4250       /* There should still be something at the end of the THEN or ELSE
4251          blocks taking us to our final destination.  */
4252 	gcc_assert (JUMP_P (last)
4253 		    || (EDGE_SUCC (combo_bb, 0)->dest
4254 			== EXIT_BLOCK_PTR_FOR_FN (cfun)
4255 			&& CALL_P (last)
4256 			&& SIBLING_CALL_P (last))
4257 		    || ((EDGE_SUCC (combo_bb, 0)->flags & EDGE_EH)
4258 			&& can_throw_internal (last)));
4259     }
4260 
4261   /* The JOIN block may have had quite a number of other predecessors too.
4262      Since we've already merged the TEST, THEN and ELSE blocks, we should
4263      have only one remaining edge from our if-then-else diamond.  If there
4264      is more than one remaining edge, it must come from elsewhere.  There
4265      may be zero incoming edges if the THEN block didn't actually join
4266      back up (as with a call to a non-return function).  */
4267   else if (EDGE_COUNT (join_bb->preds) < 2
4268 	   && join_bb != EXIT_BLOCK_PTR_FOR_FN (cfun))
4269     {
4270       /* We can merge the JOIN cleanly and update the dataflow try
4271 	 again on this pass.*/
4272       merge_blocks (combo_bb, join_bb);
4273       num_true_changes++;
4274     }
4275   else
4276     {
4277       /* We cannot merge the JOIN.  */
4278 
4279       /* The outgoing edge for the current COMBO block should already
4280 	 be correct.  Verify this.  */
4281       gcc_assert (single_succ_p (combo_bb)
4282 		  && single_succ (combo_bb) == join_bb);
4283 
4284       /* Remove the jump and cruft from the end of the COMBO block.  */
4285       if (join_bb != EXIT_BLOCK_PTR_FOR_FN (cfun))
4286 	tidy_fallthru_edge (single_succ_edge (combo_bb));
4287     }
4288 
4289   num_updated_if_blocks++;
4290 }
4291 
4292 /* Find a block ending in a simple IF condition and try to transform it
4293    in some way.  When converting a multi-block condition, put the new code
4294    in the first such block and delete the rest.  Return a pointer to this
4295    first block if some transformation was done.  Return NULL otherwise.  */
4296 
4297 static basic_block
find_if_header(basic_block test_bb,int pass)4298 find_if_header (basic_block test_bb, int pass)
4299 {
4300   ce_if_block ce_info;
4301   edge then_edge;
4302   edge else_edge;
4303 
4304   /* The kind of block we're looking for has exactly two successors.  */
4305   if (EDGE_COUNT (test_bb->succs) != 2)
4306     return NULL;
4307 
4308   then_edge = EDGE_SUCC (test_bb, 0);
4309   else_edge = EDGE_SUCC (test_bb, 1);
4310 
4311   if (df_get_bb_dirty (then_edge->dest))
4312     return NULL;
4313   if (df_get_bb_dirty (else_edge->dest))
4314     return NULL;
4315 
4316   /* Neither edge should be abnormal.  */
4317   if ((then_edge->flags & EDGE_COMPLEX)
4318       || (else_edge->flags & EDGE_COMPLEX))
4319     return NULL;
4320 
4321   /* Nor exit the loop.  */
4322   if ((then_edge->flags & EDGE_LOOP_EXIT)
4323       || (else_edge->flags & EDGE_LOOP_EXIT))
4324     return NULL;
4325 
4326   /* The THEN edge is canonically the one that falls through.  */
4327   if (then_edge->flags & EDGE_FALLTHRU)
4328     ;
4329   else if (else_edge->flags & EDGE_FALLTHRU)
4330     std::swap (then_edge, else_edge);
4331   else
4332     /* Otherwise this must be a multiway branch of some sort.  */
4333     return NULL;
4334 
4335   memset (&ce_info, 0, sizeof (ce_info));
4336   ce_info.test_bb = test_bb;
4337   ce_info.then_bb = then_edge->dest;
4338   ce_info.else_bb = else_edge->dest;
4339   ce_info.pass = pass;
4340 
4341 #ifdef IFCVT_MACHDEP_INIT
4342   IFCVT_MACHDEP_INIT (&ce_info);
4343 #endif
4344 
4345   if (!reload_completed
4346       && noce_find_if_block (test_bb, then_edge, else_edge, pass))
4347     goto success;
4348 
4349   if (reload_completed
4350       && targetm.have_conditional_execution ()
4351       && cond_exec_find_if_block (&ce_info))
4352     goto success;
4353 
4354   if (targetm.have_trap ()
4355       && optab_handler (ctrap_optab, word_mode) != CODE_FOR_nothing
4356       && find_cond_trap (test_bb, then_edge, else_edge))
4357     goto success;
4358 
4359   if (dom_info_state (CDI_POST_DOMINATORS) >= DOM_NO_FAST_QUERY
4360       && (reload_completed || !targetm.have_conditional_execution ()))
4361     {
4362       if (find_if_case_1 (test_bb, then_edge, else_edge))
4363 	goto success;
4364       if (find_if_case_2 (test_bb, then_edge, else_edge))
4365 	goto success;
4366     }
4367 
4368   return NULL;
4369 
4370  success:
4371   if (dump_file)
4372     fprintf (dump_file, "Conversion succeeded on pass %d.\n", pass);
4373   /* Set this so we continue looking.  */
4374   cond_exec_changed_p = TRUE;
4375   return ce_info.test_bb;
4376 }
4377 
4378 /* Return true if a block has two edges, one of which falls through to the next
4379    block, and the other jumps to a specific block, so that we can tell if the
4380    block is part of an && test or an || test.  Returns either -1 or the number
4381    of non-note, non-jump, non-USE/CLOBBER insns in the block.  */
4382 
4383 static int
block_jumps_and_fallthru_p(basic_block cur_bb,basic_block target_bb)4384 block_jumps_and_fallthru_p (basic_block cur_bb, basic_block target_bb)
4385 {
4386   edge cur_edge;
4387   int fallthru_p = FALSE;
4388   int jump_p = FALSE;
4389   rtx_insn *insn;
4390   rtx_insn *end;
4391   int n_insns = 0;
4392   edge_iterator ei;
4393 
4394   if (!cur_bb || !target_bb)
4395     return -1;
4396 
4397   /* If no edges, obviously it doesn't jump or fallthru.  */
4398   if (EDGE_COUNT (cur_bb->succs) == 0)
4399     return FALSE;
4400 
4401   FOR_EACH_EDGE (cur_edge, ei, cur_bb->succs)
4402     {
4403       if (cur_edge->flags & EDGE_COMPLEX)
4404 	/* Anything complex isn't what we want.  */
4405 	return -1;
4406 
4407       else if (cur_edge->flags & EDGE_FALLTHRU)
4408 	fallthru_p = TRUE;
4409 
4410       else if (cur_edge->dest == target_bb)
4411 	jump_p = TRUE;
4412 
4413       else
4414 	return -1;
4415     }
4416 
4417   if ((jump_p & fallthru_p) == 0)
4418     return -1;
4419 
4420   /* Don't allow calls in the block, since this is used to group && and ||
4421      together for conditional execution support.  ??? we should support
4422      conditional execution support across calls for IA-64 some day, but
4423      for now it makes the code simpler.  */
4424   end = BB_END (cur_bb);
4425   insn = BB_HEAD (cur_bb);
4426 
4427   while (insn != NULL_RTX)
4428     {
4429       if (CALL_P (insn))
4430 	return -1;
4431 
4432       if (INSN_P (insn)
4433 	  && !JUMP_P (insn)
4434 	  && !DEBUG_INSN_P (insn)
4435 	  && GET_CODE (PATTERN (insn)) != USE
4436 	  && GET_CODE (PATTERN (insn)) != CLOBBER)
4437 	n_insns++;
4438 
4439       if (insn == end)
4440 	break;
4441 
4442       insn = NEXT_INSN (insn);
4443     }
4444 
4445   return n_insns;
4446 }
4447 
4448 /* Determine if a given basic block heads a simple IF-THEN or IF-THEN-ELSE
4449    block.  If so, we'll try to convert the insns to not require the branch.
4450    Return TRUE if we were successful at converting the block.  */
4451 
4452 static int
cond_exec_find_if_block(struct ce_if_block * ce_info)4453 cond_exec_find_if_block (struct ce_if_block * ce_info)
4454 {
4455   basic_block test_bb = ce_info->test_bb;
4456   basic_block then_bb = ce_info->then_bb;
4457   basic_block else_bb = ce_info->else_bb;
4458   basic_block join_bb = NULL_BLOCK;
4459   edge cur_edge;
4460   basic_block next;
4461   edge_iterator ei;
4462 
4463   ce_info->last_test_bb = test_bb;
4464 
4465   /* We only ever should get here after reload,
4466      and if we have conditional execution.  */
4467   gcc_assert (reload_completed && targetm.have_conditional_execution ());
4468 
4469   /* Discover if any fall through predecessors of the current test basic block
4470      were && tests (which jump to the else block) or || tests (which jump to
4471      the then block).  */
4472   if (single_pred_p (test_bb)
4473       && single_pred_edge (test_bb)->flags == EDGE_FALLTHRU)
4474     {
4475       basic_block bb = single_pred (test_bb);
4476       basic_block target_bb;
4477       int max_insns = MAX_CONDITIONAL_EXECUTE;
4478       int n_insns;
4479 
4480       /* Determine if the preceding block is an && or || block.  */
4481       if ((n_insns = block_jumps_and_fallthru_p (bb, else_bb)) >= 0)
4482 	{
4483 	  ce_info->and_and_p = TRUE;
4484 	  target_bb = else_bb;
4485 	}
4486       else if ((n_insns = block_jumps_and_fallthru_p (bb, then_bb)) >= 0)
4487 	{
4488 	  ce_info->and_and_p = FALSE;
4489 	  target_bb = then_bb;
4490 	}
4491       else
4492 	target_bb = NULL_BLOCK;
4493 
4494       if (target_bb && n_insns <= max_insns)
4495 	{
4496 	  int total_insns = 0;
4497 	  int blocks = 0;
4498 
4499 	  ce_info->last_test_bb = test_bb;
4500 
4501 	  /* Found at least one && or || block, look for more.  */
4502 	  do
4503 	    {
4504 	      ce_info->test_bb = test_bb = bb;
4505 	      total_insns += n_insns;
4506 	      blocks++;
4507 
4508 	      if (!single_pred_p (bb))
4509 		break;
4510 
4511 	      bb = single_pred (bb);
4512 	      n_insns = block_jumps_and_fallthru_p (bb, target_bb);
4513 	    }
4514 	  while (n_insns >= 0 && (total_insns + n_insns) <= max_insns);
4515 
4516 	  ce_info->num_multiple_test_blocks = blocks;
4517 	  ce_info->num_multiple_test_insns = total_insns;
4518 
4519 	  if (ce_info->and_and_p)
4520 	    ce_info->num_and_and_blocks = blocks;
4521 	  else
4522 	    ce_info->num_or_or_blocks = blocks;
4523 	}
4524     }
4525 
4526   /* The THEN block of an IF-THEN combo must have exactly one predecessor,
4527      other than any || blocks which jump to the THEN block.  */
4528   if ((EDGE_COUNT (then_bb->preds) - ce_info->num_or_or_blocks) != 1)
4529     return FALSE;
4530 
4531   /* The edges of the THEN and ELSE blocks cannot have complex edges.  */
4532   FOR_EACH_EDGE (cur_edge, ei, then_bb->preds)
4533     {
4534       if (cur_edge->flags & EDGE_COMPLEX)
4535 	return FALSE;
4536     }
4537 
4538   FOR_EACH_EDGE (cur_edge, ei, else_bb->preds)
4539     {
4540       if (cur_edge->flags & EDGE_COMPLEX)
4541 	return FALSE;
4542     }
4543 
4544   /* The THEN block of an IF-THEN combo must have zero or one successors.  */
4545   if (EDGE_COUNT (then_bb->succs) > 0
4546       && (!single_succ_p (then_bb)
4547           || (single_succ_edge (then_bb)->flags & EDGE_COMPLEX)
4548 	  || (epilogue_completed
4549 	      && tablejump_p (BB_END (then_bb), NULL, NULL))))
4550     return FALSE;
4551 
4552   /* If the THEN block has no successors, conditional execution can still
4553      make a conditional call.  Don't do this unless the ELSE block has
4554      only one incoming edge -- the CFG manipulation is too ugly otherwise.
4555      Check for the last insn of the THEN block being an indirect jump, which
4556      is listed as not having any successors, but confuses the rest of the CE
4557      code processing.  ??? we should fix this in the future.  */
4558   if (EDGE_COUNT (then_bb->succs) == 0)
4559     {
4560       if (single_pred_p (else_bb) && else_bb != EXIT_BLOCK_PTR_FOR_FN (cfun))
4561 	{
4562 	  rtx_insn *last_insn = BB_END (then_bb);
4563 
4564 	  while (last_insn
4565 		 && NOTE_P (last_insn)
4566 		 && last_insn != BB_HEAD (then_bb))
4567 	    last_insn = PREV_INSN (last_insn);
4568 
4569 	  if (last_insn
4570 	      && JUMP_P (last_insn)
4571 	      && ! simplejump_p (last_insn))
4572 	    return FALSE;
4573 
4574 	  join_bb = else_bb;
4575 	  else_bb = NULL_BLOCK;
4576 	}
4577       else
4578 	return FALSE;
4579     }
4580 
4581   /* If the THEN block's successor is the other edge out of the TEST block,
4582      then we have an IF-THEN combo without an ELSE.  */
4583   else if (single_succ (then_bb) == else_bb)
4584     {
4585       join_bb = else_bb;
4586       else_bb = NULL_BLOCK;
4587     }
4588 
4589   /* If the THEN and ELSE block meet in a subsequent block, and the ELSE
4590      has exactly one predecessor and one successor, and the outgoing edge
4591      is not complex, then we have an IF-THEN-ELSE combo.  */
4592   else if (single_succ_p (else_bb)
4593 	   && single_succ (then_bb) == single_succ (else_bb)
4594 	   && single_pred_p (else_bb)
4595 	   && !(single_succ_edge (else_bb)->flags & EDGE_COMPLEX)
4596 	   && !(epilogue_completed
4597 		&& tablejump_p (BB_END (else_bb), NULL, NULL)))
4598     join_bb = single_succ (else_bb);
4599 
4600   /* Otherwise it is not an IF-THEN or IF-THEN-ELSE combination.  */
4601   else
4602     return FALSE;
4603 
4604   num_possible_if_blocks++;
4605 
4606   if (dump_file)
4607     {
4608       fprintf (dump_file,
4609 	       "\nIF-THEN%s block found, pass %d, start block %d "
4610 	       "[insn %d], then %d [%d]",
4611 	       (else_bb) ? "-ELSE" : "",
4612 	       ce_info->pass,
4613 	       test_bb->index,
4614 	       BB_HEAD (test_bb) ? (int)INSN_UID (BB_HEAD (test_bb)) : -1,
4615 	       then_bb->index,
4616 	       BB_HEAD (then_bb) ? (int)INSN_UID (BB_HEAD (then_bb)) : -1);
4617 
4618       if (else_bb)
4619 	fprintf (dump_file, ", else %d [%d]",
4620 		 else_bb->index,
4621 		 BB_HEAD (else_bb) ? (int)INSN_UID (BB_HEAD (else_bb)) : -1);
4622 
4623       fprintf (dump_file, ", join %d [%d]",
4624 	       join_bb->index,
4625 	       BB_HEAD (join_bb) ? (int)INSN_UID (BB_HEAD (join_bb)) : -1);
4626 
4627       if (ce_info->num_multiple_test_blocks > 0)
4628 	fprintf (dump_file, ", %d %s block%s last test %d [%d]",
4629 		 ce_info->num_multiple_test_blocks,
4630 		 (ce_info->and_and_p) ? "&&" : "||",
4631 		 (ce_info->num_multiple_test_blocks == 1) ? "" : "s",
4632 		 ce_info->last_test_bb->index,
4633 		 ((BB_HEAD (ce_info->last_test_bb))
4634 		  ? (int)INSN_UID (BB_HEAD (ce_info->last_test_bb))
4635 		  : -1));
4636 
4637       fputc ('\n', dump_file);
4638     }
4639 
4640   /* Make sure IF, THEN, and ELSE, blocks are adjacent.  Actually, we get the
4641      first condition for free, since we've already asserted that there's a
4642      fallthru edge from IF to THEN.  Likewise for the && and || blocks, since
4643      we checked the FALLTHRU flag, those are already adjacent to the last IF
4644      block.  */
4645   /* ??? As an enhancement, move the ELSE block.  Have to deal with
4646      BLOCK notes, if by no other means than backing out the merge if they
4647      exist.  Sticky enough I don't want to think about it now.  */
4648   next = then_bb;
4649   if (else_bb && (next = next->next_bb) != else_bb)
4650     return FALSE;
4651   if ((next = next->next_bb) != join_bb
4652       && join_bb != EXIT_BLOCK_PTR_FOR_FN (cfun))
4653     {
4654       if (else_bb)
4655 	join_bb = NULL;
4656       else
4657 	return FALSE;
4658     }
4659 
4660   /* Do the real work.  */
4661 
4662   ce_info->else_bb = else_bb;
4663   ce_info->join_bb = join_bb;
4664 
4665   /* If we have && and || tests, try to first handle combining the && and ||
4666      tests into the conditional code, and if that fails, go back and handle
4667      it without the && and ||, which at present handles the && case if there
4668      was no ELSE block.  */
4669   if (cond_exec_process_if_block (ce_info, TRUE))
4670     return TRUE;
4671 
4672   if (ce_info->num_multiple_test_blocks)
4673     {
4674       cancel_changes (0);
4675 
4676       if (cond_exec_process_if_block (ce_info, FALSE))
4677 	return TRUE;
4678     }
4679 
4680   return FALSE;
4681 }
4682 
4683 /* Convert a branch over a trap, or a branch
4684    to a trap, into a conditional trap.  */
4685 
4686 static int
find_cond_trap(basic_block test_bb,edge then_edge,edge else_edge)4687 find_cond_trap (basic_block test_bb, edge then_edge, edge else_edge)
4688 {
4689   basic_block then_bb = then_edge->dest;
4690   basic_block else_bb = else_edge->dest;
4691   basic_block other_bb, trap_bb;
4692   rtx_insn *trap, *jump;
4693   rtx cond;
4694   rtx_insn *cond_earliest;
4695 
4696   /* Locate the block with the trap instruction.  */
4697   /* ??? While we look for no successors, we really ought to allow
4698      EH successors.  Need to fix merge_if_block for that to work.  */
4699   if ((trap = block_has_only_trap (then_bb)) != NULL)
4700     trap_bb = then_bb, other_bb = else_bb;
4701   else if ((trap = block_has_only_trap (else_bb)) != NULL)
4702     trap_bb = else_bb, other_bb = then_bb;
4703   else
4704     return FALSE;
4705 
4706   if (dump_file)
4707     {
4708       fprintf (dump_file, "\nTRAP-IF block found, start %d, trap %d\n",
4709 	       test_bb->index, trap_bb->index);
4710     }
4711 
4712   /* If this is not a standard conditional jump, we can't parse it.  */
4713   jump = BB_END (test_bb);
4714   cond = noce_get_condition (jump, &cond_earliest, then_bb == trap_bb);
4715   if (! cond)
4716     return FALSE;
4717 
4718   /* If the conditional jump is more than just a conditional jump, then
4719      we cannot do if-conversion on this block.  Give up for returnjump_p,
4720      changing a conditional return followed by unconditional trap for
4721      conditional trap followed by unconditional return is likely not
4722      beneficial and harder to handle.  */
4723   if (! onlyjump_p (jump) || returnjump_p (jump))
4724     return FALSE;
4725 
4726   /* We must be comparing objects whose modes imply the size.  */
4727   if (GET_MODE (XEXP (cond, 0)) == BLKmode)
4728     return FALSE;
4729 
4730   /* Attempt to generate the conditional trap.  */
4731   rtx_insn *seq = gen_cond_trap (GET_CODE (cond), copy_rtx (XEXP (cond, 0)),
4732 				 copy_rtx (XEXP (cond, 1)),
4733 				 TRAP_CODE (PATTERN (trap)));
4734   if (seq == NULL)
4735     return FALSE;
4736 
4737   /* If that results in an invalid insn, back out.  */
4738   for (rtx_insn *x = seq; x; x = NEXT_INSN (x))
4739     if (recog_memoized (x) < 0)
4740       return FALSE;
4741 
4742   /* Emit the new insns before cond_earliest.  */
4743   emit_insn_before_setloc (seq, cond_earliest, INSN_LOCATION (trap));
4744 
4745   /* Delete the trap block if possible.  */
4746   remove_edge (trap_bb == then_bb ? then_edge : else_edge);
4747   df_set_bb_dirty (test_bb);
4748   df_set_bb_dirty (then_bb);
4749   df_set_bb_dirty (else_bb);
4750 
4751   if (EDGE_COUNT (trap_bb->preds) == 0)
4752     {
4753       delete_basic_block (trap_bb);
4754       num_true_changes++;
4755     }
4756 
4757   /* Wire together the blocks again.  */
4758   if (current_ir_type () == IR_RTL_CFGLAYOUT)
4759     single_succ_edge (test_bb)->flags |= EDGE_FALLTHRU;
4760   else if (trap_bb == then_bb)
4761     {
4762       rtx lab = JUMP_LABEL (jump);
4763       rtx_insn *seq = targetm.gen_jump (lab);
4764       rtx_jump_insn *newjump = emit_jump_insn_after (seq, jump);
4765       LABEL_NUSES (lab) += 1;
4766       JUMP_LABEL (newjump) = lab;
4767       emit_barrier_after (newjump);
4768     }
4769   delete_insn (jump);
4770 
4771   if (can_merge_blocks_p (test_bb, other_bb))
4772     {
4773       merge_blocks (test_bb, other_bb);
4774       num_true_changes++;
4775     }
4776 
4777   num_updated_if_blocks++;
4778   return TRUE;
4779 }
4780 
4781 /* Subroutine of find_cond_trap: if BB contains only a trap insn,
4782    return it.  */
4783 
4784 static rtx_insn *
block_has_only_trap(basic_block bb)4785 block_has_only_trap (basic_block bb)
4786 {
4787   rtx_insn *trap;
4788 
4789   /* We're not the exit block.  */
4790   if (bb == EXIT_BLOCK_PTR_FOR_FN (cfun))
4791     return NULL;
4792 
4793   /* The block must have no successors.  */
4794   if (EDGE_COUNT (bb->succs) > 0)
4795     return NULL;
4796 
4797   /* The only instruction in the THEN block must be the trap.  */
4798   trap = first_active_insn (bb);
4799   if (! (trap == BB_END (bb)
4800 	 && GET_CODE (PATTERN (trap)) == TRAP_IF
4801          && TRAP_CONDITION (PATTERN (trap)) == const_true_rtx))
4802     return NULL;
4803 
4804   return trap;
4805 }
4806 
4807 /* Look for IF-THEN-ELSE cases in which one of THEN or ELSE is
4808    transformable, but not necessarily the other.  There need be no
4809    JOIN block.
4810 
4811    Return TRUE if we were successful at converting the block.
4812 
4813    Cases we'd like to look at:
4814 
4815    (1)
4816 	if (test) goto over; // x not live
4817 	x = a;
4818 	goto label;
4819 	over:
4820 
4821    becomes
4822 
4823 	x = a;
4824 	if (! test) goto label;
4825 
4826    (2)
4827 	if (test) goto E; // x not live
4828 	x = big();
4829 	goto L;
4830 	E:
4831 	x = b;
4832 	goto M;
4833 
4834    becomes
4835 
4836 	x = b;
4837 	if (test) goto M;
4838 	x = big();
4839 	goto L;
4840 
4841    (3) // This one's really only interesting for targets that can do
4842        // multiway branching, e.g. IA-64 BBB bundles.  For other targets
4843        // it results in multiple branches on a cache line, which often
4844        // does not sit well with predictors.
4845 
4846 	if (test1) goto E; // predicted not taken
4847 	x = a;
4848 	if (test2) goto F;
4849 	...
4850 	E:
4851 	x = b;
4852 	J:
4853 
4854    becomes
4855 
4856 	x = a;
4857 	if (test1) goto E;
4858 	if (test2) goto F;
4859 
4860    Notes:
4861 
4862    (A) Don't do (2) if the branch is predicted against the block we're
4863    eliminating.  Do it anyway if we can eliminate a branch; this requires
4864    that the sole successor of the eliminated block postdominate the other
4865    side of the if.
4866 
4867    (B) With CE, on (3) we can steal from both sides of the if, creating
4868 
4869 	if (test1) x = a;
4870 	if (!test1) x = b;
4871 	if (test1) goto J;
4872 	if (test2) goto F;
4873 	...
4874 	J:
4875 
4876    Again, this is most useful if J postdominates.
4877 
4878    (C) CE substitutes for helpful life information.
4879 
4880    (D) These heuristics need a lot of work.  */
4881 
4882 /* Tests for case 1 above.  */
4883 
4884 static int
find_if_case_1(basic_block test_bb,edge then_edge,edge else_edge)4885 find_if_case_1 (basic_block test_bb, edge then_edge, edge else_edge)
4886 {
4887   basic_block then_bb = then_edge->dest;
4888   basic_block else_bb = else_edge->dest;
4889   basic_block new_bb;
4890   int then_bb_index;
4891   profile_probability then_prob;
4892   rtx else_target = NULL_RTX;
4893 
4894   /* If we are partitioning hot/cold basic blocks, we don't want to
4895      mess up unconditional or indirect jumps that cross between hot
4896      and cold sections.
4897 
4898      Basic block partitioning may result in some jumps that appear to
4899      be optimizable (or blocks that appear to be mergeable), but which really
4900      must be left untouched (they are required to make it safely across
4901      partition boundaries).  See  the comments at the top of
4902      bb-reorder.c:partition_hot_cold_basic_blocks for complete details.  */
4903 
4904   if ((BB_END (then_bb)
4905        && JUMP_P (BB_END (then_bb))
4906        && CROSSING_JUMP_P (BB_END (then_bb)))
4907       || (JUMP_P (BB_END (test_bb))
4908 	  && CROSSING_JUMP_P (BB_END (test_bb)))
4909       || (BB_END (else_bb)
4910 	  && JUMP_P (BB_END (else_bb))
4911 	  && CROSSING_JUMP_P (BB_END (else_bb))))
4912     return FALSE;
4913 
4914   /* Verify test_bb ends in a conditional jump with no other side-effects.  */
4915   if (!onlyjump_p (BB_END (test_bb)))
4916     return FALSE;
4917 
4918   /* THEN has one successor.  */
4919   if (!single_succ_p (then_bb))
4920     return FALSE;
4921 
4922   /* THEN does not fall through, but is not strange either.  */
4923   if (single_succ_edge (then_bb)->flags & (EDGE_COMPLEX | EDGE_FALLTHRU))
4924     return FALSE;
4925 
4926   /* THEN has one predecessor.  */
4927   if (!single_pred_p (then_bb))
4928     return FALSE;
4929 
4930   /* THEN must do something.  */
4931   if (forwarder_block_p (then_bb))
4932     return FALSE;
4933 
4934   num_possible_if_blocks++;
4935   if (dump_file)
4936     fprintf (dump_file,
4937 	     "\nIF-CASE-1 found, start %d, then %d\n",
4938 	     test_bb->index, then_bb->index);
4939 
4940   then_prob = then_edge->probability.invert ();
4941 
4942   /* We're speculating from the THEN path, we want to make sure the cost
4943      of speculation is within reason.  */
4944   if (! cheap_bb_rtx_cost_p (then_bb, then_prob,
4945 	COSTS_N_INSNS (BRANCH_COST (optimize_bb_for_speed_p (then_edge->src),
4946 				    predictable_edge_p (then_edge)))))
4947     return FALSE;
4948 
4949   if (else_bb == EXIT_BLOCK_PTR_FOR_FN (cfun))
4950     {
4951       rtx_insn *jump = BB_END (else_edge->src);
4952       gcc_assert (JUMP_P (jump));
4953       else_target = JUMP_LABEL (jump);
4954     }
4955 
4956   /* Registers set are dead, or are predicable.  */
4957   if (! dead_or_predicable (test_bb, then_bb, else_bb,
4958 			    single_succ_edge (then_bb), 1))
4959     return FALSE;
4960 
4961   /* Conversion went ok, including moving the insns and fixing up the
4962      jump.  Adjust the CFG to match.  */
4963 
4964   /* We can avoid creating a new basic block if then_bb is immediately
4965      followed by else_bb, i.e. deleting then_bb allows test_bb to fall
4966      through to else_bb.  */
4967 
4968   if (then_bb->next_bb == else_bb
4969       && then_bb->prev_bb == test_bb
4970       && else_bb != EXIT_BLOCK_PTR_FOR_FN (cfun))
4971     {
4972       redirect_edge_succ (FALLTHRU_EDGE (test_bb), else_bb);
4973       new_bb = 0;
4974     }
4975   else if (else_bb == EXIT_BLOCK_PTR_FOR_FN (cfun))
4976     new_bb = force_nonfallthru_and_redirect (FALLTHRU_EDGE (test_bb),
4977 					     else_bb, else_target);
4978   else
4979     new_bb = redirect_edge_and_branch_force (FALLTHRU_EDGE (test_bb),
4980 					     else_bb);
4981 
4982   df_set_bb_dirty (test_bb);
4983   df_set_bb_dirty (else_bb);
4984 
4985   then_bb_index = then_bb->index;
4986   delete_basic_block (then_bb);
4987 
4988   /* Make rest of code believe that the newly created block is the THEN_BB
4989      block we removed.  */
4990   if (new_bb)
4991     {
4992       df_bb_replace (then_bb_index, new_bb);
4993       /* This should have been done above via force_nonfallthru_and_redirect
4994          (possibly called from redirect_edge_and_branch_force).  */
4995       gcc_checking_assert (BB_PARTITION (new_bb) == BB_PARTITION (test_bb));
4996     }
4997 
4998   num_true_changes++;
4999   num_updated_if_blocks++;
5000   return TRUE;
5001 }
5002 
5003 /* Test for case 2 above.  */
5004 
5005 static int
find_if_case_2(basic_block test_bb,edge then_edge,edge else_edge)5006 find_if_case_2 (basic_block test_bb, edge then_edge, edge else_edge)
5007 {
5008   basic_block then_bb = then_edge->dest;
5009   basic_block else_bb = else_edge->dest;
5010   edge else_succ;
5011   profile_probability then_prob, else_prob;
5012 
5013   /* We do not want to speculate (empty) loop latches.  */
5014   if (current_loops
5015       && else_bb->loop_father->latch == else_bb)
5016     return FALSE;
5017 
5018   /* If we are partitioning hot/cold basic blocks, we don't want to
5019      mess up unconditional or indirect jumps that cross between hot
5020      and cold sections.
5021 
5022      Basic block partitioning may result in some jumps that appear to
5023      be optimizable (or blocks that appear to be mergeable), but which really
5024      must be left untouched (they are required to make it safely across
5025      partition boundaries).  See  the comments at the top of
5026      bb-reorder.c:partition_hot_cold_basic_blocks for complete details.  */
5027 
5028   if ((BB_END (then_bb)
5029        && JUMP_P (BB_END (then_bb))
5030        && CROSSING_JUMP_P (BB_END (then_bb)))
5031       || (JUMP_P (BB_END (test_bb))
5032 	  && CROSSING_JUMP_P (BB_END (test_bb)))
5033       || (BB_END (else_bb)
5034 	  && JUMP_P (BB_END (else_bb))
5035 	  && CROSSING_JUMP_P (BB_END (else_bb))))
5036     return FALSE;
5037 
5038   /* Verify test_bb ends in a conditional jump with no other side-effects.  */
5039   if (!onlyjump_p (BB_END (test_bb)))
5040     return FALSE;
5041 
5042   /* ELSE has one successor.  */
5043   if (!single_succ_p (else_bb))
5044     return FALSE;
5045   else
5046     else_succ = single_succ_edge (else_bb);
5047 
5048   /* ELSE outgoing edge is not complex.  */
5049   if (else_succ->flags & EDGE_COMPLEX)
5050     return FALSE;
5051 
5052   /* ELSE has one predecessor.  */
5053   if (!single_pred_p (else_bb))
5054     return FALSE;
5055 
5056   /* THEN is not EXIT.  */
5057   if (then_bb->index < NUM_FIXED_BLOCKS)
5058     return FALSE;
5059 
5060   else_prob = else_edge->probability;
5061   then_prob = else_prob.invert ();
5062 
5063   /* ELSE is predicted or SUCC(ELSE) postdominates THEN.  */
5064   if (else_prob > then_prob)
5065     ;
5066   else if (else_succ->dest->index < NUM_FIXED_BLOCKS
5067 	   || dominated_by_p (CDI_POST_DOMINATORS, then_bb,
5068 			      else_succ->dest))
5069     ;
5070   else
5071     return FALSE;
5072 
5073   num_possible_if_blocks++;
5074   if (dump_file)
5075     fprintf (dump_file,
5076 	     "\nIF-CASE-2 found, start %d, else %d\n",
5077 	     test_bb->index, else_bb->index);
5078 
5079   /* We're speculating from the ELSE path, we want to make sure the cost
5080      of speculation is within reason.  */
5081   if (! cheap_bb_rtx_cost_p (else_bb, else_prob,
5082 	COSTS_N_INSNS (BRANCH_COST (optimize_bb_for_speed_p (else_edge->src),
5083 				    predictable_edge_p (else_edge)))))
5084     return FALSE;
5085 
5086   /* Registers set are dead, or are predicable.  */
5087   if (! dead_or_predicable (test_bb, else_bb, then_bb, else_succ, 0))
5088     return FALSE;
5089 
5090   /* Conversion went ok, including moving the insns and fixing up the
5091      jump.  Adjust the CFG to match.  */
5092 
5093   df_set_bb_dirty (test_bb);
5094   df_set_bb_dirty (then_bb);
5095   delete_basic_block (else_bb);
5096 
5097   num_true_changes++;
5098   num_updated_if_blocks++;
5099 
5100   /* ??? We may now fallthru from one of THEN's successors into a join
5101      block.  Rerun cleanup_cfg?  Examine things manually?  Wait?  */
5102 
5103   return TRUE;
5104 }
5105 
5106 /* Used by the code above to perform the actual rtl transformations.
5107    Return TRUE if successful.
5108 
5109    TEST_BB is the block containing the conditional branch.  MERGE_BB
5110    is the block containing the code to manipulate.  DEST_EDGE is an
5111    edge representing a jump to the join block; after the conversion,
5112    TEST_BB should be branching to its destination.
5113    REVERSEP is true if the sense of the branch should be reversed.  */
5114 
5115 static int
dead_or_predicable(basic_block test_bb,basic_block merge_bb,basic_block other_bb,edge dest_edge,int reversep)5116 dead_or_predicable (basic_block test_bb, basic_block merge_bb,
5117 		    basic_block other_bb, edge dest_edge, int reversep)
5118 {
5119   basic_block new_dest = dest_edge->dest;
5120   rtx_insn *head, *end, *jump;
5121   rtx_insn *earliest = NULL;
5122   rtx old_dest;
5123   bitmap merge_set = NULL;
5124   /* Number of pending changes.  */
5125   int n_validated_changes = 0;
5126   rtx new_dest_label = NULL_RTX;
5127 
5128   jump = BB_END (test_bb);
5129 
5130   /* Find the extent of the real code in the merge block.  */
5131   head = BB_HEAD (merge_bb);
5132   end = BB_END (merge_bb);
5133 
5134   while (DEBUG_INSN_P (end) && end != head)
5135     end = PREV_INSN (end);
5136 
5137   /* If merge_bb ends with a tablejump, predicating/moving insn's
5138      into test_bb and then deleting merge_bb will result in the jumptable
5139      that follows merge_bb being removed along with merge_bb and then we
5140      get an unresolved reference to the jumptable.  */
5141   if (tablejump_p (end, NULL, NULL))
5142     return FALSE;
5143 
5144   if (LABEL_P (head))
5145     head = NEXT_INSN (head);
5146   while (DEBUG_INSN_P (head) && head != end)
5147     head = NEXT_INSN (head);
5148   if (NOTE_P (head))
5149     {
5150       if (head == end)
5151 	{
5152 	  head = end = NULL;
5153 	  goto no_body;
5154 	}
5155       head = NEXT_INSN (head);
5156       while (DEBUG_INSN_P (head) && head != end)
5157 	head = NEXT_INSN (head);
5158     }
5159 
5160   if (JUMP_P (end))
5161     {
5162       if (!onlyjump_p (end))
5163 	return FALSE;
5164       if (head == end)
5165 	{
5166 	  head = end = NULL;
5167 	  goto no_body;
5168 	}
5169       end = PREV_INSN (end);
5170       while (DEBUG_INSN_P (end) && end != head)
5171 	end = PREV_INSN (end);
5172     }
5173 
5174   /* Don't move frame-related insn across the conditional branch.  This
5175      can lead to one of the paths of the branch having wrong unwind info.  */
5176   if (epilogue_completed)
5177     {
5178       rtx_insn *insn = head;
5179       while (1)
5180 	{
5181 	  if (INSN_P (insn) && RTX_FRAME_RELATED_P (insn))
5182 	    return FALSE;
5183 	  if (insn == end)
5184 	    break;
5185 	  insn = NEXT_INSN (insn);
5186 	}
5187     }
5188 
5189   /* Disable handling dead code by conditional execution if the machine needs
5190      to do anything funny with the tests, etc.  */
5191 #ifndef IFCVT_MODIFY_TESTS
5192   if (targetm.have_conditional_execution ())
5193     {
5194       /* In the conditional execution case, we have things easy.  We know
5195 	 the condition is reversible.  We don't have to check life info
5196 	 because we're going to conditionally execute the code anyway.
5197 	 All that's left is making sure the insns involved can actually
5198 	 be predicated.  */
5199 
5200       rtx cond;
5201 
5202       cond = cond_exec_get_condition (jump);
5203       if (! cond)
5204 	return FALSE;
5205 
5206       rtx note = find_reg_note (jump, REG_BR_PROB, NULL_RTX);
5207       profile_probability prob_val
5208 	  = (note ? profile_probability::from_reg_br_prob_note (XINT (note, 0))
5209 	     : profile_probability::uninitialized ());
5210 
5211       if (reversep)
5212 	{
5213 	  enum rtx_code rev = reversed_comparison_code (cond, jump);
5214 	  if (rev == UNKNOWN)
5215 	    return FALSE;
5216 	  cond = gen_rtx_fmt_ee (rev, GET_MODE (cond), XEXP (cond, 0),
5217 			         XEXP (cond, 1));
5218 	  prob_val = prob_val.invert ();
5219 	}
5220 
5221       if (cond_exec_process_insns (NULL, head, end, cond, prob_val, 0)
5222 	  && verify_changes (0))
5223 	n_validated_changes = num_validated_changes ();
5224       else
5225 	cancel_changes (0);
5226 
5227       earliest = jump;
5228     }
5229 #endif
5230 
5231   /* If we allocated new pseudos (e.g. in the conditional move
5232      expander called from noce_emit_cmove), we must resize the
5233      array first.  */
5234   if (max_regno < max_reg_num ())
5235     max_regno = max_reg_num ();
5236 
5237   /* Try the NCE path if the CE path did not result in any changes.  */
5238   if (n_validated_changes == 0)
5239     {
5240       rtx cond;
5241       rtx_insn *insn;
5242       regset live;
5243       bool success;
5244 
5245       /* In the non-conditional execution case, we have to verify that there
5246 	 are no trapping operations, no calls, no references to memory, and
5247 	 that any registers modified are dead at the branch site.  */
5248 
5249       if (!any_condjump_p (jump))
5250 	return FALSE;
5251 
5252       /* Find the extent of the conditional.  */
5253       cond = noce_get_condition (jump, &earliest, false);
5254       if (!cond)
5255 	return FALSE;
5256 
5257       live = BITMAP_ALLOC (&reg_obstack);
5258       simulate_backwards_to_point (merge_bb, live, end);
5259       success = can_move_insns_across (head, end, earliest, jump,
5260 				       merge_bb, live,
5261 				       df_get_live_in (other_bb), NULL);
5262       BITMAP_FREE (live);
5263       if (!success)
5264 	return FALSE;
5265 
5266       /* Collect the set of registers set in MERGE_BB.  */
5267       merge_set = BITMAP_ALLOC (&reg_obstack);
5268 
5269       FOR_BB_INSNS (merge_bb, insn)
5270 	if (NONDEBUG_INSN_P (insn))
5271 	  df_simulate_find_defs (insn, merge_set);
5272 
5273       /* If shrink-wrapping, disable this optimization when test_bb is
5274 	 the first basic block and merge_bb exits.  The idea is to not
5275 	 move code setting up a return register as that may clobber a
5276 	 register used to pass function parameters, which then must be
5277 	 saved in caller-saved regs.  A caller-saved reg requires the
5278 	 prologue, killing a shrink-wrap opportunity.  */
5279       if ((SHRINK_WRAPPING_ENABLED && !epilogue_completed)
5280 	  && ENTRY_BLOCK_PTR_FOR_FN (cfun)->next_bb == test_bb
5281 	  && single_succ_p (new_dest)
5282 	  && single_succ (new_dest) == EXIT_BLOCK_PTR_FOR_FN (cfun)
5283 	  && bitmap_intersect_p (df_get_live_in (new_dest), merge_set))
5284 	{
5285 	  regset return_regs;
5286 	  unsigned int i;
5287 
5288 	  return_regs = BITMAP_ALLOC (&reg_obstack);
5289 
5290 	  /* Start off with the intersection of regs used to pass
5291 	     params and regs used to return values.  */
5292 	  for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
5293 	    if (FUNCTION_ARG_REGNO_P (i)
5294 		&& targetm.calls.function_value_regno_p (i))
5295 	      bitmap_set_bit (return_regs, INCOMING_REGNO (i));
5296 
5297 	  bitmap_and_into (return_regs,
5298 			   df_get_live_out (ENTRY_BLOCK_PTR_FOR_FN (cfun)));
5299 	  bitmap_and_into (return_regs,
5300 			   df_get_live_in (EXIT_BLOCK_PTR_FOR_FN (cfun)));
5301 	  if (!bitmap_empty_p (return_regs))
5302 	    {
5303 	      FOR_BB_INSNS_REVERSE (new_dest, insn)
5304 		if (NONDEBUG_INSN_P (insn))
5305 		  {
5306 		    df_ref def;
5307 
5308 		    /* If this insn sets any reg in return_regs, add all
5309 		       reg uses to the set of regs we're interested in.  */
5310 		    FOR_EACH_INSN_DEF (def, insn)
5311 		      if (bitmap_bit_p (return_regs, DF_REF_REGNO (def)))
5312 			{
5313 			  df_simulate_uses (insn, return_regs);
5314 			  break;
5315 			}
5316 		  }
5317 	      if (bitmap_intersect_p (merge_set, return_regs))
5318 		{
5319 		  BITMAP_FREE (return_regs);
5320 		  BITMAP_FREE (merge_set);
5321 		  return FALSE;
5322 		}
5323 	    }
5324 	  BITMAP_FREE (return_regs);
5325 	}
5326     }
5327 
5328  no_body:
5329   /* We don't want to use normal invert_jump or redirect_jump because
5330      we don't want to delete_insn called.  Also, we want to do our own
5331      change group management.  */
5332 
5333   old_dest = JUMP_LABEL (jump);
5334   if (other_bb != new_dest)
5335     {
5336       if (!any_condjump_p (jump))
5337 	goto cancel;
5338 
5339       if (JUMP_P (BB_END (dest_edge->src)))
5340 	new_dest_label = JUMP_LABEL (BB_END (dest_edge->src));
5341       else if (new_dest == EXIT_BLOCK_PTR_FOR_FN (cfun))
5342 	new_dest_label = ret_rtx;
5343       else
5344 	new_dest_label = block_label (new_dest);
5345 
5346       rtx_jump_insn *jump_insn = as_a <rtx_jump_insn *> (jump);
5347       if (reversep
5348 	  ? ! invert_jump_1 (jump_insn, new_dest_label)
5349 	  : ! redirect_jump_1 (jump_insn, new_dest_label))
5350 	goto cancel;
5351     }
5352 
5353   if (verify_changes (n_validated_changes))
5354     confirm_change_group ();
5355   else
5356     goto cancel;
5357 
5358   if (other_bb != new_dest)
5359     {
5360       redirect_jump_2 (as_a <rtx_jump_insn *> (jump), old_dest, new_dest_label,
5361 		       0, reversep);
5362 
5363       redirect_edge_succ (BRANCH_EDGE (test_bb), new_dest);
5364       if (reversep)
5365 	{
5366 	  std::swap (BRANCH_EDGE (test_bb)->probability,
5367 		     FALLTHRU_EDGE (test_bb)->probability);
5368 	  update_br_prob_note (test_bb);
5369 	}
5370     }
5371 
5372   /* Move the insns out of MERGE_BB to before the branch.  */
5373   if (head != NULL)
5374     {
5375       rtx_insn *insn;
5376 
5377       if (end == BB_END (merge_bb))
5378 	BB_END (merge_bb) = PREV_INSN (head);
5379 
5380       /* PR 21767: when moving insns above a conditional branch, the REG_EQUAL
5381 	 notes being moved might become invalid.  */
5382       insn = head;
5383       do
5384 	{
5385 	  rtx note;
5386 
5387 	  if (! INSN_P (insn))
5388 	    continue;
5389 	  note = find_reg_note (insn, REG_EQUAL, NULL_RTX);
5390 	  if (! note)
5391 	    continue;
5392 	  remove_note (insn, note);
5393 	} while (insn != end && (insn = NEXT_INSN (insn)));
5394 
5395       /* PR46315: when moving insns above a conditional branch, the REG_EQUAL
5396 	 notes referring to the registers being set might become invalid.  */
5397       if (merge_set)
5398 	{
5399 	  unsigned i;
5400 	  bitmap_iterator bi;
5401 
5402 	  EXECUTE_IF_SET_IN_BITMAP (merge_set, 0, i, bi)
5403 	    remove_reg_equal_equiv_notes_for_regno (i);
5404 
5405 	  BITMAP_FREE (merge_set);
5406 	}
5407 
5408       reorder_insns (head, end, PREV_INSN (earliest));
5409     }
5410 
5411   /* Remove the jump and edge if we can.  */
5412   if (other_bb == new_dest)
5413     {
5414       delete_insn (jump);
5415       remove_edge (BRANCH_EDGE (test_bb));
5416       /* ??? Can't merge blocks here, as then_bb is still in use.
5417 	 At minimum, the merge will get done just before bb-reorder.  */
5418     }
5419 
5420   return TRUE;
5421 
5422  cancel:
5423   cancel_changes (0);
5424 
5425   if (merge_set)
5426     BITMAP_FREE (merge_set);
5427 
5428   return FALSE;
5429 }
5430 
5431 /* Main entry point for all if-conversion.  AFTER_COMBINE is true if
5432    we are after combine pass.  */
5433 
5434 static void
if_convert(bool after_combine)5435 if_convert (bool after_combine)
5436 {
5437   basic_block bb;
5438   int pass;
5439 
5440   if (optimize == 1)
5441     {
5442       df_live_add_problem ();
5443       df_live_set_all_dirty ();
5444     }
5445 
5446   /* Record whether we are after combine pass.  */
5447   ifcvt_after_combine = after_combine;
5448   have_cbranchcc4 = (direct_optab_handler (cbranch_optab, CCmode)
5449 		     != CODE_FOR_nothing);
5450   num_possible_if_blocks = 0;
5451   num_updated_if_blocks = 0;
5452   num_true_changes = 0;
5453 
5454   loop_optimizer_init (AVOID_CFG_MODIFICATIONS);
5455   mark_loop_exit_edges ();
5456   loop_optimizer_finalize ();
5457   free_dominance_info (CDI_DOMINATORS);
5458 
5459   /* Compute postdominators.  */
5460   calculate_dominance_info (CDI_POST_DOMINATORS);
5461 
5462   df_set_flags (DF_LR_RUN_DCE);
5463 
5464   /* Go through each of the basic blocks looking for things to convert.  If we
5465      have conditional execution, we make multiple passes to allow us to handle
5466      IF-THEN{-ELSE} blocks within other IF-THEN{-ELSE} blocks.  */
5467   pass = 0;
5468   do
5469     {
5470       df_analyze ();
5471       /* Only need to do dce on the first pass.  */
5472       df_clear_flags (DF_LR_RUN_DCE);
5473       cond_exec_changed_p = FALSE;
5474       pass++;
5475 
5476 #ifdef IFCVT_MULTIPLE_DUMPS
5477       if (dump_file && pass > 1)
5478 	fprintf (dump_file, "\n\n========== Pass %d ==========\n", pass);
5479 #endif
5480 
5481       FOR_EACH_BB_FN (bb, cfun)
5482 	{
5483           basic_block new_bb;
5484           while (!df_get_bb_dirty (bb)
5485                  && (new_bb = find_if_header (bb, pass)) != NULL)
5486             bb = new_bb;
5487 	}
5488 
5489 #ifdef IFCVT_MULTIPLE_DUMPS
5490       if (dump_file && cond_exec_changed_p)
5491 	print_rtl_with_bb (dump_file, get_insns (), dump_flags);
5492 #endif
5493     }
5494   while (cond_exec_changed_p);
5495 
5496 #ifdef IFCVT_MULTIPLE_DUMPS
5497   if (dump_file)
5498     fprintf (dump_file, "\n\n========== no more changes\n");
5499 #endif
5500 
5501   free_dominance_info (CDI_POST_DOMINATORS);
5502 
5503   if (dump_file)
5504     fflush (dump_file);
5505 
5506   clear_aux_for_blocks ();
5507 
5508   /* If we allocated new pseudos, we must resize the array for sched1.  */
5509   if (max_regno < max_reg_num ())
5510     max_regno = max_reg_num ();
5511 
5512   /* Write the final stats.  */
5513   if (dump_file && num_possible_if_blocks > 0)
5514     {
5515       fprintf (dump_file,
5516 	       "\n%d possible IF blocks searched.\n",
5517 	       num_possible_if_blocks);
5518       fprintf (dump_file,
5519 	       "%d IF blocks converted.\n",
5520 	       num_updated_if_blocks);
5521       fprintf (dump_file,
5522 	       "%d true changes made.\n\n\n",
5523 	       num_true_changes);
5524     }
5525 
5526   if (optimize == 1)
5527     df_remove_problem (df_live);
5528 
5529   /* Some non-cold blocks may now be only reachable from cold blocks.
5530      Fix that up.  */
5531   fixup_partitions ();
5532 
5533   checking_verify_flow_info ();
5534 }
5535 
5536 /* If-conversion and CFG cleanup.  */
5537 static unsigned int
rest_of_handle_if_conversion(void)5538 rest_of_handle_if_conversion (void)
5539 {
5540   int flags = 0;
5541 
5542   if (flag_if_conversion)
5543     {
5544       if (dump_file)
5545 	{
5546 	  dump_reg_info (dump_file);
5547 	  dump_flow_info (dump_file, dump_flags);
5548 	}
5549       cleanup_cfg (CLEANUP_EXPENSIVE);
5550       if_convert (false);
5551       if (num_updated_if_blocks)
5552 	/* Get rid of any dead CC-related instructions.  */
5553 	flags |= CLEANUP_FORCE_FAST_DCE;
5554     }
5555 
5556   cleanup_cfg (flags);
5557   return 0;
5558 }
5559 
5560 namespace {
5561 
5562 const pass_data pass_data_rtl_ifcvt =
5563 {
5564   RTL_PASS, /* type */
5565   "ce1", /* name */
5566   OPTGROUP_NONE, /* optinfo_flags */
5567   TV_IFCVT, /* tv_id */
5568   0, /* properties_required */
5569   0, /* properties_provided */
5570   0, /* properties_destroyed */
5571   0, /* todo_flags_start */
5572   TODO_df_finish, /* todo_flags_finish */
5573 };
5574 
5575 class pass_rtl_ifcvt : public rtl_opt_pass
5576 {
5577 public:
pass_rtl_ifcvt(gcc::context * ctxt)5578   pass_rtl_ifcvt (gcc::context *ctxt)
5579     : rtl_opt_pass (pass_data_rtl_ifcvt, ctxt)
5580   {}
5581 
5582   /* opt_pass methods: */
gate(function *)5583   virtual bool gate (function *)
5584     {
5585       return (optimize > 0) && dbg_cnt (if_conversion);
5586     }
5587 
execute(function *)5588   virtual unsigned int execute (function *)
5589     {
5590       return rest_of_handle_if_conversion ();
5591     }
5592 
5593 }; // class pass_rtl_ifcvt
5594 
5595 } // anon namespace
5596 
5597 rtl_opt_pass *
make_pass_rtl_ifcvt(gcc::context * ctxt)5598 make_pass_rtl_ifcvt (gcc::context *ctxt)
5599 {
5600   return new pass_rtl_ifcvt (ctxt);
5601 }
5602 
5603 
5604 /* Rerun if-conversion, as combine may have simplified things enough
5605    to now meet sequence length restrictions.  */
5606 
5607 namespace {
5608 
5609 const pass_data pass_data_if_after_combine =
5610 {
5611   RTL_PASS, /* type */
5612   "ce2", /* name */
5613   OPTGROUP_NONE, /* optinfo_flags */
5614   TV_IFCVT, /* tv_id */
5615   0, /* properties_required */
5616   0, /* properties_provided */
5617   0, /* properties_destroyed */
5618   0, /* todo_flags_start */
5619   TODO_df_finish, /* todo_flags_finish */
5620 };
5621 
5622 class pass_if_after_combine : public rtl_opt_pass
5623 {
5624 public:
pass_if_after_combine(gcc::context * ctxt)5625   pass_if_after_combine (gcc::context *ctxt)
5626     : rtl_opt_pass (pass_data_if_after_combine, ctxt)
5627   {}
5628 
5629   /* opt_pass methods: */
gate(function *)5630   virtual bool gate (function *)
5631     {
5632       return optimize > 0 && flag_if_conversion
5633 	&& dbg_cnt (if_after_combine);
5634     }
5635 
execute(function *)5636   virtual unsigned int execute (function *)
5637     {
5638       if_convert (true);
5639       return 0;
5640     }
5641 
5642 }; // class pass_if_after_combine
5643 
5644 } // anon namespace
5645 
5646 rtl_opt_pass *
make_pass_if_after_combine(gcc::context * ctxt)5647 make_pass_if_after_combine (gcc::context *ctxt)
5648 {
5649   return new pass_if_after_combine (ctxt);
5650 }
5651 
5652 
5653 namespace {
5654 
5655 const pass_data pass_data_if_after_reload =
5656 {
5657   RTL_PASS, /* type */
5658   "ce3", /* name */
5659   OPTGROUP_NONE, /* optinfo_flags */
5660   TV_IFCVT2, /* tv_id */
5661   0, /* properties_required */
5662   0, /* properties_provided */
5663   0, /* properties_destroyed */
5664   0, /* todo_flags_start */
5665   TODO_df_finish, /* todo_flags_finish */
5666 };
5667 
5668 class pass_if_after_reload : public rtl_opt_pass
5669 {
5670 public:
pass_if_after_reload(gcc::context * ctxt)5671   pass_if_after_reload (gcc::context *ctxt)
5672     : rtl_opt_pass (pass_data_if_after_reload, ctxt)
5673   {}
5674 
5675   /* opt_pass methods: */
gate(function *)5676   virtual bool gate (function *)
5677     {
5678       return optimize > 0 && flag_if_conversion2
5679 	&& dbg_cnt (if_after_reload);
5680     }
5681 
execute(function *)5682   virtual unsigned int execute (function *)
5683     {
5684       if_convert (true);
5685       return 0;
5686     }
5687 
5688 }; // class pass_if_after_reload
5689 
5690 } // anon namespace
5691 
5692 rtl_opt_pass *
make_pass_if_after_reload(gcc::context * ctxt)5693 make_pass_if_after_reload (gcc::context *ctxt)
5694 {
5695   return new pass_if_after_reload (ctxt);
5696 }
5697