xref: /netbsd-src/sys/dev/pci/if_vr.c (revision be6f2fcee7fefd8149c125c7283a8c03adc8149e)
1 /*	$NetBSD: if_vr.c,v 1.138 2024/06/29 12:11:12 riastradh Exp $	*/
2 
3 /*-
4  * Copyright (c) 1998, 1999 The NetBSD Foundation, Inc.
5  * All rights reserved.
6  *
7  * This code is derived from software contributed to The NetBSD Foundation
8  * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
9  * NASA Ames Research Center.
10  *
11  * Redistribution and use in source and binary forms, with or without
12  * modification, are permitted provided that the following conditions
13  * are met:
14  * 1. Redistributions of source code must retain the above copyright
15  *    notice, this list of conditions and the following disclaimer.
16  * 2. Redistributions in binary form must reproduce the above copyright
17  *    notice, this list of conditions and the following disclaimer in the
18  *    documentation and/or other materials provided with the distribution.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
21  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
22  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
23  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
24  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
30  * POSSIBILITY OF SUCH DAMAGE.
31  */
32 
33 /*
34  * Copyright (c) 1997, 1998
35  *	Bill Paul <wpaul@ctr.columbia.edu>.  All rights reserved.
36  *
37  * Redistribution and use in source and binary forms, with or without
38  * modification, are permitted provided that the following conditions
39  * are met:
40  * 1. Redistributions of source code must retain the above copyright
41  *    notice, this list of conditions and the following disclaimer.
42  * 2. Redistributions in binary form must reproduce the above copyright
43  *    notice, this list of conditions and the following disclaimer in the
44  *    documentation and/or other materials provided with the distribution.
45  * 3. All advertising materials mentioning features or use of this software
46  *    must display the following acknowledgement:
47  *	This product includes software developed by Bill Paul.
48  * 4. Neither the name of the author nor the names of any co-contributors
49  *    may be used to endorse or promote products derived from this software
50  *    without specific prior written permission.
51  *
52  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
53  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
54  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
55  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
56  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
57  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
58  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
59  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
60  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
61  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
62  * THE POSSIBILITY OF SUCH DAMAGE.
63  *
64  *	$FreeBSD: if_vr.c,v 1.7 1999/01/10 18:51:49 wpaul Exp $
65  */
66 
67 /*
68  * VIA Rhine fast ethernet PCI NIC driver
69  *
70  * Supports various network adapters based on the VIA Rhine
71  * and Rhine II PCI controllers, including the D-Link DFE530TX.
72  * Datasheets are available at http://www.via.com.tw.
73  *
74  * Written by Bill Paul <wpaul@ctr.columbia.edu>
75  * Electrical Engineering Department
76  * Columbia University, New York City
77  */
78 
79 /*
80  * The VIA Rhine controllers are similar in some respects to the
81  * the DEC tulip chips, except less complicated. The controller
82  * uses an MII bus and an external physical layer interface. The
83  * receiver has a one entry perfect filter and a 64-bit hash table
84  * multicast filter. Transmit and receive descriptors are similar
85  * to the tulip.
86  *
87  * The Rhine has a serious flaw in its transmit DMA mechanism:
88  * transmit buffers must be longword aligned. Unfortunately,
89  * the kernel doesn't guarantee that mbufs will be filled in starting
90  * at longword boundaries, so we have to do a buffer copy before
91  * transmission.
92  *
93  * Apparently, the receive DMA mechanism also has the same flaw.  This
94  * means that on systems with struct alignment requirements, incoming
95  * frames must be copied to a new buffer which shifts the data forward
96  * 2 bytes so that the payload is aligned on a 4-byte boundary.
97  */
98 
99 #include <sys/cdefs.h>
100 __KERNEL_RCSID(0, "$NetBSD: if_vr.c,v 1.138 2024/06/29 12:11:12 riastradh Exp $");
101 
102 
103 
104 #include <sys/param.h>
105 #include <sys/systm.h>
106 #include <sys/callout.h>
107 #include <sys/sockio.h>
108 #include <sys/mbuf.h>
109 #include <sys/kernel.h>
110 #include <sys/socket.h>
111 #include <sys/device.h>
112 
113 #include <sys/rndsource.h>
114 
115 #include <net/if.h>
116 #include <net/if_arp.h>
117 #include <net/if_dl.h>
118 #include <net/if_media.h>
119 #include <net/if_ether.h>
120 
121 #include <net/bpf.h>
122 
123 #include <sys/bus.h>
124 #include <sys/intr.h>
125 #include <machine/endian.h>
126 
127 #include <dev/mii/mii.h>
128 #include <dev/mii/miivar.h>
129 #include <dev/mii/mii_bitbang.h>
130 
131 #include <dev/pci/pcireg.h>
132 #include <dev/pci/pcivar.h>
133 #include <dev/pci/pcidevs.h>
134 
135 #include <dev/pci/if_vrreg.h>
136 
137 #define	VR_USEIOSPACE
138 
139 /*
140  * Various supported device vendors/types and their names.
141  */
142 static const struct device_compatible_entry compat_data[] = {
143 	{ .id = PCI_ID_CODE(PCI_VENDOR_VIATECH,
144 		PCI_PRODUCT_VIATECH_VT3043) },
145 
146 	{ .id = PCI_ID_CODE(PCI_VENDOR_VIATECH,
147 		PCI_PRODUCT_VIATECH_VT6102) },
148 
149 	{ .id = PCI_ID_CODE(PCI_VENDOR_VIATECH,
150 		PCI_PRODUCT_VIATECH_VT6105) },
151 
152 	{ .id = PCI_ID_CODE(PCI_VENDOR_VIATECH,
153 		PCI_PRODUCT_VIATECH_VT6105M) },
154 
155 	{ .id = PCI_ID_CODE(PCI_VENDOR_VIATECH,
156 		PCI_PRODUCT_VIATECH_VT86C100A) },
157 
158 	PCI_COMPAT_EOL
159 };
160 
161 /*
162  * Transmit descriptor list size.
163  */
164 #define	VR_NTXDESC		64
165 #define	VR_NTXDESC_MASK		(VR_NTXDESC - 1)
166 #define	VR_NEXTTX(x)		(((x) + 1) & VR_NTXDESC_MASK)
167 
168 /*
169  * Receive descriptor list size.
170  */
171 #define	VR_NRXDESC		64
172 #define	VR_NRXDESC_MASK		(VR_NRXDESC - 1)
173 #define	VR_NEXTRX(x)		(((x) + 1) & VR_NRXDESC_MASK)
174 
175 /*
176  * Control data structures that are DMA'd to the Rhine chip.  We allocate
177  * them in a single clump that maps to a single DMA segment to make several
178  * things easier.
179  *
180  * Note that since we always copy outgoing packets to aligned transmit
181  * buffers, we can reduce the transmit descriptors to one per packet.
182  */
183 struct vr_control_data {
184 	struct vr_desc		vr_txdescs[VR_NTXDESC];
185 	struct vr_desc		vr_rxdescs[VR_NRXDESC];
186 };
187 
188 #define	VR_CDOFF(x)		offsetof(struct vr_control_data, x)
189 #define	VR_CDTXOFF(x)		VR_CDOFF(vr_txdescs[(x)])
190 #define	VR_CDRXOFF(x)		VR_CDOFF(vr_rxdescs[(x)])
191 
192 /*
193  * Software state of transmit and receive descriptors.
194  */
195 struct vr_descsoft {
196 	struct mbuf		*ds_mbuf;	/* head of mbuf chain */
197 	bus_dmamap_t		ds_dmamap;	/* our DMA map */
198 };
199 
200 struct vr_softc {
201 	device_t		vr_dev;
202 	void			*vr_ih;		/* interrupt cookie */
203 	bus_space_tag_t		vr_bst;		/* bus space tag */
204 	bus_space_handle_t	vr_bsh;		/* bus space handle */
205 	bus_dma_tag_t		vr_dmat;	/* bus DMA tag */
206 	pci_chipset_tag_t	vr_pc;		/* PCI chipset info */
207 	pcitag_t		vr_tag;		/* PCI tag */
208 	struct ethercom		vr_ec;		/* Ethernet common info */
209 	uint8_t			vr_enaddr[ETHER_ADDR_LEN];
210 	struct mii_data		vr_mii;		/* MII/media info */
211 
212 	pcireg_t		vr_id;		/* vendor/product ID */
213 	uint8_t			vr_revid;	/* Rhine chip revision */
214 
215 	callout_t		vr_tick_ch;	/* tick callout */
216 
217 	bus_dmamap_t		vr_cddmamap;	/* control data DMA map */
218 #define	vr_cddma	vr_cddmamap->dm_segs[0].ds_addr
219 
220 	/*
221 	 * Software state for transmit and receive descriptors.
222 	 */
223 	struct vr_descsoft	vr_txsoft[VR_NTXDESC];
224 	struct vr_descsoft	vr_rxsoft[VR_NRXDESC];
225 
226 	/*
227 	 * Control data structures.
228 	 */
229 	struct vr_control_data	*vr_control_data;
230 
231 	int	vr_txpending;		/* number of TX requests pending */
232 	int	vr_txdirty;		/* first dirty TX descriptor */
233 	int	vr_txlast;		/* last used TX descriptor */
234 
235 	int	vr_rxptr;		/* next ready RX descriptor */
236 
237 	uint32_t	vr_save_iobase;
238 	uint32_t	vr_save_membase;
239 	uint32_t	vr_save_irq;
240 
241 	bool		vr_link;
242 	int		vr_flags;
243 #define VR_F_RESTART	0x1		/* restart on next tick */
244 	u_short		vr_if_flags;
245 
246 	krndsource_t rnd_source;	/* random source */
247 };
248 
249 #define	VR_CDTXADDR(sc, x)	((sc)->vr_cddma + VR_CDTXOFF((x)))
250 #define	VR_CDRXADDR(sc, x)	((sc)->vr_cddma + VR_CDRXOFF((x)))
251 
252 #define	VR_CDTX(sc, x)		(&(sc)->vr_control_data->vr_txdescs[(x)])
253 #define	VR_CDRX(sc, x)		(&(sc)->vr_control_data->vr_rxdescs[(x)])
254 
255 #define	VR_DSTX(sc, x)		(&(sc)->vr_txsoft[(x)])
256 #define	VR_DSRX(sc, x)		(&(sc)->vr_rxsoft[(x)])
257 
258 #define	VR_CDTXSYNC(sc, x, ops)						\
259 	bus_dmamap_sync((sc)->vr_dmat, (sc)->vr_cddmamap,		\
260 	    VR_CDTXOFF((x)), sizeof(struct vr_desc), (ops))
261 
262 #define	VR_CDRXSYNC(sc, x, ops)						\
263 	bus_dmamap_sync((sc)->vr_dmat, (sc)->vr_cddmamap,		\
264 	    VR_CDRXOFF((x)), sizeof(struct vr_desc), (ops))
265 
266 /*
267  * Note we rely on MCLBYTES being a power of two below.
268  */
269 #define	VR_INIT_RXDESC(sc, i)						\
270 do {									\
271 	struct vr_desc *__d = VR_CDRX((sc), (i));			\
272 	struct vr_descsoft *__ds = VR_DSRX((sc), (i));			\
273 									\
274 	__d->vr_next = htole32(VR_CDRXADDR((sc), VR_NEXTRX((i))));	\
275 	__d->vr_data = htole32(__ds->ds_dmamap->dm_segs[0].ds_addr);	\
276 	__d->vr_ctl = htole32(VR_RXCTL_CHAIN | VR_RXCTL_RX_INTR |	\
277 	    ((MCLBYTES - 1) & VR_RXCTL_BUFLEN));			\
278 	__d->vr_status = htole32(VR_RXSTAT_FIRSTFRAG |			\
279 	    VR_RXSTAT_LASTFRAG | VR_RXSTAT_OWN);			\
280 	VR_CDRXSYNC((sc), (i), BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); \
281 } while (/* CONSTCOND */ 0)
282 
283 /*
284  * register space access macros
285  */
286 #define	CSR_WRITE_4(sc, reg, val)					\
287 	bus_space_write_4(sc->vr_bst, sc->vr_bsh, reg, val)
288 #define	CSR_WRITE_2(sc, reg, val)					\
289 	bus_space_write_2(sc->vr_bst, sc->vr_bsh, reg, val)
290 #define	CSR_WRITE_1(sc, reg, val)					\
291 	bus_space_write_1(sc->vr_bst, sc->vr_bsh, reg, val)
292 
293 #define	CSR_READ_4(sc, reg)						\
294 	bus_space_read_4(sc->vr_bst, sc->vr_bsh, reg)
295 #define	CSR_READ_2(sc, reg)						\
296 	bus_space_read_2(sc->vr_bst, sc->vr_bsh, reg)
297 #define	CSR_READ_1(sc, reg)						\
298 	bus_space_read_1(sc->vr_bst, sc->vr_bsh, reg)
299 
300 #define	VR_TIMEOUT		1000
301 
302 static int	vr_add_rxbuf(struct vr_softc *, int);
303 
304 static void	vr_rxeof(struct vr_softc *);
305 static void	vr_rxeoc(struct vr_softc *);
306 static void	vr_txeof(struct vr_softc *);
307 static int	vr_intr(void *);
308 static void	vr_start(struct ifnet *);
309 static int	vr_ioctl(struct ifnet *, u_long, void *);
310 static int	vr_init(struct ifnet *);
311 static void	vr_stop(struct ifnet *, int);
312 static void	vr_rxdrain(struct vr_softc *);
313 static void	vr_watchdog(struct ifnet *);
314 static void	vr_tick(void *);
315 
316 static int	vr_mii_readreg(device_t, int, int, uint16_t *);
317 static int	vr_mii_writereg(device_t, int, int, uint16_t);
318 static void	vr_mii_statchg(struct ifnet *);
319 
320 static void	vr_setmulti(struct vr_softc *);
321 static void	vr_reset(struct vr_softc *);
322 static int	vr_restore_state(pci_chipset_tag_t, pcitag_t, device_t,
323     pcireg_t);
324 static bool	vr_resume(device_t, const pmf_qual_t *);
325 
326 int	vr_copy_small = 0;
327 
328 #define	VR_SETBIT(sc, reg, x)				\
329 	CSR_WRITE_1(sc, reg,				\
330 	    CSR_READ_1(sc, reg) | (x))
331 
332 #define	VR_CLRBIT(sc, reg, x)				\
333 	CSR_WRITE_1(sc, reg,				\
334 	    CSR_READ_1(sc, reg) & ~(x))
335 
336 #define	VR_SETBIT16(sc, reg, x)				\
337 	CSR_WRITE_2(sc, reg,				\
338 	    CSR_READ_2(sc, reg) | (x))
339 
340 #define	VR_CLRBIT16(sc, reg, x)				\
341 	CSR_WRITE_2(sc, reg,				\
342 	    CSR_READ_2(sc, reg) & ~(x))
343 
344 #define	VR_SETBIT32(sc, reg, x)				\
345 	CSR_WRITE_4(sc, reg,				\
346 	    CSR_READ_4(sc, reg) | (x))
347 
348 #define	VR_CLRBIT32(sc, reg, x)				\
349 	CSR_WRITE_4(sc, reg,				\
350 	    CSR_READ_4(sc, reg) & ~(x))
351 
352 /*
353  * MII bit-bang glue.
354  */
355 static uint32_t vr_mii_bitbang_read(device_t);
356 static void	vr_mii_bitbang_write(device_t, uint32_t);
357 
358 static const struct mii_bitbang_ops vr_mii_bitbang_ops = {
359 	vr_mii_bitbang_read,
360 	vr_mii_bitbang_write,
361 	{
362 		VR_MIICMD_DATAOUT,	/* MII_BIT_MDO */
363 		VR_MIICMD_DATAIN,	/* MII_BIT_MDI */
364 		VR_MIICMD_CLK,		/* MII_BIT_MDC */
365 		VR_MIICMD_DIR,		/* MII_BIT_DIR_HOST_PHY */
366 		0,			/* MII_BIT_DIR_PHY_HOST */
367 	}
368 };
369 
370 static uint32_t
vr_mii_bitbang_read(device_t self)371 vr_mii_bitbang_read(device_t self)
372 {
373 	struct vr_softc *sc = device_private(self);
374 
375 	return (CSR_READ_1(sc, VR_MIICMD));
376 }
377 
378 static void
vr_mii_bitbang_write(device_t self,uint32_t val)379 vr_mii_bitbang_write(device_t self, uint32_t val)
380 {
381 	struct vr_softc *sc = device_private(self);
382 
383 	CSR_WRITE_1(sc, VR_MIICMD, (val & 0xff) | VR_MIICMD_DIRECTPGM);
384 }
385 
386 /*
387  * Read an PHY register through the MII.
388  */
389 static int
vr_mii_readreg(device_t self,int phy,int reg,uint16_t * val)390 vr_mii_readreg(device_t self, int phy, int reg, uint16_t *val)
391 {
392 	struct vr_softc *sc = device_private(self);
393 
394 	CSR_WRITE_1(sc, VR_MIICMD, VR_MIICMD_DIRECTPGM);
395 	return (mii_bitbang_readreg(self, &vr_mii_bitbang_ops, phy, reg, val));
396 }
397 
398 /*
399  * Write to a PHY register through the MII.
400  */
401 static int
vr_mii_writereg(device_t self,int phy,int reg,uint16_t val)402 vr_mii_writereg(device_t self, int phy, int reg, uint16_t val)
403 {
404 	struct vr_softc *sc = device_private(self);
405 
406 	CSR_WRITE_1(sc, VR_MIICMD, VR_MIICMD_DIRECTPGM);
407 	return mii_bitbang_writereg(self, &vr_mii_bitbang_ops, phy, reg, val);
408 }
409 
410 static void
vr_mii_statchg(struct ifnet * ifp)411 vr_mii_statchg(struct ifnet *ifp)
412 {
413 	struct vr_softc *sc = ifp->if_softc;
414 	int i;
415 
416 	/*
417 	 * In order to fiddle with the 'full-duplex' bit in the netconfig
418 	 * register, we first have to put the transmit and/or receive logic
419 	 * in the idle state.
420 	 */
421 	if ((sc->vr_mii.mii_media_status & IFM_ACTIVE) &&
422 	    IFM_SUBTYPE(sc->vr_mii.mii_media_active) != IFM_NONE) {
423 		sc->vr_link = true;
424 
425 		if (CSR_READ_2(sc, VR_COMMAND) & (VR_CMD_TX_ON | VR_CMD_RX_ON))
426 			VR_CLRBIT16(sc, VR_COMMAND,
427 			    (VR_CMD_TX_ON | VR_CMD_RX_ON));
428 
429 		if (sc->vr_mii.mii_media_active & IFM_FDX)
430 			VR_SETBIT16(sc, VR_COMMAND, VR_CMD_FULLDUPLEX);
431 		else
432 			VR_CLRBIT16(sc, VR_COMMAND, VR_CMD_FULLDUPLEX);
433 
434 		VR_SETBIT16(sc, VR_COMMAND, VR_CMD_TX_ON | VR_CMD_RX_ON);
435 	} else {
436 		sc->vr_link = false;
437 		VR_CLRBIT16(sc, VR_COMMAND, VR_CMD_TX_ON | VR_CMD_RX_ON);
438 		for (i = VR_TIMEOUT; i > 0; i--) {
439 			delay(10);
440 			if (!(CSR_READ_2(sc, VR_COMMAND) &
441 			    (VR_CMD_TX_ON | VR_CMD_RX_ON)))
442 				break;
443 		}
444 		if (i == 0) {
445 #ifdef VR_DEBUG
446 			aprint_error_dev(sc->vr_dev, "rx shutdown error!\n");
447 #endif
448 			sc->vr_flags |= VR_F_RESTART;
449 		}
450 	}
451 }
452 
453 #define	vr_calchash(addr) \
454 	(ether_crc32_be((addr), ETHER_ADDR_LEN) >> 26)
455 
456 /*
457  * Program the 64-bit multicast hash filter.
458  */
459 static void
vr_setmulti(struct vr_softc * sc)460 vr_setmulti(struct vr_softc *sc)
461 {
462 	struct ethercom *ec = &sc->vr_ec;
463 	struct ifnet *ifp = &ec->ec_if;
464 	int h = 0;
465 	uint32_t hashes[2] = { 0, 0 };
466 	struct ether_multistep step;
467 	struct ether_multi *enm;
468 	int mcnt = 0;
469 	uint8_t rxfilt;
470 
471 	rxfilt = CSR_READ_1(sc, VR_RXCFG);
472 
473 	if (ifp->if_flags & IFF_PROMISC) {
474 allmulti:
475 		ifp->if_flags |= IFF_ALLMULTI;
476 		rxfilt |= VR_RXCFG_RX_MULTI;
477 		CSR_WRITE_1(sc, VR_RXCFG, rxfilt);
478 		CSR_WRITE_4(sc, VR_MAR0, 0xFFFFFFFF);
479 		CSR_WRITE_4(sc, VR_MAR1, 0xFFFFFFFF);
480 		return;
481 	}
482 
483 	/* first, zot all the existing hash bits */
484 	CSR_WRITE_4(sc, VR_MAR0, 0);
485 	CSR_WRITE_4(sc, VR_MAR1, 0);
486 
487 	/* now program new ones */
488 	ETHER_LOCK(ec);
489 	ETHER_FIRST_MULTI(step, ec, enm);
490 	while (enm != NULL) {
491 		if (memcmp(enm->enm_addrlo, enm->enm_addrhi,
492 		    ETHER_ADDR_LEN) != 0) {
493 			ETHER_UNLOCK(ec);
494 			goto allmulti;
495 		}
496 
497 		h = vr_calchash(enm->enm_addrlo);
498 
499 		if (h < 32)
500 			hashes[0] |= (1 << h);
501 		else
502 			hashes[1] |= (1 << (h - 32));
503 		ETHER_NEXT_MULTI(step, enm);
504 		mcnt++;
505 	}
506 	ETHER_UNLOCK(ec);
507 
508 	ifp->if_flags &= ~IFF_ALLMULTI;
509 
510 	if (mcnt)
511 		rxfilt |= VR_RXCFG_RX_MULTI;
512 	else
513 		rxfilt &= ~VR_RXCFG_RX_MULTI;
514 
515 	CSR_WRITE_4(sc, VR_MAR0, hashes[0]);
516 	CSR_WRITE_4(sc, VR_MAR1, hashes[1]);
517 	CSR_WRITE_1(sc, VR_RXCFG, rxfilt);
518 }
519 
520 static void
vr_reset(struct vr_softc * sc)521 vr_reset(struct vr_softc *sc)
522 {
523 	int i;
524 
525 	VR_SETBIT16(sc, VR_COMMAND, VR_CMD_RESET);
526 
527 	for (i = 0; i < VR_TIMEOUT; i++) {
528 		DELAY(10);
529 		if (!(CSR_READ_2(sc, VR_COMMAND) & VR_CMD_RESET))
530 			break;
531 	}
532 	if (i == VR_TIMEOUT) {
533 		if (sc->vr_revid < REV_ID_VT3065_A) {
534 			aprint_error_dev(sc->vr_dev,
535 			    "reset never completed!\n");
536 		} else {
537 			/* Use newer force reset command */
538 			aprint_normal_dev(sc->vr_dev,
539 			    "using force reset command.\n");
540 			VR_SETBIT(sc, VR_MISC_CR1, VR_MISCCR1_FORSRST);
541 		}
542 	}
543 
544 	/* Wait a little while for the chip to get its brains in order. */
545 	DELAY(1000);
546 }
547 
548 /*
549  * Initialize an RX descriptor and attach an MBUF cluster.
550  * Note: the length fields are only 11 bits wide, which means the
551  * largest size we can specify is 2047. This is important because
552  * MCLBYTES is 2048, so we have to subtract one otherwise we'll
553  * overflow the field and make a mess.
554  */
555 static int
vr_add_rxbuf(struct vr_softc * sc,int i)556 vr_add_rxbuf(struct vr_softc *sc, int i)
557 {
558 	struct vr_descsoft *ds = VR_DSRX(sc, i);
559 	struct mbuf *m_new;
560 	int error;
561 
562 	MGETHDR(m_new, M_DONTWAIT, MT_DATA);
563 	if (m_new == NULL)
564 		return (ENOBUFS);
565 
566 	MCLGET(m_new, M_DONTWAIT);
567 	if ((m_new->m_flags & M_EXT) == 0) {
568 		m_freem(m_new);
569 		return (ENOBUFS);
570 	}
571 
572 	if (ds->ds_mbuf != NULL)
573 		bus_dmamap_unload(sc->vr_dmat, ds->ds_dmamap);
574 
575 	ds->ds_mbuf = m_new;
576 
577 	error = bus_dmamap_load(sc->vr_dmat, ds->ds_dmamap,
578 	    m_new->m_ext.ext_buf, m_new->m_ext.ext_size, NULL,
579 	    BUS_DMA_READ | BUS_DMA_NOWAIT);
580 	if (error) {
581 		aprint_error_dev(sc->vr_dev,
582 		    "unable to load rx DMA map %d, error = %d\n", i, error);
583 		panic("vr_add_rxbuf");		/* XXX */
584 	}
585 
586 	bus_dmamap_sync(sc->vr_dmat, ds->ds_dmamap, 0,
587 	    ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
588 
589 	VR_INIT_RXDESC(sc, i);
590 
591 	return (0);
592 }
593 
594 /*
595  * A frame has been uploaded: pass the resulting mbuf chain up to
596  * the higher level protocols.
597  */
598 static void
vr_rxeof(struct vr_softc * sc)599 vr_rxeof(struct vr_softc *sc)
600 {
601 	struct mbuf *m;
602 	struct ifnet *ifp;
603 	struct vr_desc *d;
604 	struct vr_descsoft *ds;
605 	int i, total_len;
606 	uint32_t rxstat;
607 
608 	ifp = &sc->vr_ec.ec_if;
609 
610 	for (i = sc->vr_rxptr;; i = VR_NEXTRX(i)) {
611 		d = VR_CDRX(sc, i);
612 		ds = VR_DSRX(sc, i);
613 
614 		VR_CDRXSYNC(sc, i,
615 		    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
616 
617 		rxstat = le32toh(d->vr_status);
618 
619 		if (rxstat & VR_RXSTAT_OWN) {
620 			/*
621 			 * We have processed all of the receive buffers.
622 			 */
623 			break;
624 		}
625 
626 		/*
627 		 * If an error occurs, update stats, clear the
628 		 * status word and leave the mbuf cluster in place:
629 		 * it should simply get re-used next time this descriptor
630 		 * comes up in the ring.
631 		 */
632 		if (rxstat & VR_RXSTAT_RXERR) {
633 			const char *errstr;
634 
635 			if_statinc(ifp, if_ierrors);
636 			switch (rxstat & 0x000000FF) {
637 			case VR_RXSTAT_CRCERR:
638 				errstr = "crc error";
639 				break;
640 			case VR_RXSTAT_FRAMEALIGNERR:
641 				errstr = "frame alignment error";
642 				break;
643 			case VR_RXSTAT_FIFOOFLOW:
644 				errstr = "FIFO overflow";
645 				break;
646 			case VR_RXSTAT_GIANT:
647 				errstr = "received giant packet";
648 				break;
649 			case VR_RXSTAT_RUNT:
650 				errstr = "received runt packet";
651 				break;
652 			case VR_RXSTAT_BUSERR:
653 				errstr = "system bus error";
654 				break;
655 			case VR_RXSTAT_BUFFERR:
656 				errstr = "rx buffer error";
657 				break;
658 			default:
659 				errstr = "unknown rx error";
660 				break;
661 			}
662 			aprint_error_dev(sc->vr_dev, "receive error: %s\n",
663 			    errstr);
664 
665 			VR_INIT_RXDESC(sc, i);
666 
667 			continue;
668 		} else if (!(rxstat & VR_RXSTAT_FIRSTFRAG) ||
669 			   !(rxstat & VR_RXSTAT_LASTFRAG)) {
670 			/*
671 			 * This driver expects to receive whole packets every
672 			 * time.  In case we receive a fragment that is not
673 			 * a complete packet, we discard it.
674 			 */
675 			if_statinc(ifp, if_ierrors);
676 
677 			aprint_error_dev(sc->vr_dev,
678 			    "receive error: incomplete frame; "
679 			    "size = %d, status = 0x%x\n",
680 			    VR_RXBYTES(le32toh(d->vr_status)), rxstat);
681 
682 			VR_INIT_RXDESC(sc, i);
683 
684 			continue;
685 		}
686 
687 		bus_dmamap_sync(sc->vr_dmat, ds->ds_dmamap, 0,
688 		    ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
689 
690 		/* No errors; receive the packet. */
691 		total_len = VR_RXBYTES(le32toh(d->vr_status));
692 #ifdef DIAGNOSTIC
693 		if (total_len == 0) {
694 			/*
695 			 * If we receive a zero-length packet, we probably
696 			 * missed to handle an error condition above.
697 			 * Discard it to avoid a later crash.
698 			 */
699 			if_statinc(ifp, if_ierrors);
700 
701 			aprint_error_dev(sc->vr_dev,
702 			    "receive error: zero-length packet; "
703 			    "status = 0x%x\n", rxstat);
704 
705 			VR_INIT_RXDESC(sc, i);
706 
707 			continue;
708 		}
709 #endif
710 
711 		/*
712 		 * The Rhine chip includes the CRC with every packet.
713 		 * Trim it off here.
714 		 */
715 		total_len -= ETHER_CRC_LEN;
716 
717 #ifdef __NO_STRICT_ALIGNMENT
718 		/*
719 		 * If the packet is small enough to fit in a
720 		 * single header mbuf, allocate one and copy
721 		 * the data into it.  This greatly reduces
722 		 * memory consumption when we receive lots
723 		 * of small packets.
724 		 *
725 		 * Otherwise, we add a new buffer to the receive
726 		 * chain.  If this fails, we drop the packet and
727 		 * recycle the old buffer.
728 		 */
729 		if (vr_copy_small != 0 && total_len <= MHLEN) {
730 			MGETHDR(m, M_DONTWAIT, MT_DATA);
731 			if (m == NULL)
732 				goto dropit;
733 			memcpy(mtod(m, void *),
734 			    mtod(ds->ds_mbuf, void *), total_len);
735 			VR_INIT_RXDESC(sc, i);
736 			bus_dmamap_sync(sc->vr_dmat, ds->ds_dmamap, 0,
737 			    ds->ds_dmamap->dm_mapsize,
738 			    BUS_DMASYNC_PREREAD);
739 		} else {
740 			m = ds->ds_mbuf;
741 			if (vr_add_rxbuf(sc, i) == ENOBUFS) {
742  dropit:
743 				if_statinc(ifp, if_ierrors);
744 				VR_INIT_RXDESC(sc, i);
745 				bus_dmamap_sync(sc->vr_dmat,
746 				    ds->ds_dmamap, 0,
747 				    ds->ds_dmamap->dm_mapsize,
748 				    BUS_DMASYNC_PREREAD);
749 				continue;
750 			}
751 		}
752 #else
753 		/*
754 		 * The Rhine's packet buffers must be 4-byte aligned.
755 		 * But this means that the data after the Ethernet header
756 		 * is misaligned.  We must allocate a new buffer and
757 		 * copy the data, shifted forward 2 bytes.
758 		 */
759 		MGETHDR(m, M_DONTWAIT, MT_DATA);
760 		if (m == NULL) {
761  dropit:
762 			if_statinc(ifp, if_ierrors);
763 			VR_INIT_RXDESC(sc, i);
764 			bus_dmamap_sync(sc->vr_dmat, ds->ds_dmamap, 0,
765 			    ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
766 			continue;
767 		}
768 		if (total_len > (MHLEN - 2)) {
769 			MCLGET(m, M_DONTWAIT);
770 			if ((m->m_flags & M_EXT) == 0) {
771 				m_freem(m);
772 				goto dropit;
773 			}
774 		}
775 		m->m_data += 2;
776 
777 		/*
778 		 * Note that we use clusters for incoming frames, so the
779 		 * buffer is virtually contiguous.
780 		 */
781 		memcpy(mtod(m, void *), mtod(ds->ds_mbuf, void *),
782 		    total_len);
783 
784 		/* Allow the receive descriptor to continue using its mbuf. */
785 		VR_INIT_RXDESC(sc, i);
786 		bus_dmamap_sync(sc->vr_dmat, ds->ds_dmamap, 0,
787 		    ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
788 #endif /* __NO_STRICT_ALIGNMENT */
789 
790 		m_set_rcvif(m, ifp);
791 		m->m_pkthdr.len = m->m_len = total_len;
792 		/* Pass it on. */
793 		if_percpuq_enqueue(ifp->if_percpuq, m);
794 	}
795 
796 	/* Update the receive pointer. */
797 	sc->vr_rxptr = i;
798 }
799 
800 void
vr_rxeoc(struct vr_softc * sc)801 vr_rxeoc(struct vr_softc *sc)
802 {
803 	struct ifnet *ifp;
804 	int i;
805 
806 	ifp = &sc->vr_ec.ec_if;
807 
808 	if_statinc(ifp, if_ierrors);
809 
810 	VR_CLRBIT16(sc, VR_COMMAND, VR_CMD_RX_ON);
811 	for (i = 0; i < VR_TIMEOUT; i++) {
812 		DELAY(10);
813 		if ((CSR_READ_2(sc, VR_COMMAND) & VR_CMD_RX_ON) == 0)
814 			break;
815 	}
816 	if (i == VR_TIMEOUT) {
817 		/* XXX need reset? */
818 		aprint_error_dev(sc->vr_dev, "RX shutdown never completed\n");
819 	}
820 
821 	vr_rxeof(sc);
822 
823 	CSR_WRITE_4(sc, VR_RXADDR, VR_CDRXADDR(sc, sc->vr_rxptr));
824 	VR_SETBIT16(sc, VR_COMMAND, VR_CMD_RX_ON);
825 	VR_SETBIT16(sc, VR_COMMAND, VR_CMD_RX_GO);
826 }
827 
828 /*
829  * A frame was downloaded to the chip. It's safe for us to clean up
830  * the list buffers.
831  */
832 static void
vr_txeof(struct vr_softc * sc)833 vr_txeof(struct vr_softc *sc)
834 {
835 	struct ifnet *ifp = &sc->vr_ec.ec_if;
836 	struct vr_desc *d;
837 	struct vr_descsoft *ds;
838 	uint32_t txstat;
839 	int i, j;
840 
841 	/*
842 	 * Go through our tx list and free mbufs for those
843 	 * frames that have been transmitted.
844 	 */
845 	for (i = sc->vr_txdirty; sc->vr_txpending != 0;
846 	     i = VR_NEXTTX(i), sc->vr_txpending--) {
847 		d = VR_CDTX(sc, i);
848 		ds = VR_DSTX(sc, i);
849 
850 		VR_CDTXSYNC(sc, i,
851 		    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
852 
853 		txstat = le32toh(d->vr_status);
854 
855 		if (txstat & (VR_TXSTAT_ABRT | VR_TXSTAT_UDF)) {
856 			VR_CLRBIT16(sc, VR_COMMAND, VR_CMD_TX_ON);
857 			for (j = 0; j < VR_TIMEOUT; j++) {
858 				DELAY(10);
859 				if ((CSR_READ_2(sc, VR_COMMAND) &
860 				    VR_CMD_TX_ON) == 0)
861 					break;
862 			}
863 			if (j == VR_TIMEOUT) {
864 				/* XXX need reset? */
865 				aprint_error_dev(sc->vr_dev,
866 				    "TX shutdown never completed\n");
867 			}
868 			d->vr_status = htole32(VR_TXSTAT_OWN);
869 			CSR_WRITE_4(sc, VR_TXADDR, VR_CDTXADDR(sc, i));
870 			break;
871 		}
872 
873 		if (txstat & VR_TXSTAT_OWN)
874 			break;
875 
876 		bus_dmamap_sync(sc->vr_dmat, ds->ds_dmamap,
877 		    0, ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
878 		bus_dmamap_unload(sc->vr_dmat, ds->ds_dmamap);
879 		m_freem(ds->ds_mbuf);
880 		ds->ds_mbuf = NULL;
881 
882 		net_stat_ref_t nsr = IF_STAT_GETREF(ifp);
883 		if (txstat & VR_TXSTAT_ERRSUM) {
884 			if_statinc_ref(ifp, nsr, if_oerrors);
885 			if (txstat & VR_TXSTAT_DEFER)
886 				if_statinc_ref(ifp, nsr, if_collisions);
887 			if (txstat & VR_TXSTAT_LATECOLL)
888 				if_statinc_ref(ifp, nsr, if_collisions);
889 		}
890 
891 		if_statadd_ref(ifp, nsr, if_collisions,
892 		    (txstat & VR_TXSTAT_COLLCNT) >> 3);
893 		if_statinc_ref(ifp, nsr, if_opackets);
894 		IF_STAT_PUTREF(ifp);
895 	}
896 
897 	/* Update the dirty transmit buffer pointer. */
898 	sc->vr_txdirty = i;
899 
900 	/*
901 	 * Cancel the watchdog timer if there are no pending
902 	 * transmissions.
903 	 */
904 	if (sc->vr_txpending == 0)
905 		ifp->if_timer = 0;
906 }
907 
908 static int
vr_intr(void * arg)909 vr_intr(void *arg)
910 {
911 	struct vr_softc *sc;
912 	struct ifnet *ifp;
913 	uint16_t status;
914 	int handled = 0, dotx = 0;
915 
916 	sc = arg;
917 	ifp = &sc->vr_ec.ec_if;
918 
919 	/* Suppress unwanted interrupts. */
920 	if ((ifp->if_flags & IFF_UP) == 0) {
921 		vr_stop(ifp, 1);
922 		return (0);
923 	}
924 
925 	/* Disable interrupts. */
926 	CSR_WRITE_2(sc, VR_IMR, 0x0000);
927 
928 	for (;;) {
929 		status = CSR_READ_2(sc, VR_ISR);
930 		if (status)
931 			CSR_WRITE_2(sc, VR_ISR, status);
932 
933 		if ((status & VR_INTRS) == 0)
934 			break;
935 
936 		handled = 1;
937 
938 		rnd_add_uint32(&sc->rnd_source, status);
939 
940 		if (status & VR_ISR_RX_OK)
941 			vr_rxeof(sc);
942 
943 		if (status & VR_ISR_RX_DROPPED) {
944 			aprint_error_dev(sc->vr_dev, "rx packet lost\n");
945 			if_statinc(ifp, if_ierrors);
946 		}
947 
948 		if (status &
949 		    (VR_ISR_RX_ERR | VR_ISR_RX_NOBUF | VR_ISR_RX_OFLOW))
950 			vr_rxeoc(sc);
951 
952 
953 		if (status & (VR_ISR_BUSERR | VR_ISR_TX_UNDERRUN)) {
954 			if (status & VR_ISR_BUSERR)
955 				aprint_error_dev(sc->vr_dev, "PCI bus error\n");
956 			if (status & VR_ISR_TX_UNDERRUN)
957 				aprint_error_dev(sc->vr_dev,
958 				    "transmit underrun\n");
959 			/* vr_init() calls vr_start() */
960 			dotx = 0;
961 			(void)vr_init(ifp);
962 
963 		}
964 
965 		if (status & VR_ISR_TX_OK) {
966 			dotx = 1;
967 			vr_txeof(sc);
968 		}
969 
970 		if (status &
971 		    (VR_ISR_TX_ABRT | VR_ISR_TX_ABRT2 | VR_ISR_TX_UDFI)) {
972 			if (status & (VR_ISR_TX_ABRT | VR_ISR_TX_ABRT2))
973 				aprint_error_dev(sc->vr_dev,
974 				    "transmit aborted\n");
975 			if (status & VR_ISR_TX_UDFI)
976 				aprint_error_dev(sc->vr_dev,
977 				    "transmit underflow\n");
978 			if_statinc(ifp, if_oerrors);
979 			dotx = 1;
980 			vr_txeof(sc);
981 			if (sc->vr_txpending) {
982 				VR_SETBIT16(sc, VR_COMMAND, VR_CMD_TX_ON);
983 				VR_SETBIT16(sc, VR_COMMAND, VR_CMD_TX_GO);
984 			}
985 		}
986 	}
987 
988 	/* Re-enable interrupts. */
989 	CSR_WRITE_2(sc, VR_IMR, VR_INTRS);
990 
991 	if (dotx)
992 		if_schedule_deferred_start(ifp);
993 
994 	return (handled);
995 }
996 
997 /*
998  * Main transmit routine. To avoid having to do mbuf copies, we put pointers
999  * to the mbuf data regions directly in the transmit lists. We also save a
1000  * copy of the pointers since the transmit list fragment pointers are
1001  * physical addresses.
1002  */
1003 static void
vr_start(struct ifnet * ifp)1004 vr_start(struct ifnet *ifp)
1005 {
1006 	struct vr_softc *sc = ifp->if_softc;
1007 	struct mbuf *m0, *m;
1008 	struct vr_desc *d;
1009 	struct vr_descsoft *ds;
1010 	int error, firsttx, nexttx, opending;
1011 
1012 	if ((ifp->if_flags & IFF_RUNNING) == 0)
1013 		return;
1014 	if (sc->vr_link == false)
1015 		return;
1016 
1017 	/*
1018 	 * Remember the previous txpending and the first transmit
1019 	 * descriptor we use.
1020 	 */
1021 	opending = sc->vr_txpending;
1022 	firsttx = VR_NEXTTX(sc->vr_txlast);
1023 
1024 	/*
1025 	 * Loop through the send queue, setting up transmit descriptors
1026 	 * until we drain the queue, or use up all available transmit
1027 	 * descriptors.
1028 	 */
1029 	while (sc->vr_txpending < VR_NTXDESC) {
1030 		/*
1031 		 * Grab a packet off the queue.
1032 		 */
1033 		IFQ_POLL(&ifp->if_snd, m0);
1034 		if (m0 == NULL)
1035 			break;
1036 		m = NULL;
1037 
1038 		/*
1039 		 * Get the next available transmit descriptor.
1040 		 */
1041 		nexttx = VR_NEXTTX(sc->vr_txlast);
1042 		d = VR_CDTX(sc, nexttx);
1043 		ds = VR_DSTX(sc, nexttx);
1044 
1045 		/*
1046 		 * Load the DMA map.  If this fails, the packet didn't
1047 		 * fit in one DMA segment, and we need to copy.  Note,
1048 		 * the packet must also be aligned.
1049 		 * if the packet is too small, copy it too, so we're sure
1050 		 * we have enough room for the pad buffer.
1051 		 */
1052 		if ((mtod(m0, uintptr_t) & 3) != 0 ||
1053 		    m0->m_pkthdr.len < VR_MIN_FRAMELEN ||
1054 		    bus_dmamap_load_mbuf(sc->vr_dmat, ds->ds_dmamap, m0,
1055 		     BUS_DMA_WRITE | BUS_DMA_NOWAIT) != 0) {
1056 			MGETHDR(m, M_DONTWAIT, MT_DATA);
1057 			if (m == NULL) {
1058 				aprint_error_dev(sc->vr_dev,
1059 				    "unable to allocate Tx mbuf\n");
1060 				break;
1061 			}
1062 			if (m0->m_pkthdr.len > MHLEN) {
1063 				MCLGET(m, M_DONTWAIT);
1064 				if ((m->m_flags & M_EXT) == 0) {
1065 					aprint_error_dev(sc->vr_dev,
1066 					    "unable to allocate Tx cluster\n");
1067 					m_freem(m);
1068 					break;
1069 				}
1070 			}
1071 			m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, void *));
1072 			m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len;
1073 			/*
1074 			 * The Rhine doesn't auto-pad, so we have to do this
1075 			 * ourselves.
1076 			 */
1077 			if (m0->m_pkthdr.len < VR_MIN_FRAMELEN) {
1078 				memset(mtod(m, char *) + m0->m_pkthdr.len,
1079 				    0, VR_MIN_FRAMELEN - m0->m_pkthdr.len);
1080 				m->m_pkthdr.len = m->m_len = VR_MIN_FRAMELEN;
1081 			}
1082 			error = bus_dmamap_load_mbuf(sc->vr_dmat,
1083 			    ds->ds_dmamap, m, BUS_DMA_WRITE | BUS_DMA_NOWAIT);
1084 			if (error) {
1085 				m_freem(m);
1086 				aprint_error_dev(sc->vr_dev, "unable to load "
1087 				    "Tx buffer, error = %d\n", error);
1088 				break;
1089 			}
1090 		}
1091 
1092 		IFQ_DEQUEUE(&ifp->if_snd, m0);
1093 		if (m != NULL) {
1094 			m_freem(m0);
1095 			m0 = m;
1096 		}
1097 
1098 		/* Sync the DMA map. */
1099 		bus_dmamap_sync(sc->vr_dmat, ds->ds_dmamap, 0,
1100 		    ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_PREWRITE);
1101 
1102 		/*
1103 		 * Store a pointer to the packet so we can free it later.
1104 		 */
1105 		ds->ds_mbuf = m0;
1106 
1107 		/*
1108 		 * If there's a BPF listener, bounce a copy of this frame
1109 		 * to him.
1110 		 */
1111 		bpf_mtap(ifp, m0, BPF_D_OUT);
1112 
1113 		/*
1114 		 * Fill in the transmit descriptor.
1115 		 */
1116 		d->vr_data = htole32(ds->ds_dmamap->dm_segs[0].ds_addr);
1117 		d->vr_ctl = htole32(m0->m_pkthdr.len);
1118 		d->vr_ctl |= htole32(VR_TXCTL_FIRSTFRAG | VR_TXCTL_LASTFRAG);
1119 
1120 		/*
1121 		 * If this is the first descriptor we're enqueuing,
1122 		 * don't give it to the Rhine yet.  That could cause
1123 		 * a race condition.  We'll do it below.
1124 		 */
1125 		if (nexttx == firsttx)
1126 			d->vr_status = 0;
1127 		else
1128 			d->vr_status = htole32(VR_TXSTAT_OWN);
1129 
1130 		VR_CDTXSYNC(sc, nexttx,
1131 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1132 
1133 		/* Advance the tx pointer. */
1134 		sc->vr_txpending++;
1135 		sc->vr_txlast = nexttx;
1136 	}
1137 
1138 	if (sc->vr_txpending != opending) {
1139 		/*
1140 		 * We enqueued packets.  If the transmitter was idle,
1141 		 * reset the txdirty pointer.
1142 		 */
1143 		if (opending == 0)
1144 			sc->vr_txdirty = firsttx;
1145 
1146 		/*
1147 		 * Cause a transmit interrupt to happen on the
1148 		 * last packet we enqueued.
1149 		 */
1150 		VR_CDTX(sc, sc->vr_txlast)->vr_ctl |= htole32(VR_TXCTL_FINT);
1151 		VR_CDTXSYNC(sc, sc->vr_txlast,
1152 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1153 
1154 		/*
1155 		 * The entire packet chain is set up.  Give the
1156 		 * first descriptor to the Rhine now.
1157 		 */
1158 		VR_CDTX(sc, firsttx)->vr_status = htole32(VR_TXSTAT_OWN);
1159 		VR_CDTXSYNC(sc, firsttx,
1160 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1161 
1162 		/* Start the transmitter. */
1163 		VR_SETBIT16(sc, VR_COMMAND, VR_CMD_TX_GO);
1164 
1165 		/* Set the watchdog timer in case the chip flakes out. */
1166 		ifp->if_timer = 5;
1167 	}
1168 }
1169 
1170 /*
1171  * Initialize the interface.  Must be called at splnet.
1172  */
1173 static int
vr_init(struct ifnet * ifp)1174 vr_init(struct ifnet *ifp)
1175 {
1176 	struct vr_softc *sc = ifp->if_softc;
1177 	struct vr_desc *d;
1178 	struct vr_descsoft *ds;
1179 	int i, error = 0;
1180 
1181 	/* Cancel pending I/O. */
1182 	vr_stop(ifp, 0);
1183 
1184 	/* Reset the Rhine to a known state. */
1185 	vr_reset(sc);
1186 
1187 	/* set DMA length in BCR0 and BCR1 */
1188 	VR_CLRBIT(sc, VR_BCR0, VR_BCR0_DMA_LENGTH);
1189 	VR_SETBIT(sc, VR_BCR0, VR_BCR0_DMA_STORENFWD);
1190 
1191 	VR_CLRBIT(sc, VR_BCR0, VR_BCR0_RX_THRESH);
1192 	VR_SETBIT(sc, VR_BCR0, VR_BCR0_RXTH_128BYTES);
1193 
1194 	VR_CLRBIT(sc, VR_BCR1, VR_BCR1_TX_THRESH);
1195 	VR_SETBIT(sc, VR_BCR1, VR_BCR1_TXTH_STORENFWD);
1196 
1197 	/* set DMA threshold length in RXCFG and TXCFG */
1198 	VR_CLRBIT(sc, VR_RXCFG, VR_RXCFG_RX_THRESH);
1199 	VR_SETBIT(sc, VR_RXCFG, VR_RXTHRESH_128BYTES);
1200 
1201 	VR_CLRBIT(sc, VR_TXCFG, VR_TXCFG_TX_THRESH);
1202 	VR_SETBIT(sc, VR_TXCFG, VR_TXTHRESH_STORENFWD);
1203 
1204 	/*
1205 	 * Initialize the transmit descriptor ring.  txlast is initialized
1206 	 * to the end of the list so that it will wrap around to the first
1207 	 * descriptor when the first packet is transmitted.
1208 	 */
1209 	for (i = 0; i < VR_NTXDESC; i++) {
1210 		d = VR_CDTX(sc, i);
1211 		memset(d, 0, sizeof(struct vr_desc));
1212 		d->vr_next = htole32(VR_CDTXADDR(sc, VR_NEXTTX(i)));
1213 		VR_CDTXSYNC(sc, i, BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1214 	}
1215 	sc->vr_txpending = 0;
1216 	sc->vr_txdirty = 0;
1217 	sc->vr_txlast = VR_NTXDESC - 1;
1218 
1219 	/*
1220 	 * Initialize the receive descriptor ring.
1221 	 */
1222 	for (i = 0; i < VR_NRXDESC; i++) {
1223 		ds = VR_DSRX(sc, i);
1224 		if (ds->ds_mbuf == NULL) {
1225 			if ((error = vr_add_rxbuf(sc, i)) != 0) {
1226 				aprint_error_dev(sc->vr_dev,
1227 				    "unable to allocate or map rx buffer %d, "
1228 				    "error = %d\n", i, error);
1229 				/*
1230 				 * XXX Should attempt to run with fewer receive
1231 				 * XXX buffers instead of just failing.
1232 				 */
1233 				vr_rxdrain(sc);
1234 				goto out;
1235 			}
1236 		} else
1237 			VR_INIT_RXDESC(sc, i);
1238 	}
1239 	sc->vr_rxptr = 0;
1240 
1241 	/* If we want promiscuous mode, set the allframes bit. */
1242 	if (ifp->if_flags & IFF_PROMISC)
1243 		VR_SETBIT(sc, VR_RXCFG, VR_RXCFG_RX_PROMISC);
1244 	else
1245 		VR_CLRBIT(sc, VR_RXCFG, VR_RXCFG_RX_PROMISC);
1246 
1247 	/* Set capture broadcast bit to capture broadcast frames. */
1248 	if (ifp->if_flags & IFF_BROADCAST)
1249 		VR_SETBIT(sc, VR_RXCFG, VR_RXCFG_RX_BROAD);
1250 	else
1251 		VR_CLRBIT(sc, VR_RXCFG, VR_RXCFG_RX_BROAD);
1252 
1253 	/* Program the multicast filter, if necessary. */
1254 	vr_setmulti(sc);
1255 
1256 	/* Give the transmit and receive rings to the Rhine. */
1257 	CSR_WRITE_4(sc, VR_RXADDR, VR_CDRXADDR(sc, sc->vr_rxptr));
1258 	CSR_WRITE_4(sc, VR_TXADDR, VR_CDTXADDR(sc, VR_NEXTTX(sc->vr_txlast)));
1259 
1260 	/* Set current media. */
1261 	sc->vr_link = true;
1262 	if ((error = ether_mediachange(ifp)) != 0)
1263 		goto out;
1264 
1265 	/* Enable receiver and transmitter. */
1266 	CSR_WRITE_2(sc, VR_COMMAND, VR_CMD_TX_NOPOLL | VR_CMD_START |
1267 				    VR_CMD_TX_ON | VR_CMD_RX_ON |
1268 				    VR_CMD_RX_GO);
1269 
1270 	/* Enable interrupts. */
1271 	CSR_WRITE_2(sc, VR_ISR, 0xFFFF);
1272 	CSR_WRITE_2(sc, VR_IMR, VR_INTRS);
1273 
1274 	ifp->if_flags |= IFF_RUNNING;
1275 
1276 	/* Start one second timer. */
1277 	callout_schedule(&sc->vr_tick_ch, hz);
1278 
1279 	/* Attempt to start output on the interface. */
1280 	vr_start(ifp);
1281 
1282  out:
1283 	if (error)
1284 		aprint_error_dev(sc->vr_dev, "interface not running\n");
1285 	return (error);
1286 }
1287 
1288 static int
vr_ioctl(struct ifnet * ifp,u_long command,void * data)1289 vr_ioctl(struct ifnet *ifp, u_long command, void *data)
1290 {
1291 	struct vr_softc *sc = ifp->if_softc;
1292 	int s, error = 0;
1293 
1294 	s = splnet();
1295 
1296 	switch (command) {
1297 	case SIOCSIFFLAGS:
1298 		if ((error = ifioctl_common(ifp, command, data)) != 0)
1299 			break;
1300 
1301 		switch (ifp->if_flags & (IFF_UP | IFF_RUNNING)) {
1302 		case IFF_RUNNING:
1303 			vr_stop(ifp, 1);
1304 			break;
1305 		case IFF_UP:
1306 			vr_init(ifp);
1307 			break;
1308 		case IFF_UP | IFF_RUNNING:
1309 			if ((ifp->if_flags ^ sc->vr_if_flags) == IFF_PROMISC)
1310 				vr_setmulti(sc);
1311 			else
1312 				vr_init(ifp);
1313 			break;
1314 		}
1315 		sc->vr_if_flags = ifp->if_flags;
1316 		break;
1317 	default:
1318 		if ((error = ether_ioctl(ifp, command, data)) != ENETRESET)
1319 			break;
1320 		error = 0;
1321 		if (command == SIOCADDMULTI || command == SIOCDELMULTI)
1322 			vr_setmulti(sc);
1323 	}
1324 	splx(s);
1325 
1326 	return error;
1327 }
1328 
1329 static void
vr_watchdog(struct ifnet * ifp)1330 vr_watchdog(struct ifnet *ifp)
1331 {
1332 	struct vr_softc *sc = ifp->if_softc;
1333 
1334 	aprint_error_dev(sc->vr_dev, "device timeout\n");
1335 	if_statinc(ifp, if_oerrors);
1336 
1337 	(void) vr_init(ifp);
1338 }
1339 
1340 /*
1341  * One second timer, used to tick MII.
1342  */
1343 static void
vr_tick(void * arg)1344 vr_tick(void *arg)
1345 {
1346 	struct vr_softc *sc = arg;
1347 	int s;
1348 
1349 	s = splnet();
1350 	if (sc->vr_flags & VR_F_RESTART) {
1351 		aprint_normal_dev(sc->vr_dev, "restarting\n");
1352 		vr_init(&sc->vr_ec.ec_if);
1353 		sc->vr_flags &= ~VR_F_RESTART;
1354 	}
1355 	mii_tick(&sc->vr_mii);
1356 	splx(s);
1357 
1358 	callout_schedule(&sc->vr_tick_ch, hz);
1359 }
1360 
1361 /*
1362  * Drain the receive queue.
1363  */
1364 static void
vr_rxdrain(struct vr_softc * sc)1365 vr_rxdrain(struct vr_softc *sc)
1366 {
1367 	struct vr_descsoft *ds;
1368 	int i;
1369 
1370 	for (i = 0; i < VR_NRXDESC; i++) {
1371 		ds = VR_DSRX(sc, i);
1372 		if (ds->ds_mbuf != NULL) {
1373 			bus_dmamap_unload(sc->vr_dmat, ds->ds_dmamap);
1374 			m_freem(ds->ds_mbuf);
1375 			ds->ds_mbuf = NULL;
1376 		}
1377 	}
1378 }
1379 
1380 /*
1381  * Stop the adapter and free any mbufs allocated to the
1382  * transmit lists.
1383  */
1384 static void
vr_stop(struct ifnet * ifp,int disable)1385 vr_stop(struct ifnet *ifp, int disable)
1386 {
1387 	struct vr_softc *sc = ifp->if_softc;
1388 	struct vr_descsoft *ds;
1389 	int i;
1390 
1391 	/* Cancel one second timer. */
1392 	callout_stop(&sc->vr_tick_ch);
1393 
1394 	/* Down the MII. */
1395 	mii_down(&sc->vr_mii);
1396 
1397 	ifp = &sc->vr_ec.ec_if;
1398 	ifp->if_timer = 0;
1399 
1400 	VR_SETBIT16(sc, VR_COMMAND, VR_CMD_STOP);
1401 	VR_CLRBIT16(sc, VR_COMMAND, (VR_CMD_RX_ON | VR_CMD_TX_ON));
1402 	CSR_WRITE_2(sc, VR_IMR, 0x0000);
1403 	CSR_WRITE_4(sc, VR_TXADDR, 0x00000000);
1404 	CSR_WRITE_4(sc, VR_RXADDR, 0x00000000);
1405 
1406 	/*
1407 	 * Release any queued transmit buffers.
1408 	 */
1409 	for (i = 0; i < VR_NTXDESC; i++) {
1410 		ds = VR_DSTX(sc, i);
1411 		if (ds->ds_mbuf != NULL) {
1412 			bus_dmamap_unload(sc->vr_dmat, ds->ds_dmamap);
1413 			m_freem(ds->ds_mbuf);
1414 			ds->ds_mbuf = NULL;
1415 		}
1416 	}
1417 
1418 	/*
1419 	 * Mark the interface down and cancel the watchdog timer.
1420 	 */
1421 	ifp->if_flags &= ~IFF_RUNNING;
1422 	ifp->if_timer = 0;
1423 
1424 	if (disable)
1425 		vr_rxdrain(sc);
1426 }
1427 
1428 static int	vr_probe(device_t, cfdata_t, void *);
1429 static void	vr_attach(device_t, device_t, void *);
1430 static bool	vr_shutdown(device_t, int);
1431 
1432 CFATTACH_DECL_NEW(vr, sizeof (struct vr_softc),
1433     vr_probe, vr_attach, NULL, NULL);
1434 
1435 static int
vr_probe(device_t parent,cfdata_t match,void * aux)1436 vr_probe(device_t parent, cfdata_t match, void *aux)
1437 {
1438 	struct pci_attach_args *pa = (struct pci_attach_args *)aux;
1439 
1440 	return pci_compatible_match(pa, compat_data);
1441 }
1442 
1443 /*
1444  * Stop all chip I/O so that the kernel's probe routines don't
1445  * get confused by errant DMAs when rebooting.
1446  */
1447 static bool
vr_shutdown(device_t self,int howto)1448 vr_shutdown(device_t self, int howto)
1449 {
1450 	struct vr_softc *sc = device_private(self);
1451 
1452 	vr_stop(&sc->vr_ec.ec_if, 1);
1453 
1454 	return true;
1455 }
1456 
1457 /*
1458  * Attach the interface. Allocate softc structures, do ifmedia
1459  * setup and ethernet/BPF attach.
1460  */
1461 static void
vr_attach(device_t parent,device_t self,void * aux)1462 vr_attach(device_t parent, device_t self, void *aux)
1463 {
1464 	struct vr_softc *sc = device_private(self);
1465 	struct pci_attach_args *pa = (struct pci_attach_args *) aux;
1466 	bus_dma_segment_t seg;
1467 	uint32_t reg;
1468 	struct ifnet *ifp;
1469 	struct mii_data * const mii = &sc->vr_mii;
1470 	uint8_t eaddr[ETHER_ADDR_LEN], mac;
1471 	int i, rseg, error;
1472 	char intrbuf[PCI_INTRSTR_LEN];
1473 
1474 #define	PCI_CONF_WRITE(r, v)	pci_conf_write(sc->vr_pc, sc->vr_tag, (r), (v))
1475 #define	PCI_CONF_READ(r)	pci_conf_read(sc->vr_pc, sc->vr_tag, (r))
1476 
1477 	sc->vr_dev = self;
1478 	sc->vr_pc = pa->pa_pc;
1479 	sc->vr_tag = pa->pa_tag;
1480 	sc->vr_id = pa->pa_id;
1481 	callout_init(&sc->vr_tick_ch, 0);
1482 	callout_setfunc(&sc->vr_tick_ch, vr_tick, sc);
1483 
1484 	pci_aprint_devinfo(pa, NULL);
1485 
1486 	/*
1487 	 * Handle power management nonsense.
1488 	 */
1489 
1490 	sc->vr_save_iobase = PCI_CONF_READ(VR_PCI_LOIO);
1491 	sc->vr_save_membase = PCI_CONF_READ(VR_PCI_LOMEM);
1492 	sc->vr_save_irq = PCI_CONF_READ(PCI_INTERRUPT_REG);
1493 
1494 	/* power up chip */
1495 	if ((error = pci_activate(pa->pa_pc, pa->pa_tag, self,
1496 	    vr_restore_state)) && error != EOPNOTSUPP) {
1497 		aprint_error_dev(self, "cannot activate %d\n", error);
1498 		return;
1499 	}
1500 
1501 	/* Make sure bus mastering is enabled. */
1502 	reg = PCI_CONF_READ(PCI_COMMAND_STATUS_REG);
1503 	reg |= PCI_COMMAND_MASTER_ENABLE;
1504 	PCI_CONF_WRITE(PCI_COMMAND_STATUS_REG, reg);
1505 
1506 	/* Get revision */
1507 	sc->vr_revid = PCI_REVISION(pa->pa_class);
1508 
1509 	/*
1510 	 * Map control/status registers.
1511 	 */
1512 	{
1513 		bus_space_tag_t iot, memt;
1514 		bus_space_handle_t ioh, memh;
1515 		int ioh_valid, memh_valid;
1516 		pci_intr_handle_t intrhandle;
1517 		const char *intrstr;
1518 
1519 		ioh_valid = (pci_mapreg_map(pa, VR_PCI_LOIO,
1520 			PCI_MAPREG_TYPE_IO, 0,
1521 			&iot, &ioh, NULL, NULL) == 0);
1522 		memh_valid = (pci_mapreg_map(pa, VR_PCI_LOMEM,
1523 			PCI_MAPREG_TYPE_MEM |
1524 			PCI_MAPREG_MEM_TYPE_32BIT,
1525 			0, &memt, &memh, NULL, NULL) == 0);
1526 #if defined(VR_USEIOSPACE)
1527 		if (ioh_valid) {
1528 			sc->vr_bst = iot;
1529 			sc->vr_bsh = ioh;
1530 		} else if (memh_valid) {
1531 			sc->vr_bst = memt;
1532 			sc->vr_bsh = memh;
1533 		}
1534 #else
1535 		if (memh_valid) {
1536 			sc->vr_bst = memt;
1537 			sc->vr_bsh = memh;
1538 		} else if (ioh_valid) {
1539 			sc->vr_bst = iot;
1540 			sc->vr_bsh = ioh;
1541 		}
1542 #endif
1543 		else {
1544 			aprint_error_dev(self,
1545 			    "unable to map device registers\n");
1546 			return;
1547 		}
1548 
1549 		/* Allocate interrupt */
1550 		if (pci_intr_map(pa, &intrhandle)) {
1551 			aprint_error_dev(self, "couldn't map interrupt\n");
1552 			return;
1553 		}
1554 		intrstr = pci_intr_string(pa->pa_pc, intrhandle, intrbuf,
1555 		    sizeof(intrbuf));
1556 		sc->vr_ih = pci_intr_establish_xname(pa->pa_pc, intrhandle,
1557 		    IPL_NET, vr_intr, sc, device_xname(self));
1558 		if (sc->vr_ih == NULL) {
1559 			aprint_error_dev(self, "couldn't establish interrupt");
1560 			if (intrstr != NULL)
1561 				aprint_error(" at %s", intrstr);
1562 			aprint_error("\n");
1563 			return;
1564 		}
1565 		aprint_normal_dev(self, "interrupting at %s\n", intrstr);
1566 	}
1567 
1568 	/*
1569 	 * Windows may put the chip in suspend mode when it
1570 	 * shuts down. Be sure to kick it in the head to wake it
1571 	 * up again.
1572 	 *
1573 	 * Don't touch this register on VT3043 since it causes
1574 	 * kernel MCHK trap on macppc.
1575 	 * (Note some VT86C100A chip returns a product ID of VT3043)
1576 	 */
1577 	if (PCI_PRODUCT(pa->pa_id) != PCI_PRODUCT_VIATECH_VT3043)
1578 		VR_CLRBIT(sc, VR_STICKHW, (VR_STICKHW_DS0 | VR_STICKHW_DS1));
1579 
1580 	/* Reset the adapter. */
1581 	vr_reset(sc);
1582 
1583 	/*
1584 	 * Get station address. The way the Rhine chips work,
1585 	 * you're not allowed to directly access the EEPROM once
1586 	 * they've been programmed a special way. Consequently,
1587 	 * we need to read the node address from the PAR registers.
1588 	 *
1589 	 * XXXSCW: On the Rhine III, setting VR_EECSR_LOAD forces a reload
1590 	 *         of the *whole* EEPROM, not just the MAC address. This is
1591 	 *         pretty pointless since the chip does this automatically
1592 	 *         at powerup/reset.
1593 	 *         I suspect the same thing applies to the other Rhine
1594 	 *         variants, but in the absence of a data sheet for those
1595 	 *         (and the lack of anyone else noticing the problems this
1596 	 *         causes) I'm going to retain the old behaviour for the
1597 	 *         other parts.
1598 	 *         In some cases, the chip really does startup without having
1599 	 *         read the EEPROM (kern/34812). To handle this case, we force
1600 	 *         a reload if we see an all-zeroes MAC address.
1601 	 */
1602 	for (mac = 0, i = 0; i < ETHER_ADDR_LEN; i++)
1603 		mac |= (eaddr[i] = CSR_READ_1(sc, VR_PAR0 + i));
1604 
1605 	if (mac == 0 || (PCI_PRODUCT(pa->pa_id) != PCI_PRODUCT_VIATECH_VT6105 &&
1606 	    PCI_PRODUCT(pa->pa_id) != PCI_PRODUCT_VIATECH_VT6102)) {
1607 		VR_SETBIT(sc, VR_EECSR, VR_EECSR_LOAD);
1608 		DELAY(200);
1609 		for (i = 0; i < ETHER_ADDR_LEN; i++)
1610 			eaddr[i] = CSR_READ_1(sc, VR_PAR0 + i);
1611 	}
1612 
1613 	/*
1614 	 * A Rhine chip was detected. Inform the world.
1615 	 */
1616 	aprint_normal_dev(self, "Ethernet address %s\n", ether_sprintf(eaddr));
1617 
1618 	memcpy(sc->vr_enaddr, eaddr, ETHER_ADDR_LEN);
1619 
1620 	sc->vr_dmat = pa->pa_dmat;
1621 
1622 	/*
1623 	 * Allocate the control data structures, and create and load
1624 	 * the DMA map for it.
1625 	 */
1626 	if ((error = bus_dmamem_alloc(sc->vr_dmat,
1627 	    sizeof(struct vr_control_data), PAGE_SIZE, 0, &seg, 1, &rseg,
1628 	    0)) != 0) {
1629 		aprint_error_dev(self,
1630 		    "unable to allocate control data, error = %d\n", error);
1631 		goto fail_0;
1632 	}
1633 
1634 	if ((error = bus_dmamem_map(sc->vr_dmat, &seg, rseg,
1635 	    sizeof(struct vr_control_data), (void **)&sc->vr_control_data,
1636 	    BUS_DMA_COHERENT)) != 0) {
1637 		aprint_error_dev(self,
1638 		    "unable to map control data, error = %d\n", error);
1639 		goto fail_1;
1640 	}
1641 
1642 	if ((error = bus_dmamap_create(sc->vr_dmat,
1643 	    sizeof(struct vr_control_data), 1,
1644 	    sizeof(struct vr_control_data), 0, 0,
1645 	    &sc->vr_cddmamap)) != 0) {
1646 		aprint_error_dev(self,
1647 		    "unable to create control data DMA map, error = %d\n",
1648 		    error);
1649 		goto fail_2;
1650 	}
1651 
1652 	if ((error = bus_dmamap_load(sc->vr_dmat, sc->vr_cddmamap,
1653 	    sc->vr_control_data, sizeof(struct vr_control_data), NULL,
1654 	    0)) != 0) {
1655 		aprint_error_dev(self,
1656 		    "unable to load control data DMA map, error = %d\n",
1657 		    error);
1658 		goto fail_3;
1659 	}
1660 
1661 	/*
1662 	 * Create the transmit buffer DMA maps.
1663 	 */
1664 	for (i = 0; i < VR_NTXDESC; i++) {
1665 		if ((error = bus_dmamap_create(sc->vr_dmat, MCLBYTES,
1666 		    1, MCLBYTES, 0, 0,
1667 		    &VR_DSTX(sc, i)->ds_dmamap)) != 0) {
1668 			aprint_error_dev(self,
1669 			    "unable to create tx DMA map %d, error = %d\n", i,
1670 			    error);
1671 			goto fail_4;
1672 		}
1673 	}
1674 
1675 	/*
1676 	 * Create the receive buffer DMA maps.
1677 	 */
1678 	for (i = 0; i < VR_NRXDESC; i++) {
1679 		if ((error = bus_dmamap_create(sc->vr_dmat, MCLBYTES, 1,
1680 		    MCLBYTES, 0, 0,
1681 		    &VR_DSRX(sc, i)->ds_dmamap)) != 0) {
1682 			aprint_error_dev(self,
1683 			    "unable to create rx DMA map %d, error = %d\n", i,
1684 			    error);
1685 			goto fail_5;
1686 		}
1687 		VR_DSRX(sc, i)->ds_mbuf = NULL;
1688 	}
1689 
1690 	ifp = &sc->vr_ec.ec_if;
1691 	ifp->if_softc = sc;
1692 	ifp->if_mtu = ETHERMTU;
1693 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1694 	ifp->if_ioctl = vr_ioctl;
1695 	ifp->if_start = vr_start;
1696 	ifp->if_watchdog = vr_watchdog;
1697 	ifp->if_init = vr_init;
1698 	ifp->if_stop = vr_stop;
1699 	IFQ_SET_READY(&ifp->if_snd);
1700 
1701 	strlcpy(ifp->if_xname, device_xname(self), IFNAMSIZ);
1702 
1703 	/*
1704 	 * Initialize MII/media info.
1705 	 */
1706 	mii->mii_ifp = ifp;
1707 	mii->mii_readreg = vr_mii_readreg;
1708 	mii->mii_writereg = vr_mii_writereg;
1709 	mii->mii_statchg = vr_mii_statchg;
1710 
1711 	sc->vr_ec.ec_mii = mii;
1712 	ifmedia_init(&mii->mii_media, IFM_IMASK, ether_mediachange,
1713 		ether_mediastatus);
1714 	mii_attach(self, mii, 0xffffffff, MII_PHY_ANY,
1715 	    MII_OFFSET_ANY, MIIF_FORCEANEG);
1716 	if (LIST_FIRST(&sc->vr_mii.mii_phys) == NULL) {
1717 		ifmedia_add(&mii->mii_media, IFM_ETHER | IFM_NONE, 0, NULL);
1718 		ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_NONE);
1719 	} else
1720 		ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_AUTO);
1721 
1722 	sc->vr_ec.ec_capabilities |= ETHERCAP_VLAN_MTU;
1723 
1724 	/*
1725 	 * Call MI attach routines.
1726 	 */
1727 	if_attach(ifp);
1728 	if_deferred_start_init(ifp, NULL);
1729 	ether_ifattach(ifp, sc->vr_enaddr);
1730 
1731 	rnd_attach_source(&sc->rnd_source, device_xname(self),
1732 	    RND_TYPE_NET, RND_FLAG_DEFAULT);
1733 
1734 	if (pmf_device_register1(self, NULL, vr_resume, vr_shutdown))
1735 		pmf_class_network_register(self, ifp);
1736 	else
1737 		aprint_error_dev(self, "couldn't establish power handler\n");
1738 
1739 	return;
1740 
1741  fail_5:
1742 	for (i = 0; i < VR_NRXDESC; i++) {
1743 		if (sc->vr_rxsoft[i].ds_dmamap != NULL)
1744 			bus_dmamap_destroy(sc->vr_dmat,
1745 			    sc->vr_rxsoft[i].ds_dmamap);
1746 	}
1747  fail_4:
1748 	for (i = 0; i < VR_NTXDESC; i++) {
1749 		if (sc->vr_txsoft[i].ds_dmamap != NULL)
1750 			bus_dmamap_destroy(sc->vr_dmat,
1751 			    sc->vr_txsoft[i].ds_dmamap);
1752 	}
1753 	bus_dmamap_unload(sc->vr_dmat, sc->vr_cddmamap);
1754  fail_3:
1755 	bus_dmamap_destroy(sc->vr_dmat, sc->vr_cddmamap);
1756  fail_2:
1757 	bus_dmamem_unmap(sc->vr_dmat, (void *)sc->vr_control_data,
1758 	    sizeof(struct vr_control_data));
1759  fail_1:
1760 	bus_dmamem_free(sc->vr_dmat, &seg, rseg);
1761  fail_0:
1762 	return;
1763 }
1764 
1765 static int
vr_restore_state(pci_chipset_tag_t pc,pcitag_t tag,device_t self,pcireg_t state)1766 vr_restore_state(pci_chipset_tag_t pc, pcitag_t tag, device_t self,
1767     pcireg_t state)
1768 {
1769 	struct vr_softc *sc = device_private(self);
1770 	int error;
1771 
1772 	if (state == PCI_PMCSR_STATE_D0)
1773 		return 0;
1774 	if ((error = pci_set_powerstate(pc, tag, PCI_PMCSR_STATE_D0)))
1775 		return error;
1776 
1777 	/* Restore PCI config data. */
1778 	PCI_CONF_WRITE(VR_PCI_LOIO, sc->vr_save_iobase);
1779 	PCI_CONF_WRITE(VR_PCI_LOMEM, sc->vr_save_membase);
1780 	PCI_CONF_WRITE(PCI_INTERRUPT_REG, sc->vr_save_irq);
1781 	return 0;
1782 }
1783 
1784 static bool
vr_resume(device_t self,const pmf_qual_t * qual)1785 vr_resume(device_t self, const pmf_qual_t *qual)
1786 {
1787 	struct vr_softc *sc = device_private(self);
1788 
1789 	if (PCI_PRODUCT(sc->vr_id) != PCI_PRODUCT_VIATECH_VT3043)
1790 		VR_CLRBIT(sc, VR_STICKHW, (VR_STICKHW_DS0 | VR_STICKHW_DS1));
1791 
1792 	return true;
1793 }
1794