1 /* $NetBSD: if_iwn.c,v 1.101 2024/11/10 11:45:09 mlelstv Exp $ */ 2 /* $OpenBSD: if_iwn.c,v 1.135 2014/09/10 07:22:09 dcoppa Exp $ */ 3 4 /*- 5 * Copyright (c) 2007-2010 Damien Bergamini <damien.bergamini@free.fr> 6 * 7 * Permission to use, copy, modify, and distribute this software for any 8 * purpose with or without fee is hereby granted, provided that the above 9 * copyright notice and this permission notice appear in all copies. 10 * 11 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES 12 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF 13 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR 14 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES 15 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN 16 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF 17 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. 18 */ 19 20 /* 21 * Driver for Intel WiFi Link 4965 and 1000/5000/6000 Series 802.11 network 22 * adapters. 23 */ 24 #include <sys/cdefs.h> 25 __KERNEL_RCSID(0, "$NetBSD: if_iwn.c,v 1.101 2024/11/10 11:45:09 mlelstv Exp $"); 26 27 #define IWN_USE_RBUF /* Use local storage for RX */ 28 #undef IWN_HWCRYPTO /* XXX does not even compile yet */ 29 30 #include <sys/param.h> 31 #include <sys/sockio.h> 32 #include <sys/proc.h> 33 #include <sys/mbuf.h> 34 #include <sys/kernel.h> 35 #include <sys/socket.h> 36 #include <sys/systm.h> 37 #include <sys/malloc.h> 38 #ifdef notyetMODULE 39 #include <sys/module.h> 40 #endif 41 #include <sys/mutex.h> 42 #include <sys/conf.h> 43 #include <sys/kauth.h> 44 #include <sys/callout.h> 45 46 #include <dev/sysmon/sysmonvar.h> 47 48 #include <sys/bus.h> 49 #include <machine/endian.h> 50 #include <sys/intr.h> 51 52 #include <dev/pci/pcireg.h> 53 #include <dev/pci/pcivar.h> 54 #include <dev/pci/pcidevs.h> 55 56 #include <net/bpf.h> 57 #include <net/if.h> 58 #include <net/if_arp.h> 59 #include <net/if_dl.h> 60 #include <net/if_media.h> 61 #include <net/if_types.h> 62 63 #include <netinet/in.h> 64 #include <netinet/in_systm.h> 65 #include <netinet/in_var.h> 66 #include <net/if_ether.h> 67 #include <netinet/ip.h> 68 69 #include <net80211/ieee80211_var.h> 70 #include <net80211/ieee80211_amrr.h> 71 #include <net80211/ieee80211_radiotap.h> 72 73 #include <dev/firmload.h> 74 75 #include <dev/pci/if_iwnreg.h> 76 #include <dev/pci/if_iwnvar.h> 77 78 static const struct device_compatible_entry compat_data[] = { 79 { .id = PCI_ID_CODE(PCI_VENDOR_INTEL, 80 PCI_PRODUCT_INTEL_WIFI_LINK_1030_1), }, 81 82 { .id = PCI_ID_CODE(PCI_VENDOR_INTEL, 83 PCI_PRODUCT_INTEL_WIFI_LINK_1030_2), }, 84 85 { .id = PCI_ID_CODE(PCI_VENDOR_INTEL, 86 PCI_PRODUCT_INTEL_WIFI_LINK_4965_1), }, 87 88 { .id = PCI_ID_CODE(PCI_VENDOR_INTEL, 89 PCI_PRODUCT_INTEL_WIFI_LINK_4965_2), }, 90 91 { .id = PCI_ID_CODE(PCI_VENDOR_INTEL, 92 PCI_PRODUCT_INTEL_WIFI_LINK_4965_3), }, 93 94 { .id = PCI_ID_CODE(PCI_VENDOR_INTEL, 95 PCI_PRODUCT_INTEL_WIFI_LINK_4965_4), }, 96 97 { .id = PCI_ID_CODE(PCI_VENDOR_INTEL, 98 PCI_PRODUCT_INTEL_WIFI_LINK_5100_1), }, 99 100 { .id = PCI_ID_CODE(PCI_VENDOR_INTEL, 101 PCI_PRODUCT_INTEL_WIFI_LINK_5100_2), }, 102 103 { .id = PCI_ID_CODE(PCI_VENDOR_INTEL, 104 PCI_PRODUCT_INTEL_WIFI_LINK_5150_1), }, 105 106 { .id = PCI_ID_CODE(PCI_VENDOR_INTEL, 107 PCI_PRODUCT_INTEL_WIFI_LINK_5150_2), }, 108 109 { .id = PCI_ID_CODE(PCI_VENDOR_INTEL, 110 PCI_PRODUCT_INTEL_WIFI_LINK_5300_1), }, 111 112 { .id = PCI_ID_CODE(PCI_VENDOR_INTEL, 113 PCI_PRODUCT_INTEL_WIFI_LINK_5300_2), }, 114 115 { .id = PCI_ID_CODE(PCI_VENDOR_INTEL, 116 PCI_PRODUCT_INTEL_WIFI_LINK_5350_1), }, 117 118 { .id = PCI_ID_CODE(PCI_VENDOR_INTEL, 119 PCI_PRODUCT_INTEL_WIFI_LINK_5350_2), }, 120 121 { .id = PCI_ID_CODE(PCI_VENDOR_INTEL, 122 PCI_PRODUCT_INTEL_WIFI_LINK_1000_1), }, 123 124 { .id = PCI_ID_CODE(PCI_VENDOR_INTEL, 125 PCI_PRODUCT_INTEL_WIFI_LINK_1000_2), }, 126 127 { .id = PCI_ID_CODE(PCI_VENDOR_INTEL, 128 PCI_PRODUCT_INTEL_WIFI_LINK_6000_3X3_1), }, 129 130 { .id = PCI_ID_CODE(PCI_VENDOR_INTEL, 131 PCI_PRODUCT_INTEL_WIFI_LINK_6000_3X3_2), }, 132 133 { .id = PCI_ID_CODE(PCI_VENDOR_INTEL, 134 PCI_PRODUCT_INTEL_WIFI_LINK_6000_IPA_1), }, 135 136 { .id = PCI_ID_CODE(PCI_VENDOR_INTEL, 137 PCI_PRODUCT_INTEL_WIFI_LINK_6000_IPA_2), }, 138 139 { .id = PCI_ID_CODE(PCI_VENDOR_INTEL, 140 PCI_PRODUCT_INTEL_WIFI_LINK_6050_2X2_1), }, 141 142 { .id = PCI_ID_CODE(PCI_VENDOR_INTEL, 143 PCI_PRODUCT_INTEL_WIFI_LINK_6050_2X2_2), }, 144 145 { .id = PCI_ID_CODE(PCI_VENDOR_INTEL, 146 PCI_PRODUCT_INTEL_WIFI_LINK_6005_2X2_1), }, 147 148 { .id = PCI_ID_CODE(PCI_VENDOR_INTEL, 149 PCI_PRODUCT_INTEL_WIFI_LINK_6005_2X2_2), }, 150 151 { .id = PCI_ID_CODE(PCI_VENDOR_INTEL, 152 PCI_PRODUCT_INTEL_WIFI_LINK_6230_1), }, 153 154 { .id = PCI_ID_CODE(PCI_VENDOR_INTEL, 155 PCI_PRODUCT_INTEL_WIFI_LINK_6230_2), }, 156 157 { .id = PCI_ID_CODE(PCI_VENDOR_INTEL, 158 PCI_PRODUCT_INTEL_WIFI_LINK_6235), }, 159 160 { .id = PCI_ID_CODE(PCI_VENDOR_INTEL, 161 PCI_PRODUCT_INTEL_WIFI_LINK_6235_2), }, 162 163 { .id = PCI_ID_CODE(PCI_VENDOR_INTEL, 164 PCI_PRODUCT_INTEL_WIFI_LINK_100_1), }, 165 166 { .id = PCI_ID_CODE(PCI_VENDOR_INTEL, 167 PCI_PRODUCT_INTEL_WIFI_LINK_100_2), }, 168 169 { .id = PCI_ID_CODE(PCI_VENDOR_INTEL, 170 PCI_PRODUCT_INTEL_WIFI_LINK_130_1), }, 171 172 { .id = PCI_ID_CODE(PCI_VENDOR_INTEL, 173 PCI_PRODUCT_INTEL_WIFI_LINK_130_2), }, 174 175 { .id = PCI_ID_CODE(PCI_VENDOR_INTEL, 176 PCI_PRODUCT_INTEL_WIFI_LINK_2230_1), }, 177 178 { .id = PCI_ID_CODE(PCI_VENDOR_INTEL, 179 PCI_PRODUCT_INTEL_WIFI_LINK_2230_2), }, 180 181 { .id = PCI_ID_CODE(PCI_VENDOR_INTEL, 182 PCI_PRODUCT_INTEL_WIFI_LINK_2200_1), }, 183 184 { .id = PCI_ID_CODE(PCI_VENDOR_INTEL, 185 PCI_PRODUCT_INTEL_WIFI_LINK_2200_2), }, 186 187 { .id = PCI_ID_CODE(PCI_VENDOR_INTEL, 188 PCI_PRODUCT_INTEL_WIFI_LINK_135_1), }, 189 190 { .id = PCI_ID_CODE(PCI_VENDOR_INTEL, 191 PCI_PRODUCT_INTEL_WIFI_LINK_135_2), }, 192 193 { .id = PCI_ID_CODE(PCI_VENDOR_INTEL, 194 PCI_PRODUCT_INTEL_WIFI_LINK_105_1), }, 195 196 { .id = PCI_ID_CODE(PCI_VENDOR_INTEL, 197 PCI_PRODUCT_INTEL_WIFI_LINK_105_2), }, 198 199 PCI_COMPAT_EOL 200 }; 201 202 static int iwn_match(device_t , struct cfdata *, void *); 203 static void iwn_attach(device_t , device_t , void *); 204 static int iwn4965_attach(struct iwn_softc *, pci_product_id_t); 205 static int iwn5000_attach(struct iwn_softc *, pci_product_id_t); 206 static void iwn_radiotap_attach(struct iwn_softc *); 207 static int iwn_detach(device_t , int); 208 #if 0 209 static void iwn_power(int, void *); 210 #endif 211 static bool iwn_resume(device_t, const pmf_qual_t *); 212 static int iwn_nic_lock(struct iwn_softc *); 213 static int iwn_eeprom_lock(struct iwn_softc *); 214 static int iwn_init_otprom(struct iwn_softc *); 215 static int iwn_read_prom_data(struct iwn_softc *, uint32_t, void *, int); 216 static int iwn_dma_contig_alloc(bus_dma_tag_t, struct iwn_dma_info *, 217 void **, bus_size_t, bus_size_t); 218 static void iwn_dma_contig_free(struct iwn_dma_info *); 219 static int iwn_alloc_sched(struct iwn_softc *); 220 static void iwn_free_sched(struct iwn_softc *); 221 static int iwn_alloc_kw(struct iwn_softc *); 222 static void iwn_free_kw(struct iwn_softc *); 223 static int iwn_alloc_ict(struct iwn_softc *); 224 static void iwn_free_ict(struct iwn_softc *); 225 static int iwn_alloc_fwmem(struct iwn_softc *); 226 static void iwn_free_fwmem(struct iwn_softc *); 227 static int iwn_alloc_rx_ring(struct iwn_softc *, struct iwn_rx_ring *); 228 static void iwn_claim_rx_ring(struct iwn_softc *, struct iwn_rx_ring *); 229 static void iwn_reset_rx_ring(struct iwn_softc *, struct iwn_rx_ring *); 230 static void iwn_free_rx_ring(struct iwn_softc *, struct iwn_rx_ring *); 231 static int iwn_alloc_tx_ring(struct iwn_softc *, struct iwn_tx_ring *, 232 int); 233 static void iwn_reset_tx_ring(struct iwn_softc *, struct iwn_tx_ring *); 234 static void iwn_free_tx_ring(struct iwn_softc *, struct iwn_tx_ring *); 235 static void iwn5000_ict_reset(struct iwn_softc *); 236 static int iwn_read_eeprom(struct iwn_softc *); 237 static void iwn4965_read_eeprom(struct iwn_softc *); 238 239 #ifdef IWN_DEBUG 240 static void iwn4965_print_power_group(struct iwn_softc *, int); 241 #endif 242 static void iwn5000_read_eeprom(struct iwn_softc *); 243 static void iwn_read_eeprom_channels(struct iwn_softc *, int, uint32_t); 244 static void iwn_read_eeprom_enhinfo(struct iwn_softc *); 245 static struct ieee80211_node *iwn_node_alloc(struct ieee80211_node_table *); 246 static void iwn_newassoc(struct ieee80211_node *, int); 247 static int iwn_media_change(struct ifnet *); 248 static int iwn_newstate(struct ieee80211com *, enum ieee80211_state, int); 249 static void iwn_iter_func(void *, struct ieee80211_node *); 250 static void iwn_calib_timeout(void *); 251 static void iwn_rx_phy(struct iwn_softc *, struct iwn_rx_desc *, 252 struct iwn_rx_data *); 253 static void iwn_rx_done(struct iwn_softc *, struct iwn_rx_desc *, 254 struct iwn_rx_data *); 255 #ifndef IEEE80211_NO_HT 256 static void iwn_rx_compressed_ba(struct iwn_softc *, struct iwn_rx_desc *, 257 struct iwn_rx_data *); 258 #endif 259 static void iwn5000_rx_calib_results(struct iwn_softc *, 260 struct iwn_rx_desc *, struct iwn_rx_data *); 261 static void iwn_rx_statistics(struct iwn_softc *, struct iwn_rx_desc *, 262 struct iwn_rx_data *); 263 static void iwn4965_tx_done(struct iwn_softc *, struct iwn_rx_desc *, 264 struct iwn_rx_data *); 265 static void iwn5000_tx_done(struct iwn_softc *, struct iwn_rx_desc *, 266 struct iwn_rx_data *); 267 static void iwn_tx_done(struct iwn_softc *, struct iwn_rx_desc *, int, 268 uint8_t); 269 static void iwn_cmd_done(struct iwn_softc *, struct iwn_rx_desc *); 270 static void iwn_notif_intr(struct iwn_softc *); 271 static void iwn_wakeup_intr(struct iwn_softc *); 272 static void iwn_fatal_intr(struct iwn_softc *); 273 static int iwn_intr(void *); 274 static void iwn_softintr(void *); 275 static void iwn4965_update_sched(struct iwn_softc *, int, int, uint8_t, 276 uint16_t); 277 static void iwn5000_update_sched(struct iwn_softc *, int, int, uint8_t, 278 uint16_t); 279 #ifdef notyet 280 static void iwn5000_reset_sched(struct iwn_softc *, int, int); 281 #endif 282 static int iwn_tx(struct iwn_softc *, struct mbuf *, 283 struct ieee80211_node *, int); 284 static void iwn_start(struct ifnet *); 285 static void iwn_watchdog(struct ifnet *); 286 static int iwn_ioctl(struct ifnet *, u_long, void *); 287 static int iwn_cmd(struct iwn_softc *, int, const void *, int, int); 288 static int iwn4965_add_node(struct iwn_softc *, struct iwn_node_info *, 289 int); 290 static int iwn5000_add_node(struct iwn_softc *, struct iwn_node_info *, 291 int); 292 static int iwn_set_link_quality(struct iwn_softc *, 293 struct ieee80211_node *); 294 static int iwn_add_broadcast_node(struct iwn_softc *, int); 295 static void iwn_set_led(struct iwn_softc *, uint8_t, uint8_t, uint8_t); 296 static int iwn_set_critical_temp(struct iwn_softc *); 297 static int iwn_set_timing(struct iwn_softc *, struct ieee80211_node *); 298 static void iwn4965_power_calibration(struct iwn_softc *, int); 299 static int iwn4965_set_txpower(struct iwn_softc *, int); 300 static int iwn5000_set_txpower(struct iwn_softc *, int); 301 static int iwn4965_get_rssi(const struct iwn_rx_stat *); 302 static int iwn5000_get_rssi(const struct iwn_rx_stat *); 303 static int iwn_get_noise(const struct iwn_rx_general_stats *); 304 static int iwn4965_get_temperature(struct iwn_softc *); 305 static int iwn5000_get_temperature(struct iwn_softc *); 306 static int iwn_init_sensitivity(struct iwn_softc *); 307 static void iwn_collect_noise(struct iwn_softc *, 308 const struct iwn_rx_general_stats *); 309 static int iwn4965_init_gains(struct iwn_softc *); 310 static int iwn5000_init_gains(struct iwn_softc *); 311 static int iwn4965_set_gains(struct iwn_softc *); 312 static int iwn5000_set_gains(struct iwn_softc *); 313 static void iwn_tune_sensitivity(struct iwn_softc *, 314 const struct iwn_rx_stats *); 315 static int iwn_send_sensitivity(struct iwn_softc *); 316 static int iwn_set_pslevel(struct iwn_softc *, int, int, int); 317 static int iwn5000_runtime_calib(struct iwn_softc *); 318 319 static int iwn_config_bt_coex_bluetooth(struct iwn_softc *); 320 static int iwn_config_bt_coex_prio_table(struct iwn_softc *); 321 static int iwn_config_bt_coex_adv1(struct iwn_softc *); 322 static int iwn_config_bt_coex_adv2(struct iwn_softc *); 323 324 static int iwn_config(struct iwn_softc *); 325 static uint16_t iwn_get_active_dwell_time(struct iwn_softc *, uint16_t, 326 uint8_t); 327 static uint16_t iwn_limit_dwell(struct iwn_softc *, uint16_t); 328 static uint16_t iwn_get_passive_dwell_time(struct iwn_softc *, uint16_t); 329 static int iwn_scan(struct iwn_softc *, uint16_t); 330 static int iwn_auth(struct iwn_softc *); 331 static int iwn_run(struct iwn_softc *); 332 #ifdef IWN_HWCRYPTO 333 static int iwn_set_key(struct ieee80211com *, struct ieee80211_node *, 334 struct ieee80211_key *); 335 static void iwn_delete_key(struct ieee80211com *, struct ieee80211_node *, 336 struct ieee80211_key *); 337 #endif 338 static int iwn_wme_update(struct ieee80211com *); 339 #ifndef IEEE80211_NO_HT 340 static int iwn_ampdu_rx_start(struct ieee80211com *, 341 struct ieee80211_node *, uint8_t); 342 static void iwn_ampdu_rx_stop(struct ieee80211com *, 343 struct ieee80211_node *, uint8_t); 344 static int iwn_ampdu_tx_start(struct ieee80211com *, 345 struct ieee80211_node *, uint8_t); 346 static void iwn_ampdu_tx_stop(struct ieee80211com *, 347 struct ieee80211_node *, uint8_t); 348 static void iwn4965_ampdu_tx_start(struct iwn_softc *, 349 struct ieee80211_node *, uint8_t, uint16_t); 350 static void iwn4965_ampdu_tx_stop(struct iwn_softc *, 351 uint8_t, uint16_t); 352 static void iwn5000_ampdu_tx_start(struct iwn_softc *, 353 struct ieee80211_node *, uint8_t, uint16_t); 354 static void iwn5000_ampdu_tx_stop(struct iwn_softc *, 355 uint8_t, uint16_t); 356 #endif 357 static int iwn5000_query_calibration(struct iwn_softc *); 358 static int iwn5000_send_calibration(struct iwn_softc *); 359 static int iwn5000_send_wimax_coex(struct iwn_softc *); 360 static int iwn6000_temp_offset_calib(struct iwn_softc *); 361 static int iwn2000_temp_offset_calib(struct iwn_softc *); 362 static int iwn4965_post_alive(struct iwn_softc *); 363 static int iwn5000_post_alive(struct iwn_softc *); 364 static int iwn4965_load_bootcode(struct iwn_softc *, const uint8_t *, 365 int); 366 static int iwn4965_load_firmware(struct iwn_softc *); 367 static int iwn5000_load_firmware_section(struct iwn_softc *, uint32_t, 368 const uint8_t *, int); 369 static int iwn5000_load_firmware(struct iwn_softc *); 370 static int iwn_read_firmware_leg(struct iwn_softc *, 371 struct iwn_fw_info *); 372 static int iwn_read_firmware_tlv(struct iwn_softc *, 373 struct iwn_fw_info *, uint16_t); 374 static int iwn_read_firmware(struct iwn_softc *); 375 static int iwn_clock_wait(struct iwn_softc *); 376 static int iwn_apm_init(struct iwn_softc *); 377 static void iwn_apm_stop_master(struct iwn_softc *); 378 static void iwn_apm_stop(struct iwn_softc *); 379 static int iwn4965_nic_config(struct iwn_softc *); 380 static int iwn5000_nic_config(struct iwn_softc *); 381 static int iwn_hw_prepare(struct iwn_softc *); 382 static int iwn_hw_init(struct iwn_softc *); 383 static void iwn_hw_stop(struct iwn_softc *); 384 static int iwn_init(struct ifnet *); 385 static void iwn_stop(struct ifnet *, int); 386 387 /* XXX MCLGETI alternative */ 388 static struct mbuf *MCLGETIalt(struct iwn_softc *, int, 389 struct ifnet *, u_int); 390 #ifdef IWN_USE_RBUF 391 static struct iwn_rbuf *iwn_alloc_rbuf(struct iwn_softc *); 392 static void iwn_free_rbuf(struct mbuf *, void *, size_t, void *); 393 static int iwn_alloc_rpool(struct iwn_softc *); 394 static void iwn_free_rpool(struct iwn_softc *); 395 #endif 396 397 static void iwn_fix_channel(struct ieee80211com *, struct mbuf *, 398 struct iwn_rx_stat *); 399 400 #ifdef IWN_DEBUG 401 #define DPRINTF(x) do { if (iwn_debug > 0) printf x; } while (0) 402 #define DPRINTFN(n, x) do { if (iwn_debug >= (n)) printf x; } while (0) 403 int iwn_debug = 0; 404 #else 405 #define DPRINTF(x) 406 #define DPRINTFN(n, x) 407 #endif 408 409 CFATTACH_DECL_NEW(iwn, sizeof(struct iwn_softc), iwn_match, iwn_attach, 410 iwn_detach, NULL); 411 412 static int 413 iwn_match(device_t parent, cfdata_t match __unused, void *aux) 414 { 415 struct pci_attach_args *pa = aux; 416 417 return pci_compatible_match(pa, compat_data); 418 } 419 420 static void 421 iwn_attach(device_t parent __unused, device_t self, void *aux) 422 { 423 struct iwn_softc *sc = device_private(self); 424 struct ieee80211com *ic = &sc->sc_ic; 425 struct ifnet *ifp = &sc->sc_ec.ec_if; 426 struct pci_attach_args *pa = aux; 427 const char *intrstr; 428 pcireg_t memtype, reg; 429 int i, error; 430 char intrbuf[PCI_INTRSTR_LEN]; 431 432 sc->sc_dev = self; 433 sc->sc_pct = pa->pa_pc; 434 sc->sc_pcitag = pa->pa_tag; 435 sc->sc_dmat = pa->pa_dmat; 436 mutex_init(&sc->sc_mtx, MUTEX_DEFAULT, IPL_NONE); 437 438 callout_init(&sc->calib_to, 0); 439 callout_setfunc(&sc->calib_to, iwn_calib_timeout, sc); 440 441 pci_aprint_devinfo(pa, NULL); 442 443 /* 444 * Get the offset of the PCI Express Capability Structure in PCI 445 * Configuration Space. 446 */ 447 error = pci_get_capability(sc->sc_pct, sc->sc_pcitag, 448 PCI_CAP_PCIEXPRESS, &sc->sc_cap_off, NULL); 449 if (error == 0) { 450 aprint_error_dev(self, 451 "PCIe capability structure not found!\n"); 452 return; 453 } 454 455 /* Clear device-specific "PCI retry timeout" register (41h). */ 456 reg = pci_conf_read(sc->sc_pct, sc->sc_pcitag, 0x40); 457 if (reg & 0xff00) 458 pci_conf_write(sc->sc_pct, sc->sc_pcitag, 0x40, reg & ~0xff00); 459 460 /* Enable bus-mastering. */ 461 /* XXX verify the bus-mastering is really needed (not in OpenBSD) */ 462 reg = pci_conf_read(sc->sc_pct, sc->sc_pcitag, PCI_COMMAND_STATUS_REG); 463 reg |= PCI_COMMAND_MASTER_ENABLE; 464 pci_conf_write(sc->sc_pct, sc->sc_pcitag, PCI_COMMAND_STATUS_REG, reg); 465 466 memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, IWN_PCI_BAR0); 467 error = pci_mapreg_map(pa, IWN_PCI_BAR0, memtype, 0, &sc->sc_st, 468 &sc->sc_sh, NULL, &sc->sc_sz); 469 if (error != 0) { 470 aprint_error_dev(self, "can't map mem space\n"); 471 return; 472 } 473 474 sc->sc_soft_ih = softint_establish(SOFTINT_NET, iwn_softintr, sc); 475 if (sc->sc_soft_ih == NULL) { 476 aprint_error_dev(self, "can't establish soft interrupt\n"); 477 goto unmap; 478 } 479 480 /* Install interrupt handler. */ 481 error = pci_intr_alloc(pa, &sc->sc_pihp, NULL, 0); 482 if (error) { 483 aprint_error_dev(self, "can't allocate interrupt\n"); 484 goto failsi; 485 } 486 reg = pci_conf_read(sc->sc_pct, sc->sc_pcitag, PCI_COMMAND_STATUS_REG); 487 if (pci_intr_type(sc->sc_pct, sc->sc_pihp[0]) == PCI_INTR_TYPE_INTX) 488 CLR(reg, PCI_COMMAND_INTERRUPT_DISABLE); 489 else 490 SET(reg, PCI_COMMAND_INTERRUPT_DISABLE); 491 pci_conf_write(sc->sc_pct, sc->sc_pcitag, PCI_COMMAND_STATUS_REG, reg); 492 intrstr = pci_intr_string(sc->sc_pct, sc->sc_pihp[0], intrbuf, 493 sizeof(intrbuf)); 494 sc->sc_ih = pci_intr_establish_xname(sc->sc_pct, sc->sc_pihp[0], 495 IPL_NET, iwn_intr, sc, device_xname(self)); 496 if (sc->sc_ih == NULL) { 497 aprint_error_dev(self, "can't establish interrupt"); 498 if (intrstr != NULL) 499 aprint_error(" at %s", intrstr); 500 aprint_error("\n"); 501 goto failia; 502 } 503 aprint_normal_dev(self, "interrupting at %s\n", intrstr); 504 505 /* Read hardware revision and attach. */ 506 sc->hw_type = 507 (IWN_READ(sc, IWN_HW_REV) & IWN_HW_REV_TYPE_MASK) 508 >> IWN_HW_REV_TYPE_SHIFT; 509 if (sc->hw_type == IWN_HW_REV_TYPE_4965) 510 error = iwn4965_attach(sc, PCI_PRODUCT(pa->pa_id)); 511 else 512 error = iwn5000_attach(sc, PCI_PRODUCT(pa->pa_id)); 513 if (error != 0) { 514 aprint_error_dev(self, "could not attach device\n"); 515 goto failih; 516 } 517 518 if ((error = iwn_hw_prepare(sc)) != 0) { 519 aprint_error_dev(self, "hardware not ready\n"); 520 goto failih; 521 } 522 523 /* Read MAC address, channels, etc from EEPROM. */ 524 if ((error = iwn_read_eeprom(sc)) != 0) { 525 aprint_error_dev(self, "could not read EEPROM\n"); 526 goto failih; 527 } 528 529 /* Allocate DMA memory for firmware transfers. */ 530 if ((error = iwn_alloc_fwmem(sc)) != 0) { 531 aprint_error_dev(self, 532 "could not allocate memory for firmware\n"); 533 goto failih; 534 } 535 536 /* Allocate "Keep Warm" page. */ 537 if ((error = iwn_alloc_kw(sc)) != 0) { 538 aprint_error_dev(self, "could not allocate keep warm page\n"); 539 goto fail1; 540 } 541 542 /* Allocate ICT table for 5000 Series. */ 543 if (sc->hw_type != IWN_HW_REV_TYPE_4965 && 544 (error = iwn_alloc_ict(sc)) != 0) { 545 aprint_error_dev(self, "could not allocate ICT table\n"); 546 goto fail2; 547 } 548 549 /* Allocate TX scheduler "rings". */ 550 if ((error = iwn_alloc_sched(sc)) != 0) { 551 aprint_error_dev(self, 552 "could not allocate TX scheduler rings\n"); 553 goto fail3; 554 } 555 556 #ifdef IWN_USE_RBUF 557 /* Allocate RX buffers. */ 558 if ((error = iwn_alloc_rpool(sc)) != 0) { 559 aprint_error_dev(self, "could not allocate RX buffers\n"); 560 goto fail3; 561 } 562 #endif 563 564 /* Allocate TX rings (16 on 4965AGN, 20 on >=5000). */ 565 for (i = 0; i < sc->ntxqs; i++) { 566 if ((error = iwn_alloc_tx_ring(sc, &sc->txq[i], i)) != 0) { 567 aprint_error_dev(self, 568 "could not allocate TX ring %d\n", i); 569 goto fail4; 570 } 571 } 572 573 /* Allocate RX ring. */ 574 if ((error = iwn_alloc_rx_ring(sc, &sc->rxq)) != 0) { 575 aprint_error_dev(self, "could not allocate RX ring\n"); 576 goto fail4; 577 } 578 579 /* Clear pending interrupts. */ 580 IWN_WRITE(sc, IWN_INT, 0xffffffff); 581 582 /* Count the number of available chains. */ 583 sc->ntxchains = 584 ((sc->txchainmask >> 2) & 1) + 585 ((sc->txchainmask >> 1) & 1) + 586 ((sc->txchainmask >> 0) & 1); 587 sc->nrxchains = 588 ((sc->rxchainmask >> 2) & 1) + 589 ((sc->rxchainmask >> 1) & 1) + 590 ((sc->rxchainmask >> 0) & 1); 591 aprint_normal_dev(self, "MIMO %dT%dR, %.4s, address %s\n", 592 sc->ntxchains, sc->nrxchains, sc->eeprom_domain, 593 ether_sprintf(ic->ic_myaddr)); 594 595 ic->ic_ifp = ifp; 596 ic->ic_phytype = IEEE80211_T_OFDM; /* not only, but not used */ 597 ic->ic_opmode = IEEE80211_M_STA; /* default to BSS mode */ 598 ic->ic_state = IEEE80211_S_INIT; 599 600 /* 601 * Set device capabilities. 602 * XXX OpenBSD has IEEE80211_C_WEP, IEEE80211_C_RSN, and 603 * IEEE80211_C_PMGT too. 604 */ 605 ic->ic_caps = 606 IEEE80211_C_IBSS | /* IBSS mode support */ 607 IEEE80211_C_WPA | /* 802.11i */ 608 IEEE80211_C_MONITOR | /* monitor mode supported */ 609 IEEE80211_C_TXPMGT | /* tx power management */ 610 IEEE80211_C_SHSLOT | /* short slot time supported */ 611 IEEE80211_C_SHPREAMBLE | /* short preamble supported */ 612 IEEE80211_C_WME; /* 802.11e */ 613 614 #ifndef IEEE80211_NO_HT 615 if (sc->sc_flags & IWN_FLAG_HAS_11N) { 616 /* Set HT capabilities. */ 617 ic->ic_htcaps = 618 #if IWN_RBUF_SIZE == 8192 619 IEEE80211_HTCAP_AMSDU7935 | 620 #endif 621 IEEE80211_HTCAP_CBW20_40 | 622 IEEE80211_HTCAP_SGI20 | 623 IEEE80211_HTCAP_SGI40; 624 if (sc->hw_type != IWN_HW_REV_TYPE_4965) 625 ic->ic_htcaps |= IEEE80211_HTCAP_GF; 626 if (sc->hw_type == IWN_HW_REV_TYPE_6050) 627 ic->ic_htcaps |= IEEE80211_HTCAP_SMPS_DYN; 628 else 629 ic->ic_htcaps |= IEEE80211_HTCAP_SMPS_DIS; 630 } 631 #endif /* !IEEE80211_NO_HT */ 632 633 /* Set supported legacy rates. */ 634 ic->ic_sup_rates[IEEE80211_MODE_11B] = ieee80211_std_rateset_11b; 635 ic->ic_sup_rates[IEEE80211_MODE_11G] = ieee80211_std_rateset_11g; 636 if (sc->sc_flags & IWN_FLAG_HAS_5GHZ) { 637 ic->ic_sup_rates[IEEE80211_MODE_11A] = ieee80211_std_rateset_11a; 638 } 639 #ifndef IEEE80211_NO_HT 640 if (sc->sc_flags & IWN_FLAG_HAS_11N) { 641 /* Set supported HT rates. */ 642 ic->ic_sup_mcs[0] = 0xff; /* MCS 0-7 */ 643 if (sc->nrxchains > 1) 644 ic->ic_sup_mcs[1] = 0xff; /* MCS 7-15 */ 645 if (sc->nrxchains > 2) 646 ic->ic_sup_mcs[2] = 0xff; /* MCS 16-23 */ 647 } 648 #endif 649 650 /* IBSS channel undefined for now. */ 651 ic->ic_ibss_chan = &ic->ic_channels[0]; 652 653 ifp->if_softc = sc; 654 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST; 655 ifp->if_init = iwn_init; 656 ifp->if_ioctl = iwn_ioctl; 657 ifp->if_start = iwn_start; 658 ifp->if_stop = iwn_stop; 659 ifp->if_watchdog = iwn_watchdog; 660 IFQ_SET_READY(&ifp->if_snd); 661 memcpy(ifp->if_xname, device_xname(self), IFNAMSIZ); 662 663 if_initialize(ifp); 664 ieee80211_ifattach(ic); 665 666 /* MBUFTRACE */ 667 iwn_claim_rx_ring(sc, &sc->rxq); 668 669 /* Use common softint-based if_input */ 670 ifp->if_percpuq = if_percpuq_create(ifp); 671 if_register(ifp); 672 673 ic->ic_node_alloc = iwn_node_alloc; 674 ic->ic_newassoc = iwn_newassoc; 675 #ifdef IWN_HWCRYPTO 676 ic->ic_crypto.cs_key_set = iwn_set_key; 677 ic->ic_crypto.cs_key_delete = iwn_delete_key; 678 #endif 679 ic->ic_wme.wme_update = iwn_wme_update; 680 #ifndef IEEE80211_NO_HT 681 ic->ic_ampdu_rx_start = iwn_ampdu_rx_start; 682 ic->ic_ampdu_rx_stop = iwn_ampdu_rx_stop; 683 ic->ic_ampdu_tx_start = iwn_ampdu_tx_start; 684 ic->ic_ampdu_tx_stop = iwn_ampdu_tx_stop; 685 #endif 686 687 /* Override 802.11 state transition machine. */ 688 sc->sc_newstate = ic->ic_newstate; 689 ic->ic_newstate = iwn_newstate; 690 691 /* XXX media locking needs revisiting */ 692 mutex_init(&sc->sc_media_mtx, MUTEX_DEFAULT, IPL_SOFTNET); 693 ieee80211_media_init_with_lock(ic, 694 iwn_media_change, ieee80211_media_status, &sc->sc_media_mtx); 695 696 sc->amrr.amrr_min_success_threshold = 1; 697 sc->amrr.amrr_max_success_threshold = 15; 698 699 iwn_radiotap_attach(sc); 700 701 /* 702 * XXX for NetBSD, OpenBSD timeout_set replaced by 703 * callout_init and callout_setfunc, above. 704 */ 705 706 if (pmf_device_register(self, NULL, iwn_resume)) 707 pmf_class_network_register(self, ifp); 708 else 709 aprint_error_dev(self, "couldn't establish power handler\n"); 710 711 /* XXX NetBSD add call to ieee80211_announce for dmesg. */ 712 ieee80211_announce(ic); 713 714 sc->sc_flags |= IWN_FLAG_ATTACHED; 715 return; 716 717 /* Free allocated memory if something failed during attachment. */ 718 fail4: while (--i >= 0) 719 iwn_free_tx_ring(sc, &sc->txq[i]); 720 #ifdef IWN_USE_RBUF 721 iwn_free_rpool(sc); 722 #endif 723 iwn_free_sched(sc); 724 fail3: if (sc->ict != NULL) 725 iwn_free_ict(sc); 726 fail2: iwn_free_kw(sc); 727 fail1: iwn_free_fwmem(sc); 728 failih: pci_intr_disestablish(sc->sc_pct, sc->sc_ih); 729 sc->sc_ih = NULL; 730 failia: pci_intr_release(sc->sc_pct, sc->sc_pihp, 1); 731 sc->sc_pihp = NULL; 732 failsi: softint_disestablish(sc->sc_soft_ih); 733 sc->sc_soft_ih = NULL; 734 unmap: bus_space_unmap(sc->sc_st, sc->sc_sh, sc->sc_sz); 735 } 736 737 int 738 iwn4965_attach(struct iwn_softc *sc, pci_product_id_t pid) 739 { 740 struct iwn_ops *ops = &sc->ops; 741 742 ops->load_firmware = iwn4965_load_firmware; 743 ops->read_eeprom = iwn4965_read_eeprom; 744 ops->post_alive = iwn4965_post_alive; 745 ops->nic_config = iwn4965_nic_config; 746 ops->config_bt_coex = iwn_config_bt_coex_bluetooth; 747 ops->update_sched = iwn4965_update_sched; 748 ops->get_temperature = iwn4965_get_temperature; 749 ops->get_rssi = iwn4965_get_rssi; 750 ops->set_txpower = iwn4965_set_txpower; 751 ops->init_gains = iwn4965_init_gains; 752 ops->set_gains = iwn4965_set_gains; 753 ops->add_node = iwn4965_add_node; 754 ops->tx_done = iwn4965_tx_done; 755 #ifndef IEEE80211_NO_HT 756 ops->ampdu_tx_start = iwn4965_ampdu_tx_start; 757 ops->ampdu_tx_stop = iwn4965_ampdu_tx_stop; 758 #endif 759 sc->ntxqs = IWN4965_NTXQUEUES; 760 sc->ndmachnls = IWN4965_NDMACHNLS; 761 sc->broadcast_id = IWN4965_ID_BROADCAST; 762 sc->rxonsz = IWN4965_RXONSZ; 763 sc->schedsz = IWN4965_SCHEDSZ; 764 sc->fw_text_maxsz = IWN4965_FW_TEXT_MAXSZ; 765 sc->fw_data_maxsz = IWN4965_FW_DATA_MAXSZ; 766 sc->fwsz = IWN4965_FWSZ; 767 sc->sched_txfact_addr = IWN4965_SCHED_TXFACT; 768 sc->limits = &iwn4965_sensitivity_limits; 769 sc->fwname = "iwlwifi-4965-2.ucode"; 770 /* Override chains masks, ROM is known to be broken. */ 771 sc->txchainmask = IWN_ANT_AB; 772 sc->rxchainmask = IWN_ANT_ABC; 773 774 return 0; 775 } 776 777 int 778 iwn5000_attach(struct iwn_softc *sc, pci_product_id_t pid) 779 { 780 struct iwn_ops *ops = &sc->ops; 781 782 ops->load_firmware = iwn5000_load_firmware; 783 ops->read_eeprom = iwn5000_read_eeprom; 784 ops->post_alive = iwn5000_post_alive; 785 ops->nic_config = iwn5000_nic_config; 786 ops->config_bt_coex = iwn_config_bt_coex_bluetooth; 787 ops->update_sched = iwn5000_update_sched; 788 ops->get_temperature = iwn5000_get_temperature; 789 ops->get_rssi = iwn5000_get_rssi; 790 ops->set_txpower = iwn5000_set_txpower; 791 ops->init_gains = iwn5000_init_gains; 792 ops->set_gains = iwn5000_set_gains; 793 ops->add_node = iwn5000_add_node; 794 ops->tx_done = iwn5000_tx_done; 795 #ifndef IEEE80211_NO_HT 796 ops->ampdu_tx_start = iwn5000_ampdu_tx_start; 797 ops->ampdu_tx_stop = iwn5000_ampdu_tx_stop; 798 #endif 799 sc->ntxqs = IWN5000_NTXQUEUES; 800 sc->ndmachnls = IWN5000_NDMACHNLS; 801 sc->broadcast_id = IWN5000_ID_BROADCAST; 802 sc->rxonsz = IWN5000_RXONSZ; 803 sc->schedsz = IWN5000_SCHEDSZ; 804 sc->fw_text_maxsz = IWN5000_FW_TEXT_MAXSZ; 805 sc->fw_data_maxsz = IWN5000_FW_DATA_MAXSZ; 806 sc->fwsz = IWN5000_FWSZ; 807 sc->sched_txfact_addr = IWN5000_SCHED_TXFACT; 808 809 switch (sc->hw_type) { 810 case IWN_HW_REV_TYPE_5100: 811 sc->limits = &iwn5000_sensitivity_limits; 812 sc->fwname = "iwlwifi-5000-2.ucode"; 813 /* Override chains masks, ROM is known to be broken. */ 814 sc->txchainmask = IWN_ANT_B; 815 sc->rxchainmask = IWN_ANT_AB; 816 break; 817 case IWN_HW_REV_TYPE_5150: 818 sc->limits = &iwn5150_sensitivity_limits; 819 sc->fwname = "iwlwifi-5150-2.ucode"; 820 break; 821 case IWN_HW_REV_TYPE_5300: 822 case IWN_HW_REV_TYPE_5350: 823 sc->limits = &iwn5000_sensitivity_limits; 824 sc->fwname = "iwlwifi-5000-2.ucode"; 825 break; 826 case IWN_HW_REV_TYPE_1000: 827 sc->limits = &iwn1000_sensitivity_limits; 828 if (pid == PCI_PRODUCT_INTEL_WIFI_LINK_100_1 || 829 pid == PCI_PRODUCT_INTEL_WIFI_LINK_100_2) 830 sc->fwname = "iwlwifi-100-5.ucode"; 831 else 832 sc->fwname = "iwlwifi-1000-3.ucode"; 833 break; 834 case IWN_HW_REV_TYPE_6000: 835 sc->limits = &iwn6000_sensitivity_limits; 836 sc->fwname = "iwlwifi-6000-4.ucode"; 837 if (pid == PCI_PRODUCT_INTEL_WIFI_LINK_6000_IPA_1 || 838 pid == PCI_PRODUCT_INTEL_WIFI_LINK_6000_IPA_2) { 839 sc->sc_flags |= IWN_FLAG_INTERNAL_PA; 840 /* Override chains masks, ROM is known to be broken. */ 841 sc->txchainmask = IWN_ANT_BC; 842 sc->rxchainmask = IWN_ANT_BC; 843 } 844 break; 845 case IWN_HW_REV_TYPE_6050: 846 sc->limits = &iwn6000_sensitivity_limits; 847 sc->fwname = "iwlwifi-6050-5.ucode"; 848 break; 849 case IWN_HW_REV_TYPE_6005: 850 sc->limits = &iwn6000_sensitivity_limits; 851 /* Type 6030 cards return IWN_HW_REV_TYPE_6005 */ 852 if (pid == PCI_PRODUCT_INTEL_WIFI_LINK_1030_1 || 853 pid == PCI_PRODUCT_INTEL_WIFI_LINK_1030_2 || 854 pid == PCI_PRODUCT_INTEL_WIFI_LINK_130_1 || 855 pid == PCI_PRODUCT_INTEL_WIFI_LINK_130_2 || 856 pid == PCI_PRODUCT_INTEL_WIFI_LINK_6230_1 || 857 pid == PCI_PRODUCT_INTEL_WIFI_LINK_6230_2 || 858 pid == PCI_PRODUCT_INTEL_WIFI_LINK_6235 || 859 pid == PCI_PRODUCT_INTEL_WIFI_LINK_6235_2) { 860 sc->fwname = "iwlwifi-6000g2b-6.ucode"; 861 ops->config_bt_coex = iwn_config_bt_coex_adv1; 862 } 863 /* 864 * This covers: 865 * PCI_PRODUCT_INTEL_WIFI_LINK_6005_2X2_1 866 * PCI_PRODUCT_INTEL_WIFI_LINK_6005_2X2_2 867 */ 868 else 869 sc->fwname = "iwlwifi-6000g2a-6.ucode"; 870 break; 871 case IWN_HW_REV_TYPE_2030: 872 sc->limits = &iwn2030_sensitivity_limits; 873 sc->fwname = "iwlwifi-2030-6.ucode"; 874 ops->config_bt_coex = iwn_config_bt_coex_adv2; 875 break; 876 case IWN_HW_REV_TYPE_2000: 877 sc->limits = &iwn2000_sensitivity_limits; 878 sc->fwname = "iwlwifi-2000-6.ucode"; 879 break; 880 case IWN_HW_REV_TYPE_135: 881 sc->limits = &iwn2000_sensitivity_limits; 882 sc->fwname = "iwlwifi-135-6.ucode"; 883 ops->config_bt_coex = iwn_config_bt_coex_adv2; 884 break; 885 case IWN_HW_REV_TYPE_105: 886 sc->limits = &iwn2000_sensitivity_limits; 887 sc->fwname = "iwlwifi-105-6.ucode"; 888 break; 889 default: 890 aprint_normal(": adapter type %d not supported\n", sc->hw_type); 891 return ENOTSUP; 892 } 893 return 0; 894 } 895 896 /* 897 * Attach the interface to 802.11 radiotap. 898 */ 899 static void 900 iwn_radiotap_attach(struct iwn_softc *sc) 901 { 902 struct ifnet *ifp = sc->sc_ic.ic_ifp; 903 904 bpf_attach2(ifp, DLT_IEEE802_11_RADIO, 905 sizeof (struct ieee80211_frame) + IEEE80211_RADIOTAP_HDRLEN, 906 &sc->sc_drvbpf); 907 908 sc->sc_rxtap_len = sizeof sc->sc_rxtapu; 909 sc->sc_rxtap.wr_ihdr.it_len = htole16(sc->sc_rxtap_len); 910 sc->sc_rxtap.wr_ihdr.it_present = htole32(IWN_RX_RADIOTAP_PRESENT); 911 912 sc->sc_txtap_len = sizeof sc->sc_txtapu; 913 sc->sc_txtap.wt_ihdr.it_len = htole16(sc->sc_txtap_len); 914 sc->sc_txtap.wt_ihdr.it_present = htole32(IWN_TX_RADIOTAP_PRESENT); 915 } 916 917 static int 918 iwn_detach(device_t self, int flags __unused) 919 { 920 struct iwn_softc *sc = device_private(self); 921 struct ifnet *ifp = sc->sc_ic.ic_ifp; 922 int qid; 923 924 if (!(sc->sc_flags & IWN_FLAG_ATTACHED)) 925 return 0; 926 927 callout_stop(&sc->calib_to); 928 929 /* Uninstall interrupt handler. */ 930 if (sc->sc_ih != NULL) 931 pci_intr_disestablish(sc->sc_pct, sc->sc_ih); 932 if (sc->sc_pihp != NULL) 933 pci_intr_release(sc->sc_pct, sc->sc_pihp, 1); 934 if (sc->sc_soft_ih != NULL) 935 softint_disestablish(sc->sc_soft_ih); 936 937 /* Free DMA resources. */ 938 iwn_free_rx_ring(sc, &sc->rxq); 939 for (qid = 0; qid < sc->ntxqs; qid++) 940 iwn_free_tx_ring(sc, &sc->txq[qid]); 941 #ifdef IWN_USE_RBUF 942 iwn_free_rpool(sc); 943 #endif 944 iwn_free_sched(sc); 945 iwn_free_kw(sc); 946 if (sc->ict != NULL) 947 iwn_free_ict(sc); 948 iwn_free_fwmem(sc); 949 950 bus_space_unmap(sc->sc_st, sc->sc_sh, sc->sc_sz); 951 952 ieee80211_ifdetach(&sc->sc_ic); 953 if_detach(ifp); 954 955 return 0; 956 } 957 958 #if 0 959 /* 960 * XXX Investigate if clearing the PCI retry timeout could eliminate 961 * the repeated scan calls. Also the calls to if_init and if_start 962 * are similar to the effect of adding the call to ifioctl_common . 963 */ 964 static void 965 iwn_power(int why, void *arg) 966 { 967 struct iwn_softc *sc = arg; 968 struct ifnet *ifp; 969 pcireg_t reg; 970 int s; 971 972 if (why != PWR_RESUME) 973 return; 974 975 /* Clear device-specific "PCI retry timeout" register (41h). */ 976 reg = pci_conf_read(sc->sc_pct, sc->sc_pcitag, 0x40); 977 if (reg & 0xff00) 978 pci_conf_write(sc->sc_pct, sc->sc_pcitag, 0x40, reg & ~0xff00); 979 980 s = splnet(); 981 ifp = &sc->sc_ic.ic_if; 982 if (ifp->if_flags & IFF_UP) { 983 if_init(ifp); 984 if (ifp->if_flags & IFF_RUNNING) 985 ifp->if_start(ifp); 986 } 987 splx(s); 988 } 989 #endif 990 991 static bool 992 iwn_resume(device_t dv, const pmf_qual_t *qual) 993 { 994 return true; 995 } 996 997 static int 998 iwn_nic_lock(struct iwn_softc *sc) 999 { 1000 int ntries; 1001 1002 /* Request exclusive access to NIC. */ 1003 IWN_SETBITS(sc, IWN_GP_CNTRL, IWN_GP_CNTRL_MAC_ACCESS_REQ); 1004 1005 /* Spin until we actually get the lock. */ 1006 for (ntries = 0; ntries < 1000; ntries++) { 1007 if ((IWN_READ(sc, IWN_GP_CNTRL) & 1008 (IWN_GP_CNTRL_MAC_ACCESS_ENA | IWN_GP_CNTRL_SLEEP)) == 1009 IWN_GP_CNTRL_MAC_ACCESS_ENA) 1010 return 0; 1011 DELAY(10); 1012 } 1013 return ETIMEDOUT; 1014 } 1015 1016 static __inline void 1017 iwn_nic_unlock(struct iwn_softc *sc) 1018 { 1019 IWN_CLRBITS(sc, IWN_GP_CNTRL, IWN_GP_CNTRL_MAC_ACCESS_REQ); 1020 } 1021 1022 static __inline uint32_t 1023 iwn_prph_read(struct iwn_softc *sc, uint32_t addr) 1024 { 1025 IWN_WRITE(sc, IWN_PRPH_RADDR, IWN_PRPH_DWORD | addr); 1026 IWN_BARRIER_READ_WRITE(sc); 1027 return IWN_READ(sc, IWN_PRPH_RDATA); 1028 } 1029 1030 static __inline void 1031 iwn_prph_write(struct iwn_softc *sc, uint32_t addr, uint32_t data) 1032 { 1033 IWN_WRITE(sc, IWN_PRPH_WADDR, IWN_PRPH_DWORD | addr); 1034 IWN_BARRIER_WRITE(sc); 1035 IWN_WRITE(sc, IWN_PRPH_WDATA, data); 1036 } 1037 1038 static __inline void 1039 iwn_prph_setbits(struct iwn_softc *sc, uint32_t addr, uint32_t mask) 1040 { 1041 iwn_prph_write(sc, addr, iwn_prph_read(sc, addr) | mask); 1042 } 1043 1044 static __inline void 1045 iwn_prph_clrbits(struct iwn_softc *sc, uint32_t addr, uint32_t mask) 1046 { 1047 iwn_prph_write(sc, addr, iwn_prph_read(sc, addr) & ~mask); 1048 } 1049 1050 static __inline void 1051 iwn_prph_write_region_4(struct iwn_softc *sc, uint32_t addr, 1052 const uint32_t *data, int count) 1053 { 1054 for (; count > 0; count--, data++, addr += 4) 1055 iwn_prph_write(sc, addr, *data); 1056 } 1057 1058 static __inline uint32_t 1059 iwn_mem_read(struct iwn_softc *sc, uint32_t addr) 1060 { 1061 IWN_WRITE(sc, IWN_MEM_RADDR, addr); 1062 IWN_BARRIER_READ_WRITE(sc); 1063 return IWN_READ(sc, IWN_MEM_RDATA); 1064 } 1065 1066 static __inline void 1067 iwn_mem_write(struct iwn_softc *sc, uint32_t addr, uint32_t data) 1068 { 1069 IWN_WRITE(sc, IWN_MEM_WADDR, addr); 1070 IWN_BARRIER_WRITE(sc); 1071 IWN_WRITE(sc, IWN_MEM_WDATA, data); 1072 } 1073 1074 #ifndef IEEE80211_NO_HT 1075 static __inline void 1076 iwn_mem_write_2(struct iwn_softc *sc, uint32_t addr, uint16_t data) 1077 { 1078 uint32_t tmp; 1079 1080 tmp = iwn_mem_read(sc, addr & ~3); 1081 if (addr & 3) 1082 tmp = (tmp & 0x0000ffff) | data << 16; 1083 else 1084 tmp = (tmp & 0xffff0000) | data; 1085 iwn_mem_write(sc, addr & ~3, tmp); 1086 } 1087 #endif 1088 1089 static __inline void 1090 iwn_mem_read_region_4(struct iwn_softc *sc, uint32_t addr, uint32_t *data, 1091 int count) 1092 { 1093 for (; count > 0; count--, addr += 4) 1094 *data++ = iwn_mem_read(sc, addr); 1095 } 1096 1097 static __inline void 1098 iwn_mem_set_region_4(struct iwn_softc *sc, uint32_t addr, uint32_t val, 1099 int count) 1100 { 1101 for (; count > 0; count--, addr += 4) 1102 iwn_mem_write(sc, addr, val); 1103 } 1104 1105 static int 1106 iwn_eeprom_lock(struct iwn_softc *sc) 1107 { 1108 int i, ntries; 1109 1110 for (i = 0; i < 100; i++) { 1111 /* Request exclusive access to EEPROM. */ 1112 IWN_SETBITS(sc, IWN_HW_IF_CONFIG, 1113 IWN_HW_IF_CONFIG_EEPROM_LOCKED); 1114 1115 /* Spin until we actually get the lock. */ 1116 for (ntries = 0; ntries < 100; ntries++) { 1117 if (IWN_READ(sc, IWN_HW_IF_CONFIG) & 1118 IWN_HW_IF_CONFIG_EEPROM_LOCKED) 1119 return 0; 1120 DELAY(10); 1121 } 1122 } 1123 return ETIMEDOUT; 1124 } 1125 1126 static __inline void 1127 iwn_eeprom_unlock(struct iwn_softc *sc) 1128 { 1129 IWN_CLRBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_EEPROM_LOCKED); 1130 } 1131 1132 /* 1133 * Initialize access by host to One Time Programmable ROM. 1134 * NB: This kind of ROM can be found on 1000 or 6000 Series only. 1135 */ 1136 static int 1137 iwn_init_otprom(struct iwn_softc *sc) 1138 { 1139 uint16_t prev = 0, base, next; 1140 int count, error; 1141 1142 /* Wait for clock stabilization before accessing prph. */ 1143 if ((error = iwn_clock_wait(sc)) != 0) 1144 return error; 1145 1146 if ((error = iwn_nic_lock(sc)) != 0) 1147 return error; 1148 iwn_prph_setbits(sc, IWN_APMG_PS, IWN_APMG_PS_RESET_REQ); 1149 DELAY(5); 1150 iwn_prph_clrbits(sc, IWN_APMG_PS, IWN_APMG_PS_RESET_REQ); 1151 iwn_nic_unlock(sc); 1152 1153 /* Set auto clock gate disable bit for HW with OTP shadow RAM. */ 1154 if (sc->hw_type != IWN_HW_REV_TYPE_1000) { 1155 IWN_SETBITS(sc, IWN_DBG_LINK_PWR_MGMT, 1156 IWN_RESET_LINK_PWR_MGMT_DIS); 1157 } 1158 IWN_CLRBITS(sc, IWN_EEPROM_GP, IWN_EEPROM_GP_IF_OWNER); 1159 /* Clear ECC status. */ 1160 IWN_SETBITS(sc, IWN_OTP_GP, 1161 IWN_OTP_GP_ECC_CORR_STTS | IWN_OTP_GP_ECC_UNCORR_STTS); 1162 1163 /* 1164 * Find the block before last block (contains the EEPROM image) 1165 * for HW without OTP shadow RAM. 1166 */ 1167 if (sc->hw_type == IWN_HW_REV_TYPE_1000) { 1168 /* Switch to absolute addressing mode. */ 1169 IWN_CLRBITS(sc, IWN_OTP_GP, IWN_OTP_GP_RELATIVE_ACCESS); 1170 base = 0; 1171 for (count = 0; count < IWN1000_OTP_NBLOCKS; count++) { 1172 error = iwn_read_prom_data(sc, base, &next, 2); 1173 if (error != 0) 1174 return error; 1175 if (next == 0) /* End of linked-list. */ 1176 break; 1177 prev = base; 1178 base = le16toh(next); 1179 } 1180 if (count == 0 || count == IWN1000_OTP_NBLOCKS) 1181 return EIO; 1182 /* Skip "next" word. */ 1183 sc->prom_base = prev + 1; 1184 } 1185 return 0; 1186 } 1187 1188 static int 1189 iwn_read_prom_data(struct iwn_softc *sc, uint32_t addr, void *data, int count) 1190 { 1191 uint8_t *out = data; 1192 uint32_t val, tmp; 1193 int ntries; 1194 1195 addr += sc->prom_base; 1196 for (; count > 0; count -= 2, addr++) { 1197 IWN_WRITE(sc, IWN_EEPROM, addr << 2); 1198 for (ntries = 0; ntries < 10; ntries++) { 1199 val = IWN_READ(sc, IWN_EEPROM); 1200 if (val & IWN_EEPROM_READ_VALID) 1201 break; 1202 DELAY(5); 1203 } 1204 if (ntries == 10) { 1205 aprint_error_dev(sc->sc_dev, 1206 "timeout reading ROM at 0x%x\n", addr); 1207 return ETIMEDOUT; 1208 } 1209 if (sc->sc_flags & IWN_FLAG_HAS_OTPROM) { 1210 /* OTPROM, check for ECC errors. */ 1211 tmp = IWN_READ(sc, IWN_OTP_GP); 1212 if (tmp & IWN_OTP_GP_ECC_UNCORR_STTS) { 1213 aprint_error_dev(sc->sc_dev, 1214 "OTPROM ECC error at 0x%x\n", addr); 1215 return EIO; 1216 } 1217 if (tmp & IWN_OTP_GP_ECC_CORR_STTS) { 1218 /* Correctable ECC error, clear bit. */ 1219 IWN_SETBITS(sc, IWN_OTP_GP, 1220 IWN_OTP_GP_ECC_CORR_STTS); 1221 } 1222 } 1223 *out++ = val >> 16; 1224 if (count > 1) 1225 *out++ = val >> 24; 1226 } 1227 return 0; 1228 } 1229 1230 static int 1231 iwn_dma_contig_alloc(bus_dma_tag_t tag, struct iwn_dma_info *dma, void **kvap, 1232 bus_size_t size, bus_size_t alignment) 1233 { 1234 int nsegs, error; 1235 1236 dma->tag = tag; 1237 dma->size = size; 1238 1239 error = bus_dmamap_create(tag, size, 1, size, 0, BUS_DMA_NOWAIT, 1240 &dma->map); 1241 if (error != 0) 1242 goto fail; 1243 1244 error = bus_dmamem_alloc(tag, size, alignment, 0, &dma->seg, 1, &nsegs, 1245 BUS_DMA_NOWAIT); /* XXX OpenBSD adds BUS_DMA_ZERO */ 1246 if (error != 0) 1247 goto fail; 1248 1249 error = bus_dmamem_map(tag, &dma->seg, 1, size, &dma->vaddr, 1250 BUS_DMA_NOWAIT); /* XXX OpenBSD adds BUS_DMA_COHERENT */ 1251 if (error != 0) 1252 goto fail; 1253 1254 error = bus_dmamap_load(tag, dma->map, dma->vaddr, size, NULL, 1255 BUS_DMA_NOWAIT); 1256 if (error != 0) 1257 goto fail; 1258 1259 /* XXX Presumably needed because of missing BUS_DMA_ZERO, above. */ 1260 memset(dma->vaddr, 0, size); 1261 bus_dmamap_sync(tag, dma->map, 0, size, BUS_DMASYNC_PREWRITE); 1262 1263 dma->paddr = dma->map->dm_segs[0].ds_addr; 1264 if (kvap != NULL) 1265 *kvap = dma->vaddr; 1266 1267 return 0; 1268 1269 fail: iwn_dma_contig_free(dma); 1270 return error; 1271 } 1272 1273 static void 1274 iwn_dma_contig_free(struct iwn_dma_info *dma) 1275 { 1276 if (dma->map != NULL) { 1277 if (dma->vaddr != NULL) { 1278 bus_dmamap_sync(dma->tag, dma->map, 0, dma->size, 1279 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE); 1280 bus_dmamap_unload(dma->tag, dma->map); 1281 bus_dmamem_unmap(dma->tag, dma->vaddr, dma->size); 1282 bus_dmamem_free(dma->tag, &dma->seg, 1); 1283 dma->vaddr = NULL; 1284 } 1285 bus_dmamap_destroy(dma->tag, dma->map); 1286 dma->map = NULL; 1287 } 1288 } 1289 1290 static int 1291 iwn_alloc_sched(struct iwn_softc *sc) 1292 { 1293 /* TX scheduler rings must be aligned on a 1KB boundary. */ 1294 return iwn_dma_contig_alloc(sc->sc_dmat, &sc->sched_dma, 1295 (void **)&sc->sched, sc->schedsz, 1024); 1296 } 1297 1298 static void 1299 iwn_free_sched(struct iwn_softc *sc) 1300 { 1301 iwn_dma_contig_free(&sc->sched_dma); 1302 } 1303 1304 static int 1305 iwn_alloc_kw(struct iwn_softc *sc) 1306 { 1307 /* "Keep Warm" page must be aligned on a 4KB boundary. */ 1308 return iwn_dma_contig_alloc(sc->sc_dmat, &sc->kw_dma, NULL, 4096, 1309 4096); 1310 } 1311 1312 static void 1313 iwn_free_kw(struct iwn_softc *sc) 1314 { 1315 iwn_dma_contig_free(&sc->kw_dma); 1316 } 1317 1318 static int 1319 iwn_alloc_ict(struct iwn_softc *sc) 1320 { 1321 /* ICT table must be aligned on a 4KB boundary. */ 1322 return iwn_dma_contig_alloc(sc->sc_dmat, &sc->ict_dma, 1323 (void **)&sc->ict, IWN_ICT_SIZE, 4096); 1324 } 1325 1326 static void 1327 iwn_free_ict(struct iwn_softc *sc) 1328 { 1329 iwn_dma_contig_free(&sc->ict_dma); 1330 } 1331 1332 static int 1333 iwn_alloc_fwmem(struct iwn_softc *sc) 1334 { 1335 /* Must be aligned on a 16-byte boundary. */ 1336 return iwn_dma_contig_alloc(sc->sc_dmat, &sc->fw_dma, NULL, 1337 sc->fwsz, 16); 1338 } 1339 1340 static void 1341 iwn_free_fwmem(struct iwn_softc *sc) 1342 { 1343 iwn_dma_contig_free(&sc->fw_dma); 1344 } 1345 1346 static int 1347 iwn_alloc_rx_ring(struct iwn_softc *sc, struct iwn_rx_ring *ring) 1348 { 1349 bus_size_t size; 1350 int i, error; 1351 1352 ring->cur = 0; 1353 1354 /* Allocate RX descriptors (256-byte aligned). */ 1355 size = IWN_RX_RING_COUNT * sizeof (uint32_t); 1356 error = iwn_dma_contig_alloc(sc->sc_dmat, &ring->desc_dma, 1357 (void **)&ring->desc, size, 256); 1358 if (error != 0) { 1359 aprint_error_dev(sc->sc_dev, 1360 "could not allocate RX ring DMA memory\n"); 1361 goto fail; 1362 } 1363 1364 /* Allocate RX status area (16-byte aligned). */ 1365 error = iwn_dma_contig_alloc(sc->sc_dmat, &ring->stat_dma, 1366 (void **)&ring->stat, sizeof (struct iwn_rx_status), 16); 1367 if (error != 0) { 1368 aprint_error_dev(sc->sc_dev, 1369 "could not allocate RX status DMA memory\n"); 1370 goto fail; 1371 } 1372 1373 /* 1374 * Allocate and map RX buffers. 1375 */ 1376 for (i = 0; i < IWN_RX_RING_COUNT; i++) { 1377 struct iwn_rx_data *data = &ring->data[i]; 1378 1379 error = bus_dmamap_create(sc->sc_dmat, IWN_RBUF_SIZE, 1, 1380 IWN_RBUF_SIZE, 0, BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW, 1381 &data->map); 1382 if (error != 0) { 1383 aprint_error_dev(sc->sc_dev, 1384 "could not create RX buf DMA map\n"); 1385 goto fail; 1386 } 1387 1388 data->m = MCLGETIalt(sc, M_DONTWAIT, NULL, IWN_RBUF_SIZE); 1389 if (data->m == NULL) { 1390 aprint_error_dev(sc->sc_dev, 1391 "could not allocate RX mbuf\n"); 1392 error = ENOBUFS; 1393 goto fail; 1394 } 1395 1396 error = bus_dmamap_load(sc->sc_dmat, data->map, 1397 mtod(data->m, void *), IWN_RBUF_SIZE, NULL, 1398 BUS_DMA_NOWAIT | BUS_DMA_READ); 1399 if (error != 0) { 1400 aprint_error_dev(sc->sc_dev, 1401 "can't not map mbuf (error %d)\n", error); 1402 goto fail; 1403 } 1404 1405 /* Set physical address of RX buffer (256-byte aligned). */ 1406 ring->desc[i] = htole32(data->map->dm_segs[0].ds_addr >> 8); 1407 } 1408 1409 bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map, 0, size, 1410 BUS_DMASYNC_PREWRITE); 1411 1412 return 0; 1413 1414 fail: iwn_free_rx_ring(sc, ring); 1415 return error; 1416 } 1417 1418 static void 1419 iwn_claim_rx_ring(struct iwn_softc *sc, struct iwn_rx_ring *ring) 1420 { 1421 int i; 1422 1423 for (i = 0; i < IWN_RX_RING_COUNT; i++) { 1424 struct iwn_rx_data *data = &ring->data[i]; 1425 1426 if (data->m != NULL) { 1427 MCLAIM(data->m, &sc->sc_ec.ec_rx_mowner); 1428 } 1429 } 1430 } 1431 1432 static void 1433 iwn_reset_rx_ring(struct iwn_softc *sc, struct iwn_rx_ring *ring) 1434 { 1435 int ntries; 1436 1437 if (iwn_nic_lock(sc) == 0) { 1438 IWN_WRITE(sc, IWN_FH_RX_CONFIG, 0); 1439 for (ntries = 0; ntries < 1000; ntries++) { 1440 if (IWN_READ(sc, IWN_FH_RX_STATUS) & 1441 IWN_FH_RX_STATUS_IDLE) 1442 break; 1443 DELAY(10); 1444 } 1445 iwn_nic_unlock(sc); 1446 } 1447 ring->cur = 0; 1448 sc->last_rx_valid = 0; 1449 } 1450 1451 static void 1452 iwn_free_rx_ring(struct iwn_softc *sc, struct iwn_rx_ring *ring) 1453 { 1454 int i; 1455 1456 iwn_dma_contig_free(&ring->desc_dma); 1457 iwn_dma_contig_free(&ring->stat_dma); 1458 1459 for (i = 0; i < IWN_RX_RING_COUNT; i++) { 1460 struct iwn_rx_data *data = &ring->data[i]; 1461 1462 if (data->m != NULL) { 1463 bus_dmamap_sync(sc->sc_dmat, data->map, 0, 1464 data->map->dm_mapsize, BUS_DMASYNC_POSTREAD); 1465 bus_dmamap_unload(sc->sc_dmat, data->map); 1466 m_freem(data->m); 1467 } 1468 if (data->map != NULL) 1469 bus_dmamap_destroy(sc->sc_dmat, data->map); 1470 } 1471 } 1472 1473 static int 1474 iwn_alloc_tx_ring(struct iwn_softc *sc, struct iwn_tx_ring *ring, int qid) 1475 { 1476 bus_addr_t paddr; 1477 bus_size_t size; 1478 int i, error; 1479 1480 ring->qid = qid; 1481 ring->queued = 0; 1482 ring->cur = 0; 1483 1484 /* Allocate TX descriptors (256-byte aligned). */ 1485 size = IWN_TX_RING_COUNT * sizeof (struct iwn_tx_desc); 1486 error = iwn_dma_contig_alloc(sc->sc_dmat, &ring->desc_dma, 1487 (void **)&ring->desc, size, 256); 1488 if (error != 0) { 1489 aprint_error_dev(sc->sc_dev, 1490 "could not allocate TX ring DMA memory\n"); 1491 goto fail; 1492 } 1493 /* 1494 * We only use rings 0 through 4 (4 EDCA + cmd) so there is no need 1495 * to allocate commands space for other rings. 1496 * XXX Do we really need to allocate descriptors for other rings? 1497 */ 1498 if (qid > 4) 1499 return 0; 1500 1501 size = IWN_TX_RING_COUNT * sizeof (struct iwn_tx_cmd); 1502 error = iwn_dma_contig_alloc(sc->sc_dmat, &ring->cmd_dma, 1503 (void **)&ring->cmd, size, 4); 1504 if (error != 0) { 1505 aprint_error_dev(sc->sc_dev, 1506 "could not allocate TX cmd DMA memory\n"); 1507 goto fail; 1508 } 1509 1510 paddr = ring->cmd_dma.paddr; 1511 for (i = 0; i < IWN_TX_RING_COUNT; i++) { 1512 struct iwn_tx_data *data = &ring->data[i]; 1513 1514 data->cmd_paddr = paddr; 1515 data->scratch_paddr = paddr + 12; 1516 paddr += sizeof (struct iwn_tx_cmd); 1517 1518 error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1519 IWN_MAX_SCATTER - 1, MCLBYTES, 0, BUS_DMA_NOWAIT, 1520 &data->map); 1521 if (error != 0) { 1522 aprint_error_dev(sc->sc_dev, 1523 "could not create TX buf DMA map\n"); 1524 goto fail; 1525 } 1526 } 1527 return 0; 1528 1529 fail: iwn_free_tx_ring(sc, ring); 1530 return error; 1531 } 1532 1533 static void 1534 iwn_reset_tx_ring(struct iwn_softc *sc, struct iwn_tx_ring *ring) 1535 { 1536 int i; 1537 1538 for (i = 0; i < IWN_TX_RING_COUNT; i++) { 1539 struct iwn_tx_data *data = &ring->data[i]; 1540 1541 if (data->m != NULL) { 1542 bus_dmamap_sync(sc->sc_dmat, data->map, 0, 1543 data->map->dm_mapsize, BUS_DMASYNC_POSTWRITE); 1544 bus_dmamap_unload(sc->sc_dmat, data->map); 1545 m_freem(data->m); 1546 data->m = NULL; 1547 } 1548 } 1549 /* Clear TX descriptors. */ 1550 memset(ring->desc, 0, ring->desc_dma.size); 1551 bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map, 0, 1552 ring->desc_dma.size, BUS_DMASYNC_PREWRITE); 1553 sc->qfullmsk &= ~(1 << ring->qid); 1554 ring->queued = 0; 1555 ring->cur = 0; 1556 } 1557 1558 static void 1559 iwn_free_tx_ring(struct iwn_softc *sc, struct iwn_tx_ring *ring) 1560 { 1561 int i; 1562 1563 iwn_dma_contig_free(&ring->desc_dma); 1564 iwn_dma_contig_free(&ring->cmd_dma); 1565 1566 for (i = 0; i < IWN_TX_RING_COUNT; i++) { 1567 struct iwn_tx_data *data = &ring->data[i]; 1568 1569 if (data->m != NULL) { 1570 bus_dmamap_sync(sc->sc_dmat, data->map, 0, 1571 data->map->dm_mapsize, BUS_DMASYNC_POSTWRITE); 1572 bus_dmamap_unload(sc->sc_dmat, data->map); 1573 m_freem(data->m); 1574 } 1575 if (data->map != NULL) 1576 bus_dmamap_destroy(sc->sc_dmat, data->map); 1577 } 1578 } 1579 1580 static void 1581 iwn5000_ict_reset(struct iwn_softc *sc) 1582 { 1583 /* Disable interrupts. */ 1584 IWN_WRITE(sc, IWN_INT_MASK, 0); 1585 1586 /* Reset ICT table. */ 1587 memset(sc->ict, 0, IWN_ICT_SIZE); 1588 bus_dmamap_sync(sc->sc_dmat, sc->ict_dma.map, 0, IWN_ICT_SIZE, 1589 BUS_DMASYNC_PREWRITE); 1590 sc->ict_cur = 0; 1591 1592 /* Set physical address of ICT table (4KB aligned). */ 1593 DPRINTF(("enabling ICT\n")); 1594 IWN_WRITE(sc, IWN_DRAM_INT_TBL, IWN_DRAM_INT_TBL_ENABLE | 1595 IWN_DRAM_INT_TBL_WRAP_CHECK | sc->ict_dma.paddr >> 12); 1596 1597 /* Enable periodic RX interrupt. */ 1598 sc->int_mask |= IWN_INT_RX_PERIODIC; 1599 /* Switch to ICT interrupt mode in driver. */ 1600 sc->sc_flags |= IWN_FLAG_USE_ICT; 1601 1602 /* Re-enable interrupts. */ 1603 IWN_WRITE(sc, IWN_INT, 0xffffffff); 1604 IWN_WRITE(sc, IWN_INT_MASK, sc->int_mask); 1605 } 1606 1607 static int 1608 iwn_read_eeprom(struct iwn_softc *sc) 1609 { 1610 struct iwn_ops *ops = &sc->ops; 1611 struct ieee80211com *ic = &sc->sc_ic; 1612 uint16_t val; 1613 int error; 1614 1615 /* Check whether adapter has an EEPROM or an OTPROM. */ 1616 if (sc->hw_type >= IWN_HW_REV_TYPE_1000 && 1617 (IWN_READ(sc, IWN_OTP_GP) & IWN_OTP_GP_DEV_SEL_OTP)) 1618 sc->sc_flags |= IWN_FLAG_HAS_OTPROM; 1619 DPRINTF(("%s found\n", (sc->sc_flags & IWN_FLAG_HAS_OTPROM) ? 1620 "OTPROM" : "EEPROM")); 1621 1622 /* Adapter has to be powered on for EEPROM access to work. */ 1623 if ((error = iwn_apm_init(sc)) != 0) { 1624 aprint_error_dev(sc->sc_dev, 1625 "could not power ON adapter\n"); 1626 return error; 1627 } 1628 1629 if ((IWN_READ(sc, IWN_EEPROM_GP) & 0x7) == 0) { 1630 aprint_error_dev(sc->sc_dev, 1631 "bad ROM signature\n"); 1632 return EIO; 1633 } 1634 if ((error = iwn_eeprom_lock(sc)) != 0) { 1635 aprint_error_dev(sc->sc_dev, 1636 "could not lock ROM (error=%d)\n", error); 1637 return error; 1638 } 1639 if (sc->sc_flags & IWN_FLAG_HAS_OTPROM) { 1640 if ((error = iwn_init_otprom(sc)) != 0) { 1641 aprint_error_dev(sc->sc_dev, 1642 "could not initialize OTPROM\n"); 1643 return error; 1644 } 1645 } 1646 1647 iwn_read_prom_data(sc, IWN_EEPROM_SKU_CAP, &val, 2); 1648 DPRINTF(("SKU capabilities=0x%04x\n", le16toh(val))); 1649 /* Check if HT support is bonded out. */ 1650 if (val & htole16(IWN_EEPROM_SKU_CAP_11N)) 1651 sc->sc_flags |= IWN_FLAG_HAS_11N; 1652 1653 iwn_read_prom_data(sc, IWN_EEPROM_RFCFG, &val, 2); 1654 sc->rfcfg = le16toh(val); 1655 DPRINTF(("radio config=0x%04x\n", sc->rfcfg)); 1656 /* Read Tx/Rx chains from ROM unless it's known to be broken. */ 1657 if (sc->txchainmask == 0) 1658 sc->txchainmask = IWN_RFCFG_TXANTMSK(sc->rfcfg); 1659 if (sc->rxchainmask == 0) 1660 sc->rxchainmask = IWN_RFCFG_RXANTMSK(sc->rfcfg); 1661 1662 /* Read MAC address. */ 1663 iwn_read_prom_data(sc, IWN_EEPROM_MAC, ic->ic_myaddr, ETHER_ADDR_LEN); 1664 1665 /* Read adapter-specific information from EEPROM. */ 1666 ops->read_eeprom(sc); 1667 1668 iwn_apm_stop(sc); /* Power OFF adapter. */ 1669 1670 iwn_eeprom_unlock(sc); 1671 return 0; 1672 } 1673 1674 static void 1675 iwn4965_read_eeprom(struct iwn_softc *sc) 1676 { 1677 uint32_t addr; 1678 uint16_t val; 1679 int i; 1680 1681 /* Read regulatory domain (4 ASCII characters). */ 1682 iwn_read_prom_data(sc, IWN4965_EEPROM_DOMAIN, sc->eeprom_domain, 4); 1683 1684 /* Read the list of authorized channels (20MHz ones only). */ 1685 for (i = 0; i < 5; i++) { 1686 addr = iwn4965_regulatory_bands[i]; 1687 iwn_read_eeprom_channels(sc, i, addr); 1688 } 1689 1690 /* Read maximum allowed TX power for 2GHz and 5GHz bands. */ 1691 iwn_read_prom_data(sc, IWN4965_EEPROM_MAXPOW, &val, 2); 1692 sc->maxpwr2GHz = val & 0xff; 1693 sc->maxpwr5GHz = val >> 8; 1694 /* Check that EEPROM values are within valid range. */ 1695 if (sc->maxpwr5GHz < 20 || sc->maxpwr5GHz > 50) 1696 sc->maxpwr5GHz = 38; 1697 if (sc->maxpwr2GHz < 20 || sc->maxpwr2GHz > 50) 1698 sc->maxpwr2GHz = 38; 1699 DPRINTF(("maxpwr 2GHz=%d 5GHz=%d\n", sc->maxpwr2GHz, sc->maxpwr5GHz)); 1700 1701 /* Read samples for each TX power group. */ 1702 iwn_read_prom_data(sc, IWN4965_EEPROM_BANDS, sc->bands, 1703 sizeof sc->bands); 1704 1705 /* Read voltage at which samples were taken. */ 1706 iwn_read_prom_data(sc, IWN4965_EEPROM_VOLTAGE, &val, 2); 1707 sc->eeprom_voltage = (int16_t)le16toh(val); 1708 DPRINTF(("voltage=%d (in 0.3V)\n", sc->eeprom_voltage)); 1709 1710 #ifdef IWN_DEBUG 1711 /* Print samples. */ 1712 if (iwn_debug > 0) { 1713 for (i = 0; i < IWN_NBANDS; i++) 1714 iwn4965_print_power_group(sc, i); 1715 } 1716 #endif 1717 } 1718 1719 #ifdef IWN_DEBUG 1720 static void 1721 iwn4965_print_power_group(struct iwn_softc *sc, int i) 1722 { 1723 struct iwn4965_eeprom_band *band = &sc->bands[i]; 1724 struct iwn4965_eeprom_chan_samples *chans = band->chans; 1725 int j, c; 1726 1727 aprint_normal("===band %d===\n", i); 1728 aprint_normal("chan lo=%d, chan hi=%d\n", band->lo, band->hi); 1729 aprint_normal("chan1 num=%d\n", chans[0].num); 1730 for (c = 0; c < 2; c++) { 1731 for (j = 0; j < IWN_NSAMPLES; j++) { 1732 aprint_normal("chain %d, sample %d: temp=%d gain=%d " 1733 "power=%d pa_det=%d\n", c, j, 1734 chans[0].samples[c][j].temp, 1735 chans[0].samples[c][j].gain, 1736 chans[0].samples[c][j].power, 1737 chans[0].samples[c][j].pa_det); 1738 } 1739 } 1740 aprint_normal("chan2 num=%d\n", chans[1].num); 1741 for (c = 0; c < 2; c++) { 1742 for (j = 0; j < IWN_NSAMPLES; j++) { 1743 aprint_normal("chain %d, sample %d: temp=%d gain=%d " 1744 "power=%d pa_det=%d\n", c, j, 1745 chans[1].samples[c][j].temp, 1746 chans[1].samples[c][j].gain, 1747 chans[1].samples[c][j].power, 1748 chans[1].samples[c][j].pa_det); 1749 } 1750 } 1751 } 1752 #endif 1753 1754 static void 1755 iwn5000_read_eeprom(struct iwn_softc *sc) 1756 { 1757 struct iwn5000_eeprom_calib_hdr hdr; 1758 int32_t volt; 1759 uint32_t base, addr; 1760 uint16_t val; 1761 int i; 1762 1763 /* Read regulatory domain (4 ASCII characters). */ 1764 iwn_read_prom_data(sc, IWN5000_EEPROM_REG, &val, 2); 1765 base = le16toh(val); 1766 iwn_read_prom_data(sc, base + IWN5000_EEPROM_DOMAIN, 1767 sc->eeprom_domain, 4); 1768 1769 /* Read the list of authorized channels (20MHz ones only). */ 1770 for (i = 0; i < 5; i++) { 1771 addr = base + iwn5000_regulatory_bands[i]; 1772 iwn_read_eeprom_channels(sc, i, addr); 1773 } 1774 1775 /* Read enhanced TX power information for 6000 Series. */ 1776 if (sc->hw_type >= IWN_HW_REV_TYPE_6000) 1777 iwn_read_eeprom_enhinfo(sc); 1778 1779 iwn_read_prom_data(sc, IWN5000_EEPROM_CAL, &val, 2); 1780 base = le16toh(val); 1781 iwn_read_prom_data(sc, base, &hdr, sizeof hdr); 1782 DPRINTF(("calib version=%u pa type=%u voltage=%u\n", 1783 hdr.version, hdr.pa_type, le16toh(hdr.volt))); 1784 sc->calib_ver = hdr.version; 1785 1786 if (sc->hw_type == IWN_HW_REV_TYPE_2030 || 1787 sc->hw_type == IWN_HW_REV_TYPE_2000 || 1788 sc->hw_type == IWN_HW_REV_TYPE_135 || 1789 sc->hw_type == IWN_HW_REV_TYPE_105) { 1790 sc->eeprom_voltage = le16toh(hdr.volt); 1791 iwn_read_prom_data(sc, base + IWN5000_EEPROM_TEMP, &val, 2); 1792 sc->eeprom_temp = le16toh(val); 1793 iwn_read_prom_data(sc, base + IWN2000_EEPROM_RAWTEMP, &val, 2); 1794 sc->eeprom_rawtemp = le16toh(val); 1795 } 1796 1797 if (sc->hw_type == IWN_HW_REV_TYPE_5150) { 1798 /* Compute temperature offset. */ 1799 iwn_read_prom_data(sc, base + IWN5000_EEPROM_TEMP, &val, 2); 1800 sc->eeprom_temp = le16toh(val); 1801 iwn_read_prom_data(sc, base + IWN5000_EEPROM_VOLT, &val, 2); 1802 volt = le16toh(val); 1803 sc->temp_off = sc->eeprom_temp - (volt / -5); 1804 DPRINTF(("temp=%d volt=%d offset=%dK\n", 1805 sc->eeprom_temp, volt, sc->temp_off)); 1806 } else { 1807 /* Read crystal calibration. */ 1808 iwn_read_prom_data(sc, base + IWN5000_EEPROM_CRYSTAL, 1809 &sc->eeprom_crystal, sizeof (uint32_t)); 1810 DPRINTF(("crystal calibration 0x%08x\n", 1811 le32toh(sc->eeprom_crystal))); 1812 } 1813 } 1814 1815 static void 1816 iwn_read_eeprom_channels(struct iwn_softc *sc, int n, uint32_t addr) 1817 { 1818 struct ieee80211com *ic = &sc->sc_ic; 1819 const struct iwn_chan_band *band = &iwn_bands[n]; 1820 struct iwn_eeprom_chan channels[IWN_MAX_CHAN_PER_BAND]; 1821 uint8_t chan; 1822 int i; 1823 1824 iwn_read_prom_data(sc, addr, channels, 1825 band->nchan * sizeof (struct iwn_eeprom_chan)); 1826 1827 for (i = 0; i < band->nchan; i++) { 1828 if (!(channels[i].flags & IWN_EEPROM_CHAN_VALID)) 1829 continue; 1830 1831 chan = band->chan[i]; 1832 1833 if (n == 0) { /* 2GHz band */ 1834 ic->ic_channels[chan].ic_freq = 1835 ieee80211_ieee2mhz(chan, IEEE80211_CHAN_2GHZ); 1836 ic->ic_channels[chan].ic_flags = 1837 IEEE80211_CHAN_CCK | IEEE80211_CHAN_OFDM | 1838 IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ; 1839 1840 } else { /* 5GHz band */ 1841 /* 1842 * Some adapters support channels 7, 8, 11 and 12 1843 * both in the 2GHz and 4.9GHz bands. 1844 * Because of limitations in our net80211 layer, 1845 * we don't support them in the 4.9GHz band. 1846 */ 1847 if (chan <= 14) 1848 continue; 1849 1850 ic->ic_channels[chan].ic_freq = 1851 ieee80211_ieee2mhz(chan, IEEE80211_CHAN_5GHZ); 1852 ic->ic_channels[chan].ic_flags = IEEE80211_CHAN_A; 1853 /* We have at least one valid 5GHz channel. */ 1854 sc->sc_flags |= IWN_FLAG_HAS_5GHZ; 1855 } 1856 1857 /* Is active scan allowed on this channel? */ 1858 if (!(channels[i].flags & IWN_EEPROM_CHAN_ACTIVE)) { 1859 ic->ic_channels[chan].ic_flags |= 1860 IEEE80211_CHAN_PASSIVE; 1861 } 1862 1863 /* Save maximum allowed TX power for this channel. */ 1864 sc->maxpwr[chan] = channels[i].maxpwr; 1865 1866 DPRINTF(("adding chan %d flags=0x%x maxpwr=%d\n", 1867 chan, channels[i].flags, sc->maxpwr[chan])); 1868 } 1869 } 1870 1871 static void 1872 iwn_read_eeprom_enhinfo(struct iwn_softc *sc) 1873 { 1874 struct iwn_eeprom_enhinfo enhinfo[35]; 1875 uint16_t val, base; 1876 int8_t maxpwr; 1877 uint8_t flags; 1878 int i; 1879 1880 iwn_read_prom_data(sc, IWN5000_EEPROM_REG, &val, 2); 1881 base = le16toh(val); 1882 iwn_read_prom_data(sc, base + IWN6000_EEPROM_ENHINFO, 1883 enhinfo, sizeof enhinfo); 1884 1885 memset(sc->enh_maxpwr, 0, sizeof sc->enh_maxpwr); 1886 for (i = 0; i < __arraycount(enhinfo); i++) { 1887 flags = enhinfo[i].flags; 1888 if (!(flags & IWN_ENHINFO_VALID)) 1889 continue; /* Skip invalid entries. */ 1890 1891 maxpwr = 0; 1892 if (sc->txchainmask & IWN_ANT_A) 1893 maxpwr = MAX(maxpwr, enhinfo[i].chain[0]); 1894 if (sc->txchainmask & IWN_ANT_B) 1895 maxpwr = MAX(maxpwr, enhinfo[i].chain[1]); 1896 if (sc->txchainmask & IWN_ANT_C) 1897 maxpwr = MAX(maxpwr, enhinfo[i].chain[2]); 1898 if (sc->ntxchains == 2) 1899 maxpwr = MAX(maxpwr, enhinfo[i].mimo2); 1900 else if (sc->ntxchains == 3) 1901 maxpwr = MAX(maxpwr, enhinfo[i].mimo3); 1902 maxpwr /= 2; /* Convert half-dBm to dBm. */ 1903 1904 DPRINTF(("enhinfo %d, maxpwr=%d\n", i, maxpwr)); 1905 sc->enh_maxpwr[i] = maxpwr; 1906 } 1907 } 1908 1909 static struct ieee80211_node * 1910 iwn_node_alloc(struct ieee80211_node_table *ic __unused) 1911 { 1912 return malloc(sizeof (struct iwn_node), M_80211_NODE, M_NOWAIT | M_ZERO); 1913 } 1914 1915 static void 1916 iwn_newassoc(struct ieee80211_node *ni, int isnew) 1917 { 1918 struct iwn_softc *sc = ni->ni_ic->ic_ifp->if_softc; 1919 struct iwn_node *wn = (void *)ni; 1920 uint8_t rate; 1921 int ridx, i; 1922 1923 ieee80211_amrr_node_init(&sc->amrr, &wn->amn); 1924 /* Start at lowest available bit-rate, AMRR will raise. */ 1925 ni->ni_txrate = 0; 1926 1927 for (i = 0; i < ni->ni_rates.rs_nrates; i++) { 1928 rate = ni->ni_rates.rs_rates[i] & IEEE80211_RATE_VAL; 1929 /* Map 802.11 rate to HW rate index. */ 1930 for (ridx = 0; ridx <= IWN_RIDX_MAX; ridx++) 1931 if (iwn_rates[ridx].rate == rate) 1932 break; 1933 wn->ridx[i] = ridx; 1934 } 1935 } 1936 1937 static int 1938 iwn_media_change(struct ifnet *ifp) 1939 { 1940 struct iwn_softc *sc = ifp->if_softc; 1941 struct ieee80211com *ic = &sc->sc_ic; 1942 uint8_t rate, ridx; 1943 int error; 1944 1945 error = ieee80211_media_change(ifp); 1946 if (error != ENETRESET) 1947 return error; 1948 1949 if (ic->ic_fixed_rate != -1) { 1950 rate = ic->ic_sup_rates[ic->ic_curmode]. 1951 rs_rates[ic->ic_fixed_rate] & IEEE80211_RATE_VAL; 1952 /* Map 802.11 rate to HW rate index. */ 1953 for (ridx = 0; ridx <= IWN_RIDX_MAX; ridx++) 1954 if (iwn_rates[ridx].rate == rate) 1955 break; 1956 sc->fixed_ridx = ridx; 1957 } 1958 1959 if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) == 1960 (IFF_UP | IFF_RUNNING)) { 1961 iwn_stop(ifp, 0); 1962 error = iwn_init(ifp); 1963 } 1964 return error; 1965 } 1966 1967 static int 1968 iwn_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg) 1969 { 1970 struct ifnet *ifp = ic->ic_ifp; 1971 struct iwn_softc *sc = ifp->if_softc; 1972 int error; 1973 1974 callout_stop(&sc->calib_to); 1975 1976 switch (nstate) { 1977 case IEEE80211_S_SCAN: 1978 /* XXX Do not abort a running scan. */ 1979 if (sc->sc_flags & IWN_FLAG_SCANNING) { 1980 if (ic->ic_state != nstate) 1981 aprint_debug_dev(sc->sc_dev, "scan request(%d) " 1982 "while scanning(%d) ignored\n", nstate, 1983 ic->ic_state); 1984 break; 1985 } 1986 1987 /* XXX Not sure if call and flags are needed. */ 1988 ieee80211_node_table_reset(&ic->ic_scan); 1989 ic->ic_flags |= IEEE80211_F_SCAN | IEEE80211_F_ASCAN; 1990 sc->sc_flags |= IWN_FLAG_SCANNING_2GHZ; 1991 1992 /* Make the link LED blink while we're scanning. */ 1993 iwn_set_led(sc, IWN_LED_LINK, 10, 10); 1994 1995 if ((error = iwn_scan(sc, IEEE80211_CHAN_2GHZ)) != 0) { 1996 aprint_error_dev(sc->sc_dev, 1997 "could not initiate scan\n"); 1998 return error; 1999 } 2000 ic->ic_state = nstate; 2001 return 0; 2002 2003 case IEEE80211_S_ASSOC: 2004 if (ic->ic_state != IEEE80211_S_RUN) 2005 break; 2006 /* FALLTHROUGH */ 2007 case IEEE80211_S_AUTH: 2008 /* Reset state to handle reassociations correctly. */ 2009 sc->rxon.associd = 0; 2010 sc->rxon.filter &= ~htole32(IWN_FILTER_BSS); 2011 sc->calib.state = IWN_CALIB_STATE_INIT; 2012 2013 /* Wait until we hear a beacon before we transmit */ 2014 if (IEEE80211_IS_CHAN_PASSIVE(ic->ic_curchan)) 2015 sc->sc_beacon_wait = 1; 2016 2017 if ((error = iwn_auth(sc)) != 0) { 2018 aprint_error_dev(sc->sc_dev, 2019 "could not move to auth state\n"); 2020 return error; 2021 } 2022 break; 2023 2024 case IEEE80211_S_RUN: 2025 /* 2026 * RUN -> RUN transition; Just restart timers. 2027 */ 2028 if (ic->ic_state == IEEE80211_S_RUN) { 2029 sc->calib_cnt = 0; 2030 break; 2031 } 2032 2033 /* Wait until we hear a beacon before we transmit */ 2034 if (IEEE80211_IS_CHAN_PASSIVE(ic->ic_curchan)) 2035 sc->sc_beacon_wait = 1; 2036 2037 if ((error = iwn_run(sc)) != 0) { 2038 aprint_error_dev(sc->sc_dev, 2039 "could not move to run state\n"); 2040 return error; 2041 } 2042 break; 2043 2044 case IEEE80211_S_INIT: 2045 sc->sc_flags &= ~IWN_FLAG_SCANNING; 2046 sc->calib.state = IWN_CALIB_STATE_INIT; 2047 /* 2048 * Purge the xmit queue so we don't have old frames 2049 * during a new association attempt. 2050 */ 2051 sc->sc_beacon_wait = 0; 2052 ifp->if_flags &= ~IFF_OACTIVE; 2053 iwn_start(ifp); 2054 break; 2055 } 2056 2057 return sc->sc_newstate(ic, nstate, arg); 2058 } 2059 2060 static void 2061 iwn_iter_func(void *arg, struct ieee80211_node *ni) 2062 { 2063 struct iwn_softc *sc = arg; 2064 struct iwn_node *wn = (struct iwn_node *)ni; 2065 2066 ieee80211_amrr_choose(&sc->amrr, ni, &wn->amn); 2067 } 2068 2069 static void 2070 iwn_calib_timeout(void *arg) 2071 { 2072 struct iwn_softc *sc = arg; 2073 struct ieee80211com *ic = &sc->sc_ic; 2074 int s; 2075 2076 s = splnet(); 2077 if (ic->ic_fixed_rate == -1) { 2078 if (ic->ic_opmode == IEEE80211_M_STA) 2079 iwn_iter_func(sc, ic->ic_bss); 2080 else 2081 ieee80211_iterate_nodes(&ic->ic_sta, iwn_iter_func, sc); 2082 } 2083 /* Force automatic TX power calibration every 60 secs. */ 2084 if (++sc->calib_cnt >= 120) { 2085 uint32_t flags = 0; 2086 2087 DPRINTF(("sending request for statistics\n")); 2088 (void)iwn_cmd(sc, IWN_CMD_GET_STATISTICS, &flags, 2089 sizeof flags, 1); 2090 sc->calib_cnt = 0; 2091 } 2092 splx(s); 2093 2094 /* Automatic rate control triggered every 500ms. */ 2095 callout_schedule(&sc->calib_to, mstohz(500)); 2096 } 2097 2098 /* 2099 * Process an RX_PHY firmware notification. This is usually immediately 2100 * followed by an MPDU_RX_DONE notification. 2101 */ 2102 static void 2103 iwn_rx_phy(struct iwn_softc *sc, struct iwn_rx_desc *desc, 2104 struct iwn_rx_data *data) 2105 { 2106 struct iwn_rx_stat *stat = (struct iwn_rx_stat *)(desc + 1); 2107 2108 DPRINTFN(2, ("received PHY stats\n")); 2109 bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc), 2110 sizeof (*stat), BUS_DMASYNC_POSTREAD); 2111 2112 /* Save RX statistics, they will be used on MPDU_RX_DONE. */ 2113 memcpy(&sc->last_rx_stat, stat, sizeof (*stat)); 2114 sc->last_rx_valid = 1; 2115 } 2116 2117 /* 2118 * Process an RX_DONE (4965AGN only) or MPDU_RX_DONE firmware notification. 2119 * Each MPDU_RX_DONE notification must be preceded by an RX_PHY one. 2120 */ 2121 static void 2122 iwn_rx_done(struct iwn_softc *sc, struct iwn_rx_desc *desc, 2123 struct iwn_rx_data *data) 2124 { 2125 struct iwn_ops *ops = &sc->ops; 2126 struct ieee80211com *ic = &sc->sc_ic; 2127 struct ifnet *ifp = ic->ic_ifp; 2128 struct iwn_rx_ring *ring = &sc->rxq; 2129 struct ieee80211_frame *wh; 2130 struct ieee80211_node *ni; 2131 struct mbuf *m, *m1; 2132 struct iwn_rx_stat *stat; 2133 char *head; 2134 uint32_t flags; 2135 int error, len, rssi, s; 2136 2137 if (desc->type == IWN_MPDU_RX_DONE) { 2138 /* Check for prior RX_PHY notification. */ 2139 if (!sc->last_rx_valid) { 2140 DPRINTF(("missing RX_PHY\n")); 2141 return; 2142 } 2143 sc->last_rx_valid = 0; 2144 stat = &sc->last_rx_stat; 2145 } else 2146 stat = (struct iwn_rx_stat *)(desc + 1); 2147 2148 bus_dmamap_sync(sc->sc_dmat, data->map, 0, IWN_RBUF_SIZE, 2149 BUS_DMASYNC_POSTREAD); 2150 2151 if (stat->cfg_phy_len > IWN_STAT_MAXLEN) { 2152 aprint_error_dev(sc->sc_dev, 2153 "invalid RX statistic header\n"); 2154 return; 2155 } 2156 if (desc->type == IWN_MPDU_RX_DONE) { 2157 struct iwn_rx_mpdu *mpdu = (struct iwn_rx_mpdu *)(desc + 1); 2158 head = (char *)(mpdu + 1); 2159 len = le16toh(mpdu->len); 2160 } else { 2161 head = (char *)(stat + 1) + stat->cfg_phy_len; 2162 len = le16toh(stat->len); 2163 } 2164 2165 flags = le32toh(*(uint32_t *)(head + len)); 2166 2167 /* Discard frames with a bad FCS early. */ 2168 if ((flags & IWN_RX_NOERROR) != IWN_RX_NOERROR) { 2169 DPRINTFN(2, ("RX flags error %x\n", flags)); 2170 if_statinc(ifp, if_ierrors); 2171 return; 2172 } 2173 /* Discard frames that are too short. */ 2174 if (len < sizeof (*wh)) { 2175 DPRINTF(("frame too short: %d\n", len)); 2176 ic->ic_stats.is_rx_tooshort++; 2177 if_statinc(ifp, if_ierrors); 2178 return; 2179 } 2180 2181 m1 = MCLGETIalt(sc, M_DONTWAIT, NULL, IWN_RBUF_SIZE); 2182 if (m1 == NULL) { 2183 ic->ic_stats.is_rx_nobuf++; 2184 if_statinc(ifp, if_ierrors); 2185 return; 2186 } 2187 MCLAIM(m1, &sc->sc_ec.ec_rx_mowner); 2188 bus_dmamap_unload(sc->sc_dmat, data->map); 2189 2190 error = bus_dmamap_load(sc->sc_dmat, data->map, mtod(m1, void *), 2191 IWN_RBUF_SIZE, NULL, BUS_DMA_NOWAIT | BUS_DMA_READ); 2192 if (error != 0) { 2193 m_freem(m1); 2194 2195 /* Try to reload the old mbuf. */ 2196 error = bus_dmamap_load(sc->sc_dmat, data->map, 2197 mtod(data->m, void *), IWN_RBUF_SIZE, NULL, 2198 BUS_DMA_NOWAIT | BUS_DMA_READ); 2199 if (error != 0) { 2200 panic("%s: could not load old RX mbuf", 2201 device_xname(sc->sc_dev)); 2202 } 2203 /* Physical address may have changed. */ 2204 ring->desc[ring->cur] = 2205 htole32(data->map->dm_segs[0].ds_addr >> 8); 2206 bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map, 2207 ring->cur * sizeof (uint32_t), sizeof (uint32_t), 2208 BUS_DMASYNC_PREWRITE); 2209 if_statinc(ifp, if_ierrors); 2210 return; 2211 } 2212 2213 m = data->m; 2214 data->m = m1; 2215 /* Update RX descriptor. */ 2216 ring->desc[ring->cur] = htole32(data->map->dm_segs[0].ds_addr >> 8); 2217 bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map, 2218 ring->cur * sizeof (uint32_t), sizeof (uint32_t), 2219 BUS_DMASYNC_PREWRITE); 2220 2221 /* Finalize mbuf. */ 2222 m_set_rcvif(m, ifp); 2223 m->m_data = head; 2224 m->m_pkthdr.len = m->m_len = len; 2225 2226 s = splnet(); 2227 2228 /* Grab a reference to the source node. */ 2229 wh = mtod(m, struct ieee80211_frame *); 2230 ni = ieee80211_find_rxnode(ic, (struct ieee80211_frame_min *)wh); 2231 2232 /* XXX OpenBSD adds decryption here (see also comments in iwn_tx). */ 2233 /* NetBSD does decryption in ieee80211_input. */ 2234 2235 rssi = ops->get_rssi(stat); 2236 2237 /* XXX Added for NetBSD: scans never stop without it */ 2238 if (ic->ic_state == IEEE80211_S_SCAN) 2239 iwn_fix_channel(ic, m, stat); 2240 2241 if (sc->sc_drvbpf != NULL) { 2242 struct iwn_rx_radiotap_header *tap = &sc->sc_rxtap; 2243 2244 tap->wr_flags = 0; 2245 if (stat->flags & htole16(IWN_STAT_FLAG_SHPREAMBLE)) 2246 tap->wr_flags |= IEEE80211_RADIOTAP_F_SHORTPRE; 2247 tap->wr_chan_freq = 2248 htole16(ic->ic_channels[stat->chan].ic_freq); 2249 tap->wr_chan_flags = 2250 htole16(ic->ic_channels[stat->chan].ic_flags); 2251 tap->wr_dbm_antsignal = (int8_t)rssi; 2252 tap->wr_dbm_antnoise = (int8_t)sc->noise; 2253 tap->wr_tsft = stat->tstamp; 2254 switch (stat->rate) { 2255 /* CCK rates. */ 2256 case 10: tap->wr_rate = 2; break; 2257 case 20: tap->wr_rate = 4; break; 2258 case 55: tap->wr_rate = 11; break; 2259 case 110: tap->wr_rate = 22; break; 2260 /* OFDM rates. */ 2261 case 0xd: tap->wr_rate = 12; break; 2262 case 0xf: tap->wr_rate = 18; break; 2263 case 0x5: tap->wr_rate = 24; break; 2264 case 0x7: tap->wr_rate = 36; break; 2265 case 0x9: tap->wr_rate = 48; break; 2266 case 0xb: tap->wr_rate = 72; break; 2267 case 0x1: tap->wr_rate = 96; break; 2268 case 0x3: tap->wr_rate = 108; break; 2269 /* Unknown rate: should not happen. */ 2270 default: tap->wr_rate = 0; 2271 } 2272 2273 bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_rxtap_len, m, BPF_D_IN); 2274 } 2275 2276 /* 2277 * If it's a beacon and we're waiting, then do the wakeup. 2278 */ 2279 if (sc->sc_beacon_wait) { 2280 uint8_t type, subtype; 2281 type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK; 2282 subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK; 2283 /* 2284 * This assumes at this point we've received our own 2285 * beacon. 2286 */ 2287 if (type == IEEE80211_FC0_TYPE_MGT && 2288 subtype == IEEE80211_FC0_SUBTYPE_BEACON) { 2289 sc->sc_beacon_wait = 0; 2290 ifp->if_flags &= ~IFF_OACTIVE; 2291 iwn_start(ifp); 2292 } 2293 } 2294 2295 /* Send the frame to the 802.11 layer. */ 2296 ieee80211_input(ic, m, ni, rssi, 0); 2297 2298 /* Node is no longer needed. */ 2299 ieee80211_free_node(ni); 2300 2301 splx(s); 2302 } 2303 2304 #ifndef IEEE80211_NO_HT 2305 /* Process an incoming Compressed BlockAck. */ 2306 static void 2307 iwn_rx_compressed_ba(struct iwn_softc *sc, struct iwn_rx_desc *desc, 2308 struct iwn_rx_data *data) 2309 { 2310 struct iwn_compressed_ba *ba = (struct iwn_compressed_ba *)(desc + 1); 2311 struct iwn_tx_ring *txq; 2312 2313 bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc), sizeof (*ba), 2314 BUS_DMASYNC_POSTREAD); 2315 2316 txq = &sc->txq[le16toh(ba->qid)]; 2317 /* XXX TBD */ 2318 } 2319 #endif 2320 2321 /* 2322 * Process a CALIBRATION_RESULT notification sent by the initialization 2323 * firmware on response to a CMD_CALIB_CONFIG command (5000 only). 2324 */ 2325 static void 2326 iwn5000_rx_calib_results(struct iwn_softc *sc, struct iwn_rx_desc *desc, 2327 struct iwn_rx_data *data) 2328 { 2329 struct iwn_phy_calib *calib = (struct iwn_phy_calib *)(desc + 1); 2330 int len, idx = -1; 2331 2332 /* Runtime firmware should not send such a notification. */ 2333 if (sc->sc_flags & IWN_FLAG_CALIB_DONE) 2334 return; 2335 2336 len = (le32toh(desc->len) & 0x3fff) - 4; 2337 bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc), len, 2338 BUS_DMASYNC_POSTREAD); 2339 2340 switch (calib->code) { 2341 case IWN5000_PHY_CALIB_DC: 2342 if (sc->hw_type == IWN_HW_REV_TYPE_5150 || 2343 sc->hw_type == IWN_HW_REV_TYPE_2030 || 2344 sc->hw_type == IWN_HW_REV_TYPE_2000 || 2345 sc->hw_type == IWN_HW_REV_TYPE_135 || 2346 sc->hw_type == IWN_HW_REV_TYPE_105) 2347 idx = 0; 2348 break; 2349 case IWN5000_PHY_CALIB_LO: 2350 idx = 1; 2351 break; 2352 case IWN5000_PHY_CALIB_TX_IQ: 2353 idx = 2; 2354 break; 2355 case IWN5000_PHY_CALIB_TX_IQ_PERIODIC: 2356 if (sc->hw_type < IWN_HW_REV_TYPE_6000 && 2357 sc->hw_type != IWN_HW_REV_TYPE_5150) 2358 idx = 3; 2359 break; 2360 case IWN5000_PHY_CALIB_BASE_BAND: 2361 idx = 4; 2362 break; 2363 } 2364 if (idx == -1) /* Ignore other results. */ 2365 return; 2366 2367 /* Save calibration result. */ 2368 if (sc->calibcmd[idx].buf != NULL) 2369 free(sc->calibcmd[idx].buf, M_DEVBUF); 2370 sc->calibcmd[idx].buf = malloc(len, M_DEVBUF, M_NOWAIT); 2371 if (sc->calibcmd[idx].buf == NULL) { 2372 DPRINTF(("not enough memory for calibration result %d\n", 2373 calib->code)); 2374 return; 2375 } 2376 DPRINTF(("saving calibration result code=%d len=%d\n", 2377 calib->code, len)); 2378 sc->calibcmd[idx].len = len; 2379 memcpy(sc->calibcmd[idx].buf, calib, len); 2380 } 2381 2382 /* 2383 * Process an RX_STATISTICS or BEACON_STATISTICS firmware notification. 2384 * The latter is sent by the firmware after each received beacon. 2385 */ 2386 static void 2387 iwn_rx_statistics(struct iwn_softc *sc, struct iwn_rx_desc *desc, 2388 struct iwn_rx_data *data) 2389 { 2390 struct iwn_ops *ops = &sc->ops; 2391 struct ieee80211com *ic = &sc->sc_ic; 2392 struct iwn_calib_state *calib = &sc->calib; 2393 struct iwn_stats *stats = (struct iwn_stats *)(desc + 1); 2394 int temp; 2395 2396 /* Ignore statistics received during a scan. */ 2397 if (ic->ic_state != IEEE80211_S_RUN) 2398 return; 2399 2400 bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc), 2401 sizeof (*stats), BUS_DMASYNC_POSTREAD); 2402 2403 DPRINTFN(3, ("received statistics (cmd=%d)\n", desc->type)); 2404 sc->calib_cnt = 0; /* Reset TX power calibration timeout. */ 2405 2406 /* Test if temperature has changed. */ 2407 if (stats->general.temp != sc->rawtemp) { 2408 /* Convert "raw" temperature to degC. */ 2409 sc->rawtemp = stats->general.temp; 2410 temp = ops->get_temperature(sc); 2411 DPRINTFN(2, ("temperature=%dC\n", temp)); 2412 2413 /* Update TX power if need be (4965AGN only). */ 2414 if (sc->hw_type == IWN_HW_REV_TYPE_4965) 2415 iwn4965_power_calibration(sc, temp); 2416 } 2417 2418 if (desc->type != IWN_BEACON_STATISTICS) 2419 return; /* Reply to a statistics request. */ 2420 2421 sc->noise = iwn_get_noise(&stats->rx.general); 2422 2423 /* Test that RSSI and noise are present in stats report. */ 2424 if (le32toh(stats->rx.general.flags) != 1) { 2425 DPRINTF(("received statistics without RSSI\n")); 2426 return; 2427 } 2428 2429 /* 2430 * XXX Differential gain calibration makes the 6005 firmware 2431 * crap out, so skip it for now. This effectively disables 2432 * sensitivity tuning as well. 2433 */ 2434 if (sc->hw_type == IWN_HW_REV_TYPE_6005) 2435 return; 2436 2437 if (calib->state == IWN_CALIB_STATE_ASSOC) 2438 iwn_collect_noise(sc, &stats->rx.general); 2439 else if (calib->state == IWN_CALIB_STATE_RUN) 2440 iwn_tune_sensitivity(sc, &stats->rx); 2441 } 2442 2443 /* 2444 * Process a TX_DONE firmware notification. Unfortunately, the 4965AGN 2445 * and 5000 adapters have different incompatible TX status formats. 2446 */ 2447 static void 2448 iwn4965_tx_done(struct iwn_softc *sc, struct iwn_rx_desc *desc, 2449 struct iwn_rx_data *data) 2450 { 2451 struct iwn4965_tx_stat *stat = (struct iwn4965_tx_stat *)(desc + 1); 2452 2453 bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc), 2454 sizeof (*stat), BUS_DMASYNC_POSTREAD); 2455 iwn_tx_done(sc, desc, stat->ackfailcnt, le32toh(stat->status) & 0xff); 2456 } 2457 2458 static void 2459 iwn5000_tx_done(struct iwn_softc *sc, struct iwn_rx_desc *desc, 2460 struct iwn_rx_data *data) 2461 { 2462 struct iwn5000_tx_stat *stat = (struct iwn5000_tx_stat *)(desc + 1); 2463 2464 #ifdef notyet 2465 /* Reset TX scheduler slot. */ 2466 iwn5000_reset_sched(sc, desc->qid & 0xf, desc->idx); 2467 #endif 2468 2469 bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc), 2470 sizeof (*stat), BUS_DMASYNC_POSTREAD); 2471 iwn_tx_done(sc, desc, stat->ackfailcnt, le16toh(stat->status) & 0xff); 2472 } 2473 2474 /* 2475 * Adapter-independent backend for TX_DONE firmware notifications. 2476 */ 2477 static void 2478 iwn_tx_done(struct iwn_softc *sc, struct iwn_rx_desc *desc, int ackfailcnt, 2479 uint8_t status) 2480 { 2481 struct ieee80211com *ic = &sc->sc_ic; 2482 struct ifnet *ifp = ic->ic_ifp; 2483 struct iwn_tx_ring *ring = &sc->txq[desc->qid & 0xf]; 2484 struct iwn_tx_data *data = &ring->data[desc->idx]; 2485 struct iwn_node *wn = (struct iwn_node *)data->ni; 2486 int s; 2487 2488 s = splnet(); 2489 2490 /* Update rate control statistics. */ 2491 wn->amn.amn_txcnt++; 2492 if (ackfailcnt > 0) 2493 wn->amn.amn_retrycnt++; 2494 2495 if (status != 1 && status != 2) 2496 if_statinc(ifp, if_oerrors); 2497 else 2498 if_statinc(ifp, if_opackets); 2499 2500 /* Unmap and free mbuf. */ 2501 bus_dmamap_sync(sc->sc_dmat, data->map, 0, data->map->dm_mapsize, 2502 BUS_DMASYNC_POSTWRITE); 2503 bus_dmamap_unload(sc->sc_dmat, data->map); 2504 m_freem(data->m); 2505 data->m = NULL; 2506 ieee80211_free_node(data->ni); 2507 data->ni = NULL; 2508 2509 sc->sc_tx_timer = 0; 2510 if (--ring->queued < IWN_TX_RING_LOMARK) { 2511 sc->qfullmsk &= ~(1 << ring->qid); 2512 if (sc->qfullmsk == 0 && (ifp->if_flags & IFF_OACTIVE)) { 2513 ifp->if_flags &= ~IFF_OACTIVE; 2514 iwn_start(ifp); 2515 } 2516 } 2517 2518 splx(s); 2519 } 2520 2521 /* 2522 * Process a "command done" firmware notification. This is where we wakeup 2523 * processes waiting for a synchronous command completion. 2524 */ 2525 static void 2526 iwn_cmd_done(struct iwn_softc *sc, struct iwn_rx_desc *desc) 2527 { 2528 struct iwn_tx_ring *ring = &sc->txq[4]; 2529 struct iwn_tx_data *data; 2530 2531 if ((desc->qid & 0xf) != 4) 2532 return; /* Not a command ack. */ 2533 2534 data = &ring->data[desc->idx]; 2535 2536 /* If the command was mapped in an mbuf, free it. */ 2537 if (data->m != NULL) { 2538 bus_dmamap_sync(sc->sc_dmat, data->map, 0, 2539 data->map->dm_mapsize, BUS_DMASYNC_POSTWRITE); 2540 bus_dmamap_unload(sc->sc_dmat, data->map); 2541 m_freem(data->m); 2542 data->m = NULL; 2543 } 2544 wakeup(&ring->desc[desc->idx]); 2545 } 2546 2547 /* 2548 * Process an INT_FH_RX or INT_SW_RX interrupt. 2549 */ 2550 static void 2551 iwn_notif_intr(struct iwn_softc *sc) 2552 { 2553 struct iwn_ops *ops = &sc->ops; 2554 struct ieee80211com *ic = &sc->sc_ic; 2555 struct ifnet *ifp = ic->ic_ifp; 2556 uint16_t hw; 2557 int s; 2558 2559 bus_dmamap_sync(sc->sc_dmat, sc->rxq.stat_dma.map, 2560 0, sc->rxq.stat_dma.size, BUS_DMASYNC_POSTREAD); 2561 2562 hw = le16toh(sc->rxq.stat->closed_count) & 0xfff; 2563 while (sc->rxq.cur != hw) { 2564 struct iwn_rx_data *data = &sc->rxq.data[sc->rxq.cur]; 2565 struct iwn_rx_desc *desc; 2566 2567 bus_dmamap_sync(sc->sc_dmat, data->map, 0, sizeof (*desc), 2568 BUS_DMASYNC_POSTREAD); 2569 desc = mtod(data->m, struct iwn_rx_desc *); 2570 2571 DPRINTFN(4, ("notification qid=%d idx=%d flags=%x type=%d\n", 2572 desc->qid & 0xf, desc->idx, desc->flags, desc->type)); 2573 2574 if (!(desc->qid & 0x80)) /* Reply to a command. */ 2575 iwn_cmd_done(sc, desc); 2576 2577 switch (desc->type) { 2578 case IWN_RX_PHY: 2579 iwn_rx_phy(sc, desc, data); 2580 break; 2581 2582 case IWN_RX_DONE: /* 4965AGN only. */ 2583 case IWN_MPDU_RX_DONE: 2584 /* An 802.11 frame has been received. */ 2585 iwn_rx_done(sc, desc, data); 2586 break; 2587 #ifndef IEEE80211_NO_HT 2588 case IWN_RX_COMPRESSED_BA: 2589 /* A Compressed BlockAck has been received. */ 2590 iwn_rx_compressed_ba(sc, desc, data); 2591 break; 2592 #endif 2593 case IWN_TX_DONE: 2594 /* An 802.11 frame has been transmitted. */ 2595 ops->tx_done(sc, desc, data); 2596 break; 2597 2598 case IWN_RX_STATISTICS: 2599 case IWN_BEACON_STATISTICS: 2600 iwn_rx_statistics(sc, desc, data); 2601 break; 2602 2603 case IWN_BEACON_MISSED: 2604 { 2605 struct iwn_beacon_missed *miss = 2606 (struct iwn_beacon_missed *)(desc + 1); 2607 2608 bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc), 2609 sizeof (*miss), BUS_DMASYNC_POSTREAD); 2610 /* 2611 * If more than 5 consecutive beacons are missed, 2612 * reinitialize the sensitivity state machine. 2613 */ 2614 DPRINTF(("beacons missed %d/%d\n", 2615 le32toh(miss->consecutive), le32toh(miss->total))); 2616 if (ic->ic_state == IEEE80211_S_RUN && 2617 le32toh(miss->consecutive) > 5) 2618 (void)iwn_init_sensitivity(sc); 2619 break; 2620 } 2621 case IWN_UC_READY: 2622 { 2623 struct iwn_ucode_info *uc = 2624 (struct iwn_ucode_info *)(desc + 1); 2625 2626 /* The microcontroller is ready. */ 2627 bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc), 2628 sizeof (*uc), BUS_DMASYNC_POSTREAD); 2629 DPRINTF(("microcode alive notification version=%d.%d " 2630 "subtype=%x alive=%x\n", uc->major, uc->minor, 2631 uc->subtype, le32toh(uc->valid))); 2632 2633 if (le32toh(uc->valid) != 1) { 2634 aprint_error_dev(sc->sc_dev, 2635 "microcontroller initialization " 2636 "failed\n"); 2637 break; 2638 } 2639 if (uc->subtype == IWN_UCODE_INIT) { 2640 /* Save microcontroller report. */ 2641 memcpy(&sc->ucode_info, uc, sizeof (*uc)); 2642 } 2643 /* Save the address of the error log in SRAM. */ 2644 sc->errptr = le32toh(uc->errptr); 2645 break; 2646 } 2647 case IWN_STATE_CHANGED: 2648 { 2649 uint32_t *status = (uint32_t *)(desc + 1); 2650 2651 /* Enabled/disabled notification. */ 2652 bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc), 2653 sizeof (*status), BUS_DMASYNC_POSTREAD); 2654 DPRINTF(("state changed to %x\n", le32toh(*status))); 2655 2656 if (le32toh(*status) & 1) { 2657 /* The radio button has to be pushed. */ 2658 aprint_error_dev(sc->sc_dev, 2659 "Radio transmitter is off\n"); 2660 /* Turn the interface down. */ 2661 s = splnet(); 2662 ifp->if_flags &= ~IFF_UP; 2663 iwn_stop(ifp, 1); 2664 splx(s); 2665 return; /* No further processing. */ 2666 } 2667 break; 2668 } 2669 case IWN_START_SCAN: 2670 { 2671 struct iwn_start_scan *scan = 2672 (struct iwn_start_scan *)(desc + 1); 2673 2674 bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc), 2675 sizeof (*scan), BUS_DMASYNC_POSTREAD); 2676 DPRINTFN(2, ("scanning channel %d status %x\n", 2677 scan->chan, le32toh(scan->status))); 2678 2679 /* Fix current channel. */ 2680 ic->ic_bss->ni_chan = &ic->ic_channels[scan->chan]; 2681 break; 2682 } 2683 case IWN_STOP_SCAN: 2684 { 2685 struct iwn_stop_scan *scan = 2686 (struct iwn_stop_scan *)(desc + 1); 2687 2688 bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc), 2689 sizeof (*scan), BUS_DMASYNC_POSTREAD); 2690 DPRINTF(("scan finished nchan=%d status=%d chan=%d\n", 2691 scan->nchan, scan->status, scan->chan)); 2692 2693 if (scan->status == 1 && scan->chan <= 14 && 2694 (sc->sc_flags & IWN_FLAG_HAS_5GHZ)) { 2695 /* 2696 * We just finished scanning 2GHz channels, 2697 * start scanning 5GHz ones. 2698 */ 2699 sc->sc_flags &= ~IWN_FLAG_SCANNING_2GHZ; 2700 sc->sc_flags |= IWN_FLAG_SCANNING_5GHZ; 2701 if (iwn_scan(sc, IEEE80211_CHAN_5GHZ) == 0) 2702 break; 2703 } 2704 sc->sc_flags &= ~IWN_FLAG_SCANNING; 2705 ieee80211_end_scan(ic); 2706 break; 2707 } 2708 case IWN5000_CALIBRATION_RESULT: 2709 iwn5000_rx_calib_results(sc, desc, data); 2710 break; 2711 2712 case IWN5000_CALIBRATION_DONE: 2713 sc->sc_flags |= IWN_FLAG_CALIB_DONE; 2714 wakeup(sc); 2715 break; 2716 } 2717 2718 sc->rxq.cur = (sc->rxq.cur + 1) % IWN_RX_RING_COUNT; 2719 } 2720 2721 /* Tell the firmware what we have processed. */ 2722 hw = (hw == 0) ? IWN_RX_RING_COUNT - 1 : hw - 1; 2723 IWN_WRITE(sc, IWN_FH_RX_WPTR, hw & ~7); 2724 } 2725 2726 /* 2727 * Process an INT_WAKEUP interrupt raised when the microcontroller wakes up 2728 * from power-down sleep mode. 2729 */ 2730 static void 2731 iwn_wakeup_intr(struct iwn_softc *sc) 2732 { 2733 int qid; 2734 2735 DPRINTF(("ucode wakeup from power-down sleep\n")); 2736 2737 /* Wakeup RX and TX rings. */ 2738 IWN_WRITE(sc, IWN_FH_RX_WPTR, sc->rxq.cur & ~7); 2739 for (qid = 0; qid < sc->ntxqs; qid++) { 2740 struct iwn_tx_ring *ring = &sc->txq[qid]; 2741 IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | ring->cur); 2742 } 2743 } 2744 2745 /* 2746 * Dump the error log of the firmware when a firmware panic occurs. Although 2747 * we can't debug the firmware because it is neither open source nor free, it 2748 * can help us to identify certain classes of problems. 2749 */ 2750 static void 2751 iwn_fatal_intr(struct iwn_softc *sc) 2752 { 2753 struct iwn_fw_dump dump; 2754 int i; 2755 2756 /* Force a complete recalibration on next init. */ 2757 sc->sc_flags &= ~IWN_FLAG_CALIB_DONE; 2758 2759 /* Check that the error log address is valid. */ 2760 if (sc->errptr < IWN_FW_DATA_BASE || 2761 sc->errptr + sizeof (dump) > 2762 IWN_FW_DATA_BASE + sc->fw_data_maxsz) { 2763 aprint_error_dev(sc->sc_dev, 2764 "bad firmware error log address 0x%08x\n", sc->errptr); 2765 return; 2766 } 2767 if (iwn_nic_lock(sc) != 0) { 2768 aprint_error_dev(sc->sc_dev, 2769 "could not read firmware error log\n"); 2770 return; 2771 } 2772 /* Read firmware error log from SRAM. */ 2773 iwn_mem_read_region_4(sc, sc->errptr, (uint32_t *)&dump, 2774 sizeof (dump) / sizeof (uint32_t)); 2775 iwn_nic_unlock(sc); 2776 2777 if (dump.valid == 0) { 2778 aprint_error_dev(sc->sc_dev, 2779 "firmware error log is empty\n"); 2780 return; 2781 } 2782 aprint_error("firmware error log:\n"); 2783 aprint_error(" error type = \"%s\" (0x%08X)\n", 2784 (dump.id < __arraycount(iwn_fw_errmsg)) ? 2785 iwn_fw_errmsg[dump.id] : "UNKNOWN", 2786 dump.id); 2787 aprint_error(" program counter = 0x%08X\n", dump.pc); 2788 aprint_error(" source line = 0x%08X\n", dump.src_line); 2789 aprint_error(" error data = 0x%08X%08X\n", 2790 dump.error_data[0], dump.error_data[1]); 2791 aprint_error(" branch link = 0x%08X%08X\n", 2792 dump.branch_link[0], dump.branch_link[1]); 2793 aprint_error(" interrupt link = 0x%08X%08X\n", 2794 dump.interrupt_link[0], dump.interrupt_link[1]); 2795 aprint_error(" time = %u\n", dump.time[0]); 2796 2797 /* Dump driver status (TX and RX rings) while we're here. */ 2798 aprint_error("driver status:\n"); 2799 for (i = 0; i < sc->ntxqs; i++) { 2800 struct iwn_tx_ring *ring = &sc->txq[i]; 2801 aprint_error(" tx ring %2d: qid=%-2d cur=%-3d queued=%-3d\n", 2802 i, ring->qid, ring->cur, ring->queued); 2803 } 2804 aprint_error(" rx ring: cur=%d\n", sc->rxq.cur); 2805 aprint_error(" 802.11 state %d\n", sc->sc_ic.ic_state); 2806 } 2807 2808 static int 2809 iwn_intr(void *arg) 2810 { 2811 struct iwn_softc *sc = arg; 2812 2813 /* Disable interrupts. */ 2814 IWN_WRITE(sc, IWN_INT_MASK, 0); 2815 2816 softint_schedule(sc->sc_soft_ih); 2817 return 1; 2818 } 2819 2820 static void 2821 iwn_softintr(void *arg) 2822 { 2823 struct iwn_softc *sc = arg; 2824 struct ifnet *ifp = sc->sc_ic.ic_ifp; 2825 uint32_t r1, r2, tmp; 2826 int s; 2827 2828 /* Read interrupts from ICT (fast) or from registers (slow). */ 2829 if (sc->sc_flags & IWN_FLAG_USE_ICT) { 2830 bus_dmamap_sync(sc->sc_dmat, sc->ict_dma.map, 0, 2831 IWN_ICT_SIZE, BUS_DMASYNC_POSTREAD); 2832 tmp = 0; 2833 while (sc->ict[sc->ict_cur] != 0) { 2834 tmp |= sc->ict[sc->ict_cur]; 2835 sc->ict[sc->ict_cur] = 0; /* Acknowledge. */ 2836 sc->ict_cur = (sc->ict_cur + 1) % IWN_ICT_COUNT; 2837 } 2838 bus_dmamap_sync(sc->sc_dmat, sc->ict_dma.map, 0, 2839 IWN_ICT_SIZE, BUS_DMASYNC_PREWRITE); 2840 tmp = le32toh(tmp); 2841 if (tmp == 0xffffffff) /* Shouldn't happen. */ 2842 tmp = 0; 2843 else if (tmp & 0xc0000) /* Workaround a HW bug. */ 2844 tmp |= 0x8000; 2845 r1 = (tmp & 0xff00) << 16 | (tmp & 0xff); 2846 r2 = 0; /* Unused. */ 2847 } else { 2848 r1 = IWN_READ(sc, IWN_INT); 2849 if (r1 == 0xffffffff || (r1 & 0xfffffff0) == 0xa5a5a5a0) 2850 return; /* Hardware gone! */ 2851 r2 = IWN_READ(sc, IWN_FH_INT); 2852 } 2853 if (r1 == 0 && r2 == 0) { 2854 goto out; /* Interrupt not for us. */ 2855 } 2856 2857 /* Acknowledge interrupts. */ 2858 IWN_WRITE(sc, IWN_INT, r1); 2859 if (!(sc->sc_flags & IWN_FLAG_USE_ICT)) 2860 IWN_WRITE(sc, IWN_FH_INT, r2); 2861 2862 if (r1 & IWN_INT_RF_TOGGLED) { 2863 tmp = IWN_READ(sc, IWN_GP_CNTRL); 2864 aprint_error_dev(sc->sc_dev, 2865 "RF switch: radio %s\n", 2866 (tmp & IWN_GP_CNTRL_RFKILL) ? "enabled" : "disabled"); 2867 } 2868 if (r1 & IWN_INT_CT_REACHED) { 2869 aprint_error_dev(sc->sc_dev, 2870 "critical temperature reached!\n"); 2871 } 2872 if (r1 & (IWN_INT_SW_ERR | IWN_INT_HW_ERR)) { 2873 aprint_error_dev(sc->sc_dev, 2874 "fatal firmware error\n"); 2875 /* Dump firmware error log and stop. */ 2876 iwn_fatal_intr(sc); 2877 s = splnet(); 2878 ifp->if_flags &= ~IFF_UP; 2879 iwn_stop(ifp, 1); 2880 splx(s); 2881 return; 2882 } 2883 if ((r1 & (IWN_INT_FH_RX | IWN_INT_SW_RX | IWN_INT_RX_PERIODIC)) || 2884 (r2 & IWN_FH_INT_RX)) { 2885 if (sc->sc_flags & IWN_FLAG_USE_ICT) { 2886 if (r1 & (IWN_INT_FH_RX | IWN_INT_SW_RX)) 2887 IWN_WRITE(sc, IWN_FH_INT, IWN_FH_INT_RX); 2888 IWN_WRITE_1(sc, IWN_INT_PERIODIC, IWN_INT_PERIODIC_DIS); 2889 iwn_notif_intr(sc); 2890 if (r1 & (IWN_INT_FH_RX | IWN_INT_SW_RX)) { 2891 IWN_WRITE_1(sc, IWN_INT_PERIODIC, 2892 IWN_INT_PERIODIC_ENA); 2893 } 2894 } else 2895 iwn_notif_intr(sc); 2896 } 2897 2898 if ((r1 & IWN_INT_FH_TX) || (r2 & IWN_FH_INT_TX)) { 2899 if (sc->sc_flags & IWN_FLAG_USE_ICT) 2900 IWN_WRITE(sc, IWN_FH_INT, IWN_FH_INT_TX); 2901 wakeup(sc); /* FH DMA transfer completed. */ 2902 } 2903 2904 if (r1 & IWN_INT_ALIVE) 2905 wakeup(sc); /* Firmware is alive. */ 2906 2907 if (r1 & IWN_INT_WAKEUP) 2908 iwn_wakeup_intr(sc); 2909 2910 out: 2911 /* Re-enable interrupts. */ 2912 if (ifp->if_flags & IFF_UP) 2913 IWN_WRITE(sc, IWN_INT_MASK, sc->int_mask); 2914 } 2915 2916 /* 2917 * Update TX scheduler ring when transmitting an 802.11 frame (4965AGN and 2918 * 5000 adapters use a slightly different format). 2919 */ 2920 static void 2921 iwn4965_update_sched(struct iwn_softc *sc, int qid, int idx, uint8_t id, 2922 uint16_t len) 2923 { 2924 uint16_t *w = &sc->sched[qid * IWN4965_SCHED_COUNT + idx]; 2925 2926 *w = htole16(len + 8); 2927 bus_dmamap_sync(sc->sc_dmat, sc->sched_dma.map, 2928 (char *)(void *)w - (char *)(void *)sc->sched_dma.vaddr, 2929 sizeof (uint16_t), 2930 BUS_DMASYNC_PREWRITE); 2931 if (idx < IWN_SCHED_WINSZ) { 2932 *(w + IWN_TX_RING_COUNT) = *w; 2933 bus_dmamap_sync(sc->sc_dmat, sc->sched_dma.map, 2934 (char *)(void *)(w + IWN_TX_RING_COUNT) - 2935 (char *)(void *)sc->sched_dma.vaddr, 2936 sizeof (uint16_t), BUS_DMASYNC_PREWRITE); 2937 } 2938 } 2939 2940 static void 2941 iwn5000_update_sched(struct iwn_softc *sc, int qid, int idx, uint8_t id, 2942 uint16_t len) 2943 { 2944 uint16_t *w = &sc->sched[qid * IWN5000_SCHED_COUNT + idx]; 2945 2946 *w = htole16(id << 12 | (len + 8)); 2947 bus_dmamap_sync(sc->sc_dmat, sc->sched_dma.map, 2948 (char *)(void *)w - (char *)(void *)sc->sched_dma.vaddr, 2949 sizeof (uint16_t), BUS_DMASYNC_PREWRITE); 2950 if (idx < IWN_SCHED_WINSZ) { 2951 *(w + IWN_TX_RING_COUNT) = *w; 2952 bus_dmamap_sync(sc->sc_dmat, sc->sched_dma.map, 2953 (char *)(void *)(w + IWN_TX_RING_COUNT) - 2954 (char *)(void *)sc->sched_dma.vaddr, 2955 sizeof (uint16_t), BUS_DMASYNC_PREWRITE); 2956 } 2957 } 2958 2959 #ifdef notyet 2960 static void 2961 iwn5000_reset_sched(struct iwn_softc *sc, int qid, int idx) 2962 { 2963 uint16_t *w = &sc->sched[qid * IWN5000_SCHED_COUNT + idx]; 2964 2965 *w = (*w & htole16(0xf000)) | htole16(1); 2966 bus_dmamap_sync(sc->sc_dmat, sc->sched_dma.map, 2967 (char *)(void *)w - (char *)(void *)sc->sched_dma.vaddr, 2968 sizeof (uint16_t), BUS_DMASYNC_PREWRITE); 2969 if (idx < IWN_SCHED_WINSZ) { 2970 *(w + IWN_TX_RING_COUNT) = *w; 2971 bus_dmamap_sync(sc->sc_dmat, sc->sched_dma.map, 2972 (char *)(void *)(w + IWN_TX_RING_COUNT) - 2973 (char *)(void *)sc->sched_dma.vaddr, 2974 sizeof (uint16_t), BUS_DMASYNC_PREWRITE); 2975 } 2976 } 2977 #endif 2978 2979 static int 2980 iwn_tx(struct iwn_softc *sc, struct mbuf *m, struct ieee80211_node *ni, int ac) 2981 { 2982 struct ieee80211com *ic = &sc->sc_ic; 2983 struct iwn_node *wn = (void *)ni; 2984 struct iwn_tx_ring *ring; 2985 struct iwn_tx_desc *desc; 2986 struct iwn_tx_data *data; 2987 struct iwn_tx_cmd *cmd; 2988 struct iwn_cmd_data *tx; 2989 const struct iwn_rate *rinfo; 2990 struct ieee80211_frame *wh; 2991 struct ieee80211_key *k = NULL; 2992 struct mbuf *m1; 2993 uint32_t flags; 2994 u_int hdrlen; 2995 bus_dma_segment_t *seg; 2996 uint8_t tid, ridx, txant, type; 2997 int i, totlen, error, pad; 2998 2999 const struct chanAccParams *cap; 3000 int noack; 3001 int hdrlen2; 3002 3003 wh = mtod(m, struct ieee80211_frame *); 3004 hdrlen = ieee80211_anyhdrsize(wh); 3005 type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK; 3006 3007 hdrlen2 = (ieee80211_has_qos(wh)) ? 3008 sizeof (struct ieee80211_qosframe) : 3009 sizeof (struct ieee80211_frame); 3010 3011 if (hdrlen != hdrlen2) 3012 aprint_error_dev(sc->sc_dev, "hdrlen error (%d != %d)\n", 3013 hdrlen, hdrlen2); 3014 3015 /* XXX OpenBSD sets a different tid when using QOS */ 3016 tid = 0; 3017 if (ieee80211_has_qos(wh)) { 3018 cap = &ic->ic_wme.wme_chanParams; 3019 noack = cap->cap_wmeParams[ac].wmep_noackPolicy; 3020 } 3021 else 3022 noack = 0; 3023 3024 ring = &sc->txq[ac]; 3025 desc = &ring->desc[ring->cur]; 3026 data = &ring->data[ring->cur]; 3027 3028 /* Choose a TX rate index. */ 3029 if (IEEE80211_IS_MULTICAST(wh->i_addr1) || 3030 type != IEEE80211_FC0_TYPE_DATA) { 3031 ridx = (ic->ic_curmode == IEEE80211_MODE_11A) ? 3032 IWN_RIDX_OFDM6 : IWN_RIDX_CCK1; 3033 } else if (ic->ic_fixed_rate != -1) { 3034 ridx = sc->fixed_ridx; 3035 } else 3036 ridx = wn->ridx[ni->ni_txrate]; 3037 rinfo = &iwn_rates[ridx]; 3038 3039 /* Encrypt the frame if need be. */ 3040 /* 3041 * XXX For now, NetBSD swaps the encryption and bpf sections 3042 * in order to match old code and other drivers. Tests with 3043 * tcpdump indicates that the order is irrelevant, however, 3044 * as bpf produces unencrypted data for both ordering choices. 3045 */ 3046 if (wh->i_fc[1] & IEEE80211_FC1_WEP) { 3047 k = ieee80211_crypto_encap(ic, ni, m); 3048 if (k == NULL) { 3049 m_freem(m); 3050 return ENOBUFS; 3051 } 3052 /* Packet header may have moved, reset our local pointer. */ 3053 wh = mtod(m, struct ieee80211_frame *); 3054 } 3055 totlen = m->m_pkthdr.len; 3056 3057 if (sc->sc_drvbpf != NULL) { 3058 struct iwn_tx_radiotap_header *tap = &sc->sc_txtap; 3059 3060 tap->wt_flags = 0; 3061 tap->wt_chan_freq = htole16(ni->ni_chan->ic_freq); 3062 tap->wt_chan_flags = htole16(ni->ni_chan->ic_flags); 3063 tap->wt_rate = rinfo->rate; 3064 tap->wt_hwqueue = ac; 3065 if (wh->i_fc[1] & IEEE80211_FC1_WEP) 3066 tap->wt_flags |= IEEE80211_RADIOTAP_F_WEP; 3067 3068 bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m, BPF_D_OUT); 3069 } 3070 3071 /* Prepare TX firmware command. */ 3072 cmd = &ring->cmd[ring->cur]; 3073 cmd->code = IWN_CMD_TX_DATA; 3074 cmd->flags = 0; 3075 cmd->qid = ring->qid; 3076 cmd->idx = ring->cur; 3077 3078 tx = (struct iwn_cmd_data *)cmd->data; 3079 /* NB: No need to clear tx, all fields are reinitialized here. */ 3080 tx->scratch = 0; /* clear "scratch" area */ 3081 3082 flags = 0; 3083 if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) { 3084 /* Unicast frame, check if an ACK is expected. */ 3085 if (!noack) 3086 flags |= IWN_TX_NEED_ACK; 3087 } 3088 3089 #ifdef notyet 3090 /* XXX NetBSD does not define IEEE80211_FC0_SUBTYPE_BAR */ 3091 if ((wh->i_fc[0] & 3092 (IEEE80211_FC0_TYPE_MASK | IEEE80211_FC0_SUBTYPE_MASK)) == 3093 (IEEE80211_FC0_TYPE_CTL | IEEE80211_FC0_SUBTYPE_BAR)) 3094 flags |= IWN_TX_IMM_BA; /* Cannot happen yet. */ 3095 #endif 3096 3097 if (wh->i_fc[1] & IEEE80211_FC1_MORE_FRAG) 3098 flags |= IWN_TX_MORE_FRAG; /* Cannot happen yet. */ 3099 3100 /* Check if frame must be protected using RTS/CTS or CTS-to-self. */ 3101 if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) { 3102 /* NB: Group frames are sent using CCK in 802.11b/g. */ 3103 if (totlen + IEEE80211_CRC_LEN > ic->ic_rtsthreshold) { 3104 flags |= IWN_TX_NEED_RTS; 3105 } else if ((ic->ic_flags & IEEE80211_F_USEPROT) && 3106 ridx >= IWN_RIDX_OFDM6) { 3107 if (ic->ic_protmode == IEEE80211_PROT_CTSONLY) 3108 flags |= IWN_TX_NEED_CTS; 3109 else if (ic->ic_protmode == IEEE80211_PROT_RTSCTS) 3110 flags |= IWN_TX_NEED_RTS; 3111 } 3112 if (flags & (IWN_TX_NEED_RTS | IWN_TX_NEED_CTS)) { 3113 if (sc->hw_type != IWN_HW_REV_TYPE_4965) { 3114 /* 5000 autoselects RTS/CTS or CTS-to-self. */ 3115 flags &= ~(IWN_TX_NEED_RTS | IWN_TX_NEED_CTS); 3116 flags |= IWN_TX_NEED_PROTECTION; 3117 } else 3118 flags |= IWN_TX_FULL_TXOP; 3119 } 3120 } 3121 3122 if (IEEE80211_IS_MULTICAST(wh->i_addr1) || 3123 type != IEEE80211_FC0_TYPE_DATA) 3124 tx->id = sc->broadcast_id; 3125 else 3126 tx->id = wn->id; 3127 3128 if (type == IEEE80211_FC0_TYPE_MGT) { 3129 uint8_t subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK; 3130 3131 #ifndef IEEE80211_STA_ONLY 3132 /* Tell HW to set timestamp in probe responses. */ 3133 /* XXX NetBSD rev 1.11 added probe requests here but */ 3134 /* probe requests do not take timestamps (from Bergamini). */ 3135 if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_RESP) 3136 flags |= IWN_TX_INSERT_TSTAMP; 3137 #endif 3138 /* XXX NetBSD rev 1.11 and 1.20 added AUTH/DAUTH and RTS/CTS */ 3139 /* changes here. These are not needed (from Bergamini). */ 3140 if (subtype == IEEE80211_FC0_SUBTYPE_ASSOC_REQ || 3141 subtype == IEEE80211_FC0_SUBTYPE_REASSOC_REQ) 3142 tx->timeout = htole16(3); 3143 else 3144 tx->timeout = htole16(2); 3145 } else 3146 tx->timeout = htole16(0); 3147 3148 if (hdrlen & 3) { 3149 /* First segment length must be a multiple of 4. */ 3150 flags |= IWN_TX_NEED_PADDING; 3151 pad = 4 - (hdrlen & 3); 3152 } else 3153 pad = 0; 3154 3155 tx->len = htole16(totlen); 3156 tx->tid = tid; 3157 tx->rts_ntries = 60; 3158 tx->data_ntries = 15; 3159 tx->lifetime = htole32(IWN_LIFETIME_INFINITE); 3160 tx->plcp = rinfo->plcp; 3161 tx->rflags = rinfo->flags; 3162 if (tx->id == sc->broadcast_id) { 3163 /* Group or management frame. */ 3164 tx->linkq = 0; 3165 /* XXX Alternate between antenna A and B? */ 3166 txant = IWN_LSB(sc->txchainmask); 3167 tx->rflags |= IWN_RFLAG_ANT(txant); 3168 } else { 3169 tx->linkq = ni->ni_rates.rs_nrates - ni->ni_txrate - 1; 3170 flags |= IWN_TX_LINKQ; /* enable MRR */ 3171 } 3172 /* Set physical address of "scratch area". */ 3173 tx->loaddr = htole32(IWN_LOADDR(data->scratch_paddr)); 3174 tx->hiaddr = IWN_HIADDR(data->scratch_paddr); 3175 3176 /* Copy 802.11 header in TX command. */ 3177 /* XXX NetBSD changed this in rev 1.20 */ 3178 memcpy(((uint8_t *)tx) + sizeof(*tx), wh, hdrlen); 3179 3180 /* Trim 802.11 header. */ 3181 m_adj(m, hdrlen); 3182 tx->security = 0; 3183 tx->flags = htole32(flags); 3184 3185 error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m, 3186 BUS_DMA_NOWAIT | BUS_DMA_WRITE); 3187 if (error != 0) { 3188 if (error != EFBIG) { 3189 aprint_error_dev(sc->sc_dev, 3190 "can't map mbuf (error %d)\n", error); 3191 m_freem(m); 3192 return error; 3193 } 3194 /* Too many DMA segments, linearize mbuf. */ 3195 MGETHDR(m1, M_DONTWAIT, MT_DATA); 3196 if (m1 == NULL) { 3197 m_freem(m); 3198 return ENOBUFS; 3199 } 3200 MCLAIM(m1, &sc->sc_ec.ec_tx_mowner); 3201 if (m->m_pkthdr.len > MHLEN) { 3202 MCLGET(m1, M_DONTWAIT); 3203 if (!(m1->m_flags & M_EXT)) { 3204 m_freem(m); 3205 m_freem(m1); 3206 return ENOBUFS; 3207 } 3208 } 3209 m_copydata(m, 0, m->m_pkthdr.len, mtod(m1, void *)); 3210 m1->m_pkthdr.len = m1->m_len = m->m_pkthdr.len; 3211 m_freem(m); 3212 m = m1; 3213 3214 error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m, 3215 BUS_DMA_NOWAIT | BUS_DMA_WRITE); 3216 if (error != 0) { 3217 aprint_error_dev(sc->sc_dev, 3218 "can't map mbuf (error %d)\n", error); 3219 m_freem(m); 3220 return error; 3221 } 3222 } 3223 3224 data->m = m; 3225 data->ni = ni; 3226 3227 DPRINTFN(4, ("sending data: qid=%d idx=%d len=%d nsegs=%d\n", 3228 ring->qid, ring->cur, m->m_pkthdr.len, data->map->dm_nsegs)); 3229 3230 /* Fill TX descriptor. */ 3231 desc->nsegs = 1 + data->map->dm_nsegs; 3232 /* First DMA segment is used by the TX command. */ 3233 desc->segs[0].addr = htole32(IWN_LOADDR(data->cmd_paddr)); 3234 desc->segs[0].len = htole16(IWN_HIADDR(data->cmd_paddr) | 3235 (4 + sizeof (*tx) + hdrlen + pad) << 4); 3236 /* Other DMA segments are for data payload. */ 3237 seg = data->map->dm_segs; 3238 for (i = 1; i <= data->map->dm_nsegs; i++) { 3239 desc->segs[i].addr = htole32(IWN_LOADDR(seg->ds_addr)); 3240 desc->segs[i].len = htole16(IWN_HIADDR(seg->ds_addr) | 3241 seg->ds_len << 4); 3242 seg++; 3243 } 3244 3245 bus_dmamap_sync(sc->sc_dmat, data->map, 0, data->map->dm_mapsize, 3246 BUS_DMASYNC_PREWRITE); 3247 bus_dmamap_sync(sc->sc_dmat, ring->cmd_dma.map, 3248 (char *)(void *)cmd - (char *)(void *)ring->cmd_dma.vaddr, 3249 sizeof (*cmd), BUS_DMASYNC_PREWRITE); 3250 bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map, 3251 (char *)(void *)desc - (char *)(void *)ring->desc_dma.vaddr, 3252 sizeof (*desc), BUS_DMASYNC_PREWRITE); 3253 3254 #ifdef notyet 3255 /* Update TX scheduler. */ 3256 ops->update_sched(sc, ring->qid, ring->cur, tx->id, totlen); 3257 #endif 3258 3259 /* Kick TX ring. */ 3260 ring->cur = (ring->cur + 1) % IWN_TX_RING_COUNT; 3261 IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, ring->qid << 8 | ring->cur); 3262 3263 /* Mark TX ring as full if we reach a certain threshold. */ 3264 if (++ring->queued > IWN_TX_RING_HIMARK) 3265 sc->qfullmsk |= 1 << ring->qid; 3266 3267 return 0; 3268 } 3269 3270 static void 3271 iwn_start(struct ifnet *ifp) 3272 { 3273 struct iwn_softc *sc = ifp->if_softc; 3274 struct ieee80211com *ic = &sc->sc_ic; 3275 struct ieee80211_node *ni; 3276 struct ether_header *eh; 3277 struct mbuf *m; 3278 int ac; 3279 3280 if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING) 3281 return; 3282 3283 for (;;) { 3284 if (sc->sc_beacon_wait == 1) { 3285 ifp->if_flags |= IFF_OACTIVE; 3286 break; 3287 } 3288 3289 if (sc->qfullmsk != 0) { 3290 ifp->if_flags |= IFF_OACTIVE; 3291 break; 3292 } 3293 /* Send pending management frames first. */ 3294 IF_DEQUEUE(&ic->ic_mgtq, m); 3295 if (m != NULL) { 3296 ni = M_GETCTX(m, struct ieee80211_node *); 3297 ac = 0; 3298 goto sendit; 3299 } 3300 if (ic->ic_state != IEEE80211_S_RUN) 3301 break; 3302 3303 /* Encapsulate and send data frames. */ 3304 IFQ_DEQUEUE(&ifp->if_snd, m); 3305 if (m == NULL) 3306 break; 3307 if (m->m_len < sizeof (*eh) && 3308 (m = m_pullup(m, sizeof (*eh))) == NULL) { 3309 if_statinc(ifp, if_oerrors); 3310 continue; 3311 } 3312 eh = mtod(m, struct ether_header *); 3313 ni = ieee80211_find_txnode(ic, eh->ether_dhost); 3314 if (ni == NULL) { 3315 m_freem(m); 3316 if_statinc(ifp, if_oerrors); 3317 continue; 3318 } 3319 /* classify mbuf so we can find which tx ring to use */ 3320 if (ieee80211_classify(ic, m, ni) != 0) { 3321 m_freem(m); 3322 ieee80211_free_node(ni); 3323 if_statinc(ifp, if_oerrors); 3324 continue; 3325 } 3326 3327 /* No QoS encapsulation for EAPOL frames. */ 3328 ac = (eh->ether_type != htons(ETHERTYPE_PAE)) ? 3329 M_WME_GETAC(m) : WME_AC_BE; 3330 3331 if (sc->sc_beacon_wait == 0) 3332 bpf_mtap(ifp, m, BPF_D_OUT); 3333 3334 if ((m = ieee80211_encap(ic, m, ni)) == NULL) { 3335 ieee80211_free_node(ni); 3336 if_statinc(ifp, if_oerrors); 3337 continue; 3338 } 3339 sendit: 3340 if (sc->sc_beacon_wait) 3341 continue; 3342 3343 bpf_mtap3(ic->ic_rawbpf, m, BPF_D_OUT); 3344 3345 if (iwn_tx(sc, m, ni, ac) != 0) { 3346 ieee80211_free_node(ni); 3347 if_statinc(ifp, if_oerrors); 3348 continue; 3349 } 3350 3351 sc->sc_tx_timer = 5; 3352 ifp->if_timer = 1; 3353 } 3354 3355 if (sc->sc_beacon_wait > 1) 3356 sc->sc_beacon_wait = 0; 3357 } 3358 3359 static void 3360 iwn_watchdog(struct ifnet *ifp) 3361 { 3362 struct iwn_softc *sc = ifp->if_softc; 3363 3364 ifp->if_timer = 0; 3365 3366 if (sc->sc_tx_timer > 0) { 3367 if (--sc->sc_tx_timer == 0) { 3368 aprint_error_dev(sc->sc_dev, 3369 "device timeout\n"); 3370 ifp->if_flags &= ~IFF_UP; 3371 iwn_stop(ifp, 1); 3372 if_statinc(ifp, if_oerrors); 3373 return; 3374 } 3375 ifp->if_timer = 1; 3376 } 3377 3378 ieee80211_watchdog(&sc->sc_ic); 3379 } 3380 3381 static int 3382 iwn_ioctl(struct ifnet *ifp, u_long cmd, void *data) 3383 { 3384 struct iwn_softc *sc = ifp->if_softc; 3385 struct ieee80211com *ic = &sc->sc_ic; 3386 const struct sockaddr *sa; 3387 int s, error = 0; 3388 3389 s = splnet(); 3390 3391 switch (cmd) { 3392 case SIOCSIFADDR: 3393 ifp->if_flags |= IFF_UP; 3394 /* FALLTHROUGH */ 3395 case SIOCSIFFLAGS: 3396 /* XXX Added as it is in every NetBSD driver */ 3397 if ((error = ifioctl_common(ifp, cmd, data)) != 0) 3398 break; 3399 if (ifp->if_flags & IFF_UP) { 3400 if (!(ifp->if_flags & IFF_RUNNING)) 3401 error = iwn_init(ifp); 3402 } else { 3403 if (ifp->if_flags & IFF_RUNNING) 3404 iwn_stop(ifp, 1); 3405 } 3406 break; 3407 3408 case SIOCADDMULTI: 3409 case SIOCDELMULTI: 3410 sa = ifreq_getaddr(SIOCADDMULTI, (struct ifreq *)data); 3411 error = (cmd == SIOCADDMULTI) ? 3412 ether_addmulti(sa, &sc->sc_ec) : 3413 ether_delmulti(sa, &sc->sc_ec); 3414 3415 if (error == ENETRESET) 3416 error = 0; 3417 break; 3418 3419 default: 3420 error = ieee80211_ioctl(ic, cmd, data); 3421 } 3422 3423 if (error == ENETRESET) { 3424 error = 0; 3425 if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) == 3426 (IFF_UP | IFF_RUNNING)) { 3427 iwn_stop(ifp, 0); 3428 error = iwn_init(ifp); 3429 } 3430 } 3431 3432 splx(s); 3433 return error; 3434 } 3435 3436 /* 3437 * Send a command to the firmware. 3438 */ 3439 static int 3440 iwn_cmd(struct iwn_softc *sc, int code, const void *buf, int size, int async) 3441 { 3442 struct iwn_tx_ring *ring = &sc->txq[4]; 3443 struct iwn_tx_desc *desc; 3444 struct iwn_tx_data *data; 3445 struct iwn_tx_cmd *cmd; 3446 struct mbuf *m; 3447 bus_addr_t paddr; 3448 int totlen, error; 3449 3450 desc = &ring->desc[ring->cur]; 3451 data = &ring->data[ring->cur]; 3452 totlen = 4 + size; 3453 3454 if (size > sizeof cmd->data) { 3455 /* Command is too large to fit in a descriptor. */ 3456 if (totlen > MCLBYTES) 3457 return EINVAL; 3458 MGETHDR(m, M_DONTWAIT, MT_DATA); 3459 if (m == NULL) 3460 return ENOMEM; 3461 MCLAIM(m, &sc->sc_ec.ec_tx_mowner); 3462 if (totlen > MHLEN) { 3463 MCLGET(m, M_DONTWAIT); 3464 if (!(m->m_flags & M_EXT)) { 3465 m_freem(m); 3466 return ENOMEM; 3467 } 3468 } 3469 cmd = mtod(m, struct iwn_tx_cmd *); 3470 error = bus_dmamap_load(sc->sc_dmat, data->map, cmd, totlen, 3471 NULL, BUS_DMA_NOWAIT | BUS_DMA_WRITE); 3472 if (error != 0) { 3473 m_freem(m); 3474 return error; 3475 } 3476 data->m = m; 3477 paddr = data->map->dm_segs[0].ds_addr; 3478 } else { 3479 cmd = &ring->cmd[ring->cur]; 3480 paddr = data->cmd_paddr; 3481 } 3482 3483 cmd->code = code; 3484 cmd->flags = 0; 3485 cmd->qid = ring->qid; 3486 cmd->idx = ring->cur; 3487 /* 3488 * Coverity:[OUT_OF_BOUNDS] 3489 * false positive since, allocated in mbuf if it does not fit 3490 */ 3491 memcpy(cmd->data, buf, size); 3492 3493 desc->nsegs = 1; 3494 desc->segs[0].addr = htole32(IWN_LOADDR(paddr)); 3495 desc->segs[0].len = htole16(IWN_HIADDR(paddr) | totlen << 4); 3496 3497 if (size > sizeof cmd->data) { 3498 bus_dmamap_sync(sc->sc_dmat, data->map, 0, totlen, 3499 BUS_DMASYNC_PREWRITE); 3500 } else { 3501 bus_dmamap_sync(sc->sc_dmat, ring->cmd_dma.map, 3502 (char *)(void *)cmd - (char *)(void *)ring->cmd_dma.vaddr, 3503 totlen, BUS_DMASYNC_PREWRITE); 3504 } 3505 bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map, 3506 (char *)(void *)desc - (char *)(void *)ring->desc_dma.vaddr, 3507 sizeof (*desc), BUS_DMASYNC_PREWRITE); 3508 3509 #ifdef notyet 3510 /* Update TX scheduler. */ 3511 ops->update_sched(sc, ring->qid, ring->cur, 0, 0); 3512 #endif 3513 DPRINTFN(4, ("iwn_cmd %d size=%d %s\n", code, size, async ? " (async)" : "")); 3514 3515 /* Kick command ring. */ 3516 ring->cur = (ring->cur + 1) % IWN_TX_RING_COUNT; 3517 IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, ring->qid << 8 | ring->cur); 3518 3519 return async ? 0 : tsleep(desc, PCATCH, "iwncmd", hz); 3520 } 3521 3522 static int 3523 iwn4965_add_node(struct iwn_softc *sc, struct iwn_node_info *node, int async) 3524 { 3525 struct iwn4965_node_info hnode; 3526 char *src, *dst; 3527 3528 /* 3529 * We use the node structure for 5000 Series internally (it is 3530 * a superset of the one for 4965AGN). We thus copy the common 3531 * fields before sending the command. 3532 */ 3533 src = (char *)node; 3534 dst = (char *)&hnode; 3535 memcpy(dst, src, 48); 3536 /* Skip TSC, RX MIC and TX MIC fields from ``src''. */ 3537 memcpy(dst + 48, src + 72, 20); 3538 return iwn_cmd(sc, IWN_CMD_ADD_NODE, &hnode, sizeof hnode, async); 3539 } 3540 3541 static int 3542 iwn5000_add_node(struct iwn_softc *sc, struct iwn_node_info *node, int async) 3543 { 3544 /* Direct mapping. */ 3545 return iwn_cmd(sc, IWN_CMD_ADD_NODE, node, sizeof (*node), async); 3546 } 3547 3548 static int 3549 iwn_set_link_quality(struct iwn_softc *sc, struct ieee80211_node *ni) 3550 { 3551 struct iwn_node *wn = (void *)ni; 3552 struct ieee80211_rateset *rs = &ni->ni_rates; 3553 struct iwn_cmd_link_quality linkq; 3554 const struct iwn_rate *rinfo; 3555 uint8_t txant; 3556 int i, txrate; 3557 3558 /* Use the first valid TX antenna. */ 3559 txant = IWN_LSB(sc->txchainmask); 3560 3561 memset(&linkq, 0, sizeof linkq); 3562 linkq.id = wn->id; 3563 linkq.antmsk_1stream = txant; 3564 linkq.antmsk_2stream = IWN_ANT_AB; 3565 linkq.ampdu_max = 31; 3566 linkq.ampdu_threshold = 3; 3567 linkq.ampdu_limit = htole16(4000); /* 4ms */ 3568 3569 /* Start at highest available bit-rate. */ 3570 txrate = rs->rs_nrates - 1; 3571 for (i = 0; i < IWN_MAX_TX_RETRIES; i++) { 3572 rinfo = &iwn_rates[wn->ridx[txrate]]; 3573 linkq.retry[i].plcp = rinfo->plcp; 3574 linkq.retry[i].rflags = rinfo->flags; 3575 linkq.retry[i].rflags |= IWN_RFLAG_ANT(txant); 3576 /* Next retry at immediate lower bit-rate. */ 3577 if (txrate > 0) 3578 txrate--; 3579 } 3580 return iwn_cmd(sc, IWN_CMD_LINK_QUALITY, &linkq, sizeof linkq, 1); 3581 } 3582 3583 /* 3584 * Broadcast node is used to send group-addressed and management frames. 3585 */ 3586 static int 3587 iwn_add_broadcast_node(struct iwn_softc *sc, int async) 3588 { 3589 struct iwn_ops *ops = &sc->ops; 3590 struct iwn_node_info node; 3591 struct iwn_cmd_link_quality linkq; 3592 const struct iwn_rate *rinfo; 3593 uint8_t txant; 3594 int i, error; 3595 3596 memset(&node, 0, sizeof node); 3597 IEEE80211_ADDR_COPY(node.macaddr, etherbroadcastaddr); 3598 node.id = sc->broadcast_id; 3599 DPRINTF(("adding broadcast node\n")); 3600 if ((error = ops->add_node(sc, &node, async)) != 0) 3601 return error; 3602 3603 /* Use the first valid TX antenna. */ 3604 txant = IWN_LSB(sc->txchainmask); 3605 3606 memset(&linkq, 0, sizeof linkq); 3607 linkq.id = sc->broadcast_id; 3608 linkq.antmsk_1stream = txant; 3609 linkq.antmsk_2stream = IWN_ANT_AB; 3610 linkq.ampdu_max = 64; 3611 linkq.ampdu_threshold = 3; 3612 linkq.ampdu_limit = htole16(4000); /* 4ms */ 3613 3614 /* Use lowest mandatory bit-rate. */ 3615 rinfo = (sc->sc_ic.ic_curmode != IEEE80211_MODE_11A) ? 3616 &iwn_rates[IWN_RIDX_CCK1] : &iwn_rates[IWN_RIDX_OFDM6]; 3617 linkq.retry[0].plcp = rinfo->plcp; 3618 linkq.retry[0].rflags = rinfo->flags; 3619 linkq.retry[0].rflags |= IWN_RFLAG_ANT(txant); 3620 /* Use same bit-rate for all TX retries. */ 3621 for (i = 1; i < IWN_MAX_TX_RETRIES; i++) { 3622 linkq.retry[i].plcp = linkq.retry[0].plcp; 3623 linkq.retry[i].rflags = linkq.retry[0].rflags; 3624 } 3625 return iwn_cmd(sc, IWN_CMD_LINK_QUALITY, &linkq, sizeof linkq, async); 3626 } 3627 3628 static void 3629 iwn_set_led(struct iwn_softc *sc, uint8_t which, uint8_t off, uint8_t on) 3630 { 3631 struct iwn_cmd_led led; 3632 3633 /* Clear microcode LED ownership. */ 3634 IWN_CLRBITS(sc, IWN_LED, IWN_LED_BSM_CTRL); 3635 3636 led.which = which; 3637 led.unit = htole32(10000); /* on/off in unit of 100ms */ 3638 led.off = off; 3639 led.on = on; 3640 (void)iwn_cmd(sc, IWN_CMD_SET_LED, &led, sizeof led, 1); 3641 } 3642 3643 /* 3644 * Set the critical temperature at which the firmware will stop the radio 3645 * and notify us. 3646 */ 3647 static int 3648 iwn_set_critical_temp(struct iwn_softc *sc) 3649 { 3650 struct iwn_critical_temp crit; 3651 int32_t temp; 3652 3653 IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_CTEMP_STOP_RF); 3654 3655 if (sc->hw_type == IWN_HW_REV_TYPE_5150) 3656 temp = (IWN_CTOK(110) - sc->temp_off) * -5; 3657 else if (sc->hw_type == IWN_HW_REV_TYPE_4965) 3658 temp = IWN_CTOK(110); 3659 else 3660 temp = 110; 3661 memset(&crit, 0, sizeof crit); 3662 crit.tempR = htole32(temp); 3663 DPRINTF(("setting critical temperature to %d\n", temp)); 3664 return iwn_cmd(sc, IWN_CMD_SET_CRITICAL_TEMP, &crit, sizeof crit, 0); 3665 } 3666 3667 static int 3668 iwn_set_timing(struct iwn_softc *sc, struct ieee80211_node *ni) 3669 { 3670 struct iwn_cmd_timing cmd; 3671 uint64_t val, mod; 3672 3673 memset(&cmd, 0, sizeof cmd); 3674 memcpy(&cmd.tstamp, ni->ni_tstamp.data, sizeof (uint64_t)); 3675 cmd.bintval = htole16(ni->ni_intval); 3676 cmd.lintval = htole16(10); 3677 3678 /* Compute remaining time until next beacon. */ 3679 val = (uint64_t)ni->ni_intval * 1024; /* msecs -> usecs */ 3680 mod = le64toh(cmd.tstamp) % val; 3681 cmd.binitval = htole32((uint32_t)(val - mod)); 3682 3683 DPRINTF(("timing bintval=%u, tstamp=%" PRIu64 ", init=%" PRIu32 "\n", 3684 ni->ni_intval, le64toh(cmd.tstamp), (uint32_t)(val - mod))); 3685 3686 return iwn_cmd(sc, IWN_CMD_TIMING, &cmd, sizeof cmd, 1); 3687 } 3688 3689 static void 3690 iwn4965_power_calibration(struct iwn_softc *sc, int temp) 3691 { 3692 /* Adjust TX power if need be (delta >= 3 degC). */ 3693 DPRINTF(("temperature %d->%d\n", sc->temp, temp)); 3694 if (abs(temp - sc->temp) >= 3) { 3695 /* Record temperature of last calibration. */ 3696 sc->temp = temp; 3697 (void)iwn4965_set_txpower(sc, 1); 3698 } 3699 } 3700 3701 /* 3702 * Set TX power for current channel (each rate has its own power settings). 3703 * This function takes into account the regulatory information from EEPROM, 3704 * the current temperature and the current voltage. 3705 */ 3706 static int 3707 iwn4965_set_txpower(struct iwn_softc *sc, int async) 3708 { 3709 /* Fixed-point arithmetic division using a n-bit fractional part. */ 3710 #define fdivround(a, b, n) \ 3711 ((((1 << n) * (a)) / (b) + (1 << n) / 2) / (1 << n)) 3712 /* Linear interpolation. */ 3713 #define interpolate(x, x1, y1, x2, y2, n) \ 3714 ((y1) + fdivround(((int)(x) - (x1)) * ((y2) - (y1)), (x2) - (x1), n)) 3715 3716 static const int tdiv[IWN_NATTEN_GROUPS] = { 9, 8, 8, 8, 6 }; 3717 struct ieee80211com *ic = &sc->sc_ic; 3718 struct iwn_ucode_info *uc = &sc->ucode_info; 3719 struct ieee80211_channel *ch; 3720 struct iwn4965_cmd_txpower cmd; 3721 struct iwn4965_eeprom_chan_samples *chans; 3722 const uint8_t *rf_gain, *dsp_gain; 3723 int32_t vdiff, tdiff; 3724 int i, c, grp, maxpwr; 3725 uint8_t chan; 3726 3727 /* Retrieve current channel from last RXON. */ 3728 chan = sc->rxon.chan; 3729 DPRINTF(("setting TX power for channel %d\n", chan)); 3730 ch = &ic->ic_channels[chan]; 3731 3732 memset(&cmd, 0, sizeof cmd); 3733 cmd.band = IEEE80211_IS_CHAN_5GHZ(ch) ? 0 : 1; 3734 cmd.chan = chan; 3735 3736 if (IEEE80211_IS_CHAN_5GHZ(ch)) { 3737 maxpwr = sc->maxpwr5GHz; 3738 rf_gain = iwn4965_rf_gain_5ghz; 3739 dsp_gain = iwn4965_dsp_gain_5ghz; 3740 } else { 3741 maxpwr = sc->maxpwr2GHz; 3742 rf_gain = iwn4965_rf_gain_2ghz; 3743 dsp_gain = iwn4965_dsp_gain_2ghz; 3744 } 3745 3746 /* Compute voltage compensation. */ 3747 vdiff = ((int32_t)le32toh(uc->volt) - sc->eeprom_voltage) / 7; 3748 if (vdiff > 0) 3749 vdiff *= 2; 3750 if (abs(vdiff) > 2) 3751 vdiff = 0; 3752 DPRINTF(("voltage compensation=%d (UCODE=%d, EEPROM=%d)\n", 3753 vdiff, le32toh(uc->volt), sc->eeprom_voltage)); 3754 3755 /* Get channel attenuation group. */ 3756 if (chan <= 20) /* 1-20 */ 3757 grp = 4; 3758 else if (chan <= 43) /* 34-43 */ 3759 grp = 0; 3760 else if (chan <= 70) /* 44-70 */ 3761 grp = 1; 3762 else if (chan <= 124) /* 71-124 */ 3763 grp = 2; 3764 else /* 125-200 */ 3765 grp = 3; 3766 DPRINTF(("chan %d, attenuation group=%d\n", chan, grp)); 3767 3768 /* Get channel sub-band. */ 3769 for (i = 0; i < IWN_NBANDS; i++) 3770 if (sc->bands[i].lo != 0 && 3771 sc->bands[i].lo <= chan && chan <= sc->bands[i].hi) 3772 break; 3773 if (i == IWN_NBANDS) /* Can't happen in real-life. */ 3774 return EINVAL; 3775 chans = sc->bands[i].chans; 3776 DPRINTF(("chan %d sub-band=%d\n", chan, i)); 3777 3778 for (c = 0; c < 2; c++) { 3779 uint8_t power, gain, temp; 3780 int maxchpwr, pwr, ridx, idx; 3781 3782 power = interpolate(chan, 3783 chans[0].num, chans[0].samples[c][1].power, 3784 chans[1].num, chans[1].samples[c][1].power, 1); 3785 gain = interpolate(chan, 3786 chans[0].num, chans[0].samples[c][1].gain, 3787 chans[1].num, chans[1].samples[c][1].gain, 1); 3788 temp = interpolate(chan, 3789 chans[0].num, chans[0].samples[c][1].temp, 3790 chans[1].num, chans[1].samples[c][1].temp, 1); 3791 DPRINTF(("TX chain %d: power=%d gain=%d temp=%d\n", 3792 c, power, gain, temp)); 3793 3794 /* Compute temperature compensation. */ 3795 tdiff = ((sc->temp - temp) * 2) / tdiv[grp]; 3796 DPRINTF(("temperature compensation=%d (current=%d, " 3797 "EEPROM=%d)\n", tdiff, sc->temp, temp)); 3798 3799 for (ridx = 0; ridx <= IWN_RIDX_MAX; ridx++) { 3800 /* Convert dBm to half-dBm. */ 3801 maxchpwr = sc->maxpwr[chan] * 2; 3802 if ((ridx / 8) & 1) 3803 maxchpwr -= 6; /* MIMO 2T: -3dB */ 3804 3805 pwr = maxpwr; 3806 3807 /* Adjust TX power based on rate. */ 3808 if ((ridx % 8) == 5) 3809 pwr -= 15; /* OFDM48: -7.5dB */ 3810 else if ((ridx % 8) == 6) 3811 pwr -= 17; /* OFDM54: -8.5dB */ 3812 else if ((ridx % 8) == 7) 3813 pwr -= 20; /* OFDM60: -10dB */ 3814 else 3815 pwr -= 10; /* Others: -5dB */ 3816 3817 /* Do not exceed channel max TX power. */ 3818 if (pwr > maxchpwr) 3819 pwr = maxchpwr; 3820 3821 idx = gain - (pwr - power) - tdiff - vdiff; 3822 if ((ridx / 8) & 1) /* MIMO */ 3823 idx += (int32_t)le32toh(uc->atten[grp][c]); 3824 3825 if (cmd.band == 0) 3826 idx += 9; /* 5GHz */ 3827 if (ridx == IWN_RIDX_MAX) 3828 idx += 5; /* CCK */ 3829 3830 /* Make sure idx stays in a valid range. */ 3831 if (idx < 0) 3832 idx = 0; 3833 else if (idx > IWN4965_MAX_PWR_INDEX) 3834 idx = IWN4965_MAX_PWR_INDEX; 3835 3836 DPRINTF(("TX chain %d, rate idx %d: power=%d\n", 3837 c, ridx, idx)); 3838 cmd.power[ridx].rf_gain[c] = rf_gain[idx]; 3839 cmd.power[ridx].dsp_gain[c] = dsp_gain[idx]; 3840 } 3841 } 3842 3843 DPRINTF(("setting TX power for chan %d\n", chan)); 3844 return iwn_cmd(sc, IWN_CMD_TXPOWER, &cmd, sizeof cmd, async); 3845 3846 #undef interpolate 3847 #undef fdivround 3848 } 3849 3850 static int 3851 iwn5000_set_txpower(struct iwn_softc *sc, int async) 3852 { 3853 struct iwn5000_cmd_txpower cmd; 3854 int cmdid; 3855 3856 /* 3857 * TX power calibration is handled automatically by the firmware 3858 * for 5000 Series. 3859 */ 3860 memset(&cmd, 0, sizeof cmd); 3861 cmd.global_limit = 2 * IWN5000_TXPOWER_MAX_DBM; /* 16 dBm */ 3862 cmd.flags = IWN5000_TXPOWER_NO_CLOSED; 3863 cmd.srv_limit = IWN5000_TXPOWER_AUTO; 3864 DPRINTF(("setting TX power\n")); 3865 if (IWN_UCODE_API(sc->ucode_rev) == 1) 3866 cmdid = IWN_CMD_TXPOWER_DBM_V1; 3867 else 3868 cmdid = IWN_CMD_TXPOWER_DBM; 3869 return iwn_cmd(sc, cmdid, &cmd, sizeof cmd, async); 3870 } 3871 3872 /* 3873 * Retrieve the maximum RSSI (in dBm) among receivers. 3874 */ 3875 static int 3876 iwn4965_get_rssi(const struct iwn_rx_stat *stat) 3877 { 3878 const struct iwn4965_rx_phystat *phy = (const void *)stat->phybuf; 3879 uint8_t mask, agc; 3880 int rssi; 3881 3882 mask = (le16toh(phy->antenna) >> 4) & IWN_ANT_ABC; 3883 agc = (le16toh(phy->agc) >> 7) & 0x7f; 3884 3885 rssi = 0; 3886 if (mask & IWN_ANT_A) 3887 rssi = MAX(rssi, phy->rssi[0]); 3888 if (mask & IWN_ANT_B) 3889 rssi = MAX(rssi, phy->rssi[2]); 3890 if (mask & IWN_ANT_C) 3891 rssi = MAX(rssi, phy->rssi[4]); 3892 3893 return rssi - agc - IWN_RSSI_TO_DBM; 3894 } 3895 3896 static int 3897 iwn5000_get_rssi(const struct iwn_rx_stat *stat) 3898 { 3899 const struct iwn5000_rx_phystat *phy = (const void *)stat->phybuf; 3900 uint8_t agc; 3901 int rssi; 3902 3903 agc = (le32toh(phy->agc) >> 9) & 0x7f; 3904 3905 rssi = MAX(le16toh(phy->rssi[0]) & 0xff, 3906 le16toh(phy->rssi[1]) & 0xff); 3907 rssi = MAX(le16toh(phy->rssi[2]) & 0xff, rssi); 3908 3909 return rssi - agc - IWN_RSSI_TO_DBM; 3910 } 3911 3912 /* 3913 * Retrieve the average noise (in dBm) among receivers. 3914 */ 3915 static int 3916 iwn_get_noise(const struct iwn_rx_general_stats *stats) 3917 { 3918 int i, total, nbant, noise; 3919 3920 total = nbant = 0; 3921 for (i = 0; i < 3; i++) { 3922 if ((noise = le32toh(stats->noise[i]) & 0xff) == 0) 3923 continue; 3924 total += noise; 3925 nbant++; 3926 } 3927 /* There should be at least one antenna but check anyway. */ 3928 return (nbant == 0) ? -127 : (total / nbant) - 107; 3929 } 3930 3931 /* 3932 * Compute temperature (in degC) from last received statistics. 3933 */ 3934 static int 3935 iwn4965_get_temperature(struct iwn_softc *sc) 3936 { 3937 struct iwn_ucode_info *uc = &sc->ucode_info; 3938 int32_t r1, r2, r3, r4, temp; 3939 3940 r1 = le32toh(uc->temp[0].chan20MHz); 3941 r2 = le32toh(uc->temp[1].chan20MHz); 3942 r3 = le32toh(uc->temp[2].chan20MHz); 3943 r4 = le32toh(sc->rawtemp); 3944 3945 if (r1 == r3) /* Prevents division by 0 (should not happen). */ 3946 return 0; 3947 3948 /* Sign-extend 23-bit R4 value to 32-bit. */ 3949 r4 = ((r4 & 0xffffff) ^ 0x800000) - 0x800000; 3950 /* Compute temperature in Kelvin. */ 3951 temp = (259 * (r4 - r2)) / (r3 - r1); 3952 temp = (temp * 97) / 100 + 8; 3953 3954 DPRINTF(("temperature %dK/%dC\n", temp, IWN_KTOC(temp))); 3955 return IWN_KTOC(temp); 3956 } 3957 3958 static int 3959 iwn5000_get_temperature(struct iwn_softc *sc) 3960 { 3961 int32_t temp; 3962 3963 /* 3964 * Temperature is not used by the driver for 5000 Series because 3965 * TX power calibration is handled by firmware. We export it to 3966 * users through the sensor framework though. 3967 */ 3968 temp = le32toh(sc->rawtemp); 3969 if (sc->hw_type == IWN_HW_REV_TYPE_5150) { 3970 temp = (temp / -5) + sc->temp_off; 3971 temp = IWN_KTOC(temp); 3972 } 3973 return temp; 3974 } 3975 3976 /* 3977 * Initialize sensitivity calibration state machine. 3978 */ 3979 static int 3980 iwn_init_sensitivity(struct iwn_softc *sc) 3981 { 3982 struct iwn_ops *ops = &sc->ops; 3983 struct iwn_calib_state *calib = &sc->calib; 3984 uint32_t flags; 3985 int error; 3986 3987 /* Reset calibration state machine. */ 3988 memset(calib, 0, sizeof (*calib)); 3989 calib->state = IWN_CALIB_STATE_INIT; 3990 calib->cck_state = IWN_CCK_STATE_HIFA; 3991 /* Set initial correlation values. */ 3992 calib->ofdm_x1 = sc->limits->min_ofdm_x1; 3993 calib->ofdm_mrc_x1 = sc->limits->min_ofdm_mrc_x1; 3994 calib->ofdm_x4 = sc->limits->min_ofdm_x4; 3995 calib->ofdm_mrc_x4 = sc->limits->min_ofdm_mrc_x4; 3996 calib->cck_x4 = 125; 3997 calib->cck_mrc_x4 = sc->limits->min_cck_mrc_x4; 3998 calib->energy_cck = sc->limits->energy_cck; 3999 4000 /* Write initial sensitivity. */ 4001 if ((error = iwn_send_sensitivity(sc)) != 0) 4002 return error; 4003 4004 /* Write initial gains. */ 4005 if ((error = ops->init_gains(sc)) != 0) 4006 return error; 4007 4008 /* Request statistics at each beacon interval. */ 4009 flags = 0; 4010 DPRINTF(("sending request for statistics\n")); 4011 return iwn_cmd(sc, IWN_CMD_GET_STATISTICS, &flags, sizeof flags, 1); 4012 } 4013 4014 /* 4015 * Collect noise and RSSI statistics for the first 20 beacons received 4016 * after association and use them to determine connected antennas and 4017 * to set differential gains. 4018 */ 4019 static void 4020 iwn_collect_noise(struct iwn_softc *sc, 4021 const struct iwn_rx_general_stats *stats) 4022 { 4023 struct iwn_ops *ops = &sc->ops; 4024 struct iwn_calib_state *calib = &sc->calib; 4025 uint32_t val; 4026 int i; 4027 4028 /* Accumulate RSSI and noise for all 3 antennas. */ 4029 for (i = 0; i < 3; i++) { 4030 calib->rssi[i] += le32toh(stats->rssi[i]) & 0xff; 4031 calib->noise[i] += le32toh(stats->noise[i]) & 0xff; 4032 } 4033 /* NB: We update differential gains only once after 20 beacons. */ 4034 if (++calib->nbeacons < 20) 4035 return; 4036 4037 /* Determine highest average RSSI. */ 4038 val = MAX(calib->rssi[0], calib->rssi[1]); 4039 val = MAX(calib->rssi[2], val); 4040 4041 /* Determine which antennas are connected. */ 4042 sc->chainmask = sc->rxchainmask; 4043 for (i = 0; i < 3; i++) 4044 if (val - calib->rssi[i] > 15 * 20) 4045 sc->chainmask &= ~(1 << i); 4046 DPRINTF(("RX chains mask: theoretical=0x%x, actual=0x%x\n", 4047 sc->rxchainmask, sc->chainmask)); 4048 4049 /* If none of the TX antennas are connected, keep at least one. */ 4050 if ((sc->chainmask & sc->txchainmask) == 0) 4051 sc->chainmask |= IWN_LSB(sc->txchainmask); 4052 4053 (void)ops->set_gains(sc); 4054 calib->state = IWN_CALIB_STATE_RUN; 4055 4056 #ifdef notyet 4057 /* XXX Disable RX chains with no antennas connected. */ 4058 sc->rxon.rxchain = htole16(IWN_RXCHAIN_SEL(sc->chainmask)); 4059 (void)iwn_cmd(sc, IWN_CMD_RXON, &sc->rxon, sc->rxonsz, 1); 4060 #endif 4061 4062 /* Enable power-saving mode if requested by user. */ 4063 if (sc->sc_ic.ic_flags & IEEE80211_F_PMGTON) 4064 (void)iwn_set_pslevel(sc, 0, 3, 1); 4065 } 4066 4067 static int 4068 iwn4965_init_gains(struct iwn_softc *sc) 4069 { 4070 struct iwn_phy_calib_gain cmd; 4071 4072 memset(&cmd, 0, sizeof cmd); 4073 cmd.code = IWN4965_PHY_CALIB_DIFF_GAIN; 4074 /* Differential gains initially set to 0 for all 3 antennas. */ 4075 DPRINTF(("setting initial differential gains\n")); 4076 return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 1); 4077 } 4078 4079 static int 4080 iwn5000_init_gains(struct iwn_softc *sc) 4081 { 4082 struct iwn_phy_calib cmd; 4083 4084 memset(&cmd, 0, sizeof cmd); 4085 cmd.code = sc->reset_noise_gain; 4086 cmd.ngroups = 1; 4087 cmd.isvalid = 1; 4088 DPRINTF(("setting initial differential gains\n")); 4089 return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 1); 4090 } 4091 4092 static int 4093 iwn4965_set_gains(struct iwn_softc *sc) 4094 { 4095 struct iwn_calib_state *calib = &sc->calib; 4096 struct iwn_phy_calib_gain cmd; 4097 int i, delta, noise; 4098 4099 /* Get minimal noise among connected antennas. */ 4100 noise = INT_MAX; /* NB: There's at least one antenna. */ 4101 for (i = 0; i < 3; i++) 4102 if (sc->chainmask & (1 << i)) 4103 noise = MIN(calib->noise[i], noise); 4104 4105 memset(&cmd, 0, sizeof cmd); 4106 cmd.code = IWN4965_PHY_CALIB_DIFF_GAIN; 4107 /* Set differential gains for connected antennas. */ 4108 for (i = 0; i < 3; i++) { 4109 if (sc->chainmask & (1 << i)) { 4110 /* Compute attenuation (in unit of 1.5dB). */ 4111 delta = (noise - (int32_t)calib->noise[i]) / 30; 4112 /* NB: delta <= 0 */ 4113 /* Limit to [-4.5dB,0]. */ 4114 cmd.gain[i] = MIN(abs(delta), 3); 4115 if (delta < 0) 4116 cmd.gain[i] |= 1 << 2; /* sign bit */ 4117 } 4118 } 4119 DPRINTF(("setting differential gains Ant A/B/C: %x/%x/%x (%x)\n", 4120 cmd.gain[0], cmd.gain[1], cmd.gain[2], sc->chainmask)); 4121 return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 1); 4122 } 4123 4124 static int 4125 iwn5000_set_gains(struct iwn_softc *sc) 4126 { 4127 struct iwn_calib_state *calib = &sc->calib; 4128 struct iwn_phy_calib_gain cmd; 4129 int i, ant, div, delta; 4130 4131 /* We collected 20 beacons and !=6050 need a 1.5 factor. */ 4132 div = (sc->hw_type == IWN_HW_REV_TYPE_6050) ? 20 : 30; 4133 4134 memset(&cmd, 0, sizeof cmd); 4135 cmd.code = sc->noise_gain; 4136 cmd.ngroups = 1; 4137 cmd.isvalid = 1; 4138 /* Get first available RX antenna as referential. */ 4139 ant = IWN_LSB(sc->rxchainmask); 4140 /* Set differential gains for other antennas. */ 4141 for (i = ant + 1; i < 3; i++) { 4142 if (sc->chainmask & (1 << i)) { 4143 /* The delta is relative to antenna "ant". */ 4144 delta = ((int32_t)calib->noise[ant] - 4145 (int32_t)calib->noise[i]) / div; 4146 /* Limit to [-4.5dB,+4.5dB]. */ 4147 cmd.gain[i - 1] = MIN(abs(delta), 3); 4148 if (delta < 0) 4149 cmd.gain[i - 1] |= 1 << 2; /* sign bit */ 4150 } 4151 } 4152 DPRINTF(("setting differential gains: %x/%x (%x)\n", 4153 cmd.gain[0], cmd.gain[1], sc->chainmask)); 4154 return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 1); 4155 } 4156 4157 /* 4158 * Tune RF RX sensitivity based on the number of false alarms detected 4159 * during the last beacon period. 4160 */ 4161 static void 4162 iwn_tune_sensitivity(struct iwn_softc *sc, const struct iwn_rx_stats *stats) 4163 { 4164 #define inc(val, inc, max) \ 4165 if ((val) < (max)) { \ 4166 if ((val) < (max) - (inc)) \ 4167 (val) += (inc); \ 4168 else \ 4169 (val) = (max); \ 4170 needs_update = 1; \ 4171 } 4172 #define dec(val, dec, min) \ 4173 if ((val) > (min)) { \ 4174 if ((val) > (min) + (dec)) \ 4175 (val) -= (dec); \ 4176 else \ 4177 (val) = (min); \ 4178 needs_update = 1; \ 4179 } 4180 4181 const struct iwn_sensitivity_limits *limits = sc->limits; 4182 struct iwn_calib_state *calib = &sc->calib; 4183 uint32_t val, rxena, fa; 4184 uint32_t energy[3], energy_min; 4185 uint8_t noise[3], noise_ref; 4186 int i, needs_update = 0; 4187 4188 /* Check that we've been enabled long enough. */ 4189 if ((rxena = le32toh(stats->general.load)) == 0) 4190 return; 4191 4192 /* Compute number of false alarms since last call for OFDM. */ 4193 fa = le32toh(stats->ofdm.bad_plcp) - calib->bad_plcp_ofdm; 4194 fa += le32toh(stats->ofdm.fa) - calib->fa_ofdm; 4195 fa *= 200 * 1024; /* 200TU */ 4196 4197 /* Save counters values for next call. */ 4198 calib->bad_plcp_ofdm = le32toh(stats->ofdm.bad_plcp); 4199 calib->fa_ofdm = le32toh(stats->ofdm.fa); 4200 4201 if (fa > 50 * rxena) { 4202 /* High false alarm count, decrease sensitivity. */ 4203 DPRINTFN(2, ("OFDM high false alarm count: %u\n", fa)); 4204 inc(calib->ofdm_x1, 1, limits->max_ofdm_x1); 4205 inc(calib->ofdm_mrc_x1, 1, limits->max_ofdm_mrc_x1); 4206 inc(calib->ofdm_x4, 1, limits->max_ofdm_x4); 4207 inc(calib->ofdm_mrc_x4, 1, limits->max_ofdm_mrc_x4); 4208 4209 } else if (fa < 5 * rxena) { 4210 /* Low false alarm count, increase sensitivity. */ 4211 DPRINTFN(2, ("OFDM low false alarm count: %u\n", fa)); 4212 dec(calib->ofdm_x1, 1, limits->min_ofdm_x1); 4213 dec(calib->ofdm_mrc_x1, 1, limits->min_ofdm_mrc_x1); 4214 dec(calib->ofdm_x4, 1, limits->min_ofdm_x4); 4215 dec(calib->ofdm_mrc_x4, 1, limits->min_ofdm_mrc_x4); 4216 } 4217 4218 /* Compute maximum noise among 3 receivers. */ 4219 for (i = 0; i < 3; i++) 4220 noise[i] = (le32toh(stats->general.noise[i]) >> 8) & 0xff; 4221 val = MAX(noise[0], noise[1]); 4222 val = MAX(noise[2], val); 4223 /* Insert it into our samples table. */ 4224 calib->noise_samples[calib->cur_noise_sample] = val; 4225 calib->cur_noise_sample = (calib->cur_noise_sample + 1) % 20; 4226 4227 /* Compute maximum noise among last 20 samples. */ 4228 noise_ref = calib->noise_samples[0]; 4229 for (i = 1; i < 20; i++) 4230 noise_ref = MAX(noise_ref, calib->noise_samples[i]); 4231 4232 /* Compute maximum energy among 3 receivers. */ 4233 for (i = 0; i < 3; i++) 4234 energy[i] = le32toh(stats->general.energy[i]); 4235 val = MIN(energy[0], energy[1]); 4236 val = MIN(energy[2], val); 4237 /* Insert it into our samples table. */ 4238 calib->energy_samples[calib->cur_energy_sample] = val; 4239 calib->cur_energy_sample = (calib->cur_energy_sample + 1) % 10; 4240 4241 /* Compute minimum energy among last 10 samples. */ 4242 energy_min = calib->energy_samples[0]; 4243 for (i = 1; i < 10; i++) 4244 energy_min = MAX(energy_min, calib->energy_samples[i]); 4245 energy_min += 6; 4246 4247 /* Compute number of false alarms since last call for CCK. */ 4248 fa = le32toh(stats->cck.bad_plcp) - calib->bad_plcp_cck; 4249 fa += le32toh(stats->cck.fa) - calib->fa_cck; 4250 fa *= 200 * 1024; /* 200TU */ 4251 4252 /* Save counters values for next call. */ 4253 calib->bad_plcp_cck = le32toh(stats->cck.bad_plcp); 4254 calib->fa_cck = le32toh(stats->cck.fa); 4255 4256 if (fa > 50 * rxena) { 4257 /* High false alarm count, decrease sensitivity. */ 4258 DPRINTFN(2, ("CCK high false alarm count: %u\n", fa)); 4259 calib->cck_state = IWN_CCK_STATE_HIFA; 4260 calib->low_fa = 0; 4261 4262 if (calib->cck_x4 > 160) { 4263 calib->noise_ref = noise_ref; 4264 if (calib->energy_cck > 2) 4265 dec(calib->energy_cck, 2, energy_min); 4266 } 4267 if (calib->cck_x4 < 160) { 4268 calib->cck_x4 = 161; 4269 needs_update = 1; 4270 } else 4271 inc(calib->cck_x4, 3, limits->max_cck_x4); 4272 4273 inc(calib->cck_mrc_x4, 3, limits->max_cck_mrc_x4); 4274 4275 } else if (fa < 5 * rxena) { 4276 /* Low false alarm count, increase sensitivity. */ 4277 DPRINTFN(2, ("CCK low false alarm count: %u\n", fa)); 4278 calib->cck_state = IWN_CCK_STATE_LOFA; 4279 calib->low_fa++; 4280 4281 if (calib->cck_state != IWN_CCK_STATE_INIT && 4282 (((int32_t)calib->noise_ref - (int32_t)noise_ref) > 2 || 4283 calib->low_fa > 100)) { 4284 inc(calib->energy_cck, 2, limits->min_energy_cck); 4285 dec(calib->cck_x4, 3, limits->min_cck_x4); 4286 dec(calib->cck_mrc_x4, 3, limits->min_cck_mrc_x4); 4287 } 4288 } else { 4289 /* Not worth to increase or decrease sensitivity. */ 4290 DPRINTFN(2, ("CCK normal false alarm count: %u\n", fa)); 4291 calib->low_fa = 0; 4292 calib->noise_ref = noise_ref; 4293 4294 if (calib->cck_state == IWN_CCK_STATE_HIFA) { 4295 /* Previous interval had many false alarms. */ 4296 dec(calib->energy_cck, 8, energy_min); 4297 } 4298 calib->cck_state = IWN_CCK_STATE_INIT; 4299 } 4300 4301 if (needs_update) 4302 (void)iwn_send_sensitivity(sc); 4303 #undef dec 4304 #undef inc 4305 } 4306 4307 static int 4308 iwn_send_sensitivity(struct iwn_softc *sc) 4309 { 4310 struct iwn_calib_state *calib = &sc->calib; 4311 struct iwn_enhanced_sensitivity_cmd cmd; 4312 int len; 4313 4314 memset(&cmd, 0, sizeof cmd); 4315 len = sizeof (struct iwn_sensitivity_cmd); 4316 cmd.which = IWN_SENSITIVITY_WORKTBL; 4317 /* OFDM modulation. */ 4318 cmd.corr_ofdm_x1 = htole16(calib->ofdm_x1); 4319 cmd.corr_ofdm_mrc_x1 = htole16(calib->ofdm_mrc_x1); 4320 cmd.corr_ofdm_x4 = htole16(calib->ofdm_x4); 4321 cmd.corr_ofdm_mrc_x4 = htole16(calib->ofdm_mrc_x4); 4322 cmd.energy_ofdm = htole16(sc->limits->energy_ofdm); 4323 cmd.energy_ofdm_th = htole16(62); 4324 /* CCK modulation. */ 4325 cmd.corr_cck_x4 = htole16(calib->cck_x4); 4326 cmd.corr_cck_mrc_x4 = htole16(calib->cck_mrc_x4); 4327 cmd.energy_cck = htole16(calib->energy_cck); 4328 /* Barker modulation: use default values. */ 4329 cmd.corr_barker = htole16(190); 4330 cmd.corr_barker_mrc = htole16(sc->limits->barker_mrc); 4331 if (!(sc->sc_flags & IWN_FLAG_ENH_SENS)) 4332 goto send; 4333 /* Enhanced sensitivity settings. */ 4334 len = sizeof (struct iwn_enhanced_sensitivity_cmd); 4335 cmd.ofdm_det_slope_mrc = htole16(668); 4336 cmd.ofdm_det_icept_mrc = htole16(4); 4337 cmd.ofdm_det_slope = htole16(486); 4338 cmd.ofdm_det_icept = htole16(37); 4339 cmd.cck_det_slope_mrc = htole16(853); 4340 cmd.cck_det_icept_mrc = htole16(4); 4341 cmd.cck_det_slope = htole16(476); 4342 cmd.cck_det_icept = htole16(99); 4343 send: 4344 DPRINTFN(2, ("setting sensitivity %d/%d/%d/%d/%d/%d/%d\n", 4345 calib->ofdm_x1, calib->ofdm_mrc_x1, calib->ofdm_x4, 4346 calib->ofdm_mrc_x4, calib->cck_x4, calib->cck_mrc_x4, 4347 calib->energy_cck)); 4348 return iwn_cmd(sc, IWN_CMD_SET_SENSITIVITY, &cmd, len, 1); 4349 } 4350 4351 /* 4352 * Set STA mode power saving level (between 0 and 5). 4353 * Level 0 is CAM (Continuously Aware Mode), 5 is for maximum power saving. 4354 */ 4355 static int 4356 iwn_set_pslevel(struct iwn_softc *sc, int dtim, int level, int async) 4357 { 4358 struct iwn_pmgt_cmd cmd; 4359 const struct iwn_pmgt *pmgt; 4360 uint32_t maxp, skip_dtim; 4361 pcireg_t reg; 4362 int i; 4363 4364 /* Select which PS parameters to use. */ 4365 if (dtim <= 2) 4366 pmgt = &iwn_pmgt[0][level]; 4367 else if (dtim <= 10) 4368 pmgt = &iwn_pmgt[1][level]; 4369 else 4370 pmgt = &iwn_pmgt[2][level]; 4371 4372 memset(&cmd, 0, sizeof cmd); 4373 if (level != 0) /* not CAM */ 4374 cmd.flags |= htole16(IWN_PS_ALLOW_SLEEP); 4375 if (level == 5) 4376 cmd.flags |= htole16(IWN_PS_FAST_PD); 4377 /* Retrieve PCIe Active State Power Management (ASPM). */ 4378 reg = pci_conf_read(sc->sc_pct, sc->sc_pcitag, 4379 sc->sc_cap_off + PCIE_LCSR); 4380 if (!(reg & PCIE_LCSR_ASPM_L0S)) /* L0s Entry disabled. */ 4381 cmd.flags |= htole16(IWN_PS_PCI_PMGT); 4382 cmd.rxtimeout = htole32(pmgt->rxtimeout * 1024); 4383 cmd.txtimeout = htole32(pmgt->txtimeout * 1024); 4384 4385 if (dtim == 0) { 4386 dtim = 1; 4387 skip_dtim = 0; 4388 } else 4389 skip_dtim = pmgt->skip_dtim; 4390 if (skip_dtim != 0) { 4391 cmd.flags |= htole16(IWN_PS_SLEEP_OVER_DTIM); 4392 maxp = pmgt->intval[4]; 4393 if (maxp == (uint32_t)-1) 4394 maxp = dtim * (skip_dtim + 1); 4395 else if (maxp > dtim) 4396 maxp = (maxp / dtim) * dtim; 4397 } else 4398 maxp = dtim; 4399 for (i = 0; i < 5; i++) 4400 cmd.intval[i] = htole32(MIN(maxp, pmgt->intval[i])); 4401 4402 DPRINTF(("setting power saving level to %d\n", level)); 4403 return iwn_cmd(sc, IWN_CMD_SET_POWER_MODE, &cmd, sizeof cmd, async); 4404 } 4405 4406 int 4407 iwn5000_runtime_calib(struct iwn_softc *sc) 4408 { 4409 struct iwn5000_calib_config cmd; 4410 4411 memset(&cmd, 0, sizeof cmd); 4412 cmd.ucode.once.enable = 0xffffffff; 4413 cmd.ucode.once.start = IWN5000_CALIB_DC; 4414 DPRINTF(("configuring runtime calibration\n")); 4415 return iwn_cmd(sc, IWN5000_CMD_CALIB_CONFIG, &cmd, sizeof(cmd), 0); 4416 } 4417 4418 static int 4419 iwn_config_bt_coex_bluetooth(struct iwn_softc *sc) 4420 { 4421 struct iwn_bluetooth bluetooth; 4422 4423 memset(&bluetooth, 0, sizeof bluetooth); 4424 bluetooth.flags = IWN_BT_COEX_ENABLE; 4425 bluetooth.lead_time = IWN_BT_LEAD_TIME_DEF; 4426 bluetooth.max_kill = IWN_BT_MAX_KILL_DEF; 4427 4428 DPRINTF(("configuring bluetooth coexistence\n")); 4429 return iwn_cmd(sc, IWN_CMD_BT_COEX, &bluetooth, sizeof bluetooth, 0); 4430 } 4431 4432 static int 4433 iwn_config_bt_coex_prio_table(struct iwn_softc *sc) 4434 { 4435 uint8_t prio_table[16]; 4436 4437 memset(&prio_table, 0, sizeof prio_table); 4438 prio_table[ 0] = 6; /* init calibration 1 */ 4439 prio_table[ 1] = 7; /* init calibration 2 */ 4440 prio_table[ 2] = 2; /* periodic calib low 1 */ 4441 prio_table[ 3] = 3; /* periodic calib low 2 */ 4442 prio_table[ 4] = 4; /* periodic calib high 1 */ 4443 prio_table[ 5] = 5; /* periodic calib high 2 */ 4444 prio_table[ 6] = 6; /* dtim */ 4445 prio_table[ 7] = 8; /* scan52 */ 4446 prio_table[ 8] = 10; /* scan24 */ 4447 4448 DPRINTF(("sending priority lookup table\n")); 4449 return iwn_cmd(sc, IWN_CMD_BT_COEX_PRIO_TABLE, 4450 &prio_table, sizeof prio_table, 0); 4451 } 4452 4453 static int 4454 iwn_config_bt_coex_adv_config(struct iwn_softc *sc, struct iwn_bt_basic *basic, 4455 size_t len) 4456 { 4457 struct iwn_btcoex_prot btprot; 4458 int error; 4459 4460 basic->bt.flags = IWN_BT_COEX_ENABLE; 4461 basic->bt.lead_time = IWN_BT_LEAD_TIME_DEF; 4462 basic->bt.max_kill = IWN_BT_MAX_KILL_DEF; 4463 basic->bt.bt3_timer_t7_value = IWN_BT_BT3_T7_DEF; 4464 basic->bt.kill_ack_mask = IWN_BT_KILL_ACK_MASK_DEF; 4465 basic->bt.kill_cts_mask = IWN_BT_KILL_CTS_MASK_DEF; 4466 basic->bt3_prio_sample_time = IWN_BT_BT3_PRIO_SAMPLE_DEF; 4467 basic->bt3_timer_t2_value = IWN_BT_BT3_T2_DEF; 4468 basic->bt3_lookup_table[ 0] = htole32(0xaaaaaaaa); /* Normal */ 4469 basic->bt3_lookup_table[ 1] = htole32(0xaaaaaaaa); 4470 basic->bt3_lookup_table[ 2] = htole32(0xaeaaaaaa); 4471 basic->bt3_lookup_table[ 3] = htole32(0xaaaaaaaa); 4472 basic->bt3_lookup_table[ 4] = htole32(0xcc00ff28); 4473 basic->bt3_lookup_table[ 5] = htole32(0x0000aaaa); 4474 basic->bt3_lookup_table[ 6] = htole32(0xcc00aaaa); 4475 basic->bt3_lookup_table[ 7] = htole32(0x0000aaaa); 4476 basic->bt3_lookup_table[ 8] = htole32(0xc0004000); 4477 basic->bt3_lookup_table[ 9] = htole32(0x00004000); 4478 basic->bt3_lookup_table[10] = htole32(0xf0005000); 4479 basic->bt3_lookup_table[11] = htole32(0xf0005000); 4480 basic->reduce_txpower = 0; /* as not implemented */ 4481 basic->valid = IWN_BT_ALL_VALID_MASK; 4482 4483 DPRINTF(("configuring advanced bluetooth coexistence v1\n")); 4484 error = iwn_cmd(sc, IWN_CMD_BT_COEX, basic, len, 0); 4485 if (error != 0) { 4486 aprint_error_dev(sc->sc_dev, 4487 "could not configure advanced bluetooth coexistence\n"); 4488 return error; 4489 } 4490 4491 error = iwn_config_bt_coex_prio_table(sc); 4492 if (error != 0) { 4493 aprint_error_dev(sc->sc_dev, 4494 "could not configure send BT priority table\n"); 4495 return error; 4496 } 4497 4498 /* Force BT state machine change */ 4499 memset(&btprot, 0, sizeof btprot); 4500 btprot.open = 1; 4501 btprot.type = 1; 4502 error = iwn_cmd(sc, IWN_CMD_BT_COEX_PROT, &btprot, sizeof btprot, 1); 4503 if (error != 0) { 4504 aprint_error_dev(sc->sc_dev, "could not open BT protocol\n"); 4505 return error; 4506 } 4507 4508 btprot.open = 0; 4509 error = iwn_cmd(sc, IWN_CMD_BT_COEX_PROT, &btprot, sizeof btprot, 1); 4510 if (error != 0) { 4511 aprint_error_dev(sc->sc_dev, "could not close BT protocol\n"); 4512 return error; 4513 } 4514 return 0; 4515 } 4516 4517 static int 4518 iwn_config_bt_coex_adv1(struct iwn_softc *sc) 4519 { 4520 struct iwn_bt_adv1 d; 4521 4522 memset(&d, 0, sizeof d); 4523 d.prio_boost = IWN_BT_PRIO_BOOST_DEF; 4524 d.tx_prio_boost = 0; 4525 d.rx_prio_boost = 0; 4526 return iwn_config_bt_coex_adv_config(sc, &d.basic, sizeof d); 4527 } 4528 4529 static int 4530 iwn_config_bt_coex_adv2(struct iwn_softc *sc) 4531 { 4532 struct iwn_bt_adv2 d; 4533 4534 memset(&d, 0, sizeof d); 4535 d.prio_boost = IWN_BT_PRIO_BOOST_DEF; 4536 d.tx_prio_boost = 0; 4537 d.rx_prio_boost = 0; 4538 return iwn_config_bt_coex_adv_config(sc, &d.basic, sizeof d); 4539 } 4540 4541 static int 4542 iwn_config(struct iwn_softc *sc) 4543 { 4544 struct iwn_ops *ops = &sc->ops; 4545 struct ieee80211com *ic = &sc->sc_ic; 4546 struct ifnet *ifp = ic->ic_ifp; 4547 uint32_t txmask; 4548 uint16_t rxchain; 4549 int error; 4550 4551 error = ops->config_bt_coex(sc); 4552 if (error != 0) { 4553 aprint_error_dev(sc->sc_dev, 4554 "could not configure bluetooth coexistence\n"); 4555 return error; 4556 } 4557 4558 /* Set radio temperature sensor offset. */ 4559 if (sc->hw_type == IWN_HW_REV_TYPE_6005) { 4560 error = iwn6000_temp_offset_calib(sc); 4561 if (error != 0) { 4562 aprint_error_dev(sc->sc_dev, 4563 "could not set temperature offset\n"); 4564 return error; 4565 } 4566 } 4567 4568 if (sc->hw_type == IWN_HW_REV_TYPE_2030 || 4569 sc->hw_type == IWN_HW_REV_TYPE_2000 || 4570 sc->hw_type == IWN_HW_REV_TYPE_135 || 4571 sc->hw_type == IWN_HW_REV_TYPE_105) { 4572 error = iwn2000_temp_offset_calib(sc); 4573 if (error != 0) { 4574 aprint_error_dev(sc->sc_dev, 4575 "could not set temperature offset\n"); 4576 return error; 4577 } 4578 } 4579 4580 if (sc->hw_type == IWN_HW_REV_TYPE_6050 || 4581 sc->hw_type == IWN_HW_REV_TYPE_6005) { 4582 /* Configure runtime DC calibration. */ 4583 error = iwn5000_runtime_calib(sc); 4584 if (error != 0) { 4585 aprint_error_dev(sc->sc_dev, 4586 "could not configure runtime calibration\n"); 4587 return error; 4588 } 4589 } 4590 4591 /* Configure valid TX chains for 5000 Series. */ 4592 if (sc->hw_type != IWN_HW_REV_TYPE_4965) { 4593 txmask = htole32(sc->txchainmask); 4594 DPRINTF(("configuring valid TX chains 0x%x\n", txmask)); 4595 error = iwn_cmd(sc, IWN5000_CMD_TX_ANT_CONFIG, &txmask, 4596 sizeof txmask, 0); 4597 if (error != 0) { 4598 aprint_error_dev(sc->sc_dev, 4599 "could not configure valid TX chains\n"); 4600 return error; 4601 } 4602 } 4603 4604 /* Set mode, channel, RX filter and enable RX. */ 4605 memset(&sc->rxon, 0, sizeof (struct iwn_rxon)); 4606 IEEE80211_ADDR_COPY(ic->ic_myaddr, CLLADDR(ifp->if_sadl)); 4607 IEEE80211_ADDR_COPY(sc->rxon.myaddr, ic->ic_myaddr); 4608 IEEE80211_ADDR_COPY(sc->rxon.wlap, ic->ic_myaddr); 4609 sc->rxon.chan = ieee80211_chan2ieee(ic, ic->ic_ibss_chan); 4610 sc->rxon.flags = htole32(IWN_RXON_TSF | IWN_RXON_CTS_TO_SELF); 4611 if (IEEE80211_IS_CHAN_2GHZ(ic->ic_ibss_chan)) 4612 sc->rxon.flags |= htole32(IWN_RXON_AUTO | IWN_RXON_24GHZ); 4613 switch (ic->ic_opmode) { 4614 case IEEE80211_M_STA: 4615 sc->rxon.mode = IWN_MODE_STA; 4616 sc->rxon.filter = htole32(IWN_FILTER_MULTICAST); 4617 break; 4618 case IEEE80211_M_MONITOR: 4619 sc->rxon.mode = IWN_MODE_MONITOR; 4620 sc->rxon.filter = htole32(IWN_FILTER_MULTICAST | 4621 IWN_FILTER_CTL | IWN_FILTER_PROMISC); 4622 break; 4623 default: 4624 /* Should not get there. */ 4625 break; 4626 } 4627 sc->rxon.cck_mask = 0x0f; /* not yet negotiated */ 4628 sc->rxon.ofdm_mask = 0xff; /* not yet negotiated */ 4629 sc->rxon.ht_single_mask = 0xff; 4630 sc->rxon.ht_dual_mask = 0xff; 4631 sc->rxon.ht_triple_mask = 0xff; 4632 rxchain = 4633 IWN_RXCHAIN_VALID(sc->rxchainmask) | 4634 IWN_RXCHAIN_MIMO_COUNT(2) | 4635 IWN_RXCHAIN_IDLE_COUNT(2); 4636 sc->rxon.rxchain = htole16(rxchain); 4637 DPRINTF(("setting configuration\n")); 4638 error = iwn_cmd(sc, IWN_CMD_RXON, &sc->rxon, sc->rxonsz, 0); 4639 if (error != 0) { 4640 aprint_error_dev(sc->sc_dev, 4641 "RXON command failed\n"); 4642 return error; 4643 } 4644 4645 if ((error = iwn_add_broadcast_node(sc, 0)) != 0) { 4646 aprint_error_dev(sc->sc_dev, 4647 "could not add broadcast node\n"); 4648 return error; 4649 } 4650 4651 /* Configuration has changed, set TX power accordingly. */ 4652 if ((error = ops->set_txpower(sc, 0)) != 0) { 4653 aprint_error_dev(sc->sc_dev, 4654 "could not set TX power\n"); 4655 return error; 4656 } 4657 4658 if ((error = iwn_set_critical_temp(sc)) != 0) { 4659 aprint_error_dev(sc->sc_dev, 4660 "could not set critical temperature\n"); 4661 return error; 4662 } 4663 4664 /* Set power saving level to CAM during initialization. */ 4665 if ((error = iwn_set_pslevel(sc, 0, 0, 0)) != 0) { 4666 aprint_error_dev(sc->sc_dev, 4667 "could not set power saving level\n"); 4668 return error; 4669 } 4670 return 0; 4671 } 4672 4673 static uint16_t 4674 iwn_get_active_dwell_time(struct iwn_softc *sc, uint16_t flags, 4675 uint8_t n_probes) 4676 { 4677 /* No channel? Default to 2GHz settings */ 4678 if (flags & IEEE80211_CHAN_2GHZ) 4679 return IWN_ACTIVE_DWELL_TIME_2GHZ + 4680 IWN_ACTIVE_DWELL_FACTOR_2GHZ * (n_probes + 1); 4681 4682 /* 5GHz dwell time */ 4683 return IWN_ACTIVE_DWELL_TIME_5GHZ + 4684 IWN_ACTIVE_DWELL_FACTOR_5GHZ * (n_probes + 1); 4685 } 4686 4687 /* 4688 * Limit the total dwell time to 85% of the beacon interval. 4689 * 4690 * Returns the dwell time in milliseconds. 4691 */ 4692 static uint16_t 4693 iwn_limit_dwell(struct iwn_softc *sc, uint16_t dwell_time) 4694 { 4695 struct ieee80211com *ic = &sc->sc_ic; 4696 struct ieee80211_node *ni = ic->ic_bss; 4697 int bintval = 0; 4698 4699 /* bintval is in TU (1.024mS) */ 4700 if (ni != NULL) 4701 bintval = ni->ni_intval; 4702 4703 /* 4704 * If it's non-zero, we should calculate the minimum of 4705 * it and the DWELL_BASE. 4706 * 4707 * XXX Yes, the math should take into account that bintval 4708 * is 1.024mS, not 1mS.. 4709 */ 4710 if (bintval > 0) 4711 return MIN(IWN_PASSIVE_DWELL_BASE, ((bintval * 85) / 100)); 4712 4713 /* No association context? Default */ 4714 return IWN_PASSIVE_DWELL_BASE; 4715 } 4716 4717 static uint16_t 4718 iwn_get_passive_dwell_time(struct iwn_softc *sc, uint16_t flags) 4719 { 4720 uint16_t passive; 4721 if (flags & IEEE80211_CHAN_2GHZ) 4722 passive = IWN_PASSIVE_DWELL_BASE + IWN_PASSIVE_DWELL_TIME_2GHZ; 4723 else 4724 passive = IWN_PASSIVE_DWELL_BASE + IWN_PASSIVE_DWELL_TIME_5GHZ; 4725 4726 /* Clamp to the beacon interval if we're associated */ 4727 return iwn_limit_dwell(sc, passive); 4728 } 4729 4730 static int 4731 iwn_scan(struct iwn_softc *sc, uint16_t flags) 4732 { 4733 struct ieee80211com *ic = &sc->sc_ic; 4734 struct iwn_scan_hdr *hdr; 4735 struct iwn_cmd_data *tx; 4736 struct iwn_scan_essid *essid; 4737 struct iwn_scan_chan *chan; 4738 struct ieee80211_frame *wh; 4739 struct ieee80211_rateset *rs; 4740 struct ieee80211_channel *c; 4741 uint8_t *buf, *frm; 4742 uint16_t rxchain, dwell_active, dwell_passive; 4743 uint8_t txant; 4744 int buflen, error, is_active; 4745 4746 buf = malloc(IWN_SCAN_MAXSZ, M_DEVBUF, M_NOWAIT | M_ZERO); 4747 if (buf == NULL) { 4748 aprint_error_dev(sc->sc_dev, 4749 "could not allocate buffer for scan command\n"); 4750 return ENOMEM; 4751 } 4752 hdr = (struct iwn_scan_hdr *)buf; 4753 /* 4754 * Move to the next channel if no frames are received within 10ms 4755 * after sending the probe request. 4756 */ 4757 hdr->quiet_time = htole16(10); /* timeout in milliseconds */ 4758 hdr->quiet_threshold = htole16(1); /* min # of packets */ 4759 4760 /* Select antennas for scanning. */ 4761 rxchain = 4762 IWN_RXCHAIN_VALID(sc->rxchainmask) | 4763 IWN_RXCHAIN_FORCE_MIMO_SEL(sc->rxchainmask) | 4764 IWN_RXCHAIN_DRIVER_FORCE; 4765 if ((flags & IEEE80211_CHAN_5GHZ) && 4766 sc->hw_type == IWN_HW_REV_TYPE_4965) { 4767 /* Ant A must be avoided in 5GHz because of an HW bug. */ 4768 rxchain |= IWN_RXCHAIN_FORCE_SEL(IWN_ANT_BC); 4769 } else /* Use all available RX antennas. */ 4770 rxchain |= IWN_RXCHAIN_FORCE_SEL(sc->rxchainmask); 4771 hdr->rxchain = htole16(rxchain); 4772 hdr->filter = htole32(IWN_FILTER_MULTICAST | IWN_FILTER_BEACON); 4773 4774 tx = (struct iwn_cmd_data *)(hdr + 1); 4775 tx->flags = htole32(IWN_TX_AUTO_SEQ); 4776 tx->id = sc->broadcast_id; 4777 tx->lifetime = htole32(IWN_LIFETIME_INFINITE); 4778 4779 if (flags & IEEE80211_CHAN_5GHZ) { 4780 hdr->crc_threshold = 0xffff; 4781 /* Send probe requests at 6Mbps. */ 4782 tx->plcp = iwn_rates[IWN_RIDX_OFDM6].plcp; 4783 rs = &ic->ic_sup_rates[IEEE80211_MODE_11A]; 4784 } else { 4785 hdr->flags = htole32(IWN_RXON_24GHZ | IWN_RXON_AUTO); 4786 /* Send probe requests at 1Mbps. */ 4787 tx->plcp = iwn_rates[IWN_RIDX_CCK1].plcp; 4788 tx->rflags = IWN_RFLAG_CCK; 4789 rs = &ic->ic_sup_rates[IEEE80211_MODE_11G]; 4790 } 4791 /* Use the first valid TX antenna. */ 4792 txant = IWN_LSB(sc->txchainmask); 4793 tx->rflags |= IWN_RFLAG_ANT(txant); 4794 4795 /* 4796 * Only do active scanning if we're announcing a probe request 4797 * for a given SSID (or more, if we ever add it to the driver.) 4798 */ 4799 is_active = 0; 4800 4801 essid = (struct iwn_scan_essid *)(tx + 1); 4802 if (ic->ic_des_esslen != 0) { 4803 essid[0].id = IEEE80211_ELEMID_SSID; 4804 essid[0].len = ic->ic_des_esslen; 4805 memcpy(essid[0].data, ic->ic_des_essid, ic->ic_des_esslen); 4806 4807 is_active = 1; 4808 } 4809 /* 4810 * Build a probe request frame. Most of the following code is a 4811 * copy & paste of what is done in net80211. 4812 */ 4813 wh = (struct ieee80211_frame *)(essid + 20); 4814 wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_MGT | 4815 IEEE80211_FC0_SUBTYPE_PROBE_REQ; 4816 wh->i_fc[1] = IEEE80211_FC1_DIR_NODS; 4817 IEEE80211_ADDR_COPY(wh->i_addr1, etherbroadcastaddr); 4818 IEEE80211_ADDR_COPY(wh->i_addr2, ic->ic_myaddr); 4819 IEEE80211_ADDR_COPY(wh->i_addr3, etherbroadcastaddr); 4820 *(uint16_t *)&wh->i_dur[0] = 0; /* filled by HW */ 4821 *(uint16_t *)&wh->i_seq[0] = 0; /* filled by HW */ 4822 4823 frm = (uint8_t *)(wh + 1); 4824 frm = ieee80211_add_ssid(frm, NULL, 0); 4825 frm = ieee80211_add_rates(frm, rs); 4826 #ifndef IEEE80211_NO_HT 4827 if (ic->ic_flags & IEEE80211_F_HTON) 4828 frm = ieee80211_add_htcaps(frm, ic); 4829 #endif 4830 if (rs->rs_nrates > IEEE80211_RATE_SIZE) 4831 frm = ieee80211_add_xrates(frm, rs); 4832 4833 /* Set length of probe request. */ 4834 tx->len = htole16(frm - (uint8_t *)wh); 4835 4836 4837 /* 4838 * If active scanning is requested but a certain channel is 4839 * marked passive, we can do active scanning if we detect 4840 * transmissions. 4841 * 4842 * There is an issue with some firmware versions that triggers 4843 * a sysassert on a "good CRC threshold" of zero (== disabled), 4844 * on a radar channel even though this means that we should NOT 4845 * send probes. 4846 * 4847 * The "good CRC threshold" is the number of frames that we 4848 * need to receive during our dwell time on a channel before 4849 * sending out probes -- setting this to a huge value will 4850 * mean we never reach it, but at the same time work around 4851 * the aforementioned issue. Thus use IWN_GOOD_CRC_TH_NEVER 4852 * here instead of IWN_GOOD_CRC_TH_DISABLED. 4853 * 4854 * This was fixed in later versions along with some other 4855 * scan changes, and the threshold behaves as a flag in those 4856 * versions. 4857 */ 4858 4859 /* 4860 * If we're doing active scanning, set the crc_threshold 4861 * to a suitable value. This is different to active veruss 4862 * passive scanning depending upon the channel flags; the 4863 * firmware will obey that particular check for us. 4864 */ 4865 if (sc->tlv_feature_flags & IWN_UCODE_TLV_FLAGS_NEWSCAN) 4866 hdr->crc_threshold = is_active ? 4867 IWN_GOOD_CRC_TH_DEFAULT : IWN_GOOD_CRC_TH_DISABLED; 4868 else 4869 hdr->crc_threshold = is_active ? 4870 IWN_GOOD_CRC_TH_DEFAULT : IWN_GOOD_CRC_TH_NEVER; 4871 4872 chan = (struct iwn_scan_chan *)frm; 4873 for (c = &ic->ic_channels[1]; 4874 c <= &ic->ic_channels[IEEE80211_CHAN_MAX]; c++) { 4875 if ((c->ic_flags & flags) != flags) 4876 continue; 4877 4878 chan->chan = htole16(ieee80211_chan2ieee(ic, c)); 4879 DPRINTFN(2, ("adding channel %d\n", chan->chan)); 4880 chan->flags = 0; 4881 if (!(c->ic_flags & IEEE80211_CHAN_PASSIVE)) 4882 chan->flags |= htole32(IWN_CHAN_ACTIVE); 4883 if (ic->ic_des_esslen != 0) 4884 chan->flags |= htole32(IWN_CHAN_NPBREQS(1)); 4885 4886 /* 4887 * Calculate the active/passive dwell times. 4888 */ 4889 4890 dwell_active = iwn_get_active_dwell_time(sc, flags, is_active); 4891 dwell_passive = iwn_get_passive_dwell_time(sc, flags); 4892 4893 /* Make sure they're valid */ 4894 if (dwell_passive <= dwell_active) 4895 dwell_passive = dwell_active + 1; 4896 4897 chan->active = htole16(dwell_active); 4898 chan->passive = htole16(dwell_passive); 4899 4900 chan->dsp_gain = 0x6e; 4901 if (IEEE80211_IS_CHAN_5GHZ(c)) { 4902 chan->rf_gain = 0x3b; 4903 } else { 4904 chan->rf_gain = 0x28; 4905 } 4906 hdr->nchan++; 4907 chan++; 4908 } 4909 4910 buflen = (uint8_t *)chan - buf; 4911 hdr->len = htole16(buflen); 4912 4913 DPRINTF(("sending scan command nchan=%d\n", hdr->nchan)); 4914 error = iwn_cmd(sc, IWN_CMD_SCAN, buf, buflen, 1); 4915 free(buf, M_DEVBUF); 4916 return error; 4917 } 4918 4919 static int 4920 iwn_auth(struct iwn_softc *sc) 4921 { 4922 struct iwn_ops *ops = &sc->ops; 4923 struct ieee80211com *ic = &sc->sc_ic; 4924 struct ieee80211_node *ni = ic->ic_bss; 4925 int error; 4926 4927 /* Update adapter configuration. */ 4928 IEEE80211_ADDR_COPY(sc->rxon.bssid, ni->ni_bssid); 4929 sc->rxon.chan = ieee80211_chan2ieee(ic, ni->ni_chan); 4930 sc->rxon.flags = htole32(IWN_RXON_TSF | IWN_RXON_CTS_TO_SELF); 4931 if (IEEE80211_IS_CHAN_2GHZ(ni->ni_chan)) 4932 sc->rxon.flags |= htole32(IWN_RXON_AUTO | IWN_RXON_24GHZ); 4933 if (ic->ic_flags & IEEE80211_F_SHSLOT) 4934 sc->rxon.flags |= htole32(IWN_RXON_SHSLOT); 4935 if (ic->ic_flags & IEEE80211_F_SHPREAMBLE) 4936 sc->rxon.flags |= htole32(IWN_RXON_SHPREAMBLE); 4937 switch (ic->ic_curmode) { 4938 case IEEE80211_MODE_11A: 4939 sc->rxon.cck_mask = 0; 4940 sc->rxon.ofdm_mask = 0x15; 4941 break; 4942 case IEEE80211_MODE_11B: 4943 sc->rxon.cck_mask = 0x03; 4944 sc->rxon.ofdm_mask = 0; 4945 break; 4946 default: /* Assume 802.11b/g. */ 4947 sc->rxon.cck_mask = 0x0f; 4948 sc->rxon.ofdm_mask = 0x15; 4949 } 4950 DPRINTF(("rxon chan %d flags %x cck %x ofdm %x\n", sc->rxon.chan, 4951 sc->rxon.flags, sc->rxon.cck_mask, sc->rxon.ofdm_mask)); 4952 error = iwn_cmd(sc, IWN_CMD_RXON, &sc->rxon, sc->rxonsz, 1); 4953 if (error != 0) { 4954 aprint_error_dev(sc->sc_dev, 4955 "RXON command failed\n"); 4956 return error; 4957 } 4958 4959 /* Configuration has changed, set TX power accordingly. */ 4960 if ((error = ops->set_txpower(sc, 1)) != 0) { 4961 aprint_error_dev(sc->sc_dev, 4962 "could not set TX power\n"); 4963 return error; 4964 } 4965 /* 4966 * Reconfiguring RXON clears the firmware nodes table so we must 4967 * add the broadcast node again. 4968 */ 4969 if ((error = iwn_add_broadcast_node(sc, 1)) != 0) { 4970 aprint_error_dev(sc->sc_dev, 4971 "could not add broadcast node\n"); 4972 return error; 4973 } 4974 return 0; 4975 } 4976 4977 static int 4978 iwn_run(struct iwn_softc *sc) 4979 { 4980 struct iwn_ops *ops = &sc->ops; 4981 struct ieee80211com *ic = &sc->sc_ic; 4982 struct ieee80211_node *ni = ic->ic_bss; 4983 struct iwn_node_info node; 4984 int error; 4985 4986 if (ic->ic_opmode == IEEE80211_M_MONITOR) { 4987 /* Link LED blinks while monitoring. */ 4988 iwn_set_led(sc, IWN_LED_LINK, 5, 5); 4989 return 0; 4990 } 4991 if ((error = iwn_set_timing(sc, ni)) != 0) { 4992 aprint_error_dev(sc->sc_dev, 4993 "could not set timing\n"); 4994 return error; 4995 } 4996 4997 /* Update adapter configuration. */ 4998 sc->rxon.associd = htole16(IEEE80211_AID(ni->ni_associd)); 4999 /* Short preamble and slot time are negotiated when associating. */ 5000 sc->rxon.flags &= ~htole32(IWN_RXON_SHPREAMBLE | IWN_RXON_SHSLOT); 5001 if (ic->ic_flags & IEEE80211_F_SHSLOT) 5002 sc->rxon.flags |= htole32(IWN_RXON_SHSLOT); 5003 if (ic->ic_flags & IEEE80211_F_SHPREAMBLE) 5004 sc->rxon.flags |= htole32(IWN_RXON_SHPREAMBLE); 5005 sc->rxon.filter |= htole32(IWN_FILTER_BSS); 5006 DPRINTF(("rxon chan %d flags %x\n", sc->rxon.chan, sc->rxon.flags)); 5007 error = iwn_cmd(sc, IWN_CMD_RXON, &sc->rxon, sc->rxonsz, 1); 5008 if (error != 0) { 5009 aprint_error_dev(sc->sc_dev, 5010 "could not update configuration\n"); 5011 return error; 5012 } 5013 5014 /* Configuration has changed, set TX power accordingly. */ 5015 if ((error = ops->set_txpower(sc, 1)) != 0) { 5016 aprint_error_dev(sc->sc_dev, 5017 "could not set TX power\n"); 5018 return error; 5019 } 5020 5021 /* Fake a join to initialize the TX rate. */ 5022 ((struct iwn_node *)ni)->id = IWN_ID_BSS; 5023 iwn_newassoc(ni, 1); 5024 5025 /* Add BSS node. */ 5026 memset(&node, 0, sizeof node); 5027 IEEE80211_ADDR_COPY(node.macaddr, ni->ni_macaddr); 5028 node.id = IWN_ID_BSS; 5029 #ifdef notyet 5030 node.htflags = htole32(IWN_AMDPU_SIZE_FACTOR(3) | 5031 IWN_AMDPU_DENSITY(5)); /* 2us */ 5032 #endif 5033 DPRINTF(("adding BSS node\n")); 5034 error = ops->add_node(sc, &node, 1); 5035 if (error != 0) { 5036 aprint_error_dev(sc->sc_dev, 5037 "could not add BSS node\n"); 5038 return error; 5039 } 5040 DPRINTF(("setting link quality for node %d\n", node.id)); 5041 if ((error = iwn_set_link_quality(sc, ni)) != 0) { 5042 aprint_error_dev(sc->sc_dev, 5043 "could not setup link quality for node %d\n", node.id); 5044 return error; 5045 } 5046 5047 if ((error = iwn_init_sensitivity(sc)) != 0) { 5048 aprint_error_dev(sc->sc_dev, 5049 "could not set sensitivity\n"); 5050 return error; 5051 } 5052 /* Start periodic calibration timer. */ 5053 sc->calib.state = IWN_CALIB_STATE_ASSOC; 5054 sc->calib_cnt = 0; 5055 callout_schedule(&sc->calib_to, hz/2); 5056 5057 /* Link LED always on while associated. */ 5058 iwn_set_led(sc, IWN_LED_LINK, 0, 1); 5059 return 0; 5060 } 5061 5062 #ifdef IWN_HWCRYPTO 5063 /* 5064 * We support CCMP hardware encryption/decryption of unicast frames only. 5065 * HW support for TKIP really sucks. We should let TKIP die anyway. 5066 */ 5067 static int 5068 iwn_set_key(struct ieee80211com *ic, struct ieee80211_node *ni, 5069 struct ieee80211_key *k) 5070 { 5071 struct iwn_softc *sc = ic->ic_softc; 5072 struct iwn_ops *ops = &sc->ops; 5073 struct iwn_node *wn = (void *)ni; 5074 struct iwn_node_info node; 5075 uint16_t kflags; 5076 5077 if ((k->k_flags & IEEE80211_KEY_GROUP) || 5078 k->k_cipher != IEEE80211_CIPHER_CCMP) 5079 return ieee80211_set_key(ic, ni, k); 5080 5081 kflags = IWN_KFLAG_CCMP | IWN_KFLAG_MAP | IWN_KFLAG_KID(k->k_id); 5082 if (k->k_flags & IEEE80211_KEY_GROUP) 5083 kflags |= IWN_KFLAG_GROUP; 5084 5085 memset(&node, 0, sizeof node); 5086 node.id = (k->k_flags & IEEE80211_KEY_GROUP) ? 5087 sc->broadcast_id : wn->id; 5088 node.control = IWN_NODE_UPDATE; 5089 node.flags = IWN_FLAG_SET_KEY; 5090 node.kflags = htole16(kflags); 5091 node.kid = k->k_id; 5092 memcpy(node.key, k->k_key, k->k_len); 5093 DPRINTF(("set key id=%d for node %d\n", k->k_id, node.id)); 5094 return ops->add_node(sc, &node, 1); 5095 } 5096 5097 static void 5098 iwn_delete_key(struct ieee80211com *ic, struct ieee80211_node *ni, 5099 struct ieee80211_key *k) 5100 { 5101 struct iwn_softc *sc = ic->ic_softc; 5102 struct iwn_ops *ops = &sc->ops; 5103 struct iwn_node *wn = (void *)ni; 5104 struct iwn_node_info node; 5105 5106 if ((k->k_flags & IEEE80211_KEY_GROUP) || 5107 k->k_cipher != IEEE80211_CIPHER_CCMP) { 5108 /* See comment about other ciphers above. */ 5109 ieee80211_delete_key(ic, ni, k); 5110 return; 5111 } 5112 if (ic->ic_state != IEEE80211_S_RUN) 5113 return; /* Nothing to do. */ 5114 memset(&node, 0, sizeof node); 5115 node.id = (k->k_flags & IEEE80211_KEY_GROUP) ? 5116 sc->broadcast_id : wn->id; 5117 node.control = IWN_NODE_UPDATE; 5118 node.flags = IWN_FLAG_SET_KEY; 5119 node.kflags = htole16(IWN_KFLAG_INVALID); 5120 node.kid = 0xff; 5121 DPRINTF(("delete keys for node %d\n", node.id)); 5122 (void)ops->add_node(sc, &node, 1); 5123 } 5124 #endif 5125 5126 /* XXX Added for NetBSD (copied from rev 1.39). */ 5127 5128 static int 5129 iwn_wme_update(struct ieee80211com *ic) 5130 { 5131 #define IWN_EXP2(v) htole16((1 << (v)) - 1) 5132 #define IWN_USEC(v) htole16(IEEE80211_TXOP_TO_US(v)) 5133 struct iwn_softc *sc = ic->ic_ifp->if_softc; 5134 const struct wmeParams *wmep; 5135 struct iwn_edca_params cmd; 5136 int ac; 5137 5138 /* don't override default WME values if WME is not actually enabled */ 5139 if (!(ic->ic_flags & IEEE80211_F_WME)) 5140 return 0; 5141 cmd.flags = 0; 5142 for (ac = 0; ac < WME_NUM_AC; ac++) { 5143 wmep = &ic->ic_wme.wme_chanParams.cap_wmeParams[ac]; 5144 cmd.ac[ac].aifsn = wmep->wmep_aifsn; 5145 cmd.ac[ac].cwmin = IWN_EXP2(wmep->wmep_logcwmin); 5146 cmd.ac[ac].cwmax = IWN_EXP2(wmep->wmep_logcwmax); 5147 cmd.ac[ac].txoplimit = IWN_USEC(wmep->wmep_txopLimit); 5148 5149 DPRINTF(("setting WME for queue %d aifsn=%d cwmin=%d cwmax=%d " 5150 "txop=%d\n", ac, cmd.ac[ac].aifsn, 5151 cmd.ac[ac].cwmin, 5152 cmd.ac[ac].cwmax, cmd.ac[ac].txoplimit)); 5153 } 5154 return iwn_cmd(sc, IWN_CMD_EDCA_PARAMS, &cmd, sizeof cmd, 1); 5155 #undef IWN_USEC 5156 #undef IWN_EXP2 5157 } 5158 5159 #ifndef IEEE80211_NO_HT 5160 /* 5161 * This function is called by upper layer when an ADDBA request is received 5162 * from another STA and before the ADDBA response is sent. 5163 */ 5164 static int 5165 iwn_ampdu_rx_start(struct ieee80211com *ic, struct ieee80211_node *ni, 5166 uint8_t tid) 5167 { 5168 struct ieee80211_rx_ba *ba = &ni->ni_rx_ba[tid]; 5169 struct iwn_softc *sc = ic->ic_softc; 5170 struct iwn_ops *ops = &sc->ops; 5171 struct iwn_node *wn = (void *)ni; 5172 struct iwn_node_info node; 5173 5174 memset(&node, 0, sizeof node); 5175 node.id = wn->id; 5176 node.control = IWN_NODE_UPDATE; 5177 node.flags = IWN_FLAG_SET_ADDBA; 5178 node.addba_tid = tid; 5179 node.addba_ssn = htole16(ba->ba_winstart); 5180 DPRINTFN(2, ("ADDBA RA=%d TID=%d SSN=%d\n", wn->id, tid, 5181 ba->ba_winstart)); 5182 return ops->add_node(sc, &node, 1); 5183 } 5184 5185 /* 5186 * This function is called by upper layer on teardown of an HT-immediate 5187 * Block Ack agreement (eg. uppon receipt of a DELBA frame). 5188 */ 5189 static void 5190 iwn_ampdu_rx_stop(struct ieee80211com *ic, struct ieee80211_node *ni, 5191 uint8_t tid) 5192 { 5193 struct iwn_softc *sc = ic->ic_softc; 5194 struct iwn_ops *ops = &sc->ops; 5195 struct iwn_node *wn = (void *)ni; 5196 struct iwn_node_info node; 5197 5198 memset(&node, 0, sizeof node); 5199 node.id = wn->id; 5200 node.control = IWN_NODE_UPDATE; 5201 node.flags = IWN_FLAG_SET_DELBA; 5202 node.delba_tid = tid; 5203 DPRINTFN(2, ("DELBA RA=%d TID=%d\n", wn->id, tid)); 5204 (void)ops->add_node(sc, &node, 1); 5205 } 5206 5207 /* 5208 * This function is called by upper layer when an ADDBA response is received 5209 * from another STA. 5210 */ 5211 static int 5212 iwn_ampdu_tx_start(struct ieee80211com *ic, struct ieee80211_node *ni, 5213 uint8_t tid) 5214 { 5215 struct ieee80211_tx_ba *ba = &ni->ni_tx_ba[tid]; 5216 struct iwn_softc *sc = ic->ic_softc; 5217 struct iwn_ops *ops = &sc->ops; 5218 struct iwn_node *wn = (void *)ni; 5219 struct iwn_node_info node; 5220 int error; 5221 5222 /* Enable TX for the specified RA/TID. */ 5223 wn->disable_tid &= ~(1 << tid); 5224 memset(&node, 0, sizeof node); 5225 node.id = wn->id; 5226 node.control = IWN_NODE_UPDATE; 5227 node.flags = IWN_FLAG_SET_DISABLE_TID; 5228 node.disable_tid = htole16(wn->disable_tid); 5229 error = ops->add_node(sc, &node, 1); 5230 if (error != 0) 5231 return error; 5232 5233 if ((error = iwn_nic_lock(sc)) != 0) 5234 return error; 5235 ops->ampdu_tx_start(sc, ni, tid, ba->ba_winstart); 5236 iwn_nic_unlock(sc); 5237 return 0; 5238 } 5239 5240 static void 5241 iwn_ampdu_tx_stop(struct ieee80211com *ic, struct ieee80211_node *ni, 5242 uint8_t tid) 5243 { 5244 struct ieee80211_tx_ba *ba = &ni->ni_tx_ba[tid]; 5245 struct iwn_softc *sc = ic->ic_softc; 5246 struct iwn_ops *ops = &sc->ops; 5247 5248 if (iwn_nic_lock(sc) != 0) 5249 return; 5250 ops->ampdu_tx_stop(sc, tid, ba->ba_winstart); 5251 iwn_nic_unlock(sc); 5252 } 5253 5254 static void 5255 iwn4965_ampdu_tx_start(struct iwn_softc *sc, struct ieee80211_node *ni, 5256 uint8_t tid, uint16_t ssn) 5257 { 5258 struct iwn_node *wn = (void *)ni; 5259 int qid = 7 + tid; 5260 5261 /* Stop TX scheduler while we're changing its configuration. */ 5262 iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid), 5263 IWN4965_TXQ_STATUS_CHGACT); 5264 5265 /* Assign RA/TID translation to the queue. */ 5266 iwn_mem_write_2(sc, sc->sched_base + IWN4965_SCHED_TRANS_TBL(qid), 5267 wn->id << 4 | tid); 5268 5269 /* Enable chain-building mode for the queue. */ 5270 iwn_prph_setbits(sc, IWN4965_SCHED_QCHAIN_SEL, 1 << qid); 5271 5272 /* Set starting sequence number from the ADDBA request. */ 5273 IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | (ssn & 0xff)); 5274 iwn_prph_write(sc, IWN4965_SCHED_QUEUE_RDPTR(qid), ssn); 5275 5276 /* Set scheduler window size. */ 5277 iwn_mem_write(sc, sc->sched_base + IWN4965_SCHED_QUEUE_OFFSET(qid), 5278 IWN_SCHED_WINSZ); 5279 /* Set scheduler frame limit. */ 5280 iwn_mem_write(sc, sc->sched_base + IWN4965_SCHED_QUEUE_OFFSET(qid) + 4, 5281 IWN_SCHED_LIMIT << 16); 5282 5283 /* Enable interrupts for the queue. */ 5284 iwn_prph_setbits(sc, IWN4965_SCHED_INTR_MASK, 1 << qid); 5285 5286 /* Mark the queue as active. */ 5287 iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid), 5288 IWN4965_TXQ_STATUS_ACTIVE | IWN4965_TXQ_STATUS_AGGR_ENA | 5289 iwn_tid2fifo[tid] << 1); 5290 } 5291 5292 static void 5293 iwn4965_ampdu_tx_stop(struct iwn_softc *sc, uint8_t tid, uint16_t ssn) 5294 { 5295 int qid = 7 + tid; 5296 5297 /* Stop TX scheduler while we're changing its configuration. */ 5298 iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid), 5299 IWN4965_TXQ_STATUS_CHGACT); 5300 5301 /* Set starting sequence number from the ADDBA request. */ 5302 IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | (ssn & 0xff)); 5303 iwn_prph_write(sc, IWN4965_SCHED_QUEUE_RDPTR(qid), ssn); 5304 5305 /* Disable interrupts for the queue. */ 5306 iwn_prph_clrbits(sc, IWN4965_SCHED_INTR_MASK, 1 << qid); 5307 5308 /* Mark the queue as inactive. */ 5309 iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid), 5310 IWN4965_TXQ_STATUS_INACTIVE | iwn_tid2fifo[tid] << 1); 5311 } 5312 5313 static void 5314 iwn5000_ampdu_tx_start(struct iwn_softc *sc, struct ieee80211_node *ni, 5315 uint8_t tid, uint16_t ssn) 5316 { 5317 struct iwn_node *wn = (void *)ni; 5318 int qid = 10 + tid; 5319 5320 /* Stop TX scheduler while we're changing its configuration. */ 5321 iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid), 5322 IWN5000_TXQ_STATUS_CHGACT); 5323 5324 /* Assign RA/TID translation to the queue. */ 5325 iwn_mem_write_2(sc, sc->sched_base + IWN5000_SCHED_TRANS_TBL(qid), 5326 wn->id << 4 | tid); 5327 5328 /* Enable chain-building mode for the queue. */ 5329 iwn_prph_setbits(sc, IWN5000_SCHED_QCHAIN_SEL, 1 << qid); 5330 5331 /* Enable aggregation for the queue. */ 5332 iwn_prph_setbits(sc, IWN5000_SCHED_AGGR_SEL, 1 << qid); 5333 5334 /* Set starting sequence number from the ADDBA request. */ 5335 IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | (ssn & 0xff)); 5336 iwn_prph_write(sc, IWN5000_SCHED_QUEUE_RDPTR(qid), ssn); 5337 5338 /* Set scheduler window size and frame limit. */ 5339 iwn_mem_write(sc, sc->sched_base + IWN5000_SCHED_QUEUE_OFFSET(qid) + 4, 5340 IWN_SCHED_LIMIT << 16 | IWN_SCHED_WINSZ); 5341 5342 /* Enable interrupts for the queue. */ 5343 iwn_prph_setbits(sc, IWN5000_SCHED_INTR_MASK, 1 << qid); 5344 5345 /* Mark the queue as active. */ 5346 iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid), 5347 IWN5000_TXQ_STATUS_ACTIVE | iwn_tid2fifo[tid]); 5348 } 5349 5350 static void 5351 iwn5000_ampdu_tx_stop(struct iwn_softc *sc, uint8_t tid, uint16_t ssn) 5352 { 5353 int qid = 10 + tid; 5354 5355 /* Stop TX scheduler while we're changing its configuration. */ 5356 iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid), 5357 IWN5000_TXQ_STATUS_CHGACT); 5358 5359 /* Disable aggregation for the queue. */ 5360 iwn_prph_clrbits(sc, IWN5000_SCHED_AGGR_SEL, 1 << qid); 5361 5362 /* Set starting sequence number from the ADDBA request. */ 5363 IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | (ssn & 0xff)); 5364 iwn_prph_write(sc, IWN5000_SCHED_QUEUE_RDPTR(qid), ssn); 5365 5366 /* Disable interrupts for the queue. */ 5367 iwn_prph_clrbits(sc, IWN5000_SCHED_INTR_MASK, 1 << qid); 5368 5369 /* Mark the queue as inactive. */ 5370 iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid), 5371 IWN5000_TXQ_STATUS_INACTIVE | iwn_tid2fifo[tid]); 5372 } 5373 #endif /* !IEEE80211_NO_HT */ 5374 5375 /* 5376 * Query calibration tables from the initialization firmware. We do this 5377 * only once at first boot. Called from a process context. 5378 */ 5379 static int 5380 iwn5000_query_calibration(struct iwn_softc *sc) 5381 { 5382 struct iwn5000_calib_config cmd; 5383 int error; 5384 5385 memset(&cmd, 0, sizeof cmd); 5386 cmd.ucode.once.enable = 0xffffffff; 5387 cmd.ucode.once.start = 0xffffffff; 5388 cmd.ucode.once.send = 0xffffffff; 5389 cmd.ucode.flags = 0xffffffff; 5390 DPRINTF(("sending calibration query\n")); 5391 error = iwn_cmd(sc, IWN5000_CMD_CALIB_CONFIG, &cmd, sizeof cmd, 0); 5392 if (error != 0) 5393 return error; 5394 5395 /* Wait at most two seconds for calibration to complete. */ 5396 if (!(sc->sc_flags & IWN_FLAG_CALIB_DONE)) 5397 error = tsleep(sc, PCATCH, "iwncal", 2 * hz); 5398 return error; 5399 } 5400 5401 /* 5402 * Send calibration results to the runtime firmware. These results were 5403 * obtained on first boot from the initialization firmware. 5404 */ 5405 static int 5406 iwn5000_send_calibration(struct iwn_softc *sc) 5407 { 5408 int idx, error; 5409 5410 for (idx = 0; idx < 5; idx++) { 5411 if (sc->calibcmd[idx].buf == NULL) 5412 continue; /* No results available. */ 5413 DPRINTF(("send calibration result idx=%d len=%d\n", 5414 idx, sc->calibcmd[idx].len)); 5415 error = iwn_cmd(sc, IWN_CMD_PHY_CALIB, sc->calibcmd[idx].buf, 5416 sc->calibcmd[idx].len, 0); 5417 if (error != 0) { 5418 aprint_error_dev(sc->sc_dev, 5419 "could not send calibration result\n"); 5420 return error; 5421 } 5422 } 5423 return 0; 5424 } 5425 5426 static int 5427 iwn5000_send_wimax_coex(struct iwn_softc *sc) 5428 { 5429 struct iwn5000_wimax_coex wimax; 5430 5431 #ifdef notyet 5432 if (sc->hw_type == IWN_HW_REV_TYPE_6050) { 5433 /* Enable WiMAX coexistence for combo adapters. */ 5434 wimax.flags = 5435 IWN_WIMAX_COEX_ASSOC_WA_UNMASK | 5436 IWN_WIMAX_COEX_UNASSOC_WA_UNMASK | 5437 IWN_WIMAX_COEX_STA_TABLE_VALID | 5438 IWN_WIMAX_COEX_ENABLE; 5439 memcpy(wimax.events, iwn6050_wimax_events, 5440 sizeof iwn6050_wimax_events); 5441 } else 5442 #endif 5443 { 5444 /* Disable WiMAX coexistence. */ 5445 wimax.flags = 0; 5446 memset(wimax.events, 0, sizeof wimax.events); 5447 } 5448 DPRINTF(("Configuring WiMAX coexistence\n")); 5449 return iwn_cmd(sc, IWN5000_CMD_WIMAX_COEX, &wimax, sizeof wimax, 0); 5450 } 5451 5452 static int 5453 iwn6000_temp_offset_calib(struct iwn_softc *sc) 5454 { 5455 struct iwn6000_phy_calib_temp_offset cmd; 5456 5457 memset(&cmd, 0, sizeof cmd); 5458 cmd.code = IWN6000_PHY_CALIB_TEMP_OFFSET; 5459 cmd.ngroups = 1; 5460 cmd.isvalid = 1; 5461 if (sc->eeprom_temp != 0) 5462 cmd.offset = htole16(sc->eeprom_temp); 5463 else 5464 cmd.offset = htole16(IWN_DEFAULT_TEMP_OFFSET); 5465 DPRINTF(("setting radio sensor offset to %d\n", le16toh(cmd.offset))); 5466 return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 0); 5467 } 5468 5469 static int 5470 iwn2000_temp_offset_calib(struct iwn_softc *sc) 5471 { 5472 struct iwn2000_phy_calib_temp_offset cmd; 5473 5474 memset(&cmd, 0, sizeof cmd); 5475 cmd.code = IWN2000_PHY_CALIB_TEMP_OFFSET; 5476 cmd.ngroups = 1; 5477 cmd.isvalid = 1; 5478 if (sc->eeprom_rawtemp != 0) { 5479 cmd.offset_low = htole16(sc->eeprom_rawtemp); 5480 cmd.offset_high = htole16(sc->eeprom_temp); 5481 } else { 5482 cmd.offset_low = htole16(IWN_DEFAULT_TEMP_OFFSET); 5483 cmd.offset_high = htole16(IWN_DEFAULT_TEMP_OFFSET); 5484 } 5485 cmd.burnt_voltage_ref = htole16(sc->eeprom_voltage); 5486 DPRINTF(("setting radio sensor offset to %d:%d, voltage to %d\n", 5487 le16toh(cmd.offset_low), le16toh(cmd.offset_high), 5488 le16toh(cmd.burnt_voltage_ref))); 5489 return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 0); 5490 } 5491 5492 /* 5493 * This function is called after the runtime firmware notifies us of its 5494 * readiness (called in a process context). 5495 */ 5496 static int 5497 iwn4965_post_alive(struct iwn_softc *sc) 5498 { 5499 int error, qid; 5500 5501 if ((error = iwn_nic_lock(sc)) != 0) 5502 return error; 5503 5504 /* Clear TX scheduler state in SRAM. */ 5505 sc->sched_base = iwn_prph_read(sc, IWN_SCHED_SRAM_ADDR); 5506 iwn_mem_set_region_4(sc, sc->sched_base + IWN4965_SCHED_CTX_OFF, 0, 5507 IWN4965_SCHED_CTX_LEN / sizeof (uint32_t)); 5508 5509 /* Set physical address of TX scheduler rings (1KB aligned). */ 5510 iwn_prph_write(sc, IWN4965_SCHED_DRAM_ADDR, sc->sched_dma.paddr >> 10); 5511 5512 IWN_SETBITS(sc, IWN_FH_TX_CHICKEN, IWN_FH_TX_CHICKEN_SCHED_RETRY); 5513 5514 /* Disable chain mode for all our 16 queues. */ 5515 iwn_prph_write(sc, IWN4965_SCHED_QCHAIN_SEL, 0); 5516 5517 for (qid = 0; qid < IWN4965_NTXQUEUES; qid++) { 5518 iwn_prph_write(sc, IWN4965_SCHED_QUEUE_RDPTR(qid), 0); 5519 IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | 0); 5520 5521 /* Set scheduler window size. */ 5522 iwn_mem_write(sc, sc->sched_base + 5523 IWN4965_SCHED_QUEUE_OFFSET(qid), IWN_SCHED_WINSZ); 5524 /* Set scheduler frame limit. */ 5525 iwn_mem_write(sc, sc->sched_base + 5526 IWN4965_SCHED_QUEUE_OFFSET(qid) + 4, 5527 IWN_SCHED_LIMIT << 16); 5528 } 5529 5530 /* Enable interrupts for all our 16 queues. */ 5531 iwn_prph_write(sc, IWN4965_SCHED_INTR_MASK, 0xffff); 5532 /* Identify TX FIFO rings (0-7). */ 5533 iwn_prph_write(sc, IWN4965_SCHED_TXFACT, 0xff); 5534 5535 /* Mark TX rings (4 EDCA + cmd + 2 HCCA) as active. */ 5536 for (qid = 0; qid < 7; qid++) { 5537 static uint8_t qid2fifo[] = { 3, 2, 1, 0, 4, 5, 6 }; 5538 iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid), 5539 IWN4965_TXQ_STATUS_ACTIVE | qid2fifo[qid] << 1); 5540 } 5541 iwn_nic_unlock(sc); 5542 return 0; 5543 } 5544 5545 /* 5546 * This function is called after the initialization or runtime firmware 5547 * notifies us of its readiness (called in a process context). 5548 */ 5549 static int 5550 iwn5000_post_alive(struct iwn_softc *sc) 5551 { 5552 int error, qid; 5553 5554 /* Switch to using ICT interrupt mode. */ 5555 iwn5000_ict_reset(sc); 5556 5557 if ((error = iwn_nic_lock(sc)) != 0) 5558 return error; 5559 5560 /* Clear TX scheduler state in SRAM. */ 5561 sc->sched_base = iwn_prph_read(sc, IWN_SCHED_SRAM_ADDR); 5562 iwn_mem_set_region_4(sc, sc->sched_base + IWN5000_SCHED_CTX_OFF, 0, 5563 IWN5000_SCHED_CTX_LEN / sizeof (uint32_t)); 5564 5565 /* Set physical address of TX scheduler rings (1KB aligned). */ 5566 iwn_prph_write(sc, IWN5000_SCHED_DRAM_ADDR, sc->sched_dma.paddr >> 10); 5567 5568 IWN_SETBITS(sc, IWN_FH_TX_CHICKEN, IWN_FH_TX_CHICKEN_SCHED_RETRY); 5569 5570 /* Enable chain mode for all queues, except command queue. */ 5571 iwn_prph_write(sc, IWN5000_SCHED_QCHAIN_SEL, 0xfffef); 5572 iwn_prph_write(sc, IWN5000_SCHED_AGGR_SEL, 0); 5573 5574 for (qid = 0; qid < IWN5000_NTXQUEUES; qid++) { 5575 iwn_prph_write(sc, IWN5000_SCHED_QUEUE_RDPTR(qid), 0); 5576 IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | 0); 5577 5578 iwn_mem_write(sc, sc->sched_base + 5579 IWN5000_SCHED_QUEUE_OFFSET(qid), 0); 5580 /* Set scheduler window size and frame limit. */ 5581 iwn_mem_write(sc, sc->sched_base + 5582 IWN5000_SCHED_QUEUE_OFFSET(qid) + 4, 5583 IWN_SCHED_LIMIT << 16 | IWN_SCHED_WINSZ); 5584 } 5585 5586 /* Enable interrupts for all our 20 queues. */ 5587 iwn_prph_write(sc, IWN5000_SCHED_INTR_MASK, 0xfffff); 5588 /* Identify TX FIFO rings (0-7). */ 5589 iwn_prph_write(sc, IWN5000_SCHED_TXFACT, 0xff); 5590 5591 /* Mark TX rings (4 EDCA + cmd + 2 HCCA) as active. */ 5592 for (qid = 0; qid < 7; qid++) { 5593 static uint8_t qid2fifo[] = { 3, 2, 1, 0, 7, 5, 6 }; 5594 iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid), 5595 IWN5000_TXQ_STATUS_ACTIVE | qid2fifo[qid]); 5596 } 5597 iwn_nic_unlock(sc); 5598 5599 /* Configure WiMAX coexistence for combo adapters. */ 5600 error = iwn5000_send_wimax_coex(sc); 5601 if (error != 0) { 5602 aprint_error_dev(sc->sc_dev, 5603 "could not configure WiMAX coexistence\n"); 5604 return error; 5605 } 5606 if (sc->hw_type != IWN_HW_REV_TYPE_5150) { 5607 struct iwn5000_phy_calib_crystal cmd; 5608 5609 /* Perform crystal calibration. */ 5610 memset(&cmd, 0, sizeof cmd); 5611 cmd.code = IWN5000_PHY_CALIB_CRYSTAL; 5612 cmd.ngroups = 1; 5613 cmd.isvalid = 1; 5614 cmd.cap_pin[0] = le32toh(sc->eeprom_crystal) & 0xff; 5615 cmd.cap_pin[1] = (le32toh(sc->eeprom_crystal) >> 16) & 0xff; 5616 DPRINTF(("sending crystal calibration %d, %d\n", 5617 cmd.cap_pin[0], cmd.cap_pin[1])); 5618 error = iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 0); 5619 if (error != 0) { 5620 aprint_error_dev(sc->sc_dev, 5621 "crystal calibration failed\n"); 5622 return error; 5623 } 5624 } 5625 if (!(sc->sc_flags & IWN_FLAG_CALIB_DONE)) { 5626 /* Query calibration from the initialization firmware. */ 5627 if ((error = iwn5000_query_calibration(sc)) != 0) { 5628 aprint_error_dev(sc->sc_dev, 5629 "could not query calibration\n"); 5630 return error; 5631 } 5632 /* 5633 * We have the calibration results now, reboot with the 5634 * runtime firmware (call ourselves recursively!) 5635 */ 5636 iwn_hw_stop(sc); 5637 error = iwn_hw_init(sc); 5638 } else { 5639 /* Send calibration results to runtime firmware. */ 5640 error = iwn5000_send_calibration(sc); 5641 } 5642 return error; 5643 } 5644 5645 /* 5646 * The firmware boot code is small and is intended to be copied directly into 5647 * the NIC internal memory (no DMA transfer). 5648 */ 5649 static int 5650 iwn4965_load_bootcode(struct iwn_softc *sc, const uint8_t *ucode, int size) 5651 { 5652 int error, ntries; 5653 5654 size /= sizeof (uint32_t); 5655 5656 if ((error = iwn_nic_lock(sc)) != 0) 5657 return error; 5658 5659 /* Copy microcode image into NIC memory. */ 5660 iwn_prph_write_region_4(sc, IWN_BSM_SRAM_BASE, 5661 (const uint32_t *)ucode, size); 5662 5663 iwn_prph_write(sc, IWN_BSM_WR_MEM_SRC, 0); 5664 iwn_prph_write(sc, IWN_BSM_WR_MEM_DST, IWN_FW_TEXT_BASE); 5665 iwn_prph_write(sc, IWN_BSM_WR_DWCOUNT, size); 5666 5667 /* Start boot load now. */ 5668 iwn_prph_write(sc, IWN_BSM_WR_CTRL, IWN_BSM_WR_CTRL_START); 5669 5670 /* Wait for transfer to complete. */ 5671 for (ntries = 0; ntries < 1000; ntries++) { 5672 if (!(iwn_prph_read(sc, IWN_BSM_WR_CTRL) & 5673 IWN_BSM_WR_CTRL_START)) 5674 break; 5675 DELAY(10); 5676 } 5677 if (ntries == 1000) { 5678 aprint_error_dev(sc->sc_dev, 5679 "could not load boot firmware\n"); 5680 iwn_nic_unlock(sc); 5681 return ETIMEDOUT; 5682 } 5683 5684 /* Enable boot after power up. */ 5685 iwn_prph_write(sc, IWN_BSM_WR_CTRL, IWN_BSM_WR_CTRL_START_EN); 5686 5687 iwn_nic_unlock(sc); 5688 return 0; 5689 } 5690 5691 static int 5692 iwn4965_load_firmware(struct iwn_softc *sc) 5693 { 5694 struct iwn_fw_info *fw = &sc->fw; 5695 struct iwn_dma_info *dma = &sc->fw_dma; 5696 int error; 5697 5698 /* Copy initialization sections into pre-allocated DMA-safe memory. */ 5699 memcpy(dma->vaddr, fw->init.data, fw->init.datasz); 5700 bus_dmamap_sync(sc->sc_dmat, dma->map, 0, fw->init.datasz, 5701 BUS_DMASYNC_PREWRITE); 5702 memcpy((char *)dma->vaddr + IWN4965_FW_DATA_MAXSZ, 5703 fw->init.text, fw->init.textsz); 5704 bus_dmamap_sync(sc->sc_dmat, dma->map, IWN4965_FW_DATA_MAXSZ, 5705 fw->init.textsz, BUS_DMASYNC_PREWRITE); 5706 5707 /* Tell adapter where to find initialization sections. */ 5708 if ((error = iwn_nic_lock(sc)) != 0) 5709 return error; 5710 iwn_prph_write(sc, IWN_BSM_DRAM_DATA_ADDR, dma->paddr >> 4); 5711 iwn_prph_write(sc, IWN_BSM_DRAM_DATA_SIZE, fw->init.datasz); 5712 iwn_prph_write(sc, IWN_BSM_DRAM_TEXT_ADDR, 5713 (dma->paddr + IWN4965_FW_DATA_MAXSZ) >> 4); 5714 iwn_prph_write(sc, IWN_BSM_DRAM_TEXT_SIZE, fw->init.textsz); 5715 iwn_nic_unlock(sc); 5716 5717 /* Load firmware boot code. */ 5718 error = iwn4965_load_bootcode(sc, fw->boot.text, fw->boot.textsz); 5719 if (error != 0) { 5720 aprint_error_dev(sc->sc_dev, 5721 "could not load boot firmware\n"); 5722 return error; 5723 } 5724 /* Now press "execute". */ 5725 IWN_WRITE(sc, IWN_RESET, 0); 5726 5727 /* Wait at most one second for first alive notification. */ 5728 if ((error = tsleep(sc, PCATCH, "iwninit", hz)) != 0) { 5729 aprint_error_dev(sc->sc_dev, 5730 "timeout waiting for adapter to initialize\n"); 5731 return error; 5732 } 5733 5734 /* Retrieve current temperature for initial TX power calibration. */ 5735 sc->rawtemp = sc->ucode_info.temp[3].chan20MHz; 5736 sc->temp = iwn4965_get_temperature(sc); 5737 5738 /* Copy runtime sections into pre-allocated DMA-safe memory. */ 5739 memcpy(dma->vaddr, fw->main.data, fw->main.datasz); 5740 bus_dmamap_sync(sc->sc_dmat, dma->map, 0, fw->main.datasz, 5741 BUS_DMASYNC_PREWRITE); 5742 memcpy((char *)dma->vaddr + IWN4965_FW_DATA_MAXSZ, 5743 fw->main.text, fw->main.textsz); 5744 bus_dmamap_sync(sc->sc_dmat, dma->map, IWN4965_FW_DATA_MAXSZ, 5745 fw->main.textsz, BUS_DMASYNC_PREWRITE); 5746 5747 /* Tell adapter where to find runtime sections. */ 5748 if ((error = iwn_nic_lock(sc)) != 0) 5749 return error; 5750 iwn_prph_write(sc, IWN_BSM_DRAM_DATA_ADDR, dma->paddr >> 4); 5751 iwn_prph_write(sc, IWN_BSM_DRAM_DATA_SIZE, fw->main.datasz); 5752 iwn_prph_write(sc, IWN_BSM_DRAM_TEXT_ADDR, 5753 (dma->paddr + IWN4965_FW_DATA_MAXSZ) >> 4); 5754 iwn_prph_write(sc, IWN_BSM_DRAM_TEXT_SIZE, 5755 IWN_FW_UPDATED | fw->main.textsz); 5756 iwn_nic_unlock(sc); 5757 5758 return 0; 5759 } 5760 5761 static int 5762 iwn5000_load_firmware_section(struct iwn_softc *sc, uint32_t dst, 5763 const uint8_t *section, int size) 5764 { 5765 struct iwn_dma_info *dma = &sc->fw_dma; 5766 int error; 5767 5768 /* Copy firmware section into pre-allocated DMA-safe memory. */ 5769 memcpy(dma->vaddr, section, size); 5770 bus_dmamap_sync(sc->sc_dmat, dma->map, 0, size, BUS_DMASYNC_PREWRITE); 5771 5772 if ((error = iwn_nic_lock(sc)) != 0) 5773 return error; 5774 5775 IWN_WRITE(sc, IWN_FH_TX_CONFIG(IWN_SRVC_DMACHNL), 5776 IWN_FH_TX_CONFIG_DMA_PAUSE); 5777 5778 IWN_WRITE(sc, IWN_FH_SRAM_ADDR(IWN_SRVC_DMACHNL), dst); 5779 IWN_WRITE(sc, IWN_FH_TFBD_CTRL0(IWN_SRVC_DMACHNL), 5780 IWN_LOADDR(dma->paddr)); 5781 IWN_WRITE(sc, IWN_FH_TFBD_CTRL1(IWN_SRVC_DMACHNL), 5782 IWN_HIADDR(dma->paddr) << 28 | size); 5783 IWN_WRITE(sc, IWN_FH_TXBUF_STATUS(IWN_SRVC_DMACHNL), 5784 IWN_FH_TXBUF_STATUS_TBNUM(1) | 5785 IWN_FH_TXBUF_STATUS_TBIDX(1) | 5786 IWN_FH_TXBUF_STATUS_TFBD_VALID); 5787 5788 /* Kick Flow Handler to start DMA transfer. */ 5789 IWN_WRITE(sc, IWN_FH_TX_CONFIG(IWN_SRVC_DMACHNL), 5790 IWN_FH_TX_CONFIG_DMA_ENA | IWN_FH_TX_CONFIG_CIRQ_HOST_ENDTFD); 5791 5792 iwn_nic_unlock(sc); 5793 5794 /* Wait at most five seconds for FH DMA transfer to complete. */ 5795 return tsleep(sc, PCATCH, "iwninit", 5 * hz); 5796 } 5797 5798 static int 5799 iwn5000_load_firmware(struct iwn_softc *sc) 5800 { 5801 struct iwn_fw_part *fw; 5802 int error; 5803 5804 /* Load the initialization firmware on first boot only. */ 5805 fw = (sc->sc_flags & IWN_FLAG_CALIB_DONE) ? 5806 &sc->fw.main : &sc->fw.init; 5807 5808 error = iwn5000_load_firmware_section(sc, IWN_FW_TEXT_BASE, 5809 fw->text, fw->textsz); 5810 if (error != 0) { 5811 aprint_error_dev(sc->sc_dev, 5812 "could not load firmware %s section\n", ".text"); 5813 return error; 5814 } 5815 error = iwn5000_load_firmware_section(sc, IWN_FW_DATA_BASE, 5816 fw->data, fw->datasz); 5817 if (error != 0) { 5818 aprint_error_dev(sc->sc_dev, 5819 "could not load firmware %s section\n", ".data"); 5820 return error; 5821 } 5822 5823 /* Now press "execute". */ 5824 IWN_WRITE(sc, IWN_RESET, 0); 5825 return 0; 5826 } 5827 5828 /* 5829 * Extract text and data sections from a legacy firmware image. 5830 */ 5831 static int 5832 iwn_read_firmware_leg(struct iwn_softc *sc, struct iwn_fw_info *fw) 5833 { 5834 const uint32_t *ptr; 5835 size_t hdrlen = 24; 5836 uint32_t rev; 5837 5838 ptr = (const uint32_t *)fw->data; 5839 rev = le32toh(*ptr++); 5840 5841 sc->ucode_rev = rev; 5842 5843 /* Check firmware API version. */ 5844 if (IWN_FW_API(rev) <= 1) { 5845 aprint_error_dev(sc->sc_dev, 5846 "bad firmware, need API version >=2\n"); 5847 return EINVAL; 5848 } 5849 if (IWN_FW_API(rev) >= 3) { 5850 /* Skip build number (version 2 header). */ 5851 hdrlen += 4; 5852 ptr++; 5853 } 5854 if (fw->size < hdrlen) { 5855 aprint_error_dev(sc->sc_dev, 5856 "firmware too short: %zd bytes\n", fw->size); 5857 return EINVAL; 5858 } 5859 fw->main.textsz = le32toh(*ptr++); 5860 fw->main.datasz = le32toh(*ptr++); 5861 fw->init.textsz = le32toh(*ptr++); 5862 fw->init.datasz = le32toh(*ptr++); 5863 fw->boot.textsz = le32toh(*ptr++); 5864 5865 /* Check that all firmware sections fit. */ 5866 if (fw->size < hdrlen + fw->main.textsz + fw->main.datasz + 5867 fw->init.textsz + fw->init.datasz + fw->boot.textsz) { 5868 aprint_error_dev(sc->sc_dev, 5869 "firmware too short: %zd bytes\n", fw->size); 5870 return EINVAL; 5871 } 5872 5873 /* Get pointers to firmware sections. */ 5874 fw->main.text = (const uint8_t *)ptr; 5875 fw->main.data = fw->main.text + fw->main.textsz; 5876 fw->init.text = fw->main.data + fw->main.datasz; 5877 fw->init.data = fw->init.text + fw->init.textsz; 5878 fw->boot.text = fw->init.data + fw->init.datasz; 5879 return 0; 5880 } 5881 5882 /* 5883 * Extract text and data sections from a TLV firmware image. 5884 */ 5885 static int 5886 iwn_read_firmware_tlv(struct iwn_softc *sc, struct iwn_fw_info *fw, 5887 uint16_t alt) 5888 { 5889 const struct iwn_fw_tlv_hdr *hdr; 5890 const struct iwn_fw_tlv *tlv; 5891 const uint8_t *ptr, *end; 5892 uint64_t altmask; 5893 uint32_t len; 5894 5895 if (fw->size < sizeof (*hdr)) { 5896 aprint_error_dev(sc->sc_dev, 5897 "firmware too short: %zd bytes\n", fw->size); 5898 return EINVAL; 5899 } 5900 hdr = (const struct iwn_fw_tlv_hdr *)fw->data; 5901 if (hdr->signature != htole32(IWN_FW_SIGNATURE)) { 5902 aprint_error_dev(sc->sc_dev, 5903 "bad firmware signature 0x%08x\n", le32toh(hdr->signature)); 5904 return EINVAL; 5905 } 5906 DPRINTF(("FW: \"%.64s\", build 0x%x\n", hdr->descr, 5907 le32toh(hdr->build))); 5908 sc->ucode_rev = le32toh(hdr->rev); 5909 5910 /* 5911 * Select the closest supported alternative that is less than 5912 * or equal to the specified one. 5913 */ 5914 altmask = le64toh(hdr->altmask); 5915 while (alt > 0 && !(altmask & (1ULL << alt))) 5916 alt--; /* Downgrade. */ 5917 DPRINTF(("using alternative %d\n", alt)); 5918 5919 ptr = (const uint8_t *)(hdr + 1); 5920 end = (const uint8_t *)(fw->data + fw->size); 5921 5922 /* Parse type-length-value fields. */ 5923 while (ptr + sizeof (*tlv) <= end) { 5924 tlv = (const struct iwn_fw_tlv *)ptr; 5925 len = le32toh(tlv->len); 5926 5927 ptr += sizeof (*tlv); 5928 if (ptr + len > end) { 5929 aprint_error_dev(sc->sc_dev, 5930 "firmware too short: %zd bytes\n", fw->size); 5931 return EINVAL; 5932 } 5933 /* Skip other alternatives. */ 5934 if (tlv->alt != 0 && tlv->alt != htole16(alt)) 5935 goto next; 5936 5937 switch (le16toh(tlv->type)) { 5938 case IWN_FW_TLV_MAIN_TEXT: 5939 fw->main.text = ptr; 5940 fw->main.textsz = len; 5941 break; 5942 case IWN_FW_TLV_MAIN_DATA: 5943 fw->main.data = ptr; 5944 fw->main.datasz = len; 5945 break; 5946 case IWN_FW_TLV_INIT_TEXT: 5947 fw->init.text = ptr; 5948 fw->init.textsz = len; 5949 break; 5950 case IWN_FW_TLV_INIT_DATA: 5951 fw->init.data = ptr; 5952 fw->init.datasz = len; 5953 break; 5954 case IWN_FW_TLV_BOOT_TEXT: 5955 fw->boot.text = ptr; 5956 fw->boot.textsz = len; 5957 break; 5958 case IWN_FW_TLV_ENH_SENS: 5959 if (len != 0) { 5960 aprint_error_dev(sc->sc_dev, 5961 "TLV type %d has invalid size %u\n", 5962 le16toh(tlv->type), len); 5963 goto next; 5964 } 5965 sc->sc_flags |= IWN_FLAG_ENH_SENS; 5966 break; 5967 case IWN_FW_TLV_PHY_CALIB: 5968 if (len != sizeof(uint32_t)) { 5969 aprint_error_dev(sc->sc_dev, 5970 "TLV type %d has invalid size %u\n", 5971 le16toh(tlv->type), len); 5972 goto next; 5973 } 5974 if (le32toh(*ptr) <= IWN5000_PHY_CALIB_MAX) { 5975 sc->reset_noise_gain = le32toh(*ptr); 5976 sc->noise_gain = le32toh(*ptr) + 1; 5977 } 5978 break; 5979 case IWN_FW_TLV_FLAGS: 5980 if (len < sizeof(uint32_t)) 5981 break; 5982 if (len % sizeof(uint32_t)) 5983 break; 5984 sc->tlv_feature_flags = le32toh(*ptr); 5985 DPRINTF(("feature: 0x%08x\n", sc->tlv_feature_flags)); 5986 break; 5987 default: 5988 DPRINTF(("TLV type %d not handled\n", 5989 le16toh(tlv->type))); 5990 break; 5991 } 5992 next: /* TLV fields are 32-bit aligned. */ 5993 ptr += (len + 3) & ~3; 5994 } 5995 return 0; 5996 } 5997 5998 static int 5999 iwn_read_firmware(struct iwn_softc *sc) 6000 { 6001 struct iwn_fw_info *fw = &sc->fw; 6002 firmware_handle_t fwh; 6003 int error; 6004 6005 /* 6006 * Some PHY calibration commands are firmware-dependent; these 6007 * are the default values that will be overridden if 6008 * necessary. 6009 */ 6010 sc->reset_noise_gain = IWN5000_PHY_CALIB_RESET_NOISE_GAIN; 6011 sc->noise_gain = IWN5000_PHY_CALIB_NOISE_GAIN; 6012 6013 /* Initialize for error returns */ 6014 fw->data = NULL; 6015 fw->size = 0; 6016 6017 /* Open firmware image. */ 6018 if ((error = firmware_open("if_iwn", sc->fwname, &fwh)) != 0) { 6019 aprint_error_dev(sc->sc_dev, 6020 "could not get firmware handle %s\n", sc->fwname); 6021 return error; 6022 } 6023 fw->size = firmware_get_size(fwh); 6024 if (fw->size < sizeof (uint32_t)) { 6025 aprint_error_dev(sc->sc_dev, 6026 "firmware too short: %zd bytes\n", fw->size); 6027 firmware_close(fwh); 6028 return EINVAL; 6029 } 6030 6031 /* Read the firmware. */ 6032 fw->data = firmware_malloc(fw->size); 6033 if (fw->data == NULL) { 6034 aprint_error_dev(sc->sc_dev, 6035 "not enough memory to stock firmware %s\n", sc->fwname); 6036 firmware_close(fwh); 6037 return ENOMEM; 6038 } 6039 error = firmware_read(fwh, 0, fw->data, fw->size); 6040 firmware_close(fwh); 6041 if (error != 0) { 6042 aprint_error_dev(sc->sc_dev, 6043 "could not read firmware %s\n", sc->fwname); 6044 goto out; 6045 } 6046 6047 /* Retrieve text and data sections. */ 6048 if (*(const uint32_t *)fw->data != 0) /* Legacy image. */ 6049 error = iwn_read_firmware_leg(sc, fw); 6050 else 6051 error = iwn_read_firmware_tlv(sc, fw, 1); 6052 if (error != 0) { 6053 aprint_error_dev(sc->sc_dev, 6054 "could not read firmware sections\n"); 6055 goto out; 6056 } 6057 6058 /* Make sure text and data sections fit in hardware memory. */ 6059 if (fw->main.textsz > sc->fw_text_maxsz || 6060 fw->main.datasz > sc->fw_data_maxsz || 6061 fw->init.textsz > sc->fw_text_maxsz || 6062 fw->init.datasz > sc->fw_data_maxsz || 6063 fw->boot.textsz > IWN_FW_BOOT_TEXT_MAXSZ || 6064 (fw->boot.textsz & 3) != 0) { 6065 aprint_error_dev(sc->sc_dev, 6066 "firmware sections too large\n"); 6067 goto out; 6068 } 6069 6070 /* We can proceed with loading the firmware. */ 6071 return 0; 6072 out: 6073 firmware_free(fw->data, fw->size); 6074 fw->data = NULL; 6075 fw->size = 0; 6076 return error ? error : EINVAL; 6077 } 6078 6079 static int 6080 iwn_clock_wait(struct iwn_softc *sc) 6081 { 6082 int ntries; 6083 6084 /* Set "initialization complete" bit. */ 6085 IWN_SETBITS(sc, IWN_GP_CNTRL, IWN_GP_CNTRL_INIT_DONE); 6086 6087 /* Wait for clock stabilization. */ 6088 for (ntries = 0; ntries < 2500; ntries++) { 6089 if (IWN_READ(sc, IWN_GP_CNTRL) & IWN_GP_CNTRL_MAC_CLOCK_READY) 6090 return 0; 6091 DELAY(10); 6092 } 6093 aprint_error_dev(sc->sc_dev, 6094 "timeout waiting for clock stabilization\n"); 6095 return ETIMEDOUT; 6096 } 6097 6098 static int 6099 iwn_apm_init(struct iwn_softc *sc) 6100 { 6101 pcireg_t reg; 6102 int error; 6103 6104 /* Disable L0s exit timer (NMI bug workaround). */ 6105 IWN_SETBITS(sc, IWN_GIO_CHICKEN, IWN_GIO_CHICKEN_DIS_L0S_TIMER); 6106 /* Don't wait for ICH L0s (ICH bug workaround). */ 6107 IWN_SETBITS(sc, IWN_GIO_CHICKEN, IWN_GIO_CHICKEN_L1A_NO_L0S_RX); 6108 6109 /* Set FH wait threshold to max (HW bug under stress workaround). */ 6110 IWN_SETBITS(sc, IWN_DBG_HPET_MEM, 0xffff0000); 6111 6112 /* Enable HAP INTA to move adapter from L1a to L0s. */ 6113 IWN_SETBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_HAP_WAKE_L1A); 6114 6115 /* Retrieve PCIe Active State Power Management (ASPM). */ 6116 reg = pci_conf_read(sc->sc_pct, sc->sc_pcitag, 6117 sc->sc_cap_off + PCIE_LCSR); 6118 /* Workaround for HW instability in PCIe L0->L0s->L1 transition. */ 6119 if (reg & PCIE_LCSR_ASPM_L1) /* L1 Entry enabled. */ 6120 IWN_SETBITS(sc, IWN_GIO, IWN_GIO_L0S_ENA); 6121 else 6122 IWN_CLRBITS(sc, IWN_GIO, IWN_GIO_L0S_ENA); 6123 6124 if (sc->hw_type != IWN_HW_REV_TYPE_4965 && 6125 sc->hw_type <= IWN_HW_REV_TYPE_1000) 6126 IWN_SETBITS(sc, IWN_ANA_PLL, IWN_ANA_PLL_INIT); 6127 6128 /* Wait for clock stabilization before accessing prph. */ 6129 if ((error = iwn_clock_wait(sc)) != 0) 6130 return error; 6131 6132 if ((error = iwn_nic_lock(sc)) != 0) 6133 return error; 6134 if (sc->hw_type == IWN_HW_REV_TYPE_4965) { 6135 /* Enable DMA and BSM (Bootstrap State Machine). */ 6136 iwn_prph_write(sc, IWN_APMG_CLK_EN, 6137 IWN_APMG_CLK_CTRL_DMA_CLK_RQT | 6138 IWN_APMG_CLK_CTRL_BSM_CLK_RQT); 6139 } else { 6140 /* Enable DMA. */ 6141 iwn_prph_write(sc, IWN_APMG_CLK_EN, 6142 IWN_APMG_CLK_CTRL_DMA_CLK_RQT); 6143 } 6144 DELAY(20); 6145 /* Disable L1-Active. */ 6146 iwn_prph_setbits(sc, IWN_APMG_PCI_STT, IWN_APMG_PCI_STT_L1A_DIS); 6147 iwn_nic_unlock(sc); 6148 6149 return 0; 6150 } 6151 6152 static void 6153 iwn_apm_stop_master(struct iwn_softc *sc) 6154 { 6155 int ntries; 6156 6157 /* Stop busmaster DMA activity. */ 6158 IWN_SETBITS(sc, IWN_RESET, IWN_RESET_STOP_MASTER); 6159 for (ntries = 0; ntries < 100; ntries++) { 6160 if (IWN_READ(sc, IWN_RESET) & IWN_RESET_MASTER_DISABLED) 6161 return; 6162 DELAY(10); 6163 } 6164 aprint_error_dev(sc->sc_dev, "timeout waiting for master\n"); 6165 } 6166 6167 static void 6168 iwn_apm_stop(struct iwn_softc *sc) 6169 { 6170 iwn_apm_stop_master(sc); 6171 6172 /* Reset the entire device. */ 6173 IWN_SETBITS(sc, IWN_RESET, IWN_RESET_SW); 6174 DELAY(10); 6175 /* Clear "initialization complete" bit. */ 6176 IWN_CLRBITS(sc, IWN_GP_CNTRL, IWN_GP_CNTRL_INIT_DONE); 6177 } 6178 6179 static int 6180 iwn4965_nic_config(struct iwn_softc *sc) 6181 { 6182 if (IWN_RFCFG_TYPE(sc->rfcfg) == 1) { 6183 /* 6184 * I don't believe this to be correct but this is what the 6185 * vendor driver is doing. Probably the bits should not be 6186 * shifted in IWN_RFCFG_*. 6187 */ 6188 IWN_SETBITS(sc, IWN_HW_IF_CONFIG, 6189 IWN_RFCFG_TYPE(sc->rfcfg) | 6190 IWN_RFCFG_STEP(sc->rfcfg) | 6191 IWN_RFCFG_DASH(sc->rfcfg)); 6192 } 6193 IWN_SETBITS(sc, IWN_HW_IF_CONFIG, 6194 IWN_HW_IF_CONFIG_RADIO_SI | IWN_HW_IF_CONFIG_MAC_SI); 6195 return 0; 6196 } 6197 6198 static int 6199 iwn5000_nic_config(struct iwn_softc *sc) 6200 { 6201 uint32_t tmp; 6202 int error; 6203 6204 if (IWN_RFCFG_TYPE(sc->rfcfg) < 3) { 6205 IWN_SETBITS(sc, IWN_HW_IF_CONFIG, 6206 IWN_RFCFG_TYPE(sc->rfcfg) | 6207 IWN_RFCFG_STEP(sc->rfcfg) | 6208 IWN_RFCFG_DASH(sc->rfcfg)); 6209 } 6210 IWN_SETBITS(sc, IWN_HW_IF_CONFIG, 6211 IWN_HW_IF_CONFIG_RADIO_SI | IWN_HW_IF_CONFIG_MAC_SI); 6212 6213 if ((error = iwn_nic_lock(sc)) != 0) 6214 return error; 6215 iwn_prph_setbits(sc, IWN_APMG_PS, IWN_APMG_PS_EARLY_PWROFF_DIS); 6216 6217 if (sc->hw_type == IWN_HW_REV_TYPE_1000) { 6218 /* 6219 * Select first Switching Voltage Regulator (1.32V) to 6220 * solve a stability issue related to noisy DC2DC line 6221 * in the silicon of 1000 Series. 6222 */ 6223 tmp = iwn_prph_read(sc, IWN_APMG_DIGITAL_SVR); 6224 tmp &= ~IWN_APMG_DIGITAL_SVR_VOLTAGE_MASK; 6225 tmp |= IWN_APMG_DIGITAL_SVR_VOLTAGE_1_32; 6226 iwn_prph_write(sc, IWN_APMG_DIGITAL_SVR, tmp); 6227 } 6228 iwn_nic_unlock(sc); 6229 6230 if (sc->sc_flags & IWN_FLAG_INTERNAL_PA) { 6231 /* Use internal power amplifier only. */ 6232 IWN_WRITE(sc, IWN_GP_DRIVER, IWN_GP_DRIVER_RADIO_2X2_IPA); 6233 } 6234 if ((sc->hw_type == IWN_HW_REV_TYPE_6050 || 6235 sc->hw_type == IWN_HW_REV_TYPE_6005) && sc->calib_ver >= 6) { 6236 /* Indicate that ROM calibration version is >=6. */ 6237 IWN_SETBITS(sc, IWN_GP_DRIVER, IWN_GP_DRIVER_CALIB_VER6); 6238 } 6239 if (sc->hw_type == IWN_HW_REV_TYPE_6005) 6240 IWN_SETBITS(sc, IWN_GP_DRIVER, IWN_GP_DRIVER_6050_1X2); 6241 if (sc->hw_type == IWN_HW_REV_TYPE_2030 || 6242 sc->hw_type == IWN_HW_REV_TYPE_2000 || 6243 sc->hw_type == IWN_HW_REV_TYPE_135 || 6244 sc->hw_type == IWN_HW_REV_TYPE_105) 6245 IWN_SETBITS(sc, IWN_GP_DRIVER, IWN_GP_DRIVER_RADIO_IQ_INVERT); 6246 return 0; 6247 } 6248 6249 /* 6250 * Take NIC ownership over Intel Active Management Technology (AMT). 6251 */ 6252 static int 6253 iwn_hw_prepare(struct iwn_softc *sc) 6254 { 6255 int ntries; 6256 6257 /* Check if hardware is ready. */ 6258 IWN_SETBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_NIC_READY); 6259 for (ntries = 0; ntries < 5; ntries++) { 6260 if (IWN_READ(sc, IWN_HW_IF_CONFIG) & 6261 IWN_HW_IF_CONFIG_NIC_READY) 6262 return 0; 6263 DELAY(10); 6264 } 6265 6266 /* Hardware not ready, force into ready state. */ 6267 IWN_SETBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_PREPARE); 6268 for (ntries = 0; ntries < 15000; ntries++) { 6269 if (!(IWN_READ(sc, IWN_HW_IF_CONFIG) & 6270 IWN_HW_IF_CONFIG_PREPARE_DONE)) 6271 break; 6272 DELAY(10); 6273 } 6274 if (ntries == 15000) 6275 return ETIMEDOUT; 6276 6277 /* Hardware should be ready now. */ 6278 IWN_SETBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_NIC_READY); 6279 for (ntries = 0; ntries < 5; ntries++) { 6280 if (IWN_READ(sc, IWN_HW_IF_CONFIG) & 6281 IWN_HW_IF_CONFIG_NIC_READY) 6282 return 0; 6283 DELAY(10); 6284 } 6285 return ETIMEDOUT; 6286 } 6287 6288 static int 6289 iwn_hw_init(struct iwn_softc *sc) 6290 { 6291 struct iwn_ops *ops = &sc->ops; 6292 int error, chnl, qid; 6293 6294 /* Clear pending interrupts. */ 6295 IWN_WRITE(sc, IWN_INT, 0xffffffff); 6296 6297 if ((error = iwn_apm_init(sc)) != 0) { 6298 aprint_error_dev(sc->sc_dev, 6299 "could not power ON adapter\n"); 6300 return error; 6301 } 6302 6303 /* Select VMAIN power source. */ 6304 if ((error = iwn_nic_lock(sc)) != 0) 6305 return error; 6306 iwn_prph_clrbits(sc, IWN_APMG_PS, IWN_APMG_PS_PWR_SRC_MASK); 6307 iwn_nic_unlock(sc); 6308 6309 /* Perform adapter-specific initialization. */ 6310 if ((error = ops->nic_config(sc)) != 0) 6311 return error; 6312 6313 /* Initialize RX ring. */ 6314 if ((error = iwn_nic_lock(sc)) != 0) 6315 return error; 6316 IWN_WRITE(sc, IWN_FH_RX_CONFIG, 0); 6317 IWN_WRITE(sc, IWN_FH_RX_WPTR, 0); 6318 /* Set physical address of RX ring (256-byte aligned). */ 6319 IWN_WRITE(sc, IWN_FH_RX_BASE, sc->rxq.desc_dma.paddr >> 8); 6320 /* Set physical address of RX status (16-byte aligned). */ 6321 IWN_WRITE(sc, IWN_FH_STATUS_WPTR, sc->rxq.stat_dma.paddr >> 4); 6322 /* Enable RX. */ 6323 IWN_WRITE(sc, IWN_FH_RX_CONFIG, 6324 IWN_FH_RX_CONFIG_ENA | 6325 IWN_FH_RX_CONFIG_IGN_RXF_EMPTY | /* HW bug workaround */ 6326 IWN_FH_RX_CONFIG_IRQ_DST_HOST | 6327 IWN_FH_RX_CONFIG_SINGLE_FRAME | 6328 IWN_FH_RX_CONFIG_RB_TIMEOUT(0) | 6329 IWN_FH_RX_CONFIG_NRBD(IWN_RX_RING_COUNT_LOG)); 6330 iwn_nic_unlock(sc); 6331 IWN_WRITE(sc, IWN_FH_RX_WPTR, (IWN_RX_RING_COUNT - 1) & ~7); 6332 6333 if ((error = iwn_nic_lock(sc)) != 0) 6334 return error; 6335 6336 /* Initialize TX scheduler. */ 6337 iwn_prph_write(sc, sc->sched_txfact_addr, 0); 6338 6339 /* Set physical address of "keep warm" page (16-byte aligned). */ 6340 IWN_WRITE(sc, IWN_FH_KW_ADDR, sc->kw_dma.paddr >> 4); 6341 6342 /* Initialize TX rings. */ 6343 for (qid = 0; qid < sc->ntxqs; qid++) { 6344 struct iwn_tx_ring *txq = &sc->txq[qid]; 6345 6346 /* Set physical address of TX ring (256-byte aligned). */ 6347 IWN_WRITE(sc, IWN_FH_CBBC_QUEUE(qid), 6348 txq->desc_dma.paddr >> 8); 6349 } 6350 iwn_nic_unlock(sc); 6351 6352 /* Enable DMA channels. */ 6353 for (chnl = 0; chnl < sc->ndmachnls; chnl++) { 6354 IWN_WRITE(sc, IWN_FH_TX_CONFIG(chnl), 6355 IWN_FH_TX_CONFIG_DMA_ENA | 6356 IWN_FH_TX_CONFIG_DMA_CREDIT_ENA); 6357 } 6358 6359 /* Clear "radio off" and "commands blocked" bits. */ 6360 IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_RFKILL); 6361 IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_CMD_BLOCKED); 6362 6363 /* Clear pending interrupts. */ 6364 IWN_WRITE(sc, IWN_INT, 0xffffffff); 6365 /* Enable interrupt coalescing. */ 6366 IWN_WRITE(sc, IWN_INT_COALESCING, 512 / 8); 6367 /* Enable interrupts. */ 6368 IWN_WRITE(sc, IWN_INT_MASK, sc->int_mask); 6369 6370 /* _Really_ make sure "radio off" bit is cleared! */ 6371 IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_RFKILL); 6372 IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_RFKILL); 6373 6374 /* Enable shadow registers. */ 6375 if (sc->hw_type >= IWN_HW_REV_TYPE_6000) 6376 IWN_SETBITS(sc, IWN_SHADOW_REG_CTRL, 0x800fffff); 6377 6378 if ((error = ops->load_firmware(sc)) != 0) { 6379 aprint_error_dev(sc->sc_dev, 6380 "could not load firmware\n"); 6381 return error; 6382 } 6383 /* Wait at most one second for firmware alive notification. */ 6384 if ((error = tsleep(sc, PCATCH, "iwninit", hz)) != 0) { 6385 aprint_error_dev(sc->sc_dev, 6386 "timeout waiting for adapter to initialize\n"); 6387 return error; 6388 } 6389 /* Do post-firmware initialization. */ 6390 return ops->post_alive(sc); 6391 } 6392 6393 static void 6394 iwn_hw_stop(struct iwn_softc *sc) 6395 { 6396 int chnl, qid, ntries; 6397 6398 IWN_WRITE(sc, IWN_RESET, IWN_RESET_NEVO); 6399 6400 /* Disable interrupts. */ 6401 IWN_WRITE(sc, IWN_INT_MASK, 0); 6402 IWN_WRITE(sc, IWN_INT, 0xffffffff); 6403 IWN_WRITE(sc, IWN_FH_INT, 0xffffffff); 6404 sc->sc_flags &= ~IWN_FLAG_USE_ICT; 6405 6406 /* Make sure we no longer hold the NIC lock. */ 6407 iwn_nic_unlock(sc); 6408 6409 /* Stop TX scheduler. */ 6410 iwn_prph_write(sc, sc->sched_txfact_addr, 0); 6411 6412 /* Stop all DMA channels. */ 6413 if (iwn_nic_lock(sc) == 0) { 6414 for (chnl = 0; chnl < sc->ndmachnls; chnl++) { 6415 IWN_WRITE(sc, IWN_FH_TX_CONFIG(chnl), 0); 6416 for (ntries = 0; ntries < 200; ntries++) { 6417 if (IWN_READ(sc, IWN_FH_TX_STATUS) & 6418 IWN_FH_TX_STATUS_IDLE(chnl)) 6419 break; 6420 DELAY(10); 6421 } 6422 } 6423 iwn_nic_unlock(sc); 6424 } 6425 6426 /* Stop RX ring. */ 6427 iwn_reset_rx_ring(sc, &sc->rxq); 6428 6429 /* Reset all TX rings. */ 6430 for (qid = 0; qid < sc->ntxqs; qid++) 6431 iwn_reset_tx_ring(sc, &sc->txq[qid]); 6432 6433 if (iwn_nic_lock(sc) == 0) { 6434 iwn_prph_write(sc, IWN_APMG_CLK_DIS, 6435 IWN_APMG_CLK_CTRL_DMA_CLK_RQT); 6436 iwn_nic_unlock(sc); 6437 } 6438 DELAY(5); 6439 /* Power OFF adapter. */ 6440 iwn_apm_stop(sc); 6441 } 6442 6443 static int 6444 iwn_init(struct ifnet *ifp) 6445 { 6446 struct iwn_softc *sc = ifp->if_softc; 6447 struct ieee80211com *ic = &sc->sc_ic; 6448 int error; 6449 6450 mutex_enter(&sc->sc_mtx); 6451 if (sc->sc_flags & IWN_FLAG_HW_INITED) 6452 goto out; 6453 if ((error = iwn_hw_prepare(sc)) != 0) { 6454 aprint_error_dev(sc->sc_dev, 6455 "hardware not ready\n"); 6456 goto fail; 6457 } 6458 6459 /* Check that the radio is not disabled by hardware switch. */ 6460 if (!(IWN_READ(sc, IWN_GP_CNTRL) & IWN_GP_CNTRL_RFKILL)) { 6461 aprint_error_dev(sc->sc_dev, 6462 "radio is disabled by hardware switch\n"); 6463 error = EPERM; /* :-) */ 6464 goto fail; 6465 } 6466 6467 /* Read firmware images from the filesystem. */ 6468 if ((error = iwn_read_firmware(sc)) != 0) { 6469 aprint_error_dev(sc->sc_dev, 6470 "could not read firmware\n"); 6471 goto fail; 6472 } 6473 6474 /* Initialize interrupt mask to default value. */ 6475 sc->int_mask = IWN_INT_MASK_DEF; 6476 sc->sc_flags &= ~IWN_FLAG_USE_ICT; 6477 6478 /* Initialize hardware and upload firmware. */ 6479 KASSERT(sc->fw.data != NULL && sc->fw.size > 0); 6480 error = iwn_hw_init(sc); 6481 firmware_free(sc->fw.data, sc->fw.size); 6482 sc->fw.data = NULL; 6483 sc->fw.size = 0; 6484 if (error != 0) { 6485 aprint_error_dev(sc->sc_dev, 6486 "could not initialize hardware\n"); 6487 goto fail; 6488 } 6489 6490 /* Configure adapter now that it is ready. */ 6491 if ((error = iwn_config(sc)) != 0) { 6492 aprint_error_dev(sc->sc_dev, 6493 "could not configure device\n"); 6494 goto fail; 6495 } 6496 6497 sc->sc_beacon_wait = 0; 6498 6499 ifp->if_flags &= ~IFF_OACTIVE; 6500 ifp->if_flags |= IFF_RUNNING; 6501 6502 if (ic->ic_opmode != IEEE80211_M_MONITOR) 6503 ieee80211_begin_scan(ic, 0); 6504 else 6505 ieee80211_new_state(ic, IEEE80211_S_RUN, -1); 6506 6507 sc->sc_flags |= IWN_FLAG_HW_INITED; 6508 out: 6509 mutex_exit(&sc->sc_mtx); 6510 return 0; 6511 6512 fail: mutex_exit(&sc->sc_mtx); 6513 iwn_stop(ifp, 1); 6514 return error; 6515 } 6516 6517 static void 6518 iwn_stop(struct ifnet *ifp, int disable) 6519 { 6520 struct iwn_softc *sc = ifp->if_softc; 6521 struct ieee80211com *ic = &sc->sc_ic; 6522 6523 if (!disable) 6524 mutex_enter(&sc->sc_mtx); 6525 sc->sc_flags &= ~IWN_FLAG_HW_INITED; 6526 ifp->if_timer = sc->sc_tx_timer = 0; 6527 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE); 6528 6529 ieee80211_new_state(ic, IEEE80211_S_INIT, -1); 6530 6531 /* Power OFF hardware. */ 6532 iwn_hw_stop(sc); 6533 6534 if (!disable) 6535 mutex_exit(&sc->sc_mtx); 6536 } 6537 6538 /* 6539 * XXX MCLGETI alternative 6540 * 6541 * With IWN_USE_RBUF defined it uses the rbuf cache for receive buffers 6542 * as long as there are available free buffers then it uses MEXTMALLOC., 6543 * Without IWN_USE_RBUF defined it uses MEXTMALLOC exclusively. 6544 * The MCLGET4K code is used for testing an alternative mbuf cache. 6545 */ 6546 6547 static struct mbuf * 6548 MCLGETIalt(struct iwn_softc *sc, int how, 6549 struct ifnet *ifp __unused, u_int size) 6550 { 6551 struct mbuf *m; 6552 #ifdef IWN_USE_RBUF 6553 struct iwn_rbuf *rbuf; 6554 #endif 6555 6556 MGETHDR(m, how, MT_DATA); 6557 if (m == NULL) 6558 return NULL; 6559 6560 #ifdef IWN_USE_RBUF 6561 if (sc->rxq.nb_free_entries > 0 && 6562 (rbuf = iwn_alloc_rbuf(sc)) != NULL) { 6563 /* Attach buffer to mbuf header. */ 6564 MEXTADD(m, rbuf->vaddr, size, 0, iwn_free_rbuf, rbuf); 6565 m->m_flags |= M_EXT_RW; 6566 } 6567 else { 6568 MEXTMALLOC(m, size, how); 6569 if ((m->m_flags & M_EXT) == 0) { 6570 m_freem(m); 6571 return NULL; 6572 } 6573 } 6574 6575 #else 6576 #ifdef MCLGET4K 6577 if (size == 4096) 6578 MCLGET4K(m, how); 6579 else 6580 panic("size must be 4k"); 6581 #else 6582 MEXTMALLOC(m, size, how); 6583 #endif 6584 if ((m->m_flags & M_EXT) == 0) { 6585 m_freem(m); 6586 return NULL; 6587 } 6588 #endif 6589 6590 return m; 6591 } 6592 6593 #ifdef IWN_USE_RBUF 6594 static struct iwn_rbuf * 6595 iwn_alloc_rbuf(struct iwn_softc *sc) 6596 { 6597 struct iwn_rbuf *rbuf; 6598 mutex_enter(&sc->rxq.freelist_mtx); 6599 6600 rbuf = SLIST_FIRST(&sc->rxq.freelist); 6601 if (rbuf != NULL) { 6602 SLIST_REMOVE_HEAD(&sc->rxq.freelist, next); 6603 sc->rxq.nb_free_entries --; 6604 } 6605 mutex_exit(&sc->rxq.freelist_mtx); 6606 return rbuf; 6607 } 6608 6609 /* 6610 * This is called automatically by the network stack when the mbuf to which 6611 * our RX buffer is attached is freed. 6612 */ 6613 static void 6614 iwn_free_rbuf(struct mbuf* m, void *buf, size_t size, void *arg) 6615 { 6616 struct iwn_rbuf *rbuf = arg; 6617 struct iwn_softc *sc = rbuf->sc; 6618 6619 /* Put the RX buffer back in the free list. */ 6620 mutex_enter(&sc->rxq.freelist_mtx); 6621 SLIST_INSERT_HEAD(&sc->rxq.freelist, rbuf, next); 6622 mutex_exit(&sc->rxq.freelist_mtx); 6623 6624 sc->rxq.nb_free_entries ++; 6625 if (__predict_true(m != NULL)) 6626 pool_cache_put(mb_cache, m); 6627 } 6628 6629 static int 6630 iwn_alloc_rpool(struct iwn_softc *sc) 6631 { 6632 struct iwn_rx_ring *ring = &sc->rxq; 6633 struct iwn_rbuf *rbuf; 6634 int i, error; 6635 6636 mutex_init(&ring->freelist_mtx, MUTEX_DEFAULT, IPL_NET); 6637 6638 /* Allocate a big chunk of DMA'able memory... */ 6639 error = iwn_dma_contig_alloc(sc->sc_dmat, &ring->buf_dma, NULL, 6640 IWN_RBUF_COUNT * IWN_RBUF_SIZE, PAGE_SIZE); 6641 if (error != 0) { 6642 aprint_error_dev(sc->sc_dev, 6643 "could not allocate RX buffers DMA memory\n"); 6644 return error; 6645 } 6646 /* ...and split it into chunks of IWN_RBUF_SIZE bytes. */ 6647 SLIST_INIT(&ring->freelist); 6648 for (i = 0; i < IWN_RBUF_COUNT; i++) { 6649 rbuf = &ring->rbuf[i]; 6650 6651 rbuf->sc = sc; /* Backpointer for callbacks. */ 6652 rbuf->vaddr = (void *)((vaddr_t)ring->buf_dma.vaddr + i * IWN_RBUF_SIZE); 6653 rbuf->paddr = ring->buf_dma.paddr + i * IWN_RBUF_SIZE; 6654 6655 SLIST_INSERT_HEAD(&ring->freelist, rbuf, next); 6656 } 6657 ring->nb_free_entries = IWN_RBUF_COUNT; 6658 return 0; 6659 } 6660 6661 static void 6662 iwn_free_rpool(struct iwn_softc *sc) 6663 { 6664 iwn_dma_contig_free(&sc->rxq.buf_dma); 6665 } 6666 #endif 6667 6668 /* 6669 * XXX: Hack to set the current channel to the value advertised in beacons or 6670 * probe responses. Only used during AP detection. 6671 * XXX: Duplicated from if_iwi.c 6672 */ 6673 static void 6674 iwn_fix_channel(struct ieee80211com *ic, struct mbuf *m, 6675 struct iwn_rx_stat *stat) 6676 { 6677 struct iwn_softc *sc = ic->ic_ifp->if_softc; 6678 struct ieee80211_frame *wh; 6679 uint8_t subtype; 6680 uint8_t *frm, *efrm; 6681 6682 wh = mtod(m, struct ieee80211_frame *); 6683 6684 if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) != IEEE80211_FC0_TYPE_MGT) 6685 return; 6686 6687 subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK; 6688 6689 if (subtype != IEEE80211_FC0_SUBTYPE_BEACON && 6690 subtype != IEEE80211_FC0_SUBTYPE_PROBE_RESP) 6691 return; 6692 6693 if (sc->sc_flags & IWN_FLAG_SCANNING_5GHZ) { 6694 int chan = le16toh(stat->chan); 6695 if (chan < __arraycount(ic->ic_channels)) 6696 ic->ic_curchan = &ic->ic_channels[chan]; 6697 return; 6698 } 6699 6700 frm = (uint8_t *)(wh + 1); 6701 efrm = mtod(m, uint8_t *) + m->m_len; 6702 6703 frm += 12; /* skip tstamp, bintval and capinfo fields */ 6704 while (frm + 2 < efrm) { 6705 if (*frm == IEEE80211_ELEMID_DSPARMS) { 6706 #if IEEE80211_CHAN_MAX < 255 6707 if (frm[2] <= IEEE80211_CHAN_MAX) 6708 #endif 6709 ic->ic_curchan = &ic->ic_channels[frm[2]]; 6710 } 6711 6712 frm += frm[1] + 2; 6713 } 6714 } 6715 6716 #ifdef notyetMODULE 6717 6718 MODULE(MODULE_CLASS_DRIVER, if_iwn, "pci"); 6719 6720 #ifdef _MODULE 6721 #include "ioconf.c" 6722 #endif 6723 6724 static int 6725 if_iwn_modcmd(modcmd_t cmd, void *data) 6726 { 6727 int error = 0; 6728 6729 switch (cmd) { 6730 case MODULE_CMD_INIT: 6731 #ifdef _MODULE 6732 error = config_init_component(cfdriver_ioconf_if_iwn, 6733 cfattach_ioconf_if_iwn, cfdata_ioconf_if_iwn); 6734 #endif 6735 return error; 6736 case MODULE_CMD_FINI: 6737 #ifdef _MODULE 6738 error = config_fini_component(cfdriver_ioconf_if_iwn, 6739 cfattach_ioconf_if_iwn, cfdata_ioconf_if_iwn); 6740 #endif 6741 return error; 6742 case MODULE_CMD_AUTOUNLOAD: 6743 #ifdef _MODULE 6744 /* XXX This is not optional! */ 6745 #endif 6746 return error; 6747 default: 6748 return ENOTTY; 6749 } 6750 } 6751 #endif 6752