xref: /netbsd-src/sys/dev/ic/i82596.c (revision 481d3881954fd794ca5f2d880b68c53a5db8620e)
1 /* $NetBSD: i82596.c,v 1.48 2024/07/05 04:31:51 rin Exp $ */
2 
3 /*
4  * Copyright (c) 2003 Jochen Kunz.
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  * 3. The name of Jochen Kunz may not be used to endorse or promote
16  *    products derived from this software without specific prior
17  *    written permission.
18  *
19  * THIS SOFTWARE IS PROVIDED BY JOCHEN KUNZ
20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL JOCHEN KUNZ
23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29  * POSSIBILITY OF SUCH DAMAGE.
30  */
31 
32 /*
33  * Driver for the Intel i82596CA and i82596DX/SX 10MBit/s Ethernet chips.
34  *
35  * It operates the i82596 in 32-Bit Linear Mode, opposed to the old i82586
36  * ie(4) driver (src/sys/dev/ic/i82586.c), that degrades the i82596 to
37  * i82586 compatibility mode.
38  *
39  * Documentation about these chips can be found at
40  *
41  *	http://developer.intel.com/design/network/datashts/290218.htm
42  *	http://developer.intel.com/design/network/datashts/290219.htm
43  */
44 
45 #include <sys/cdefs.h>
46 __KERNEL_RCSID(0, "$NetBSD: i82596.c,v 1.48 2024/07/05 04:31:51 rin Exp $");
47 
48 /* autoconfig and device stuff */
49 #include <sys/param.h>
50 #include <sys/device.h>
51 #include <sys/conf.h>
52 #include "locators.h"
53 #include "ioconf.h"
54 
55 /* bus_space / bus_dma etc. */
56 #include <sys/bus.h>
57 #include <sys/intr.h>
58 
59 /* general system data and functions */
60 #include <sys/systm.h>
61 #include <sys/ioctl.h>
62 
63 /* tsleep / sleep / wakeup */
64 #include <sys/proc.h>
65 /* hz for above */
66 #include <sys/kernel.h>
67 
68 /* network stuff */
69 #include <net/if.h>
70 #include <net/if_dl.h>
71 #include <net/if_media.h>
72 #include <net/if_ether.h>
73 #include <net/bpf.h>
74 #include <sys/socket.h>
75 #include <sys/mbuf.h>
76 
77 #include <dev/ic/i82596reg.h>
78 #include <dev/ic/i82596var.h>
79 
80 /* Supported chip variants */
81 const char *i82596_typenames[] = { "unknown", "DX/SX", "CA" };
82 
83 /* media change and status callback */
84 static int iee_mediachange(struct ifnet *);
85 static void iee_mediastatus(struct ifnet *, struct ifmediareq *);
86 
87 /* interface routines to upper protocols */
88 static void iee_start(struct ifnet *);			/* initiate output */
89 static int iee_ioctl(struct ifnet *, u_long, void *);	/* ioctl routine */
90 static int iee_init(struct ifnet *);			/* init routine */
91 static void iee_stop(struct ifnet *, int);		/* stop routine */
92 static void iee_watchdog(struct ifnet *);		/* timer routine */
93 
94 /* internal helper functions */
95 static void iee_cb_setup(struct iee_softc *, uint32_t);
96 
97 /*
98  * Things a MD frontend has to provide:
99  *
100  * The functions via function pointers in the softc:
101  *	int (*sc_iee_cmd)(struct iee_softc *sc, uint32_t cmd);
102  *	int (*sc_iee_reset)(struct iee_softc *sc);
103  *	void (*sc_mediastatus)(struct ifnet *, struct ifmediareq *);
104  *	int (*sc_mediachange)(struct ifnet *);
105  *
106  * sc_iee_cmd(): send a command to the i82596 by writing the cmd parameter
107  *	to the SCP cmd word and issuing a Channel Attention.
108  * sc_iee_reset(): initiate a reset, supply the address of the SCP to the
109  *	chip, wait for the chip to initialize and ACK interrupts that
110  *	this may have caused by calling (sc->sc_iee_cmd)(sc, IEE_SCB_ACK);
111  * This functions must carefully bus_dmamap_sync() all data they have touched!
112  *
113  * sc_mediastatus() and sc_mediachange() are just MD hooks to the according
114  * MI functions. The MD frontend may set this pointers to NULL when they
115  * are not needed.
116  *
117  * sc->sc_type has to be set to I82596_UNKNOWN or I82596_DX or I82596_CA.
118  * This is for printing out the correct chip type at attach time only. The
119  * MI backend doesn't distinguish different chip types when programming
120  * the chip.
121  *
122  * IEE_NEED_SWAP in sc->sc_flags has to be cleared on little endian hardware
123  * and set on big endian hardware, when endianness conversion is not done
124  * by the bus attachment but done by i82596 chip itself.
125  * Usually you need to set IEE_NEED_SWAP on big endian machines
126  * where the hardware (the LE/~BE pin) is configured as BE mode.
127  *
128  * If the chip is configured as BE mode, all 8 bit (byte) and 16 bit (word)
129  * entities can be written in big endian. But Rev A chip doesn't support
130  * 32 bit (dword) entities with big endian byte ordering, so we have to
131  * treat all 32 bit (dword) entities as two 16 bit big endian entities.
132  * Rev B and C chips support big endian byte ordering for 32 bit entities,
133  * and this new feature is enabled by IEE_SYSBUS_BE in the sysbus byte.
134  *
135  * With the IEE_SYSBUS_BE feature, all 32 bit address pointers are
136  * treated as true 32 bit entities but the SCB absolute address and
137  * statistical counters are still treated as two 16 bit big endian entities,
138  * so we have to always swap high and low words for these entities.
139  * IEE_SWAP32() should be used for the SCB address and statistical counters,
140  * and IEE_SWAPA32() should be used for other 32 bit pointers in the shmem.
141  *
142  * IEE_REV_A flag must be set in sc->sc_flags if the IEE_SYSBUS_BE feature
143  * is disabled even on big endian machines for the old Rev A chip in backend.
144  *
145  * sc->sc_cl_align must be set to 1 or to the cache line size. When set to
146  * 1 no special alignment of DMA descriptors is done. If sc->sc_cl_align != 1
147  * it forces alignment of the data structures in the shared memory to a multiple
148  * of sc->sc_cl_align. This is needed on some hppa machines that have non DMA
149  * I/O coherent caches and are unable to map the shared memory uncachable.
150  * (At least pre PA7100LC CPUs are unable to map memory uncachable.)
151  *
152  * The MD frontend also has to set sc->sc_cl_align and sc->sc_sysbus
153  * to allocate and setup shared DMA memory in MI iee_attach().
154  * All communication with the chip is done via this shared memory.
155  * This memory is mapped with BUS_DMA_COHERENT so it will be uncached
156  * if possible for archs with non DMA I/O coherent caches.
157  * The base of the memory needs to be aligned to an even address
158  * if sc->sc_cl_align == 1 and aligned to a cache line if sc->sc_cl_align != 1.
159  * Each descriptor offsets are calculated in iee_attach() to handle this.
160  *
161  * An interrupt with iee_intr() as handler must be established.
162  *
163  * Call void iee_attach(struct iee_softc *sc, uint8_t *ether_address,
164  * int *media, int nmedia, int defmedia); when everything is set up. First
165  * parameter is a pointer to the MI softc, ether_address is an array that
166  * contains the ethernet address. media is an array of the media types
167  * provided by the hardware. The members of this array are supplied to
168  * ifmedia_add() in sequence. nmedia is the count of elements in media.
169  * defmedia is the default media that is set via ifmedia_set().
170  * nmedia and defmedia are ignored when media == NULL.
171  *
172  * The MD backend may call iee_detach() to detach the device.
173  *
174  * See sys/arch/hppa/gsc/if_iee_gsc.c for an example.
175  */
176 
177 
178 /*
179  * How frame reception is done:
180  * Each Receive Frame Descriptor has one associated Receive Buffer Descriptor.
181  * Each RBD points to the data area of an mbuf cluster. The RFDs are linked
182  * together in a circular list. sc->sc_rx_done is the count of RFDs in the
183  * list already processed / the number of the RFD that has to be checked for
184  * a new frame first at the next RX interrupt. Upon successful reception of
185  * a frame the mbuf cluster is handled to upper protocol layers, a new mbuf
186  * cluster is allocated and the RFD / RBD are reinitialized accordingly.
187  *
188  * When a RFD list overrun occurred the whole RFD and RBD lists are
189  * reinitialized and frame reception is started again.
190  */
191 int
iee_intr(void * intarg)192 iee_intr(void *intarg)
193 {
194 	struct iee_softc *sc = intarg;
195 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
196 	struct iee_rfd *rfd;
197 	struct iee_rbd *rbd;
198 	bus_dmamap_t rx_map;
199 	struct mbuf *rx_mbuf;
200 	struct mbuf *new_mbuf;
201 	int scb_status;
202 	int scb_cmd;
203 	int n, col;
204 	uint16_t status, count, cmd;
205 
206 	if ((ifp->if_flags & IFF_RUNNING) == 0) {
207 		(sc->sc_iee_cmd)(sc, IEE_SCB_ACK);
208 		return 1;
209 	}
210 	IEE_SCBSYNC(sc, BUS_DMASYNC_POSTREAD);
211 	scb_status = SC_SCB(sc)->scb_status;
212 	scb_cmd = SC_SCB(sc)->scb_cmd;
213 	for (;;) {
214 		rfd = SC_RFD(sc, sc->sc_rx_done);
215 		IEE_RFDSYNC(sc, sc->sc_rx_done,
216 		    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
217 		status = rfd->rfd_status;
218 		if ((status & IEE_RFD_C) == 0) {
219 			IEE_RFDSYNC(sc, sc->sc_rx_done, BUS_DMASYNC_PREREAD);
220 			break;
221 		}
222 		rfd->rfd_status = 0;
223 		IEE_RFDSYNC(sc, sc->sc_rx_done,
224 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
225 
226 		/* At least one packet was received. */
227 		rx_map = sc->sc_rx_map[sc->sc_rx_done];
228 		rx_mbuf = sc->sc_rx_mbuf[sc->sc_rx_done];
229 		IEE_RBDSYNC(sc, (sc->sc_rx_done + IEE_NRFD - 1) % IEE_NRFD,
230 		    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
231 		SC_RBD(sc, (sc->sc_rx_done + IEE_NRFD - 1) % IEE_NRFD)->rbd_size
232 		    &= ~IEE_RBD_EL;
233 		IEE_RBDSYNC(sc, (sc->sc_rx_done + IEE_NRFD - 1) % IEE_NRFD,
234 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
235 		rbd = SC_RBD(sc, sc->sc_rx_done);
236 		IEE_RBDSYNC(sc, sc->sc_rx_done,
237 		    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
238 		count = rbd->rbd_count;
239 		if ((status & IEE_RFD_OK) == 0
240 		    || (count & IEE_RBD_EOF) == 0
241 		    || (count & IEE_RBD_F) == 0){
242 			/* Receive error, skip frame and reuse buffer. */
243 			rbd->rbd_count = 0;
244 			rbd->rbd_size = IEE_RBD_EL | rx_map->dm_segs[0].ds_len;
245 			IEE_RBDSYNC(sc, sc->sc_rx_done,
246 			    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
247 			printf("%s: iee_intr: receive error %d, rfd_status="
248 			    "0x%.4x, rfd_count=0x%.4x\n",
249 			    device_xname(sc->sc_dev),
250 			    ++sc->sc_rx_err, status, count);
251 			sc->sc_rx_done = (sc->sc_rx_done + 1) % IEE_NRFD;
252 			continue;
253 		}
254 		bus_dmamap_sync(sc->sc_dmat, rx_map, 0, rx_map->dm_mapsize,
255 		    BUS_DMASYNC_POSTREAD);
256 		rx_mbuf->m_pkthdr.len = rx_mbuf->m_len =
257 		    count & IEE_RBD_COUNT;
258 		m_set_rcvif(rx_mbuf, ifp);
259 		MGETHDR(new_mbuf, M_DONTWAIT, MT_DATA);
260 		if (new_mbuf == NULL) {
261 			printf("%s: iee_intr: can't allocate mbuf\n",
262 			    device_xname(sc->sc_dev));
263 			break;
264 		}
265 		MCLAIM(new_mbuf, &sc->sc_ethercom.ec_rx_mowner);
266 		MCLGET(new_mbuf, M_DONTWAIT);
267 		if ((new_mbuf->m_flags & M_EXT) == 0) {
268 			printf("%s: iee_intr: can't alloc mbuf cluster\n",
269 			    device_xname(sc->sc_dev));
270 			m_freem(new_mbuf);
271 			break;
272 		}
273 		bus_dmamap_unload(sc->sc_dmat, rx_map);
274 		new_mbuf->m_len = new_mbuf->m_pkthdr.len = MCLBYTES - 2;
275 		new_mbuf->m_data += 2;
276 		if (bus_dmamap_load_mbuf(sc->sc_dmat, rx_map,
277 		    new_mbuf, BUS_DMA_READ | BUS_DMA_NOWAIT) != 0)
278 			panic("%s: iee_intr: can't load RX DMA map\n",
279 			    device_xname(sc->sc_dev));
280 		bus_dmamap_sync(sc->sc_dmat, rx_map, 0,
281 		    rx_map->dm_mapsize, BUS_DMASYNC_PREREAD);
282 		if_percpuq_enqueue(ifp->if_percpuq, rx_mbuf);
283 		sc->sc_rx_mbuf[sc->sc_rx_done] = new_mbuf;
284 		rbd->rbd_count = 0;
285 		rbd->rbd_size = IEE_RBD_EL | rx_map->dm_segs[0].ds_len;
286 		rbd->rbd_rb_addr = IEE_SWAPA32(rx_map->dm_segs[0].ds_addr);
287 		IEE_RBDSYNC(sc, sc->sc_rx_done,
288 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
289 		sc->sc_rx_done = (sc->sc_rx_done + 1) % IEE_NRFD;
290 	}
291 	if ((scb_status & IEE_SCB_RUS) == IEE_SCB_RUS_NR1
292 	    || (scb_status & IEE_SCB_RUS) == IEE_SCB_RUS_NR2
293 	    || (scb_status & IEE_SCB_RUS) == IEE_SCB_RUS_NR3) {
294 		/* Receive Overrun, reinit receive ring buffer. */
295 		for (n = 0 ; n < IEE_NRFD ; n++) {
296 			rfd = SC_RFD(sc, n);
297 			rbd = SC_RBD(sc, n);
298 			rfd->rfd_cmd = IEE_RFD_SF;
299 			rfd->rfd_link_addr =
300 			    IEE_SWAPA32(IEE_PHYS_SHMEM(sc->sc_rfd_off
301 			    + sc->sc_rfd_sz * ((n + 1) % IEE_NRFD)));
302 			rbd->rbd_next_rbd =
303 			    IEE_SWAPA32(IEE_PHYS_SHMEM(sc->sc_rbd_off
304 			    + sc->sc_rbd_sz * ((n + 1) % IEE_NRFD)));
305 			rbd->rbd_size = IEE_RBD_EL |
306 			    sc->sc_rx_map[n]->dm_segs[0].ds_len;
307 			rbd->rbd_rb_addr =
308 			    IEE_SWAPA32(sc->sc_rx_map[n]->dm_segs[0].ds_addr);
309 		}
310 		SC_RFD(sc, 0)->rfd_rbd_addr =
311 		    IEE_SWAPA32(IEE_PHYS_SHMEM(sc->sc_rbd_off));
312 		sc->sc_rx_done = 0;
313 		bus_dmamap_sync(sc->sc_dmat, sc->sc_shmem_map, sc->sc_rfd_off,
314 		    sc->sc_rfd_sz * IEE_NRFD + sc->sc_rbd_sz * IEE_NRFD,
315 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
316 		(sc->sc_iee_cmd)(sc, IEE_SCB_RUC_ST);
317 		printf("%s: iee_intr: receive ring buffer overrun\n",
318 		    device_xname(sc->sc_dev));
319 	}
320 
321 	if (sc->sc_next_cb != 0) {
322 		IEE_CBSYNC(sc, sc->sc_next_cb - 1,
323 		    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
324 		status = SC_CB(sc, sc->sc_next_cb - 1)->cb_status;
325 		IEE_CBSYNC(sc, sc->sc_next_cb - 1,
326 		    BUS_DMASYNC_PREREAD);
327 		if ((status & IEE_CB_C) != 0) {
328 			/* CMD list finished */
329 			ifp->if_timer = 0;
330 			if (sc->sc_next_tbd != 0) {
331 				/* A TX CMD list finished, cleanup */
332 				for (n = 0 ; n < sc->sc_next_cb ; n++) {
333 					bus_dmamap_unload(sc->sc_dmat,
334 					    sc->sc_tx_map[n]);
335 					m_freem(sc->sc_tx_mbuf[n]);
336 					sc->sc_tx_mbuf[n] = NULL;
337 					IEE_CBSYNC(sc, n,
338 					    BUS_DMASYNC_POSTREAD |
339 					    BUS_DMASYNC_POSTWRITE);
340 					status = SC_CB(sc, n)->cb_status;
341 					IEE_CBSYNC(sc, n,
342 					    BUS_DMASYNC_PREREAD);
343 					if ((status & IEE_CB_COL) != 0 &&
344 					    (status & IEE_CB_MAXCOL) == 0)
345 						col = 16;
346 					else
347 						col = status
348 						    & IEE_CB_MAXCOL;
349 					sc->sc_tx_col += col;
350 					if ((status & IEE_CB_OK) != 0) {
351 						if_statadd2(ifp,
352 						    if_opackets, 1,
353 						    if_collisions, col);
354 					}
355 				}
356 				sc->sc_next_tbd = 0;
357 				ifp->if_flags &= ~IFF_OACTIVE;
358 			}
359 			for (n = 0 ; n < sc->sc_next_cb; n++) {
360 				/*
361 				 * Check if a CMD failed, but ignore TX errors.
362 				 */
363 				IEE_CBSYNC(sc, n, BUS_DMASYNC_POSTREAD |
364 				    BUS_DMASYNC_POSTWRITE);
365 				cmd = SC_CB(sc, n)->cb_cmd;
366 				status = SC_CB(sc, n)->cb_status;
367 				IEE_CBSYNC(sc, n, BUS_DMASYNC_PREREAD);
368 				if ((cmd & IEE_CB_CMD) != IEE_CB_CMD_TR &&
369 				    (status & IEE_CB_OK) == 0)
370 					printf("%s: iee_intr: scb_status=0x%x "
371 					    "scb_cmd=0x%x failed command %d: "
372 					    "cb_status[%d]=0x%.4x "
373 					    "cb_cmd[%d]=0x%.4x\n",
374 					    device_xname(sc->sc_dev),
375 					    scb_status, scb_cmd,
376 					    ++sc->sc_cmd_err,
377 					    n, status, n, cmd);
378 			}
379 			sc->sc_next_cb = 0;
380 			if ((sc->sc_flags & IEE_WANT_MCAST) != 0) {
381 				iee_cb_setup(sc, IEE_CB_CMD_MCS |
382 				    IEE_CB_S | IEE_CB_EL | IEE_CB_I);
383 				(sc->sc_iee_cmd)(sc, IEE_SCB_CUC_EXE);
384 			} else
385 				/* Try to get deferred packets going. */
386 				if_schedule_deferred_start(ifp);
387 		}
388 	}
389 	if (IEE_SWAP32(SC_SCB(sc)->scb_crc_err) != sc->sc_crc_err) {
390 		sc->sc_crc_err = IEE_SWAP32(SC_SCB(sc)->scb_crc_err);
391 		printf("%s: iee_intr: crc_err=%d\n", device_xname(sc->sc_dev),
392 		    sc->sc_crc_err);
393 	}
394 	if (IEE_SWAP32(SC_SCB(sc)->scb_align_err) != sc->sc_align_err) {
395 		sc->sc_align_err = IEE_SWAP32(SC_SCB(sc)->scb_align_err);
396 		printf("%s: iee_intr: align_err=%d\n",
397 		    device_xname(sc->sc_dev), sc->sc_align_err);
398 	}
399 	if (IEE_SWAP32(SC_SCB(sc)->scb_resource_err) != sc->sc_resource_err) {
400 		sc->sc_resource_err = IEE_SWAP32(SC_SCB(sc)->scb_resource_err);
401 		printf("%s: iee_intr: resource_err=%d\n",
402 		    device_xname(sc->sc_dev), sc->sc_resource_err);
403 	}
404 	if (IEE_SWAP32(SC_SCB(sc)->scb_overrun_err) != sc->sc_overrun_err) {
405 		sc->sc_overrun_err = IEE_SWAP32(SC_SCB(sc)->scb_overrun_err);
406 		printf("%s: iee_intr: overrun_err=%d\n",
407 		    device_xname(sc->sc_dev), sc->sc_overrun_err);
408 	}
409 	if (IEE_SWAP32(SC_SCB(sc)->scb_rcvcdt_err) != sc->sc_rcvcdt_err) {
410 		sc->sc_rcvcdt_err = IEE_SWAP32(SC_SCB(sc)->scb_rcvcdt_err);
411 		printf("%s: iee_intr: rcvcdt_err=%d\n",
412 		    device_xname(sc->sc_dev), sc->sc_rcvcdt_err);
413 	}
414 	if (IEE_SWAP32(SC_SCB(sc)->scb_short_fr_err) != sc->sc_short_fr_err) {
415 		sc->sc_short_fr_err = IEE_SWAP32(SC_SCB(sc)->scb_short_fr_err);
416 		printf("%s: iee_intr: short_fr_err=%d\n",
417 		    device_xname(sc->sc_dev), sc->sc_short_fr_err);
418 	}
419 	IEE_SCBSYNC(sc, BUS_DMASYNC_PREREAD);
420 	(sc->sc_iee_cmd)(sc, IEE_SCB_ACK);
421 	return 1;
422 }
423 
424 
425 
426 /*
427  * How Command Block List Processing is done.
428  *
429  * A running CBL is never manipulated. If there is a CBL already running,
430  * further CMDs are deferred until the current list is done. A new list is
431  * setup when the old one has finished.
432  * This eases programming. To manipulate a running CBL it is necessary to
433  * suspend the Command Unit to avoid race conditions. After a suspend
434  * is sent we have to wait for an interrupt that ACKs the suspend. Then
435  * we can manipulate the CBL and resume operation. I am not sure that this
436  * is more effective than the current, much simpler approach. => KISS
437  * See i82596CA data sheet page 26.
438  *
439  * A CBL is running or on the way to be set up when (sc->sc_next_cb != 0).
440  *
441  * A CBL may consist of TX CMDs, and _only_ TX CMDs.
442  * A TX CBL is running or on the way to be set up when
443  * ((sc->sc_next_cb != 0) && (sc->sc_next_tbd != 0)).
444  *
445  * A CBL may consist of other non-TX CMDs like IAS or CONF, and _only_
446  * non-TX CMDs.
447  *
448  * This comes mostly through the way how an Ethernet driver works and
449  * because running CBLs are not manipulated when they are on the way. If
450  * if_start() is called there will be TX CMDs enqueued so we have a running
451  * CBL and other CMDs from e.g. if_ioctl() will be deferred and vice versa.
452  *
453  * The Multicast Setup Command is special. A MCS needs more space than
454  * a single CB has. Actual space requirement depends on the length of the
455  * multicast list. So we always defer MCS until other CBLs are finished,
456  * then we setup a CONF CMD in the first CB. The CONF CMD is needed to
457  * turn ALLMULTI on the hardware on or off. The MCS is the 2nd CB and may
458  * use all the remaining space in the CBL and the Transmit Buffer Descriptor
459  * List. (Therefore CBL and TBDL must be continuous in physical and virtual
460  * memory. This is guaranteed through the definitions of the list offsets
461  * in i82596reg.h and because it is only a single DMA segment used for all
462  * lists.) When ALLMULTI is enabled via the CONF CMD, the MCS is run with
463  * a multicast list length of 0, thus disabling the multicast filter.
464  * A deferred MCS is signaled via ((sc->sc_flags & IEE_WANT_MCAST) != 0)
465  */
466 void
iee_cb_setup(struct iee_softc * sc,uint32_t cmd)467 iee_cb_setup(struct iee_softc *sc, uint32_t cmd)
468 {
469 	struct iee_cb *cb = SC_CB(sc, sc->sc_next_cb);
470 	struct ethercom *ec = &sc->sc_ethercom;
471 	struct ifnet *ifp = &ec->ec_if;
472 	struct ether_multistep step;
473 	struct ether_multi *enm;
474 
475 	memset(cb, 0, sc->sc_cb_sz);
476 	cb->cb_cmd = cmd;
477 	switch (cmd & IEE_CB_CMD) {
478 	case IEE_CB_CMD_NOP:	/* NOP CMD */
479 		break;
480 	case IEE_CB_CMD_IAS:	/* Individual Address Setup */
481 		memcpy(__UNVOLATILE(cb->cb_ind_addr), CLLADDR(ifp->if_sadl),
482 		    ETHER_ADDR_LEN);
483 		break;
484 	case IEE_CB_CMD_CONF:	/* Configure */
485 		memcpy(__UNVOLATILE(cb->cb_cf), sc->sc_cf, sc->sc_cf[0]
486 		    & IEE_CF_0_CNT_M);
487 		break;
488 	case IEE_CB_CMD_MCS:	/* Multicast Setup */
489 		if (sc->sc_next_cb != 0) {
490 			sc->sc_flags |= IEE_WANT_MCAST;
491 			return;
492 		}
493 		sc->sc_flags &= ~IEE_WANT_MCAST;
494 		if ((sc->sc_cf[8] & IEE_CF_8_PRM) != 0) {
495 			/* Need no multicast filter in promisc mode. */
496 			iee_cb_setup(sc, IEE_CB_CMD_CONF | IEE_CB_S | IEE_CB_EL
497 			    | IEE_CB_I);
498 			return;
499 		}
500 		/* Leave room for a CONF CMD to en/dis-able ALLMULTI mode */
501 		cb = SC_CB(sc, sc->sc_next_cb + 1);
502 		cb->cb_cmd = cmd;
503 		cb->cb_mcast.mc_size = 0;
504 		ETHER_LOCK(ec);
505 		ETHER_FIRST_MULTI(step, ec, enm);
506 		while (enm != NULL) {
507 			if (memcmp(enm->enm_addrlo, enm->enm_addrhi,
508 			    ETHER_ADDR_LEN) != 0 || cb->cb_mcast.mc_size
509 			    * ETHER_ADDR_LEN + 2 * sc->sc_cb_sz >
510 			    sc->sc_cb_sz * IEE_NCB +
511 			    sc->sc_tbd_sz * IEE_NTBD * IEE_NCB) {
512 				cb->cb_mcast.mc_size = 0;
513 				break;
514 			}
515 			memcpy(__UNVOLATILE(&cb->cb_mcast.mc_addrs[
516 			    cb->cb_mcast.mc_size]),
517 			    enm->enm_addrlo, ETHER_ADDR_LEN);
518 			ETHER_NEXT_MULTI(step, enm);
519 			cb->cb_mcast.mc_size += ETHER_ADDR_LEN;
520 		}
521 		ETHER_UNLOCK(ec);
522 		if (cb->cb_mcast.mc_size == 0) {
523 			/* Can't do exact mcast filtering, do ALLMULTI mode. */
524 			ifp->if_flags |= IFF_ALLMULTI;
525 			sc->sc_cf[11] &= ~IEE_CF_11_MCALL;
526 		} else {
527 			/* disable ALLMULTI and load mcast list */
528 			ifp->if_flags &= ~IFF_ALLMULTI;
529 			sc->sc_cf[11] |= IEE_CF_11_MCALL;
530 			/* Mcast setup may need more than sc->sc_cb_sz bytes. */
531 			bus_dmamap_sync(sc->sc_dmat, sc->sc_shmem_map,
532 			    sc->sc_cb_off,
533 			    sc->sc_cb_sz * IEE_NCB +
534 			    sc->sc_tbd_sz * IEE_NTBD * IEE_NCB,
535 			    BUS_DMASYNC_PREWRITE);
536 		}
537 		iee_cb_setup(sc, IEE_CB_CMD_CONF);
538 		break;
539 	case IEE_CB_CMD_TR:	/* Transmit */
540 		cb->cb_transmit.tx_tbd_addr =
541 		    IEE_SWAPA32(IEE_PHYS_SHMEM(sc->sc_tbd_off
542 		    + sc->sc_tbd_sz * sc->sc_next_tbd));
543 		cb->cb_cmd |= IEE_CB_SF; /* Always use Flexible Mode. */
544 		break;
545 	case IEE_CB_CMD_TDR:	/* Time Domain Reflectometry */
546 		break;
547 	case IEE_CB_CMD_DUMP:	/* Dump */
548 		break;
549 	case IEE_CB_CMD_DIAG:	/* Diagnose */
550 		break;
551 	default:
552 		/* can't happen */
553 		break;
554 	}
555 	cb->cb_link_addr = IEE_SWAPA32(IEE_PHYS_SHMEM(sc->sc_cb_off +
556 	    sc->sc_cb_sz * (sc->sc_next_cb + 1)));
557 	IEE_CBSYNC(sc, sc->sc_next_cb,
558 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
559 	sc->sc_next_cb++;
560 	ifp->if_timer = 5;
561 }
562 
563 
564 
565 void
iee_attach(struct iee_softc * sc,uint8_t * eth_addr,int * media,int nmedia,int defmedia)566 iee_attach(struct iee_softc *sc, uint8_t *eth_addr, int *media, int nmedia,
567     int defmedia)
568 {
569 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
570 	int n;
571 
572 	KASSERT(sc->sc_cl_align > 0 && powerof2(sc->sc_cl_align));
573 
574 	/*
575 	 * Calculate DMA descriptor offsets and sizes in shmem
576 	 * which should be cache line aligned.
577 	 */
578 	sc->sc_scp_off	= 0;
579 	sc->sc_scp_sz	= roundup2(sizeof(struct iee_scp), sc->sc_cl_align);
580 	sc->sc_iscp_off = sc->sc_scp_sz;
581 	sc->sc_iscp_sz	= roundup2(sizeof(struct iee_iscp), sc->sc_cl_align);
582 	sc->sc_scb_off	= sc->sc_iscp_off + sc->sc_iscp_sz;
583 	sc->sc_scb_sz	= roundup2(sizeof(struct iee_scb), sc->sc_cl_align);
584 	sc->sc_rfd_off	= sc->sc_scb_off + sc->sc_scb_sz;
585 	sc->sc_rfd_sz	= roundup2(sizeof(struct iee_rfd), sc->sc_cl_align);
586 	sc->sc_rbd_off	= sc->sc_rfd_off + sc->sc_rfd_sz * IEE_NRFD;
587 	sc->sc_rbd_sz	= roundup2(sizeof(struct iee_rbd), sc->sc_cl_align);
588 	sc->sc_cb_off	= sc->sc_rbd_off + sc->sc_rbd_sz * IEE_NRFD;
589 	sc->sc_cb_sz	= roundup2(sizeof(struct iee_cb), sc->sc_cl_align);
590 	sc->sc_tbd_off	= sc->sc_cb_off + sc->sc_cb_sz * IEE_NCB;
591 	sc->sc_tbd_sz	= roundup2(sizeof(struct iee_tbd), sc->sc_cl_align);
592 	sc->sc_shmem_sz = sc->sc_tbd_off + sc->sc_tbd_sz * IEE_NTBD * IEE_NCB;
593 
594 	/* allocate memory for shared DMA descriptors */
595 	if (bus_dmamem_alloc(sc->sc_dmat, sc->sc_shmem_sz, PAGE_SIZE, 0,
596 	    &sc->sc_dma_segs, 1, &sc->sc_dma_rsegs, BUS_DMA_NOWAIT) != 0) {
597 		aprint_error(": can't allocate %d bytes of DMA memory\n",
598 		    sc->sc_shmem_sz);
599 		return;
600 	}
601 	if (bus_dmamem_map(sc->sc_dmat, &sc->sc_dma_segs, sc->sc_dma_rsegs,
602 	    sc->sc_shmem_sz, (void **)&sc->sc_shmem_addr,
603 	    BUS_DMA_COHERENT | BUS_DMA_NOWAIT) != 0) {
604 		aprint_error(": can't map DMA memory\n");
605 		bus_dmamem_free(sc->sc_dmat, &sc->sc_dma_segs,
606 		    sc->sc_dma_rsegs);
607 		return;
608 	}
609 	if (bus_dmamap_create(sc->sc_dmat, sc->sc_shmem_sz, sc->sc_dma_rsegs,
610 	    sc->sc_shmem_sz, 0, BUS_DMA_NOWAIT, &sc->sc_shmem_map) != 0) {
611 		aprint_error(": can't create DMA map\n");
612 		bus_dmamem_unmap(sc->sc_dmat, sc->sc_shmem_addr,
613 		    sc->sc_shmem_sz);
614 		bus_dmamem_free(sc->sc_dmat, &sc->sc_dma_segs,
615 		    sc->sc_dma_rsegs);
616 		return;
617 	}
618 	if (bus_dmamap_load(sc->sc_dmat, sc->sc_shmem_map, sc->sc_shmem_addr,
619 	    sc->sc_shmem_sz, NULL, BUS_DMA_NOWAIT) != 0) {
620 		aprint_error(": can't load DMA map\n");
621 		bus_dmamap_destroy(sc->sc_dmat, sc->sc_shmem_map);
622 		bus_dmamem_unmap(sc->sc_dmat, sc->sc_shmem_addr,
623 		    sc->sc_shmem_sz);
624 		bus_dmamem_free(sc->sc_dmat, &sc->sc_dma_segs,
625 		    sc->sc_dma_rsegs);
626 		return;
627 	}
628 	memset(sc->sc_shmem_addr, 0, sc->sc_shmem_sz);
629 
630 	/*
631 	 * Set pointer to Intermediate System Configuration Pointer.
632 	 * Phys. addr. in big endian order. (Big endian as defined by Intel.)
633 	 */
634 	SC_SCP(sc)->scp_iscp_addr = IEE_SWAP32(IEE_PHYS_SHMEM(sc->sc_iscp_off));
635 	SC_SCP(sc)->scp_sysbus = sc->sc_sysbus;
636 	/*
637 	 * Set pointer to System Control Block.
638 	 * Phys. addr. in big endian order. (Big endian as defined by Intel.)
639 	 */
640 	SC_ISCP(sc)->iscp_scb_addr = IEE_SWAP32(IEE_PHYS_SHMEM(sc->sc_scb_off));
641 	/* Set pointer to Receive Frame Area. (physical address) */
642 	SC_SCB(sc)->scb_rfa_addr = IEE_SWAPA32(IEE_PHYS_SHMEM(sc->sc_rfd_off));
643 	/* Set pointer to Command Block. (physical address) */
644 	SC_SCB(sc)->scb_cmd_blk_addr =
645 	    IEE_SWAPA32(IEE_PHYS_SHMEM(sc->sc_cb_off));
646 
647 	bus_dmamap_sync(sc->sc_dmat, sc->sc_shmem_map, 0, sc->sc_shmem_sz,
648 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
649 
650 	/* Initialize ifmedia structures. */
651 	sc->sc_ethercom.ec_ifmedia = &sc->sc_ifmedia;
652 	ifmedia_init(&sc->sc_ifmedia, 0, iee_mediachange, iee_mediastatus);
653 	if (media != NULL) {
654 		for (n = 0 ; n < nmedia ; n++)
655 			ifmedia_add(&sc->sc_ifmedia, media[n], 0, NULL);
656 		ifmedia_set(&sc->sc_ifmedia, defmedia);
657 	} else {
658 		ifmedia_add(&sc->sc_ifmedia, IFM_ETHER | IFM_NONE, 0, NULL);
659 		ifmedia_set(&sc->sc_ifmedia, IFM_ETHER | IFM_NONE);
660 	}
661 
662 	ifp->if_softc = sc;
663 	strcpy(ifp->if_xname, device_xname(sc->sc_dev));
664 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
665 	ifp->if_start = iee_start;	/* initiate output routine */
666 	ifp->if_ioctl = iee_ioctl;	/* ioctl routine */
667 	ifp->if_init = iee_init;	/* init routine */
668 	ifp->if_stop = iee_stop;	/* stop routine */
669 	ifp->if_watchdog = iee_watchdog;	/* timer routine */
670 	IFQ_SET_READY(&ifp->if_snd);
671 	/* iee supports IEEE 802.1Q Virtual LANs, see vlan(4). */
672 	sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_MTU;
673 
674 	if_attach(ifp);
675 	if_deferred_start_init(ifp, NULL);
676 	ether_ifattach(ifp, eth_addr);
677 
678 	aprint_normal(": Intel 82596%s address %s\n",
679 	    i82596_typenames[sc->sc_type], ether_sprintf(eth_addr));
680 
681 	for (n = 0 ; n < IEE_NCB ; n++)
682 		sc->sc_tx_map[n] = NULL;
683 	for (n = 0 ; n < IEE_NRFD ; n++) {
684 		sc->sc_rx_mbuf[n] = NULL;
685 		sc->sc_rx_map[n] = NULL;
686 	}
687 	sc->sc_tx_timeout = 0;
688 	sc->sc_setup_timeout = 0;
689 	(sc->sc_iee_reset)(sc);
690 }
691 
692 
693 void
iee_detach(struct iee_softc * sc,int flags)694 iee_detach(struct iee_softc *sc, int flags)
695 {
696 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
697 
698 	if ((ifp->if_flags & IFF_RUNNING) != 0)
699 		iee_stop(ifp, 1);
700 	ether_ifdetach(ifp);
701 	if_detach(ifp);
702 	ifmedia_fini(&sc->sc_ifmedia);
703 	bus_dmamap_unload(sc->sc_dmat, sc->sc_shmem_map);
704 	bus_dmamap_destroy(sc->sc_dmat, sc->sc_shmem_map);
705 	bus_dmamem_unmap(sc->sc_dmat, sc->sc_shmem_addr, sc->sc_shmem_sz);
706 	bus_dmamem_free(sc->sc_dmat, &sc->sc_dma_segs, sc->sc_dma_rsegs);
707 }
708 
709 
710 /* Media change and status callback */
711 int
iee_mediachange(struct ifnet * ifp)712 iee_mediachange(struct ifnet *ifp)
713 {
714 	struct iee_softc *sc = ifp->if_softc;
715 
716 	if (sc->sc_mediachange != NULL)
717 		return (sc->sc_mediachange)(ifp);
718 	return 0;
719 }
720 
721 
722 void
iee_mediastatus(struct ifnet * ifp,struct ifmediareq * ifmreq)723 iee_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmreq)
724 {
725 	struct iee_softc *sc = ifp->if_softc;
726 
727 	if (sc->sc_mediastatus != NULL)
728 		(sc->sc_mediastatus)(ifp, ifmreq);
729 }
730 
731 
732 /* Initiate output routine */
733 void
iee_start(struct ifnet * ifp)734 iee_start(struct ifnet *ifp)
735 {
736 	struct iee_softc *sc = ifp->if_softc;
737 	struct mbuf *m = NULL;
738 	struct iee_tbd *tbd;
739 	int t;
740 	int n;
741 
742 	if (sc->sc_next_cb != 0)
743 		/* There is already a CMD running. Defer packet enqueuing. */
744 		return;
745 	for (t = 0 ; t < IEE_NCB ; t++) {
746 		IFQ_DEQUEUE(&ifp->if_snd, sc->sc_tx_mbuf[t]);
747 		if (sc->sc_tx_mbuf[t] == NULL)
748 			break;
749 		if (bus_dmamap_load_mbuf(sc->sc_dmat, sc->sc_tx_map[t],
750 		    sc->sc_tx_mbuf[t], BUS_DMA_WRITE | BUS_DMA_NOWAIT) != 0) {
751 			/*
752 			 * The packet needs more TBD than we support.
753 			 * Copy the packet into a mbuf cluster to get it out.
754 			 */
755 			printf("%s: iee_start: failed to load DMA map\n",
756 			    device_xname(sc->sc_dev));
757 			MGETHDR(m, M_DONTWAIT, MT_DATA);
758 			if (m == NULL) {
759 				printf("%s: iee_start: can't allocate mbuf\n",
760 				    device_xname(sc->sc_dev));
761 				m_freem(sc->sc_tx_mbuf[t]);
762 				sc->sc_tx_mbuf[t] = NULL;
763 				t--;
764 				continue;
765 			}
766 			MCLAIM(m, &sc->sc_ethercom.ec_rx_mowner);
767 			MCLGET(m, M_DONTWAIT);
768 			if ((m->m_flags & M_EXT) == 0) {
769 				printf("%s: iee_start: can't allocate mbuf "
770 				    "cluster\n", device_xname(sc->sc_dev));
771 				m_freem(sc->sc_tx_mbuf[t]);
772 				sc->sc_tx_mbuf[t] = NULL;
773 				m_freem(m);
774 				t--;
775 				continue;
776 			}
777 			m_copydata(sc->sc_tx_mbuf[t], 0,
778 			    sc->sc_tx_mbuf[t]->m_pkthdr.len, mtod(m, void *));
779 			m->m_pkthdr.len = sc->sc_tx_mbuf[t]->m_pkthdr.len;
780 			m->m_len = sc->sc_tx_mbuf[t]->m_pkthdr.len;
781 			m_freem(sc->sc_tx_mbuf[t]);
782 			sc->sc_tx_mbuf[t] = m;
783 			if (bus_dmamap_load_mbuf(sc->sc_dmat, sc->sc_tx_map[t],
784 			    m, BUS_DMA_WRITE | BUS_DMA_NOWAIT) != 0) {
785 				printf("%s: iee_start: can't load TX DMA map\n",
786 				    device_xname(sc->sc_dev));
787 				m_freem(sc->sc_tx_mbuf[t]);
788 				sc->sc_tx_mbuf[t] = NULL;
789 				t--;
790 				continue;
791 			}
792 		}
793 		for (n = 0 ; n < sc->sc_tx_map[t]->dm_nsegs ; n++) {
794 			tbd = SC_TBD(sc, sc->sc_next_tbd + n);
795 			tbd->tbd_tb_addr =
796 			    IEE_SWAPA32(sc->sc_tx_map[t]->dm_segs[n].ds_addr);
797 			tbd->tbd_size =
798 			    sc->sc_tx_map[t]->dm_segs[n].ds_len;
799 			tbd->tbd_link_addr =
800 			    IEE_SWAPA32(IEE_PHYS_SHMEM(sc->sc_tbd_off +
801 			    sc->sc_tbd_sz * (sc->sc_next_tbd + n + 1)));
802 		}
803 		SC_TBD(sc, sc->sc_next_tbd + n - 1)->tbd_size |= IEE_CB_EL;
804 		bus_dmamap_sync(sc->sc_dmat, sc->sc_shmem_map,
805 		    sc->sc_tbd_off + sc->sc_next_tbd * sc->sc_tbd_sz,
806 		    sc->sc_tbd_sz * sc->sc_tx_map[t]->dm_nsegs,
807 		    BUS_DMASYNC_PREWRITE);
808 		bus_dmamap_sync(sc->sc_dmat, sc->sc_tx_map[t], 0,
809 		    sc->sc_tx_map[t]->dm_mapsize, BUS_DMASYNC_PREWRITE);
810 		IFQ_POLL(&ifp->if_snd, m);
811 		if (m == NULL)
812 			iee_cb_setup(sc, IEE_CB_CMD_TR | IEE_CB_S | IEE_CB_EL
813 			    | IEE_CB_I);
814 		else
815 			iee_cb_setup(sc, IEE_CB_CMD_TR);
816 		sc->sc_next_tbd += n;
817 		/* Pass packet to bpf if someone listens. */
818 		bpf_mtap(ifp, sc->sc_tx_mbuf[t], BPF_D_OUT);
819 	}
820 	if (t == 0)
821 		/* No packets got set up for TX. */
822 		return;
823 	if (t == IEE_NCB)
824 		ifp->if_flags |= IFF_OACTIVE;
825 	(sc->sc_iee_cmd)(sc, IEE_SCB_CUC_EXE);
826 }
827 
828 
829 
830 /* ioctl routine */
831 int
iee_ioctl(struct ifnet * ifp,u_long cmd,void * data)832 iee_ioctl(struct ifnet *ifp, u_long cmd, void *data)
833 {
834 	struct iee_softc *sc = ifp->if_softc;
835 	int s;
836 	int err;
837 
838 	s = splnet();
839 	switch (cmd) {
840 	default:
841 		err = ether_ioctl(ifp, cmd, data);
842 		if (err == ENETRESET) {
843 			/*
844 			 * Multicast list as changed; set the hardware filter
845 			 * accordingly.
846 			 */
847 			if (ifp->if_flags & IFF_RUNNING) {
848 				iee_cb_setup(sc, IEE_CB_CMD_MCS | IEE_CB_S |
849 				    IEE_CB_EL | IEE_CB_I);
850 				if ((sc->sc_flags & IEE_WANT_MCAST) == 0)
851 					(*sc->sc_iee_cmd)(sc, IEE_SCB_CUC_EXE);
852 			}
853 			err = 0;
854 		}
855 		break;
856 	}
857 	splx(s);
858 	return err;
859 }
860 
861 
862 
863 /* init routine */
864 int
iee_init(struct ifnet * ifp)865 iee_init(struct ifnet *ifp)
866 {
867 	struct iee_softc *sc = ifp->if_softc;
868 	int r;
869 	int t;
870 	int n;
871 	int err;
872 
873 	sc->sc_next_cb = 0;
874 	sc->sc_next_tbd = 0;
875 	sc->sc_flags &= ~IEE_WANT_MCAST;
876 	sc->sc_rx_done = 0;
877 	SC_SCB(sc)->scb_crc_err = 0;
878 	SC_SCB(sc)->scb_align_err = 0;
879 	SC_SCB(sc)->scb_resource_err = 0;
880 	SC_SCB(sc)->scb_overrun_err = 0;
881 	SC_SCB(sc)->scb_rcvcdt_err = 0;
882 	SC_SCB(sc)->scb_short_fr_err = 0;
883 	sc->sc_crc_err = 0;
884 	sc->sc_align_err = 0;
885 	sc->sc_resource_err = 0;
886 	sc->sc_overrun_err = 0;
887 	sc->sc_rcvcdt_err = 0;
888 	sc->sc_short_fr_err = 0;
889 	sc->sc_tx_col = 0;
890 	sc->sc_rx_err = 0;
891 	sc->sc_cmd_err = 0;
892 	/* Create Transmit DMA maps. */
893 	for (t = 0 ; t < IEE_NCB ; t++) {
894 		if (sc->sc_tx_map[t] == NULL && bus_dmamap_create(sc->sc_dmat,
895 		    MCLBYTES, IEE_NTBD, MCLBYTES, 0, BUS_DMA_NOWAIT,
896 		    &sc->sc_tx_map[t]) != 0) {
897 			printf("%s: iee_init: can't create TX DMA map\n",
898 			    device_xname(sc->sc_dev));
899 			for (n = 0 ; n < t ; n++)
900 				bus_dmamap_destroy(sc->sc_dmat,
901 				    sc->sc_tx_map[n]);
902 			return ENOBUFS;
903 		}
904 	}
905 	/* Initialize Receive Frame and Receive Buffer Descriptors */
906 	err = 0;
907 	memset(SC_RFD(sc, 0), 0, sc->sc_rfd_sz * IEE_NRFD);
908 	memset(SC_RBD(sc, 0), 0, sc->sc_rbd_sz * IEE_NRFD);
909 	for (r = 0 ; r < IEE_NRFD ; r++) {
910 		SC_RFD(sc, r)->rfd_cmd = IEE_RFD_SF;
911 		SC_RFD(sc, r)->rfd_link_addr =
912 		    IEE_SWAPA32(IEE_PHYS_SHMEM(sc->sc_rfd_off
913 		    + sc->sc_rfd_sz * ((r + 1) % IEE_NRFD)));
914 
915 		SC_RBD(sc, r)->rbd_next_rbd =
916 		    IEE_SWAPA32(IEE_PHYS_SHMEM(sc->sc_rbd_off
917 		    + sc->sc_rbd_sz * ((r + 1) % IEE_NRFD)));
918 		if (sc->sc_rx_mbuf[r] == NULL) {
919 			MGETHDR(sc->sc_rx_mbuf[r], M_DONTWAIT, MT_DATA);
920 			if (sc->sc_rx_mbuf[r] == NULL) {
921 				printf("%s: iee_init: can't allocate mbuf\n",
922 				    device_xname(sc->sc_dev));
923 				err = 1;
924 				break;
925 			}
926 			MCLAIM(sc->sc_rx_mbuf[r],
927 			    &sc->sc_ethercom.ec_rx_mowner);
928 			MCLGET(sc->sc_rx_mbuf[r], M_DONTWAIT);
929 			if ((sc->sc_rx_mbuf[r]->m_flags & M_EXT) == 0) {
930 				printf("%s: iee_init: can't allocate mbuf"
931 				    " cluster\n", device_xname(sc->sc_dev));
932 				m_freem(sc->sc_rx_mbuf[r]);
933 				sc->sc_rx_mbuf[r] = NULL;
934 				err = 1;
935 				break;
936 			}
937 			sc->sc_rx_mbuf[r]->m_len =
938 			    sc->sc_rx_mbuf[r]->m_pkthdr.len = MCLBYTES - 2;
939 			sc->sc_rx_mbuf[r]->m_data += 2;
940 		}
941 		if (sc->sc_rx_map[r] == NULL && bus_dmamap_create(sc->sc_dmat,
942 		    MCLBYTES, 1, MCLBYTES , 0, BUS_DMA_NOWAIT,
943 		    &sc->sc_rx_map[r]) != 0) {
944 			printf("%s: iee_init: can't create RX DMA map\n",
945 			    device_xname(sc->sc_dev));
946 			m_freem(sc->sc_rx_mbuf[r]);
947 			sc->sc_rx_mbuf[r] = NULL;
948 			err = 1;
949 			break;
950 		}
951 		if (bus_dmamap_load_mbuf(sc->sc_dmat, sc->sc_rx_map[r],
952 		    sc->sc_rx_mbuf[r], BUS_DMA_READ | BUS_DMA_NOWAIT) != 0) {
953 			printf("%s: iee_init: can't load RX DMA map\n",
954 			    device_xname(sc->sc_dev));
955 			bus_dmamap_destroy(sc->sc_dmat, sc->sc_rx_map[r]);
956 			m_freem(sc->sc_rx_mbuf[r]);
957 			sc->sc_rx_mbuf[r] = NULL;
958 			err = 1;
959 			break;
960 		}
961 		bus_dmamap_sync(sc->sc_dmat, sc->sc_rx_map[r], 0,
962 		    sc->sc_rx_map[r]->dm_mapsize, BUS_DMASYNC_PREREAD);
963 		SC_RBD(sc, r)->rbd_size = sc->sc_rx_map[r]->dm_segs[0].ds_len;
964 		SC_RBD(sc, r)->rbd_rb_addr =
965 		    IEE_SWAPA32(sc->sc_rx_map[r]->dm_segs[0].ds_addr);
966 	}
967 	SC_RFD(sc, 0)->rfd_rbd_addr =
968 	    IEE_SWAPA32(IEE_PHYS_SHMEM(sc->sc_rbd_off));
969 	if (err != 0) {
970 		for (n = 0 ; n < r; n++) {
971 			bus_dmamap_unload(sc->sc_dmat, sc->sc_rx_map[n]);
972 			bus_dmamap_destroy(sc->sc_dmat, sc->sc_rx_map[n]);
973 			sc->sc_rx_map[n] = NULL;
974 			m_freem(sc->sc_rx_mbuf[n]);
975 			sc->sc_rx_mbuf[n] = NULL;
976 		}
977 		for (n = 0 ; n < t ; n++) {
978 			bus_dmamap_destroy(sc->sc_dmat, sc->sc_tx_map[n]);
979 			sc->sc_tx_map[n] = NULL;
980 		}
981 		return ENOBUFS;
982 	}
983 
984 	(sc->sc_iee_reset)(sc);
985 	iee_cb_setup(sc, IEE_CB_CMD_IAS);
986 	sc->sc_cf[0] = IEE_CF_0_DEF | IEE_CF_0_PREF;
987 	sc->sc_cf[1] = IEE_CF_1_DEF;
988 	sc->sc_cf[2] = IEE_CF_2_DEF;
989 	sc->sc_cf[3] = IEE_CF_3_ADDRLEN_DEF | IEE_CF_3_NSAI
990 	    | IEE_CF_3_PREAMLEN_DEF;
991 	sc->sc_cf[4] = IEE_CF_4_DEF;
992 	sc->sc_cf[5] = IEE_CF_5_DEF;
993 	sc->sc_cf[6] = IEE_CF_6_DEF;
994 	sc->sc_cf[7] = IEE_CF_7_DEF;
995 	sc->sc_cf[8] = IEE_CF_8_DEF;
996 	sc->sc_cf[9] = IEE_CF_9_DEF;
997 	sc->sc_cf[10] = IEE_CF_10_DEF;
998 	sc->sc_cf[11] = IEE_CF_11_DEF & ~IEE_CF_11_LNGFLD;
999 	sc->sc_cf[12] = IEE_CF_12_DEF;
1000 	sc->sc_cf[13] = IEE_CF_13_DEF;
1001 	iee_cb_setup(sc, IEE_CB_CMD_CONF | IEE_CB_S | IEE_CB_EL);
1002 	SC_SCB(sc)->scb_rfa_addr = IEE_SWAPA32(IEE_PHYS_SHMEM(sc->sc_rfd_off));
1003 	bus_dmamap_sync(sc->sc_dmat, sc->sc_shmem_map, 0, sc->sc_shmem_sz,
1004 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1005 	(sc->sc_iee_cmd)(sc, IEE_SCB_CUC_EXE | IEE_SCB_RUC_ST);
1006 	/* Issue a Channel Attention to ACK interrupts we may have caused. */
1007 	(sc->sc_iee_cmd)(sc, IEE_SCB_ACK);
1008 
1009 	/* Mark the interface as running and ready to RX/TX packets. */
1010 	ifp->if_flags |= IFF_RUNNING;
1011 	ifp->if_flags &= ~IFF_OACTIVE;
1012 	return 0;
1013 }
1014 
1015 
1016 /* Stop routine */
1017 void
iee_stop(struct ifnet * ifp,int disable)1018 iee_stop(struct ifnet *ifp, int disable)
1019 {
1020 	struct iee_softc *sc = ifp->if_softc;
1021 	int n;
1022 
1023 	ifp->if_flags &= ~IFF_RUNNING;
1024 	ifp->if_flags |= IFF_OACTIVE;
1025 	ifp->if_timer = 0;
1026 	/* Reset the chip to get it quiet. */
1027 	(sc->sc_iee_reset)(ifp->if_softc);
1028 	/* Issue a Channel Attention to ACK interrupts we may have caused. */
1029 	(sc->sc_iee_cmd)(ifp->if_softc, IEE_SCB_ACK);
1030 	/* Release any dynamically allocated resources. */
1031 	for (n = 0 ; n < IEE_NCB ; n++) {
1032 		if (sc->sc_tx_map[n] != NULL)
1033 			bus_dmamap_destroy(sc->sc_dmat, sc->sc_tx_map[n]);
1034 		sc->sc_tx_map[n] = NULL;
1035 	}
1036 	for (n = 0 ; n < IEE_NRFD ; n++) {
1037 		if (sc->sc_rx_map[n] != NULL) {
1038 			bus_dmamap_unload(sc->sc_dmat, sc->sc_rx_map[n]);
1039 			bus_dmamap_destroy(sc->sc_dmat, sc->sc_rx_map[n]);
1040 		}
1041 		sc->sc_rx_map[n] = NULL;
1042 		m_freem(sc->sc_rx_mbuf[n]);
1043 		sc->sc_rx_mbuf[n] = NULL;
1044 	}
1045 }
1046 
1047 
1048 /* Timer routine */
1049 void
iee_watchdog(struct ifnet * ifp)1050 iee_watchdog(struct ifnet *ifp)
1051 {
1052 	struct iee_softc *sc = ifp->if_softc;
1053 
1054 	(sc->sc_iee_reset)(sc);
1055 	if (sc->sc_next_tbd != 0)
1056 		printf("%s: iee_watchdog: transmit timeout %d\n",
1057 		    device_xname(sc->sc_dev), ++sc->sc_tx_timeout);
1058 	else
1059 		printf("%s: iee_watchdog: setup timeout %d\n",
1060 		    device_xname(sc->sc_dev), ++sc->sc_setup_timeout);
1061 	iee_init(ifp);
1062 }
1063