xref: /netbsd-src/sys/arch/arm/xscale/i80321_timer.c (revision 62c8988166d9cbbc196f28cb66639bad5c7722c1)
1 /*	$NetBSD: i80321_timer.c,v 1.22 2018/07/12 10:46:42 maxv Exp $ */
2 
3 /*
4  * Copyright (c) 2001, 2002 Wasabi Systems, Inc.
5  * All rights reserved.
6  *
7  * Written by Jason R. Thorpe for Wasabi Systems, Inc.
8  *
9  * Redistribution and use in source and binary forms, with or without
10  * modification, are permitted provided that the following conditions
11  * are met:
12  * 1. Redistributions of source code must retain the above copyright
13  *    notice, this list of conditions and the following disclaimer.
14  * 2. Redistributions in binary form must reproduce the above copyright
15  *    notice, this list of conditions and the following disclaimer in the
16  *    documentation and/or other materials provided with the distribution.
17  * 3. All advertising materials mentioning features or use of this software
18  *    must display the following acknowledgement:
19  *	This product includes software developed for the NetBSD Project by
20  *	Wasabi Systems, Inc.
21  * 4. The name of Wasabi Systems, Inc. may not be used to endorse
22  *    or promote products derived from this software without specific prior
23  *    written permission.
24  *
25  * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
26  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
27  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
28  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL WASABI SYSTEMS, INC
29  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
30  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
31  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
32  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
33  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
34  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
35  * POSSIBILITY OF SUCH DAMAGE.
36  */
37 
38 /*
39  * Timer/clock support for the Intel i80321 I/O processor.
40  */
41 
42 #include <sys/cdefs.h>
43 __KERNEL_RCSID(0, "$NetBSD: i80321_timer.c,v 1.22 2018/07/12 10:46:42 maxv Exp $");
44 
45 #include "opt_i80321.h"
46 
47 #include <sys/param.h>
48 #include <sys/systm.h>
49 #include <sys/kernel.h>
50 #include <sys/time.h>
51 #include <sys/timetc.h>
52 
53 #include <dev/clock_subr.h>
54 
55 #include <sys/bus.h>
56 #include <arm/cpufunc.h>
57 
58 #include <arm/xscale/i80321reg.h>
59 #include <arm/xscale/i80321var.h>
60 
61 void	(*i80321_hardclock_hook)(void);
62 
63 #ifndef COUNTS_PER_SEC
64 #define	COUNTS_PER_SEC		200000000	/* 200MHz */
65 #endif
66 #define	COUNTS_PER_USEC		(COUNTS_PER_SEC / 1000000)
67 
68 static void tmr1_tc_init(void);
69 
70 static void *clock_ih;
71 
72 static uint32_t counts_per_hz;
73 
74 int	clockhandler(void *);
75 
76 __unused static inline uint32_t
tmr0_read(void)77 tmr0_read(void)
78 {
79 	uint32_t rv;
80 
81 	__asm volatile("mrc p6, 0, %0, c0, c1, 0"
82 		: "=r" (rv));
83 	return (rv);
84 }
85 
86 static inline void
tmr0_write(uint32_t val)87 tmr0_write(uint32_t val)
88 {
89 
90 	__asm volatile("mcr p6, 0, %0, c0, c1, 0"
91 		:
92 		: "r" (val));
93 }
94 
95 static inline uint32_t
tcr0_read(void)96 tcr0_read(void)
97 {
98 	uint32_t rv;
99 
100 	__asm volatile("mrc p6, 0, %0, c2, c1, 0"
101 		: "=r" (rv));
102 	return (rv);
103 }
104 
105 static inline void
tcr0_write(uint32_t val)106 tcr0_write(uint32_t val)
107 {
108 
109 	__asm volatile("mcr p6, 0, %0, c2, c1, 0"
110 		:
111 		: "r" (val));
112 }
113 
114 static inline void
trr0_write(uint32_t val)115 trr0_write(uint32_t val)
116 {
117 
118 	__asm volatile("mcr p6, 0, %0, c4, c1, 0"
119 		:
120 		: "r" (val));
121 }
122 
123 __unused static inline uint32_t
tmr1_read(void)124 tmr1_read(void)
125 {
126 	uint32_t rv;
127 
128 	__asm volatile("mrc p6, 0, %0, c1, c1, 0"
129 		: "=r" (rv));
130 	return (rv);
131 }
132 
133 static inline void
tmr1_write(uint32_t val)134 tmr1_write(uint32_t val)
135 {
136 
137 	__asm volatile("mcr p6, 0, %0, c1, c1, 0"
138 		:
139 		: "r" (val));
140 }
141 
142 static inline uint32_t
tcr1_read(void)143 tcr1_read(void)
144 {
145 	uint32_t rv;
146 
147 	__asm volatile("mrc p6, 0, %0, c3, c1, 0"
148 		: "=r" (rv));
149 	return (rv);
150 }
151 
152 static inline void
tcr1_write(uint32_t val)153 tcr1_write(uint32_t val)
154 {
155 
156 	__asm volatile("mcr p6, 0, %0, c3, c1, 0"
157 		:
158 		: "r" (val));
159 }
160 
161 static inline void
trr1_write(uint32_t val)162 trr1_write(uint32_t val)
163 {
164 
165 	__asm volatile("mcr p6, 0, %0, c5, c1, 0"
166 		:
167 		: "r" (val));
168 }
169 
170 static inline void
tisr_write(uint32_t val)171 tisr_write(uint32_t val)
172 {
173 
174 	__asm volatile("mcr p6, 0, %0, c6, c1, 0"
175 		:
176 		: "r" (val));
177 }
178 
179 /*
180  * i80321_calibrate_delay:
181  *
182  *	Calibrate the delay loop.
183  */
184 void
i80321_calibrate_delay(void)185 i80321_calibrate_delay(void)
186 {
187 
188 	/*
189 	 * Just use hz=100 for now -- we'll adjust it, if necessary,
190 	 * in cpu_initclocks().
191 	 */
192 	counts_per_hz = COUNTS_PER_SEC / 100;
193 
194 	tmr0_write(0);			/* stop timer */
195 	tisr_write(TISR_TMR0);		/* clear interrupt */
196 	trr0_write(counts_per_hz);	/* reload value */
197 	tcr0_write(counts_per_hz);	/* current value */
198 
199 	tmr0_write(TMRx_ENABLE|TMRx_RELOAD|TMRx_CSEL_CORE);
200 }
201 
202 /*
203  * cpu_initclocks:
204  *
205  *	Initialize the clock and get them going.
206  */
207 void
cpu_initclocks(void)208 cpu_initclocks(void)
209 {
210 	u_int oldirqstate;
211 
212 	if (hz < 50 || COUNTS_PER_SEC % hz) {
213 		aprint_error("Cannot get %d Hz clock; using 100 Hz\n", hz);
214 		hz = 100;
215 	}
216 
217 	/*
218 	 * We only have one timer available; stathz and profhz are
219 	 * always left as 0 (the upper-layer clock code deals with
220 	 * this situation).
221 	 */
222 	if (stathz != 0)
223 		aprint_error("Cannot get %d Hz statclock\n", stathz);
224 	stathz = 0;
225 
226 	if (profhz != 0)
227 		aprint_error("Cannot get %d Hz profclock\n", profhz);
228 	profhz = 0;
229 
230 	/* Report the clock frequency. */
231 	aprint_normal("clock: hz=%d stathz=%d profhz=%d\n", hz, stathz, profhz);
232 
233 	oldirqstate = disable_interrupts(I32_bit);
234 
235 	/* Hook up the clock interrupt handler. */
236 	clock_ih = i80321_intr_establish(ICU_INT_TMR0, IPL_CLOCK,
237 	    clockhandler, NULL);
238 	if (clock_ih == NULL)
239 		panic("cpu_initclocks: unable to register timer interrupt");
240 
241 	/* Set up the new clock parameters. */
242 
243 	tmr0_write(0);			/* stop timer */
244 	tisr_write(TISR_TMR0);		/* clear interrupt */
245 
246 	counts_per_hz = COUNTS_PER_SEC / hz;
247 
248 	trr0_write(counts_per_hz);	/* reload value */
249 	tcr0_write(counts_per_hz);	/* current value */
250 
251 	tmr0_write(TMRx_ENABLE|TMRx_RELOAD|TMRx_CSEL_CORE);
252 
253 	restore_interrupts(oldirqstate);
254 
255 	tmr1_tc_init();
256 }
257 
258 /*
259  * setstatclockrate:
260  *
261  *	Set the rate of the statistics clock.
262  *
263  *	We assume that hz is either stathz or profhz, and that neither
264  *	will change after being set by cpu_initclocks().  We could
265  *	recalculate the intervals here, but that would be a pain.
266  */
267 void
setstatclockrate(int newhz)268 setstatclockrate(int newhz)
269 {
270 
271 	/*
272 	 * XXX Use TMR1?
273 	 */
274 }
275 
276 static inline uint32_t
tmr1_tc_get(struct timecounter * tch)277 tmr1_tc_get(struct timecounter *tch)
278 {
279 	return (~tcr1_read());
280 }
281 
282 void
tmr1_tc_init(void)283 tmr1_tc_init(void)
284 {
285 	static struct timecounter tmr1_tc = {
286 		.tc_get_timecount = tmr1_tc_get,
287 		.tc_frequency = COUNTS_PER_SEC,
288 		.tc_counter_mask = ~0,
289 		.tc_name = "tmr1_count",
290 		.tc_quality = 100,
291 	};
292 
293 	/* program the tc */
294 	trr1_write(~0);	/* reload value */
295 	tcr1_write(~0);	/* current value */
296 
297 	tmr1_write(TMRx_ENABLE|TMRx_RELOAD|TMRx_CSEL_CORE);
298 
299 
300 	trr1_write(~0);
301 	tc_init(&tmr1_tc);
302 }
303 
304 /*
305  * delay:
306  *
307  *	Delay for at least N microseconds.
308  */
309 void
delay(u_int n)310 delay(u_int n)
311 {
312 	uint32_t cur, last, delta, usecs;
313 
314 	/*
315 	 * This works by polling the timer and counting the
316 	 * number of microseconds that go by.
317 	 */
318 	last = tcr0_read();
319 	delta = usecs = 0;
320 
321 	while (n > usecs) {
322 		cur = tcr0_read();
323 
324 		/* Check to see if the timer has wrapped around. */
325 		if (last < cur)
326 			delta += (last + (counts_per_hz - cur));
327 		else
328 			delta += (last - cur);
329 
330 		last = cur;
331 
332 		if (delta >= COUNTS_PER_USEC) {
333 			usecs += delta / COUNTS_PER_USEC;
334 			delta %= COUNTS_PER_USEC;
335 		}
336 	}
337 }
338 
339 /*
340  * clockhandler:
341  *
342  *	Handle the hardclock interrupt.
343  */
344 int
clockhandler(void * arg)345 clockhandler(void *arg)
346 {
347 	struct clockframe *frame = arg;
348 
349 	tisr_write(TISR_TMR0);
350 
351 	hardclock(frame);
352 
353 	if (i80321_hardclock_hook != NULL)
354 		(*i80321_hardclock_hook)();
355 
356 	return (1);
357 }
358