1 /* Gimple IR support functions.
2
3 Copyright (C) 2007-2022 Free Software Foundation, Inc.
4 Contributed by Aldy Hernandez <aldyh@redhat.com>
5
6 This file is part of GCC.
7
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
12
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
21
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "backend.h"
26 #include "tree.h"
27 #include "gimple.h"
28 #include "ssa.h"
29 #include "cgraph.h"
30 #include "diagnostic.h"
31 #include "alias.h"
32 #include "fold-const.h"
33 #include "calls.h"
34 #include "stor-layout.h"
35 #include "internal-fn.h"
36 #include "tree-eh.h"
37 #include "gimple-iterator.h"
38 #include "gimple-walk.h"
39 #include "gimplify.h"
40 #include "target.h"
41 #include "builtins.h"
42 #include "selftest.h"
43 #include "gimple-pretty-print.h"
44 #include "stringpool.h"
45 #include "attribs.h"
46 #include "asan.h"
47 #include "langhooks.h"
48 #include "attr-fnspec.h"
49 #include "ipa-modref-tree.h"
50 #include "ipa-modref.h"
51 #include "dbgcnt.h"
52
53 /* All the tuples have their operand vector (if present) at the very bottom
54 of the structure. Therefore, the offset required to find the
55 operands vector the size of the structure minus the size of the 1
56 element tree array at the end (see gimple_ops). */
57 #define DEFGSSTRUCT(SYM, STRUCT, HAS_TREE_OP) \
58 (HAS_TREE_OP ? sizeof (struct STRUCT) - sizeof (tree) : 0),
59 EXPORTED_CONST size_t gimple_ops_offset_[] = {
60 #include "gsstruct.def"
61 };
62 #undef DEFGSSTRUCT
63
64 #define DEFGSSTRUCT(SYM, STRUCT, HAS_TREE_OP) sizeof (struct STRUCT),
65 static const size_t gsstruct_code_size[] = {
66 #include "gsstruct.def"
67 };
68 #undef DEFGSSTRUCT
69
70 #define DEFGSCODE(SYM, NAME, GSSCODE) NAME,
71 const char *const gimple_code_name[] = {
72 #include "gimple.def"
73 };
74 #undef DEFGSCODE
75
76 #define DEFGSCODE(SYM, NAME, GSSCODE) GSSCODE,
77 EXPORTED_CONST enum gimple_statement_structure_enum gss_for_code_[] = {
78 #include "gimple.def"
79 };
80 #undef DEFGSCODE
81
82 /* Gimple stats. */
83
84 uint64_t gimple_alloc_counts[(int) gimple_alloc_kind_all];
85 uint64_t gimple_alloc_sizes[(int) gimple_alloc_kind_all];
86
87 /* Keep in sync with gimple.h:enum gimple_alloc_kind. */
88 static const char * const gimple_alloc_kind_names[] = {
89 "assignments",
90 "phi nodes",
91 "conditionals",
92 "everything else"
93 };
94
95 /* Static gimple tuple members. */
96 const enum gimple_code gassign::code_;
97 const enum gimple_code gcall::code_;
98 const enum gimple_code gcond::code_;
99
100
101 /* Gimple tuple constructors.
102 Note: Any constructor taking a ``gimple_seq'' as a parameter, can
103 be passed a NULL to start with an empty sequence. */
104
105 /* Set the code for statement G to CODE. */
106
107 static inline void
gimple_set_code(gimple * g,enum gimple_code code)108 gimple_set_code (gimple *g, enum gimple_code code)
109 {
110 g->code = code;
111 }
112
113 /* Return the number of bytes needed to hold a GIMPLE statement with
114 code CODE. */
115
116 size_t
gimple_size(enum gimple_code code,unsigned num_ops)117 gimple_size (enum gimple_code code, unsigned num_ops)
118 {
119 size_t size = gsstruct_code_size[gss_for_code (code)];
120 if (num_ops > 0)
121 size += (sizeof (tree) * (num_ops - 1));
122 return size;
123 }
124
125 /* Initialize GIMPLE statement G with CODE and NUM_OPS. */
126
127 void
gimple_init(gimple * g,enum gimple_code code,unsigned num_ops)128 gimple_init (gimple *g, enum gimple_code code, unsigned num_ops)
129 {
130 gimple_set_code (g, code);
131 gimple_set_num_ops (g, num_ops);
132
133 /* Do not call gimple_set_modified here as it has other side
134 effects and this tuple is still not completely built. */
135 g->modified = 1;
136 gimple_init_singleton (g);
137 }
138
139 /* Allocate memory for a GIMPLE statement with code CODE and NUM_OPS
140 operands. */
141
142 gimple *
gimple_alloc(enum gimple_code code,unsigned num_ops MEM_STAT_DECL)143 gimple_alloc (enum gimple_code code, unsigned num_ops MEM_STAT_DECL)
144 {
145 size_t size;
146 gimple *stmt;
147
148 size = gimple_size (code, num_ops);
149 if (GATHER_STATISTICS)
150 {
151 enum gimple_alloc_kind kind = gimple_alloc_kind (code);
152 gimple_alloc_counts[(int) kind]++;
153 gimple_alloc_sizes[(int) kind] += size;
154 }
155
156 stmt = ggc_alloc_cleared_gimple_statement_stat (size PASS_MEM_STAT);
157 gimple_init (stmt, code, num_ops);
158 return stmt;
159 }
160
161 /* Set SUBCODE to be the code of the expression computed by statement G. */
162
163 static inline void
gimple_set_subcode(gimple * g,unsigned subcode)164 gimple_set_subcode (gimple *g, unsigned subcode)
165 {
166 /* We only have 16 bits for the RHS code. Assert that we are not
167 overflowing it. */
168 gcc_assert (subcode < (1 << 16));
169 g->subcode = subcode;
170 }
171
172
173
174 /* Build a tuple with operands. CODE is the statement to build (which
175 must be one of the GIMPLE_WITH_OPS tuples). SUBCODE is the subcode
176 for the new tuple. NUM_OPS is the number of operands to allocate. */
177
178 #define gimple_build_with_ops(c, s, n) \
179 gimple_build_with_ops_stat (c, s, n MEM_STAT_INFO)
180
181 static gimple *
gimple_build_with_ops_stat(enum gimple_code code,unsigned subcode,unsigned num_ops MEM_STAT_DECL)182 gimple_build_with_ops_stat (enum gimple_code code, unsigned subcode,
183 unsigned num_ops MEM_STAT_DECL)
184 {
185 gimple *s = gimple_alloc (code, num_ops PASS_MEM_STAT);
186 gimple_set_subcode (s, subcode);
187
188 return s;
189 }
190
191
192 /* Build a GIMPLE_RETURN statement returning RETVAL. */
193
194 greturn *
gimple_build_return(tree retval)195 gimple_build_return (tree retval)
196 {
197 greturn *s
198 = as_a <greturn *> (gimple_build_with_ops (GIMPLE_RETURN, ERROR_MARK,
199 2));
200 if (retval)
201 gimple_return_set_retval (s, retval);
202 return s;
203 }
204
205 /* Reset alias information on call S. */
206
207 void
gimple_call_reset_alias_info(gcall * s)208 gimple_call_reset_alias_info (gcall *s)
209 {
210 if (gimple_call_flags (s) & ECF_CONST)
211 memset (gimple_call_use_set (s), 0, sizeof (struct pt_solution));
212 else
213 pt_solution_reset (gimple_call_use_set (s));
214 if (gimple_call_flags (s) & (ECF_CONST|ECF_PURE|ECF_NOVOPS))
215 memset (gimple_call_clobber_set (s), 0, sizeof (struct pt_solution));
216 else
217 pt_solution_reset (gimple_call_clobber_set (s));
218 }
219
220 /* Helper for gimple_build_call, gimple_build_call_valist,
221 gimple_build_call_vec and gimple_build_call_from_tree. Build the basic
222 components of a GIMPLE_CALL statement to function FN with NARGS
223 arguments. */
224
225 static inline gcall *
gimple_build_call_1(tree fn,unsigned nargs)226 gimple_build_call_1 (tree fn, unsigned nargs)
227 {
228 gcall *s
229 = as_a <gcall *> (gimple_build_with_ops (GIMPLE_CALL, ERROR_MARK,
230 nargs + 3));
231 if (TREE_CODE (fn) == FUNCTION_DECL)
232 fn = build_fold_addr_expr (fn);
233 gimple_set_op (s, 1, fn);
234 gimple_call_set_fntype (s, TREE_TYPE (TREE_TYPE (fn)));
235 gimple_call_reset_alias_info (s);
236 return s;
237 }
238
239
240 /* Build a GIMPLE_CALL statement to function FN with the arguments
241 specified in vector ARGS. */
242
243 gcall *
gimple_build_call_vec(tree fn,const vec<tree> & args)244 gimple_build_call_vec (tree fn, const vec<tree> &args)
245 {
246 unsigned i;
247 unsigned nargs = args.length ();
248 gcall *call = gimple_build_call_1 (fn, nargs);
249
250 for (i = 0; i < nargs; i++)
251 gimple_call_set_arg (call, i, args[i]);
252
253 return call;
254 }
255
256
257 /* Build a GIMPLE_CALL statement to function FN. NARGS is the number of
258 arguments. The ... are the arguments. */
259
260 gcall *
gimple_build_call(tree fn,unsigned nargs,...)261 gimple_build_call (tree fn, unsigned nargs, ...)
262 {
263 va_list ap;
264 gcall *call;
265 unsigned i;
266
267 gcc_assert (TREE_CODE (fn) == FUNCTION_DECL || is_gimple_call_addr (fn));
268
269 call = gimple_build_call_1 (fn, nargs);
270
271 va_start (ap, nargs);
272 for (i = 0; i < nargs; i++)
273 gimple_call_set_arg (call, i, va_arg (ap, tree));
274 va_end (ap);
275
276 return call;
277 }
278
279
280 /* Build a GIMPLE_CALL statement to function FN. NARGS is the number of
281 arguments. AP contains the arguments. */
282
283 gcall *
gimple_build_call_valist(tree fn,unsigned nargs,va_list ap)284 gimple_build_call_valist (tree fn, unsigned nargs, va_list ap)
285 {
286 gcall *call;
287 unsigned i;
288
289 gcc_assert (TREE_CODE (fn) == FUNCTION_DECL || is_gimple_call_addr (fn));
290
291 call = gimple_build_call_1 (fn, nargs);
292
293 for (i = 0; i < nargs; i++)
294 gimple_call_set_arg (call, i, va_arg (ap, tree));
295
296 return call;
297 }
298
299
300 /* Helper for gimple_build_call_internal and gimple_build_call_internal_vec.
301 Build the basic components of a GIMPLE_CALL statement to internal
302 function FN with NARGS arguments. */
303
304 static inline gcall *
gimple_build_call_internal_1(enum internal_fn fn,unsigned nargs)305 gimple_build_call_internal_1 (enum internal_fn fn, unsigned nargs)
306 {
307 gcall *s
308 = as_a <gcall *> (gimple_build_with_ops (GIMPLE_CALL, ERROR_MARK,
309 nargs + 3));
310 s->subcode |= GF_CALL_INTERNAL;
311 gimple_call_set_internal_fn (s, fn);
312 gimple_call_reset_alias_info (s);
313 return s;
314 }
315
316
317 /* Build a GIMPLE_CALL statement to internal function FN. NARGS is
318 the number of arguments. The ... are the arguments. */
319
320 gcall *
gimple_build_call_internal(enum internal_fn fn,unsigned nargs,...)321 gimple_build_call_internal (enum internal_fn fn, unsigned nargs, ...)
322 {
323 va_list ap;
324 gcall *call;
325 unsigned i;
326
327 call = gimple_build_call_internal_1 (fn, nargs);
328 va_start (ap, nargs);
329 for (i = 0; i < nargs; i++)
330 gimple_call_set_arg (call, i, va_arg (ap, tree));
331 va_end (ap);
332
333 return call;
334 }
335
336
337 /* Build a GIMPLE_CALL statement to internal function FN with the arguments
338 specified in vector ARGS. */
339
340 gcall *
gimple_build_call_internal_vec(enum internal_fn fn,const vec<tree> & args)341 gimple_build_call_internal_vec (enum internal_fn fn, const vec<tree> &args)
342 {
343 unsigned i, nargs;
344 gcall *call;
345
346 nargs = args.length ();
347 call = gimple_build_call_internal_1 (fn, nargs);
348 for (i = 0; i < nargs; i++)
349 gimple_call_set_arg (call, i, args[i]);
350
351 return call;
352 }
353
354
355 /* Build a GIMPLE_CALL statement from CALL_EXPR T. Note that T is
356 assumed to be in GIMPLE form already. Minimal checking is done of
357 this fact. */
358
359 gcall *
gimple_build_call_from_tree(tree t,tree fnptrtype)360 gimple_build_call_from_tree (tree t, tree fnptrtype)
361 {
362 unsigned i, nargs;
363 gcall *call;
364
365 gcc_assert (TREE_CODE (t) == CALL_EXPR);
366
367 nargs = call_expr_nargs (t);
368
369 tree fndecl = NULL_TREE;
370 if (CALL_EXPR_FN (t) == NULL_TREE)
371 call = gimple_build_call_internal_1 (CALL_EXPR_IFN (t), nargs);
372 else
373 {
374 fndecl = get_callee_fndecl (t);
375 call = gimple_build_call_1 (fndecl ? fndecl : CALL_EXPR_FN (t), nargs);
376 }
377
378 for (i = 0; i < nargs; i++)
379 gimple_call_set_arg (call, i, CALL_EXPR_ARG (t, i));
380
381 gimple_set_block (call, TREE_BLOCK (t));
382 gimple_set_location (call, EXPR_LOCATION (t));
383
384 /* Carry all the CALL_EXPR flags to the new GIMPLE_CALL. */
385 gimple_call_set_chain (call, CALL_EXPR_STATIC_CHAIN (t));
386 gimple_call_set_tail (call, CALL_EXPR_TAILCALL (t));
387 gimple_call_set_must_tail (call, CALL_EXPR_MUST_TAIL_CALL (t));
388 gimple_call_set_return_slot_opt (call, CALL_EXPR_RETURN_SLOT_OPT (t));
389 if (fndecl
390 && fndecl_built_in_p (fndecl, BUILT_IN_NORMAL)
391 && ALLOCA_FUNCTION_CODE_P (DECL_FUNCTION_CODE (fndecl)))
392 gimple_call_set_alloca_for_var (call, CALL_ALLOCA_FOR_VAR_P (t));
393 else if (fndecl
394 && (DECL_IS_OPERATOR_NEW_P (fndecl)
395 || DECL_IS_OPERATOR_DELETE_P (fndecl)))
396 gimple_call_set_from_new_or_delete (call, CALL_FROM_NEW_OR_DELETE_P (t));
397 else
398 gimple_call_set_from_thunk (call, CALL_FROM_THUNK_P (t));
399 gimple_call_set_va_arg_pack (call, CALL_EXPR_VA_ARG_PACK (t));
400 gimple_call_set_nothrow (call, TREE_NOTHROW (t));
401 gimple_call_set_by_descriptor (call, CALL_EXPR_BY_DESCRIPTOR (t));
402 copy_warning (call, t);
403
404 if (fnptrtype)
405 {
406 gimple_call_set_fntype (call, TREE_TYPE (fnptrtype));
407
408 /* Check if it's an indirect CALL and the type has the
409 nocf_check attribute. In that case propagate the information
410 to the gimple CALL insn. */
411 if (!fndecl)
412 {
413 gcc_assert (POINTER_TYPE_P (fnptrtype));
414 tree fntype = TREE_TYPE (fnptrtype);
415
416 if (lookup_attribute ("nocf_check", TYPE_ATTRIBUTES (fntype)))
417 gimple_call_set_nocf_check (call, TRUE);
418 }
419 }
420
421 return call;
422 }
423
424
425 /* Build a GIMPLE_ASSIGN statement.
426
427 LHS of the assignment.
428 RHS of the assignment which can be unary or binary. */
429
430 gassign *
gimple_build_assign(tree lhs,tree rhs MEM_STAT_DECL)431 gimple_build_assign (tree lhs, tree rhs MEM_STAT_DECL)
432 {
433 enum tree_code subcode;
434 tree op1, op2, op3;
435
436 extract_ops_from_tree (rhs, &subcode, &op1, &op2, &op3);
437 return gimple_build_assign (lhs, subcode, op1, op2, op3 PASS_MEM_STAT);
438 }
439
440
441 /* Build a GIMPLE_ASSIGN statement with subcode SUBCODE and operands
442 OP1, OP2 and OP3. */
443
444 static inline gassign *
gimple_build_assign_1(tree lhs,enum tree_code subcode,tree op1,tree op2,tree op3 MEM_STAT_DECL)445 gimple_build_assign_1 (tree lhs, enum tree_code subcode, tree op1,
446 tree op2, tree op3 MEM_STAT_DECL)
447 {
448 unsigned num_ops;
449 gassign *p;
450
451 /* Need 1 operand for LHS and 1 or 2 for the RHS (depending on the
452 code). */
453 num_ops = get_gimple_rhs_num_ops (subcode) + 1;
454
455 p = as_a <gassign *> (
456 gimple_build_with_ops_stat (GIMPLE_ASSIGN, (unsigned)subcode, num_ops
457 PASS_MEM_STAT));
458 gimple_assign_set_lhs (p, lhs);
459 gimple_assign_set_rhs1 (p, op1);
460 if (op2)
461 {
462 gcc_assert (num_ops > 2);
463 gimple_assign_set_rhs2 (p, op2);
464 }
465
466 if (op3)
467 {
468 gcc_assert (num_ops > 3);
469 gimple_assign_set_rhs3 (p, op3);
470 }
471
472 return p;
473 }
474
475 /* Build a GIMPLE_ASSIGN statement with subcode SUBCODE and operands
476 OP1, OP2 and OP3. */
477
478 gassign *
gimple_build_assign(tree lhs,enum tree_code subcode,tree op1,tree op2,tree op3 MEM_STAT_DECL)479 gimple_build_assign (tree lhs, enum tree_code subcode, tree op1,
480 tree op2, tree op3 MEM_STAT_DECL)
481 {
482 return gimple_build_assign_1 (lhs, subcode, op1, op2, op3 PASS_MEM_STAT);
483 }
484
485 /* Build a GIMPLE_ASSIGN statement with subcode SUBCODE and operands
486 OP1 and OP2. */
487
488 gassign *
gimple_build_assign(tree lhs,enum tree_code subcode,tree op1,tree op2 MEM_STAT_DECL)489 gimple_build_assign (tree lhs, enum tree_code subcode, tree op1,
490 tree op2 MEM_STAT_DECL)
491 {
492 return gimple_build_assign_1 (lhs, subcode, op1, op2, NULL_TREE
493 PASS_MEM_STAT);
494 }
495
496 /* Build a GIMPLE_ASSIGN statement with subcode SUBCODE and operand OP1. */
497
498 gassign *
gimple_build_assign(tree lhs,enum tree_code subcode,tree op1 MEM_STAT_DECL)499 gimple_build_assign (tree lhs, enum tree_code subcode, tree op1 MEM_STAT_DECL)
500 {
501 return gimple_build_assign_1 (lhs, subcode, op1, NULL_TREE, NULL_TREE
502 PASS_MEM_STAT);
503 }
504
505
506 /* Build a GIMPLE_COND statement.
507
508 PRED is the condition used to compare LHS and the RHS.
509 T_LABEL is the label to jump to if the condition is true.
510 F_LABEL is the label to jump to otherwise. */
511
512 gcond *
gimple_build_cond(enum tree_code pred_code,tree lhs,tree rhs,tree t_label,tree f_label)513 gimple_build_cond (enum tree_code pred_code, tree lhs, tree rhs,
514 tree t_label, tree f_label)
515 {
516 gcond *p;
517
518 gcc_assert (TREE_CODE_CLASS (pred_code) == tcc_comparison);
519 p = as_a <gcond *> (gimple_build_with_ops (GIMPLE_COND, pred_code, 4));
520 gimple_cond_set_lhs (p, lhs);
521 gimple_cond_set_rhs (p, rhs);
522 gimple_cond_set_true_label (p, t_label);
523 gimple_cond_set_false_label (p, f_label);
524 return p;
525 }
526
527 /* Build a GIMPLE_COND statement from the conditional expression tree
528 COND. T_LABEL and F_LABEL are as in gimple_build_cond. */
529
530 gcond *
gimple_build_cond_from_tree(tree cond,tree t_label,tree f_label)531 gimple_build_cond_from_tree (tree cond, tree t_label, tree f_label)
532 {
533 enum tree_code code;
534 tree lhs, rhs;
535
536 gimple_cond_get_ops_from_tree (cond, &code, &lhs, &rhs);
537 return gimple_build_cond (code, lhs, rhs, t_label, f_label);
538 }
539
540 /* Set code, lhs, and rhs of a GIMPLE_COND from a suitable
541 boolean expression tree COND. */
542
543 void
gimple_cond_set_condition_from_tree(gcond * stmt,tree cond)544 gimple_cond_set_condition_from_tree (gcond *stmt, tree cond)
545 {
546 enum tree_code code;
547 tree lhs, rhs;
548
549 gimple_cond_get_ops_from_tree (cond, &code, &lhs, &rhs);
550 gimple_cond_set_condition (stmt, code, lhs, rhs);
551 }
552
553 /* Build a GIMPLE_LABEL statement for LABEL. */
554
555 glabel *
gimple_build_label(tree label)556 gimple_build_label (tree label)
557 {
558 glabel *p
559 = as_a <glabel *> (gimple_build_with_ops (GIMPLE_LABEL, ERROR_MARK, 1));
560 gimple_label_set_label (p, label);
561 return p;
562 }
563
564 /* Build a GIMPLE_GOTO statement to label DEST. */
565
566 ggoto *
gimple_build_goto(tree dest)567 gimple_build_goto (tree dest)
568 {
569 ggoto *p
570 = as_a <ggoto *> (gimple_build_with_ops (GIMPLE_GOTO, ERROR_MARK, 1));
571 gimple_goto_set_dest (p, dest);
572 return p;
573 }
574
575
576 /* Build a GIMPLE_NOP statement. */
577
578 gimple *
gimple_build_nop(void)579 gimple_build_nop (void)
580 {
581 return gimple_alloc (GIMPLE_NOP, 0);
582 }
583
584
585 /* Build a GIMPLE_BIND statement.
586 VARS are the variables in BODY.
587 BLOCK is the containing block. */
588
589 gbind *
gimple_build_bind(tree vars,gimple_seq body,tree block)590 gimple_build_bind (tree vars, gimple_seq body, tree block)
591 {
592 gbind *p = as_a <gbind *> (gimple_alloc (GIMPLE_BIND, 0));
593 gimple_bind_set_vars (p, vars);
594 if (body)
595 gimple_bind_set_body (p, body);
596 if (block)
597 gimple_bind_set_block (p, block);
598 return p;
599 }
600
601 /* Helper function to set the simple fields of a asm stmt.
602
603 STRING is a pointer to a string that is the asm blocks assembly code.
604 NINPUT is the number of register inputs.
605 NOUTPUT is the number of register outputs.
606 NCLOBBERS is the number of clobbered registers.
607 */
608
609 static inline gasm *
gimple_build_asm_1(const char * string,unsigned ninputs,unsigned noutputs,unsigned nclobbers,unsigned nlabels)610 gimple_build_asm_1 (const char *string, unsigned ninputs, unsigned noutputs,
611 unsigned nclobbers, unsigned nlabels)
612 {
613 gasm *p;
614 int size = strlen (string);
615
616 p = as_a <gasm *> (
617 gimple_build_with_ops (GIMPLE_ASM, ERROR_MARK,
618 ninputs + noutputs + nclobbers + nlabels));
619
620 p->ni = ninputs;
621 p->no = noutputs;
622 p->nc = nclobbers;
623 p->nl = nlabels;
624 p->string = ggc_alloc_string (string, size);
625
626 if (GATHER_STATISTICS)
627 gimple_alloc_sizes[(int) gimple_alloc_kind (GIMPLE_ASM)] += size;
628
629 return p;
630 }
631
632 /* Build a GIMPLE_ASM statement.
633
634 STRING is the assembly code.
635 NINPUT is the number of register inputs.
636 NOUTPUT is the number of register outputs.
637 NCLOBBERS is the number of clobbered registers.
638 INPUTS is a vector of the input register parameters.
639 OUTPUTS is a vector of the output register parameters.
640 CLOBBERS is a vector of the clobbered register parameters.
641 LABELS is a vector of destination labels. */
642
643 gasm *
gimple_build_asm_vec(const char * string,vec<tree,va_gc> * inputs,vec<tree,va_gc> * outputs,vec<tree,va_gc> * clobbers,vec<tree,va_gc> * labels)644 gimple_build_asm_vec (const char *string, vec<tree, va_gc> *inputs,
645 vec<tree, va_gc> *outputs, vec<tree, va_gc> *clobbers,
646 vec<tree, va_gc> *labels)
647 {
648 gasm *p;
649 unsigned i;
650
651 p = gimple_build_asm_1 (string,
652 vec_safe_length (inputs),
653 vec_safe_length (outputs),
654 vec_safe_length (clobbers),
655 vec_safe_length (labels));
656
657 for (i = 0; i < vec_safe_length (inputs); i++)
658 gimple_asm_set_input_op (p, i, (*inputs)[i]);
659
660 for (i = 0; i < vec_safe_length (outputs); i++)
661 gimple_asm_set_output_op (p, i, (*outputs)[i]);
662
663 for (i = 0; i < vec_safe_length (clobbers); i++)
664 gimple_asm_set_clobber_op (p, i, (*clobbers)[i]);
665
666 for (i = 0; i < vec_safe_length (labels); i++)
667 gimple_asm_set_label_op (p, i, (*labels)[i]);
668
669 return p;
670 }
671
672 /* Build a GIMPLE_CATCH statement.
673
674 TYPES are the catch types.
675 HANDLER is the exception handler. */
676
677 gcatch *
gimple_build_catch(tree types,gimple_seq handler)678 gimple_build_catch (tree types, gimple_seq handler)
679 {
680 gcatch *p = as_a <gcatch *> (gimple_alloc (GIMPLE_CATCH, 0));
681 gimple_catch_set_types (p, types);
682 if (handler)
683 gimple_catch_set_handler (p, handler);
684
685 return p;
686 }
687
688 /* Build a GIMPLE_EH_FILTER statement.
689
690 TYPES are the filter's types.
691 FAILURE is the filter's failure action. */
692
693 geh_filter *
gimple_build_eh_filter(tree types,gimple_seq failure)694 gimple_build_eh_filter (tree types, gimple_seq failure)
695 {
696 geh_filter *p = as_a <geh_filter *> (gimple_alloc (GIMPLE_EH_FILTER, 0));
697 gimple_eh_filter_set_types (p, types);
698 if (failure)
699 gimple_eh_filter_set_failure (p, failure);
700
701 return p;
702 }
703
704 /* Build a GIMPLE_EH_MUST_NOT_THROW statement. */
705
706 geh_mnt *
gimple_build_eh_must_not_throw(tree decl)707 gimple_build_eh_must_not_throw (tree decl)
708 {
709 geh_mnt *p = as_a <geh_mnt *> (gimple_alloc (GIMPLE_EH_MUST_NOT_THROW, 0));
710
711 gcc_assert (TREE_CODE (decl) == FUNCTION_DECL);
712 gcc_assert (flags_from_decl_or_type (decl) & ECF_NORETURN);
713 gimple_eh_must_not_throw_set_fndecl (p, decl);
714
715 return p;
716 }
717
718 /* Build a GIMPLE_EH_ELSE statement. */
719
720 geh_else *
gimple_build_eh_else(gimple_seq n_body,gimple_seq e_body)721 gimple_build_eh_else (gimple_seq n_body, gimple_seq e_body)
722 {
723 geh_else *p = as_a <geh_else *> (gimple_alloc (GIMPLE_EH_ELSE, 0));
724 gimple_eh_else_set_n_body (p, n_body);
725 gimple_eh_else_set_e_body (p, e_body);
726 return p;
727 }
728
729 /* Build a GIMPLE_TRY statement.
730
731 EVAL is the expression to evaluate.
732 CLEANUP is the cleanup expression.
733 KIND is either GIMPLE_TRY_CATCH or GIMPLE_TRY_FINALLY depending on
734 whether this is a try/catch or a try/finally respectively. */
735
736 gtry *
gimple_build_try(gimple_seq eval,gimple_seq cleanup,enum gimple_try_flags kind)737 gimple_build_try (gimple_seq eval, gimple_seq cleanup,
738 enum gimple_try_flags kind)
739 {
740 gtry *p;
741
742 gcc_assert (kind == GIMPLE_TRY_CATCH || kind == GIMPLE_TRY_FINALLY);
743 p = as_a <gtry *> (gimple_alloc (GIMPLE_TRY, 0));
744 gimple_set_subcode (p, kind);
745 if (eval)
746 gimple_try_set_eval (p, eval);
747 if (cleanup)
748 gimple_try_set_cleanup (p, cleanup);
749
750 return p;
751 }
752
753 /* Construct a GIMPLE_WITH_CLEANUP_EXPR statement.
754
755 CLEANUP is the cleanup expression. */
756
757 gimple *
gimple_build_wce(gimple_seq cleanup)758 gimple_build_wce (gimple_seq cleanup)
759 {
760 gimple *p = gimple_alloc (GIMPLE_WITH_CLEANUP_EXPR, 0);
761 if (cleanup)
762 gimple_wce_set_cleanup (p, cleanup);
763
764 return p;
765 }
766
767
768 /* Build a GIMPLE_RESX statement. */
769
770 gresx *
gimple_build_resx(int region)771 gimple_build_resx (int region)
772 {
773 gresx *p
774 = as_a <gresx *> (gimple_build_with_ops (GIMPLE_RESX, ERROR_MARK, 0));
775 p->region = region;
776 return p;
777 }
778
779
780 /* The helper for constructing a gimple switch statement.
781 INDEX is the switch's index.
782 NLABELS is the number of labels in the switch excluding the default.
783 DEFAULT_LABEL is the default label for the switch statement. */
784
785 gswitch *
gimple_build_switch_nlabels(unsigned nlabels,tree index,tree default_label)786 gimple_build_switch_nlabels (unsigned nlabels, tree index, tree default_label)
787 {
788 /* nlabels + 1 default label + 1 index. */
789 gcc_checking_assert (default_label);
790 gswitch *p = as_a <gswitch *> (gimple_build_with_ops (GIMPLE_SWITCH,
791 ERROR_MARK,
792 1 + 1 + nlabels));
793 gimple_switch_set_index (p, index);
794 gimple_switch_set_default_label (p, default_label);
795 return p;
796 }
797
798 /* Build a GIMPLE_SWITCH statement.
799
800 INDEX is the switch's index.
801 DEFAULT_LABEL is the default label
802 ARGS is a vector of labels excluding the default. */
803
804 gswitch *
gimple_build_switch(tree index,tree default_label,const vec<tree> & args)805 gimple_build_switch (tree index, tree default_label, const vec<tree> &args)
806 {
807 unsigned i, nlabels = args.length ();
808
809 gswitch *p = gimple_build_switch_nlabels (nlabels, index, default_label);
810
811 /* Copy the labels from the vector to the switch statement. */
812 for (i = 0; i < nlabels; i++)
813 gimple_switch_set_label (p, i + 1, args[i]);
814
815 return p;
816 }
817
818 /* Build a GIMPLE_EH_DISPATCH statement. */
819
820 geh_dispatch *
gimple_build_eh_dispatch(int region)821 gimple_build_eh_dispatch (int region)
822 {
823 geh_dispatch *p
824 = as_a <geh_dispatch *> (
825 gimple_build_with_ops (GIMPLE_EH_DISPATCH, ERROR_MARK, 0));
826 p->region = region;
827 return p;
828 }
829
830 /* Build a new GIMPLE_DEBUG_BIND statement.
831
832 VAR is bound to VALUE; block and location are taken from STMT. */
833
834 gdebug *
gimple_build_debug_bind(tree var,tree value,gimple * stmt MEM_STAT_DECL)835 gimple_build_debug_bind (tree var, tree value, gimple *stmt MEM_STAT_DECL)
836 {
837 gdebug *p
838 = as_a <gdebug *> (gimple_build_with_ops_stat (GIMPLE_DEBUG,
839 (unsigned)GIMPLE_DEBUG_BIND, 2
840 PASS_MEM_STAT));
841 gimple_debug_bind_set_var (p, var);
842 gimple_debug_bind_set_value (p, value);
843 if (stmt)
844 gimple_set_location (p, gimple_location (stmt));
845
846 return p;
847 }
848
849
850 /* Build a new GIMPLE_DEBUG_SOURCE_BIND statement.
851
852 VAR is bound to VALUE; block and location are taken from STMT. */
853
854 gdebug *
gimple_build_debug_source_bind(tree var,tree value,gimple * stmt MEM_STAT_DECL)855 gimple_build_debug_source_bind (tree var, tree value,
856 gimple *stmt MEM_STAT_DECL)
857 {
858 gdebug *p
859 = as_a <gdebug *> (
860 gimple_build_with_ops_stat (GIMPLE_DEBUG,
861 (unsigned)GIMPLE_DEBUG_SOURCE_BIND, 2
862 PASS_MEM_STAT));
863
864 gimple_debug_source_bind_set_var (p, var);
865 gimple_debug_source_bind_set_value (p, value);
866 if (stmt)
867 gimple_set_location (p, gimple_location (stmt));
868
869 return p;
870 }
871
872
873 /* Build a new GIMPLE_DEBUG_BEGIN_STMT statement in BLOCK at
874 LOCATION. */
875
876 gdebug *
gimple_build_debug_begin_stmt(tree block,location_t location MEM_STAT_DECL)877 gimple_build_debug_begin_stmt (tree block, location_t location
878 MEM_STAT_DECL)
879 {
880 gdebug *p
881 = as_a <gdebug *> (
882 gimple_build_with_ops_stat (GIMPLE_DEBUG,
883 (unsigned)GIMPLE_DEBUG_BEGIN_STMT, 0
884 PASS_MEM_STAT));
885
886 gimple_set_location (p, location);
887 gimple_set_block (p, block);
888 cfun->debug_marker_count++;
889
890 return p;
891 }
892
893
894 /* Build a new GIMPLE_DEBUG_INLINE_ENTRY statement in BLOCK at
895 LOCATION. The BLOCK links to the inlined function. */
896
897 gdebug *
gimple_build_debug_inline_entry(tree block,location_t location MEM_STAT_DECL)898 gimple_build_debug_inline_entry (tree block, location_t location
899 MEM_STAT_DECL)
900 {
901 gdebug *p
902 = as_a <gdebug *> (
903 gimple_build_with_ops_stat (GIMPLE_DEBUG,
904 (unsigned)GIMPLE_DEBUG_INLINE_ENTRY, 0
905 PASS_MEM_STAT));
906
907 gimple_set_location (p, location);
908 gimple_set_block (p, block);
909 cfun->debug_marker_count++;
910
911 return p;
912 }
913
914
915 /* Build a GIMPLE_OMP_CRITICAL statement.
916
917 BODY is the sequence of statements for which only one thread can execute.
918 NAME is optional identifier for this critical block.
919 CLAUSES are clauses for this critical block. */
920
921 gomp_critical *
gimple_build_omp_critical(gimple_seq body,tree name,tree clauses)922 gimple_build_omp_critical (gimple_seq body, tree name, tree clauses)
923 {
924 gomp_critical *p
925 = as_a <gomp_critical *> (gimple_alloc (GIMPLE_OMP_CRITICAL, 0));
926 gimple_omp_critical_set_name (p, name);
927 gimple_omp_critical_set_clauses (p, clauses);
928 if (body)
929 gimple_omp_set_body (p, body);
930
931 return p;
932 }
933
934 /* Build a GIMPLE_OMP_FOR statement.
935
936 BODY is sequence of statements inside the for loop.
937 KIND is the `for' variant.
938 CLAUSES are any of the construct's clauses.
939 COLLAPSE is the collapse count.
940 PRE_BODY is the sequence of statements that are loop invariant. */
941
942 gomp_for *
gimple_build_omp_for(gimple_seq body,int kind,tree clauses,size_t collapse,gimple_seq pre_body)943 gimple_build_omp_for (gimple_seq body, int kind, tree clauses, size_t collapse,
944 gimple_seq pre_body)
945 {
946 gomp_for *p = as_a <gomp_for *> (gimple_alloc (GIMPLE_OMP_FOR, 0));
947 if (body)
948 gimple_omp_set_body (p, body);
949 gimple_omp_for_set_clauses (p, clauses);
950 gimple_omp_for_set_kind (p, kind);
951 p->collapse = collapse;
952 p->iter = ggc_cleared_vec_alloc<gimple_omp_for_iter> (collapse);
953
954 if (pre_body)
955 gimple_omp_for_set_pre_body (p, pre_body);
956
957 return p;
958 }
959
960
961 /* Build a GIMPLE_OMP_PARALLEL statement.
962
963 BODY is sequence of statements which are executed in parallel.
964 CLAUSES are the OMP parallel construct's clauses.
965 CHILD_FN is the function created for the parallel threads to execute.
966 DATA_ARG are the shared data argument(s). */
967
968 gomp_parallel *
gimple_build_omp_parallel(gimple_seq body,tree clauses,tree child_fn,tree data_arg)969 gimple_build_omp_parallel (gimple_seq body, tree clauses, tree child_fn,
970 tree data_arg)
971 {
972 gomp_parallel *p
973 = as_a <gomp_parallel *> (gimple_alloc (GIMPLE_OMP_PARALLEL, 0));
974 if (body)
975 gimple_omp_set_body (p, body);
976 gimple_omp_parallel_set_clauses (p, clauses);
977 gimple_omp_parallel_set_child_fn (p, child_fn);
978 gimple_omp_parallel_set_data_arg (p, data_arg);
979
980 return p;
981 }
982
983
984 /* Build a GIMPLE_OMP_TASK statement.
985
986 BODY is sequence of statements which are executed by the explicit task.
987 CLAUSES are the OMP task construct's clauses.
988 CHILD_FN is the function created for the parallel threads to execute.
989 DATA_ARG are the shared data argument(s).
990 COPY_FN is the optional function for firstprivate initialization.
991 ARG_SIZE and ARG_ALIGN are size and alignment of the data block. */
992
993 gomp_task *
gimple_build_omp_task(gimple_seq body,tree clauses,tree child_fn,tree data_arg,tree copy_fn,tree arg_size,tree arg_align)994 gimple_build_omp_task (gimple_seq body, tree clauses, tree child_fn,
995 tree data_arg, tree copy_fn, tree arg_size,
996 tree arg_align)
997 {
998 gomp_task *p = as_a <gomp_task *> (gimple_alloc (GIMPLE_OMP_TASK, 0));
999 if (body)
1000 gimple_omp_set_body (p, body);
1001 gimple_omp_task_set_clauses (p, clauses);
1002 gimple_omp_task_set_child_fn (p, child_fn);
1003 gimple_omp_task_set_data_arg (p, data_arg);
1004 gimple_omp_task_set_copy_fn (p, copy_fn);
1005 gimple_omp_task_set_arg_size (p, arg_size);
1006 gimple_omp_task_set_arg_align (p, arg_align);
1007
1008 return p;
1009 }
1010
1011
1012 /* Build a GIMPLE_OMP_SECTION statement for a sections statement.
1013
1014 BODY is the sequence of statements in the section. */
1015
1016 gimple *
gimple_build_omp_section(gimple_seq body)1017 gimple_build_omp_section (gimple_seq body)
1018 {
1019 gimple *p = gimple_alloc (GIMPLE_OMP_SECTION, 0);
1020 if (body)
1021 gimple_omp_set_body (p, body);
1022
1023 return p;
1024 }
1025
1026
1027 /* Build a GIMPLE_OMP_MASTER statement.
1028
1029 BODY is the sequence of statements to be executed by just the master. */
1030
1031 gimple *
gimple_build_omp_master(gimple_seq body)1032 gimple_build_omp_master (gimple_seq body)
1033 {
1034 gimple *p = gimple_alloc (GIMPLE_OMP_MASTER, 0);
1035 if (body)
1036 gimple_omp_set_body (p, body);
1037
1038 return p;
1039 }
1040
1041 /* Build a GIMPLE_OMP_MASKED statement.
1042
1043 BODY is the sequence of statements to be executed by the selected thread(s). */
1044
1045 gimple *
gimple_build_omp_masked(gimple_seq body,tree clauses)1046 gimple_build_omp_masked (gimple_seq body, tree clauses)
1047 {
1048 gimple *p = gimple_alloc (GIMPLE_OMP_MASKED, 0);
1049 gimple_omp_masked_set_clauses (p, clauses);
1050 if (body)
1051 gimple_omp_set_body (p, body);
1052
1053 return p;
1054 }
1055
1056 /* Build a GIMPLE_OMP_TASKGROUP statement.
1057
1058 BODY is the sequence of statements to be executed by the taskgroup
1059 construct.
1060 CLAUSES are any of the construct's clauses. */
1061
1062 gimple *
gimple_build_omp_taskgroup(gimple_seq body,tree clauses)1063 gimple_build_omp_taskgroup (gimple_seq body, tree clauses)
1064 {
1065 gimple *p = gimple_alloc (GIMPLE_OMP_TASKGROUP, 0);
1066 gimple_omp_taskgroup_set_clauses (p, clauses);
1067 if (body)
1068 gimple_omp_set_body (p, body);
1069
1070 return p;
1071 }
1072
1073
1074 /* Build a GIMPLE_OMP_CONTINUE statement.
1075
1076 CONTROL_DEF is the definition of the control variable.
1077 CONTROL_USE is the use of the control variable. */
1078
1079 gomp_continue *
gimple_build_omp_continue(tree control_def,tree control_use)1080 gimple_build_omp_continue (tree control_def, tree control_use)
1081 {
1082 gomp_continue *p
1083 = as_a <gomp_continue *> (gimple_alloc (GIMPLE_OMP_CONTINUE, 0));
1084 gimple_omp_continue_set_control_def (p, control_def);
1085 gimple_omp_continue_set_control_use (p, control_use);
1086 return p;
1087 }
1088
1089 /* Build a GIMPLE_OMP_ORDERED statement.
1090
1091 BODY is the sequence of statements inside a loop that will executed in
1092 sequence.
1093 CLAUSES are clauses for this statement. */
1094
1095 gomp_ordered *
gimple_build_omp_ordered(gimple_seq body,tree clauses)1096 gimple_build_omp_ordered (gimple_seq body, tree clauses)
1097 {
1098 gomp_ordered *p
1099 = as_a <gomp_ordered *> (gimple_alloc (GIMPLE_OMP_ORDERED, 0));
1100 gimple_omp_ordered_set_clauses (p, clauses);
1101 if (body)
1102 gimple_omp_set_body (p, body);
1103
1104 return p;
1105 }
1106
1107
1108 /* Build a GIMPLE_OMP_RETURN statement.
1109 WAIT_P is true if this is a non-waiting return. */
1110
1111 gimple *
gimple_build_omp_return(bool wait_p)1112 gimple_build_omp_return (bool wait_p)
1113 {
1114 gimple *p = gimple_alloc (GIMPLE_OMP_RETURN, 0);
1115 if (wait_p)
1116 gimple_omp_return_set_nowait (p);
1117
1118 return p;
1119 }
1120
1121
1122 /* Build a GIMPLE_OMP_SCAN statement.
1123
1124 BODY is the sequence of statements to be executed by the scan
1125 construct.
1126 CLAUSES are any of the construct's clauses. */
1127
1128 gomp_scan *
gimple_build_omp_scan(gimple_seq body,tree clauses)1129 gimple_build_omp_scan (gimple_seq body, tree clauses)
1130 {
1131 gomp_scan *p
1132 = as_a <gomp_scan *> (gimple_alloc (GIMPLE_OMP_SCAN, 0));
1133 gimple_omp_scan_set_clauses (p, clauses);
1134 if (body)
1135 gimple_omp_set_body (p, body);
1136
1137 return p;
1138 }
1139
1140
1141 /* Build a GIMPLE_OMP_SECTIONS statement.
1142
1143 BODY is a sequence of section statements.
1144 CLAUSES are any of the OMP sections contsruct's clauses: private,
1145 firstprivate, lastprivate, reduction, and nowait. */
1146
1147 gomp_sections *
gimple_build_omp_sections(gimple_seq body,tree clauses)1148 gimple_build_omp_sections (gimple_seq body, tree clauses)
1149 {
1150 gomp_sections *p
1151 = as_a <gomp_sections *> (gimple_alloc (GIMPLE_OMP_SECTIONS, 0));
1152 if (body)
1153 gimple_omp_set_body (p, body);
1154 gimple_omp_sections_set_clauses (p, clauses);
1155
1156 return p;
1157 }
1158
1159
1160 /* Build a GIMPLE_OMP_SECTIONS_SWITCH. */
1161
1162 gimple *
gimple_build_omp_sections_switch(void)1163 gimple_build_omp_sections_switch (void)
1164 {
1165 return gimple_alloc (GIMPLE_OMP_SECTIONS_SWITCH, 0);
1166 }
1167
1168
1169 /* Build a GIMPLE_OMP_SINGLE statement.
1170
1171 BODY is the sequence of statements that will be executed once.
1172 CLAUSES are any of the OMP single construct's clauses: private, firstprivate,
1173 copyprivate, nowait. */
1174
1175 gomp_single *
gimple_build_omp_single(gimple_seq body,tree clauses)1176 gimple_build_omp_single (gimple_seq body, tree clauses)
1177 {
1178 gomp_single *p
1179 = as_a <gomp_single *> (gimple_alloc (GIMPLE_OMP_SINGLE, 0));
1180 if (body)
1181 gimple_omp_set_body (p, body);
1182 gimple_omp_single_set_clauses (p, clauses);
1183
1184 return p;
1185 }
1186
1187
1188 /* Build a GIMPLE_OMP_SCOPE statement.
1189
1190 BODY is the sequence of statements that will be executed once.
1191 CLAUSES are any of the OMP scope construct's clauses: private, reduction,
1192 nowait. */
1193
1194 gimple *
gimple_build_omp_scope(gimple_seq body,tree clauses)1195 gimple_build_omp_scope (gimple_seq body, tree clauses)
1196 {
1197 gimple *p = gimple_alloc (GIMPLE_OMP_SCOPE, 0);
1198 gimple_omp_scope_set_clauses (p, clauses);
1199 if (body)
1200 gimple_omp_set_body (p, body);
1201
1202 return p;
1203 }
1204
1205
1206 /* Build a GIMPLE_OMP_TARGET statement.
1207
1208 BODY is the sequence of statements that will be executed.
1209 KIND is the kind of the region.
1210 CLAUSES are any of the construct's clauses. */
1211
1212 gomp_target *
gimple_build_omp_target(gimple_seq body,int kind,tree clauses)1213 gimple_build_omp_target (gimple_seq body, int kind, tree clauses)
1214 {
1215 gomp_target *p
1216 = as_a <gomp_target *> (gimple_alloc (GIMPLE_OMP_TARGET, 0));
1217 if (body)
1218 gimple_omp_set_body (p, body);
1219 gimple_omp_target_set_clauses (p, clauses);
1220 gimple_omp_target_set_kind (p, kind);
1221
1222 return p;
1223 }
1224
1225
1226 /* Build a GIMPLE_OMP_TEAMS statement.
1227
1228 BODY is the sequence of statements that will be executed.
1229 CLAUSES are any of the OMP teams construct's clauses. */
1230
1231 gomp_teams *
gimple_build_omp_teams(gimple_seq body,tree clauses)1232 gimple_build_omp_teams (gimple_seq body, tree clauses)
1233 {
1234 gomp_teams *p = as_a <gomp_teams *> (gimple_alloc (GIMPLE_OMP_TEAMS, 0));
1235 if (body)
1236 gimple_omp_set_body (p, body);
1237 gimple_omp_teams_set_clauses (p, clauses);
1238
1239 return p;
1240 }
1241
1242
1243 /* Build a GIMPLE_OMP_ATOMIC_LOAD statement. */
1244
1245 gomp_atomic_load *
gimple_build_omp_atomic_load(tree lhs,tree rhs,enum omp_memory_order mo)1246 gimple_build_omp_atomic_load (tree lhs, tree rhs, enum omp_memory_order mo)
1247 {
1248 gomp_atomic_load *p
1249 = as_a <gomp_atomic_load *> (gimple_alloc (GIMPLE_OMP_ATOMIC_LOAD, 0));
1250 gimple_omp_atomic_load_set_lhs (p, lhs);
1251 gimple_omp_atomic_load_set_rhs (p, rhs);
1252 gimple_omp_atomic_set_memory_order (p, mo);
1253 return p;
1254 }
1255
1256 /* Build a GIMPLE_OMP_ATOMIC_STORE statement.
1257
1258 VAL is the value we are storing. */
1259
1260 gomp_atomic_store *
gimple_build_omp_atomic_store(tree val,enum omp_memory_order mo)1261 gimple_build_omp_atomic_store (tree val, enum omp_memory_order mo)
1262 {
1263 gomp_atomic_store *p
1264 = as_a <gomp_atomic_store *> (gimple_alloc (GIMPLE_OMP_ATOMIC_STORE, 0));
1265 gimple_omp_atomic_store_set_val (p, val);
1266 gimple_omp_atomic_set_memory_order (p, mo);
1267 return p;
1268 }
1269
1270 /* Build a GIMPLE_TRANSACTION statement. */
1271
1272 gtransaction *
gimple_build_transaction(gimple_seq body)1273 gimple_build_transaction (gimple_seq body)
1274 {
1275 gtransaction *p
1276 = as_a <gtransaction *> (gimple_alloc (GIMPLE_TRANSACTION, 0));
1277 gimple_transaction_set_body (p, body);
1278 gimple_transaction_set_label_norm (p, 0);
1279 gimple_transaction_set_label_uninst (p, 0);
1280 gimple_transaction_set_label_over (p, 0);
1281 return p;
1282 }
1283
1284 #if defined ENABLE_GIMPLE_CHECKING
1285 /* Complain of a gimple type mismatch and die. */
1286
1287 void
gimple_check_failed(const gimple * gs,const char * file,int line,const char * function,enum gimple_code code,enum tree_code subcode)1288 gimple_check_failed (const gimple *gs, const char *file, int line,
1289 const char *function, enum gimple_code code,
1290 enum tree_code subcode)
1291 {
1292 internal_error ("gimple check: expected %s(%s), have %s(%s) in %s, at %s:%d",
1293 gimple_code_name[code],
1294 get_tree_code_name (subcode),
1295 gimple_code_name[gimple_code (gs)],
1296 gs->subcode > 0
1297 ? get_tree_code_name ((enum tree_code) gs->subcode)
1298 : "",
1299 function, trim_filename (file), line);
1300 }
1301 #endif /* ENABLE_GIMPLE_CHECKING */
1302
1303
1304 /* Link gimple statement GS to the end of the sequence *SEQ_P. If
1305 *SEQ_P is NULL, a new sequence is allocated. */
1306
1307 void
gimple_seq_add_stmt(gimple_seq * seq_p,gimple * gs)1308 gimple_seq_add_stmt (gimple_seq *seq_p, gimple *gs)
1309 {
1310 gimple_stmt_iterator si;
1311 if (gs == NULL)
1312 return;
1313
1314 si = gsi_last (*seq_p);
1315 gsi_insert_after (&si, gs, GSI_NEW_STMT);
1316 }
1317
1318 /* Link gimple statement GS to the end of the sequence *SEQ_P. If
1319 *SEQ_P is NULL, a new sequence is allocated. This function is
1320 similar to gimple_seq_add_stmt, but does not scan the operands.
1321 During gimplification, we need to manipulate statement sequences
1322 before the def/use vectors have been constructed. */
1323
1324 void
gimple_seq_add_stmt_without_update(gimple_seq * seq_p,gimple * gs)1325 gimple_seq_add_stmt_without_update (gimple_seq *seq_p, gimple *gs)
1326 {
1327 gimple_stmt_iterator si;
1328
1329 if (gs == NULL)
1330 return;
1331
1332 si = gsi_last (*seq_p);
1333 gsi_insert_after_without_update (&si, gs, GSI_NEW_STMT);
1334 }
1335
1336 /* Append sequence SRC to the end of sequence *DST_P. If *DST_P is
1337 NULL, a new sequence is allocated. */
1338
1339 void
gimple_seq_add_seq(gimple_seq * dst_p,gimple_seq src)1340 gimple_seq_add_seq (gimple_seq *dst_p, gimple_seq src)
1341 {
1342 gimple_stmt_iterator si;
1343 if (src == NULL)
1344 return;
1345
1346 si = gsi_last (*dst_p);
1347 gsi_insert_seq_after (&si, src, GSI_NEW_STMT);
1348 }
1349
1350 /* Append sequence SRC to the end of sequence *DST_P. If *DST_P is
1351 NULL, a new sequence is allocated. This function is
1352 similar to gimple_seq_add_seq, but does not scan the operands. */
1353
1354 void
gimple_seq_add_seq_without_update(gimple_seq * dst_p,gimple_seq src)1355 gimple_seq_add_seq_without_update (gimple_seq *dst_p, gimple_seq src)
1356 {
1357 gimple_stmt_iterator si;
1358 if (src == NULL)
1359 return;
1360
1361 si = gsi_last (*dst_p);
1362 gsi_insert_seq_after_without_update (&si, src, GSI_NEW_STMT);
1363 }
1364
1365 /* Determine whether to assign a location to the statement GS. */
1366
1367 static bool
should_carry_location_p(gimple * gs)1368 should_carry_location_p (gimple *gs)
1369 {
1370 /* Don't emit a line note for a label. We particularly don't want to
1371 emit one for the break label, since it doesn't actually correspond
1372 to the beginning of the loop/switch. */
1373 if (gimple_code (gs) == GIMPLE_LABEL)
1374 return false;
1375
1376 return true;
1377 }
1378
1379 /* Set the location for gimple statement GS to LOCATION. */
1380
1381 static void
annotate_one_with_location(gimple * gs,location_t location)1382 annotate_one_with_location (gimple *gs, location_t location)
1383 {
1384 if (!gimple_has_location (gs)
1385 && !gimple_do_not_emit_location_p (gs)
1386 && should_carry_location_p (gs))
1387 gimple_set_location (gs, location);
1388 }
1389
1390 /* Set LOCATION for all the statements after iterator GSI in sequence
1391 SEQ. If GSI is pointing to the end of the sequence, start with the
1392 first statement in SEQ. */
1393
1394 void
annotate_all_with_location_after(gimple_seq seq,gimple_stmt_iterator gsi,location_t location)1395 annotate_all_with_location_after (gimple_seq seq, gimple_stmt_iterator gsi,
1396 location_t location)
1397 {
1398 if (gsi_end_p (gsi))
1399 gsi = gsi_start (seq);
1400 else
1401 gsi_next (&gsi);
1402
1403 for (; !gsi_end_p (gsi); gsi_next (&gsi))
1404 annotate_one_with_location (gsi_stmt (gsi), location);
1405 }
1406
1407 /* Set the location for all the statements in a sequence STMT_P to LOCATION. */
1408
1409 void
annotate_all_with_location(gimple_seq stmt_p,location_t location)1410 annotate_all_with_location (gimple_seq stmt_p, location_t location)
1411 {
1412 gimple_stmt_iterator i;
1413
1414 if (gimple_seq_empty_p (stmt_p))
1415 return;
1416
1417 for (i = gsi_start (stmt_p); !gsi_end_p (i); gsi_next (&i))
1418 {
1419 gimple *gs = gsi_stmt (i);
1420 annotate_one_with_location (gs, location);
1421 }
1422 }
1423
1424 /* Helper function of empty_body_p. Return true if STMT is an empty
1425 statement. */
1426
1427 static bool
empty_stmt_p(gimple * stmt)1428 empty_stmt_p (gimple *stmt)
1429 {
1430 if (gimple_code (stmt) == GIMPLE_NOP)
1431 return true;
1432 if (gbind *bind_stmt = dyn_cast <gbind *> (stmt))
1433 return empty_body_p (gimple_bind_body (bind_stmt));
1434 return false;
1435 }
1436
1437
1438 /* Return true if BODY contains nothing but empty statements. */
1439
1440 bool
empty_body_p(gimple_seq body)1441 empty_body_p (gimple_seq body)
1442 {
1443 gimple_stmt_iterator i;
1444
1445 if (gimple_seq_empty_p (body))
1446 return true;
1447 for (i = gsi_start (body); !gsi_end_p (i); gsi_next (&i))
1448 if (!empty_stmt_p (gsi_stmt (i))
1449 && !is_gimple_debug (gsi_stmt (i)))
1450 return false;
1451
1452 return true;
1453 }
1454
1455
1456 /* Perform a deep copy of sequence SRC and return the result. */
1457
1458 gimple_seq
gimple_seq_copy(gimple_seq src)1459 gimple_seq_copy (gimple_seq src)
1460 {
1461 gimple_stmt_iterator gsi;
1462 gimple_seq new_seq = NULL;
1463 gimple *stmt;
1464
1465 for (gsi = gsi_start (src); !gsi_end_p (gsi); gsi_next (&gsi))
1466 {
1467 stmt = gimple_copy (gsi_stmt (gsi));
1468 gimple_seq_add_stmt (&new_seq, stmt);
1469 }
1470
1471 return new_seq;
1472 }
1473
1474
1475
1476 /* Return true if calls C1 and C2 are known to go to the same function. */
1477
1478 bool
gimple_call_same_target_p(const gimple * c1,const gimple * c2)1479 gimple_call_same_target_p (const gimple *c1, const gimple *c2)
1480 {
1481 if (gimple_call_internal_p (c1))
1482 return (gimple_call_internal_p (c2)
1483 && gimple_call_internal_fn (c1) == gimple_call_internal_fn (c2)
1484 && (!gimple_call_internal_unique_p (as_a <const gcall *> (c1))
1485 || c1 == c2));
1486 else
1487 return (gimple_call_fn (c1) == gimple_call_fn (c2)
1488 || (gimple_call_fndecl (c1)
1489 && gimple_call_fndecl (c1) == gimple_call_fndecl (c2)));
1490 }
1491
1492 /* Detect flags from a GIMPLE_CALL. This is just like
1493 call_expr_flags, but for gimple tuples. */
1494
1495 int
gimple_call_flags(const gimple * stmt)1496 gimple_call_flags (const gimple *stmt)
1497 {
1498 int flags = 0;
1499
1500 if (gimple_call_internal_p (stmt))
1501 flags = internal_fn_flags (gimple_call_internal_fn (stmt));
1502 else
1503 {
1504 tree decl = gimple_call_fndecl (stmt);
1505 if (decl)
1506 flags = flags_from_decl_or_type (decl);
1507 flags |= flags_from_decl_or_type (gimple_call_fntype (stmt));
1508 }
1509
1510 if (stmt->subcode & GF_CALL_NOTHROW)
1511 flags |= ECF_NOTHROW;
1512
1513 if (stmt->subcode & GF_CALL_BY_DESCRIPTOR)
1514 flags |= ECF_BY_DESCRIPTOR;
1515
1516 return flags;
1517 }
1518
1519 /* Return the "fn spec" string for call STMT. */
1520
1521 attr_fnspec
gimple_call_fnspec(const gcall * stmt)1522 gimple_call_fnspec (const gcall *stmt)
1523 {
1524 tree type, attr;
1525
1526 if (gimple_call_internal_p (stmt))
1527 {
1528 const_tree spec = internal_fn_fnspec (gimple_call_internal_fn (stmt));
1529 if (spec)
1530 return spec;
1531 else
1532 return "";
1533 }
1534
1535 type = gimple_call_fntype (stmt);
1536 if (type)
1537 {
1538 attr = lookup_attribute ("fn spec", TYPE_ATTRIBUTES (type));
1539 if (attr)
1540 return TREE_VALUE (TREE_VALUE (attr));
1541 }
1542 if (gimple_call_builtin_p (stmt, BUILT_IN_NORMAL))
1543 return builtin_fnspec (gimple_call_fndecl (stmt));
1544 tree fndecl = gimple_call_fndecl (stmt);
1545 /* If the call is to a replaceable operator delete and results
1546 from a delete expression as opposed to a direct call to
1547 such operator, then we can treat it as free. */
1548 if (fndecl
1549 && DECL_IS_OPERATOR_DELETE_P (fndecl)
1550 && DECL_IS_REPLACEABLE_OPERATOR (fndecl)
1551 && gimple_call_from_new_or_delete (stmt))
1552 return ". o ";
1553 /* Similarly operator new can be treated as malloc. */
1554 if (fndecl
1555 && DECL_IS_REPLACEABLE_OPERATOR_NEW_P (fndecl)
1556 && gimple_call_from_new_or_delete (stmt))
1557 return "m ";
1558 return "";
1559 }
1560
1561 /* Detects argument flags for argument number ARG on call STMT. */
1562
1563 int
gimple_call_arg_flags(const gcall * stmt,unsigned arg)1564 gimple_call_arg_flags (const gcall *stmt, unsigned arg)
1565 {
1566 attr_fnspec fnspec = gimple_call_fnspec (stmt);
1567 int flags = 0;
1568
1569 if (fnspec.known_p ())
1570 flags = fnspec.arg_eaf_flags (arg);
1571 tree callee = gimple_call_fndecl (stmt);
1572 if (callee)
1573 {
1574 cgraph_node *node = cgraph_node::get (callee);
1575 modref_summary *summary = node ? get_modref_function_summary (node)
1576 : NULL;
1577
1578 if (summary && summary->arg_flags.length () > arg)
1579 {
1580 int modref_flags = summary->arg_flags[arg];
1581
1582 /* We have possibly optimized out load. Be conservative here. */
1583 if (!node->binds_to_current_def_p ())
1584 modref_flags = interposable_eaf_flags (modref_flags, flags);
1585 if (dbg_cnt (ipa_mod_ref_pta))
1586 flags |= modref_flags;
1587 }
1588 }
1589 return flags;
1590 }
1591
1592 /* Detects argument flags for return slot on call STMT. */
1593
1594 int
gimple_call_retslot_flags(const gcall * stmt)1595 gimple_call_retslot_flags (const gcall *stmt)
1596 {
1597 int flags = implicit_retslot_eaf_flags;
1598
1599 tree callee = gimple_call_fndecl (stmt);
1600 if (callee)
1601 {
1602 cgraph_node *node = cgraph_node::get (callee);
1603 modref_summary *summary = node ? get_modref_function_summary (node)
1604 : NULL;
1605
1606 if (summary)
1607 {
1608 int modref_flags = summary->retslot_flags;
1609
1610 /* We have possibly optimized out load. Be conservative here. */
1611 if (!node->binds_to_current_def_p ())
1612 modref_flags = interposable_eaf_flags (modref_flags, flags);
1613 if (dbg_cnt (ipa_mod_ref_pta))
1614 flags |= modref_flags;
1615 }
1616 }
1617 return flags;
1618 }
1619
1620 /* Detects argument flags for static chain on call STMT. */
1621
1622 int
gimple_call_static_chain_flags(const gcall * stmt)1623 gimple_call_static_chain_flags (const gcall *stmt)
1624 {
1625 int flags = 0;
1626
1627 tree callee = gimple_call_fndecl (stmt);
1628 if (callee)
1629 {
1630 cgraph_node *node = cgraph_node::get (callee);
1631 modref_summary *summary = node ? get_modref_function_summary (node)
1632 : NULL;
1633
1634 /* Nested functions should always bind to current def since
1635 there is no public ABI for them. */
1636 gcc_checking_assert (node->binds_to_current_def_p ());
1637 if (summary)
1638 {
1639 int modref_flags = summary->static_chain_flags;
1640
1641 if (dbg_cnt (ipa_mod_ref_pta))
1642 flags |= modref_flags;
1643 }
1644 }
1645 return flags;
1646 }
1647
1648 /* Detects return flags for the call STMT. */
1649
1650 int
gimple_call_return_flags(const gcall * stmt)1651 gimple_call_return_flags (const gcall *stmt)
1652 {
1653 if (gimple_call_flags (stmt) & ECF_MALLOC)
1654 return ERF_NOALIAS;
1655
1656 attr_fnspec fnspec = gimple_call_fnspec (stmt);
1657
1658 unsigned int arg_no;
1659 if (fnspec.returns_arg (&arg_no))
1660 return ERF_RETURNS_ARG | arg_no;
1661
1662 if (fnspec.returns_noalias_p ())
1663 return ERF_NOALIAS;
1664 return 0;
1665 }
1666
1667
1668 /* Return true if call STMT is known to return a non-zero result. */
1669
1670 bool
gimple_call_nonnull_result_p(gcall * call)1671 gimple_call_nonnull_result_p (gcall *call)
1672 {
1673 tree fndecl = gimple_call_fndecl (call);
1674 if (!fndecl)
1675 return false;
1676 if (flag_delete_null_pointer_checks && !flag_check_new
1677 && DECL_IS_OPERATOR_NEW_P (fndecl)
1678 && !TREE_NOTHROW (fndecl))
1679 return true;
1680
1681 /* References are always non-NULL. */
1682 if (flag_delete_null_pointer_checks
1683 && TREE_CODE (TREE_TYPE (fndecl)) == REFERENCE_TYPE)
1684 return true;
1685
1686 if (flag_delete_null_pointer_checks
1687 && lookup_attribute ("returns_nonnull",
1688 TYPE_ATTRIBUTES (gimple_call_fntype (call))))
1689 return true;
1690 return gimple_alloca_call_p (call);
1691 }
1692
1693
1694 /* If CALL returns a non-null result in an argument, return that arg. */
1695
1696 tree
gimple_call_nonnull_arg(gcall * call)1697 gimple_call_nonnull_arg (gcall *call)
1698 {
1699 tree fndecl = gimple_call_fndecl (call);
1700 if (!fndecl)
1701 return NULL_TREE;
1702
1703 unsigned rf = gimple_call_return_flags (call);
1704 if (rf & ERF_RETURNS_ARG)
1705 {
1706 unsigned argnum = rf & ERF_RETURN_ARG_MASK;
1707 if (argnum < gimple_call_num_args (call))
1708 {
1709 tree arg = gimple_call_arg (call, argnum);
1710 if (SSA_VAR_P (arg)
1711 && infer_nonnull_range_by_attribute (call, arg))
1712 return arg;
1713 }
1714 }
1715 return NULL_TREE;
1716 }
1717
1718
1719 /* Return true if GS is a copy assignment. */
1720
1721 bool
gimple_assign_copy_p(gimple * gs)1722 gimple_assign_copy_p (gimple *gs)
1723 {
1724 return (gimple_assign_single_p (gs)
1725 && is_gimple_val (gimple_op (gs, 1)));
1726 }
1727
1728
1729 /* Return true if GS is a SSA_NAME copy assignment. */
1730
1731 bool
gimple_assign_ssa_name_copy_p(gimple * gs)1732 gimple_assign_ssa_name_copy_p (gimple *gs)
1733 {
1734 return (gimple_assign_single_p (gs)
1735 && TREE_CODE (gimple_assign_lhs (gs)) == SSA_NAME
1736 && TREE_CODE (gimple_assign_rhs1 (gs)) == SSA_NAME);
1737 }
1738
1739
1740 /* Return true if GS is an assignment with a unary RHS, but the
1741 operator has no effect on the assigned value. The logic is adapted
1742 from STRIP_NOPS. This predicate is intended to be used in tuplifying
1743 instances in which STRIP_NOPS was previously applied to the RHS of
1744 an assignment.
1745
1746 NOTE: In the use cases that led to the creation of this function
1747 and of gimple_assign_single_p, it is typical to test for either
1748 condition and to proceed in the same manner. In each case, the
1749 assigned value is represented by the single RHS operand of the
1750 assignment. I suspect there may be cases where gimple_assign_copy_p,
1751 gimple_assign_single_p, or equivalent logic is used where a similar
1752 treatment of unary NOPs is appropriate. */
1753
1754 bool
gimple_assign_unary_nop_p(gimple * gs)1755 gimple_assign_unary_nop_p (gimple *gs)
1756 {
1757 return (is_gimple_assign (gs)
1758 && (CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (gs))
1759 || gimple_assign_rhs_code (gs) == NON_LVALUE_EXPR)
1760 && gimple_assign_rhs1 (gs) != error_mark_node
1761 && (TYPE_MODE (TREE_TYPE (gimple_assign_lhs (gs)))
1762 == TYPE_MODE (TREE_TYPE (gimple_assign_rhs1 (gs)))));
1763 }
1764
1765 /* Set BB to be the basic block holding G. */
1766
1767 void
gimple_set_bb(gimple * stmt,basic_block bb)1768 gimple_set_bb (gimple *stmt, basic_block bb)
1769 {
1770 stmt->bb = bb;
1771
1772 if (gimple_code (stmt) != GIMPLE_LABEL)
1773 return;
1774
1775 /* If the statement is a label, add the label to block-to-labels map
1776 so that we can speed up edge creation for GIMPLE_GOTOs. */
1777 if (cfun->cfg)
1778 {
1779 tree t;
1780 int uid;
1781
1782 t = gimple_label_label (as_a <glabel *> (stmt));
1783 uid = LABEL_DECL_UID (t);
1784 if (uid == -1)
1785 {
1786 unsigned old_len =
1787 vec_safe_length (label_to_block_map_for_fn (cfun));
1788 LABEL_DECL_UID (t) = uid = cfun->cfg->last_label_uid++;
1789 if (old_len <= (unsigned) uid)
1790 vec_safe_grow_cleared (label_to_block_map_for_fn (cfun), uid + 1);
1791 }
1792
1793 (*label_to_block_map_for_fn (cfun))[uid] = bb;
1794 }
1795 }
1796
1797
1798 /* Modify the RHS of the assignment pointed-to by GSI using the
1799 operands in the expression tree EXPR.
1800
1801 NOTE: The statement pointed-to by GSI may be reallocated if it
1802 did not have enough operand slots.
1803
1804 This function is useful to convert an existing tree expression into
1805 the flat representation used for the RHS of a GIMPLE assignment.
1806 It will reallocate memory as needed to expand or shrink the number
1807 of operand slots needed to represent EXPR.
1808
1809 NOTE: If you find yourself building a tree and then calling this
1810 function, you are most certainly doing it the slow way. It is much
1811 better to build a new assignment or to use the function
1812 gimple_assign_set_rhs_with_ops, which does not require an
1813 expression tree to be built. */
1814
1815 void
gimple_assign_set_rhs_from_tree(gimple_stmt_iterator * gsi,tree expr)1816 gimple_assign_set_rhs_from_tree (gimple_stmt_iterator *gsi, tree expr)
1817 {
1818 enum tree_code subcode;
1819 tree op1, op2, op3;
1820
1821 extract_ops_from_tree (expr, &subcode, &op1, &op2, &op3);
1822 gimple_assign_set_rhs_with_ops (gsi, subcode, op1, op2, op3);
1823 }
1824
1825
1826 /* Set the RHS of assignment statement pointed-to by GSI to CODE with
1827 operands OP1, OP2 and OP3.
1828
1829 NOTE: The statement pointed-to by GSI may be reallocated if it
1830 did not have enough operand slots. */
1831
1832 void
gimple_assign_set_rhs_with_ops(gimple_stmt_iterator * gsi,enum tree_code code,tree op1,tree op2,tree op3)1833 gimple_assign_set_rhs_with_ops (gimple_stmt_iterator *gsi, enum tree_code code,
1834 tree op1, tree op2, tree op3)
1835 {
1836 unsigned new_rhs_ops = get_gimple_rhs_num_ops (code);
1837 gimple *stmt = gsi_stmt (*gsi);
1838 gimple *old_stmt = stmt;
1839
1840 /* If the new CODE needs more operands, allocate a new statement. */
1841 if (gimple_num_ops (stmt) < new_rhs_ops + 1)
1842 {
1843 tree lhs = gimple_assign_lhs (old_stmt);
1844 stmt = gimple_alloc (gimple_code (old_stmt), new_rhs_ops + 1);
1845 memcpy (stmt, old_stmt, gimple_size (gimple_code (old_stmt)));
1846 gimple_init_singleton (stmt);
1847
1848 /* The LHS needs to be reset as this also changes the SSA name
1849 on the LHS. */
1850 gimple_assign_set_lhs (stmt, lhs);
1851 }
1852
1853 gimple_set_num_ops (stmt, new_rhs_ops + 1);
1854 gimple_set_subcode (stmt, code);
1855 gimple_assign_set_rhs1 (stmt, op1);
1856 if (new_rhs_ops > 1)
1857 gimple_assign_set_rhs2 (stmt, op2);
1858 if (new_rhs_ops > 2)
1859 gimple_assign_set_rhs3 (stmt, op3);
1860 if (stmt != old_stmt)
1861 gsi_replace (gsi, stmt, false);
1862 }
1863
1864
1865 /* Return the LHS of a statement that performs an assignment,
1866 either a GIMPLE_ASSIGN or a GIMPLE_CALL. Returns NULL_TREE
1867 for a call to a function that returns no value, or for a
1868 statement other than an assignment or a call. */
1869
1870 tree
gimple_get_lhs(const gimple * stmt)1871 gimple_get_lhs (const gimple *stmt)
1872 {
1873 enum gimple_code code = gimple_code (stmt);
1874
1875 if (code == GIMPLE_ASSIGN)
1876 return gimple_assign_lhs (stmt);
1877 else if (code == GIMPLE_CALL)
1878 return gimple_call_lhs (stmt);
1879 else if (code == GIMPLE_PHI)
1880 return gimple_phi_result (stmt);
1881 else
1882 return NULL_TREE;
1883 }
1884
1885
1886 /* Set the LHS of a statement that performs an assignment,
1887 either a GIMPLE_ASSIGN or a GIMPLE_CALL. */
1888
1889 void
gimple_set_lhs(gimple * stmt,tree lhs)1890 gimple_set_lhs (gimple *stmt, tree lhs)
1891 {
1892 enum gimple_code code = gimple_code (stmt);
1893
1894 if (code == GIMPLE_ASSIGN)
1895 gimple_assign_set_lhs (stmt, lhs);
1896 else if (code == GIMPLE_CALL)
1897 gimple_call_set_lhs (stmt, lhs);
1898 else
1899 gcc_unreachable ();
1900 }
1901
1902
1903 /* Return a deep copy of statement STMT. All the operands from STMT
1904 are reallocated and copied using unshare_expr. The DEF, USE, VDEF
1905 and VUSE operand arrays are set to empty in the new copy. The new
1906 copy isn't part of any sequence. */
1907
1908 gimple *
gimple_copy(gimple * stmt)1909 gimple_copy (gimple *stmt)
1910 {
1911 enum gimple_code code = gimple_code (stmt);
1912 unsigned num_ops = gimple_num_ops (stmt);
1913 gimple *copy = gimple_alloc (code, num_ops);
1914 unsigned i;
1915
1916 /* Shallow copy all the fields from STMT. */
1917 memcpy (copy, stmt, gimple_size (code));
1918 gimple_init_singleton (copy);
1919
1920 /* If STMT has sub-statements, deep-copy them as well. */
1921 if (gimple_has_substatements (stmt))
1922 {
1923 gimple_seq new_seq;
1924 tree t;
1925
1926 switch (gimple_code (stmt))
1927 {
1928 case GIMPLE_BIND:
1929 {
1930 gbind *bind_stmt = as_a <gbind *> (stmt);
1931 gbind *bind_copy = as_a <gbind *> (copy);
1932 new_seq = gimple_seq_copy (gimple_bind_body (bind_stmt));
1933 gimple_bind_set_body (bind_copy, new_seq);
1934 gimple_bind_set_vars (bind_copy,
1935 unshare_expr (gimple_bind_vars (bind_stmt)));
1936 gimple_bind_set_block (bind_copy, gimple_bind_block (bind_stmt));
1937 }
1938 break;
1939
1940 case GIMPLE_CATCH:
1941 {
1942 gcatch *catch_stmt = as_a <gcatch *> (stmt);
1943 gcatch *catch_copy = as_a <gcatch *> (copy);
1944 new_seq = gimple_seq_copy (gimple_catch_handler (catch_stmt));
1945 gimple_catch_set_handler (catch_copy, new_seq);
1946 t = unshare_expr (gimple_catch_types (catch_stmt));
1947 gimple_catch_set_types (catch_copy, t);
1948 }
1949 break;
1950
1951 case GIMPLE_EH_FILTER:
1952 {
1953 geh_filter *eh_filter_stmt = as_a <geh_filter *> (stmt);
1954 geh_filter *eh_filter_copy = as_a <geh_filter *> (copy);
1955 new_seq
1956 = gimple_seq_copy (gimple_eh_filter_failure (eh_filter_stmt));
1957 gimple_eh_filter_set_failure (eh_filter_copy, new_seq);
1958 t = unshare_expr (gimple_eh_filter_types (eh_filter_stmt));
1959 gimple_eh_filter_set_types (eh_filter_copy, t);
1960 }
1961 break;
1962
1963 case GIMPLE_EH_ELSE:
1964 {
1965 geh_else *eh_else_stmt = as_a <geh_else *> (stmt);
1966 geh_else *eh_else_copy = as_a <geh_else *> (copy);
1967 new_seq = gimple_seq_copy (gimple_eh_else_n_body (eh_else_stmt));
1968 gimple_eh_else_set_n_body (eh_else_copy, new_seq);
1969 new_seq = gimple_seq_copy (gimple_eh_else_e_body (eh_else_stmt));
1970 gimple_eh_else_set_e_body (eh_else_copy, new_seq);
1971 }
1972 break;
1973
1974 case GIMPLE_TRY:
1975 {
1976 gtry *try_stmt = as_a <gtry *> (stmt);
1977 gtry *try_copy = as_a <gtry *> (copy);
1978 new_seq = gimple_seq_copy (gimple_try_eval (try_stmt));
1979 gimple_try_set_eval (try_copy, new_seq);
1980 new_seq = gimple_seq_copy (gimple_try_cleanup (try_stmt));
1981 gimple_try_set_cleanup (try_copy, new_seq);
1982 }
1983 break;
1984
1985 case GIMPLE_OMP_FOR:
1986 new_seq = gimple_seq_copy (gimple_omp_for_pre_body (stmt));
1987 gimple_omp_for_set_pre_body (copy, new_seq);
1988 t = unshare_expr (gimple_omp_for_clauses (stmt));
1989 gimple_omp_for_set_clauses (copy, t);
1990 {
1991 gomp_for *omp_for_copy = as_a <gomp_for *> (copy);
1992 omp_for_copy->iter = ggc_vec_alloc<gimple_omp_for_iter>
1993 ( gimple_omp_for_collapse (stmt));
1994 }
1995 for (i = 0; i < gimple_omp_for_collapse (stmt); i++)
1996 {
1997 gimple_omp_for_set_cond (copy, i,
1998 gimple_omp_for_cond (stmt, i));
1999 gimple_omp_for_set_index (copy, i,
2000 gimple_omp_for_index (stmt, i));
2001 t = unshare_expr (gimple_omp_for_initial (stmt, i));
2002 gimple_omp_for_set_initial (copy, i, t);
2003 t = unshare_expr (gimple_omp_for_final (stmt, i));
2004 gimple_omp_for_set_final (copy, i, t);
2005 t = unshare_expr (gimple_omp_for_incr (stmt, i));
2006 gimple_omp_for_set_incr (copy, i, t);
2007 }
2008 goto copy_omp_body;
2009
2010 case GIMPLE_OMP_PARALLEL:
2011 {
2012 gomp_parallel *omp_par_stmt = as_a <gomp_parallel *> (stmt);
2013 gomp_parallel *omp_par_copy = as_a <gomp_parallel *> (copy);
2014 t = unshare_expr (gimple_omp_parallel_clauses (omp_par_stmt));
2015 gimple_omp_parallel_set_clauses (omp_par_copy, t);
2016 t = unshare_expr (gimple_omp_parallel_child_fn (omp_par_stmt));
2017 gimple_omp_parallel_set_child_fn (omp_par_copy, t);
2018 t = unshare_expr (gimple_omp_parallel_data_arg (omp_par_stmt));
2019 gimple_omp_parallel_set_data_arg (omp_par_copy, t);
2020 }
2021 goto copy_omp_body;
2022
2023 case GIMPLE_OMP_TASK:
2024 t = unshare_expr (gimple_omp_task_clauses (stmt));
2025 gimple_omp_task_set_clauses (copy, t);
2026 t = unshare_expr (gimple_omp_task_child_fn (stmt));
2027 gimple_omp_task_set_child_fn (copy, t);
2028 t = unshare_expr (gimple_omp_task_data_arg (stmt));
2029 gimple_omp_task_set_data_arg (copy, t);
2030 t = unshare_expr (gimple_omp_task_copy_fn (stmt));
2031 gimple_omp_task_set_copy_fn (copy, t);
2032 t = unshare_expr (gimple_omp_task_arg_size (stmt));
2033 gimple_omp_task_set_arg_size (copy, t);
2034 t = unshare_expr (gimple_omp_task_arg_align (stmt));
2035 gimple_omp_task_set_arg_align (copy, t);
2036 goto copy_omp_body;
2037
2038 case GIMPLE_OMP_CRITICAL:
2039 t = unshare_expr (gimple_omp_critical_name
2040 (as_a <gomp_critical *> (stmt)));
2041 gimple_omp_critical_set_name (as_a <gomp_critical *> (copy), t);
2042 t = unshare_expr (gimple_omp_critical_clauses
2043 (as_a <gomp_critical *> (stmt)));
2044 gimple_omp_critical_set_clauses (as_a <gomp_critical *> (copy), t);
2045 goto copy_omp_body;
2046
2047 case GIMPLE_OMP_ORDERED:
2048 t = unshare_expr (gimple_omp_ordered_clauses
2049 (as_a <gomp_ordered *> (stmt)));
2050 gimple_omp_ordered_set_clauses (as_a <gomp_ordered *> (copy), t);
2051 goto copy_omp_body;
2052
2053 case GIMPLE_OMP_SCAN:
2054 t = gimple_omp_scan_clauses (as_a <gomp_scan *> (stmt));
2055 t = unshare_expr (t);
2056 gimple_omp_scan_set_clauses (as_a <gomp_scan *> (copy), t);
2057 goto copy_omp_body;
2058
2059 case GIMPLE_OMP_TASKGROUP:
2060 t = unshare_expr (gimple_omp_taskgroup_clauses (stmt));
2061 gimple_omp_taskgroup_set_clauses (copy, t);
2062 goto copy_omp_body;
2063
2064 case GIMPLE_OMP_SECTIONS:
2065 t = unshare_expr (gimple_omp_sections_clauses (stmt));
2066 gimple_omp_sections_set_clauses (copy, t);
2067 t = unshare_expr (gimple_omp_sections_control (stmt));
2068 gimple_omp_sections_set_control (copy, t);
2069 goto copy_omp_body;
2070
2071 case GIMPLE_OMP_SINGLE:
2072 {
2073 gomp_single *omp_single_copy = as_a <gomp_single *> (copy);
2074 t = unshare_expr (gimple_omp_single_clauses (stmt));
2075 gimple_omp_single_set_clauses (omp_single_copy, t);
2076 }
2077 goto copy_omp_body;
2078
2079 case GIMPLE_OMP_SCOPE:
2080 t = unshare_expr (gimple_omp_scope_clauses (stmt));
2081 gimple_omp_scope_set_clauses (copy, t);
2082 goto copy_omp_body;
2083
2084 case GIMPLE_OMP_TARGET:
2085 {
2086 gomp_target *omp_target_stmt = as_a <gomp_target *> (stmt);
2087 gomp_target *omp_target_copy = as_a <gomp_target *> (copy);
2088 t = unshare_expr (gimple_omp_target_clauses (omp_target_stmt));
2089 gimple_omp_target_set_clauses (omp_target_copy, t);
2090 t = unshare_expr (gimple_omp_target_data_arg (omp_target_stmt));
2091 gimple_omp_target_set_data_arg (omp_target_copy, t);
2092 }
2093 goto copy_omp_body;
2094
2095 case GIMPLE_OMP_TEAMS:
2096 {
2097 gomp_teams *omp_teams_copy = as_a <gomp_teams *> (copy);
2098 t = unshare_expr (gimple_omp_teams_clauses (stmt));
2099 gimple_omp_teams_set_clauses (omp_teams_copy, t);
2100 }
2101 /* FALLTHRU */
2102
2103 case GIMPLE_OMP_SECTION:
2104 case GIMPLE_OMP_MASTER:
2105 copy_omp_body:
2106 new_seq = gimple_seq_copy (gimple_omp_body (stmt));
2107 gimple_omp_set_body (copy, new_seq);
2108 break;
2109
2110 case GIMPLE_OMP_MASKED:
2111 t = unshare_expr (gimple_omp_masked_clauses (stmt));
2112 gimple_omp_masked_set_clauses (copy, t);
2113 goto copy_omp_body;
2114
2115 case GIMPLE_TRANSACTION:
2116 new_seq = gimple_seq_copy (gimple_transaction_body (
2117 as_a <gtransaction *> (stmt)));
2118 gimple_transaction_set_body (as_a <gtransaction *> (copy),
2119 new_seq);
2120 break;
2121
2122 case GIMPLE_WITH_CLEANUP_EXPR:
2123 new_seq = gimple_seq_copy (gimple_wce_cleanup (stmt));
2124 gimple_wce_set_cleanup (copy, new_seq);
2125 break;
2126
2127 default:
2128 gcc_unreachable ();
2129 }
2130 }
2131
2132 /* Make copy of operands. */
2133 for (i = 0; i < num_ops; i++)
2134 gimple_set_op (copy, i, unshare_expr (gimple_op (stmt, i)));
2135
2136 if (gimple_has_mem_ops (stmt))
2137 {
2138 gimple_set_vdef (copy, gimple_vdef (stmt));
2139 gimple_set_vuse (copy, gimple_vuse (stmt));
2140 }
2141
2142 /* Clear out SSA operand vectors on COPY. */
2143 if (gimple_has_ops (stmt))
2144 {
2145 gimple_set_use_ops (copy, NULL);
2146
2147 /* SSA operands need to be updated. */
2148 gimple_set_modified (copy, true);
2149 }
2150
2151 if (gimple_debug_nonbind_marker_p (stmt))
2152 cfun->debug_marker_count++;
2153
2154 return copy;
2155 }
2156
2157 /* Move OLD_STMT's vuse and vdef operands to NEW_STMT, on the assumption
2158 that OLD_STMT is about to be removed. */
2159
2160 void
gimple_move_vops(gimple * new_stmt,gimple * old_stmt)2161 gimple_move_vops (gimple *new_stmt, gimple *old_stmt)
2162 {
2163 tree vdef = gimple_vdef (old_stmt);
2164 gimple_set_vuse (new_stmt, gimple_vuse (old_stmt));
2165 gimple_set_vdef (new_stmt, vdef);
2166 if (vdef && TREE_CODE (vdef) == SSA_NAME)
2167 SSA_NAME_DEF_STMT (vdef) = new_stmt;
2168 }
2169
2170 /* Return true if statement S has side-effects. We consider a
2171 statement to have side effects if:
2172
2173 - It is a GIMPLE_CALL not marked with ECF_PURE or ECF_CONST.
2174 - Any of its operands are marked TREE_THIS_VOLATILE or TREE_SIDE_EFFECTS. */
2175
2176 bool
gimple_has_side_effects(const gimple * s)2177 gimple_has_side_effects (const gimple *s)
2178 {
2179 if (is_gimple_debug (s))
2180 return false;
2181
2182 /* We don't have to scan the arguments to check for
2183 volatile arguments, though, at present, we still
2184 do a scan to check for TREE_SIDE_EFFECTS. */
2185 if (gimple_has_volatile_ops (s))
2186 return true;
2187
2188 if (gimple_code (s) == GIMPLE_ASM
2189 && gimple_asm_volatile_p (as_a <const gasm *> (s)))
2190 return true;
2191
2192 if (is_gimple_call (s))
2193 {
2194 int flags = gimple_call_flags (s);
2195
2196 /* An infinite loop is considered a side effect. */
2197 if (!(flags & (ECF_CONST | ECF_PURE))
2198 || (flags & ECF_LOOPING_CONST_OR_PURE))
2199 return true;
2200
2201 return false;
2202 }
2203
2204 return false;
2205 }
2206
2207 /* Helper for gimple_could_trap_p and gimple_assign_rhs_could_trap_p.
2208 Return true if S can trap. When INCLUDE_MEM is true, check whether
2209 the memory operations could trap. When INCLUDE_STORES is true and
2210 S is a GIMPLE_ASSIGN, the LHS of the assignment is also checked. */
2211
2212 bool
gimple_could_trap_p_1(const gimple * s,bool include_mem,bool include_stores)2213 gimple_could_trap_p_1 (const gimple *s, bool include_mem, bool include_stores)
2214 {
2215 tree t, div = NULL_TREE;
2216 enum tree_code op;
2217
2218 if (include_mem)
2219 {
2220 unsigned i, start = (is_gimple_assign (s) && !include_stores) ? 1 : 0;
2221
2222 for (i = start; i < gimple_num_ops (s); i++)
2223 if (tree_could_trap_p (gimple_op (s, i)))
2224 return true;
2225 }
2226
2227 switch (gimple_code (s))
2228 {
2229 case GIMPLE_ASM:
2230 return gimple_asm_volatile_p (as_a <const gasm *> (s));
2231
2232 case GIMPLE_CALL:
2233 if (gimple_call_internal_p (s))
2234 return false;
2235 t = gimple_call_fndecl (s);
2236 /* Assume that indirect and calls to weak functions may trap. */
2237 if (!t || !DECL_P (t) || DECL_WEAK (t))
2238 return true;
2239 return false;
2240
2241 case GIMPLE_ASSIGN:
2242 op = gimple_assign_rhs_code (s);
2243
2244 /* For COND_EXPR only the condition may trap. */
2245 if (op == COND_EXPR)
2246 return tree_could_trap_p (gimple_assign_rhs1 (s));
2247
2248 /* For comparisons we need to check rhs operand types instead of lhs type
2249 (which is BOOLEAN_TYPE). */
2250 if (TREE_CODE_CLASS (op) == tcc_comparison)
2251 t = TREE_TYPE (gimple_assign_rhs1 (s));
2252 else
2253 t = TREE_TYPE (gimple_assign_lhs (s));
2254
2255 if (get_gimple_rhs_class (op) == GIMPLE_BINARY_RHS)
2256 div = gimple_assign_rhs2 (s);
2257
2258 return (operation_could_trap_p (op, FLOAT_TYPE_P (t),
2259 (INTEGRAL_TYPE_P (t)
2260 && TYPE_OVERFLOW_TRAPS (t)),
2261 div));
2262
2263 case GIMPLE_COND:
2264 t = TREE_TYPE (gimple_cond_lhs (s));
2265 return operation_could_trap_p (gimple_cond_code (s),
2266 FLOAT_TYPE_P (t), false, NULL_TREE);
2267
2268 default:
2269 break;
2270 }
2271
2272 return false;
2273 }
2274
2275 /* Return true if statement S can trap. */
2276
2277 bool
gimple_could_trap_p(const gimple * s)2278 gimple_could_trap_p (const gimple *s)
2279 {
2280 return gimple_could_trap_p_1 (s, true, true);
2281 }
2282
2283 /* Return true if RHS of a GIMPLE_ASSIGN S can trap. */
2284
2285 bool
gimple_assign_rhs_could_trap_p(gimple * s)2286 gimple_assign_rhs_could_trap_p (gimple *s)
2287 {
2288 gcc_assert (is_gimple_assign (s));
2289 return gimple_could_trap_p_1 (s, true, false);
2290 }
2291
2292
2293 /* Print debugging information for gimple stmts generated. */
2294
2295 void
dump_gimple_statistics(void)2296 dump_gimple_statistics (void)
2297 {
2298 int i;
2299 uint64_t total_tuples = 0, total_bytes = 0;
2300
2301 if (! GATHER_STATISTICS)
2302 {
2303 fprintf (stderr, "No GIMPLE statistics\n");
2304 return;
2305 }
2306
2307 fprintf (stderr, "\nGIMPLE statements\n");
2308 fprintf (stderr, "Kind Stmts Bytes\n");
2309 fprintf (stderr, "---------------------------------------\n");
2310 for (i = 0; i < (int) gimple_alloc_kind_all; ++i)
2311 {
2312 fprintf (stderr, "%-20s %7" PRIu64 "%c %10" PRIu64 "%c\n",
2313 gimple_alloc_kind_names[i],
2314 SIZE_AMOUNT (gimple_alloc_counts[i]),
2315 SIZE_AMOUNT (gimple_alloc_sizes[i]));
2316 total_tuples += gimple_alloc_counts[i];
2317 total_bytes += gimple_alloc_sizes[i];
2318 }
2319 fprintf (stderr, "---------------------------------------\n");
2320 fprintf (stderr, "%-20s %7" PRIu64 "%c %10" PRIu64 "%c\n", "Total",
2321 SIZE_AMOUNT (total_tuples), SIZE_AMOUNT (total_bytes));
2322 fprintf (stderr, "---------------------------------------\n");
2323 }
2324
2325
2326 /* Return the number of operands needed on the RHS of a GIMPLE
2327 assignment for an expression with tree code CODE. */
2328
2329 unsigned
get_gimple_rhs_num_ops(enum tree_code code)2330 get_gimple_rhs_num_ops (enum tree_code code)
2331 {
2332 switch (get_gimple_rhs_class (code))
2333 {
2334 case GIMPLE_UNARY_RHS:
2335 case GIMPLE_SINGLE_RHS:
2336 return 1;
2337 case GIMPLE_BINARY_RHS:
2338 return 2;
2339 case GIMPLE_TERNARY_RHS:
2340 return 3;
2341 default:
2342 gcc_unreachable ();
2343 }
2344 }
2345
2346 #define DEFTREECODE(SYM, STRING, TYPE, NARGS) \
2347 (unsigned char) \
2348 ((TYPE) == tcc_unary ? GIMPLE_UNARY_RHS \
2349 : ((TYPE) == tcc_binary \
2350 || (TYPE) == tcc_comparison) ? GIMPLE_BINARY_RHS \
2351 : ((TYPE) == tcc_constant \
2352 || (TYPE) == tcc_declaration \
2353 || (TYPE) == tcc_reference) ? GIMPLE_SINGLE_RHS \
2354 : ((SYM) == TRUTH_AND_EXPR \
2355 || (SYM) == TRUTH_OR_EXPR \
2356 || (SYM) == TRUTH_XOR_EXPR) ? GIMPLE_BINARY_RHS \
2357 : (SYM) == TRUTH_NOT_EXPR ? GIMPLE_UNARY_RHS \
2358 : ((SYM) == COND_EXPR \
2359 || (SYM) == WIDEN_MULT_PLUS_EXPR \
2360 || (SYM) == WIDEN_MULT_MINUS_EXPR \
2361 || (SYM) == DOT_PROD_EXPR \
2362 || (SYM) == SAD_EXPR \
2363 || (SYM) == REALIGN_LOAD_EXPR \
2364 || (SYM) == VEC_COND_EXPR \
2365 || (SYM) == VEC_PERM_EXPR \
2366 || (SYM) == BIT_INSERT_EXPR) ? GIMPLE_TERNARY_RHS \
2367 : ((SYM) == CONSTRUCTOR \
2368 || (SYM) == OBJ_TYPE_REF \
2369 || (SYM) == ASSERT_EXPR \
2370 || (SYM) == ADDR_EXPR \
2371 || (SYM) == WITH_SIZE_EXPR \
2372 || (SYM) == SSA_NAME) ? GIMPLE_SINGLE_RHS \
2373 : GIMPLE_INVALID_RHS),
2374 #define END_OF_BASE_TREE_CODES (unsigned char) GIMPLE_INVALID_RHS,
2375
2376 const unsigned char gimple_rhs_class_table[] = {
2377 #include "all-tree.def"
2378 };
2379
2380 #undef DEFTREECODE
2381 #undef END_OF_BASE_TREE_CODES
2382
2383 /* Canonicalize a tree T for use in a COND_EXPR as conditional. Returns
2384 a canonicalized tree that is valid for a COND_EXPR or NULL_TREE, if
2385 we failed to create one. */
2386
2387 tree
canonicalize_cond_expr_cond(tree t)2388 canonicalize_cond_expr_cond (tree t)
2389 {
2390 /* Strip conversions around boolean operations. */
2391 if (CONVERT_EXPR_P (t)
2392 && (truth_value_p (TREE_CODE (TREE_OPERAND (t, 0)))
2393 || TREE_CODE (TREE_TYPE (TREE_OPERAND (t, 0)))
2394 == BOOLEAN_TYPE))
2395 t = TREE_OPERAND (t, 0);
2396
2397 /* For !x use x == 0. */
2398 if (TREE_CODE (t) == TRUTH_NOT_EXPR)
2399 {
2400 tree top0 = TREE_OPERAND (t, 0);
2401 t = build2 (EQ_EXPR, TREE_TYPE (t),
2402 top0, build_int_cst (TREE_TYPE (top0), 0));
2403 }
2404 /* For cmp ? 1 : 0 use cmp. */
2405 else if (TREE_CODE (t) == COND_EXPR
2406 && COMPARISON_CLASS_P (TREE_OPERAND (t, 0))
2407 && integer_onep (TREE_OPERAND (t, 1))
2408 && integer_zerop (TREE_OPERAND (t, 2)))
2409 {
2410 tree top0 = TREE_OPERAND (t, 0);
2411 t = build2 (TREE_CODE (top0), TREE_TYPE (t),
2412 TREE_OPERAND (top0, 0), TREE_OPERAND (top0, 1));
2413 }
2414 /* For x ^ y use x != y. */
2415 else if (TREE_CODE (t) == BIT_XOR_EXPR)
2416 t = build2 (NE_EXPR, TREE_TYPE (t),
2417 TREE_OPERAND (t, 0), TREE_OPERAND (t, 1));
2418
2419 if (is_gimple_condexpr (t))
2420 return t;
2421
2422 return NULL_TREE;
2423 }
2424
2425 /* Build a GIMPLE_CALL identical to STMT but skipping the arguments in
2426 the positions marked by the set ARGS_TO_SKIP. */
2427
2428 gcall *
gimple_call_copy_skip_args(gcall * stmt,bitmap args_to_skip)2429 gimple_call_copy_skip_args (gcall *stmt, bitmap args_to_skip)
2430 {
2431 int i;
2432 int nargs = gimple_call_num_args (stmt);
2433 auto_vec<tree> vargs (nargs);
2434 gcall *new_stmt;
2435
2436 for (i = 0; i < nargs; i++)
2437 if (!bitmap_bit_p (args_to_skip, i))
2438 vargs.quick_push (gimple_call_arg (stmt, i));
2439
2440 if (gimple_call_internal_p (stmt))
2441 new_stmt = gimple_build_call_internal_vec (gimple_call_internal_fn (stmt),
2442 vargs);
2443 else
2444 new_stmt = gimple_build_call_vec (gimple_call_fn (stmt), vargs);
2445
2446 if (gimple_call_lhs (stmt))
2447 gimple_call_set_lhs (new_stmt, gimple_call_lhs (stmt));
2448
2449 gimple_set_vuse (new_stmt, gimple_vuse (stmt));
2450 gimple_set_vdef (new_stmt, gimple_vdef (stmt));
2451
2452 if (gimple_has_location (stmt))
2453 gimple_set_location (new_stmt, gimple_location (stmt));
2454 gimple_call_copy_flags (new_stmt, stmt);
2455 gimple_call_set_chain (new_stmt, gimple_call_chain (stmt));
2456
2457 gimple_set_modified (new_stmt, true);
2458
2459 return new_stmt;
2460 }
2461
2462
2463
2464 /* Return true if the field decls F1 and F2 are at the same offset.
2465
2466 This is intended to be used on GIMPLE types only. */
2467
2468 bool
gimple_compare_field_offset(tree f1,tree f2)2469 gimple_compare_field_offset (tree f1, tree f2)
2470 {
2471 if (DECL_OFFSET_ALIGN (f1) == DECL_OFFSET_ALIGN (f2))
2472 {
2473 tree offset1 = DECL_FIELD_OFFSET (f1);
2474 tree offset2 = DECL_FIELD_OFFSET (f2);
2475 return ((offset1 == offset2
2476 /* Once gimplification is done, self-referential offsets are
2477 instantiated as operand #2 of the COMPONENT_REF built for
2478 each access and reset. Therefore, they are not relevant
2479 anymore and fields are interchangeable provided that they
2480 represent the same access. */
2481 || (TREE_CODE (offset1) == PLACEHOLDER_EXPR
2482 && TREE_CODE (offset2) == PLACEHOLDER_EXPR
2483 && (DECL_SIZE (f1) == DECL_SIZE (f2)
2484 || (TREE_CODE (DECL_SIZE (f1)) == PLACEHOLDER_EXPR
2485 && TREE_CODE (DECL_SIZE (f2)) == PLACEHOLDER_EXPR)
2486 || operand_equal_p (DECL_SIZE (f1), DECL_SIZE (f2), 0))
2487 && DECL_ALIGN (f1) == DECL_ALIGN (f2))
2488 || operand_equal_p (offset1, offset2, 0))
2489 && tree_int_cst_equal (DECL_FIELD_BIT_OFFSET (f1),
2490 DECL_FIELD_BIT_OFFSET (f2)));
2491 }
2492
2493 /* Fortran and C do not always agree on what DECL_OFFSET_ALIGN
2494 should be, so handle differing ones specially by decomposing
2495 the offset into a byte and bit offset manually. */
2496 if (tree_fits_shwi_p (DECL_FIELD_OFFSET (f1))
2497 && tree_fits_shwi_p (DECL_FIELD_OFFSET (f2)))
2498 {
2499 unsigned HOST_WIDE_INT byte_offset1, byte_offset2;
2500 unsigned HOST_WIDE_INT bit_offset1, bit_offset2;
2501 bit_offset1 = TREE_INT_CST_LOW (DECL_FIELD_BIT_OFFSET (f1));
2502 byte_offset1 = (TREE_INT_CST_LOW (DECL_FIELD_OFFSET (f1))
2503 + bit_offset1 / BITS_PER_UNIT);
2504 bit_offset2 = TREE_INT_CST_LOW (DECL_FIELD_BIT_OFFSET (f2));
2505 byte_offset2 = (TREE_INT_CST_LOW (DECL_FIELD_OFFSET (f2))
2506 + bit_offset2 / BITS_PER_UNIT);
2507 if (byte_offset1 != byte_offset2)
2508 return false;
2509 return bit_offset1 % BITS_PER_UNIT == bit_offset2 % BITS_PER_UNIT;
2510 }
2511
2512 return false;
2513 }
2514
2515
2516 /* Return a type the same as TYPE except unsigned or
2517 signed according to UNSIGNEDP. */
2518
2519 static tree
gimple_signed_or_unsigned_type(bool unsignedp,tree type)2520 gimple_signed_or_unsigned_type (bool unsignedp, tree type)
2521 {
2522 tree type1;
2523 int i;
2524
2525 type1 = TYPE_MAIN_VARIANT (type);
2526 if (type1 == signed_char_type_node
2527 || type1 == char_type_node
2528 || type1 == unsigned_char_type_node)
2529 return unsignedp ? unsigned_char_type_node : signed_char_type_node;
2530 if (type1 == integer_type_node || type1 == unsigned_type_node)
2531 return unsignedp ? unsigned_type_node : integer_type_node;
2532 if (type1 == short_integer_type_node || type1 == short_unsigned_type_node)
2533 return unsignedp ? short_unsigned_type_node : short_integer_type_node;
2534 if (type1 == long_integer_type_node || type1 == long_unsigned_type_node)
2535 return unsignedp ? long_unsigned_type_node : long_integer_type_node;
2536 if (type1 == long_long_integer_type_node
2537 || type1 == long_long_unsigned_type_node)
2538 return unsignedp
2539 ? long_long_unsigned_type_node
2540 : long_long_integer_type_node;
2541
2542 for (i = 0; i < NUM_INT_N_ENTS; i ++)
2543 if (int_n_enabled_p[i]
2544 && (type1 == int_n_trees[i].unsigned_type
2545 || type1 == int_n_trees[i].signed_type))
2546 return unsignedp
2547 ? int_n_trees[i].unsigned_type
2548 : int_n_trees[i].signed_type;
2549
2550 #if HOST_BITS_PER_WIDE_INT >= 64
2551 if (type1 == intTI_type_node || type1 == unsigned_intTI_type_node)
2552 return unsignedp ? unsigned_intTI_type_node : intTI_type_node;
2553 #endif
2554 if (type1 == intDI_type_node || type1 == unsigned_intDI_type_node)
2555 return unsignedp ? unsigned_intDI_type_node : intDI_type_node;
2556 if (type1 == intSI_type_node || type1 == unsigned_intSI_type_node)
2557 return unsignedp ? unsigned_intSI_type_node : intSI_type_node;
2558 if (type1 == intHI_type_node || type1 == unsigned_intHI_type_node)
2559 return unsignedp ? unsigned_intHI_type_node : intHI_type_node;
2560 if (type1 == intQI_type_node || type1 == unsigned_intQI_type_node)
2561 return unsignedp ? unsigned_intQI_type_node : intQI_type_node;
2562
2563 #define GIMPLE_FIXED_TYPES(NAME) \
2564 if (type1 == short_ ## NAME ## _type_node \
2565 || type1 == unsigned_short_ ## NAME ## _type_node) \
2566 return unsignedp ? unsigned_short_ ## NAME ## _type_node \
2567 : short_ ## NAME ## _type_node; \
2568 if (type1 == NAME ## _type_node \
2569 || type1 == unsigned_ ## NAME ## _type_node) \
2570 return unsignedp ? unsigned_ ## NAME ## _type_node \
2571 : NAME ## _type_node; \
2572 if (type1 == long_ ## NAME ## _type_node \
2573 || type1 == unsigned_long_ ## NAME ## _type_node) \
2574 return unsignedp ? unsigned_long_ ## NAME ## _type_node \
2575 : long_ ## NAME ## _type_node; \
2576 if (type1 == long_long_ ## NAME ## _type_node \
2577 || type1 == unsigned_long_long_ ## NAME ## _type_node) \
2578 return unsignedp ? unsigned_long_long_ ## NAME ## _type_node \
2579 : long_long_ ## NAME ## _type_node;
2580
2581 #define GIMPLE_FIXED_MODE_TYPES(NAME) \
2582 if (type1 == NAME ## _type_node \
2583 || type1 == u ## NAME ## _type_node) \
2584 return unsignedp ? u ## NAME ## _type_node \
2585 : NAME ## _type_node;
2586
2587 #define GIMPLE_FIXED_TYPES_SAT(NAME) \
2588 if (type1 == sat_ ## short_ ## NAME ## _type_node \
2589 || type1 == sat_ ## unsigned_short_ ## NAME ## _type_node) \
2590 return unsignedp ? sat_ ## unsigned_short_ ## NAME ## _type_node \
2591 : sat_ ## short_ ## NAME ## _type_node; \
2592 if (type1 == sat_ ## NAME ## _type_node \
2593 || type1 == sat_ ## unsigned_ ## NAME ## _type_node) \
2594 return unsignedp ? sat_ ## unsigned_ ## NAME ## _type_node \
2595 : sat_ ## NAME ## _type_node; \
2596 if (type1 == sat_ ## long_ ## NAME ## _type_node \
2597 || type1 == sat_ ## unsigned_long_ ## NAME ## _type_node) \
2598 return unsignedp ? sat_ ## unsigned_long_ ## NAME ## _type_node \
2599 : sat_ ## long_ ## NAME ## _type_node; \
2600 if (type1 == sat_ ## long_long_ ## NAME ## _type_node \
2601 || type1 == sat_ ## unsigned_long_long_ ## NAME ## _type_node) \
2602 return unsignedp ? sat_ ## unsigned_long_long_ ## NAME ## _type_node \
2603 : sat_ ## long_long_ ## NAME ## _type_node;
2604
2605 #define GIMPLE_FIXED_MODE_TYPES_SAT(NAME) \
2606 if (type1 == sat_ ## NAME ## _type_node \
2607 || type1 == sat_ ## u ## NAME ## _type_node) \
2608 return unsignedp ? sat_ ## u ## NAME ## _type_node \
2609 : sat_ ## NAME ## _type_node;
2610
2611 GIMPLE_FIXED_TYPES (fract);
2612 GIMPLE_FIXED_TYPES_SAT (fract);
2613 GIMPLE_FIXED_TYPES (accum);
2614 GIMPLE_FIXED_TYPES_SAT (accum);
2615
2616 GIMPLE_FIXED_MODE_TYPES (qq);
2617 GIMPLE_FIXED_MODE_TYPES (hq);
2618 GIMPLE_FIXED_MODE_TYPES (sq);
2619 GIMPLE_FIXED_MODE_TYPES (dq);
2620 GIMPLE_FIXED_MODE_TYPES (tq);
2621 GIMPLE_FIXED_MODE_TYPES_SAT (qq);
2622 GIMPLE_FIXED_MODE_TYPES_SAT (hq);
2623 GIMPLE_FIXED_MODE_TYPES_SAT (sq);
2624 GIMPLE_FIXED_MODE_TYPES_SAT (dq);
2625 GIMPLE_FIXED_MODE_TYPES_SAT (tq);
2626 GIMPLE_FIXED_MODE_TYPES (ha);
2627 GIMPLE_FIXED_MODE_TYPES (sa);
2628 GIMPLE_FIXED_MODE_TYPES (da);
2629 GIMPLE_FIXED_MODE_TYPES (ta);
2630 GIMPLE_FIXED_MODE_TYPES_SAT (ha);
2631 GIMPLE_FIXED_MODE_TYPES_SAT (sa);
2632 GIMPLE_FIXED_MODE_TYPES_SAT (da);
2633 GIMPLE_FIXED_MODE_TYPES_SAT (ta);
2634
2635 /* For ENUMERAL_TYPEs in C++, must check the mode of the types, not
2636 the precision; they have precision set to match their range, but
2637 may use a wider mode to match an ABI. If we change modes, we may
2638 wind up with bad conversions. For INTEGER_TYPEs in C, must check
2639 the precision as well, so as to yield correct results for
2640 bit-field types. C++ does not have these separate bit-field
2641 types, and producing a signed or unsigned variant of an
2642 ENUMERAL_TYPE may cause other problems as well. */
2643 if (!INTEGRAL_TYPE_P (type)
2644 || TYPE_UNSIGNED (type) == unsignedp)
2645 return type;
2646
2647 #define TYPE_OK(node) \
2648 (TYPE_MODE (type) == TYPE_MODE (node) \
2649 && TYPE_PRECISION (type) == TYPE_PRECISION (node))
2650 if (TYPE_OK (signed_char_type_node))
2651 return unsignedp ? unsigned_char_type_node : signed_char_type_node;
2652 if (TYPE_OK (integer_type_node))
2653 return unsignedp ? unsigned_type_node : integer_type_node;
2654 if (TYPE_OK (short_integer_type_node))
2655 return unsignedp ? short_unsigned_type_node : short_integer_type_node;
2656 if (TYPE_OK (long_integer_type_node))
2657 return unsignedp ? long_unsigned_type_node : long_integer_type_node;
2658 if (TYPE_OK (long_long_integer_type_node))
2659 return (unsignedp
2660 ? long_long_unsigned_type_node
2661 : long_long_integer_type_node);
2662
2663 for (i = 0; i < NUM_INT_N_ENTS; i ++)
2664 if (int_n_enabled_p[i]
2665 && TYPE_MODE (type) == int_n_data[i].m
2666 && TYPE_PRECISION (type) == int_n_data[i].bitsize)
2667 return unsignedp
2668 ? int_n_trees[i].unsigned_type
2669 : int_n_trees[i].signed_type;
2670
2671 #if HOST_BITS_PER_WIDE_INT >= 64
2672 if (TYPE_OK (intTI_type_node))
2673 return unsignedp ? unsigned_intTI_type_node : intTI_type_node;
2674 #endif
2675 if (TYPE_OK (intDI_type_node))
2676 return unsignedp ? unsigned_intDI_type_node : intDI_type_node;
2677 if (TYPE_OK (intSI_type_node))
2678 return unsignedp ? unsigned_intSI_type_node : intSI_type_node;
2679 if (TYPE_OK (intHI_type_node))
2680 return unsignedp ? unsigned_intHI_type_node : intHI_type_node;
2681 if (TYPE_OK (intQI_type_node))
2682 return unsignedp ? unsigned_intQI_type_node : intQI_type_node;
2683
2684 #undef GIMPLE_FIXED_TYPES
2685 #undef GIMPLE_FIXED_MODE_TYPES
2686 #undef GIMPLE_FIXED_TYPES_SAT
2687 #undef GIMPLE_FIXED_MODE_TYPES_SAT
2688 #undef TYPE_OK
2689
2690 return build_nonstandard_integer_type (TYPE_PRECISION (type), unsignedp);
2691 }
2692
2693
2694 /* Return an unsigned type the same as TYPE in other respects. */
2695
2696 tree
gimple_unsigned_type(tree type)2697 gimple_unsigned_type (tree type)
2698 {
2699 return gimple_signed_or_unsigned_type (true, type);
2700 }
2701
2702
2703 /* Return a signed type the same as TYPE in other respects. */
2704
2705 tree
gimple_signed_type(tree type)2706 gimple_signed_type (tree type)
2707 {
2708 return gimple_signed_or_unsigned_type (false, type);
2709 }
2710
2711
2712 /* Return the typed-based alias set for T, which may be an expression
2713 or a type. Return -1 if we don't do anything special. */
2714
2715 alias_set_type
gimple_get_alias_set(tree t)2716 gimple_get_alias_set (tree t)
2717 {
2718 /* That's all the expressions we handle specially. */
2719 if (!TYPE_P (t))
2720 return -1;
2721
2722 /* For convenience, follow the C standard when dealing with
2723 character types. Any object may be accessed via an lvalue that
2724 has character type. */
2725 if (t == char_type_node
2726 || t == signed_char_type_node
2727 || t == unsigned_char_type_node)
2728 return 0;
2729
2730 /* Allow aliasing between signed and unsigned variants of the same
2731 type. We treat the signed variant as canonical. */
2732 if (TREE_CODE (t) == INTEGER_TYPE && TYPE_UNSIGNED (t))
2733 {
2734 tree t1 = gimple_signed_type (t);
2735
2736 /* t1 == t can happen for boolean nodes which are always unsigned. */
2737 if (t1 != t)
2738 return get_alias_set (t1);
2739 }
2740
2741 /* Allow aliasing between enumeral types and the underlying
2742 integer type. This is required for C since those are
2743 compatible types. */
2744 else if (TREE_CODE (t) == ENUMERAL_TYPE)
2745 {
2746 tree t1 = lang_hooks.types.type_for_size (tree_to_uhwi (TYPE_SIZE (t)),
2747 false /* short-cut above */);
2748 return get_alias_set (t1);
2749 }
2750
2751 return -1;
2752 }
2753
2754
2755 /* Helper for gimple_ior_addresses_taken_1. */
2756
2757 static bool
gimple_ior_addresses_taken_1(gimple *,tree addr,tree,void * data)2758 gimple_ior_addresses_taken_1 (gimple *, tree addr, tree, void *data)
2759 {
2760 bitmap addresses_taken = (bitmap)data;
2761 addr = get_base_address (addr);
2762 if (addr
2763 && DECL_P (addr))
2764 {
2765 bitmap_set_bit (addresses_taken, DECL_UID (addr));
2766 return true;
2767 }
2768 return false;
2769 }
2770
2771 /* Set the bit for the uid of all decls that have their address taken
2772 in STMT in the ADDRESSES_TAKEN bitmap. Returns true if there
2773 were any in this stmt. */
2774
2775 bool
gimple_ior_addresses_taken(bitmap addresses_taken,gimple * stmt)2776 gimple_ior_addresses_taken (bitmap addresses_taken, gimple *stmt)
2777 {
2778 return walk_stmt_load_store_addr_ops (stmt, addresses_taken, NULL, NULL,
2779 gimple_ior_addresses_taken_1);
2780 }
2781
2782
2783 /* Return true when STMTs arguments and return value match those of FNDECL,
2784 a decl of a builtin function. */
2785
2786 bool
gimple_builtin_call_types_compatible_p(const gimple * stmt,tree fndecl)2787 gimple_builtin_call_types_compatible_p (const gimple *stmt, tree fndecl)
2788 {
2789 gcc_checking_assert (DECL_BUILT_IN_CLASS (fndecl) != NOT_BUILT_IN);
2790
2791 if (DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL)
2792 if (tree decl = builtin_decl_explicit (DECL_FUNCTION_CODE (fndecl)))
2793 fndecl = decl;
2794
2795 tree ret = gimple_call_lhs (stmt);
2796 if (ret
2797 && !useless_type_conversion_p (TREE_TYPE (ret),
2798 TREE_TYPE (TREE_TYPE (fndecl))))
2799 return false;
2800
2801 tree targs = TYPE_ARG_TYPES (TREE_TYPE (fndecl));
2802 unsigned nargs = gimple_call_num_args (stmt);
2803 for (unsigned i = 0; i < nargs; ++i)
2804 {
2805 /* Variadic args follow. */
2806 if (!targs)
2807 return true;
2808 tree arg = gimple_call_arg (stmt, i);
2809 tree type = TREE_VALUE (targs);
2810 if (!useless_type_conversion_p (type, TREE_TYPE (arg))
2811 /* char/short integral arguments are promoted to int
2812 by several frontends if targetm.calls.promote_prototypes
2813 is true. Allow such promotion too. */
2814 && !(INTEGRAL_TYPE_P (type)
2815 && TYPE_PRECISION (type) < TYPE_PRECISION (integer_type_node)
2816 && targetm.calls.promote_prototypes (TREE_TYPE (fndecl))
2817 && useless_type_conversion_p (integer_type_node,
2818 TREE_TYPE (arg))))
2819 return false;
2820 targs = TREE_CHAIN (targs);
2821 }
2822 if (targs && !VOID_TYPE_P (TREE_VALUE (targs)))
2823 return false;
2824 return true;
2825 }
2826
2827 /* Return true when STMT is operator a replaceable delete call. */
2828
2829 bool
gimple_call_operator_delete_p(const gcall * stmt)2830 gimple_call_operator_delete_p (const gcall *stmt)
2831 {
2832 tree fndecl;
2833
2834 if ((fndecl = gimple_call_fndecl (stmt)) != NULL_TREE)
2835 return DECL_IS_OPERATOR_DELETE_P (fndecl);
2836 return false;
2837 }
2838
2839 /* Return true when STMT is builtins call. */
2840
2841 bool
gimple_call_builtin_p(const gimple * stmt)2842 gimple_call_builtin_p (const gimple *stmt)
2843 {
2844 tree fndecl;
2845 if (is_gimple_call (stmt)
2846 && (fndecl = gimple_call_fndecl (stmt)) != NULL_TREE
2847 && DECL_BUILT_IN_CLASS (fndecl) != NOT_BUILT_IN)
2848 return gimple_builtin_call_types_compatible_p (stmt, fndecl);
2849 return false;
2850 }
2851
2852 /* Return true when STMT is builtins call to CLASS. */
2853
2854 bool
gimple_call_builtin_p(const gimple * stmt,enum built_in_class klass)2855 gimple_call_builtin_p (const gimple *stmt, enum built_in_class klass)
2856 {
2857 tree fndecl;
2858 if (is_gimple_call (stmt)
2859 && (fndecl = gimple_call_fndecl (stmt)) != NULL_TREE
2860 && DECL_BUILT_IN_CLASS (fndecl) == klass)
2861 return gimple_builtin_call_types_compatible_p (stmt, fndecl);
2862 return false;
2863 }
2864
2865 /* Return true when STMT is builtins call to CODE of CLASS. */
2866
2867 bool
gimple_call_builtin_p(const gimple * stmt,enum built_in_function code)2868 gimple_call_builtin_p (const gimple *stmt, enum built_in_function code)
2869 {
2870 tree fndecl;
2871 if (is_gimple_call (stmt)
2872 && (fndecl = gimple_call_fndecl (stmt)) != NULL_TREE
2873 && fndecl_built_in_p (fndecl, code))
2874 return gimple_builtin_call_types_compatible_p (stmt, fndecl);
2875 return false;
2876 }
2877
2878 /* If CALL is a call to a combined_fn (i.e. an internal function or
2879 a normal built-in function), return its code, otherwise return
2880 CFN_LAST. */
2881
2882 combined_fn
gimple_call_combined_fn(const gimple * stmt)2883 gimple_call_combined_fn (const gimple *stmt)
2884 {
2885 if (const gcall *call = dyn_cast <const gcall *> (stmt))
2886 {
2887 if (gimple_call_internal_p (call))
2888 return as_combined_fn (gimple_call_internal_fn (call));
2889
2890 tree fndecl = gimple_call_fndecl (stmt);
2891 if (fndecl
2892 && fndecl_built_in_p (fndecl, BUILT_IN_NORMAL)
2893 && gimple_builtin_call_types_compatible_p (stmt, fndecl))
2894 return as_combined_fn (DECL_FUNCTION_CODE (fndecl));
2895 }
2896 return CFN_LAST;
2897 }
2898
2899 /* Return true if STMT clobbers memory. STMT is required to be a
2900 GIMPLE_ASM. */
2901
2902 bool
gimple_asm_clobbers_memory_p(const gasm * stmt)2903 gimple_asm_clobbers_memory_p (const gasm *stmt)
2904 {
2905 unsigned i;
2906
2907 for (i = 0; i < gimple_asm_nclobbers (stmt); i++)
2908 {
2909 tree op = gimple_asm_clobber_op (stmt, i);
2910 if (strcmp (TREE_STRING_POINTER (TREE_VALUE (op)), "memory") == 0)
2911 return true;
2912 }
2913
2914 /* Non-empty basic ASM implicitly clobbers memory. */
2915 if (gimple_asm_input_p (stmt) && strlen (gimple_asm_string (stmt)) != 0)
2916 return true;
2917
2918 return false;
2919 }
2920
2921 /* Dump bitmap SET (assumed to contain VAR_DECLs) to FILE. */
2922
2923 void
dump_decl_set(FILE * file,bitmap set)2924 dump_decl_set (FILE *file, bitmap set)
2925 {
2926 if (set)
2927 {
2928 bitmap_iterator bi;
2929 unsigned i;
2930
2931 fprintf (file, "{ ");
2932
2933 EXECUTE_IF_SET_IN_BITMAP (set, 0, i, bi)
2934 {
2935 fprintf (file, "D.%u", i);
2936 fprintf (file, " ");
2937 }
2938
2939 fprintf (file, "}");
2940 }
2941 else
2942 fprintf (file, "NIL");
2943 }
2944
2945 /* Return true when CALL is a call stmt that definitely doesn't
2946 free any memory or makes it unavailable otherwise. */
2947 bool
nonfreeing_call_p(gimple * call)2948 nonfreeing_call_p (gimple *call)
2949 {
2950 if (gimple_call_builtin_p (call, BUILT_IN_NORMAL)
2951 && gimple_call_flags (call) & ECF_LEAF)
2952 switch (DECL_FUNCTION_CODE (gimple_call_fndecl (call)))
2953 {
2954 /* Just in case these become ECF_LEAF in the future. */
2955 case BUILT_IN_FREE:
2956 case BUILT_IN_TM_FREE:
2957 case BUILT_IN_REALLOC:
2958 case BUILT_IN_STACK_RESTORE:
2959 return false;
2960 default:
2961 return true;
2962 }
2963 else if (gimple_call_internal_p (call))
2964 switch (gimple_call_internal_fn (call))
2965 {
2966 case IFN_ABNORMAL_DISPATCHER:
2967 return true;
2968 case IFN_ASAN_MARK:
2969 return tree_to_uhwi (gimple_call_arg (call, 0)) == ASAN_MARK_UNPOISON;
2970 default:
2971 if (gimple_call_flags (call) & ECF_LEAF)
2972 return true;
2973 return false;
2974 }
2975
2976 tree fndecl = gimple_call_fndecl (call);
2977 if (!fndecl)
2978 return false;
2979 struct cgraph_node *n = cgraph_node::get (fndecl);
2980 if (!n)
2981 return false;
2982 enum availability availability;
2983 n = n->function_symbol (&availability);
2984 if (!n || availability <= AVAIL_INTERPOSABLE)
2985 return false;
2986 return n->nonfreeing_fn;
2987 }
2988
2989 /* Return true when CALL is a call stmt that definitely need not
2990 be considered to be a memory barrier. */
2991 bool
nonbarrier_call_p(gimple * call)2992 nonbarrier_call_p (gimple *call)
2993 {
2994 if (gimple_call_flags (call) & (ECF_PURE | ECF_CONST))
2995 return true;
2996 /* Should extend this to have a nonbarrier_fn flag, just as above in
2997 the nonfreeing case. */
2998 return false;
2999 }
3000
3001 /* Callback for walk_stmt_load_store_ops.
3002
3003 Return TRUE if OP will dereference the tree stored in DATA, FALSE
3004 otherwise.
3005
3006 This routine only makes a superficial check for a dereference. Thus
3007 it must only be used if it is safe to return a false negative. */
3008 static bool
check_loadstore(gimple *,tree op,tree,void * data)3009 check_loadstore (gimple *, tree op, tree, void *data)
3010 {
3011 if (TREE_CODE (op) == MEM_REF || TREE_CODE (op) == TARGET_MEM_REF)
3012 {
3013 /* Some address spaces may legitimately dereference zero. */
3014 addr_space_t as = TYPE_ADDR_SPACE (TREE_TYPE (op));
3015 if (targetm.addr_space.zero_address_valid (as))
3016 return false;
3017
3018 return operand_equal_p (TREE_OPERAND (op, 0), (tree)data, 0);
3019 }
3020 return false;
3021 }
3022
3023
3024 /* Return true if OP can be inferred to be non-NULL after STMT executes,
3025 either by using a pointer dereference or attributes. */
3026 bool
infer_nonnull_range(gimple * stmt,tree op)3027 infer_nonnull_range (gimple *stmt, tree op)
3028 {
3029 return (infer_nonnull_range_by_dereference (stmt, op)
3030 || infer_nonnull_range_by_attribute (stmt, op));
3031 }
3032
3033 /* Return true if OP can be inferred to be non-NULL after STMT
3034 executes by using a pointer dereference. */
3035 bool
infer_nonnull_range_by_dereference(gimple * stmt,tree op)3036 infer_nonnull_range_by_dereference (gimple *stmt, tree op)
3037 {
3038 /* We can only assume that a pointer dereference will yield
3039 non-NULL if -fdelete-null-pointer-checks is enabled. */
3040 if (!flag_delete_null_pointer_checks
3041 || !POINTER_TYPE_P (TREE_TYPE (op))
3042 || gimple_code (stmt) == GIMPLE_ASM
3043 || gimple_clobber_p (stmt))
3044 return false;
3045
3046 if (walk_stmt_load_store_ops (stmt, (void *)op,
3047 check_loadstore, check_loadstore))
3048 return true;
3049
3050 return false;
3051 }
3052
3053 /* Return true if OP can be inferred to be a non-NULL after STMT
3054 executes by using attributes. */
3055 bool
infer_nonnull_range_by_attribute(gimple * stmt,tree op)3056 infer_nonnull_range_by_attribute (gimple *stmt, tree op)
3057 {
3058 /* We can only assume that a pointer dereference will yield
3059 non-NULL if -fdelete-null-pointer-checks is enabled. */
3060 if (!flag_delete_null_pointer_checks
3061 || !POINTER_TYPE_P (TREE_TYPE (op))
3062 || gimple_code (stmt) == GIMPLE_ASM)
3063 return false;
3064
3065 if (is_gimple_call (stmt) && !gimple_call_internal_p (stmt))
3066 {
3067 tree fntype = gimple_call_fntype (stmt);
3068 tree attrs = TYPE_ATTRIBUTES (fntype);
3069 for (; attrs; attrs = TREE_CHAIN (attrs))
3070 {
3071 attrs = lookup_attribute ("nonnull", attrs);
3072
3073 /* If "nonnull" wasn't specified, we know nothing about
3074 the argument. */
3075 if (attrs == NULL_TREE)
3076 return false;
3077
3078 /* If "nonnull" applies to all the arguments, then ARG
3079 is non-null if it's in the argument list. */
3080 if (TREE_VALUE (attrs) == NULL_TREE)
3081 {
3082 for (unsigned int i = 0; i < gimple_call_num_args (stmt); i++)
3083 {
3084 if (POINTER_TYPE_P (TREE_TYPE (gimple_call_arg (stmt, i)))
3085 && operand_equal_p (op, gimple_call_arg (stmt, i), 0))
3086 return true;
3087 }
3088 return false;
3089 }
3090
3091 /* Now see if op appears in the nonnull list. */
3092 for (tree t = TREE_VALUE (attrs); t; t = TREE_CHAIN (t))
3093 {
3094 unsigned int idx = TREE_INT_CST_LOW (TREE_VALUE (t)) - 1;
3095 if (idx < gimple_call_num_args (stmt))
3096 {
3097 tree arg = gimple_call_arg (stmt, idx);
3098 if (operand_equal_p (op, arg, 0))
3099 return true;
3100 }
3101 }
3102 }
3103 }
3104
3105 /* If this function is marked as returning non-null, then we can
3106 infer OP is non-null if it is used in the return statement. */
3107 if (greturn *return_stmt = dyn_cast <greturn *> (stmt))
3108 if (gimple_return_retval (return_stmt)
3109 && operand_equal_p (gimple_return_retval (return_stmt), op, 0)
3110 && lookup_attribute ("returns_nonnull",
3111 TYPE_ATTRIBUTES (TREE_TYPE (current_function_decl))))
3112 return true;
3113
3114 return false;
3115 }
3116
3117 /* Compare two case labels. Because the front end should already have
3118 made sure that case ranges do not overlap, it is enough to only compare
3119 the CASE_LOW values of each case label. */
3120
3121 static int
compare_case_labels(const void * p1,const void * p2)3122 compare_case_labels (const void *p1, const void *p2)
3123 {
3124 const_tree const case1 = *(const_tree const*)p1;
3125 const_tree const case2 = *(const_tree const*)p2;
3126
3127 /* The 'default' case label always goes first. */
3128 if (!CASE_LOW (case1))
3129 return -1;
3130 else if (!CASE_LOW (case2))
3131 return 1;
3132 else
3133 return tree_int_cst_compare (CASE_LOW (case1), CASE_LOW (case2));
3134 }
3135
3136 /* Sort the case labels in LABEL_VEC in place in ascending order. */
3137
3138 void
sort_case_labels(vec<tree> & label_vec)3139 sort_case_labels (vec<tree> &label_vec)
3140 {
3141 label_vec.qsort (compare_case_labels);
3142 }
3143
3144 /* Prepare a vector of case labels to be used in a GIMPLE_SWITCH statement.
3145
3146 LABELS is a vector that contains all case labels to look at.
3147
3148 INDEX_TYPE is the type of the switch index expression. Case labels
3149 in LABELS are discarded if their values are not in the value range
3150 covered by INDEX_TYPE. The remaining case label values are folded
3151 to INDEX_TYPE.
3152
3153 If a default case exists in LABELS, it is removed from LABELS and
3154 returned in DEFAULT_CASEP. If no default case exists, but the
3155 case labels already cover the whole range of INDEX_TYPE, a default
3156 case is returned pointing to one of the existing case labels.
3157 Otherwise DEFAULT_CASEP is set to NULL_TREE.
3158
3159 DEFAULT_CASEP may be NULL, in which case the above comment doesn't
3160 apply and no action is taken regardless of whether a default case is
3161 found or not. */
3162
3163 void
preprocess_case_label_vec_for_gimple(vec<tree> & labels,tree index_type,tree * default_casep)3164 preprocess_case_label_vec_for_gimple (vec<tree> &labels,
3165 tree index_type,
3166 tree *default_casep)
3167 {
3168 tree min_value, max_value;
3169 tree default_case = NULL_TREE;
3170 size_t i, len;
3171
3172 i = 0;
3173 min_value = TYPE_MIN_VALUE (index_type);
3174 max_value = TYPE_MAX_VALUE (index_type);
3175 while (i < labels.length ())
3176 {
3177 tree elt = labels[i];
3178 tree low = CASE_LOW (elt);
3179 tree high = CASE_HIGH (elt);
3180 bool remove_element = FALSE;
3181
3182 if (low)
3183 {
3184 gcc_checking_assert (TREE_CODE (low) == INTEGER_CST);
3185 gcc_checking_assert (!high || TREE_CODE (high) == INTEGER_CST);
3186
3187 /* This is a non-default case label, i.e. it has a value.
3188
3189 See if the case label is reachable within the range of
3190 the index type. Remove out-of-range case values. Turn
3191 case ranges into a canonical form (high > low strictly)
3192 and convert the case label values to the index type.
3193
3194 NB: The type of gimple_switch_index() may be the promoted
3195 type, but the case labels retain the original type. */
3196
3197 if (high)
3198 {
3199 /* This is a case range. Discard empty ranges.
3200 If the bounds or the range are equal, turn this
3201 into a simple (one-value) case. */
3202 int cmp = tree_int_cst_compare (high, low);
3203 if (cmp < 0)
3204 remove_element = TRUE;
3205 else if (cmp == 0)
3206 high = NULL_TREE;
3207 }
3208
3209 if (! high)
3210 {
3211 /* If the simple case value is unreachable, ignore it. */
3212 if ((TREE_CODE (min_value) == INTEGER_CST
3213 && tree_int_cst_compare (low, min_value) < 0)
3214 || (TREE_CODE (max_value) == INTEGER_CST
3215 && tree_int_cst_compare (low, max_value) > 0))
3216 remove_element = TRUE;
3217 else
3218 low = fold_convert (index_type, low);
3219 }
3220 else
3221 {
3222 /* If the entire case range is unreachable, ignore it. */
3223 if ((TREE_CODE (min_value) == INTEGER_CST
3224 && tree_int_cst_compare (high, min_value) < 0)
3225 || (TREE_CODE (max_value) == INTEGER_CST
3226 && tree_int_cst_compare (low, max_value) > 0))
3227 remove_element = TRUE;
3228 else
3229 {
3230 /* If the lower bound is less than the index type's
3231 minimum value, truncate the range bounds. */
3232 if (TREE_CODE (min_value) == INTEGER_CST
3233 && tree_int_cst_compare (low, min_value) < 0)
3234 low = min_value;
3235 low = fold_convert (index_type, low);
3236
3237 /* If the upper bound is greater than the index type's
3238 maximum value, truncate the range bounds. */
3239 if (TREE_CODE (max_value) == INTEGER_CST
3240 && tree_int_cst_compare (high, max_value) > 0)
3241 high = max_value;
3242 high = fold_convert (index_type, high);
3243
3244 /* We may have folded a case range to a one-value case. */
3245 if (tree_int_cst_equal (low, high))
3246 high = NULL_TREE;
3247 }
3248 }
3249
3250 CASE_LOW (elt) = low;
3251 CASE_HIGH (elt) = high;
3252 }
3253 else
3254 {
3255 gcc_assert (!default_case);
3256 default_case = elt;
3257 /* The default case must be passed separately to the
3258 gimple_build_switch routine. But if DEFAULT_CASEP
3259 is NULL, we do not remove the default case (it would
3260 be completely lost). */
3261 if (default_casep)
3262 remove_element = TRUE;
3263 }
3264
3265 if (remove_element)
3266 labels.ordered_remove (i);
3267 else
3268 i++;
3269 }
3270 len = i;
3271
3272 if (!labels.is_empty ())
3273 sort_case_labels (labels);
3274
3275 if (default_casep && !default_case)
3276 {
3277 /* If the switch has no default label, add one, so that we jump
3278 around the switch body. If the labels already cover the whole
3279 range of the switch index_type, add the default label pointing
3280 to one of the existing labels. */
3281 if (len
3282 && TYPE_MIN_VALUE (index_type)
3283 && TYPE_MAX_VALUE (index_type)
3284 && tree_int_cst_equal (CASE_LOW (labels[0]),
3285 TYPE_MIN_VALUE (index_type)))
3286 {
3287 tree low, high = CASE_HIGH (labels[len - 1]);
3288 if (!high)
3289 high = CASE_LOW (labels[len - 1]);
3290 if (tree_int_cst_equal (high, TYPE_MAX_VALUE (index_type)))
3291 {
3292 tree widest_label = labels[0];
3293 for (i = 1; i < len; i++)
3294 {
3295 high = CASE_LOW (labels[i]);
3296 low = CASE_HIGH (labels[i - 1]);
3297 if (!low)
3298 low = CASE_LOW (labels[i - 1]);
3299
3300 if (CASE_HIGH (labels[i]) != NULL_TREE
3301 && (CASE_HIGH (widest_label) == NULL_TREE
3302 || (wi::gtu_p
3303 (wi::to_wide (CASE_HIGH (labels[i]))
3304 - wi::to_wide (CASE_LOW (labels[i])),
3305 wi::to_wide (CASE_HIGH (widest_label))
3306 - wi::to_wide (CASE_LOW (widest_label))))))
3307 widest_label = labels[i];
3308
3309 if (wi::to_wide (low) + 1 != wi::to_wide (high))
3310 break;
3311 }
3312 if (i == len)
3313 {
3314 /* Designate the label with the widest range to be the
3315 default label. */
3316 tree label = CASE_LABEL (widest_label);
3317 default_case = build_case_label (NULL_TREE, NULL_TREE,
3318 label);
3319 }
3320 }
3321 }
3322 }
3323
3324 if (default_casep)
3325 *default_casep = default_case;
3326 }
3327
3328 /* Set the location of all statements in SEQ to LOC. */
3329
3330 void
gimple_seq_set_location(gimple_seq seq,location_t loc)3331 gimple_seq_set_location (gimple_seq seq, location_t loc)
3332 {
3333 for (gimple_stmt_iterator i = gsi_start (seq); !gsi_end_p (i); gsi_next (&i))
3334 gimple_set_location (gsi_stmt (i), loc);
3335 }
3336
3337 /* Release SSA_NAMEs in SEQ as well as the GIMPLE statements. */
3338
3339 void
gimple_seq_discard(gimple_seq seq)3340 gimple_seq_discard (gimple_seq seq)
3341 {
3342 gimple_stmt_iterator gsi;
3343
3344 for (gsi = gsi_start (seq); !gsi_end_p (gsi); )
3345 {
3346 gimple *stmt = gsi_stmt (gsi);
3347 gsi_remove (&gsi, true);
3348 release_defs (stmt);
3349 ggc_free (stmt);
3350 }
3351 }
3352
3353 /* See if STMT now calls function that takes no parameters and if so, drop
3354 call arguments. This is used when devirtualization machinery redirects
3355 to __builtin_unreachable or __cxa_pure_virtual. */
3356
3357 void
maybe_remove_unused_call_args(struct function * fn,gimple * stmt)3358 maybe_remove_unused_call_args (struct function *fn, gimple *stmt)
3359 {
3360 tree decl = gimple_call_fndecl (stmt);
3361 if (TYPE_ARG_TYPES (TREE_TYPE (decl))
3362 && TREE_VALUE (TYPE_ARG_TYPES (TREE_TYPE (decl))) == void_type_node
3363 && gimple_call_num_args (stmt))
3364 {
3365 gimple_set_num_ops (stmt, 3);
3366 update_stmt_fn (fn, stmt);
3367 }
3368 }
3369
3370 /* Return false if STMT will likely expand to real function call. */
3371
3372 bool
gimple_inexpensive_call_p(gcall * stmt)3373 gimple_inexpensive_call_p (gcall *stmt)
3374 {
3375 if (gimple_call_internal_p (stmt))
3376 return true;
3377 tree decl = gimple_call_fndecl (stmt);
3378 if (decl && is_inexpensive_builtin (decl))
3379 return true;
3380 return false;
3381 }
3382
3383 /* Return a non-artificial location for STMT. If STMT does not have
3384 location information, get the location from EXPR. */
3385
3386 location_t
gimple_or_expr_nonartificial_location(gimple * stmt,tree expr)3387 gimple_or_expr_nonartificial_location (gimple *stmt, tree expr)
3388 {
3389 location_t loc = gimple_nonartificial_location (stmt);
3390 if (loc == UNKNOWN_LOCATION && EXPR_HAS_LOCATION (expr))
3391 loc = tree_nonartificial_location (expr);
3392 return expansion_point_location_if_in_system_header (loc);
3393 }
3394
3395
3396 #if CHECKING_P
3397
3398 namespace selftest {
3399
3400 /* Selftests for core gimple structures. */
3401
3402 /* Verify that STMT is pretty-printed as EXPECTED.
3403 Helper function for selftests. */
3404
3405 static void
verify_gimple_pp(const char * expected,gimple * stmt)3406 verify_gimple_pp (const char *expected, gimple *stmt)
3407 {
3408 pretty_printer pp;
3409 pp_gimple_stmt_1 (&pp, stmt, 0 /* spc */, TDF_NONE /* flags */);
3410 ASSERT_STREQ (expected, pp_formatted_text (&pp));
3411 }
3412
3413 /* Build a GIMPLE_ASSIGN equivalent to
3414 tmp = 5;
3415 and verify various properties of it. */
3416
3417 static void
test_assign_single()3418 test_assign_single ()
3419 {
3420 tree type = integer_type_node;
3421 tree lhs = build_decl (UNKNOWN_LOCATION, VAR_DECL,
3422 get_identifier ("tmp"),
3423 type);
3424 tree rhs = build_int_cst (type, 5);
3425 gassign *stmt = gimple_build_assign (lhs, rhs);
3426 verify_gimple_pp ("tmp = 5;", stmt);
3427
3428 ASSERT_TRUE (is_gimple_assign (stmt));
3429 ASSERT_EQ (lhs, gimple_assign_lhs (stmt));
3430 ASSERT_EQ (lhs, gimple_get_lhs (stmt));
3431 ASSERT_EQ (rhs, gimple_assign_rhs1 (stmt));
3432 ASSERT_EQ (NULL, gimple_assign_rhs2 (stmt));
3433 ASSERT_EQ (NULL, gimple_assign_rhs3 (stmt));
3434 ASSERT_TRUE (gimple_assign_single_p (stmt));
3435 ASSERT_EQ (INTEGER_CST, gimple_assign_rhs_code (stmt));
3436 }
3437
3438 /* Build a GIMPLE_ASSIGN equivalent to
3439 tmp = a * b;
3440 and verify various properties of it. */
3441
3442 static void
test_assign_binop()3443 test_assign_binop ()
3444 {
3445 tree type = integer_type_node;
3446 tree lhs = build_decl (UNKNOWN_LOCATION, VAR_DECL,
3447 get_identifier ("tmp"),
3448 type);
3449 tree a = build_decl (UNKNOWN_LOCATION, VAR_DECL,
3450 get_identifier ("a"),
3451 type);
3452 tree b = build_decl (UNKNOWN_LOCATION, VAR_DECL,
3453 get_identifier ("b"),
3454 type);
3455 gassign *stmt = gimple_build_assign (lhs, MULT_EXPR, a, b);
3456 verify_gimple_pp ("tmp = a * b;", stmt);
3457
3458 ASSERT_TRUE (is_gimple_assign (stmt));
3459 ASSERT_EQ (lhs, gimple_assign_lhs (stmt));
3460 ASSERT_EQ (lhs, gimple_get_lhs (stmt));
3461 ASSERT_EQ (a, gimple_assign_rhs1 (stmt));
3462 ASSERT_EQ (b, gimple_assign_rhs2 (stmt));
3463 ASSERT_EQ (NULL, gimple_assign_rhs3 (stmt));
3464 ASSERT_FALSE (gimple_assign_single_p (stmt));
3465 ASSERT_EQ (MULT_EXPR, gimple_assign_rhs_code (stmt));
3466 }
3467
3468 /* Build a GIMPLE_NOP and verify various properties of it. */
3469
3470 static void
test_nop_stmt()3471 test_nop_stmt ()
3472 {
3473 gimple *stmt = gimple_build_nop ();
3474 verify_gimple_pp ("GIMPLE_NOP", stmt);
3475 ASSERT_EQ (GIMPLE_NOP, gimple_code (stmt));
3476 ASSERT_EQ (NULL, gimple_get_lhs (stmt));
3477 ASSERT_FALSE (gimple_assign_single_p (stmt));
3478 }
3479
3480 /* Build a GIMPLE_RETURN equivalent to
3481 return 7;
3482 and verify various properties of it. */
3483
3484 static void
test_return_stmt()3485 test_return_stmt ()
3486 {
3487 tree type = integer_type_node;
3488 tree val = build_int_cst (type, 7);
3489 greturn *stmt = gimple_build_return (val);
3490 verify_gimple_pp ("return 7;", stmt);
3491
3492 ASSERT_EQ (GIMPLE_RETURN, gimple_code (stmt));
3493 ASSERT_EQ (NULL, gimple_get_lhs (stmt));
3494 ASSERT_EQ (val, gimple_return_retval (stmt));
3495 ASSERT_FALSE (gimple_assign_single_p (stmt));
3496 }
3497
3498 /* Build a GIMPLE_RETURN equivalent to
3499 return;
3500 and verify various properties of it. */
3501
3502 static void
test_return_without_value()3503 test_return_without_value ()
3504 {
3505 greturn *stmt = gimple_build_return (NULL);
3506 verify_gimple_pp ("return;", stmt);
3507
3508 ASSERT_EQ (GIMPLE_RETURN, gimple_code (stmt));
3509 ASSERT_EQ (NULL, gimple_get_lhs (stmt));
3510 ASSERT_EQ (NULL, gimple_return_retval (stmt));
3511 ASSERT_FALSE (gimple_assign_single_p (stmt));
3512 }
3513
3514 /* Run all of the selftests within this file. */
3515
3516 void
gimple_cc_tests()3517 gimple_cc_tests ()
3518 {
3519 test_assign_single ();
3520 test_assign_binop ();
3521 test_nop_stmt ();
3522 test_return_stmt ();
3523 test_return_without_value ();
3524 }
3525
3526 } // namespace selftest
3527
3528
3529 #endif /* CHECKING_P */
3530