xref: /netbsd-src/sys/arch/m68k/fpe/fpu_emulate.h (revision 67d39dde58d563ec5abbf213be925b711213ffd4)
1 /*	$NetBSD: fpu_emulate.h,v 1.26 2016/12/06 05:58:19 isaki Exp $	*/
2 
3 /*
4  * Copyright (c) 1995 Gordon Ross
5  * Copyright (c) 1995 Ken Nakata
6  * All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. The name of the author may not be used to endorse or promote products
17  *    derived from this software without specific prior written permission.
18  * 4. All advertising materials mentioning features or use of this software
19  *    must display the following acknowledgement:
20  *      This product includes software developed by Gordon Ross
21  *
22  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
23  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
24  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
25  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
26  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
27  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
28  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
29  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
30  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
31  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
32  */
33 
34 #ifndef _FPU_EMULATE_H_
35 #define _FPU_EMULATE_H_
36 
37 #include <sys/types.h>
38 #include <sys/signal.h>
39 #include <sys/time.h>
40 #include <sys/signalvar.h>
41 #include <sys/siginfo.h>
42 #include <m68k/fpreg.h>
43 
44 /*
45  * Floating point emulator (tailored for SPARC/modified for m68k, but
46  * structurally machine-independent).
47  *
48  * Floating point numbers are carried around internally in an `expanded'
49  * or `unpacked' form consisting of:
50  *	- sign
51  *	- unbiased exponent
52  *	- mantissa (`1.' + 80-bit fraction + guard + round)
53  *	- sticky bit
54  * Any implied `1' bit is inserted, giving a 81-bit mantissa that is
55  * always nonzero.  Additional low-order `guard' and `round' bits are
56  * scrunched in, making the entire mantissa 83 bits long.  This is divided
57  * into three 32-bit words, with `spare' bits left over in the upper part
58  * of the top word (the high bits of fp_mant[0]).  An internal `exploded'
59  * number is thus kept within the half-open interval [1.0,2.0) (but see
60  * the `number classes' below).  This holds even for denormalized numbers:
61  * when we explode an external denorm, we normalize it, introducing low-order
62  * zero bits, so that the rest of the code always sees normalized values.
63  *
64  * Note that a number of our algorithms use the `spare' bits at the top.
65  * The most demanding algorithm---the one for sqrt---depends on two such
66  * bits, so that it can represent values up to (but not including) 8.0,
67  * and then it needs a carry on top of that, so that we need three `spares'.
68  *
69  * The sticky-word is 32 bits so that we can use `OR' operators to goosh
70  * whole words from the mantissa into it.
71  *
72  * All operations are done in this internal extended precision.  According
73  * to Hennesey & Patterson, Appendix A, rounding can be repeated---that is,
74  * it is OK to do a+b in extended precision and then round the result to
75  * single precision---provided single, double, and extended precisions are
76  * `far enough apart' (they always are), but we will try to avoid any such
77  * extra work where possible.
78  */
79 struct fpn {
80 	int	fp_class;		/* see below */
81 	int	fp_sign;		/* 0 => positive, 1 => negative */
82 	int	fp_exp;			/* exponent (unbiased) */
83 	int	fp_sticky;		/* nonzero bits lost at right end */
84 	uint32_t fp_mant[3];		/* 83-bit mantissa */
85 };
86 
87 #define	FP_NMANT	83		/* total bits in mantissa (incl g,r) */
88 #define	FP_NG		2		/* number of low-order guard bits */
89 #define	FP_LG		((FP_NMANT - 1) & 31)	/* log2(1.0) for fp_mant[0] */
90 #define	FP_QUIETBIT	(1 << (FP_LG - 1))	/* Quiet bit in NaNs (0.5) */
91 #define	FP_1		(1 << FP_LG)		/* 1.0 in fp_mant[0] */
92 #define	FP_2		(1 << (FP_LG + 1))	/* 2.0 in fp_mant[0] */
93 
94 static inline void CPYFPN(struct fpn *, const struct fpn *);
95 
96 static inline void
CPYFPN(struct fpn * dst,const struct fpn * src)97 CPYFPN(struct fpn *dst, const struct fpn *src)
98 {
99 
100 	if (dst != src) {
101 		*dst = *src;
102 	}
103 }
104 
105 /*
106  * Number classes.  Since zero, Inf, and NaN cannot be represented using
107  * the above layout, we distinguish these from other numbers via a class.
108  */
109 #define	FPC_SNAN	-2		/* signalling NaN (sign irrelevant) */
110 #define	FPC_QNAN	-1		/* quiet NaN (sign irrelevant) */
111 #define	FPC_ZERO	0		/* zero (sign matters) */
112 #define	FPC_NUM		1		/* number (sign matters) */
113 #define	FPC_INF		2		/* infinity (sign matters) */
114 
115 #define	ISNAN(fp)	((fp)->fp_class < 0)
116 #define	ISZERO(fp)	((fp)->fp_class == 0)
117 #define	ISINF(fp)	((fp)->fp_class == FPC_INF)
118 
119 /*
120  * ORDER(x,y) `sorts' a pair of `fpn *'s so that the right operand (y) points
121  * to the `more significant' operand for our purposes.  Appendix N says that
122  * the result of a computation involving two numbers are:
123  *
124  *	If both are SNaN: operand 2, converted to Quiet
125  *	If only one is SNaN: the SNaN operand, converted to Quiet
126  *	If both are QNaN: operand 2
127  *	If only one is QNaN: the QNaN operand
128  *
129  * In addition, in operations with an Inf operand, the result is usually
130  * Inf.  The class numbers are carefully arranged so that if
131  *	(unsigned)class(op1) > (unsigned)class(op2)
132  * then op1 is the one we want; otherwise op2 is the one we want.
133  */
134 #define	ORDER(x, y) { \
135 	if ((uint32_t)(x)->fp_class > (uint32_t)(y)->fp_class) \
136 		SWAP(x, y); \
137 }
138 #define	SWAP(x, y) {				\
139 	struct fpn *swap;			\
140 	swap = (x), (x) = (y), (y) = swap;	\
141 }
142 
143 /*
144  * Emulator state.
145  */
146 struct fpemu {
147 	struct frame *fe_frame; /* integer regs, etc */
148 	struct fpframe *fe_fpframe; /* FP registers, etc */
149 	uint32_t fe_fpsr;	/* fpsr copy (modified during op) */
150 	uint32_t fe_fpcr;	/* fpcr copy */
151 	struct fpn fe_f1;	/* operand 1 */
152 	struct fpn fe_f2;	/* operand 2, if required */
153 	struct fpn fe_f3;	/* available storage for result */
154 };
155 
156 /*****************************************************************************
157  * End of definitions derived from Sparc FPE
158  *****************************************************************************/
159 
160 /*
161  * Internal info about a decoded effective address.
162  */
163 struct insn_ea {
164 	int	ea_regnum;
165 	int	ea_ext[3];	/* extension words if any */
166 	int	ea_flags;	/* flags == 0 means mode 2: An@ */
167 #define	EA_DIRECT	0x001	/* mode [01]: Dn or An */
168 #define EA_PREDECR	0x002	/* mode 4: An@- */
169 #define	EA_POSTINCR	0x004	/* mode 3: An@+ */
170 #define EA_OFFSET	0x008	/* mode 5 or (7,2): APC@(d16) */
171 #define	EA_INDEXED	0x010	/* mode 6 or (7,3): APC@(Xn:*:*,d8) etc */
172 #define EA_ABS  	0x020	/* mode (7,[01]): abs */
173 #define EA_PC_REL	0x040	/* mode (7,[23]): PC@(d16) etc */
174 #define	EA_IMMED	0x080	/* mode (7,4): #immed */
175 #define EA_MEM_INDIR	0x100	/* mode 6 or (7,3): APC@(Xn:*:*,*)@(*) etc */
176 #define EA_BASE_SUPPRSS	0x200	/* mode 6 or (7,3): base register suppressed */
177 #define EA_FRAME_EA	0x400	/* MC68LC040 only: precalculated EA from
178 				   format 4 stack frame */
179 	int	ea_moffs;	/* offset used for fmoveMulti */
180 };
181 
182 #define ea_offset	ea_ext[0]	/* mode 5: offset word */
183 #define ea_absaddr	ea_ext[0]	/* mode (7,[01]): absolute address */
184 #define ea_immed	ea_ext		/* mode (7,4): immediate value */
185 #define ea_basedisp	ea_ext[0]	/* mode 6: base displacement */
186 #define ea_outerdisp	ea_ext[1]	/* mode 6: outer displacement */
187 #define	ea_idxreg	ea_ext[2]	/* mode 6: index register number */
188 #define ea_fea		ea_ext[0]	/* MC68LC040 only: frame EA */
189 
190 struct instruction {
191 	uint32_t is_pc;		/* insn's address */
192 	uint32_t is_nextpc;	/* next PC */
193 	int	is_advance;	/* length of instruction */
194 	int	is_datasize;	/* size of memory operand */
195 	int	is_opcode;	/* opcode word */
196 	int	is_word1;	/* second word */
197 	struct insn_ea	is_ea;	/* decoded effective address mode */
198 };
199 
200 /*
201  * FP data types
202  */
203 #define FTYPE_LNG 0 /* Long Word Integer */
204 #define FTYPE_SNG 1 /* Single Prec */
205 #define FTYPE_EXT 2 /* Extended Prec */
206 #define FTYPE_BCD 3 /* Packed BCD */
207 #define FTYPE_WRD 4 /* Word Integer */
208 #define FTYPE_DBL 5 /* Double Prec */
209 #define FTYPE_BYT 6 /* Byte Integer */
210 
211 /*
212  * Other functions.
213  */
214 
215 /* Build a new Quiet NaN (sign=0, frac=all 1's). */
216 struct	fpn *fpu_newnan(struct fpemu *);
217 
218 /*
219  * Shift a number right some number of bits, taking care of round/sticky.
220  * Note that the result is probably not a well-formed number (it will lack
221  * the normal 1-bit mant[0]&FP_1).
222  */
223 int	fpu_shr(struct fpn *, int);
224 /*
225  * Round a number according to the round mode in FPCR
226  */
227 int	fpu_round(struct fpemu *, struct fpn *);
228 
229 /* type conversion */
230 void	fpu_explode(struct fpemu *, struct fpn *, int t, const uint32_t *);
231 void	fpu_implode(struct fpemu *, struct fpn *, int t, uint32_t *);
232 
233 /*
234  * non-static emulation functions
235  */
236 /* type 0 */
237 int fpu_emul_fmovecr(struct fpemu *, struct instruction *);
238 int fpu_emul_fstore(struct fpemu *, struct instruction *);
239 int fpu_emul_fscale(struct fpemu *, struct instruction *);
240 
241 /*
242  * include function declarations of those which are called by fpu_emul_arith()
243  */
244 #include "fpu_arith_proto.h"
245 
246 int fpu_emulate(struct frame *, struct fpframe *, ksiginfo_t *);
247 struct fpn *fpu_cmp(struct fpemu *);
248 
249 /* fpu_cordic.c */
250 extern const struct fpn fpu_cordic_inv_gain1;
251 void fpu_cordit1(struct fpemu *,
252 	struct fpn *, struct fpn *, struct fpn *, const struct fpn *);
253 
254 /*
255  * "helper" functions
256  */
257 /* return values from constant rom */
258 struct fpn *fpu_const(struct fpn *, uint32_t);
259 #define FPU_CONST_PI	(0x00)	/* pi */
260 #define FPU_CONST_0 	(0x0f)	/* 0.0 */
261 #define FPU_CONST_LN_2	(0x30)	/* ln(2) */
262 #define FPU_CONST_LN_10	(0x31)	/* ln(10) */
263 #define FPU_CONST_1 	(0x32)	/* 1.0 */
264 
265 /* update exceptions and FPSR */
266 int fpu_upd_excp(struct fpemu *);
267 uint32_t fpu_upd_fpsr(struct fpemu *, struct fpn *);
268 
269 /* address mode decoder, and load/store */
270 int fpu_decode_ea(struct frame *, struct instruction *,
271 		   struct insn_ea *, int);
272 int fpu_load_ea(struct frame *, struct instruction *,
273 		 struct insn_ea *, char *);
274 int fpu_store_ea(struct frame *, struct instruction *,
275 		  struct insn_ea *, char *);
276 
277 /* fpu_subr.c */
278 void fpu_norm(struct fpn *);
279 
280 #if !defined(FPE_DEBUG)
281 #  define FPE_DEBUG 0
282 #endif
283 
284 #endif /* _FPU_EMULATE_H_ */
285