xref: /netbsd-src/external/gpl3/gcc/dist/libstdc++-v3/src/c++17/floating_to_chars.cc (revision b1e838363e3c6fc78a55519254d99869742dd33c)
1 // std::to_chars implementation for floating-point types -*- C++ -*-
2 
3 // Copyright (C) 2020-2022 Free Software Foundation, Inc.
4 //
5 // This file is part of the GNU ISO C++ Library.  This library is free
6 // software; you can redistribute it and/or modify it under the
7 // terms of the GNU General Public License as published by the
8 // Free Software Foundation; either version 3, or (at your option)
9 // any later version.
10 
11 // This library is distributed in the hope that it will be useful,
12 // but WITHOUT ANY WARRANTY; without even the implied warranty of
13 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14 // GNU General Public License for more details.
15 
16 // Under Section 7 of GPL version 3, you are granted additional
17 // permissions described in the GCC Runtime Library Exception, version
18 // 3.1, as published by the Free Software Foundation.
19 
20 // You should have received a copy of the GNU General Public License and
21 // a copy of the GCC Runtime Library Exception along with this program;
22 // see the files COPYING3 and COPYING.RUNTIME respectively.  If not, see
23 // <http://www.gnu.org/licenses/>.
24 
25 #include <charconv>
26 
27 #include <bit>
28 #include <cfenv>
29 #include <cassert>
30 #include <cmath>
31 #include <cstdio>
32 #include <cstring>
33 #if __has_include(<langinfo.h>)
34 # include <langinfo.h> // for nl_langinfo
35 #endif
36 #include <optional>
37 #include <string_view>
38 #include <type_traits>
39 
40 #ifdef _GLIBCXX_LONG_DOUBLE_ALT128_COMPAT
41 #ifndef __LONG_DOUBLE_IBM128__
42 #error "floating_to_chars.cc must be compiled with -mabi=ibmlongdouble"
43 #endif
44 // sprintf for __ieee128
45 extern "C" int __sprintfieee128(char*, const char*, ...);
46 #endif
47 
48 // This implementation crucially assumes float/double have the
49 // IEEE binary32/binary64 formats.
50 #if _GLIBCXX_FLOAT_IS_IEEE_BINARY32 && _GLIBCXX_DOUBLE_IS_IEEE_BINARY64 \
51     /* And it also assumes that uint64_t POW10_SPLIT_2[3133][3] is valid.  */\
52     && __SIZE_WIDTH__ >= 32
53 
54 // Determine the binary format of 'long double'.
55 
56 // We support the binary64, float80 (i.e. x86 80-bit extended precision),
57 // binary128, and ibm128 formats.
58 #define LDK_UNSUPPORTED 0
59 #define LDK_BINARY64    1
60 #define LDK_FLOAT80     2
61 #define LDK_BINARY128   3
62 #define LDK_IBM128      4
63 
64 #if __LDBL_MANT_DIG__ == __DBL_MANT_DIG__
65 # define LONG_DOUBLE_KIND LDK_BINARY64
66 #elif __LDBL_MANT_DIG__ == 64
67 #  define LONG_DOUBLE_KIND LDK_FLOAT80
68 #elif __LDBL_MANT_DIG__ == 113
69 # define LONG_DOUBLE_KIND LDK_BINARY128
70 #elif __LDBL_MANT_DIG__ == 106
71 # define LONG_DOUBLE_KIND LDK_IBM128
72 #else
73 # define LONG_DOUBLE_KIND LDK_UNSUPPORTED
74 #endif
75 
76 // For now we only support __float128 when it's the powerpc64 __ieee128 type.
77 #if defined _GLIBCXX_LONG_DOUBLE_ALT128_COMPAT && __FLT128_MANT_DIG__ == 113
78 // Define overloads of std::to_chars for __float128.
79 # define FLOAT128_TO_CHARS 1
80 #endif
81 
82 #ifdef FLOAT128_TO_CHARS
83 using F128_type = __float128;
84 #else
85 using F128_type = void;
86 #endif
87 
88 namespace
89 {
90 #if defined __SIZEOF_INT128__
91   using uint128_t = unsigned __int128;
92 #else
93 # include "uint128_t.h"
94 #endif
95 
96   namespace ryu
97   {
98 #include "ryu/common.h"
99 #include "ryu/digit_table.h"
100 #include "ryu/d2s_intrinsics.h"
101 #include "ryu/d2s_full_table.h"
102 #include "ryu/d2fixed_full_table.h"
103 #include "ryu/f2s_intrinsics.h"
104 #include "ryu/d2s.c"
105 #include "ryu/d2fixed.c"
106 #include "ryu/f2s.c"
107 
108     namespace generic128
109     {
110       // Put the generic Ryu bits in their own namespace to avoid name conflicts.
111 # include "ryu/generic_128.h"
112 # include "ryu/ryu_generic_128.h"
113 # include "ryu/generic_128.c"
114     } // namespace generic128
115 
116     using generic128::floating_decimal_128;
117     using generic128::generic_binary_to_decimal;
118 
119     int
to_chars(const floating_decimal_128 v,char * const result)120     to_chars(const floating_decimal_128 v, char* const result)
121     { return generic128::generic_to_chars(v, result); }
122   } // namespace ryu
123 
124   // A traits class that contains pertinent information about the binary
125   // format of each of the floating-point types we support.
126   template<typename T>
127     struct floating_type_traits
128     { };
129 
130   template<>
131     struct floating_type_traits<float>
132     {
133       static constexpr int mantissa_bits = 23;
134       static constexpr int exponent_bits = 8;
135       static constexpr bool has_implicit_leading_bit = true;
136       using mantissa_t = uint32_t;
137       using shortest_scientific_t = ryu::floating_decimal_32;
138 
139       static constexpr uint64_t pow10_adjustment_tab[]
140 	= { 0b0000000000011101011100110101100101101110000000000000000000000000 };
141     };
142 
143   template<>
144     struct floating_type_traits<double>
145     {
146       static constexpr int mantissa_bits = 52;
147       static constexpr int exponent_bits = 11;
148       static constexpr bool has_implicit_leading_bit = true;
149       using mantissa_t = uint64_t;
150       using shortest_scientific_t = ryu::floating_decimal_64;
151 
152       static constexpr uint64_t pow10_adjustment_tab[]
153 	= { 0b0000000000000000000000011000110101110111000001100101110000111100,
154 	    0b0111100011110101011000011110000000110110010101011000001110011111,
155 	    0b0101101100000000011100100100111100110110110100010001010101110000,
156 	    0b0011110010111000101111110101100011101100010001010000000101100111,
157 	    0b0001010000011001011100100001010000010101101000001101000000000000 };
158     };
159 
160 #if LONG_DOUBLE_KIND == LDK_BINARY128 || defined FLOAT128_TO_CHARS
161   // Traits for the IEEE binary128 format.
162   struct floating_type_traits_binary128
163   {
164     static constexpr int mantissa_bits = 112;
165     static constexpr int exponent_bits = 15;
166     static constexpr bool has_implicit_leading_bit = true;
167     using mantissa_t = uint128_t;
168     using shortest_scientific_t = ryu::floating_decimal_128;
169 
170     static constexpr uint64_t pow10_adjustment_tab[]
171       = { 0b0000000000000000000000000000000000000000000000000100000010000000,
172 	  0b1011001111110100000100010101101110011100100110000110010110011000,
173 	  0b1010100010001101111111000000001101010010100010010000111011110111,
174 	  0b1011111001110001111000011111000010110111000111110100101010100101,
175 	  0b0110100110011110011011000011000010011001110001001001010011100011,
176 	  0b0000011111110010101111101011101010000110011111100111001110100111,
177 	  0b0100010101010110000010111011110100000010011001001010001110111101,
178 	  0b1101110111000010001101100000110100000111001001101011000101011011,
179 	  0b0100111011101101010000001101011000101100101110010010110000101011,
180 	  0b0100000110111000000110101000010011101000110100010110000011101101,
181 	  0b1011001101001000100001010001100100001111011101010101110001010110,
182 	  0b1000000001000000101001110010110010001111101101010101001100000110,
183 	  0b0101110110100110000110000001001010111110001110010000111111010011,
184 	  0b1010001111100111000100011100100100111100100101000001011001000111,
185 	  0b1010011000011100110101100111001011100101111111100001110100000100,
186 	  0b1100011100100010100000110001001010000000100000001001010111011101,
187 	  0b0101110000100011001111101101000000100110000010010111010001111010,
188 	  0b0100111100011010110111101000100110000111001001101100000001111100,
189 	  0b1100100100111110101011000100000101011010110111000111110100110101,
190 	  0b0110010000010111010100110011000000111010000010111011010110000100,
191 	  0b0101001001010010110111010111000101011100000111100111000001110010,
192 	  0b1101111111001011101010110001000111011010111101001011010110100100,
193 	  0b0001000100110000011111101011001101110010110110010000000011100100,
194 	  0b0001000000000101001001001000000000011000100011001110101001001110,
195 	  0b0010010010001000111010011011100001000110011011011110110100111000,
196 	  0b0000100110101100000111100010100100011100110111011100001111001100,
197 	  0b1011111010001110001100000011110111111111100000001011111111101100,
198 	  0b0000011100001111010101110000100110111100101101110111101001000001,
199 	  0b1100010001110110111100001001001101101000011100000010110101001011,
200 	  0b0100101001101011111001011110101101100011011111011100101010101111,
201 	  0b0001101001111001110000101101101100001011010001011110011101000010,
202 	  0b1111000000101001101111011010110011101110100001011011001011100010,
203 	  0b0101001010111101101100001111100010010110001101001000001101100100,
204 	  0b0101100101011110001100101011111000111001111001001001101101100001,
205 	  0b1111001101010010100100011011000110110010001111000111010001001101,
206 	  0b0001110010011000000001000110110111011000011100001000011001110111,
207 	  0b0100001011011011011011110011101100100101111111101100101000001110,
208 	  0b0101011110111101010111100111101111000101111111111110100011011010,
209 	  0b1110101010001001110100000010110111010111111010111110100110010110,
210 	  0b1010001111100001001100101000110100001100011100110010000011010111,
211 	  0b1111111101101111000100111100000101011000001110011011101010111001,
212 	  0b1111101100001110100101111101011001000100000101110000110010100011,
213 	  0b1001010110110101101101000101010001010000101011011111010011010000,
214 	  0b0111001110110011101001100111000001000100001010110000010000001101,
215 	  0b0101111100111110100111011001111001111011011110010111010011101010,
216 	  0b1110111000000001100100111001100100110001011011001110101111110111,
217 	  0b0001010001001101010111101010011111000011110001101101011001111111,
218 	  0b0101000011100011010010001101100001011101011010100110101100100010,
219 	  0b0001000101011000100101111100110110000101101101111000110001001011,
220 	  0b0101100101001011011000010101000000010100011100101101000010011111,
221 	  0b1000010010001011101001011010100010111011110100110011011000100111,
222 	  0b1000011011100001010111010111010011101100100010010010100100101001,
223 	  0b1001001001010111110101000010111010000000101111010100001010010010,
224 	  0b0011011110110010010101111011000001000000000011011111000011111011,
225 	  0b1011000110100011001110000001000100000001011100010111010010011110,
226 	  0b0111101110110101110111110000011000000100011100011000101101101110,
227 	  0b1001100101111011011100011110101011001111100111101010101010110111,
228 	  0b1100110010010001100011001111010000000100011101001111011101001111,
229 	  0b1000111001111010100101000010000100000001001100101010001011001101,
230 	  0b0011101011110000110010100101010100110010100001000010101011111101,
231 	  0b1100000000000110000010101011000000011101000110011111100010111111,
232 	  0b0010100110000011011100010110111100010110101100110011101110001101,
233 	  0b0010111101010011111000111001111100110111111100100011110001101110,
234 	  0b1001110111001001101001001001011000010100110001000000100011010110,
235 	  0b0011110101100111011011111100001000011001010100111100100101111010,
236 	  0b0010001101000011000010100101110000010101101000100110000100001010,
237 	  0b0010000010100110010101100101110011101111000111111111001001100001,
238 	  0b0100111111011011011011100111111011000010011101101111011111110110,
239 	  0b1111111111010110101011101000100101110100001110001001101011100111,
240 	  0b1011111101000101110000111100100010111010100001010000010010110010,
241 	  0b1111010101001011101011101010000100110110001110111100100110111111,
242 	  0b1011001101000001001101000010101010010110010001100001011100011010,
243 	  0b0101001011011101010001110100010000010001111100100100100001001101,
244 	  0b0010100000111001100011000101100101000001111100111001101000000010,
245 	  0b1011001111010101011001000100100110100100110111110100000110111000,
246 	  0b0101011111010011100011010010111101110010100001111111100010001001,
247 	  0b0010111011101100100000000000001111111010011101100111100001001101,
248 	  0b1101000000000000000000000000000000000000000000000000000000000000 };
249   };
250 
251 # ifdef FLOAT128_TO_CHARS
252   template<>
253     struct floating_type_traits<__float128> : floating_type_traits_binary128
254     { };
255 # endif
256 #endif
257 
258 #if LONG_DOUBLE_KIND == LDK_BINARY64
259   // When long double is equivalent to double, we just forward the long double
260   // overloads to the double overloads, so we don't need to define a
261   // floating_type_traits<long double> specialization in this case.
262 #elif LONG_DOUBLE_KIND == LDK_FLOAT80
263   template<>
264     struct floating_type_traits<long double>
265     {
266       static constexpr int mantissa_bits = 64;
267       static constexpr int exponent_bits = 15;
268       static constexpr bool has_implicit_leading_bit = false;
269       using mantissa_t = uint64_t;
270       using shortest_scientific_t = ryu::floating_decimal_128;
271 
272       static constexpr uint64_t pow10_adjustment_tab[]
273 	= { 0b0000000000000000000000000000110101011111110100010100110000011101,
274 	    0b1001100101001111010011011111101000101111110001011001011101110000,
275 	    0b0000101111111011110010001000001010111101011110111111010100011001,
276 	    0b0011100000011111001101101011111001111100100010000101001111101001,
277 	    0b0100100100000000100111010010101110011000110001101101110011001010,
278 	    0b0111100111100010100000010011000010010110101111110101000011110100,
279 	    0b1010100111100010011110000011011101101100010110000110101010101010,
280 	    0b0000001111001111000000101100111011011000101000110011101100110010,
281 	    0b0111000011100100101101010100001101111110101111001000010011111111,
282 	    0b0010111000100110100100100010101100111010110001101010010111001000,
283 	    0b0000100000010110000011001001000111000001111010100101101000001111,
284 	    0b0010101011101000111100001011000010011101000101010010010000101111,
285 	    0b1011111011101101110010101011010001111000101000101101011001100011,
286 	    0b1010111011011011110111110011001010000010011001110100101101000101,
287 	    0b0011000001110110011010010000011100100011001011001100001101010110,
288 	    0b0100011111011000111111101000011110000010111110101001000000001001,
289 	    0b1110000001110001001101101110011000100000001010000111100010111010,
290 	    0b1110001001010011101000111000001000010100110000010110100011110000,
291 	    0b0000011010110000110001111000011111000011001101001101001001000110,
292 	    0b1010010111001000101001100101010110100100100010010010000101000010,
293 	    0b1011001110000111100010100110000011100011111001110111001100000101,
294 	    0b0110101001001000010110001000010001010101110101100001111100011001,
295 	    0b1111100011110101011110011010101001010010100011000010110001101001,
296 	    0b0100000100001000111101011100010011011111011001000000001100011000,
297 	    0b1110111111000111100101110111110000000011001110011100011011011001,
298 	    0b1100001100100000010001100011011000111011110000110011010101000011,
299 	    0b1111111011100111011101001111111000010000001111010111110010000100,
300 	    0b1110111001111110101111000101000000001010001110011010001000111010,
301 	    0b1000010001011000101111111010110011111101110101101001111000111010,
302 	    0b0100000111101001000111011001101000001010111011101001101111000100,
303 	    0b0000011100110001000111011100111100110001101111111010110111100000,
304 	    0b0000011101011100100110010011110101010100010011110010010111010000,
305 	    0b0011011001100111110101111100001001101110101101001110110011110110,
306 	    0b1011000101000001110100111001100100111100110011110000000001101000,
307 	    0b1011100011110100001001110101010110111001000000001011101001011110,
308 	    0b1111001010010010100000010110101010101011101000101000000000001100,
309 	    0b1000001111100100111001110101100001010011111111000001000011110000,
310 	    0b0001011101001000010000101101111000001110101100110011001100110111,
311 	    0b1110011100000010101011011111001010111101111110100000011100000011,
312 	    0b1001110110011100101010011110100010110001001110110000101011100110,
313 	    0b1001101000100011100111010000011011100001000000110101100100001001,
314 	    0b1010111000101000101101010111000010001100001010100011111100000100,
315 	    0b0111101000100011000101101011111011100010001101110111001111001011,
316 	    0b1110100111010110001110110110000000010110100011110000010001111100,
317 	    0b1100010100011010001011001000111001010101011110100101011001000000,
318 	    0b0000110001111001100110010110111010101101001101000000000010010101,
319 	    0b0001110111101000001111101010110010010000111110111100000111110100,
320 	    0b0111110111001001111000110001101101001010101110110101111110000100,
321 	    0b0000111110111010101111100010111010011100010110011011011001000001,
322 	    0b1010010100100100101110111111111000101100000010111111101101000110,
323 	    0b1000100111111101100011001101000110001000000100010101010100001101,
324 	    0b1100101010101000111100101100001000110001110010100000000010110101,
325 	    0b1010000100111101100100101010010110100010000000110101101110000100,
326 	    0b1011111011110001110000100100000000001010111010001101100000100100,
327 	    0b0111101101100011001110011100000001000101101101111000100111011111,
328 	    0b0100111010010011011001010011110100001100111010010101111111100011,
329 	    0b0010001001011000111000001100110111110111110010100011000110110110,
330 	    0b0101010110000000010000100000110100111011111101000100000111010010,
331 	    0b0110000011011101000001010100110101101110011100110101000000001001,
332 	    0b1101100110100000011000001111000100100100110001100110101010101100,
333 	    0b0010100101010110010010001010101000011111111111001011001010001111,
334 	    0b0111001010001111001100111001010101001000110101000011110000001000,
335 	    0b0110010011001001001111110001010010001011010010001101110110110011,
336 	    0b0110010100111011000100111000001001101011111001110010111110111111,
337 	    0b0101110111001001101100110100101001110010101110011001101110001000,
338 	    0b0100110101010111011010001100010111100011010011111001010100111000,
339 	    0b0111000110110111011110100100010111000110000110110110110001111110,
340 	    0b1000101101010100100100111110100011110110110010011001110011110101,
341 	    0b1001101110101001010100111101101011000101000010110101101111110000,
342 	    0b0100100101001011011001001011000010001101001010010001010110101000,
343 	    0b0010100001001011100110101000010110000111000111000011100101011011,
344 	    0b0110111000011001111101101011111010001000000010101000101010011110,
345 	    0b1000110110100001111011000001111100001001000000010110010100100100,
346 	    0b1001110100011111100111101011010000010101011100101000010010100110,
347 	    0b0001010110101110100010101010001110110110100011101010001001111100,
348 	    0b1010100101101100000010110011100110100010010000100100001110000100,
349 	    0b0001000000010000001010000010100110000001110100111001110111101101,
350 	    0b1100000000000000000000000000000000000000000000000000000000000000 };
351     };
352 #elif LONG_DOUBLE_KIND == LDK_BINARY128
353   template<>
354     struct floating_type_traits<long double> : floating_type_traits_binary128
355     { };
356 #elif LONG_DOUBLE_KIND == LDK_IBM128
357   template<>
358     struct floating_type_traits<long double>
359     {
360       static constexpr int mantissa_bits = 105;
361       static constexpr int exponent_bits = 11;
362       static constexpr bool has_implicit_leading_bit = true;
363       using mantissa_t = uint128_t;
364       using shortest_scientific_t = ryu::floating_decimal_128;
365 
366       static constexpr uint64_t pow10_adjustment_tab[]
367 	= { 0b0000000000000000000000000000000000000000000000001000000100000000,
368 	    0b0000000000000000000100000000000000000000001000000000000000000010,
369 	    0b0000100000000000000000001001000000000000000001100100000000000000,
370 	    0b0011000000000000000000000000000001110000010000000000000000000000,
371 	    0b0000100000000000001000000000000000000000000000100000000000000000 };
372     };
373 #endif
374 
375   // An IEEE-style decomposition of a floating-point value of type T.
376   template<typename T>
377     struct ieee_t
378     {
379       typename floating_type_traits<T>::mantissa_t mantissa;
380       uint32_t biased_exponent;
381       bool sign;
382     };
383 
384   // Decompose the floating-point value into its IEEE components.
385   template<typename T>
386     ieee_t<T>
get_ieee_repr(const T value)387     get_ieee_repr(const T value)
388     {
389       using mantissa_t = typename floating_type_traits<T>::mantissa_t;
390       constexpr int mantissa_bits = floating_type_traits<T>::mantissa_bits;
391       constexpr int exponent_bits = floating_type_traits<T>::exponent_bits;
392       constexpr int total_bits = mantissa_bits + exponent_bits + 1;
393 
394       constexpr auto get_uint_t = [] {
395 	if constexpr (total_bits <= 32)
396 	  return uint32_t{};
397 	else if constexpr (total_bits <= 64)
398 	  return uint64_t{};
399 	else if constexpr (total_bits <= 128)
400 	  return uint128_t{};
401       };
402       using uint_t = decltype(get_uint_t());
403       uint_t value_bits = 0;
404       memcpy(&value_bits, &value, sizeof(value));
405 
406       ieee_t<T> ieee_repr;
407       ieee_repr.mantissa
408 	= static_cast<mantissa_t>(value_bits & ((uint_t{1} << mantissa_bits) - 1u));
409       value_bits >>= mantissa_bits;
410       ieee_repr.biased_exponent
411 	= static_cast<uint32_t>(value_bits & ((uint_t{1} << exponent_bits) - 1u));
412       value_bits >>= exponent_bits;
413       ieee_repr.sign = (value_bits & 1) != 0;
414       return ieee_repr;
415     }
416 
417 #if LONG_DOUBLE_KIND == LDK_IBM128
418   template<>
419     ieee_t<long double>
get_ieee_repr(const long double value)420     get_ieee_repr(const long double value)
421     {
422       // The layout of __ibm128 isn't compatible with the standard IEEE format.
423       // So we transform it into an IEEE-compatible format, suitable for
424       // consumption by the generic Ryu API, with an 11-bit exponent and 105-bit
425       // mantissa (plus an implicit leading bit).  We use the exponent and sign
426       // of the high part, and we merge the mantissa of the high part with the
427       // mantissa (and the implicit leading bit) of the low part.
428       uint64_t value_bits[2] = {};
429       memcpy(value_bits, &value, sizeof(value_bits));
430 
431       const uint64_t value_hi = value_bits[0];
432       const uint64_t value_lo = value_bits[1];
433 
434       uint64_t mantissa_hi = value_hi & ((1ull << 52) - 1);
435       unsigned exponent_hi = (value_hi >> 52) & ((1ull << 11) - 1);
436       const int sign_hi = (value_hi >> 63) & 1;
437 
438       uint64_t mantissa_lo = value_lo & ((1ull << 52) - 1);
439       const unsigned exponent_lo = (value_lo >> 52) & ((1ull << 11) - 1);
440       const int sign_lo = (value_lo >> 63) & 1;
441 
442 	{
443 	  // The following code for adjusting the low-part mantissa to combine
444 	  // it with the high-part mantissa is taken from the glibc source file
445 	  // sysdeps/ieee754/ldbl-128ibm/printf_fphex.c.
446 	  mantissa_lo <<= 7;
447 	  if (exponent_lo != 0)
448 	    mantissa_lo |= (1ull << (52 + 7));
449 	  else
450 	    mantissa_lo <<= 1;
451 
452 	  const int ediff = exponent_hi - exponent_lo - 53;
453 	  if (ediff > 63)
454 	    mantissa_lo = 0;
455 	  else if (ediff > 0)
456 	    mantissa_lo >>= ediff;
457 	  else if (ediff < 0)
458 	    mantissa_lo <<= -ediff;
459 
460 	  if (sign_lo != sign_hi && mantissa_lo != 0)
461 	    {
462 	      mantissa_lo = (1ull << 60) - mantissa_lo;
463 	      if (mantissa_hi == 0)
464 		{
465 		  mantissa_hi = 0xffffffffffffeLL | (mantissa_lo >> 59);
466 		  mantissa_lo = 0xfffffffffffffffLL & (mantissa_lo << 1);
467 		  exponent_hi--;
468 		}
469 	      else
470 		mantissa_hi--;
471 	    }
472 	}
473 
474       ieee_t<long double> ieee_repr;
475       ieee_repr.mantissa = ((uint128_t{mantissa_hi} << 64)
476 			    | (uint128_t{mantissa_lo} << 4)) >> 11;
477       ieee_repr.biased_exponent = exponent_hi;
478       ieee_repr.sign = sign_hi;
479       return ieee_repr;
480     }
481 #endif
482 
483   // Invoke Ryu to obtain the shortest scientific form for the given
484   // floating-point number.
485   template<typename T>
486     typename floating_type_traits<T>::shortest_scientific_t
floating_to_shortest_scientific(const T value)487     floating_to_shortest_scientific(const T value)
488     {
489       if constexpr (std::is_same_v<T, float>)
490 	return ryu::floating_to_fd32(value);
491       else if constexpr (std::is_same_v<T, double>)
492 	return ryu::floating_to_fd64(value);
493       else if constexpr (std::is_same_v<T, long double>
494 			 || std::is_same_v<T, F128_type>)
495 	{
496 	  constexpr int mantissa_bits
497 	    = floating_type_traits<T>::mantissa_bits;
498 	  constexpr int exponent_bits
499 	    = floating_type_traits<T>::exponent_bits;
500 	  constexpr bool has_implicit_leading_bit
501 	    = floating_type_traits<T>::has_implicit_leading_bit;
502 
503 	  const auto [mantissa, exponent, sign] = get_ieee_repr(value);
504 	  return ryu::generic_binary_to_decimal(mantissa, exponent, sign,
505 						mantissa_bits, exponent_bits,
506 						!has_implicit_leading_bit);
507 	}
508     }
509 
510   // This subroutine returns true if the shortest scientific form fd is a
511   // positive power of 10, and the floating-point number that has this shortest
512   // scientific form is smaller than this power of 10.
513   //
514   // For instance, the exactly-representable 64-bit number
515   // 99999999999999991611392.0 has the shortest scientific form 1e23, so its
516   // exact value is smaller than its shortest scientific form.
517   //
518   // For these powers of 10 the length of the fixed form is one digit less
519   // than what the scientific exponent suggests.
520   //
521   // This subroutine inspects a lookup table to detect when fd is such a
522   // "rounded up" power of 10.
523   template<typename T>
524     bool
is_rounded_up_pow10_p(const typename floating_type_traits<T>::shortest_scientific_t fd)525     is_rounded_up_pow10_p(const typename
526 			  floating_type_traits<T>::shortest_scientific_t fd)
527     {
528       if (fd.exponent < 0 || fd.mantissa != 1) [[likely]]
529 	return false;
530 
531       constexpr auto& pow10_adjustment_tab
532 	= floating_type_traits<T>::pow10_adjustment_tab;
533       __glibcxx_assert(fd.exponent/64 < (int)std::size(pow10_adjustment_tab));
534       return (pow10_adjustment_tab[fd.exponent/64]
535 	      & (1ull << (63 - fd.exponent%64)));
536     }
537 
538   int
get_mantissa_length(const ryu::floating_decimal_32 fd)539   get_mantissa_length(const ryu::floating_decimal_32 fd)
540   { return ryu::decimalLength9(fd.mantissa); }
541 
542   int
get_mantissa_length(const ryu::floating_decimal_64 fd)543   get_mantissa_length(const ryu::floating_decimal_64 fd)
544   { return ryu::decimalLength17(fd.mantissa); }
545 
546   int
get_mantissa_length(const ryu::floating_decimal_128 fd)547   get_mantissa_length(const ryu::floating_decimal_128 fd)
548   { return ryu::generic128::decimalLength(fd.mantissa); }
549 
550 #if !defined __SIZEOF_INT128__
551   // An implementation of base-10 std::to_chars for the uint128_t class type,
552   // used by targets that lack __int128.
553   std::to_chars_result
to_chars(char * first,char * const last,uint128_t x)554   to_chars(char* first, char* const last, uint128_t x)
555   {
556     const int len = ryu::generic128::decimalLength(x);
557     if (last - first < len)
558       return {last, std::errc::value_too_large};
559     if (x == 0)
560       {
561 	*first++ = '0';
562 	return {first, std::errc{}};
563       }
564     for (int i = 0; i < len; ++i)
565       {
566 	first[len - 1 - i] = '0' + static_cast<char>(x % 10);
567 	x /= 10;
568       }
569     __glibcxx_assert(x == 0);
570     return {first + len, std::errc{}};
571   }
572 #endif
573 } // anon namespace
574 
575 namespace std _GLIBCXX_VISIBILITY(default)
576 {
577 _GLIBCXX_BEGIN_NAMESPACE_VERSION
578 
579 // This subroutine of __floating_to_chars_* handles writing nan, inf and 0 in
580 // all formatting modes.
581 template<typename T>
582   static optional<to_chars_result>
__handle_special_value(char * first,char * const last,const T value,const chars_format fmt,const int precision)583   __handle_special_value(char* first, char* const last, const T value,
584 			 const chars_format fmt, const int precision)
585   {
586     __glibcxx_assert(precision >= 0);
587 
588     string_view str;
589     switch (__builtin_fpclassify(FP_NAN, FP_INFINITE, FP_NORMAL, FP_SUBNORMAL,
590 				 FP_ZERO, value))
591       {
592       case FP_INFINITE:
593 	str = "-inf";
594 	break;
595 
596       case FP_NAN:
597 	str = "-nan";
598 	break;
599 
600       case FP_ZERO:
601 	break;
602 
603       default:
604       case FP_SUBNORMAL:
605       case FP_NORMAL: [[likely]]
606 	return nullopt;
607       }
608 
609     if (!str.empty())
610       {
611 	// We're formatting +-inf or +-nan.
612 	if (!__builtin_signbit(value))
613 	  str.remove_prefix(strlen("-"));
614 
615 	if (last - first < (int)str.length())
616 	  return {{last, errc::value_too_large}};
617 
618 	memcpy(first, &str[0], str.length());
619 	first += str.length();
620 	return {{first, errc{}}};
621       }
622 
623     // We're formatting 0.
624     __glibcxx_assert(value == 0);
625     const auto orig_first = first;
626     const bool sign = __builtin_signbit(value);
627     int expected_output_length;
628     switch (fmt)
629       {
630       case chars_format::fixed:
631       case chars_format::scientific:
632       case chars_format::hex:
633 	expected_output_length = sign + 1;
634 	if (precision)
635 	  expected_output_length += strlen(".") + precision;
636 	if (fmt == chars_format::scientific)
637 	  expected_output_length += strlen("e+00");
638 	else if (fmt == chars_format::hex)
639 	  expected_output_length += strlen("p+0");
640 	if (last - first < expected_output_length)
641 	  return {{last, errc::value_too_large}};
642 
643 	if (sign)
644 	  *first++ = '-';
645 	*first++ = '0';
646 	if (precision)
647 	  {
648 	    *first++ = '.';
649 	    memset(first, '0', precision);
650 	    first += precision;
651 	  }
652 	if (fmt == chars_format::scientific)
653 	  {
654 	    memcpy(first, "e+00", 4);
655 	    first += 4;
656 	  }
657 	else if (fmt == chars_format::hex)
658 	  {
659 	    memcpy(first, "p+0", 3);
660 	    first += 3;
661 	  }
662 	break;
663 
664       case chars_format::general:
665       default: // case chars_format{}:
666 	expected_output_length = sign + 1;
667 	if (last - first < expected_output_length)
668 	  return {{last, errc::value_too_large}};
669 
670 	if (sign)
671 	  *first++ = '-';
672 	*first++ = '0';
673 	break;
674       }
675     __glibcxx_assert(first - orig_first == expected_output_length);
676     return {{first, errc{}}};
677   }
678 
679 // This subroutine of the floating-point to_chars overloads performs
680 // hexadecimal formatting.
681 template<typename T>
682   static to_chars_result
__floating_to_chars_hex(char * first,char * const last,const T value,const optional<int> precision)683   __floating_to_chars_hex(char* first, char* const last, const T value,
684 			  const optional<int> precision)
685   {
686     if (precision.has_value() && precision.value() < 0) [[unlikely]]
687       // A negative precision argument is treated as if it were omitted.
688       return __floating_to_chars_hex(first, last, value, nullopt);
689 
690     __glibcxx_requires_valid_range(first, last);
691 
692     constexpr int mantissa_bits = floating_type_traits<T>::mantissa_bits;
693     constexpr bool has_implicit_leading_bit
694       = floating_type_traits<T>::has_implicit_leading_bit;
695     constexpr int exponent_bits = floating_type_traits<T>::exponent_bits;
696     constexpr int exponent_bias = (1u << (exponent_bits - 1)) - 1;
697     using mantissa_t = typename floating_type_traits<T>::mantissa_t;
698     constexpr int mantissa_t_width = sizeof(mantissa_t) * __CHAR_BIT__;
699 
700     if (auto result = __handle_special_value(first, last, value,
701 					     chars_format::hex,
702 					     precision.value_or(0)))
703       return *result;
704 
705     // Extract the sign, mantissa and exponent from the value.
706     const auto [ieee_mantissa, biased_exponent, sign] = get_ieee_repr(value);
707     const bool is_normal_number = (biased_exponent != 0);
708 
709     // Calculate the unbiased exponent.
710     const int32_t unbiased_exponent = (is_normal_number
711 				       ? biased_exponent - exponent_bias
712 				       : 1 - exponent_bias);
713 
714     // Shift the mantissa so that its bitwidth is a multiple of 4.
715     constexpr unsigned rounded_mantissa_bits = (mantissa_bits + 3) / 4 * 4;
716     static_assert(mantissa_t_width >= rounded_mantissa_bits);
717     mantissa_t effective_mantissa
718       = ieee_mantissa << (rounded_mantissa_bits - mantissa_bits);
719     if (is_normal_number)
720       {
721 	if constexpr (has_implicit_leading_bit)
722 	  // Restore the mantissa's implicit leading bit.
723 	  effective_mantissa |= mantissa_t{1} << rounded_mantissa_bits;
724 	else
725 	  // The explicit mantissa bit should already be set.
726 	  __glibcxx_assert(effective_mantissa & (mantissa_t{1} << (mantissa_bits
727 								   - 1u)));
728       }
729 
730     // Compute the shortest precision needed to print this value exactly,
731     // disregarding trailing zeros.
732     constexpr int full_hex_precision = (has_implicit_leading_bit
733 					? (mantissa_bits + 3) / 4
734 					// With an explicit leading bit, we
735 					// use the four leading nibbles as the
736 					// hexit before the decimal point.
737 					: (mantissa_bits - 4 + 3) / 4);
738     const int trailing_zeros = __countr_zero(effective_mantissa) / 4;
739     const int shortest_full_precision = full_hex_precision - trailing_zeros;
740     __glibcxx_assert(shortest_full_precision >= 0);
741 
742     int written_exponent = unbiased_exponent;
743     int effective_precision = precision.value_or(shortest_full_precision);
744     int excess_precision = 0;
745     if (effective_precision < shortest_full_precision)
746       {
747 	// When limiting the precision, we need to determine how to round the
748 	// least significant printed hexit.  The following branchless
749 	// bit-level-parallel technique computes whether to round up the
750 	// mantissa bit at index N (according to round-to-nearest rules) when
751 	// dropping N bits of precision, for each index N in the bit vector.
752 	// This technique is borrowed from the MSVC implementation.
753 	using bitvec = mantissa_t;
754 	const bitvec round_bit = effective_mantissa << 1;
755 	const bitvec has_tail_bits = round_bit - 1;
756 	const bitvec lsb_bit = effective_mantissa;
757 	const bitvec should_round = round_bit & (has_tail_bits | lsb_bit);
758 
759 	const int dropped_bits = 4*(full_hex_precision - effective_precision);
760 	// Mask out the dropped nibbles.
761 	effective_mantissa >>= dropped_bits;
762 	effective_mantissa <<= dropped_bits;
763 	if (should_round & (mantissa_t{1} << dropped_bits))
764 	  {
765 	    // Round up the least significant nibble.
766 	    effective_mantissa += mantissa_t{1} << dropped_bits;
767 	    // Check and adjust for overflow of the leading nibble.  When the
768 	    // type has an implicit leading bit, then the leading nibble
769 	    // before rounding is either 0 or 1, so it can't overflow.
770 	    if constexpr (!has_implicit_leading_bit)
771 	      {
772 		// The only supported floating-point type with explicit
773 		// leading mantissa bit is LDK_FLOAT80, i.e. x86 80-bit
774 		// extended precision, and so we hardcode the below overflow
775 		// check+adjustment for this type.
776 		static_assert(mantissa_t_width == 64
777 			      && rounded_mantissa_bits == 64);
778 		if (effective_mantissa == 0)
779 		  {
780 		    // We rounded up the least significant nibble and the
781 		    // mantissa overflowed, e.g f.fcp+10 with precision=1
782 		    // became 10.0p+10.  Absorb this extra hexit into the
783 		    // exponent to obtain 1.0p+14.
784 		    effective_mantissa
785 		      = mantissa_t{1} << (rounded_mantissa_bits - 4);
786 		    written_exponent += 4;
787 		  }
788 	      }
789 	  }
790       }
791     else
792       {
793 	excess_precision = effective_precision - shortest_full_precision;
794 	effective_precision = shortest_full_precision;
795       }
796 
797     // Compute the leading hexit and mask it out from the mantissa.
798     char leading_hexit;
799     if constexpr (has_implicit_leading_bit)
800       {
801 	const auto nibble = unsigned(effective_mantissa >> rounded_mantissa_bits);
802 	__glibcxx_assert(nibble <= 2);
803 	leading_hexit = '0' + nibble;
804 	effective_mantissa &= ~(mantissa_t{0b11} << rounded_mantissa_bits);
805       }
806     else
807       {
808 	const auto nibble = unsigned(effective_mantissa >> (rounded_mantissa_bits-4));
809 	__glibcxx_assert(nibble < 16);
810 	leading_hexit = "0123456789abcdef"[nibble];
811 	effective_mantissa &= ~(mantissa_t{0b1111} << (rounded_mantissa_bits-4));
812 	written_exponent -= 3;
813       }
814 
815     // Now before we start writing the string, determine the total length of
816     // the output string and perform a single bounds check.
817     int expected_output_length = sign + 1;
818     if (effective_precision + excess_precision > 0)
819       expected_output_length += strlen(".");
820     expected_output_length += effective_precision;
821     const int abs_written_exponent = abs(written_exponent);
822     expected_output_length += (abs_written_exponent >= 10000 ? strlen("p+ddddd")
823 			       : abs_written_exponent >= 1000 ? strlen("p+dddd")
824 			       : abs_written_exponent >= 100 ? strlen("p+ddd")
825 			       : abs_written_exponent >= 10 ? strlen("p+dd")
826 			       : strlen("p+d"));
827     if (last - first < expected_output_length
828 	|| last - first - expected_output_length < excess_precision)
829       return {last, errc::value_too_large};
830     char* const expected_output_end = first + expected_output_length + excess_precision;
831 
832     // Write the negative sign and the leading hexit.
833     if (sign)
834       *first++ = '-';
835     *first++ = leading_hexit;
836 
837     if (effective_precision + excess_precision > 0)
838       *first++ = '.';
839 
840     if (effective_precision > 0)
841       {
842 	int written_hexits = 0;
843 	// Extract and mask out the leading nibble after the decimal point,
844 	// write its corresponding hexit, and repeat until the mantissa is
845 	// empty.
846 	int nibble_offset = rounded_mantissa_bits;
847 	if constexpr (!has_implicit_leading_bit)
848 	  // We already printed the entire leading hexit.
849 	  nibble_offset -= 4;
850 	while (effective_mantissa != 0)
851 	  {
852 	    nibble_offset -= 4;
853 	    const auto nibble = unsigned(effective_mantissa >> nibble_offset);
854 	    __glibcxx_assert(nibble < 16);
855 	    *first++ = "0123456789abcdef"[nibble];
856 	    ++written_hexits;
857 	     effective_mantissa &= ~(mantissa_t{0b1111} << nibble_offset);
858 	  }
859 	__glibcxx_assert(nibble_offset >= 0);
860 	__glibcxx_assert(written_hexits <= effective_precision);
861 	// Since the mantissa is now empty, every hexit hereafter must be '0'.
862 	if (int remaining_hexits = effective_precision - written_hexits)
863 	  {
864 	    memset(first, '0', remaining_hexits);
865 	    first += remaining_hexits;
866 	  }
867       }
868 
869     if (excess_precision > 0)
870       {
871 	memset(first, '0', excess_precision);
872 	first += excess_precision;
873       }
874 
875     // Finally, write the exponent.
876     *first++ = 'p';
877     if (written_exponent >= 0)
878       *first++ = '+';
879     const to_chars_result result = to_chars(first, last, written_exponent);
880     __glibcxx_assert(result.ec == errc{} && result.ptr == expected_output_end);
881     return result;
882   }
883 
884 namespace
885 {
886 #pragma GCC diagnostic push
887 #pragma GCC diagnostic ignored "-Wabi"
888   template<typename T, typename... Extra>
889   inline int
sprintf_ld(char * buffer,const char * format_string,T value,Extra...args)890   sprintf_ld(char* buffer, const char* format_string, T value, Extra... args)
891   {
892     int len;
893 
894 #if _GLIBCXX_USE_C99_FENV_TR1 && defined(FE_TONEAREST)
895     const int saved_rounding_mode = fegetround();
896     if (saved_rounding_mode != FE_TONEAREST)
897       fesetround(FE_TONEAREST); // We want round-to-nearest behavior.
898 #endif
899 
900 #ifdef _GLIBCXX_LONG_DOUBLE_ALT128_COMPAT
901     if constexpr (is_same_v<T, __ieee128>)
902       len = __sprintfieee128(buffer, format_string, args..., value);
903     else
904 #endif
905     len = sprintf(buffer, format_string, args..., value);
906 
907 #if _GLIBCXX_USE_C99_FENV_TR1 && defined(FE_TONEAREST)
908     if (saved_rounding_mode != FE_TONEAREST)
909       fesetround(saved_rounding_mode);
910 #endif
911 
912     return len;
913   }
914 #pragma GCC diagnostic pop
915 }
916 
917 template<typename T>
918   static to_chars_result
__floating_to_chars_shortest(char * first,char * const last,const T value,chars_format fmt)919   __floating_to_chars_shortest(char* first, char* const last, const T value,
920 			       chars_format fmt)
921   {
922     if (fmt == chars_format::hex)
923       return __floating_to_chars_hex(first, last, value, nullopt);
924 
925     __glibcxx_assert(fmt == chars_format::fixed
926 		     || fmt == chars_format::scientific
927 		     || fmt == chars_format::general
928 		     || fmt == chars_format{});
929     __glibcxx_requires_valid_range(first, last);
930 
931     if (auto result = __handle_special_value(first, last, value, fmt, 0))
932       return *result;
933 
934     const auto fd = floating_to_shortest_scientific(value);
935     const int mantissa_length = get_mantissa_length(fd);
936     const int scientific_exponent = fd.exponent + mantissa_length - 1;
937 
938     if (fmt == chars_format::general)
939       {
940 	// Resolve the 'general' formatting mode as per the specification of
941 	// the 'g' printf output specifier.  Since there is no precision
942 	// argument, the default precision of the 'g' specifier, 6, applies.
943 	if (scientific_exponent >= -4 && scientific_exponent < 6)
944 	  fmt = chars_format::fixed;
945 	else
946 	  fmt = chars_format::scientific;
947       }
948     else if (fmt == chars_format{})
949       {
950 	// The 'plain' formatting mode resolves to 'scientific' if it yields
951 	// the shorter string, and resolves to 'fixed' otherwise.  The
952 	// following lower and upper bounds on the exponent characterize when
953 	// to prefer 'fixed' over 'scientific'.
954 	int lower_bound = -(mantissa_length + 3);
955 	int upper_bound = 5;
956 	if (mantissa_length == 1)
957 	  // The decimal point in scientific notation will be omitted in this
958 	  // case; tighten the bounds appropriately.
959 	  ++lower_bound, --upper_bound;
960 
961 	if (fd.exponent >= lower_bound && fd.exponent <= upper_bound)
962 	  fmt = chars_format::fixed;
963 	else
964 	  fmt = chars_format::scientific;
965       }
966 
967     if (fmt == chars_format::scientific)
968       {
969 	// Calculate the total length of the output string, perform a bounds
970 	// check, and then defer to Ryu's to_chars subroutine.
971 	int expected_output_length = fd.sign + mantissa_length;
972 	if (mantissa_length > 1)
973 	  expected_output_length += strlen(".");
974 	const int abs_exponent = abs(scientific_exponent);
975 	expected_output_length += (abs_exponent >= 1000 ? strlen("e+dddd")
976 				   : abs_exponent >= 100 ? strlen("e+ddd")
977 				   : strlen("e+dd"));
978 	if (last - first < expected_output_length)
979 	  return {last, errc::value_too_large};
980 
981 	const int output_length = ryu::to_chars(fd, first);
982 	__glibcxx_assert(output_length == expected_output_length);
983 	return {first + output_length, errc{}};
984       }
985     else if (fmt == chars_format::fixed && fd.exponent >= 0)
986       {
987 	// The Ryu exponent is positive, and so this number's shortest
988 	// representation is a whole number, to be formatted in fixed instead
989 	// of scientific notation "as if by std::printf".  This means we may
990 	// need to print more digits of the IEEE mantissa than what the
991 	// shortest scientific form given by Ryu provides.
992 	//
993 	// For instance, the exactly representable number
994 	// 12300000000000001048576.0 has as its shortest scientific
995 	// representation 123e+22, so in this case fd.mantissa is 123 and
996 	// fd.exponent is 22, which doesn't have enough information to format
997 	// the number exactly.  So we defer to Ryu's d2fixed_buffered_n with
998 	// precision=0 to format the number in the general case here.
999 
1000 	// To that end, first compute the output length and perform a bounds
1001 	// check.
1002 	int expected_output_length = fd.sign + mantissa_length + fd.exponent;
1003 	if (is_rounded_up_pow10_p<T>(fd))
1004 	  --expected_output_length;
1005 	if (last - first < expected_output_length)
1006 	  return {last, errc::value_too_large};
1007 
1008 	// Optimization: if the shortest representation fits inside the IEEE
1009 	// mantissa, then the number is certainly exactly-representable and
1010 	// its shortest scientific form must be equal to its exact form.  So
1011 	// we can write the value in fixed form exactly via fd.mantissa and
1012 	// fd.exponent.
1013 	//
1014 	// Taking log2 of both sides of the desired condition
1015 	//   fd.mantissa * 10^fd.exponent < 2^mantissa_bits
1016 	// we get
1017 	//   log2 fd.mantissa + fd.exponent * log2 10 < mantissa_bits
1018 	// where log2 10 is slightly smaller than 10/3=3.333...
1019 	//
1020 	// After adding some wiggle room due to rounding we get the condition
1021 	// value_fits_inside_mantissa_p below.
1022 	const int log2_mantissa = __bit_width(fd.mantissa) - 1;
1023 	const bool value_fits_inside_mantissa_p
1024 	  = (log2_mantissa + (fd.exponent*10 + 2) / 3
1025 	     < floating_type_traits<T>::mantissa_bits - 2);
1026 	if (value_fits_inside_mantissa_p)
1027 	  {
1028 	    // Print the small exactly-representable number in fixed form by
1029 	    // writing out fd.mantissa followed by fd.exponent many 0s.
1030 	    if (fd.sign)
1031 	      *first++ = '-';
1032 	    to_chars_result result = to_chars(first, last, fd.mantissa);
1033 	    __glibcxx_assert(result.ec == errc{});
1034 	    memset(result.ptr, '0', fd.exponent);
1035 	    result.ptr += fd.exponent;
1036 	    const int output_length = fd.sign + (result.ptr - first);
1037 	    __glibcxx_assert(output_length == expected_output_length);
1038 	    return result;
1039 	  }
1040 	else if constexpr (is_same_v<T, long double>
1041 			   || is_same_v<T, F128_type>)
1042 	  {
1043 	    // We can't use d2fixed_buffered_n for types larger than double,
1044 	    // so we instead format larger types through sprintf.
1045 	    // TODO: We currently go through an intermediate buffer in order
1046 	    // to accommodate the mandatory null terminator of sprintf, but we
1047 	    // can avoid this if we use sprintf to write all but the last
1048 	    // digit, and carefully compute and write the last digit
1049 	    // ourselves.
1050 	    char buffer[expected_output_length+1];
1051 	    const int output_length = sprintf_ld(buffer, "%.0Lf", value);
1052 	    __glibcxx_assert(output_length == expected_output_length);
1053 	    memcpy(first, buffer, output_length);
1054 	    return {first + output_length, errc{}};
1055 	  }
1056 	else
1057 	  {
1058 	    // Otherwise, the number is too big, so defer to d2fixed_buffered_n.
1059 	    const int output_length = ryu::d2fixed_buffered_n(value, 0, first);
1060 	    __glibcxx_assert(output_length == expected_output_length);
1061 	    return {first + output_length, errc{}};
1062 	  }
1063       }
1064     else if (fmt == chars_format::fixed && fd.exponent < 0)
1065       {
1066 	// The Ryu exponent is negative, so fd.mantissa definitely contains
1067 	// all of the whole part of the number, and therefore fd.mantissa and
1068 	// fd.exponent contain all of the information needed to format the
1069 	// number in fixed notation "as if by std::printf" (with precision
1070 	// equal to -fd.exponent).
1071 	const int whole_digits = max<int>(mantissa_length + fd.exponent, 1);
1072 	const int expected_output_length
1073 	  = fd.sign + whole_digits + strlen(".") + -fd.exponent;
1074 	if (last - first < expected_output_length)
1075 	  return {last, errc::value_too_large};
1076 	if (mantissa_length <= -fd.exponent)
1077 	  {
1078 	    // The magnitude of the number is less than one.  Format the
1079 	    // number appropriately.
1080 	    const auto orig_first = first;
1081 	    if (fd.sign)
1082 	      *first++ = '-';
1083 	    *first++ = '0';
1084 	    *first++ = '.';
1085 	    const int leading_zeros = -fd.exponent - mantissa_length;
1086 	    memset(first, '0', leading_zeros);
1087 	    first += leading_zeros;
1088 	    const to_chars_result result = to_chars(first, last, fd.mantissa);
1089 	    const int output_length = result.ptr - orig_first;
1090 	    __glibcxx_assert(output_length == expected_output_length
1091 			     && result.ec == errc{});
1092 	    return result;
1093 	  }
1094 	else
1095 	  {
1096 	    // The magnitude of the number is at least one.
1097 	    const auto orig_first = first;
1098 	    if (fd.sign)
1099 	      *first++ = '-';
1100 	    to_chars_result result = to_chars(first, last, fd.mantissa);
1101 	    __glibcxx_assert(result.ec == errc{});
1102 	    // Make space for and write the decimal point in the correct spot.
1103 	    memmove(&result.ptr[fd.exponent+1], &result.ptr[fd.exponent],
1104 		    -fd.exponent);
1105 	    result.ptr[fd.exponent] = '.';
1106 	    const int output_length = result.ptr + 1 - orig_first;
1107 	    __glibcxx_assert(output_length == expected_output_length);
1108 	    ++result.ptr;
1109 	    return result;
1110 	  }
1111       }
1112 
1113     __glibcxx_assert(false);
1114     __builtin_unreachable();
1115   }
1116 
1117 template<typename T>
1118   static to_chars_result
__floating_to_chars_precision(char * first,char * const last,const T value,chars_format fmt,const int precision)1119   __floating_to_chars_precision(char* first, char* const last, const T value,
1120 				chars_format fmt, const int precision)
1121   {
1122     if (fmt == chars_format::hex)
1123       return __floating_to_chars_hex(first, last, value, precision);
1124 
1125     if (precision < 0) [[unlikely]]
1126       // A negative precision argument is treated as if it were omitted, in
1127       // which case the default precision of 6 applies, as per the printf
1128       // specification.
1129       return __floating_to_chars_precision(first, last, value, fmt, 6);
1130 
1131     __glibcxx_assert(fmt == chars_format::fixed
1132 		     || fmt == chars_format::scientific
1133 		     || fmt == chars_format::general);
1134     __glibcxx_requires_valid_range(first, last);
1135 
1136     if (auto result = __handle_special_value(first, last, value,
1137 					     fmt, precision))
1138       return *result;
1139 
1140     constexpr int mantissa_bits = floating_type_traits<T>::mantissa_bits;
1141     constexpr int exponent_bits = floating_type_traits<T>::exponent_bits;
1142     constexpr int exponent_bias = (1u << (exponent_bits - 1)) - 1;
1143 
1144     // Extract the sign and exponent from the value.
1145     const auto [mantissa, biased_exponent, sign] = get_ieee_repr(value);
1146     const bool is_normal_number = (biased_exponent != 0);
1147 
1148     // Calculate the unbiased exponent.
1149     const int32_t unbiased_exponent = (is_normal_number
1150 				       ? biased_exponent - exponent_bias
1151 				       : 1 - exponent_bias);
1152 
1153     // Obtain trunc(log2(abs(value))), which is just the unbiased exponent.
1154     const int floor_log2_value = unbiased_exponent;
1155     // This is within +-1 of log10(abs(value)).  Note that log10 2 is 0.3010..
1156     const int approx_log10_value = (floor_log2_value >= 0
1157 				    ? (floor_log2_value*301 + 999)/1000
1158 				    : (floor_log2_value*301 - 999)/1000);
1159 
1160     // Compute (an upper bound of) the number's effective precision when it is
1161     // formatted in scientific and fixed notation.  Beyond this precision all
1162     // digits are definitely zero, and this fact allows us to bound the sizes
1163     // of any local output buffers that we may need to use.  TODO: Consider
1164     // the number of trailing zero bits in the mantissa to obtain finer upper
1165     // bounds.
1166     // ???: Using "mantissa_bits + 1" instead of just "mantissa_bits" in the
1167     // bounds below is necessary only for __ibm128, it seems.  Even though the
1168     // type has 105 bits of precision, printf may output 106 fractional digits
1169     // on some inputs, e.g. 0x1.bcd19f5d720d12a3513e3301028p+0.
1170     const int max_eff_scientific_precision
1171       = (floor_log2_value >= 0
1172 	 ? max(mantissa_bits + 1, approx_log10_value + 1)
1173 	 : -(7*floor_log2_value + 9)/10 + 2 + mantissa_bits + 1);
1174     __glibcxx_assert(max_eff_scientific_precision > 0);
1175 
1176     const int max_eff_fixed_precision
1177       = (floor_log2_value >= 0
1178 	 ? mantissa_bits + 1
1179 	 : -floor_log2_value + mantissa_bits + 1);
1180     __glibcxx_assert(max_eff_fixed_precision > 0);
1181 
1182     // Ryu doesn't support formatting floating-point types larger than double
1183     // with an explicit precision, so instead we just go through printf.
1184     if constexpr (is_same_v<T, long double> || is_same_v<T, F128_type>)
1185       {
1186 	int effective_precision;
1187 	const char* output_specifier;
1188 	if (fmt == chars_format::scientific)
1189 	  {
1190 	    effective_precision = min(precision, max_eff_scientific_precision);
1191 	    output_specifier = "%.*Le";
1192 	  }
1193 	else if (fmt == chars_format::fixed)
1194 	  {
1195 	    effective_precision = min(precision, max_eff_fixed_precision);
1196 	    output_specifier = "%.*Lf";
1197 	  }
1198 	else if (fmt == chars_format::general)
1199 	  {
1200 	    effective_precision = min(precision, max_eff_scientific_precision);
1201 	    output_specifier = "%.*Lg";
1202 	  }
1203 	else
1204 	  __builtin_unreachable();
1205 	const int excess_precision = (fmt != chars_format::general
1206 				      ? precision - effective_precision : 0);
1207 
1208 	// Since the output of printf is locale-sensitive, we need to be able
1209 	// to handle a radix point that's different from '.'.
1210 	char radix[6] = {'.', '\0', '\0', '\0', '\0', '\0'};
1211 #ifdef RADIXCHAR
1212 	if (effective_precision > 0)
1213 	  // ???: Can nl_langinfo() ever return null?
1214 	  if (const char* const radix_ptr = nl_langinfo(RADIXCHAR))
1215 	    {
1216 	      strncpy(radix, radix_ptr, sizeof(radix)-1);
1217 	      // We accept only radix points which are at most 4 bytes (one
1218 	      // UTF-8 character) wide.
1219 	      __glibcxx_assert(radix[4] == '\0');
1220 	    }
1221 #endif
1222 
1223 	// Compute straightforward upper bounds on the output length.
1224 	int output_length_upper_bound;
1225 	if (fmt == chars_format::scientific || fmt == chars_format::general)
1226 	  output_length_upper_bound = (strlen("-d") + sizeof(radix)
1227 				       + effective_precision
1228 				       + strlen("e+dddd"));
1229 	else if (fmt == chars_format::fixed)
1230 	  {
1231 	    if (approx_log10_value >= 0)
1232 	      output_length_upper_bound = sign + approx_log10_value + 1;
1233 	    else
1234 	      output_length_upper_bound = sign + strlen("0");
1235 	    output_length_upper_bound += sizeof(radix) + effective_precision;
1236 	  }
1237 	else
1238 	  __builtin_unreachable();
1239 
1240 	// Do the sprintf into the local buffer.
1241 	char buffer[output_length_upper_bound+1];
1242 	int output_length
1243 	  = sprintf_ld(buffer, output_specifier, value, effective_precision);
1244 	__glibcxx_assert(output_length <= output_length_upper_bound);
1245 
1246 	if (effective_precision > 0)
1247 	  // We need to replace a radix that is different from '.' with '.'.
1248 	  if (const string_view radix_sv = {radix}; radix_sv != ".")
1249 	    {
1250 	      const string_view buffer_sv = {buffer, (size_t)output_length};
1251 	      const size_t radix_index = buffer_sv.find(radix_sv);
1252 	      if (radix_index != string_view::npos)
1253 		{
1254 		  buffer[radix_index] = '.';
1255 		  if (radix_sv.length() > 1)
1256 		    {
1257 		      memmove(&buffer[radix_index + 1],
1258 			      &buffer[radix_index + radix_sv.length()],
1259 			      output_length - radix_index - radix_sv.length());
1260 		      output_length -= radix_sv.length() - 1;
1261 		    }
1262 		}
1263 	    }
1264 
1265 	// Copy the string from the buffer over to the output range.
1266 	if (last - first < output_length
1267 	    || last - first - output_length < excess_precision)
1268 	  return {last, errc::value_too_large};
1269 	memcpy(first, buffer, output_length);
1270 	first += output_length;
1271 
1272 	// Add the excess 0s to the result.
1273 	if (excess_precision > 0)
1274 	  {
1275 	    if (fmt == chars_format::scientific)
1276 	      {
1277 		char* const significand_end
1278 		  = (output_length >= 6 && first[-6] == 'e' ? &first[-6]
1279 		     : first[-5] == 'e' ? &first[-5]
1280 		     : &first[-4]);
1281 		__glibcxx_assert(*significand_end == 'e');
1282 		  memmove(significand_end + excess_precision, significand_end,
1283 			  first - significand_end);
1284 		  memset(significand_end, '0', excess_precision);
1285 		  first += excess_precision;
1286 	      }
1287 	    else if (fmt == chars_format::fixed)
1288 	      {
1289 		memset(first, '0', excess_precision);
1290 		first += excess_precision;
1291 	      }
1292 	  }
1293 	return {first, errc{}};
1294       }
1295     else if (fmt == chars_format::scientific)
1296       {
1297 	const int effective_precision
1298 	  = min(precision, max_eff_scientific_precision);
1299 	const int excess_precision = precision - effective_precision;
1300 
1301 	// We can easily compute the output length exactly whenever the
1302 	// scientific exponent is far enough away from +-100.  But if it's
1303 	// near +-100, then our log2 approximation is too coarse (and doesn't
1304 	// consider precision-dependent rounding) in order to accurately
1305 	// distinguish between a scientific exponent of +-100 and +-99.
1306 	const bool scientific_exponent_near_100_p
1307 	  = abs(abs(floor_log2_value) - 332) <= 4;
1308 
1309 	// Compute an upper bound on the output length.  TODO: Maybe also
1310 	// consider a lower bound on the output length.
1311 	int output_length_upper_bound = sign + strlen("d");
1312 	if (effective_precision > 0)
1313 	  output_length_upper_bound += strlen(".") + effective_precision;
1314 	if (scientific_exponent_near_100_p
1315 	    || (floor_log2_value >= 332 || floor_log2_value <= -333))
1316 	  output_length_upper_bound += strlen("e+ddd");
1317 	else
1318 	  output_length_upper_bound += strlen("e+dd");
1319 
1320 	int output_length;
1321 	if (last - first >= output_length_upper_bound
1322 	    && last - first - output_length_upper_bound >= excess_precision)
1323 	  {
1324 	    // The result will definitely fit into the output range, so we can
1325 	    // write directly into it.
1326 	    output_length = ryu::d2exp_buffered_n(value, effective_precision,
1327 						  first, nullptr);
1328 	    __glibcxx_assert(output_length == output_length_upper_bound
1329 			     || (scientific_exponent_near_100_p
1330 				 && (output_length
1331 				     == output_length_upper_bound - 1)));
1332 	  }
1333 	else if (scientific_exponent_near_100_p)
1334 	  {
1335 	    // Write the result of d2exp_buffered_n into an intermediate
1336 	    // buffer, do a bounds check, and copy the result into the output
1337 	    // range.
1338 	    char buffer[output_length_upper_bound];
1339 	    output_length = ryu::d2exp_buffered_n(value, effective_precision,
1340 						  buffer, nullptr);
1341 	    __glibcxx_assert(output_length == output_length_upper_bound - 1
1342 			     || output_length == output_length_upper_bound);
1343 	    if (last - first < output_length
1344 		|| last - first - output_length < excess_precision)
1345 	      return {last, errc::value_too_large};
1346 	    memcpy(first, buffer, output_length);
1347 	  }
1348 	else
1349 	  // If the scientific exponent is not near 100, then the upper bound
1350 	  // is actually the exact length, and so the result will definitely
1351 	  // not fit into the output range.
1352 	  return {last, errc::value_too_large};
1353 	first += output_length;
1354 	if (excess_precision > 0)
1355 	  {
1356 	    // Splice the excess zeros into the result.
1357 	    char* const significand_end = (first[-5] == 'e'
1358 					   ? &first[-5] : &first[-4]);
1359 	    __glibcxx_assert(*significand_end == 'e');
1360 	    memmove(significand_end + excess_precision, significand_end,
1361 		    first - significand_end);
1362 	    memset(significand_end, '0', excess_precision);
1363 	    first += excess_precision;
1364 	  }
1365 	return {first, errc{}};
1366       }
1367     else if (fmt == chars_format::fixed)
1368       {
1369 	const int effective_precision
1370 	  = min(precision, max_eff_fixed_precision);
1371 	const int excess_precision = precision - effective_precision;
1372 
1373 	// Compute an upper bound on the output length.  TODO: Maybe also
1374 	// consider a lower bound on the output length.
1375 	int output_length_upper_bound;
1376 	if (approx_log10_value >= 0)
1377 	  output_length_upper_bound = sign + approx_log10_value + 1;
1378 	else
1379 	  output_length_upper_bound = sign + strlen("0");
1380 	if (effective_precision > 0)
1381 	  output_length_upper_bound += strlen(".") + effective_precision;
1382 
1383 	int output_length;
1384 	if (last - first >= output_length_upper_bound
1385 	    && last - first - output_length_upper_bound >= excess_precision)
1386 	  {
1387 	    // The result will definitely fit into the output range, so we can
1388 	    // write directly into it.
1389 	    output_length = ryu::d2fixed_buffered_n(value, effective_precision,
1390 						    first);
1391 	    __glibcxx_assert(output_length <= output_length_upper_bound);
1392 	  }
1393 	else
1394 	  {
1395 	    // Write the result of d2fixed_buffered_n into an intermediate
1396 	    // buffer, do a bounds check, and copy the result into the output
1397 	    // range.
1398 	    char buffer[output_length_upper_bound];
1399 	    output_length = ryu::d2fixed_buffered_n(value, effective_precision,
1400 						    buffer);
1401 	    __glibcxx_assert(output_length <= output_length_upper_bound);
1402 	    if (last - first < output_length
1403 		|| last - first - output_length < excess_precision)
1404 	      return {last, errc::value_too_large};
1405 	    memcpy(first, buffer, output_length);
1406 	  }
1407 	first += output_length;
1408 	if (excess_precision > 0)
1409 	  {
1410 	    // Append the excess zeros into the result.
1411 	    memset(first, '0', excess_precision);
1412 	    first += excess_precision;
1413 	  }
1414 	return {first, errc{}};
1415       }
1416     else if (fmt == chars_format::general)
1417       {
1418 	// Handle the 'general' formatting mode as per C11 printf's %g output
1419 	// specifier.  Since Ryu doesn't do zero-trimming, we always write to
1420 	// an intermediate buffer and manually perform zero-trimming there
1421 	// before copying the result over to the output range.
1422 	int effective_precision
1423 	  = min(precision, max_eff_scientific_precision + 1);
1424 	const int output_length_upper_bound
1425 	  = strlen("-d.") + effective_precision + strlen("e+ddd");
1426 	// The four bytes of headroom is to avoid needing to do a memmove when
1427 	// rewriting a scientific form such as 1.00e-2 into the equivalent
1428 	// fixed form 0.001.
1429 	char buffer[4 + output_length_upper_bound];
1430 
1431 	// 7.21.6.1/8: "Let P equal ... 1 if the precision is zero."
1432 	if (effective_precision == 0)
1433 	  effective_precision = 1;
1434 
1435 	// Perform a trial formatting in scientific form, and obtain the
1436 	// scientific exponent.
1437 	int scientific_exponent;
1438 	char* buffer_start = buffer + 4;
1439 	int output_length
1440 	  = ryu::d2exp_buffered_n(value, effective_precision - 1,
1441 				  buffer_start, &scientific_exponent);
1442 	__glibcxx_assert(output_length <= output_length_upper_bound);
1443 
1444 	// 7.21.6.1/8: "Then, if a conversion with style E would have an
1445 	// exponent of X:
1446 	//   if P > X >= -4, the conversion is with style f and
1447 	//     precision P - (X + 1).
1448 	//   otherwise, the conversion is with style e and precision P - 1."
1449 	const bool resolve_to_fixed_form
1450 	  = (scientific_exponent >= -4
1451 	     && scientific_exponent < effective_precision);
1452 	if (resolve_to_fixed_form)
1453 	  {
1454 	    // Rather than invoking d2fixed_buffered_n to reformat the number
1455 	    // for us from scratch, we can just rewrite the scientific form
1456 	    // into fixed form in-place.  This is safe to do because whenever
1457 	    // %g resolves to %f, the fixed form will be no larger than the
1458 	    // corresponding scientific form, and it will also contain the
1459 	    // same significant digits as the scientific form.
1460 	    fmt = chars_format::fixed;
1461 	    if (scientific_exponent < 0)
1462 	      {
1463 		// e.g. buffer_start == "-1.234e-04"
1464 		char* leading_digit = &buffer_start[sign];
1465 		leading_digit[1] = leading_digit[0];
1466 		// buffer_start == "-11234e-04"
1467 		buffer_start -= -scientific_exponent;
1468 		__glibcxx_assert(buffer_start >= buffer);
1469 		// buffer_start == "????-11234e-04"
1470 		char* head = buffer_start;
1471 		if (sign)
1472 		  *head++ = '-';
1473 		*head++ = '0';
1474 		*head++ = '.';
1475 		memset(head, '0', -scientific_exponent - 1);
1476 		// buffer_start == "-0.00011234e-04"
1477 
1478 		// Now drop the exponent suffix, and add the leading zeros to
1479 		// the output length.
1480 		output_length -= strlen("e-0d");
1481 		output_length += -scientific_exponent;
1482 		if (effective_precision - 1 == 0)
1483 		  // The scientific form had no decimal point, but the fixed
1484 		  // form now does.
1485 		  output_length += strlen(".");
1486 	      }
1487 	    else if (effective_precision == 1)
1488 	      {
1489 		// The scientific exponent must be 0, so the fixed form
1490 		// coincides with the scientific form (minus the exponent
1491 		// suffix).
1492 		__glibcxx_assert(scientific_exponent == 0);
1493 		output_length -= strlen("e+dd");
1494 	      }
1495 	    else
1496 	      {
1497 		// We are dealing with a scientific form which has a
1498 		// non-empty fractional part and a nonnegative exponent,
1499 		// e.g. buffer_start == "1.234e+02".
1500 		__glibcxx_assert(effective_precision >= 1);
1501 		char* const decimal_point = &buffer_start[sign + 1];
1502 		__glibcxx_assert(*decimal_point == '.');
1503 		memmove(decimal_point, decimal_point+1,
1504 			scientific_exponent);
1505 		// buffer_start == "123.4e+02"
1506 		decimal_point[scientific_exponent] = '.';
1507 		if (scientific_exponent >= 100)
1508 		  output_length -= strlen("e+ddd");
1509 		else
1510 		  output_length -= strlen("e+dd");
1511 		if (effective_precision - 1 == scientific_exponent)
1512 		  output_length -= strlen(".");
1513 	      }
1514 	    effective_precision -= 1 + scientific_exponent;
1515 
1516 	    __glibcxx_assert(output_length <= output_length_upper_bound);
1517 	  }
1518 	else
1519 	  {
1520 	    // We're sticking to the scientific form, so keep the output as-is.
1521 	    fmt = chars_format::scientific;
1522 	    effective_precision = effective_precision - 1;
1523 	  }
1524 
1525 	// 7.21.6.1/8: "Finally ... any any trailing zeros are removed from
1526 	// the fractional portion of the result and the decimal-point
1527 	// character is removed if there is no fractional portion remaining."
1528 	if (effective_precision > 0)
1529 	  {
1530 	    char* decimal_point = nullptr;
1531 	    if (fmt == chars_format::scientific)
1532 	      decimal_point = &buffer_start[sign + 1];
1533 	    else if (fmt == chars_format::fixed)
1534 	      decimal_point
1535 		= &buffer_start[output_length] - effective_precision - 1;
1536 	    __glibcxx_assert(*decimal_point == '.');
1537 
1538 	    char* const fractional_part_start = decimal_point + 1;
1539 	    char* fractional_part_end = nullptr;
1540 	    if (fmt == chars_format::scientific)
1541 	      {
1542 		fractional_part_end = (buffer_start[output_length-5] == 'e'
1543 				       ? &buffer_start[output_length-5]
1544 				       : &buffer_start[output_length-4]);
1545 		__glibcxx_assert(*fractional_part_end == 'e');
1546 	      }
1547 	    else if (fmt == chars_format::fixed)
1548 	      fractional_part_end = &buffer_start[output_length];
1549 
1550 	    const string_view fractional_part
1551 	      = {fractional_part_start, (size_t)(fractional_part_end
1552 						 - fractional_part_start) };
1553 	    const size_t last_nonzero_digit_pos
1554 	      = fractional_part.find_last_not_of('0');
1555 
1556 	    char* trim_start;
1557 	    if (last_nonzero_digit_pos == string_view::npos)
1558 	      trim_start = decimal_point;
1559 	    else
1560 	      trim_start = &fractional_part_start[last_nonzero_digit_pos] + 1;
1561 	    if (fmt == chars_format::scientific)
1562 	      memmove(trim_start, fractional_part_end,
1563 		      &buffer_start[output_length] - fractional_part_end);
1564 	    output_length -= fractional_part_end - trim_start;
1565 	  }
1566 
1567 	if (last - first < output_length)
1568 	  return {last, errc::value_too_large};
1569 
1570 	memcpy(first, buffer_start, output_length);
1571 	return {first + output_length, errc{}};
1572       }
1573 
1574     __glibcxx_assert(false);
1575     __builtin_unreachable();
1576   }
1577 
1578 // Define the overloads for float.
1579 to_chars_result
to_chars(char * first,char * last,float value)1580 to_chars(char* first, char* last, float value) noexcept
1581 { return __floating_to_chars_shortest(first, last, value, chars_format{}); }
1582 
1583 to_chars_result
to_chars(char * first,char * last,float value,chars_format fmt)1584 to_chars(char* first, char* last, float value, chars_format fmt) noexcept
1585 { return __floating_to_chars_shortest(first, last, value, fmt); }
1586 
1587 to_chars_result
to_chars(char * first,char * last,float value,chars_format fmt,int precision)1588 to_chars(char* first, char* last, float value, chars_format fmt,
1589 	 int precision) noexcept
1590 { return __floating_to_chars_precision(first, last, value, fmt, precision); }
1591 
1592 // Define the overloads for double.
1593 to_chars_result
to_chars(char * first,char * last,double value)1594 to_chars(char* first, char* last, double value) noexcept
1595 { return __floating_to_chars_shortest(first, last, value, chars_format{}); }
1596 
1597 to_chars_result
to_chars(char * first,char * last,double value,chars_format fmt)1598 to_chars(char* first, char* last, double value, chars_format fmt) noexcept
1599 { return __floating_to_chars_shortest(first, last, value, fmt); }
1600 
1601 to_chars_result
to_chars(char * first,char * last,double value,chars_format fmt,int precision)1602 to_chars(char* first, char* last, double value, chars_format fmt,
1603 	 int precision) noexcept
1604 { return __floating_to_chars_precision(first, last, value, fmt, precision); }
1605 
1606 // Define the overloads for long double.
1607 to_chars_result
to_chars(char * first,char * last,long double value)1608 to_chars(char* first, char* last, long double value) noexcept
1609 {
1610   if constexpr (LONG_DOUBLE_KIND == LDK_BINARY64
1611 		|| LONG_DOUBLE_KIND == LDK_UNSUPPORTED)
1612     return __floating_to_chars_shortest(first, last, static_cast<double>(value),
1613 					chars_format{});
1614   else
1615     return __floating_to_chars_shortest(first, last, value, chars_format{});
1616 }
1617 
1618 to_chars_result
to_chars(char * first,char * last,long double value,chars_format fmt)1619 to_chars(char* first, char* last, long double value, chars_format fmt) noexcept
1620 {
1621   if constexpr (LONG_DOUBLE_KIND == LDK_BINARY64
1622 		|| LONG_DOUBLE_KIND == LDK_UNSUPPORTED)
1623     return __floating_to_chars_shortest(first, last, static_cast<double>(value),
1624 					fmt);
1625   else
1626     return __floating_to_chars_shortest(first, last, value, fmt);
1627 }
1628 
1629 to_chars_result
to_chars(char * first,char * last,long double value,chars_format fmt,int precision)1630 to_chars(char* first, char* last, long double value, chars_format fmt,
1631 	 int precision) noexcept
1632 {
1633   if constexpr (LONG_DOUBLE_KIND == LDK_BINARY64
1634 		|| LONG_DOUBLE_KIND == LDK_UNSUPPORTED)
1635     return __floating_to_chars_precision(first, last, static_cast<double>(value),
1636 					 fmt,
1637 					 precision);
1638   else
1639     return __floating_to_chars_precision(first, last, value, fmt, precision);
1640 }
1641 
1642 #ifdef FLOAT128_TO_CHARS
1643 to_chars_result
to_chars(char * first,char * last,__float128 value)1644 to_chars(char* first, char* last, __float128 value) noexcept
1645 {
1646   return __floating_to_chars_shortest(first, last, value, chars_format{});
1647 }
1648 
1649 to_chars_result
to_chars(char * first,char * last,__float128 value,chars_format fmt)1650 to_chars(char* first, char* last, __float128 value, chars_format fmt) noexcept
1651 {
1652   return __floating_to_chars_shortest(first, last, value, fmt);
1653 }
1654 
1655 to_chars_result
to_chars(char * first,char * last,__float128 value,chars_format fmt,int precision)1656 to_chars(char* first, char* last, __float128 value, chars_format fmt,
1657 	 int precision) noexcept
1658 {
1659   return __floating_to_chars_precision(first, last, value, fmt, precision);
1660 }
1661 #endif
1662 
1663 #ifdef _GLIBCXX_LONG_DOUBLE_COMPAT
1664 // Map the -mlong-double-64 long double overloads to the double overloads.
1665 extern "C" to_chars_result
1666 _ZSt8to_charsPcS_e(char* first, char* last, double value) noexcept
1667   __attribute__((alias ("_ZSt8to_charsPcS_d")));
1668 
1669 extern "C" to_chars_result
1670 _ZSt8to_charsPcS_eSt12chars_format(char* first, char* last, double value,
1671 				   chars_format fmt) noexcept
1672   __attribute__((alias ("_ZSt8to_charsPcS_dSt12chars_format")));
1673 
1674 extern "C" to_chars_result
1675 _ZSt8to_charsPcS_eSt12chars_formati(char* first, char* last, double value,
1676 				    chars_format fmt, int precision) noexcept
1677   __attribute__((alias ("_ZSt8to_charsPcS_dSt12chars_formati")));
1678 #endif
1679 
1680 _GLIBCXX_END_NAMESPACE_VERSION
1681 } // namespace std
1682 
1683 #endif // _GLIBCXX_FLOAT_IS_IEEE_BINARY32 && _GLIBCXX_DOUBLE_IS_IEEE_BINARY64
1684