xref: /netbsd-src/external/gpl3/gcc.old/dist/gcc/final.c (revision 8feb0f0b7eaff0608f8350bbfa3098827b4bb91b)
1 /* Convert RTL to assembler code and output it, for GNU compiler.
2    Copyright (C) 1987-2020 Free Software Foundation, Inc.
3 
4 This file is part of GCC.
5 
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
10 
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
14 for more details.
15 
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3.  If not see
18 <http://www.gnu.org/licenses/>.  */
19 
20 /* This is the final pass of the compiler.
21    It looks at the rtl code for a function and outputs assembler code.
22 
23    Call `final_start_function' to output the assembler code for function entry,
24    `final' to output assembler code for some RTL code,
25    `final_end_function' to output assembler code for function exit.
26    If a function is compiled in several pieces, each piece is
27    output separately with `final'.
28 
29    Some optimizations are also done at this level.
30    Move instructions that were made unnecessary by good register allocation
31    are detected and omitted from the output.  (Though most of these
32    are removed by the last jump pass.)
33 
34    Instructions to set the condition codes are omitted when it can be
35    seen that the condition codes already had the desired values.
36 
37    In some cases it is sufficient if the inherited condition codes
38    have related values, but this may require the following insn
39    (the one that tests the condition codes) to be modified.
40 
41    The code for the function prologue and epilogue are generated
42    directly in assembler by the target functions function_prologue and
43    function_epilogue.  Those instructions never exist as rtl.  */
44 
45 #include "config.h"
46 #define INCLUDE_ALGORITHM /* reverse */
47 #include "system.h"
48 #include "coretypes.h"
49 #include "backend.h"
50 #include "target.h"
51 #include "rtl.h"
52 #include "tree.h"
53 #include "cfghooks.h"
54 #include "df.h"
55 #include "memmodel.h"
56 #include "tm_p.h"
57 #include "insn-config.h"
58 #include "regs.h"
59 #include "emit-rtl.h"
60 #include "recog.h"
61 #include "cgraph.h"
62 #include "tree-pretty-print.h" /* for dump_function_header */
63 #include "varasm.h"
64 #include "insn-attr.h"
65 #include "conditions.h"
66 #include "flags.h"
67 #include "output.h"
68 #include "except.h"
69 #include "rtl-error.h"
70 #include "toplev.h" /* exact_log2, floor_log2 */
71 #include "reload.h"
72 #include "intl.h"
73 #include "cfgrtl.h"
74 #include "debug.h"
75 #include "tree-pass.h"
76 #include "tree-ssa.h"
77 #include "cfgloop.h"
78 #include "stringpool.h"
79 #include "attribs.h"
80 #include "asan.h"
81 #include "rtl-iter.h"
82 #include "print-rtl.h"
83 #include "function-abi.h"
84 
85 #ifdef XCOFF_DEBUGGING_INFO
86 #include "xcoffout.h"		/* Needed for external data declarations.  */
87 #endif
88 
89 #include "dwarf2out.h"
90 
91 #ifdef DBX_DEBUGGING_INFO
92 #include "dbxout.h"
93 #endif
94 
95 /* Most ports that aren't using cc0 don't need to define CC_STATUS_INIT.
96    So define a null default for it to save conditionalization later.  */
97 #ifndef CC_STATUS_INIT
98 #define CC_STATUS_INIT
99 #endif
100 
101 /* Is the given character a logical line separator for the assembler?  */
102 #ifndef IS_ASM_LOGICAL_LINE_SEPARATOR
103 #define IS_ASM_LOGICAL_LINE_SEPARATOR(C, STR) ((C) == ';')
104 #endif
105 
106 #ifndef JUMP_TABLES_IN_TEXT_SECTION
107 #define JUMP_TABLES_IN_TEXT_SECTION 0
108 #endif
109 
110 /* Bitflags used by final_scan_insn.  */
111 #define SEEN_NOTE	1
112 #define SEEN_EMITTED	2
113 #define SEEN_NEXT_VIEW	4
114 
115 /* Last insn processed by final_scan_insn.  */
116 static rtx_insn *debug_insn;
117 rtx_insn *current_output_insn;
118 
119 /* Line number of last NOTE.  */
120 static int last_linenum;
121 
122 /* Column number of last NOTE.  */
123 static int last_columnnum;
124 
125 /* Discriminator written to assembly.  */
126 static int last_discriminator;
127 
128 /* Discriminator to be written to assembly for current instruction.
129    Note: actual usage depends on loc_discriminator_kind setting.  */
130 static int discriminator;
131 static inline int compute_discriminator (location_t loc);
132 
133 /* Discriminator identifying current basic block among others sharing
134    the same locus.  */
135 static int bb_discriminator;
136 
137 /* Basic block discriminator for previous instruction.  */
138 static int last_bb_discriminator;
139 
140 /* Highest line number in current block.  */
141 static int high_block_linenum;
142 
143 /* Likewise for function.  */
144 static int high_function_linenum;
145 
146 /* Filename of last NOTE.  */
147 static const char *last_filename;
148 
149 /* Override filename, line and column number.  */
150 static const char *override_filename;
151 static int override_linenum;
152 static int override_columnnum;
153 static int override_discriminator;
154 
155 /* Whether to force emission of a line note before the next insn.  */
156 static bool force_source_line = false;
157 
158 extern const int length_unit_log; /* This is defined in insn-attrtab.c.  */
159 
160 /* Nonzero while outputting an `asm' with operands.
161    This means that inconsistencies are the user's fault, so don't die.
162    The precise value is the insn being output, to pass to error_for_asm.  */
163 const rtx_insn *this_is_asm_operands;
164 
165 /* Number of operands of this insn, for an `asm' with operands.  */
166 static unsigned int insn_noperands;
167 
168 /* Compare optimization flag.  */
169 
170 static rtx last_ignored_compare = 0;
171 
172 /* Assign a unique number to each insn that is output.
173    This can be used to generate unique local labels.  */
174 
175 static int insn_counter = 0;
176 
177 /* This variable contains machine-dependent flags (defined in tm.h)
178    set and examined by output routines
179    that describe how to interpret the condition codes properly.  */
180 
181 CC_STATUS cc_status;
182 
183 /* During output of an insn, this contains a copy of cc_status
184    from before the insn.  */
185 
186 CC_STATUS cc_prev_status;
187 
188 /* Number of unmatched NOTE_INSN_BLOCK_BEG notes we have seen.  */
189 
190 static int block_depth;
191 
192 /* Nonzero if have enabled APP processing of our assembler output.  */
193 
194 static int app_on;
195 
196 /* If we are outputting an insn sequence, this contains the sequence rtx.
197    Zero otherwise.  */
198 
199 rtx_sequence *final_sequence;
200 
201 #ifdef ASSEMBLER_DIALECT
202 
203 /* Number of the assembler dialect to use, starting at 0.  */
204 static int dialect_number;
205 #endif
206 
207 /* Nonnull if the insn currently being emitted was a COND_EXEC pattern.  */
208 rtx current_insn_predicate;
209 
210 /* True if printing into -fdump-final-insns= dump.  */
211 bool final_insns_dump_p;
212 
213 /* True if profile_function should be called, but hasn't been called yet.  */
214 static bool need_profile_function;
215 
216 static int asm_insn_count (rtx);
217 static void profile_function (FILE *);
218 static void profile_after_prologue (FILE *);
219 static bool notice_source_line (rtx_insn *, bool *);
220 static rtx walk_alter_subreg (rtx *, bool *);
221 static void output_asm_name (void);
222 static void output_alternate_entry_point (FILE *, rtx_insn *);
223 static tree get_mem_expr_from_op (rtx, int *);
224 static void output_asm_operand_names (rtx *, int *, int);
225 #ifdef LEAF_REGISTERS
226 static void leaf_renumber_regs (rtx_insn *);
227 #endif
228 #if HAVE_cc0
229 static int alter_cond (rtx);
230 #endif
231 static int align_fuzz (rtx, rtx, int, unsigned);
232 static void collect_fn_hard_reg_usage (void);
233 
234 /* Initialize data in final at the beginning of a compilation.  */
235 
236 void
init_final(const char * filename ATTRIBUTE_UNUSED)237 init_final (const char *filename ATTRIBUTE_UNUSED)
238 {
239   app_on = 0;
240   final_sequence = 0;
241 
242 #ifdef ASSEMBLER_DIALECT
243   dialect_number = ASSEMBLER_DIALECT;
244 #endif
245 }
246 
247 /* Default target function prologue and epilogue assembler output.
248 
249    If not overridden for epilogue code, then the function body itself
250    contains return instructions wherever needed.  */
251 void
default_function_pro_epilogue(FILE *)252 default_function_pro_epilogue (FILE *)
253 {
254 }
255 
256 void
default_function_switched_text_sections(FILE * file ATTRIBUTE_UNUSED,tree decl ATTRIBUTE_UNUSED,bool new_is_cold ATTRIBUTE_UNUSED)257 default_function_switched_text_sections (FILE *file ATTRIBUTE_UNUSED,
258 					 tree decl ATTRIBUTE_UNUSED,
259 					 bool new_is_cold ATTRIBUTE_UNUSED)
260 {
261 }
262 
263 /* Default target hook that outputs nothing to a stream.  */
264 void
no_asm_to_stream(FILE * file ATTRIBUTE_UNUSED)265 no_asm_to_stream (FILE *file ATTRIBUTE_UNUSED)
266 {
267 }
268 
269 /* Enable APP processing of subsequent output.
270    Used before the output from an `asm' statement.  */
271 
272 void
app_enable(void)273 app_enable (void)
274 {
275   if (! app_on)
276     {
277       fputs (ASM_APP_ON, asm_out_file);
278       app_on = 1;
279     }
280 }
281 
282 /* Disable APP processing of subsequent output.
283    Called from varasm.c before most kinds of output.  */
284 
285 void
app_disable(void)286 app_disable (void)
287 {
288   if (app_on)
289     {
290       fputs (ASM_APP_OFF, asm_out_file);
291       app_on = 0;
292     }
293 }
294 
295 /* Return the number of slots filled in the current
296    delayed branch sequence (we don't count the insn needing the
297    delay slot).   Zero if not in a delayed branch sequence.  */
298 
299 int
dbr_sequence_length(void)300 dbr_sequence_length (void)
301 {
302   if (final_sequence != 0)
303     return XVECLEN (final_sequence, 0) - 1;
304   else
305     return 0;
306 }
307 
308 /* The next two pages contain routines used to compute the length of an insn
309    and to shorten branches.  */
310 
311 /* Arrays for insn lengths, and addresses.  The latter is referenced by
312    `insn_current_length'.  */
313 
314 static int *insn_lengths;
315 
316 vec<int> insn_addresses_;
317 
318 /* Max uid for which the above arrays are valid.  */
319 static int insn_lengths_max_uid;
320 
321 /* Address of insn being processed.  Used by `insn_current_length'.  */
322 int insn_current_address;
323 
324 /* Address of insn being processed in previous iteration.  */
325 int insn_last_address;
326 
327 /* known invariant alignment of insn being processed.  */
328 int insn_current_align;
329 
330 /* After shorten_branches, for any insn, uid_align[INSN_UID (insn)]
331    gives the next following alignment insn that increases the known
332    alignment, or NULL_RTX if there is no such insn.
333    For any alignment obtained this way, we can again index uid_align with
334    its uid to obtain the next following align that in turn increases the
335    alignment, till we reach NULL_RTX; the sequence obtained this way
336    for each insn we'll call the alignment chain of this insn in the following
337    comments.  */
338 
339 static rtx *uid_align;
340 static int *uid_shuid;
341 static vec<align_flags> label_align;
342 
343 /* Indicate that branch shortening hasn't yet been done.  */
344 
345 void
init_insn_lengths(void)346 init_insn_lengths (void)
347 {
348   if (uid_shuid)
349     {
350       free (uid_shuid);
351       uid_shuid = 0;
352     }
353   if (insn_lengths)
354     {
355       free (insn_lengths);
356       insn_lengths = 0;
357       insn_lengths_max_uid = 0;
358     }
359   if (HAVE_ATTR_length)
360     INSN_ADDRESSES_FREE ();
361   if (uid_align)
362     {
363       free (uid_align);
364       uid_align = 0;
365     }
366 }
367 
368 /* Obtain the current length of an insn.  If branch shortening has been done,
369    get its actual length.  Otherwise, use FALLBACK_FN to calculate the
370    length.  */
371 static int
get_attr_length_1(rtx_insn * insn,int (* fallback_fn)(rtx_insn *))372 get_attr_length_1 (rtx_insn *insn, int (*fallback_fn) (rtx_insn *))
373 {
374   rtx body;
375   int i;
376   int length = 0;
377 
378   if (!HAVE_ATTR_length)
379     return 0;
380 
381   if (insn_lengths_max_uid > INSN_UID (insn))
382     return insn_lengths[INSN_UID (insn)];
383   else
384     switch (GET_CODE (insn))
385       {
386       case NOTE:
387       case BARRIER:
388       case CODE_LABEL:
389       case DEBUG_INSN:
390 	return 0;
391 
392       case CALL_INSN:
393       case JUMP_INSN:
394 	length = fallback_fn (insn);
395 	break;
396 
397       case INSN:
398 	body = PATTERN (insn);
399 	if (GET_CODE (body) == USE || GET_CODE (body) == CLOBBER)
400 	  return 0;
401 
402 	else if (GET_CODE (body) == ASM_INPUT || asm_noperands (body) >= 0)
403 	  length = asm_insn_count (body) * fallback_fn (insn);
404 	else if (rtx_sequence *seq = dyn_cast <rtx_sequence *> (body))
405 	  for (i = 0; i < seq->len (); i++)
406 	    length += get_attr_length_1 (seq->insn (i), fallback_fn);
407 	else
408 	  length = fallback_fn (insn);
409 	break;
410 
411       default:
412 	break;
413       }
414 
415 #ifdef ADJUST_INSN_LENGTH
416   ADJUST_INSN_LENGTH (insn, length);
417 #endif
418   return length;
419 }
420 
421 /* Obtain the current length of an insn.  If branch shortening has been done,
422    get its actual length.  Otherwise, get its maximum length.  */
423 int
get_attr_length(rtx_insn * insn)424 get_attr_length (rtx_insn *insn)
425 {
426   return get_attr_length_1 (insn, insn_default_length);
427 }
428 
429 /* Obtain the current length of an insn.  If branch shortening has been done,
430    get its actual length.  Otherwise, get its minimum length.  */
431 int
get_attr_min_length(rtx_insn * insn)432 get_attr_min_length (rtx_insn *insn)
433 {
434   return get_attr_length_1 (insn, insn_min_length);
435 }
436 
437 /* Code to handle alignment inside shorten_branches.  */
438 
439 /* Here is an explanation how the algorithm in align_fuzz can give
440    proper results:
441 
442    Call a sequence of instructions beginning with alignment point X
443    and continuing until the next alignment point `block X'.  When `X'
444    is used in an expression, it means the alignment value of the
445    alignment point.
446 
447    Call the distance between the start of the first insn of block X, and
448    the end of the last insn of block X `IX', for the `inner size of X'.
449    This is clearly the sum of the instruction lengths.
450 
451    Likewise with the next alignment-delimited block following X, which we
452    shall call block Y.
453 
454    Call the distance between the start of the first insn of block X, and
455    the start of the first insn of block Y `OX', for the `outer size of X'.
456 
457    The estimated padding is then OX - IX.
458 
459    OX can be safely estimated as
460 
461            if (X >= Y)
462                    OX = round_up(IX, Y)
463            else
464                    OX = round_up(IX, X) + Y - X
465 
466    Clearly est(IX) >= real(IX), because that only depends on the
467    instruction lengths, and those being overestimated is a given.
468 
469    Clearly round_up(foo, Z) >= round_up(bar, Z) if foo >= bar, so
470    we needn't worry about that when thinking about OX.
471 
472    When X >= Y, the alignment provided by Y adds no uncertainty factor
473    for branch ranges starting before X, so we can just round what we have.
474    But when X < Y, we don't know anything about the, so to speak,
475    `middle bits', so we have to assume the worst when aligning up from an
476    address mod X to one mod Y, which is Y - X.  */
477 
478 #ifndef LABEL_ALIGN
479 #define LABEL_ALIGN(LABEL) align_labels
480 #endif
481 
482 #ifndef LOOP_ALIGN
483 #define LOOP_ALIGN(LABEL) align_loops
484 #endif
485 
486 #ifndef LABEL_ALIGN_AFTER_BARRIER
487 #define LABEL_ALIGN_AFTER_BARRIER(LABEL) 0
488 #endif
489 
490 #ifndef JUMP_ALIGN
491 #define JUMP_ALIGN(LABEL) align_jumps
492 #endif
493 
494 #ifndef ADDR_VEC_ALIGN
495 static int
final_addr_vec_align(rtx_jump_table_data * addr_vec)496 final_addr_vec_align (rtx_jump_table_data *addr_vec)
497 {
498   int align = GET_MODE_SIZE (addr_vec->get_data_mode ());
499 
500   if (align > BIGGEST_ALIGNMENT / BITS_PER_UNIT)
501     align = BIGGEST_ALIGNMENT / BITS_PER_UNIT;
502   return exact_log2 (align);
503 
504 }
505 
506 #define ADDR_VEC_ALIGN(ADDR_VEC) final_addr_vec_align (ADDR_VEC)
507 #endif
508 
509 #ifndef INSN_LENGTH_ALIGNMENT
510 #define INSN_LENGTH_ALIGNMENT(INSN) length_unit_log
511 #endif
512 
513 #define INSN_SHUID(INSN) (uid_shuid[INSN_UID (INSN)])
514 
515 static int min_labelno, max_labelno;
516 
517 #define LABEL_TO_ALIGNMENT(LABEL) \
518   (label_align[CODE_LABEL_NUMBER (LABEL) - min_labelno])
519 
520 /* For the benefit of port specific code do this also as a function.  */
521 
522 align_flags
label_to_alignment(rtx label)523 label_to_alignment (rtx label)
524 {
525   if (CODE_LABEL_NUMBER (label) <= max_labelno)
526     return LABEL_TO_ALIGNMENT (label);
527   return align_flags ();
528 }
529 
530 /* The differences in addresses
531    between a branch and its target might grow or shrink depending on
532    the alignment the start insn of the range (the branch for a forward
533    branch or the label for a backward branch) starts out on; if these
534    differences are used naively, they can even oscillate infinitely.
535    We therefore want to compute a 'worst case' address difference that
536    is independent of the alignment the start insn of the range end
537    up on, and that is at least as large as the actual difference.
538    The function align_fuzz calculates the amount we have to add to the
539    naively computed difference, by traversing the part of the alignment
540    chain of the start insn of the range that is in front of the end insn
541    of the range, and considering for each alignment the maximum amount
542    that it might contribute to a size increase.
543 
544    For casesi tables, we also want to know worst case minimum amounts of
545    address difference, in case a machine description wants to introduce
546    some common offset that is added to all offsets in a table.
547    For this purpose, align_fuzz with a growth argument of 0 computes the
548    appropriate adjustment.  */
549 
550 /* Compute the maximum delta by which the difference of the addresses of
551    START and END might grow / shrink due to a different address for start
552    which changes the size of alignment insns between START and END.
553    KNOWN_ALIGN_LOG is the alignment known for START.
554    GROWTH should be ~0 if the objective is to compute potential code size
555    increase, and 0 if the objective is to compute potential shrink.
556    The return value is undefined for any other value of GROWTH.  */
557 
558 static int
align_fuzz(rtx start,rtx end,int known_align_log,unsigned int growth)559 align_fuzz (rtx start, rtx end, int known_align_log, unsigned int growth)
560 {
561   int uid = INSN_UID (start);
562   rtx align_label;
563   int known_align = 1 << known_align_log;
564   int end_shuid = INSN_SHUID (end);
565   int fuzz = 0;
566 
567   for (align_label = uid_align[uid]; align_label; align_label = uid_align[uid])
568     {
569       int align_addr, new_align;
570 
571       uid = INSN_UID (align_label);
572       align_addr = INSN_ADDRESSES (uid) - insn_lengths[uid];
573       if (uid_shuid[uid] > end_shuid)
574 	break;
575       align_flags alignment = LABEL_TO_ALIGNMENT (align_label);
576       new_align = 1 << alignment.levels[0].log;
577       if (new_align < known_align)
578 	continue;
579       fuzz += (-align_addr ^ growth) & (new_align - known_align);
580       known_align = new_align;
581     }
582   return fuzz;
583 }
584 
585 /* Compute a worst-case reference address of a branch so that it
586    can be safely used in the presence of aligned labels.  Since the
587    size of the branch itself is unknown, the size of the branch is
588    not included in the range.  I.e. for a forward branch, the reference
589    address is the end address of the branch as known from the previous
590    branch shortening pass, minus a value to account for possible size
591    increase due to alignment.  For a backward branch, it is the start
592    address of the branch as known from the current pass, plus a value
593    to account for possible size increase due to alignment.
594    NB.: Therefore, the maximum offset allowed for backward branches needs
595    to exclude the branch size.  */
596 
597 int
insn_current_reference_address(rtx_insn * branch)598 insn_current_reference_address (rtx_insn *branch)
599 {
600   rtx dest;
601   int seq_uid;
602 
603   if (! INSN_ADDRESSES_SET_P ())
604     return 0;
605 
606   rtx_insn *seq = NEXT_INSN (PREV_INSN (branch));
607   seq_uid = INSN_UID (seq);
608   if (!jump_to_label_p (branch))
609     /* This can happen for example on the PA; the objective is to know the
610        offset to address something in front of the start of the function.
611        Thus, we can treat it like a backward branch.
612        We assume here that FUNCTION_BOUNDARY / BITS_PER_UNIT is larger than
613        any alignment we'd encounter, so we skip the call to align_fuzz.  */
614     return insn_current_address;
615   dest = JUMP_LABEL (branch);
616 
617   /* BRANCH has no proper alignment chain set, so use SEQ.
618      BRANCH also has no INSN_SHUID.  */
619   if (INSN_SHUID (seq) < INSN_SHUID (dest))
620     {
621       /* Forward branch.  */
622       return (insn_last_address + insn_lengths[seq_uid]
623 	      - align_fuzz (seq, dest, length_unit_log, ~0));
624     }
625   else
626     {
627       /* Backward branch.  */
628       return (insn_current_address
629 	      + align_fuzz (dest, seq, length_unit_log, ~0));
630     }
631 }
632 
633 /* Compute branch alignments based on CFG profile.  */
634 
635 unsigned int
compute_alignments(void)636 compute_alignments (void)
637 {
638   basic_block bb;
639   align_flags max_alignment;
640 
641   label_align.truncate (0);
642 
643   max_labelno = max_label_num ();
644   min_labelno = get_first_label_num ();
645   label_align.safe_grow_cleared (max_labelno - min_labelno + 1);
646 
647   /* If not optimizing or optimizing for size, don't assign any alignments.  */
648   if (! optimize || optimize_function_for_size_p (cfun))
649     return 0;
650 
651   if (dump_file)
652     {
653       dump_reg_info (dump_file);
654       dump_flow_info (dump_file, TDF_DETAILS);
655       flow_loops_dump (dump_file, NULL, 1);
656     }
657   loop_optimizer_init (AVOID_CFG_MODIFICATIONS);
658   profile_count count_threshold = cfun->cfg->count_max.apply_scale
659 		 (1, param_align_threshold);
660 
661   if (dump_file)
662     {
663       fprintf (dump_file, "count_max: ");
664       cfun->cfg->count_max.dump (dump_file);
665       fprintf (dump_file, "\n");
666     }
667   FOR_EACH_BB_FN (bb, cfun)
668     {
669       rtx_insn *label = BB_HEAD (bb);
670       bool has_fallthru = 0;
671       edge e;
672       edge_iterator ei;
673 
674       if (!LABEL_P (label)
675 	  || optimize_bb_for_size_p (bb))
676 	{
677 	  if (dump_file)
678 	    fprintf (dump_file,
679 		     "BB %4i loop %2i loop_depth %2i skipped.\n",
680 		     bb->index,
681 		     bb->loop_father->num,
682 		     bb_loop_depth (bb));
683 	  continue;
684 	}
685       max_alignment = LABEL_ALIGN (label);
686       profile_count fallthru_count = profile_count::zero ();
687       profile_count branch_count = profile_count::zero ();
688 
689       FOR_EACH_EDGE (e, ei, bb->preds)
690 	{
691 	  if (e->flags & EDGE_FALLTHRU)
692 	    has_fallthru = 1, fallthru_count += e->count ();
693 	  else
694 	    branch_count += e->count ();
695 	}
696       if (dump_file)
697 	{
698 	  fprintf (dump_file, "BB %4i loop %2i loop_depth"
699 		   " %2i fall ",
700 		   bb->index, bb->loop_father->num,
701 		   bb_loop_depth (bb));
702 	  fallthru_count.dump (dump_file);
703 	  fprintf (dump_file, " branch ");
704 	  branch_count.dump (dump_file);
705 	  if (!bb->loop_father->inner && bb->loop_father->num)
706 	    fprintf (dump_file, " inner_loop");
707 	  if (bb->loop_father->header == bb)
708 	    fprintf (dump_file, " loop_header");
709 	  fprintf (dump_file, "\n");
710 	}
711       if (!fallthru_count.initialized_p () || !branch_count.initialized_p ())
712 	continue;
713 
714       /* There are two purposes to align block with no fallthru incoming edge:
715 	 1) to avoid fetch stalls when branch destination is near cache boundary
716 	 2) to improve cache efficiency in case the previous block is not executed
717 	    (so it does not need to be in the cache).
718 
719 	 We to catch first case, we align frequently executed blocks.
720 	 To catch the second, we align blocks that are executed more frequently
721 	 than the predecessor and the predecessor is likely to not be executed
722 	 when function is called.  */
723 
724       if (!has_fallthru
725 	  && (branch_count > count_threshold
726 	      || (bb->count > bb->prev_bb->count.apply_scale (10, 1)
727 		  && (bb->prev_bb->count
728 		      <= ENTRY_BLOCK_PTR_FOR_FN (cfun)
729 			   ->count.apply_scale (1, 2)))))
730 	{
731 	  align_flags alignment = JUMP_ALIGN (label);
732 	  if (dump_file)
733 	    fprintf (dump_file, "  jump alignment added.\n");
734 	  max_alignment = align_flags::max (max_alignment, alignment);
735 	}
736       /* In case block is frequent and reached mostly by non-fallthru edge,
737 	 align it.  It is most likely a first block of loop.  */
738       if (has_fallthru
739 	  && !(single_succ_p (bb)
740 	       && single_succ (bb) == EXIT_BLOCK_PTR_FOR_FN (cfun))
741 	  && optimize_bb_for_speed_p (bb)
742 	  && branch_count + fallthru_count > count_threshold
743 	  && (branch_count
744 	      > fallthru_count.apply_scale
745 		    (param_align_loop_iterations, 1)))
746 	{
747 	  align_flags alignment = LOOP_ALIGN (label);
748 	  if (dump_file)
749 	    fprintf (dump_file, "  internal loop alignment added.\n");
750 	  max_alignment = align_flags::max (max_alignment, alignment);
751 	}
752       LABEL_TO_ALIGNMENT (label) = max_alignment;
753     }
754 
755   loop_optimizer_finalize ();
756   free_dominance_info (CDI_DOMINATORS);
757   return 0;
758 }
759 
760 /* Grow the LABEL_ALIGN array after new labels are created.  */
761 
762 static void
grow_label_align(void)763 grow_label_align (void)
764 {
765   int old = max_labelno;
766   int n_labels;
767   int n_old_labels;
768 
769   max_labelno = max_label_num ();
770 
771   n_labels = max_labelno - min_labelno + 1;
772   n_old_labels = old - min_labelno + 1;
773 
774   label_align.safe_grow_cleared (n_labels);
775 
776   /* Range of labels grows monotonically in the function.  Failing here
777      means that the initialization of array got lost.  */
778   gcc_assert (n_old_labels <= n_labels);
779 }
780 
781 /* Update the already computed alignment information.  LABEL_PAIRS is a vector
782    made up of pairs of labels for which the alignment information of the first
783    element will be copied from that of the second element.  */
784 
785 void
update_alignments(vec<rtx> & label_pairs)786 update_alignments (vec<rtx> &label_pairs)
787 {
788   unsigned int i = 0;
789   rtx iter, label = NULL_RTX;
790 
791   if (max_labelno != max_label_num ())
792     grow_label_align ();
793 
794   FOR_EACH_VEC_ELT (label_pairs, i, iter)
795     if (i & 1)
796       LABEL_TO_ALIGNMENT (label) = LABEL_TO_ALIGNMENT (iter);
797     else
798       label = iter;
799 }
800 
801 namespace {
802 
803 const pass_data pass_data_compute_alignments =
804 {
805   RTL_PASS, /* type */
806   "alignments", /* name */
807   OPTGROUP_NONE, /* optinfo_flags */
808   TV_NONE, /* tv_id */
809   0, /* properties_required */
810   0, /* properties_provided */
811   0, /* properties_destroyed */
812   0, /* todo_flags_start */
813   0, /* todo_flags_finish */
814 };
815 
816 class pass_compute_alignments : public rtl_opt_pass
817 {
818 public:
pass_compute_alignments(gcc::context * ctxt)819   pass_compute_alignments (gcc::context *ctxt)
820     : rtl_opt_pass (pass_data_compute_alignments, ctxt)
821   {}
822 
823   /* opt_pass methods: */
execute(function *)824   virtual unsigned int execute (function *) { return compute_alignments (); }
825 
826 }; // class pass_compute_alignments
827 
828 } // anon namespace
829 
830 rtl_opt_pass *
make_pass_compute_alignments(gcc::context * ctxt)831 make_pass_compute_alignments (gcc::context *ctxt)
832 {
833   return new pass_compute_alignments (ctxt);
834 }
835 
836 
837 /* Make a pass over all insns and compute their actual lengths by shortening
838    any branches of variable length if possible.  */
839 
840 /* shorten_branches might be called multiple times:  for example, the SH
841    port splits out-of-range conditional branches in MACHINE_DEPENDENT_REORG.
842    In order to do this, it needs proper length information, which it obtains
843    by calling shorten_branches.  This cannot be collapsed with
844    shorten_branches itself into a single pass unless we also want to integrate
845    reorg.c, since the branch splitting exposes new instructions with delay
846    slots.  */
847 
848 void
shorten_branches(rtx_insn * first)849 shorten_branches (rtx_insn *first)
850 {
851   rtx_insn *insn;
852   int max_uid;
853   int i;
854   rtx_insn *seq;
855   int something_changed = 1;
856   char *varying_length;
857   rtx body;
858   int uid;
859   rtx align_tab[MAX_CODE_ALIGN + 1];
860 
861   /* Compute maximum UID and allocate label_align / uid_shuid.  */
862   max_uid = get_max_uid ();
863 
864   /* Free uid_shuid before reallocating it.  */
865   free (uid_shuid);
866 
867   uid_shuid = XNEWVEC (int, max_uid);
868 
869   if (max_labelno != max_label_num ())
870     grow_label_align ();
871 
872   /* Initialize label_align and set up uid_shuid to be strictly
873      monotonically rising with insn order.  */
874   /* We use alignment here to keep track of the maximum alignment we want to
875      impose on the next CODE_LABEL (or the current one if we are processing
876      the CODE_LABEL itself).  */
877 
878   align_flags max_alignment;
879 
880   for (insn = get_insns (), i = 1; insn; insn = NEXT_INSN (insn))
881     {
882       INSN_SHUID (insn) = i++;
883       if (INSN_P (insn))
884 	continue;
885 
886       if (rtx_code_label *label = dyn_cast <rtx_code_label *> (insn))
887 	{
888 	  /* Merge in alignments computed by compute_alignments.  */
889 	  align_flags alignment = LABEL_TO_ALIGNMENT (label);
890 	  max_alignment = align_flags::max (max_alignment, alignment);
891 
892 	  rtx_jump_table_data *table = jump_table_for_label (label);
893 	  if (!table)
894 	    {
895 	      align_flags alignment = LABEL_ALIGN (label);
896 	      max_alignment = align_flags::max (max_alignment, alignment);
897 	    }
898 	  /* ADDR_VECs only take room if read-only data goes into the text
899 	     section.  */
900 	  if ((JUMP_TABLES_IN_TEXT_SECTION
901 	       || readonly_data_section == text_section)
902 	      && table)
903 	    {
904 	      align_flags alignment = align_flags (ADDR_VEC_ALIGN (table));
905 	      max_alignment = align_flags::max (max_alignment, alignment);
906 	    }
907 	  LABEL_TO_ALIGNMENT (label) = max_alignment;
908 	  max_alignment = align_flags ();
909 	}
910       else if (BARRIER_P (insn))
911 	{
912 	  rtx_insn *label;
913 
914 	  for (label = insn; label && ! INSN_P (label);
915 	       label = NEXT_INSN (label))
916 	    if (LABEL_P (label))
917 	      {
918 		align_flags alignment
919 		  = align_flags (LABEL_ALIGN_AFTER_BARRIER (insn));
920 		max_alignment = align_flags::max (max_alignment, alignment);
921 		break;
922 	      }
923 	}
924     }
925   if (!HAVE_ATTR_length)
926     return;
927 
928   /* Allocate the rest of the arrays.  */
929   insn_lengths = XNEWVEC (int, max_uid);
930   insn_lengths_max_uid = max_uid;
931   /* Syntax errors can lead to labels being outside of the main insn stream.
932      Initialize insn_addresses, so that we get reproducible results.  */
933   INSN_ADDRESSES_ALLOC (max_uid);
934 
935   varying_length = XCNEWVEC (char, max_uid);
936 
937   /* Initialize uid_align.  We scan instructions
938      from end to start, and keep in align_tab[n] the last seen insn
939      that does an alignment of at least n+1, i.e. the successor
940      in the alignment chain for an insn that does / has a known
941      alignment of n.  */
942   uid_align = XCNEWVEC (rtx, max_uid);
943 
944   for (i = MAX_CODE_ALIGN + 1; --i >= 0;)
945     align_tab[i] = NULL_RTX;
946   seq = get_last_insn ();
947   for (; seq; seq = PREV_INSN (seq))
948     {
949       int uid = INSN_UID (seq);
950       int log;
951       log = (LABEL_P (seq) ? LABEL_TO_ALIGNMENT (seq).levels[0].log : 0);
952       uid_align[uid] = align_tab[0];
953       if (log)
954 	{
955 	  /* Found an alignment label.  */
956 	  gcc_checking_assert (log < MAX_CODE_ALIGN + 1);
957 	  uid_align[uid] = align_tab[log];
958 	  for (i = log - 1; i >= 0; i--)
959 	    align_tab[i] = seq;
960 	}
961     }
962 
963   /* When optimizing, we start assuming minimum length, and keep increasing
964      lengths as we find the need for this, till nothing changes.
965      When not optimizing, we start assuming maximum lengths, and
966      do a single pass to update the lengths.  */
967   bool increasing = optimize != 0;
968 
969 #ifdef CASE_VECTOR_SHORTEN_MODE
970   if (optimize)
971     {
972       /* Look for ADDR_DIFF_VECs, and initialize their minimum and maximum
973          label fields.  */
974 
975       int min_shuid = INSN_SHUID (get_insns ()) - 1;
976       int max_shuid = INSN_SHUID (get_last_insn ()) + 1;
977       int rel;
978 
979       for (insn = first; insn != 0; insn = NEXT_INSN (insn))
980 	{
981 	  rtx min_lab = NULL_RTX, max_lab = NULL_RTX, pat;
982 	  int len, i, min, max, insn_shuid;
983 	  int min_align;
984 	  addr_diff_vec_flags flags;
985 
986 	  if (! JUMP_TABLE_DATA_P (insn)
987 	      || GET_CODE (PATTERN (insn)) != ADDR_DIFF_VEC)
988 	    continue;
989 	  pat = PATTERN (insn);
990 	  len = XVECLEN (pat, 1);
991 	  gcc_assert (len > 0);
992 	  min_align = MAX_CODE_ALIGN;
993 	  for (min = max_shuid, max = min_shuid, i = len - 1; i >= 0; i--)
994 	    {
995 	      rtx lab = XEXP (XVECEXP (pat, 1, i), 0);
996 	      int shuid = INSN_SHUID (lab);
997 	      if (shuid < min)
998 		{
999 		  min = shuid;
1000 		  min_lab = lab;
1001 		}
1002 	      if (shuid > max)
1003 		{
1004 		  max = shuid;
1005 		  max_lab = lab;
1006 		}
1007 
1008 	      int label_alignment = LABEL_TO_ALIGNMENT (lab).levels[0].log;
1009 	      if (min_align > label_alignment)
1010 		min_align = label_alignment;
1011 	    }
1012 	  XEXP (pat, 2) = gen_rtx_LABEL_REF (Pmode, min_lab);
1013 	  XEXP (pat, 3) = gen_rtx_LABEL_REF (Pmode, max_lab);
1014 	  insn_shuid = INSN_SHUID (insn);
1015 	  rel = INSN_SHUID (XEXP (XEXP (pat, 0), 0));
1016 	  memset (&flags, 0, sizeof (flags));
1017 	  flags.min_align = min_align;
1018 	  flags.base_after_vec = rel > insn_shuid;
1019 	  flags.min_after_vec  = min > insn_shuid;
1020 	  flags.max_after_vec  = max > insn_shuid;
1021 	  flags.min_after_base = min > rel;
1022 	  flags.max_after_base = max > rel;
1023 	  ADDR_DIFF_VEC_FLAGS (pat) = flags;
1024 
1025 	  if (increasing)
1026 	    PUT_MODE (pat, CASE_VECTOR_SHORTEN_MODE (0, 0, pat));
1027 	}
1028     }
1029 #endif /* CASE_VECTOR_SHORTEN_MODE */
1030 
1031   /* Compute initial lengths, addresses, and varying flags for each insn.  */
1032   int (*length_fun) (rtx_insn *) = increasing ? insn_min_length : insn_default_length;
1033 
1034   for (insn_current_address = 0, insn = first;
1035        insn != 0;
1036        insn_current_address += insn_lengths[uid], insn = NEXT_INSN (insn))
1037     {
1038       uid = INSN_UID (insn);
1039 
1040       insn_lengths[uid] = 0;
1041 
1042       if (LABEL_P (insn))
1043 	{
1044 	  int log = LABEL_TO_ALIGNMENT (insn).levels[0].log;
1045 	  if (log)
1046 	    {
1047 	      int align = 1 << log;
1048 	      int new_address = (insn_current_address + align - 1) & -align;
1049 	      insn_lengths[uid] = new_address - insn_current_address;
1050 	    }
1051 	}
1052 
1053       INSN_ADDRESSES (uid) = insn_current_address + insn_lengths[uid];
1054 
1055       if (NOTE_P (insn) || BARRIER_P (insn)
1056 	  || LABEL_P (insn) || DEBUG_INSN_P (insn))
1057 	continue;
1058       if (insn->deleted ())
1059 	continue;
1060 
1061       body = PATTERN (insn);
1062       if (rtx_jump_table_data *table = dyn_cast <rtx_jump_table_data *> (insn))
1063 	{
1064 	  /* This only takes room if read-only data goes into the text
1065 	     section.  */
1066 	  if (JUMP_TABLES_IN_TEXT_SECTION
1067 	      || readonly_data_section == text_section)
1068 	    insn_lengths[uid] = (XVECLEN (body,
1069 					  GET_CODE (body) == ADDR_DIFF_VEC)
1070 				 * GET_MODE_SIZE (table->get_data_mode ()));
1071 	  /* Alignment is handled by ADDR_VEC_ALIGN.  */
1072 	}
1073       else if (GET_CODE (body) == ASM_INPUT || asm_noperands (body) >= 0)
1074 	insn_lengths[uid] = asm_insn_count (body) * insn_default_length (insn);
1075       else if (rtx_sequence *body_seq = dyn_cast <rtx_sequence *> (body))
1076 	{
1077 	  int i;
1078 	  int const_delay_slots;
1079 	  if (DELAY_SLOTS)
1080 	    const_delay_slots = const_num_delay_slots (body_seq->insn (0));
1081 	  else
1082 	    const_delay_slots = 0;
1083 
1084 	  int (*inner_length_fun) (rtx_insn *)
1085 	    = const_delay_slots ? length_fun : insn_default_length;
1086 	  /* Inside a delay slot sequence, we do not do any branch shortening
1087 	     if the shortening could change the number of delay slots
1088 	     of the branch.  */
1089 	  for (i = 0; i < body_seq->len (); i++)
1090 	    {
1091 	      rtx_insn *inner_insn = body_seq->insn (i);
1092 	      int inner_uid = INSN_UID (inner_insn);
1093 	      int inner_length;
1094 
1095 	      if (GET_CODE (PATTERN (inner_insn)) == ASM_INPUT
1096 		  || asm_noperands (PATTERN (inner_insn)) >= 0)
1097 		inner_length = (asm_insn_count (PATTERN (inner_insn))
1098 				* insn_default_length (inner_insn));
1099 	      else
1100 		inner_length = inner_length_fun (inner_insn);
1101 
1102 	      insn_lengths[inner_uid] = inner_length;
1103 	      if (const_delay_slots)
1104 		{
1105 		  if ((varying_length[inner_uid]
1106 		       = insn_variable_length_p (inner_insn)) != 0)
1107 		    varying_length[uid] = 1;
1108 		  INSN_ADDRESSES (inner_uid) = (insn_current_address
1109 						+ insn_lengths[uid]);
1110 		}
1111 	      else
1112 		varying_length[inner_uid] = 0;
1113 	      insn_lengths[uid] += inner_length;
1114 	    }
1115 	}
1116       else if (GET_CODE (body) != USE && GET_CODE (body) != CLOBBER)
1117 	{
1118 	  insn_lengths[uid] = length_fun (insn);
1119 	  varying_length[uid] = insn_variable_length_p (insn);
1120 	}
1121 
1122       /* If needed, do any adjustment.  */
1123 #ifdef ADJUST_INSN_LENGTH
1124       ADJUST_INSN_LENGTH (insn, insn_lengths[uid]);
1125       if (insn_lengths[uid] < 0)
1126 	fatal_insn ("negative insn length", insn);
1127 #endif
1128     }
1129 
1130   /* Now loop over all the insns finding varying length insns.  For each,
1131      get the current insn length.  If it has changed, reflect the change.
1132      When nothing changes for a full pass, we are done.  */
1133 
1134   while (something_changed)
1135     {
1136       something_changed = 0;
1137       insn_current_align = MAX_CODE_ALIGN - 1;
1138       for (insn_current_address = 0, insn = first;
1139 	   insn != 0;
1140 	   insn = NEXT_INSN (insn))
1141 	{
1142 	  int new_length;
1143 #ifdef ADJUST_INSN_LENGTH
1144 	  int tmp_length;
1145 #endif
1146 	  int length_align;
1147 
1148 	  uid = INSN_UID (insn);
1149 
1150 	  if (rtx_code_label *label = dyn_cast <rtx_code_label *> (insn))
1151 	    {
1152 	      int log = LABEL_TO_ALIGNMENT (label).levels[0].log;
1153 
1154 #ifdef CASE_VECTOR_SHORTEN_MODE
1155 	      /* If the mode of a following jump table was changed, we
1156 		 may need to update the alignment of this label.  */
1157 
1158 	      if (JUMP_TABLES_IN_TEXT_SECTION
1159 		  || readonly_data_section == text_section)
1160 		{
1161 		  rtx_jump_table_data *table = jump_table_for_label (label);
1162 		  if (table)
1163 		    {
1164 		      int newlog = ADDR_VEC_ALIGN (table);
1165 		      if (newlog != log)
1166 			{
1167 			  log = newlog;
1168 			  LABEL_TO_ALIGNMENT (insn) = log;
1169 			  something_changed = 1;
1170 			}
1171 		    }
1172 		}
1173 #endif
1174 
1175 	      if (log > insn_current_align)
1176 		{
1177 		  int align = 1 << log;
1178 		  int new_address= (insn_current_address + align - 1) & -align;
1179 		  insn_lengths[uid] = new_address - insn_current_address;
1180 		  insn_current_align = log;
1181 		  insn_current_address = new_address;
1182 		}
1183 	      else
1184 		insn_lengths[uid] = 0;
1185 	      INSN_ADDRESSES (uid) = insn_current_address;
1186 	      continue;
1187 	    }
1188 
1189 	  length_align = INSN_LENGTH_ALIGNMENT (insn);
1190 	  if (length_align < insn_current_align)
1191 	    insn_current_align = length_align;
1192 
1193 	  insn_last_address = INSN_ADDRESSES (uid);
1194 	  INSN_ADDRESSES (uid) = insn_current_address;
1195 
1196 #ifdef CASE_VECTOR_SHORTEN_MODE
1197 	  if (optimize
1198 	      && JUMP_TABLE_DATA_P (insn)
1199 	      && GET_CODE (PATTERN (insn)) == ADDR_DIFF_VEC)
1200 	    {
1201 	      rtx_jump_table_data *table = as_a <rtx_jump_table_data *> (insn);
1202 	      rtx body = PATTERN (insn);
1203 	      int old_length = insn_lengths[uid];
1204 	      rtx_insn *rel_lab =
1205 		safe_as_a <rtx_insn *> (XEXP (XEXP (body, 0), 0));
1206 	      rtx min_lab = XEXP (XEXP (body, 2), 0);
1207 	      rtx max_lab = XEXP (XEXP (body, 3), 0);
1208 	      int rel_addr = INSN_ADDRESSES (INSN_UID (rel_lab));
1209 	      int min_addr = INSN_ADDRESSES (INSN_UID (min_lab));
1210 	      int max_addr = INSN_ADDRESSES (INSN_UID (max_lab));
1211 	      rtx_insn *prev;
1212 	      int rel_align = 0;
1213 	      addr_diff_vec_flags flags;
1214 	      scalar_int_mode vec_mode;
1215 
1216 	      /* Avoid automatic aggregate initialization.  */
1217 	      flags = ADDR_DIFF_VEC_FLAGS (body);
1218 
1219 	      /* Try to find a known alignment for rel_lab.  */
1220 	      for (prev = rel_lab;
1221 		   prev
1222 		   && ! insn_lengths[INSN_UID (prev)]
1223 		   && ! (varying_length[INSN_UID (prev)] & 1);
1224 		   prev = PREV_INSN (prev))
1225 		if (varying_length[INSN_UID (prev)] & 2)
1226 		  {
1227 		    rel_align = LABEL_TO_ALIGNMENT (prev).levels[0].log;
1228 		    break;
1229 		  }
1230 
1231 	      /* See the comment on addr_diff_vec_flags in rtl.h for the
1232 		 meaning of the flags values.  base: REL_LAB   vec: INSN  */
1233 	      /* Anything after INSN has still addresses from the last
1234 		 pass; adjust these so that they reflect our current
1235 		 estimate for this pass.  */
1236 	      if (flags.base_after_vec)
1237 		rel_addr += insn_current_address - insn_last_address;
1238 	      if (flags.min_after_vec)
1239 		min_addr += insn_current_address - insn_last_address;
1240 	      if (flags.max_after_vec)
1241 		max_addr += insn_current_address - insn_last_address;
1242 	      /* We want to know the worst case, i.e. lowest possible value
1243 		 for the offset of MIN_LAB.  If MIN_LAB is after REL_LAB,
1244 		 its offset is positive, and we have to be wary of code shrink;
1245 		 otherwise, it is negative, and we have to be vary of code
1246 		 size increase.  */
1247 	      if (flags.min_after_base)
1248 		{
1249 		  /* If INSN is between REL_LAB and MIN_LAB, the size
1250 		     changes we are about to make can change the alignment
1251 		     within the observed offset, therefore we have to break
1252 		     it up into two parts that are independent.  */
1253 		  if (! flags.base_after_vec && flags.min_after_vec)
1254 		    {
1255 		      min_addr -= align_fuzz (rel_lab, insn, rel_align, 0);
1256 		      min_addr -= align_fuzz (insn, min_lab, 0, 0);
1257 		    }
1258 		  else
1259 		    min_addr -= align_fuzz (rel_lab, min_lab, rel_align, 0);
1260 		}
1261 	      else
1262 		{
1263 		  if (flags.base_after_vec && ! flags.min_after_vec)
1264 		    {
1265 		      min_addr -= align_fuzz (min_lab, insn, 0, ~0);
1266 		      min_addr -= align_fuzz (insn, rel_lab, 0, ~0);
1267 		    }
1268 		  else
1269 		    min_addr -= align_fuzz (min_lab, rel_lab, 0, ~0);
1270 		}
1271 	      /* Likewise, determine the highest lowest possible value
1272 		 for the offset of MAX_LAB.  */
1273 	      if (flags.max_after_base)
1274 		{
1275 		  if (! flags.base_after_vec && flags.max_after_vec)
1276 		    {
1277 		      max_addr += align_fuzz (rel_lab, insn, rel_align, ~0);
1278 		      max_addr += align_fuzz (insn, max_lab, 0, ~0);
1279 		    }
1280 		  else
1281 		    max_addr += align_fuzz (rel_lab, max_lab, rel_align, ~0);
1282 		}
1283 	      else
1284 		{
1285 		  if (flags.base_after_vec && ! flags.max_after_vec)
1286 		    {
1287 		      max_addr += align_fuzz (max_lab, insn, 0, 0);
1288 		      max_addr += align_fuzz (insn, rel_lab, 0, 0);
1289 		    }
1290 		  else
1291 		    max_addr += align_fuzz (max_lab, rel_lab, 0, 0);
1292 		}
1293 	      vec_mode = CASE_VECTOR_SHORTEN_MODE (min_addr - rel_addr,
1294 						   max_addr - rel_addr, body);
1295 	      if (!increasing
1296 		  || (GET_MODE_SIZE (vec_mode)
1297 		      >= GET_MODE_SIZE (table->get_data_mode ())))
1298 		PUT_MODE (body, vec_mode);
1299 	      if (JUMP_TABLES_IN_TEXT_SECTION
1300 		  || readonly_data_section == text_section)
1301 		{
1302 		  insn_lengths[uid]
1303 		    = (XVECLEN (body, 1)
1304 		       * GET_MODE_SIZE (table->get_data_mode ()));
1305 		  insn_current_address += insn_lengths[uid];
1306 		  if (insn_lengths[uid] != old_length)
1307 		    something_changed = 1;
1308 		}
1309 
1310 	      continue;
1311 	    }
1312 #endif /* CASE_VECTOR_SHORTEN_MODE */
1313 
1314 	  if (! (varying_length[uid]))
1315 	    {
1316 	      if (NONJUMP_INSN_P (insn)
1317 		  && GET_CODE (PATTERN (insn)) == SEQUENCE)
1318 		{
1319 		  int i;
1320 
1321 		  body = PATTERN (insn);
1322 		  for (i = 0; i < XVECLEN (body, 0); i++)
1323 		    {
1324 		      rtx inner_insn = XVECEXP (body, 0, i);
1325 		      int inner_uid = INSN_UID (inner_insn);
1326 
1327 		      INSN_ADDRESSES (inner_uid) = insn_current_address;
1328 
1329 		      insn_current_address += insn_lengths[inner_uid];
1330 		    }
1331 		}
1332 	      else
1333 		insn_current_address += insn_lengths[uid];
1334 
1335 	      continue;
1336 	    }
1337 
1338 	  if (NONJUMP_INSN_P (insn) && GET_CODE (PATTERN (insn)) == SEQUENCE)
1339 	    {
1340 	      rtx_sequence *seqn = as_a <rtx_sequence *> (PATTERN (insn));
1341 	      int i;
1342 
1343 	      body = PATTERN (insn);
1344 	      new_length = 0;
1345 	      for (i = 0; i < seqn->len (); i++)
1346 		{
1347 		  rtx_insn *inner_insn = seqn->insn (i);
1348 		  int inner_uid = INSN_UID (inner_insn);
1349 		  int inner_length;
1350 
1351 		  INSN_ADDRESSES (inner_uid) = insn_current_address;
1352 
1353 		  /* insn_current_length returns 0 for insns with a
1354 		     non-varying length.  */
1355 		  if (! varying_length[inner_uid])
1356 		    inner_length = insn_lengths[inner_uid];
1357 		  else
1358 		    inner_length = insn_current_length (inner_insn);
1359 
1360 		  if (inner_length != insn_lengths[inner_uid])
1361 		    {
1362 		      if (!increasing || inner_length > insn_lengths[inner_uid])
1363 			{
1364 			  insn_lengths[inner_uid] = inner_length;
1365 			  something_changed = 1;
1366 			}
1367 		      else
1368 			inner_length = insn_lengths[inner_uid];
1369 		    }
1370 		  insn_current_address += inner_length;
1371 		  new_length += inner_length;
1372 		}
1373 	    }
1374 	  else
1375 	    {
1376 	      new_length = insn_current_length (insn);
1377 	      insn_current_address += new_length;
1378 	    }
1379 
1380 #ifdef ADJUST_INSN_LENGTH
1381 	  /* If needed, do any adjustment.  */
1382 	  tmp_length = new_length;
1383 	  ADJUST_INSN_LENGTH (insn, new_length);
1384 	  insn_current_address += (new_length - tmp_length);
1385 #endif
1386 
1387 	  if (new_length != insn_lengths[uid]
1388 	      && (!increasing || new_length > insn_lengths[uid]))
1389 	    {
1390 	      insn_lengths[uid] = new_length;
1391 	      something_changed = 1;
1392 	    }
1393 	  else
1394 	    insn_current_address += insn_lengths[uid] - new_length;
1395 	}
1396       /* For a non-optimizing compile, do only a single pass.  */
1397       if (!increasing)
1398 	break;
1399     }
1400   crtl->max_insn_address = insn_current_address;
1401   free (varying_length);
1402 }
1403 
1404 /* Given the body of an INSN known to be generated by an ASM statement, return
1405    the number of machine instructions likely to be generated for this insn.
1406    This is used to compute its length.  */
1407 
1408 static int
asm_insn_count(rtx body)1409 asm_insn_count (rtx body)
1410 {
1411   const char *templ;
1412 
1413   if (GET_CODE (body) == ASM_INPUT)
1414     templ = XSTR (body, 0);
1415   else
1416     templ = decode_asm_operands (body, NULL, NULL, NULL, NULL, NULL);
1417 
1418   return asm_str_count (templ);
1419 }
1420 
1421 /* Return the number of machine instructions likely to be generated for the
1422    inline-asm template. */
1423 int
asm_str_count(const char * templ)1424 asm_str_count (const char *templ)
1425 {
1426   int count = 1;
1427 
1428   if (!*templ)
1429     return 0;
1430 
1431   for (; *templ; templ++)
1432     if (IS_ASM_LOGICAL_LINE_SEPARATOR (*templ, templ)
1433 	|| *templ == '\n')
1434       count++;
1435 
1436   return count;
1437 }
1438 
1439 /* Return true if DWARF2 debug info can be emitted for DECL.  */
1440 
1441 static bool
dwarf2_debug_info_emitted_p(tree decl)1442 dwarf2_debug_info_emitted_p (tree decl)
1443 {
1444   if (write_symbols != DWARF2_DEBUG && write_symbols != VMS_AND_DWARF2_DEBUG)
1445     return false;
1446 
1447   if (DECL_IGNORED_P (decl))
1448     return false;
1449 
1450   return true;
1451 }
1452 
1453 /* Return scope resulting from combination of S1 and S2.  */
1454 static tree
choose_inner_scope(tree s1,tree s2)1455 choose_inner_scope (tree s1, tree s2)
1456 {
1457    if (!s1)
1458      return s2;
1459    if (!s2)
1460      return s1;
1461    if (BLOCK_NUMBER (s1) > BLOCK_NUMBER (s2))
1462      return s1;
1463    return s2;
1464 }
1465 
1466 /* Emit lexical block notes needed to change scope from S1 to S2.  */
1467 
1468 static void
change_scope(rtx_insn * orig_insn,tree s1,tree s2)1469 change_scope (rtx_insn *orig_insn, tree s1, tree s2)
1470 {
1471   rtx_insn *insn = orig_insn;
1472   tree com = NULL_TREE;
1473   tree ts1 = s1, ts2 = s2;
1474   tree s;
1475 
1476   while (ts1 != ts2)
1477     {
1478       gcc_assert (ts1 && ts2);
1479       if (BLOCK_NUMBER (ts1) > BLOCK_NUMBER (ts2))
1480 	ts1 = BLOCK_SUPERCONTEXT (ts1);
1481       else if (BLOCK_NUMBER (ts1) < BLOCK_NUMBER (ts2))
1482 	ts2 = BLOCK_SUPERCONTEXT (ts2);
1483       else
1484 	{
1485 	  ts1 = BLOCK_SUPERCONTEXT (ts1);
1486 	  ts2 = BLOCK_SUPERCONTEXT (ts2);
1487 	}
1488     }
1489   com = ts1;
1490 
1491   /* Close scopes.  */
1492   s = s1;
1493   while (s != com)
1494     {
1495       rtx_note *note = emit_note_before (NOTE_INSN_BLOCK_END, insn);
1496       NOTE_BLOCK (note) = s;
1497       s = BLOCK_SUPERCONTEXT (s);
1498     }
1499 
1500   /* Open scopes.  */
1501   s = s2;
1502   while (s != com)
1503     {
1504       insn = emit_note_before (NOTE_INSN_BLOCK_BEG, insn);
1505       NOTE_BLOCK (insn) = s;
1506       s = BLOCK_SUPERCONTEXT (s);
1507     }
1508 }
1509 
1510 /* Rebuild all the NOTE_INSN_BLOCK_BEG and NOTE_INSN_BLOCK_END notes based
1511    on the scope tree and the newly reordered instructions.  */
1512 
1513 static void
reemit_insn_block_notes(void)1514 reemit_insn_block_notes (void)
1515 {
1516   tree cur_block = DECL_INITIAL (cfun->decl);
1517   rtx_insn *insn;
1518 
1519   insn = get_insns ();
1520   for (; insn; insn = NEXT_INSN (insn))
1521     {
1522       tree this_block;
1523 
1524       /* Prevent lexical blocks from straddling section boundaries.  */
1525       if (NOTE_P (insn))
1526 	switch (NOTE_KIND (insn))
1527 	  {
1528 	  case NOTE_INSN_SWITCH_TEXT_SECTIONS:
1529 	    {
1530 	      for (tree s = cur_block; s != DECL_INITIAL (cfun->decl);
1531 		   s = BLOCK_SUPERCONTEXT (s))
1532 		{
1533 		  rtx_note *note = emit_note_before (NOTE_INSN_BLOCK_END, insn);
1534 		  NOTE_BLOCK (note) = s;
1535 		  note = emit_note_after (NOTE_INSN_BLOCK_BEG, insn);
1536 		  NOTE_BLOCK (note) = s;
1537 		}
1538 	    }
1539 	    break;
1540 
1541 	  case NOTE_INSN_BEGIN_STMT:
1542 	  case NOTE_INSN_INLINE_ENTRY:
1543 	    this_block = LOCATION_BLOCK (NOTE_MARKER_LOCATION (insn));
1544 	    goto set_cur_block_to_this_block;
1545 
1546 	  default:
1547 	    continue;
1548 	}
1549 
1550       if (!active_insn_p (insn))
1551         continue;
1552 
1553       /* Avoid putting scope notes between jump table and its label.  */
1554       if (JUMP_TABLE_DATA_P (insn))
1555 	continue;
1556 
1557       this_block = insn_scope (insn);
1558       /* For sequences compute scope resulting from merging all scopes
1559 	 of instructions nested inside.  */
1560       if (rtx_sequence *body = dyn_cast <rtx_sequence *> (PATTERN (insn)))
1561 	{
1562 	  int i;
1563 
1564 	  this_block = NULL;
1565 	  for (i = 0; i < body->len (); i++)
1566 	    this_block = choose_inner_scope (this_block,
1567 					     insn_scope (body->insn (i)));
1568 	}
1569     set_cur_block_to_this_block:
1570       if (! this_block)
1571 	{
1572 	  if (INSN_LOCATION (insn) == UNKNOWN_LOCATION)
1573 	    continue;
1574 	  else
1575 	    this_block = DECL_INITIAL (cfun->decl);
1576 	}
1577 
1578       if (this_block != cur_block)
1579 	{
1580 	  change_scope (insn, cur_block, this_block);
1581 	  cur_block = this_block;
1582 	}
1583     }
1584 
1585   /* change_scope emits before the insn, not after.  */
1586   rtx_note *note = emit_note (NOTE_INSN_DELETED);
1587   change_scope (note, cur_block, DECL_INITIAL (cfun->decl));
1588   delete_insn (note);
1589 
1590   reorder_blocks ();
1591 }
1592 
1593 static const char *some_local_dynamic_name;
1594 
1595 /* Locate some local-dynamic symbol still in use by this function
1596    so that we can print its name in local-dynamic base patterns.
1597    Return null if there are no local-dynamic references.  */
1598 
1599 const char *
get_some_local_dynamic_name()1600 get_some_local_dynamic_name ()
1601 {
1602   subrtx_iterator::array_type array;
1603   rtx_insn *insn;
1604 
1605   if (some_local_dynamic_name)
1606     return some_local_dynamic_name;
1607 
1608   for (insn = get_insns (); insn ; insn = NEXT_INSN (insn))
1609     if (NONDEBUG_INSN_P (insn))
1610       FOR_EACH_SUBRTX (iter, array, PATTERN (insn), ALL)
1611 	{
1612 	  const_rtx x = *iter;
1613 	  if (GET_CODE (x) == SYMBOL_REF)
1614 	    {
1615 	      if (SYMBOL_REF_TLS_MODEL (x) == TLS_MODEL_LOCAL_DYNAMIC)
1616 		return some_local_dynamic_name = XSTR (x, 0);
1617 	      if (CONSTANT_POOL_ADDRESS_P (x))
1618 		iter.substitute (get_pool_constant (x));
1619 	    }
1620 	}
1621 
1622   return 0;
1623 }
1624 
1625 /* Arrange for us to emit a source location note before any further
1626    real insns or section changes, by setting the SEEN_NEXT_VIEW bit in
1627    *SEEN, as long as we are keeping track of location views.  The bit
1628    indicates we have referenced the next view at the current PC, so we
1629    have to emit it.  This should be called next to the var_location
1630    debug hook.  */
1631 
1632 static inline void
set_next_view_needed(int * seen)1633 set_next_view_needed (int *seen)
1634 {
1635   if (debug_variable_location_views)
1636     *seen |= SEEN_NEXT_VIEW;
1637 }
1638 
1639 /* Clear the flag in *SEEN indicating we need to emit the next view.
1640    This should be called next to the source_line debug hook.  */
1641 
1642 static inline void
clear_next_view_needed(int * seen)1643 clear_next_view_needed (int *seen)
1644 {
1645   *seen &= ~SEEN_NEXT_VIEW;
1646 }
1647 
1648 /* Test whether we have a pending request to emit the next view in
1649    *SEEN, and emit it if needed, clearing the request bit.  */
1650 
1651 static inline void
maybe_output_next_view(int * seen)1652 maybe_output_next_view (int *seen)
1653 {
1654   if ((*seen & SEEN_NEXT_VIEW) != 0)
1655     {
1656       clear_next_view_needed (seen);
1657       (*debug_hooks->source_line) (last_linenum, last_columnnum,
1658 				   last_filename, last_discriminator,
1659 				   false);
1660     }
1661 }
1662 
1663 /* We want to emit param bindings (before the first begin_stmt) in the
1664    initial view, if we are emitting views.  To that end, we may
1665    consume initial notes in the function, processing them in
1666    final_start_function, before signaling the beginning of the
1667    prologue, rather than in final.
1668 
1669    We don't test whether the DECLs are PARM_DECLs: the assumption is
1670    that there will be a NOTE_INSN_BEGIN_STMT marker before any
1671    non-parameter NOTE_INSN_VAR_LOCATION.  It's ok if the marker is not
1672    there, we'll just have more variable locations bound in the initial
1673    view, which is consistent with their being bound without any code
1674    that would give them a value.  */
1675 
1676 static inline bool
in_initial_view_p(rtx_insn * insn)1677 in_initial_view_p (rtx_insn *insn)
1678 {
1679   return (!DECL_IGNORED_P (current_function_decl)
1680 	  && debug_variable_location_views
1681 	  && insn && GET_CODE (insn) == NOTE
1682 	  && (NOTE_KIND (insn) == NOTE_INSN_VAR_LOCATION
1683 	      || NOTE_KIND (insn) == NOTE_INSN_DELETED));
1684 }
1685 
1686 /* Output assembler code for the start of a function,
1687    and initialize some of the variables in this file
1688    for the new function.  The label for the function and associated
1689    assembler pseudo-ops have already been output in `assemble_start_function'.
1690 
1691    FIRST is the first insn of the rtl for the function being compiled.
1692    FILE is the file to write assembler code to.
1693    SEEN should be initially set to zero, and it may be updated to
1694    indicate we have references to the next location view, that would
1695    require us to emit it at the current PC.
1696    OPTIMIZE_P is nonzero if we should eliminate redundant
1697      test and compare insns.  */
1698 
1699 static void
final_start_function_1(rtx_insn ** firstp,FILE * file,int * seen,int optimize_p ATTRIBUTE_UNUSED)1700 final_start_function_1 (rtx_insn **firstp, FILE *file, int *seen,
1701 			int optimize_p ATTRIBUTE_UNUSED)
1702 {
1703   block_depth = 0;
1704 
1705   this_is_asm_operands = 0;
1706 
1707   need_profile_function = false;
1708 
1709   last_filename = LOCATION_FILE (prologue_location);
1710   last_linenum = LOCATION_LINE (prologue_location);
1711   last_columnnum = LOCATION_COLUMN (prologue_location);
1712   last_discriminator = discriminator = 0;
1713   last_bb_discriminator = bb_discriminator = 0;
1714 
1715   high_block_linenum = high_function_linenum = last_linenum;
1716 
1717   if (flag_sanitize & SANITIZE_ADDRESS)
1718     asan_function_start ();
1719 
1720   rtx_insn *first = *firstp;
1721   if (in_initial_view_p (first))
1722     {
1723       do
1724 	{
1725 	  final_scan_insn (first, file, 0, 0, seen);
1726 	  first = NEXT_INSN (first);
1727 	}
1728       while (in_initial_view_p (first));
1729       *firstp = first;
1730     }
1731 
1732   if (!DECL_IGNORED_P (current_function_decl))
1733     debug_hooks->begin_prologue (last_linenum, last_columnnum,
1734 				 last_filename);
1735 
1736   if (!dwarf2_debug_info_emitted_p (current_function_decl))
1737     dwarf2out_begin_prologue (0, 0, NULL);
1738 
1739 #ifdef LEAF_REG_REMAP
1740   if (crtl->uses_only_leaf_regs)
1741     leaf_renumber_regs (first);
1742 #endif
1743 
1744   /* The Sun386i and perhaps other machines don't work right
1745      if the profiling code comes after the prologue.  */
1746   if (targetm.profile_before_prologue () && crtl->profile)
1747     {
1748       if (targetm.asm_out.function_prologue == default_function_pro_epilogue
1749 	  && targetm.have_prologue ())
1750 	{
1751 	  rtx_insn *insn;
1752 	  for (insn = first; insn; insn = NEXT_INSN (insn))
1753 	    if (!NOTE_P (insn))
1754 	      {
1755 		insn = NULL;
1756 		break;
1757 	      }
1758 	    else if (NOTE_KIND (insn) == NOTE_INSN_BASIC_BLOCK
1759 		     || NOTE_KIND (insn) == NOTE_INSN_FUNCTION_BEG)
1760 	      break;
1761 	    else if (NOTE_KIND (insn) == NOTE_INSN_DELETED
1762 		     || NOTE_KIND (insn) == NOTE_INSN_VAR_LOCATION)
1763 	      continue;
1764 	    else
1765 	      {
1766 		insn = NULL;
1767 		break;
1768 	      }
1769 
1770 	  if (insn)
1771 	    need_profile_function = true;
1772 	  else
1773 	    profile_function (file);
1774 	}
1775       else
1776 	profile_function (file);
1777     }
1778 
1779   /* If debugging, assign block numbers to all of the blocks in this
1780      function.  */
1781   if (write_symbols)
1782     {
1783       reemit_insn_block_notes ();
1784       number_blocks (current_function_decl);
1785       /* We never actually put out begin/end notes for the top-level
1786 	 block in the function.  But, conceptually, that block is
1787 	 always needed.  */
1788       TREE_ASM_WRITTEN (DECL_INITIAL (current_function_decl)) = 1;
1789     }
1790 
1791   unsigned HOST_WIDE_INT min_frame_size
1792     = constant_lower_bound (get_frame_size ());
1793   if (min_frame_size > (unsigned HOST_WIDE_INT) warn_frame_larger_than_size)
1794     {
1795       /* Issue a warning */
1796       warning (OPT_Wframe_larger_than_,
1797 	       "the frame size of %wu bytes is larger than %wu bytes",
1798 	       min_frame_size, warn_frame_larger_than_size);
1799     }
1800 
1801   /* First output the function prologue: code to set up the stack frame.  */
1802   targetm.asm_out.function_prologue (file);
1803 
1804   /* If the machine represents the prologue as RTL, the profiling code must
1805      be emitted when NOTE_INSN_PROLOGUE_END is scanned.  */
1806   if (! targetm.have_prologue ())
1807     profile_after_prologue (file);
1808 }
1809 
1810 /* This is an exported final_start_function_1, callable without SEEN.  */
1811 
1812 void
final_start_function(rtx_insn * first,FILE * file,int optimize_p ATTRIBUTE_UNUSED)1813 final_start_function (rtx_insn *first, FILE *file,
1814 		      int optimize_p ATTRIBUTE_UNUSED)
1815 {
1816   int seen = 0;
1817   final_start_function_1 (&first, file, &seen, optimize_p);
1818   gcc_assert (seen == 0);
1819 }
1820 
1821 static void
profile_after_prologue(FILE * file ATTRIBUTE_UNUSED)1822 profile_after_prologue (FILE *file ATTRIBUTE_UNUSED)
1823 {
1824   if (!targetm.profile_before_prologue () && crtl->profile)
1825     profile_function (file);
1826 }
1827 
1828 static void
profile_function(FILE * file ATTRIBUTE_UNUSED)1829 profile_function (FILE *file ATTRIBUTE_UNUSED)
1830 {
1831 #ifndef NO_PROFILE_COUNTERS
1832 # define NO_PROFILE_COUNTERS	0
1833 #endif
1834 #ifdef ASM_OUTPUT_REG_PUSH
1835   rtx sval = NULL, chain = NULL;
1836 
1837   if (cfun->returns_struct)
1838     sval = targetm.calls.struct_value_rtx (TREE_TYPE (current_function_decl),
1839 					   true);
1840   if (cfun->static_chain_decl)
1841     chain = targetm.calls.static_chain (current_function_decl, true);
1842 #endif /* ASM_OUTPUT_REG_PUSH */
1843 
1844   if (! NO_PROFILE_COUNTERS)
1845     {
1846       int align = MIN (BIGGEST_ALIGNMENT, LONG_TYPE_SIZE);
1847       switch_to_section (data_section);
1848       ASM_OUTPUT_ALIGN (file, floor_log2 (align / BITS_PER_UNIT));
1849       targetm.asm_out.internal_label (file, "LP", current_function_funcdef_no);
1850       assemble_integer (const0_rtx, LONG_TYPE_SIZE / BITS_PER_UNIT, align, 1);
1851     }
1852 
1853   switch_to_section (current_function_section ());
1854 
1855 #ifdef ASM_OUTPUT_REG_PUSH
1856   if (sval && REG_P (sval))
1857     ASM_OUTPUT_REG_PUSH (file, REGNO (sval));
1858   if (chain && REG_P (chain))
1859     ASM_OUTPUT_REG_PUSH (file, REGNO (chain));
1860 #endif
1861 
1862   FUNCTION_PROFILER (file, current_function_funcdef_no);
1863 
1864 #ifdef ASM_OUTPUT_REG_PUSH
1865   if (chain && REG_P (chain))
1866     ASM_OUTPUT_REG_POP (file, REGNO (chain));
1867   if (sval && REG_P (sval))
1868     ASM_OUTPUT_REG_POP (file, REGNO (sval));
1869 #endif
1870 }
1871 
1872 /* Output assembler code for the end of a function.
1873    For clarity, args are same as those of `final_start_function'
1874    even though not all of them are needed.  */
1875 
1876 void
final_end_function(void)1877 final_end_function (void)
1878 {
1879   app_disable ();
1880 
1881   if (!DECL_IGNORED_P (current_function_decl))
1882     debug_hooks->end_function (high_function_linenum);
1883 
1884   /* Finally, output the function epilogue:
1885      code to restore the stack frame and return to the caller.  */
1886   targetm.asm_out.function_epilogue (asm_out_file);
1887 
1888   /* And debug output.  */
1889   if (!DECL_IGNORED_P (current_function_decl))
1890     debug_hooks->end_epilogue (last_linenum, last_filename);
1891 
1892   if (!dwarf2_debug_info_emitted_p (current_function_decl)
1893       && dwarf2out_do_frame ())
1894     dwarf2out_end_epilogue (last_linenum, last_filename);
1895 
1896   some_local_dynamic_name = 0;
1897 }
1898 
1899 
1900 /* Dumper helper for basic block information. FILE is the assembly
1901    output file, and INSN is the instruction being emitted.  */
1902 
1903 static void
dump_basic_block_info(FILE * file,rtx_insn * insn,basic_block * start_to_bb,basic_block * end_to_bb,int bb_map_size,int * bb_seqn)1904 dump_basic_block_info (FILE *file, rtx_insn *insn, basic_block *start_to_bb,
1905                        basic_block *end_to_bb, int bb_map_size, int *bb_seqn)
1906 {
1907   basic_block bb;
1908 
1909   if (!flag_debug_asm)
1910     return;
1911 
1912   if (INSN_UID (insn) < bb_map_size
1913       && (bb = start_to_bb[INSN_UID (insn)]) != NULL)
1914     {
1915       edge e;
1916       edge_iterator ei;
1917 
1918       fprintf (file, "%s BLOCK %d", ASM_COMMENT_START, bb->index);
1919       if (bb->count.initialized_p ())
1920 	{
1921           fprintf (file, ", count:");
1922 	  bb->count.dump (file);
1923 	}
1924       fprintf (file, " seq:%d", (*bb_seqn)++);
1925       fprintf (file, "\n%s PRED:", ASM_COMMENT_START);
1926       FOR_EACH_EDGE (e, ei, bb->preds)
1927         {
1928           dump_edge_info (file, e, TDF_DETAILS, 0);
1929         }
1930       fprintf (file, "\n");
1931     }
1932   if (INSN_UID (insn) < bb_map_size
1933       && (bb = end_to_bb[INSN_UID (insn)]) != NULL)
1934     {
1935       edge e;
1936       edge_iterator ei;
1937 
1938       fprintf (asm_out_file, "%s SUCC:", ASM_COMMENT_START);
1939       FOR_EACH_EDGE (e, ei, bb->succs)
1940        {
1941          dump_edge_info (asm_out_file, e, TDF_DETAILS, 1);
1942        }
1943       fprintf (file, "\n");
1944     }
1945 }
1946 
1947 /* Output assembler code for some insns: all or part of a function.
1948    For description of args, see `final_start_function', above.  */
1949 
1950 static void
final_1(rtx_insn * first,FILE * file,int seen,int optimize_p)1951 final_1 (rtx_insn *first, FILE *file, int seen, int optimize_p)
1952 {
1953   rtx_insn *insn, *next;
1954 
1955   /* Used for -dA dump.  */
1956   basic_block *start_to_bb = NULL;
1957   basic_block *end_to_bb = NULL;
1958   int bb_map_size = 0;
1959   int bb_seqn = 0;
1960 
1961   last_ignored_compare = 0;
1962 
1963   if (HAVE_cc0)
1964     for (insn = first; insn; insn = NEXT_INSN (insn))
1965       {
1966 	/* If CC tracking across branches is enabled, record the insn which
1967 	   jumps to each branch only reached from one place.  */
1968 	if (optimize_p && JUMP_P (insn))
1969 	  {
1970 	    rtx lab = JUMP_LABEL (insn);
1971 	    if (lab && LABEL_P (lab) && LABEL_NUSES (lab) == 1)
1972 	      {
1973 		LABEL_REFS (lab) = insn;
1974 	      }
1975 	  }
1976       }
1977 
1978   init_recog ();
1979 
1980   CC_STATUS_INIT;
1981 
1982   if (flag_debug_asm)
1983     {
1984       basic_block bb;
1985 
1986       bb_map_size = get_max_uid () + 1;
1987       start_to_bb = XCNEWVEC (basic_block, bb_map_size);
1988       end_to_bb = XCNEWVEC (basic_block, bb_map_size);
1989 
1990       /* There is no cfg for a thunk.  */
1991       if (!cfun->is_thunk)
1992 	FOR_EACH_BB_REVERSE_FN (bb, cfun)
1993 	  {
1994 	    start_to_bb[INSN_UID (BB_HEAD (bb))] = bb;
1995 	    end_to_bb[INSN_UID (BB_END (bb))] = bb;
1996 	  }
1997     }
1998 
1999   /* Output the insns.  */
2000   for (insn = first; insn;)
2001     {
2002       if (HAVE_ATTR_length)
2003 	{
2004 	  if ((unsigned) INSN_UID (insn) >= INSN_ADDRESSES_SIZE ())
2005 	    {
2006 	      /* This can be triggered by bugs elsewhere in the compiler if
2007 		 new insns are created after init_insn_lengths is called.  */
2008 	      gcc_assert (NOTE_P (insn));
2009 	      insn_current_address = -1;
2010 	    }
2011 	  else
2012 	    insn_current_address = INSN_ADDRESSES (INSN_UID (insn));
2013 	  /* final can be seen as an iteration of shorten_branches that
2014 	     does nothing (since a fixed point has already been reached).  */
2015 	  insn_last_address = insn_current_address;
2016 	}
2017 
2018       dump_basic_block_info (file, insn, start_to_bb, end_to_bb,
2019                              bb_map_size, &bb_seqn);
2020       insn = final_scan_insn (insn, file, optimize_p, 0, &seen);
2021     }
2022 
2023   maybe_output_next_view (&seen);
2024 
2025   if (flag_debug_asm)
2026     {
2027       free (start_to_bb);
2028       free (end_to_bb);
2029     }
2030 
2031   /* Remove CFI notes, to avoid compare-debug failures.  */
2032   for (insn = first; insn; insn = next)
2033     {
2034       next = NEXT_INSN (insn);
2035       if (NOTE_P (insn)
2036 	  && (NOTE_KIND (insn) == NOTE_INSN_CFI
2037 	      || NOTE_KIND (insn) == NOTE_INSN_CFI_LABEL))
2038 	delete_insn (insn);
2039     }
2040 }
2041 
2042 /* This is an exported final_1, callable without SEEN.  */
2043 
2044 void
final(rtx_insn * first,FILE * file,int optimize_p)2045 final (rtx_insn *first, FILE *file, int optimize_p)
2046 {
2047   /* Those that use the internal final_start_function_1/final_1 API
2048      skip initial debug bind notes in final_start_function_1, and pass
2049      the modified FIRST to final_1.  But those that use the public
2050      final_start_function/final APIs, final_start_function can't move
2051      FIRST because it's not passed by reference, so if they were
2052      skipped there, skip them again here.  */
2053   while (in_initial_view_p (first))
2054     first = NEXT_INSN (first);
2055 
2056   final_1 (first, file, 0, optimize_p);
2057 }
2058 
2059 const char *
get_insn_template(int code,rtx_insn * insn)2060 get_insn_template (int code, rtx_insn *insn)
2061 {
2062   switch (insn_data[code].output_format)
2063     {
2064     case INSN_OUTPUT_FORMAT_SINGLE:
2065       return insn_data[code].output.single;
2066     case INSN_OUTPUT_FORMAT_MULTI:
2067       return insn_data[code].output.multi[which_alternative];
2068     case INSN_OUTPUT_FORMAT_FUNCTION:
2069       gcc_assert (insn);
2070       return (*insn_data[code].output.function) (recog_data.operand, insn);
2071 
2072     default:
2073       gcc_unreachable ();
2074     }
2075 }
2076 
2077 /* Emit the appropriate declaration for an alternate-entry-point
2078    symbol represented by INSN, to FILE.  INSN is a CODE_LABEL with
2079    LABEL_KIND != LABEL_NORMAL.
2080 
2081    The case fall-through in this function is intentional.  */
2082 static void
output_alternate_entry_point(FILE * file,rtx_insn * insn)2083 output_alternate_entry_point (FILE *file, rtx_insn *insn)
2084 {
2085   const char *name = LABEL_NAME (insn);
2086 
2087   switch (LABEL_KIND (insn))
2088     {
2089     case LABEL_WEAK_ENTRY:
2090 #ifdef ASM_WEAKEN_LABEL
2091       ASM_WEAKEN_LABEL (file, name);
2092       gcc_fallthrough ();
2093 #endif
2094     case LABEL_GLOBAL_ENTRY:
2095       targetm.asm_out.globalize_label (file, name);
2096       gcc_fallthrough ();
2097     case LABEL_STATIC_ENTRY:
2098 #ifdef ASM_OUTPUT_TYPE_DIRECTIVE
2099       ASM_OUTPUT_TYPE_DIRECTIVE (file, name, "function");
2100 #endif
2101       ASM_OUTPUT_LABEL (file, name);
2102       break;
2103 
2104     case LABEL_NORMAL:
2105     default:
2106       gcc_unreachable ();
2107     }
2108 }
2109 
2110 /* Given a CALL_INSN, find and return the nested CALL. */
2111 static rtx
call_from_call_insn(rtx_call_insn * insn)2112 call_from_call_insn (rtx_call_insn *insn)
2113 {
2114   rtx x;
2115   gcc_assert (CALL_P (insn));
2116   x = PATTERN (insn);
2117 
2118   while (GET_CODE (x) != CALL)
2119     {
2120       switch (GET_CODE (x))
2121 	{
2122 	default:
2123 	  gcc_unreachable ();
2124 	case COND_EXEC:
2125 	  x = COND_EXEC_CODE (x);
2126 	  break;
2127 	case PARALLEL:
2128 	  x = XVECEXP (x, 0, 0);
2129 	  break;
2130 	case SET:
2131 	  x = XEXP (x, 1);
2132 	  break;
2133 	}
2134     }
2135   return x;
2136 }
2137 
2138 /* Print a comment into the asm showing FILENAME, LINENUM, and the
2139    corresponding source line, if available.  */
2140 
2141 static void
asm_show_source(const char * filename,int linenum)2142 asm_show_source (const char *filename, int linenum)
2143 {
2144   if (!filename)
2145     return;
2146 
2147   char_span line = location_get_source_line (filename, linenum);
2148   if (!line)
2149     return;
2150 
2151   fprintf (asm_out_file, "%s %s:%i: ", ASM_COMMENT_START, filename, linenum);
2152   /* "line" is not 0-terminated, so we must use its length.  */
2153   fwrite (line.get_buffer (), 1, line.length (), asm_out_file);
2154   fputc ('\n', asm_out_file);
2155 }
2156 
2157 /* The final scan for one insn, INSN.
2158    Args are same as in `final', except that INSN
2159    is the insn being scanned.
2160    Value returned is the next insn to be scanned.
2161 
2162    NOPEEPHOLES is the flag to disallow peephole processing (currently
2163    used for within delayed branch sequence output).
2164 
2165    SEEN is used to track the end of the prologue, for emitting
2166    debug information.  We force the emission of a line note after
2167    both NOTE_INSN_PROLOGUE_END and NOTE_INSN_FUNCTION_BEG.  */
2168 
2169 static rtx_insn *
final_scan_insn_1(rtx_insn * insn,FILE * file,int optimize_p ATTRIBUTE_UNUSED,int nopeepholes ATTRIBUTE_UNUSED,int * seen)2170 final_scan_insn_1 (rtx_insn *insn, FILE *file, int optimize_p ATTRIBUTE_UNUSED,
2171 		   int nopeepholes ATTRIBUTE_UNUSED, int *seen)
2172 {
2173 #if HAVE_cc0
2174   rtx set;
2175 #endif
2176   rtx_insn *next;
2177   rtx_jump_table_data *table;
2178 
2179   insn_counter++;
2180 
2181   /* Ignore deleted insns.  These can occur when we split insns (due to a
2182      template of "#") while not optimizing.  */
2183   if (insn->deleted ())
2184     return NEXT_INSN (insn);
2185 
2186   switch (GET_CODE (insn))
2187     {
2188     case NOTE:
2189       switch (NOTE_KIND (insn))
2190 	{
2191 	case NOTE_INSN_DELETED:
2192 	case NOTE_INSN_UPDATE_SJLJ_CONTEXT:
2193 	  break;
2194 
2195 	case NOTE_INSN_SWITCH_TEXT_SECTIONS:
2196 	  maybe_output_next_view (seen);
2197 
2198 	  output_function_exception_table (0);
2199 
2200 	  if (targetm.asm_out.unwind_emit)
2201 	    targetm.asm_out.unwind_emit (asm_out_file, insn);
2202 
2203 	  in_cold_section_p = !in_cold_section_p;
2204 
2205 	  if (in_cold_section_p)
2206 	    cold_function_name
2207 	      = clone_function_name (current_function_decl, "cold");
2208 
2209 	  if (dwarf2out_do_frame ())
2210 	    {
2211 	      dwarf2out_switch_text_section ();
2212 	      if (!dwarf2_debug_info_emitted_p (current_function_decl)
2213 		  && !DECL_IGNORED_P (current_function_decl))
2214 		debug_hooks->switch_text_section ();
2215 	    }
2216 	  else if (!DECL_IGNORED_P (current_function_decl))
2217 	    debug_hooks->switch_text_section ();
2218 
2219 	  switch_to_section (current_function_section ());
2220 	  targetm.asm_out.function_switched_text_sections (asm_out_file,
2221 							   current_function_decl,
2222 							   in_cold_section_p);
2223 	  /* Emit a label for the split cold section.  Form label name by
2224 	     suffixing "cold" to the original function's name.  */
2225 	  if (in_cold_section_p)
2226 	    {
2227 #ifdef ASM_DECLARE_COLD_FUNCTION_NAME
2228 	      ASM_DECLARE_COLD_FUNCTION_NAME (asm_out_file,
2229 					      IDENTIFIER_POINTER
2230 					          (cold_function_name),
2231 					      current_function_decl);
2232 #else
2233 	      ASM_OUTPUT_LABEL (asm_out_file,
2234 				IDENTIFIER_POINTER (cold_function_name));
2235 #endif
2236 	      if (dwarf2out_do_frame ()
2237 	          && cfun->fde->dw_fde_second_begin != NULL)
2238 		ASM_OUTPUT_LABEL (asm_out_file, cfun->fde->dw_fde_second_begin);
2239 	    }
2240 	  break;
2241 
2242 	case NOTE_INSN_BASIC_BLOCK:
2243 	  if (need_profile_function)
2244 	    {
2245 	      profile_function (asm_out_file);
2246 	      need_profile_function = false;
2247 	    }
2248 
2249 	  if (targetm.asm_out.unwind_emit)
2250 	    targetm.asm_out.unwind_emit (asm_out_file, insn);
2251 
2252 	  bb_discriminator = NOTE_BASIC_BLOCK (insn)->discriminator;
2253 	  break;
2254 
2255 	case NOTE_INSN_EH_REGION_BEG:
2256 	  ASM_OUTPUT_DEBUG_LABEL (asm_out_file, "LEHB",
2257 				  NOTE_EH_HANDLER (insn));
2258 	  break;
2259 
2260 	case NOTE_INSN_EH_REGION_END:
2261 	  ASM_OUTPUT_DEBUG_LABEL (asm_out_file, "LEHE",
2262 				  NOTE_EH_HANDLER (insn));
2263 	  break;
2264 
2265 	case NOTE_INSN_PROLOGUE_END:
2266 	  targetm.asm_out.function_end_prologue (file);
2267 	  profile_after_prologue (file);
2268 
2269 	  if ((*seen & (SEEN_EMITTED | SEEN_NOTE)) == SEEN_NOTE)
2270 	    {
2271 	      *seen |= SEEN_EMITTED;
2272 	      force_source_line = true;
2273 	    }
2274 	  else
2275 	    *seen |= SEEN_NOTE;
2276 
2277 	  break;
2278 
2279 	case NOTE_INSN_EPILOGUE_BEG:
2280           if (!DECL_IGNORED_P (current_function_decl))
2281             (*debug_hooks->begin_epilogue) (last_linenum, last_filename);
2282 	  targetm.asm_out.function_begin_epilogue (file);
2283 	  break;
2284 
2285 	case NOTE_INSN_CFI:
2286 	  dwarf2out_emit_cfi (NOTE_CFI (insn));
2287 	  break;
2288 
2289 	case NOTE_INSN_CFI_LABEL:
2290 	  ASM_OUTPUT_DEBUG_LABEL (asm_out_file, "LCFI",
2291 				  NOTE_LABEL_NUMBER (insn));
2292 	  break;
2293 
2294 	case NOTE_INSN_FUNCTION_BEG:
2295 	  if (need_profile_function)
2296 	    {
2297 	      profile_function (asm_out_file);
2298 	      need_profile_function = false;
2299 	    }
2300 
2301 	  app_disable ();
2302 	  if (!DECL_IGNORED_P (current_function_decl))
2303 	    debug_hooks->end_prologue (last_linenum, last_filename);
2304 
2305 	  if ((*seen & (SEEN_EMITTED | SEEN_NOTE)) == SEEN_NOTE)
2306 	    {
2307 	      *seen |= SEEN_EMITTED;
2308 	      force_source_line = true;
2309 	    }
2310 	  else
2311 	    *seen |= SEEN_NOTE;
2312 
2313 	  break;
2314 
2315 	case NOTE_INSN_BLOCK_BEG:
2316 	  if (debug_info_level == DINFO_LEVEL_NORMAL
2317 	      || debug_info_level == DINFO_LEVEL_VERBOSE
2318 	      || write_symbols == DWARF2_DEBUG
2319 	      || write_symbols == VMS_AND_DWARF2_DEBUG
2320 	      || write_symbols == VMS_DEBUG)
2321 	    {
2322 	      int n = BLOCK_NUMBER (NOTE_BLOCK (insn));
2323 
2324 	      app_disable ();
2325 	      ++block_depth;
2326 	      high_block_linenum = last_linenum;
2327 
2328 	      /* Output debugging info about the symbol-block beginning.  */
2329 	      if (!DECL_IGNORED_P (current_function_decl))
2330 		debug_hooks->begin_block (last_linenum, n);
2331 
2332 	      /* Mark this block as output.  */
2333 	      TREE_ASM_WRITTEN (NOTE_BLOCK (insn)) = 1;
2334 	      BLOCK_IN_COLD_SECTION_P (NOTE_BLOCK (insn)) = in_cold_section_p;
2335 	    }
2336 	  if (write_symbols == DBX_DEBUG)
2337 	    {
2338 	      location_t *locus_ptr
2339 		= block_nonartificial_location (NOTE_BLOCK (insn));
2340 
2341 	      if (locus_ptr != NULL)
2342 		{
2343 		  override_filename = LOCATION_FILE (*locus_ptr);
2344 		  override_linenum = LOCATION_LINE (*locus_ptr);
2345 		  override_columnnum = LOCATION_COLUMN (*locus_ptr);
2346 		  override_discriminator = compute_discriminator (*locus_ptr);
2347 		}
2348 	    }
2349 	  break;
2350 
2351 	case NOTE_INSN_BLOCK_END:
2352 	  maybe_output_next_view (seen);
2353 
2354 	  if (debug_info_level == DINFO_LEVEL_NORMAL
2355 	      || debug_info_level == DINFO_LEVEL_VERBOSE
2356 	      || write_symbols == DWARF2_DEBUG
2357 	      || write_symbols == VMS_AND_DWARF2_DEBUG
2358 	      || write_symbols == VMS_DEBUG)
2359 	    {
2360 	      int n = BLOCK_NUMBER (NOTE_BLOCK (insn));
2361 
2362 	      app_disable ();
2363 
2364 	      /* End of a symbol-block.  */
2365 	      --block_depth;
2366 	      gcc_assert (block_depth >= 0);
2367 
2368 	      if (!DECL_IGNORED_P (current_function_decl))
2369 		debug_hooks->end_block (high_block_linenum, n);
2370 	      gcc_assert (BLOCK_IN_COLD_SECTION_P (NOTE_BLOCK (insn))
2371 			  == in_cold_section_p);
2372 	    }
2373 	  if (write_symbols == DBX_DEBUG)
2374 	    {
2375 	      tree outer_block = BLOCK_SUPERCONTEXT (NOTE_BLOCK (insn));
2376 	      location_t *locus_ptr
2377 		= block_nonartificial_location (outer_block);
2378 
2379 	      if (locus_ptr != NULL)
2380 		{
2381 		  override_filename = LOCATION_FILE (*locus_ptr);
2382 		  override_linenum = LOCATION_LINE (*locus_ptr);
2383 		  override_columnnum = LOCATION_COLUMN (*locus_ptr);
2384 		  override_discriminator = compute_discriminator (*locus_ptr);
2385 		}
2386 	      else
2387 		{
2388 		  override_filename = NULL;
2389 		  override_linenum = 0;
2390 		  override_columnnum = 0;
2391 		  override_discriminator = 0;
2392 		}
2393 	    }
2394 	  break;
2395 
2396 	case NOTE_INSN_DELETED_LABEL:
2397 	  /* Emit the label.  We may have deleted the CODE_LABEL because
2398 	     the label could be proved to be unreachable, though still
2399 	     referenced (in the form of having its address taken.  */
2400 	  ASM_OUTPUT_DEBUG_LABEL (file, "L", CODE_LABEL_NUMBER (insn));
2401 	  break;
2402 
2403 	case NOTE_INSN_DELETED_DEBUG_LABEL:
2404 	  /* Similarly, but need to use different namespace for it.  */
2405 	  if (CODE_LABEL_NUMBER (insn) != -1)
2406 	    ASM_OUTPUT_DEBUG_LABEL (file, "LDL", CODE_LABEL_NUMBER (insn));
2407 	  break;
2408 
2409 	case NOTE_INSN_VAR_LOCATION:
2410 	  if (!DECL_IGNORED_P (current_function_decl))
2411 	    {
2412 	      debug_hooks->var_location (insn);
2413 	      set_next_view_needed (seen);
2414 	    }
2415 	  break;
2416 
2417 	case NOTE_INSN_BEGIN_STMT:
2418 	  gcc_checking_assert (cfun->debug_nonbind_markers);
2419 	  if (!DECL_IGNORED_P (current_function_decl)
2420 	      && notice_source_line (insn, NULL))
2421 	    {
2422 	    output_source_line:
2423 	      (*debug_hooks->source_line) (last_linenum, last_columnnum,
2424 					   last_filename, last_discriminator,
2425 					   true);
2426 	      clear_next_view_needed (seen);
2427 	    }
2428 	  break;
2429 
2430 	case NOTE_INSN_INLINE_ENTRY:
2431 	  gcc_checking_assert (cfun->debug_nonbind_markers);
2432 	  if (!DECL_IGNORED_P (current_function_decl)
2433 	      && notice_source_line (insn, NULL))
2434 	    {
2435 	      (*debug_hooks->inline_entry) (LOCATION_BLOCK
2436 					    (NOTE_MARKER_LOCATION (insn)));
2437 	      goto output_source_line;
2438 	    }
2439 	  break;
2440 
2441 	default:
2442 	  gcc_unreachable ();
2443 	  break;
2444 	}
2445       break;
2446 
2447     case BARRIER:
2448       break;
2449 
2450     case CODE_LABEL:
2451       /* The target port might emit labels in the output function for
2452 	 some insn, e.g. sh.c output_branchy_insn.  */
2453       if (CODE_LABEL_NUMBER (insn) <= max_labelno)
2454 	{
2455 	  align_flags alignment = LABEL_TO_ALIGNMENT (insn);
2456 	  if (alignment.levels[0].log && NEXT_INSN (insn))
2457 	    {
2458 #ifdef ASM_OUTPUT_MAX_SKIP_ALIGN
2459 	      /* Output both primary and secondary alignment.  */
2460 	      ASM_OUTPUT_MAX_SKIP_ALIGN (file, alignment.levels[0].log,
2461 					 alignment.levels[0].maxskip);
2462 	      ASM_OUTPUT_MAX_SKIP_ALIGN (file, alignment.levels[1].log,
2463 					 alignment.levels[1].maxskip);
2464 #else
2465 #ifdef ASM_OUTPUT_ALIGN_WITH_NOP
2466               ASM_OUTPUT_ALIGN_WITH_NOP (file, alignment.levels[0].log);
2467 #else
2468 	      ASM_OUTPUT_ALIGN (file, alignment.levels[0].log);
2469 #endif
2470 #endif
2471 	    }
2472 	}
2473       CC_STATUS_INIT;
2474 
2475       if (!DECL_IGNORED_P (current_function_decl) && LABEL_NAME (insn))
2476 	debug_hooks->label (as_a <rtx_code_label *> (insn));
2477 
2478       app_disable ();
2479 
2480       /* If this label is followed by a jump-table, make sure we put
2481 	 the label in the read-only section.  Also possibly write the
2482 	 label and jump table together.  */
2483       table = jump_table_for_label (as_a <rtx_code_label *> (insn));
2484       if (table)
2485 	{
2486 #if defined(ASM_OUTPUT_ADDR_VEC) || defined(ASM_OUTPUT_ADDR_DIFF_VEC)
2487 	  /* In this case, the case vector is being moved by the
2488 	     target, so don't output the label at all.  Leave that
2489 	     to the back end macros.  */
2490 #else
2491 	  if (! JUMP_TABLES_IN_TEXT_SECTION)
2492 	    {
2493 	      int log_align;
2494 
2495 	      switch_to_section (targetm.asm_out.function_rodata_section
2496 				 (current_function_decl));
2497 
2498 #ifdef ADDR_VEC_ALIGN
2499 	      log_align = ADDR_VEC_ALIGN (table);
2500 #else
2501 	      log_align = exact_log2 (BIGGEST_ALIGNMENT / BITS_PER_UNIT);
2502 #endif
2503 	      ASM_OUTPUT_ALIGN (file, log_align);
2504 	    }
2505 	  else
2506 	    switch_to_section (current_function_section ());
2507 
2508 #ifdef ASM_OUTPUT_CASE_LABEL
2509 	  ASM_OUTPUT_CASE_LABEL (file, "L", CODE_LABEL_NUMBER (insn), table);
2510 #else
2511 	  targetm.asm_out.internal_label (file, "L", CODE_LABEL_NUMBER (insn));
2512 #endif
2513 #endif
2514 	  break;
2515 	}
2516       if (LABEL_ALT_ENTRY_P (insn))
2517 	output_alternate_entry_point (file, insn);
2518       else
2519 	targetm.asm_out.internal_label (file, "L", CODE_LABEL_NUMBER (insn));
2520       break;
2521 
2522     default:
2523       {
2524 	rtx body = PATTERN (insn);
2525 	int insn_code_number;
2526 	const char *templ;
2527 	bool is_stmt, *is_stmt_p;
2528 
2529 	if (MAY_HAVE_DEBUG_MARKER_INSNS && cfun->debug_nonbind_markers)
2530 	  {
2531 	    is_stmt = false;
2532 	    is_stmt_p = NULL;
2533 	  }
2534 	else
2535 	  is_stmt_p = &is_stmt;
2536 
2537 	/* Reset this early so it is correct for ASM statements.  */
2538 	current_insn_predicate = NULL_RTX;
2539 
2540 	/* An INSN, JUMP_INSN or CALL_INSN.
2541 	   First check for special kinds that recog doesn't recognize.  */
2542 
2543 	if (GET_CODE (body) == USE /* These are just declarations.  */
2544 	    || GET_CODE (body) == CLOBBER)
2545 	  break;
2546 
2547 #if HAVE_cc0
2548 	{
2549 	  /* If there is a REG_CC_SETTER note on this insn, it means that
2550 	     the setting of the condition code was done in the delay slot
2551 	     of the insn that branched here.  So recover the cc status
2552 	     from the insn that set it.  */
2553 
2554 	  rtx note = find_reg_note (insn, REG_CC_SETTER, NULL_RTX);
2555 	  if (note)
2556 	    {
2557 	      rtx_insn *other = as_a <rtx_insn *> (XEXP (note, 0));
2558 	      NOTICE_UPDATE_CC (PATTERN (other), other);
2559 	      cc_prev_status = cc_status;
2560 	    }
2561 	}
2562 #endif
2563 
2564 	/* Detect insns that are really jump-tables
2565 	   and output them as such.  */
2566 
2567         if (JUMP_TABLE_DATA_P (insn))
2568 	  {
2569 #if !(defined(ASM_OUTPUT_ADDR_VEC) || defined(ASM_OUTPUT_ADDR_DIFF_VEC))
2570 	    int vlen, idx;
2571 #endif
2572 
2573 	    if (! JUMP_TABLES_IN_TEXT_SECTION)
2574 	      switch_to_section (targetm.asm_out.function_rodata_section
2575 				 (current_function_decl));
2576 	    else
2577 	      switch_to_section (current_function_section ());
2578 
2579 	    app_disable ();
2580 
2581 #if defined(ASM_OUTPUT_ADDR_VEC) || defined(ASM_OUTPUT_ADDR_DIFF_VEC)
2582 	    if (GET_CODE (body) == ADDR_VEC)
2583 	      {
2584 #ifdef ASM_OUTPUT_ADDR_VEC
2585 		ASM_OUTPUT_ADDR_VEC (PREV_INSN (insn), body);
2586 #else
2587 		gcc_unreachable ();
2588 #endif
2589 	      }
2590 	    else
2591 	      {
2592 #ifdef ASM_OUTPUT_ADDR_DIFF_VEC
2593 		ASM_OUTPUT_ADDR_DIFF_VEC (PREV_INSN (insn), body);
2594 #else
2595 		gcc_unreachable ();
2596 #endif
2597 	      }
2598 #else
2599 	    vlen = XVECLEN (body, GET_CODE (body) == ADDR_DIFF_VEC);
2600 	    for (idx = 0; idx < vlen; idx++)
2601 	      {
2602 		if (GET_CODE (body) == ADDR_VEC)
2603 		  {
2604 #ifdef ASM_OUTPUT_ADDR_VEC_ELT
2605 		    ASM_OUTPUT_ADDR_VEC_ELT
2606 		      (file, CODE_LABEL_NUMBER (XEXP (XVECEXP (body, 0, idx), 0)));
2607 #else
2608 		    gcc_unreachable ();
2609 #endif
2610 		  }
2611 		else
2612 		  {
2613 #ifdef ASM_OUTPUT_ADDR_DIFF_ELT
2614 		    ASM_OUTPUT_ADDR_DIFF_ELT
2615 		      (file,
2616 		       body,
2617 		       CODE_LABEL_NUMBER (XEXP (XVECEXP (body, 1, idx), 0)),
2618 		       CODE_LABEL_NUMBER (XEXP (XEXP (body, 0), 0)));
2619 #else
2620 		    gcc_unreachable ();
2621 #endif
2622 		  }
2623 	      }
2624 #ifdef ASM_OUTPUT_CASE_END
2625 	    ASM_OUTPUT_CASE_END (file,
2626 				 CODE_LABEL_NUMBER (PREV_INSN (insn)),
2627 				 insn);
2628 #endif
2629 #endif
2630 
2631 	    switch_to_section (current_function_section ());
2632 
2633 	    if (debug_variable_location_views
2634 		&& !DECL_IGNORED_P (current_function_decl))
2635 	      debug_hooks->var_location (insn);
2636 
2637 	    break;
2638 	  }
2639 	/* Output this line note if it is the first or the last line
2640 	   note in a row.  */
2641 	if (!DECL_IGNORED_P (current_function_decl)
2642 	    && notice_source_line (insn, is_stmt_p))
2643 	  {
2644 	    if (flag_verbose_asm)
2645 	      asm_show_source (last_filename, last_linenum);
2646 	    (*debug_hooks->source_line) (last_linenum, last_columnnum,
2647 					 last_filename, last_discriminator,
2648 					 is_stmt);
2649 	    clear_next_view_needed (seen);
2650 	  }
2651 	else
2652 	  maybe_output_next_view (seen);
2653 
2654 	gcc_checking_assert (!DEBUG_INSN_P (insn));
2655 
2656 	if (GET_CODE (body) == PARALLEL
2657 	    && GET_CODE (XVECEXP (body, 0, 0)) == ASM_INPUT)
2658 	  body = XVECEXP (body, 0, 0);
2659 
2660 	if (GET_CODE (body) == ASM_INPUT)
2661 	  {
2662 	    const char *string = XSTR (body, 0);
2663 
2664 	    /* There's no telling what that did to the condition codes.  */
2665 	    CC_STATUS_INIT;
2666 
2667 	    if (string[0])
2668 	      {
2669 		expanded_location loc;
2670 
2671 		app_enable ();
2672 		loc = expand_location (ASM_INPUT_SOURCE_LOCATION (body));
2673 		if (*loc.file && loc.line)
2674 		  fprintf (asm_out_file, "%s %i \"%s\" 1\n",
2675 			   ASM_COMMENT_START, loc.line, loc.file);
2676 		fprintf (asm_out_file, "\t%s\n", string);
2677 #if HAVE_AS_LINE_ZERO
2678 		if (*loc.file && loc.line)
2679 		  fprintf (asm_out_file, "%s 0 \"\" 2\n", ASM_COMMENT_START);
2680 #endif
2681 	      }
2682 	    break;
2683 	  }
2684 
2685 	/* Detect `asm' construct with operands.  */
2686 	if (asm_noperands (body) >= 0)
2687 	  {
2688 	    unsigned int noperands = asm_noperands (body);
2689 	    rtx *ops = XALLOCAVEC (rtx, noperands);
2690 	    const char *string;
2691 	    location_t loc;
2692 	    expanded_location expanded;
2693 
2694 	    /* There's no telling what that did to the condition codes.  */
2695 	    CC_STATUS_INIT;
2696 
2697 	    /* Get out the operand values.  */
2698 	    string = decode_asm_operands (body, ops, NULL, NULL, NULL, &loc);
2699 	    /* Inhibit dying on what would otherwise be compiler bugs.  */
2700 	    insn_noperands = noperands;
2701 	    this_is_asm_operands = insn;
2702 	    expanded = expand_location (loc);
2703 
2704 #ifdef FINAL_PRESCAN_INSN
2705 	    FINAL_PRESCAN_INSN (insn, ops, insn_noperands);
2706 #endif
2707 
2708 	    /* Output the insn using them.  */
2709 	    if (string[0])
2710 	      {
2711 		app_enable ();
2712 		if (expanded.file && expanded.line)
2713 		  fprintf (asm_out_file, "%s %i \"%s\" 1\n",
2714 			   ASM_COMMENT_START, expanded.line, expanded.file);
2715 	        output_asm_insn (string, ops);
2716 #if HAVE_AS_LINE_ZERO
2717 		if (expanded.file && expanded.line)
2718 		  fprintf (asm_out_file, "%s 0 \"\" 2\n", ASM_COMMENT_START);
2719 #endif
2720 	      }
2721 
2722 	    if (targetm.asm_out.final_postscan_insn)
2723 	      targetm.asm_out.final_postscan_insn (file, insn, ops,
2724 						   insn_noperands);
2725 
2726 	    this_is_asm_operands = 0;
2727 	    break;
2728 	  }
2729 
2730 	app_disable ();
2731 
2732 	if (rtx_sequence *seq = dyn_cast <rtx_sequence *> (body))
2733 	  {
2734 	    /* A delayed-branch sequence */
2735 	    int i;
2736 
2737 	    final_sequence = seq;
2738 
2739 	    /* The first insn in this SEQUENCE might be a JUMP_INSN that will
2740 	       force the restoration of a comparison that was previously
2741 	       thought unnecessary.  If that happens, cancel this sequence
2742 	       and cause that insn to be restored.  */
2743 
2744 	    next = final_scan_insn (seq->insn (0), file, 0, 1, seen);
2745 	    if (next != seq->insn (1))
2746 	      {
2747 		final_sequence = 0;
2748 		return next;
2749 	      }
2750 
2751 	    for (i = 1; i < seq->len (); i++)
2752 	      {
2753 		rtx_insn *insn = seq->insn (i);
2754 		rtx_insn *next = NEXT_INSN (insn);
2755 		/* We loop in case any instruction in a delay slot gets
2756 		   split.  */
2757 		do
2758 		  insn = final_scan_insn (insn, file, 0, 1, seen);
2759 		while (insn != next);
2760 	      }
2761 #ifdef DBR_OUTPUT_SEQEND
2762 	    DBR_OUTPUT_SEQEND (file);
2763 #endif
2764 	    final_sequence = 0;
2765 
2766 	    /* If the insn requiring the delay slot was a CALL_INSN, the
2767 	       insns in the delay slot are actually executed before the
2768 	       called function.  Hence we don't preserve any CC-setting
2769 	       actions in these insns and the CC must be marked as being
2770 	       clobbered by the function.  */
2771 	    if (CALL_P (seq->insn (0)))
2772 	      {
2773 		CC_STATUS_INIT;
2774 	      }
2775 	    break;
2776 	  }
2777 
2778 	/* We have a real machine instruction as rtl.  */
2779 
2780 	body = PATTERN (insn);
2781 
2782 #if HAVE_cc0
2783 	set = single_set (insn);
2784 
2785 	/* Check for redundant test and compare instructions
2786 	   (when the condition codes are already set up as desired).
2787 	   This is done only when optimizing; if not optimizing,
2788 	   it should be possible for the user to alter a variable
2789 	   with the debugger in between statements
2790 	   and the next statement should reexamine the variable
2791 	   to compute the condition codes.  */
2792 
2793 	if (optimize_p)
2794 	  {
2795 	    if (set
2796 		&& GET_CODE (SET_DEST (set)) == CC0
2797 		&& insn != last_ignored_compare)
2798 	      {
2799 		rtx src1, src2;
2800 		if (GET_CODE (SET_SRC (set)) == SUBREG)
2801 		  SET_SRC (set) = alter_subreg (&SET_SRC (set), true);
2802 
2803 		src1 = SET_SRC (set);
2804 		src2 = NULL_RTX;
2805 		if (GET_CODE (SET_SRC (set)) == COMPARE)
2806 		  {
2807 		    if (GET_CODE (XEXP (SET_SRC (set), 0)) == SUBREG)
2808 		      XEXP (SET_SRC (set), 0)
2809 			= alter_subreg (&XEXP (SET_SRC (set), 0), true);
2810 		    if (GET_CODE (XEXP (SET_SRC (set), 1)) == SUBREG)
2811 		      XEXP (SET_SRC (set), 1)
2812 			= alter_subreg (&XEXP (SET_SRC (set), 1), true);
2813 		    if (XEXP (SET_SRC (set), 1)
2814 			== CONST0_RTX (GET_MODE (XEXP (SET_SRC (set), 0))))
2815 		      src2 = XEXP (SET_SRC (set), 0);
2816 		  }
2817 		if ((cc_status.value1 != 0
2818 		     && rtx_equal_p (src1, cc_status.value1))
2819 		    || (cc_status.value2 != 0
2820 			&& rtx_equal_p (src1, cc_status.value2))
2821 		    || (src2 != 0 && cc_status.value1 != 0
2822 		        && rtx_equal_p (src2, cc_status.value1))
2823 		    || (src2 != 0 && cc_status.value2 != 0
2824 			&& rtx_equal_p (src2, cc_status.value2)))
2825 		  {
2826 		    /* Don't delete insn if it has an addressing side-effect.  */
2827 		    if (! FIND_REG_INC_NOTE (insn, NULL_RTX)
2828 			/* or if anything in it is volatile.  */
2829 			&& ! volatile_refs_p (PATTERN (insn)))
2830 		      {
2831 			/* We don't really delete the insn; just ignore it.  */
2832 			last_ignored_compare = insn;
2833 			break;
2834 		      }
2835 		  }
2836 	      }
2837 	  }
2838 
2839 	/* If this is a conditional branch, maybe modify it
2840 	   if the cc's are in a nonstandard state
2841 	   so that it accomplishes the same thing that it would
2842 	   do straightforwardly if the cc's were set up normally.  */
2843 
2844 	if (cc_status.flags != 0
2845 	    && JUMP_P (insn)
2846 	    && GET_CODE (body) == SET
2847 	    && SET_DEST (body) == pc_rtx
2848 	    && GET_CODE (SET_SRC (body)) == IF_THEN_ELSE
2849 	    && COMPARISON_P (XEXP (SET_SRC (body), 0))
2850 	    && XEXP (XEXP (SET_SRC (body), 0), 0) == cc0_rtx)
2851 	  {
2852 	    /* This function may alter the contents of its argument
2853 	       and clear some of the cc_status.flags bits.
2854 	       It may also return 1 meaning condition now always true
2855 	       or -1 meaning condition now always false
2856 	       or 2 meaning condition nontrivial but altered.  */
2857 	    int result = alter_cond (XEXP (SET_SRC (body), 0));
2858 	    /* If condition now has fixed value, replace the IF_THEN_ELSE
2859 	       with its then-operand or its else-operand.  */
2860 	    if (result == 1)
2861 	      SET_SRC (body) = XEXP (SET_SRC (body), 1);
2862 	    if (result == -1)
2863 	      SET_SRC (body) = XEXP (SET_SRC (body), 2);
2864 
2865 	    /* The jump is now either unconditional or a no-op.
2866 	       If it has become a no-op, don't try to output it.
2867 	       (It would not be recognized.)  */
2868 	    if (SET_SRC (body) == pc_rtx)
2869 	      {
2870 	        delete_insn (insn);
2871 		break;
2872 	      }
2873 	    else if (ANY_RETURN_P (SET_SRC (body)))
2874 	      /* Replace (set (pc) (return)) with (return).  */
2875 	      PATTERN (insn) = body = SET_SRC (body);
2876 
2877 	    /* Rerecognize the instruction if it has changed.  */
2878 	    if (result != 0)
2879 	      INSN_CODE (insn) = -1;
2880 	  }
2881 
2882 	/* If this is a conditional trap, maybe modify it if the cc's
2883 	   are in a nonstandard state so that it accomplishes the same
2884 	   thing that it would do straightforwardly if the cc's were
2885 	   set up normally.  */
2886 	if (cc_status.flags != 0
2887 	    && NONJUMP_INSN_P (insn)
2888 	    && GET_CODE (body) == TRAP_IF
2889 	    && COMPARISON_P (TRAP_CONDITION (body))
2890 	    && XEXP (TRAP_CONDITION (body), 0) == cc0_rtx)
2891 	  {
2892 	    /* This function may alter the contents of its argument
2893 	       and clear some of the cc_status.flags bits.
2894 	       It may also return 1 meaning condition now always true
2895 	       or -1 meaning condition now always false
2896 	       or 2 meaning condition nontrivial but altered.  */
2897 	    int result = alter_cond (TRAP_CONDITION (body));
2898 
2899 	    /* If TRAP_CONDITION has become always false, delete the
2900 	       instruction.  */
2901 	    if (result == -1)
2902 	      {
2903 		delete_insn (insn);
2904 		break;
2905 	      }
2906 
2907 	    /* If TRAP_CONDITION has become always true, replace
2908 	       TRAP_CONDITION with const_true_rtx.  */
2909 	    if (result == 1)
2910 	      TRAP_CONDITION (body) = const_true_rtx;
2911 
2912 	    /* Rerecognize the instruction if it has changed.  */
2913 	    if (result != 0)
2914 	      INSN_CODE (insn) = -1;
2915 	  }
2916 
2917 	/* Make same adjustments to instructions that examine the
2918 	   condition codes without jumping and instructions that
2919 	   handle conditional moves (if this machine has either one).  */
2920 
2921 	if (cc_status.flags != 0
2922 	    && set != 0)
2923 	  {
2924 	    rtx cond_rtx, then_rtx, else_rtx;
2925 
2926 	    if (!JUMP_P (insn)
2927 		&& GET_CODE (SET_SRC (set)) == IF_THEN_ELSE)
2928 	      {
2929 		cond_rtx = XEXP (SET_SRC (set), 0);
2930 		then_rtx = XEXP (SET_SRC (set), 1);
2931 		else_rtx = XEXP (SET_SRC (set), 2);
2932 	      }
2933 	    else
2934 	      {
2935 		cond_rtx = SET_SRC (set);
2936 		then_rtx = const_true_rtx;
2937 		else_rtx = const0_rtx;
2938 	      }
2939 
2940 	    if (COMPARISON_P (cond_rtx)
2941 		&& XEXP (cond_rtx, 0) == cc0_rtx)
2942 	      {
2943 		int result;
2944 		result = alter_cond (cond_rtx);
2945 		if (result == 1)
2946 		  validate_change (insn, &SET_SRC (set), then_rtx, 0);
2947 		else if (result == -1)
2948 		  validate_change (insn, &SET_SRC (set), else_rtx, 0);
2949 		else if (result == 2)
2950 		  INSN_CODE (insn) = -1;
2951 		if (SET_DEST (set) == SET_SRC (set))
2952 		  delete_insn (insn);
2953 	      }
2954 	  }
2955 
2956 #endif
2957 
2958 	/* Do machine-specific peephole optimizations if desired.  */
2959 
2960 	if (HAVE_peephole && optimize_p && !flag_no_peephole && !nopeepholes)
2961 	  {
2962 	    rtx_insn *next = peephole (insn);
2963 	    /* When peepholing, if there were notes within the peephole,
2964 	       emit them before the peephole.  */
2965 	    if (next != 0 && next != NEXT_INSN (insn))
2966 	      {
2967 		rtx_insn *note, *prev = PREV_INSN (insn);
2968 
2969 		for (note = NEXT_INSN (insn); note != next;
2970 		     note = NEXT_INSN (note))
2971 		  final_scan_insn (note, file, optimize_p, nopeepholes, seen);
2972 
2973 		/* Put the notes in the proper position for a later
2974 		   rescan.  For example, the SH target can do this
2975 		   when generating a far jump in a delayed branch
2976 		   sequence.  */
2977 		note = NEXT_INSN (insn);
2978 		SET_PREV_INSN (note) = prev;
2979 		SET_NEXT_INSN (prev) = note;
2980 		SET_NEXT_INSN (PREV_INSN (next)) = insn;
2981 		SET_PREV_INSN (insn) = PREV_INSN (next);
2982 		SET_NEXT_INSN (insn) = next;
2983 		SET_PREV_INSN (next) = insn;
2984 	      }
2985 
2986 	    /* PEEPHOLE might have changed this.  */
2987 	    body = PATTERN (insn);
2988 	  }
2989 
2990 	/* Try to recognize the instruction.
2991 	   If successful, verify that the operands satisfy the
2992 	   constraints for the instruction.  Crash if they don't,
2993 	   since `reload' should have changed them so that they do.  */
2994 
2995 	insn_code_number = recog_memoized (insn);
2996 	cleanup_subreg_operands (insn);
2997 
2998 	/* Dump the insn in the assembly for debugging (-dAP).
2999 	   If the final dump is requested as slim RTL, dump slim
3000 	   RTL to the assembly file also.  */
3001 	if (flag_dump_rtl_in_asm)
3002 	  {
3003 	    print_rtx_head = ASM_COMMENT_START;
3004 	    if (! (dump_flags & TDF_SLIM))
3005 	      print_rtl_single (asm_out_file, insn);
3006 	    else
3007 	      dump_insn_slim (asm_out_file, insn);
3008 	    print_rtx_head = "";
3009 	  }
3010 
3011 	if (! constrain_operands_cached (insn, 1))
3012 	  fatal_insn_not_found (insn);
3013 
3014 	/* Some target machines need to prescan each insn before
3015 	   it is output.  */
3016 
3017 #ifdef FINAL_PRESCAN_INSN
3018 	FINAL_PRESCAN_INSN (insn, recog_data.operand, recog_data.n_operands);
3019 #endif
3020 
3021 	if (targetm.have_conditional_execution ()
3022 	    && GET_CODE (PATTERN (insn)) == COND_EXEC)
3023 	  current_insn_predicate = COND_EXEC_TEST (PATTERN (insn));
3024 
3025 #if HAVE_cc0
3026 	cc_prev_status = cc_status;
3027 
3028 	/* Update `cc_status' for this instruction.
3029 	   The instruction's output routine may change it further.
3030 	   If the output routine for a jump insn needs to depend
3031 	   on the cc status, it should look at cc_prev_status.  */
3032 
3033 	NOTICE_UPDATE_CC (body, insn);
3034 #endif
3035 
3036 	current_output_insn = debug_insn = insn;
3037 
3038 	/* Find the proper template for this insn.  */
3039 	templ = get_insn_template (insn_code_number, insn);
3040 
3041 	/* If the C code returns 0, it means that it is a jump insn
3042 	   which follows a deleted test insn, and that test insn
3043 	   needs to be reinserted.  */
3044 	if (templ == 0)
3045 	  {
3046 	    rtx_insn *prev;
3047 
3048 	    gcc_assert (prev_nonnote_insn (insn) == last_ignored_compare);
3049 
3050 	    /* We have already processed the notes between the setter and
3051 	       the user.  Make sure we don't process them again, this is
3052 	       particularly important if one of the notes is a block
3053 	       scope note or an EH note.  */
3054 	    for (prev = insn;
3055 		 prev != last_ignored_compare;
3056 		 prev = PREV_INSN (prev))
3057 	      {
3058 		if (NOTE_P (prev))
3059 		  delete_insn (prev);	/* Use delete_note.  */
3060 	      }
3061 
3062 	    return prev;
3063 	  }
3064 
3065 	/* If the template is the string "#", it means that this insn must
3066 	   be split.  */
3067 	if (templ[0] == '#' && templ[1] == '\0')
3068 	  {
3069 	    rtx_insn *new_rtx = try_split (body, insn, 0);
3070 
3071 	    /* If we didn't split the insn, go away.  */
3072 	    if (new_rtx == insn && PATTERN (new_rtx) == body)
3073 	      fatal_insn ("could not split insn", insn);
3074 
3075 	    /* If we have a length attribute, this instruction should have
3076 	       been split in shorten_branches, to ensure that we would have
3077 	       valid length info for the splitees.  */
3078 	    gcc_assert (!HAVE_ATTR_length);
3079 
3080 	    return new_rtx;
3081 	  }
3082 
3083 	/* ??? This will put the directives in the wrong place if
3084 	   get_insn_template outputs assembly directly.  However calling it
3085 	   before get_insn_template breaks if the insns is split.  */
3086 	if (targetm.asm_out.unwind_emit_before_insn
3087 	    && targetm.asm_out.unwind_emit)
3088 	  targetm.asm_out.unwind_emit (asm_out_file, insn);
3089 
3090 	rtx_call_insn *call_insn = dyn_cast <rtx_call_insn *> (insn);
3091 	if (call_insn != NULL)
3092 	  {
3093 	    rtx x = call_from_call_insn (call_insn);
3094 	    x = XEXP (x, 0);
3095 	    if (x && MEM_P (x) && GET_CODE (XEXP (x, 0)) == SYMBOL_REF)
3096 	      {
3097 		tree t;
3098 		x = XEXP (x, 0);
3099 		t = SYMBOL_REF_DECL (x);
3100 		if (t)
3101 		  assemble_external (t);
3102 	      }
3103 	  }
3104 
3105 	/* Output assembler code from the template.  */
3106 	output_asm_insn (templ, recog_data.operand);
3107 
3108 	/* Some target machines need to postscan each insn after
3109 	   it is output.  */
3110 	if (targetm.asm_out.final_postscan_insn)
3111 	  targetm.asm_out.final_postscan_insn (file, insn, recog_data.operand,
3112 					       recog_data.n_operands);
3113 
3114 	if (!targetm.asm_out.unwind_emit_before_insn
3115 	    && targetm.asm_out.unwind_emit)
3116 	  targetm.asm_out.unwind_emit (asm_out_file, insn);
3117 
3118 	/* Let the debug info back-end know about this call.  We do this only
3119 	   after the instruction has been emitted because labels that may be
3120 	   created to reference the call instruction must appear after it.  */
3121 	if ((debug_variable_location_views || call_insn != NULL)
3122 	    && !DECL_IGNORED_P (current_function_decl))
3123 	  debug_hooks->var_location (insn);
3124 
3125 	current_output_insn = debug_insn = 0;
3126       }
3127     }
3128   return NEXT_INSN (insn);
3129 }
3130 
3131 /* This is a wrapper around final_scan_insn_1 that allows ports to
3132    call it recursively without a known value for SEEN.  The value is
3133    saved at the outermost call, and recovered for recursive calls.
3134    Recursive calls MUST pass NULL, or the same pointer if they can
3135    otherwise get to it.  */
3136 
3137 rtx_insn *
final_scan_insn(rtx_insn * insn,FILE * file,int optimize_p,int nopeepholes,int * seen)3138 final_scan_insn (rtx_insn *insn, FILE *file, int optimize_p,
3139 		 int nopeepholes, int *seen)
3140 {
3141   static int *enclosing_seen;
3142   static int recursion_counter;
3143 
3144   gcc_assert (seen || recursion_counter);
3145   gcc_assert (!recursion_counter || !seen || seen == enclosing_seen);
3146 
3147   if (!recursion_counter++)
3148     enclosing_seen = seen;
3149   else if (!seen)
3150     seen = enclosing_seen;
3151 
3152   rtx_insn *ret = final_scan_insn_1 (insn, file, optimize_p, nopeepholes, seen);
3153 
3154   if (!--recursion_counter)
3155     enclosing_seen = NULL;
3156 
3157   return ret;
3158 }
3159 
3160 
3161 
3162 /* Map DECLs to instance discriminators.  This is allocated and
3163    defined in ada/gcc-interfaces/trans.c, when compiling with -gnateS.
3164    Mappings from this table are saved and restored for LTO, so
3165    link-time compilation will have this map set, at least in
3166    partitions containing at least one DECL with an associated instance
3167    discriminator.  */
3168 
3169 decl_to_instance_map_t *decl_to_instance_map;
3170 
3171 /* Return the instance number assigned to DECL.  */
3172 
3173 static inline int
map_decl_to_instance(const_tree decl)3174 map_decl_to_instance (const_tree decl)
3175 {
3176   int *inst;
3177 
3178   if (!decl_to_instance_map || !decl || !DECL_P (decl))
3179     return 0;
3180 
3181   inst = decl_to_instance_map->get (decl);
3182 
3183   if (!inst)
3184     return 0;
3185 
3186   return *inst;
3187 }
3188 
3189 /* Set DISCRIMINATOR to the appropriate value, possibly derived from LOC.  */
3190 
3191 static inline int
compute_discriminator(location_t loc)3192 compute_discriminator (location_t loc)
3193 {
3194   int discriminator;
3195 
3196   if (!decl_to_instance_map)
3197     discriminator = bb_discriminator;
3198   else
3199     {
3200       tree block = LOCATION_BLOCK (loc);
3201 
3202       while (block && TREE_CODE (block) == BLOCK
3203 	     && !inlined_function_outer_scope_p (block))
3204 	block = BLOCK_SUPERCONTEXT (block);
3205 
3206       tree decl;
3207 
3208       if (!block)
3209 	decl = current_function_decl;
3210       else if (DECL_P (block))
3211 	decl = block;
3212       else
3213 	decl = block_ultimate_origin (block);
3214 
3215       discriminator = map_decl_to_instance (decl);
3216     }
3217 
3218   return discriminator;
3219 }
3220 
3221 /* Return whether a source line note needs to be emitted before INSN.
3222    Sets IS_STMT to TRUE if the line should be marked as a possible
3223    breakpoint location.  */
3224 
3225 static bool
notice_source_line(rtx_insn * insn,bool * is_stmt)3226 notice_source_line (rtx_insn *insn, bool *is_stmt)
3227 {
3228   const char *filename;
3229   int linenum, columnnum;
3230 
3231   if (NOTE_MARKER_P (insn))
3232     {
3233       location_t loc = NOTE_MARKER_LOCATION (insn);
3234       expanded_location xloc = expand_location (loc);
3235       if (xloc.line == 0)
3236 	{
3237 	  gcc_checking_assert (LOCATION_LOCUS (loc) == UNKNOWN_LOCATION
3238 			       || LOCATION_LOCUS (loc) == BUILTINS_LOCATION);
3239 	  return false;
3240 	}
3241       filename = xloc.file;
3242       linenum = xloc.line;
3243       columnnum = xloc.column;
3244       discriminator = compute_discriminator (loc);
3245       force_source_line = true;
3246     }
3247   else if (override_filename)
3248     {
3249       filename = override_filename;
3250       linenum = override_linenum;
3251       columnnum = override_columnnum;
3252       discriminator = override_discriminator;
3253     }
3254   else if (INSN_HAS_LOCATION (insn))
3255     {
3256       expanded_location xloc = insn_location (insn);
3257       filename = xloc.file;
3258       linenum = xloc.line;
3259       columnnum = xloc.column;
3260       discriminator = compute_discriminator (INSN_LOCATION (insn));
3261     }
3262   else
3263     {
3264       filename = NULL;
3265       linenum = 0;
3266       columnnum = 0;
3267       discriminator = 0;
3268     }
3269 
3270   if (filename == NULL)
3271     return false;
3272 
3273   if (force_source_line
3274       || filename != last_filename
3275       || last_linenum != linenum
3276       || (debug_column_info && last_columnnum != columnnum))
3277     {
3278       force_source_line = false;
3279       last_filename = filename;
3280       last_linenum = linenum;
3281       last_columnnum = columnnum;
3282       last_discriminator = discriminator;
3283       if (is_stmt)
3284 	*is_stmt = true;
3285       high_block_linenum = MAX (last_linenum, high_block_linenum);
3286       high_function_linenum = MAX (last_linenum, high_function_linenum);
3287       return true;
3288     }
3289 
3290   if (SUPPORTS_DISCRIMINATOR && last_discriminator != discriminator)
3291     {
3292       /* If the discriminator changed, but the line number did not,
3293          output the line table entry with is_stmt false so the
3294          debugger does not treat this as a breakpoint location.  */
3295       last_discriminator = discriminator;
3296       if (is_stmt)
3297 	*is_stmt = false;
3298       return true;
3299     }
3300 
3301   return false;
3302 }
3303 
3304 /* For each operand in INSN, simplify (subreg (reg)) so that it refers
3305    directly to the desired hard register.  */
3306 
3307 void
cleanup_subreg_operands(rtx_insn * insn)3308 cleanup_subreg_operands (rtx_insn *insn)
3309 {
3310   int i;
3311   bool changed = false;
3312   extract_insn_cached (insn);
3313   for (i = 0; i < recog_data.n_operands; i++)
3314     {
3315       /* The following test cannot use recog_data.operand when testing
3316 	 for a SUBREG: the underlying object might have been changed
3317 	 already if we are inside a match_operator expression that
3318 	 matches the else clause.  Instead we test the underlying
3319 	 expression directly.  */
3320       if (GET_CODE (*recog_data.operand_loc[i]) == SUBREG)
3321 	{
3322 	  recog_data.operand[i] = alter_subreg (recog_data.operand_loc[i], true);
3323 	  changed = true;
3324 	}
3325       else if (GET_CODE (recog_data.operand[i]) == PLUS
3326 	       || GET_CODE (recog_data.operand[i]) == MULT
3327 	       || MEM_P (recog_data.operand[i]))
3328 	recog_data.operand[i] = walk_alter_subreg (recog_data.operand_loc[i], &changed);
3329     }
3330 
3331   for (i = 0; i < recog_data.n_dups; i++)
3332     {
3333       if (GET_CODE (*recog_data.dup_loc[i]) == SUBREG)
3334 	{
3335 	  *recog_data.dup_loc[i] = alter_subreg (recog_data.dup_loc[i], true);
3336 	  changed = true;
3337 	}
3338       else if (GET_CODE (*recog_data.dup_loc[i]) == PLUS
3339 	       || GET_CODE (*recog_data.dup_loc[i]) == MULT
3340 	       || MEM_P (*recog_data.dup_loc[i]))
3341 	*recog_data.dup_loc[i] = walk_alter_subreg (recog_data.dup_loc[i], &changed);
3342     }
3343   if (changed)
3344     df_insn_rescan (insn);
3345 }
3346 
3347 /* If X is a SUBREG, try to replace it with a REG or a MEM, based on
3348    the thing it is a subreg of.  Do it anyway if FINAL_P.  */
3349 
3350 rtx
alter_subreg(rtx * xp,bool final_p)3351 alter_subreg (rtx *xp, bool final_p)
3352 {
3353   rtx x = *xp;
3354   rtx y = SUBREG_REG (x);
3355 
3356   /* simplify_subreg does not remove subreg from volatile references.
3357      We are required to.  */
3358   if (MEM_P (y))
3359     {
3360       poly_int64 offset = SUBREG_BYTE (x);
3361 
3362       /* For paradoxical subregs on big-endian machines, SUBREG_BYTE
3363 	 contains 0 instead of the proper offset.  See simplify_subreg.  */
3364       if (paradoxical_subreg_p (x))
3365 	offset = byte_lowpart_offset (GET_MODE (x), GET_MODE (y));
3366 
3367       if (final_p)
3368 	*xp = adjust_address (y, GET_MODE (x), offset);
3369       else
3370 	*xp = adjust_address_nv (y, GET_MODE (x), offset);
3371     }
3372   else if (REG_P (y) && HARD_REGISTER_P (y))
3373     {
3374       rtx new_rtx = simplify_subreg (GET_MODE (x), y, GET_MODE (y),
3375 				     SUBREG_BYTE (x));
3376 
3377       if (new_rtx != 0)
3378 	*xp = new_rtx;
3379       else if (final_p && REG_P (y))
3380 	{
3381 	  /* Simplify_subreg can't handle some REG cases, but we have to.  */
3382 	  unsigned int regno;
3383 	  poly_int64 offset;
3384 
3385 	  regno = subreg_regno (x);
3386 	  if (subreg_lowpart_p (x))
3387 	    offset = byte_lowpart_offset (GET_MODE (x), GET_MODE (y));
3388 	  else
3389 	    offset = SUBREG_BYTE (x);
3390 	  *xp = gen_rtx_REG_offset (y, GET_MODE (x), regno, offset);
3391 	}
3392     }
3393 
3394   return *xp;
3395 }
3396 
3397 /* Do alter_subreg on all the SUBREGs contained in X.  */
3398 
3399 static rtx
walk_alter_subreg(rtx * xp,bool * changed)3400 walk_alter_subreg (rtx *xp, bool *changed)
3401 {
3402   rtx x = *xp;
3403   switch (GET_CODE (x))
3404     {
3405     case PLUS:
3406     case MULT:
3407     case AND:
3408       XEXP (x, 0) = walk_alter_subreg (&XEXP (x, 0), changed);
3409       XEXP (x, 1) = walk_alter_subreg (&XEXP (x, 1), changed);
3410       break;
3411 
3412     case MEM:
3413     case ZERO_EXTEND:
3414       XEXP (x, 0) = walk_alter_subreg (&XEXP (x, 0), changed);
3415       break;
3416 
3417     case SUBREG:
3418       *changed = true;
3419       return alter_subreg (xp, true);
3420 
3421     default:
3422       break;
3423     }
3424 
3425   return *xp;
3426 }
3427 
3428 #if HAVE_cc0
3429 
3430 /* Given BODY, the body of a jump instruction, alter the jump condition
3431    as required by the bits that are set in cc_status.flags.
3432    Not all of the bits there can be handled at this level in all cases.
3433 
3434    The value is normally 0.
3435    1 means that the condition has become always true.
3436    -1 means that the condition has become always false.
3437    2 means that COND has been altered.  */
3438 
3439 static int
alter_cond(rtx cond)3440 alter_cond (rtx cond)
3441 {
3442   int value = 0;
3443 
3444   if (cc_status.flags & CC_REVERSED)
3445     {
3446       value = 2;
3447       PUT_CODE (cond, swap_condition (GET_CODE (cond)));
3448     }
3449 
3450   if (cc_status.flags & CC_INVERTED)
3451     {
3452       value = 2;
3453       PUT_CODE (cond, reverse_condition (GET_CODE (cond)));
3454     }
3455 
3456   if (cc_status.flags & CC_NOT_POSITIVE)
3457     switch (GET_CODE (cond))
3458       {
3459       case LE:
3460       case LEU:
3461       case GEU:
3462 	/* Jump becomes unconditional.  */
3463 	return 1;
3464 
3465       case GT:
3466       case GTU:
3467       case LTU:
3468 	/* Jump becomes no-op.  */
3469 	return -1;
3470 
3471       case GE:
3472 	PUT_CODE (cond, EQ);
3473 	value = 2;
3474 	break;
3475 
3476       case LT:
3477 	PUT_CODE (cond, NE);
3478 	value = 2;
3479 	break;
3480 
3481       default:
3482 	break;
3483       }
3484 
3485   if (cc_status.flags & CC_NOT_NEGATIVE)
3486     switch (GET_CODE (cond))
3487       {
3488       case GE:
3489       case GEU:
3490 	/* Jump becomes unconditional.  */
3491 	return 1;
3492 
3493       case LT:
3494       case LTU:
3495 	/* Jump becomes no-op.  */
3496 	return -1;
3497 
3498       case LE:
3499       case LEU:
3500 	PUT_CODE (cond, EQ);
3501 	value = 2;
3502 	break;
3503 
3504       case GT:
3505       case GTU:
3506 	PUT_CODE (cond, NE);
3507 	value = 2;
3508 	break;
3509 
3510       default:
3511 	break;
3512       }
3513 
3514   if (cc_status.flags & CC_NO_OVERFLOW)
3515     switch (GET_CODE (cond))
3516       {
3517       case GEU:
3518 	/* Jump becomes unconditional.  */
3519 	return 1;
3520 
3521       case LEU:
3522 	PUT_CODE (cond, EQ);
3523 	value = 2;
3524 	break;
3525 
3526       case GTU:
3527 	PUT_CODE (cond, NE);
3528 	value = 2;
3529 	break;
3530 
3531       case LTU:
3532 	/* Jump becomes no-op.  */
3533 	return -1;
3534 
3535       default:
3536 	break;
3537       }
3538 
3539   if (cc_status.flags & (CC_Z_IN_NOT_N | CC_Z_IN_N))
3540     switch (GET_CODE (cond))
3541       {
3542       default:
3543 	gcc_unreachable ();
3544 
3545       case NE:
3546 	PUT_CODE (cond, cc_status.flags & CC_Z_IN_N ? GE : LT);
3547 	value = 2;
3548 	break;
3549 
3550       case EQ:
3551 	PUT_CODE (cond, cc_status.flags & CC_Z_IN_N ? LT : GE);
3552 	value = 2;
3553 	break;
3554       }
3555 
3556   if (cc_status.flags & CC_NOT_SIGNED)
3557     /* The flags are valid if signed condition operators are converted
3558        to unsigned.  */
3559     switch (GET_CODE (cond))
3560       {
3561       case LE:
3562 	PUT_CODE (cond, LEU);
3563 	value = 2;
3564 	break;
3565 
3566       case LT:
3567 	PUT_CODE (cond, LTU);
3568 	value = 2;
3569 	break;
3570 
3571       case GT:
3572 	PUT_CODE (cond, GTU);
3573 	value = 2;
3574 	break;
3575 
3576       case GE:
3577 	PUT_CODE (cond, GEU);
3578 	value = 2;
3579 	break;
3580 
3581       default:
3582 	break;
3583       }
3584 
3585   return value;
3586 }
3587 #endif
3588 
3589 /* Report inconsistency between the assembler template and the operands.
3590    In an `asm', it's the user's fault; otherwise, the compiler's fault.  */
3591 
3592 void
output_operand_lossage(const char * cmsgid,...)3593 output_operand_lossage (const char *cmsgid, ...)
3594 {
3595   char *fmt_string;
3596   char *new_message;
3597   const char *pfx_str;
3598   va_list ap;
3599 
3600   va_start (ap, cmsgid);
3601 
3602   pfx_str = this_is_asm_operands ? _("invalid 'asm': ") : "output_operand: ";
3603   fmt_string = xasprintf ("%s%s", pfx_str, _(cmsgid));
3604   new_message = xvasprintf (fmt_string, ap);
3605 
3606   if (this_is_asm_operands)
3607     error_for_asm (this_is_asm_operands, "%s", new_message);
3608   else
3609     internal_error ("%s", new_message);
3610 
3611   free (fmt_string);
3612   free (new_message);
3613   va_end (ap);
3614 }
3615 
3616 /* Output of assembler code from a template, and its subroutines.  */
3617 
3618 /* Annotate the assembly with a comment describing the pattern and
3619    alternative used.  */
3620 
3621 static void
output_asm_name(void)3622 output_asm_name (void)
3623 {
3624   if (debug_insn)
3625     {
3626       fprintf (asm_out_file, "\t%s %d\t",
3627 	       ASM_COMMENT_START, INSN_UID (debug_insn));
3628 
3629       fprintf (asm_out_file, "[c=%d",
3630 	       insn_cost (debug_insn, optimize_insn_for_speed_p ()));
3631       if (HAVE_ATTR_length)
3632 	fprintf (asm_out_file, " l=%d",
3633 		 get_attr_length (debug_insn));
3634       fprintf (asm_out_file, "]  ");
3635 
3636       int num = INSN_CODE (debug_insn);
3637       fprintf (asm_out_file, "%s", insn_data[num].name);
3638       if (insn_data[num].n_alternatives > 1)
3639 	fprintf (asm_out_file, "/%d", which_alternative);
3640 
3641       /* Clear this so only the first assembler insn
3642 	 of any rtl insn will get the special comment for -dp.  */
3643       debug_insn = 0;
3644     }
3645 }
3646 
3647 /* If OP is a REG or MEM and we can find a MEM_EXPR corresponding to it
3648    or its address, return that expr .  Set *PADDRESSP to 1 if the expr
3649    corresponds to the address of the object and 0 if to the object.  */
3650 
3651 static tree
get_mem_expr_from_op(rtx op,int * paddressp)3652 get_mem_expr_from_op (rtx op, int *paddressp)
3653 {
3654   tree expr;
3655   int inner_addressp;
3656 
3657   *paddressp = 0;
3658 
3659   if (REG_P (op))
3660     return REG_EXPR (op);
3661   else if (!MEM_P (op))
3662     return 0;
3663 
3664   if (MEM_EXPR (op) != 0)
3665     return MEM_EXPR (op);
3666 
3667   /* Otherwise we have an address, so indicate it and look at the address.  */
3668   *paddressp = 1;
3669   op = XEXP (op, 0);
3670 
3671   /* First check if we have a decl for the address, then look at the right side
3672      if it is a PLUS.  Otherwise, strip off arithmetic and keep looking.
3673      But don't allow the address to itself be indirect.  */
3674   if ((expr = get_mem_expr_from_op (op, &inner_addressp)) && ! inner_addressp)
3675     return expr;
3676   else if (GET_CODE (op) == PLUS
3677 	   && (expr = get_mem_expr_from_op (XEXP (op, 1), &inner_addressp)))
3678     return expr;
3679 
3680   while (UNARY_P (op)
3681 	 || GET_RTX_CLASS (GET_CODE (op)) == RTX_BIN_ARITH)
3682     op = XEXP (op, 0);
3683 
3684   expr = get_mem_expr_from_op (op, &inner_addressp);
3685   return inner_addressp ? 0 : expr;
3686 }
3687 
3688 /* Output operand names for assembler instructions.  OPERANDS is the
3689    operand vector, OPORDER is the order to write the operands, and NOPS
3690    is the number of operands to write.  */
3691 
3692 static void
output_asm_operand_names(rtx * operands,int * oporder,int nops)3693 output_asm_operand_names (rtx *operands, int *oporder, int nops)
3694 {
3695   int wrote = 0;
3696   int i;
3697 
3698   for (i = 0; i < nops; i++)
3699     {
3700       int addressp;
3701       rtx op = operands[oporder[i]];
3702       tree expr = get_mem_expr_from_op (op, &addressp);
3703 
3704       fprintf (asm_out_file, "%c%s",
3705 	       wrote ? ',' : '\t', wrote ? "" : ASM_COMMENT_START);
3706       wrote = 1;
3707       if (expr)
3708 	{
3709 	  fprintf (asm_out_file, "%s",
3710 		   addressp ? "*" : "");
3711 	  print_mem_expr (asm_out_file, expr);
3712 	  wrote = 1;
3713 	}
3714       else if (REG_P (op) && ORIGINAL_REGNO (op)
3715 	       && ORIGINAL_REGNO (op) != REGNO (op))
3716 	fprintf (asm_out_file, " tmp%i", ORIGINAL_REGNO (op));
3717     }
3718 }
3719 
3720 #ifdef ASSEMBLER_DIALECT
3721 /* Helper function to parse assembler dialects in the asm string.
3722    This is called from output_asm_insn and asm_fprintf.  */
3723 static const char *
do_assembler_dialects(const char * p,int * dialect)3724 do_assembler_dialects (const char *p, int *dialect)
3725 {
3726   char c = *(p - 1);
3727 
3728   switch (c)
3729     {
3730     case '{':
3731       {
3732         int i;
3733 
3734         if (*dialect)
3735           output_operand_lossage ("nested assembly dialect alternatives");
3736         else
3737           *dialect = 1;
3738 
3739         /* If we want the first dialect, do nothing.  Otherwise, skip
3740            DIALECT_NUMBER of strings ending with '|'.  */
3741         for (i = 0; i < dialect_number; i++)
3742           {
3743             while (*p && *p != '}')
3744 	      {
3745 		if (*p == '|')
3746 		  {
3747 		    p++;
3748 		    break;
3749 		  }
3750 
3751 		/* Skip over any character after a percent sign.  */
3752 		if (*p == '%')
3753 		  p++;
3754 		if (*p)
3755 		  p++;
3756 	      }
3757 
3758             if (*p == '}')
3759 	      break;
3760           }
3761 
3762         if (*p == '\0')
3763           output_operand_lossage ("unterminated assembly dialect alternative");
3764       }
3765       break;
3766 
3767     case '|':
3768       if (*dialect)
3769         {
3770           /* Skip to close brace.  */
3771           do
3772             {
3773 	      if (*p == '\0')
3774 		{
3775 		  output_operand_lossage ("unterminated assembly dialect alternative");
3776 		  break;
3777 		}
3778 
3779 	      /* Skip over any character after a percent sign.  */
3780 	      if (*p == '%' && p[1])
3781 		{
3782 		  p += 2;
3783 		  continue;
3784 		}
3785 
3786 	      if (*p++ == '}')
3787 		break;
3788             }
3789           while (1);
3790 
3791           *dialect = 0;
3792         }
3793       else
3794         putc (c, asm_out_file);
3795       break;
3796 
3797     case '}':
3798       if (! *dialect)
3799         putc (c, asm_out_file);
3800       *dialect = 0;
3801       break;
3802     default:
3803       gcc_unreachable ();
3804     }
3805 
3806   return p;
3807 }
3808 #endif
3809 
3810 /* Output text from TEMPLATE to the assembler output file,
3811    obeying %-directions to substitute operands taken from
3812    the vector OPERANDS.
3813 
3814    %N (for N a digit) means print operand N in usual manner.
3815    %lN means require operand N to be a CODE_LABEL or LABEL_REF
3816       and print the label name with no punctuation.
3817    %cN means require operand N to be a constant
3818       and print the constant expression with no punctuation.
3819    %aN means expect operand N to be a memory address
3820       (not a memory reference!) and print a reference
3821       to that address.
3822    %nN means expect operand N to be a constant
3823       and print a constant expression for minus the value
3824       of the operand, with no other punctuation.  */
3825 
3826 void
output_asm_insn(const char * templ,rtx * operands)3827 output_asm_insn (const char *templ, rtx *operands)
3828 {
3829   const char *p;
3830   int c;
3831 #ifdef ASSEMBLER_DIALECT
3832   int dialect = 0;
3833 #endif
3834   int oporder[MAX_RECOG_OPERANDS];
3835   char opoutput[MAX_RECOG_OPERANDS];
3836   int ops = 0;
3837 
3838   /* An insn may return a null string template
3839      in a case where no assembler code is needed.  */
3840   if (*templ == 0)
3841     return;
3842 
3843   memset (opoutput, 0, sizeof opoutput);
3844   p = templ;
3845   putc ('\t', asm_out_file);
3846 
3847 #ifdef ASM_OUTPUT_OPCODE
3848   ASM_OUTPUT_OPCODE (asm_out_file, p);
3849 #endif
3850 
3851   while ((c = *p++))
3852     switch (c)
3853       {
3854       case '\n':
3855 	if (flag_verbose_asm)
3856 	  output_asm_operand_names (operands, oporder, ops);
3857 	if (flag_print_asm_name)
3858 	  output_asm_name ();
3859 
3860 	ops = 0;
3861 	memset (opoutput, 0, sizeof opoutput);
3862 
3863 	putc (c, asm_out_file);
3864 #ifdef ASM_OUTPUT_OPCODE
3865 	while ((c = *p) == '\t')
3866 	  {
3867 	    putc (c, asm_out_file);
3868 	    p++;
3869 	  }
3870 	ASM_OUTPUT_OPCODE (asm_out_file, p);
3871 #endif
3872 	break;
3873 
3874 #ifdef ASSEMBLER_DIALECT
3875       case '{':
3876       case '}':
3877       case '|':
3878 	p = do_assembler_dialects (p, &dialect);
3879 	break;
3880 #endif
3881 
3882       case '%':
3883 	/* %% outputs a single %.  %{, %} and %| print {, } and | respectively
3884 	   if ASSEMBLER_DIALECT defined and these characters have a special
3885 	   meaning as dialect delimiters.*/
3886 	if (*p == '%'
3887 #ifdef ASSEMBLER_DIALECT
3888 	    || *p == '{' || *p == '}' || *p == '|'
3889 #endif
3890 	    )
3891 	  {
3892 	    putc (*p, asm_out_file);
3893 	    p++;
3894 	  }
3895 	/* %= outputs a number which is unique to each insn in the entire
3896 	   compilation.  This is useful for making local labels that are
3897 	   referred to more than once in a given insn.  */
3898 	else if (*p == '=')
3899 	  {
3900 	    p++;
3901 	    fprintf (asm_out_file, "%d", insn_counter);
3902 	  }
3903 	/* % followed by a letter and some digits
3904 	   outputs an operand in a special way depending on the letter.
3905 	   Letters `acln' are implemented directly.
3906 	   Other letters are passed to `output_operand' so that
3907 	   the TARGET_PRINT_OPERAND hook can define them.  */
3908 	else if (ISALPHA (*p))
3909 	  {
3910 	    int letter = *p++;
3911 	    unsigned long opnum;
3912 	    char *endptr;
3913 
3914 	    opnum = strtoul (p, &endptr, 10);
3915 
3916 	    if (endptr == p)
3917 	      output_operand_lossage ("operand number missing "
3918 				      "after %%-letter");
3919 	    else if (this_is_asm_operands && opnum >= insn_noperands)
3920 	      output_operand_lossage ("operand number out of range");
3921 	    else if (letter == 'l')
3922 	      output_asm_label (operands[opnum]);
3923 	    else if (letter == 'a')
3924 	      output_address (VOIDmode, operands[opnum]);
3925 	    else if (letter == 'c')
3926 	      {
3927 		if (CONSTANT_ADDRESS_P (operands[opnum]))
3928 		  output_addr_const (asm_out_file, operands[opnum]);
3929 		else
3930 		  output_operand (operands[opnum], 'c');
3931 	      }
3932 	    else if (letter == 'n')
3933 	      {
3934 		if (CONST_INT_P (operands[opnum]))
3935 		  fprintf (asm_out_file, HOST_WIDE_INT_PRINT_DEC,
3936 			   - INTVAL (operands[opnum]));
3937 		else
3938 		  {
3939 		    putc ('-', asm_out_file);
3940 		    output_addr_const (asm_out_file, operands[opnum]);
3941 		  }
3942 	      }
3943 	    else
3944 	      output_operand (operands[opnum], letter);
3945 
3946 	    if (!opoutput[opnum])
3947 	      oporder[ops++] = opnum;
3948 	    opoutput[opnum] = 1;
3949 
3950 	    p = endptr;
3951 	    c = *p;
3952 	  }
3953 	/* % followed by a digit outputs an operand the default way.  */
3954 	else if (ISDIGIT (*p))
3955 	  {
3956 	    unsigned long opnum;
3957 	    char *endptr;
3958 
3959 	    opnum = strtoul (p, &endptr, 10);
3960 	    if (this_is_asm_operands && opnum >= insn_noperands)
3961 	      output_operand_lossage ("operand number out of range");
3962 	    else
3963 	      output_operand (operands[opnum], 0);
3964 
3965 	    if (!opoutput[opnum])
3966 	      oporder[ops++] = opnum;
3967 	    opoutput[opnum] = 1;
3968 
3969 	    p = endptr;
3970 	    c = *p;
3971 	  }
3972 	/* % followed by punctuation: output something for that
3973 	   punctuation character alone, with no operand.  The
3974 	   TARGET_PRINT_OPERAND hook decides what is actually done.  */
3975 	else if (targetm.asm_out.print_operand_punct_valid_p ((unsigned char) *p))
3976 	  output_operand (NULL_RTX, *p++);
3977 	else
3978 	  output_operand_lossage ("invalid %%-code");
3979 	break;
3980 
3981       default:
3982 	putc (c, asm_out_file);
3983       }
3984 
3985   /* Try to keep the asm a bit more readable.  */
3986   if ((flag_verbose_asm || flag_print_asm_name) && strlen (templ) < 9)
3987     putc ('\t', asm_out_file);
3988 
3989   /* Write out the variable names for operands, if we know them.  */
3990   if (flag_verbose_asm)
3991     output_asm_operand_names (operands, oporder, ops);
3992   if (flag_print_asm_name)
3993     output_asm_name ();
3994 
3995   putc ('\n', asm_out_file);
3996 }
3997 
3998 /* Output a LABEL_REF, or a bare CODE_LABEL, as an assembler symbol.  */
3999 
4000 void
output_asm_label(rtx x)4001 output_asm_label (rtx x)
4002 {
4003   char buf[256];
4004 
4005   if (GET_CODE (x) == LABEL_REF)
4006     x = label_ref_label (x);
4007   if (LABEL_P (x)
4008       || (NOTE_P (x)
4009 	  && NOTE_KIND (x) == NOTE_INSN_DELETED_LABEL))
4010     ASM_GENERATE_INTERNAL_LABEL (buf, "L", CODE_LABEL_NUMBER (x));
4011   else
4012     output_operand_lossage ("'%%l' operand isn't a label");
4013 
4014   assemble_name (asm_out_file, buf);
4015 }
4016 
4017 /* Marks SYMBOL_REFs in x as referenced through use of assemble_external.  */
4018 
4019 void
mark_symbol_refs_as_used(rtx x)4020 mark_symbol_refs_as_used (rtx x)
4021 {
4022   subrtx_iterator::array_type array;
4023   FOR_EACH_SUBRTX (iter, array, x, ALL)
4024     {
4025       const_rtx x = *iter;
4026       if (GET_CODE (x) == SYMBOL_REF)
4027 	if (tree t = SYMBOL_REF_DECL (x))
4028 	  assemble_external (t);
4029     }
4030 }
4031 
4032 /* Print operand X using machine-dependent assembler syntax.
4033    CODE is a non-digit that preceded the operand-number in the % spec,
4034    such as 'z' if the spec was `%z3'.  CODE is 0 if there was no char
4035    between the % and the digits.
4036    When CODE is a non-letter, X is 0.
4037 
4038    The meanings of the letters are machine-dependent and controlled
4039    by TARGET_PRINT_OPERAND.  */
4040 
4041 void
output_operand(rtx x,int code ATTRIBUTE_UNUSED)4042 output_operand (rtx x, int code ATTRIBUTE_UNUSED)
4043 {
4044   if (x && GET_CODE (x) == SUBREG)
4045     x = alter_subreg (&x, true);
4046 
4047   /* X must not be a pseudo reg.  */
4048   if (!targetm.no_register_allocation)
4049     gcc_assert (!x || !REG_P (x) || REGNO (x) < FIRST_PSEUDO_REGISTER);
4050 
4051   targetm.asm_out.print_operand (asm_out_file, x, code);
4052 
4053   if (x == NULL_RTX)
4054     return;
4055 
4056   mark_symbol_refs_as_used (x);
4057 }
4058 
4059 /* Print a memory reference operand for address X using
4060    machine-dependent assembler syntax.  */
4061 
4062 void
output_address(machine_mode mode,rtx x)4063 output_address (machine_mode mode, rtx x)
4064 {
4065   bool changed = false;
4066   walk_alter_subreg (&x, &changed);
4067   targetm.asm_out.print_operand_address (asm_out_file, mode, x);
4068 }
4069 
4070 /* Print an integer constant expression in assembler syntax.
4071    Addition and subtraction are the only arithmetic
4072    that may appear in these expressions.  */
4073 
4074 void
output_addr_const(FILE * file,rtx x)4075 output_addr_const (FILE *file, rtx x)
4076 {
4077   char buf[256];
4078 
4079  restart:
4080   switch (GET_CODE (x))
4081     {
4082     case PC:
4083       putc ('.', file);
4084       break;
4085 
4086     case SYMBOL_REF:
4087       if (SYMBOL_REF_DECL (x))
4088 	assemble_external (SYMBOL_REF_DECL (x));
4089 #ifdef ASM_OUTPUT_SYMBOL_REF
4090       ASM_OUTPUT_SYMBOL_REF (file, x);
4091 #else
4092       assemble_name (file, XSTR (x, 0));
4093 #endif
4094       break;
4095 
4096     case LABEL_REF:
4097       x = label_ref_label (x);
4098       /* Fall through.  */
4099     case CODE_LABEL:
4100       ASM_GENERATE_INTERNAL_LABEL (buf, "L", CODE_LABEL_NUMBER (x));
4101 #ifdef ASM_OUTPUT_LABEL_REF
4102       ASM_OUTPUT_LABEL_REF (file, buf);
4103 #else
4104       assemble_name (file, buf);
4105 #endif
4106       break;
4107 
4108     case CONST_INT:
4109       fprintf (file, HOST_WIDE_INT_PRINT_DEC, INTVAL (x));
4110       break;
4111 
4112     case CONST:
4113       /* This used to output parentheses around the expression,
4114 	 but that does not work on the 386 (either ATT or BSD assembler).  */
4115       output_addr_const (file, XEXP (x, 0));
4116       break;
4117 
4118     case CONST_WIDE_INT:
4119       /* We do not know the mode here so we have to use a round about
4120 	 way to build a wide-int to get it printed properly.  */
4121       {
4122 	wide_int w = wide_int::from_array (&CONST_WIDE_INT_ELT (x, 0),
4123 					   CONST_WIDE_INT_NUNITS (x),
4124 					   CONST_WIDE_INT_NUNITS (x)
4125 					   * HOST_BITS_PER_WIDE_INT,
4126 					   false);
4127 	print_decs (w, file);
4128       }
4129       break;
4130 
4131     case CONST_DOUBLE:
4132       if (CONST_DOUBLE_AS_INT_P (x))
4133 	{
4134 	  /* We can use %d if the number is one word and positive.  */
4135 	  if (CONST_DOUBLE_HIGH (x))
4136 	    fprintf (file, HOST_WIDE_INT_PRINT_DOUBLE_HEX,
4137 		     (unsigned HOST_WIDE_INT) CONST_DOUBLE_HIGH (x),
4138 		     (unsigned HOST_WIDE_INT) CONST_DOUBLE_LOW (x));
4139 	  else if (CONST_DOUBLE_LOW (x) < 0)
4140 	    fprintf (file, HOST_WIDE_INT_PRINT_HEX,
4141 		     (unsigned HOST_WIDE_INT) CONST_DOUBLE_LOW (x));
4142 	  else
4143 	    fprintf (file, HOST_WIDE_INT_PRINT_DEC, CONST_DOUBLE_LOW (x));
4144 	}
4145       else
4146 	/* We can't handle floating point constants;
4147 	   PRINT_OPERAND must handle them.  */
4148 	output_operand_lossage ("floating constant misused");
4149       break;
4150 
4151     case CONST_FIXED:
4152       fprintf (file, HOST_WIDE_INT_PRINT_DEC, CONST_FIXED_VALUE_LOW (x));
4153       break;
4154 
4155     case PLUS:
4156       /* Some assemblers need integer constants to appear last (eg masm).  */
4157       if (CONST_INT_P (XEXP (x, 0)))
4158 	{
4159 	  output_addr_const (file, XEXP (x, 1));
4160 	  if (INTVAL (XEXP (x, 0)) >= 0)
4161 	    fprintf (file, "+");
4162 	  output_addr_const (file, XEXP (x, 0));
4163 	}
4164       else
4165 	{
4166 	  output_addr_const (file, XEXP (x, 0));
4167 	  if (!CONST_INT_P (XEXP (x, 1))
4168 	      || INTVAL (XEXP (x, 1)) >= 0)
4169 	    fprintf (file, "+");
4170 	  output_addr_const (file, XEXP (x, 1));
4171 	}
4172       break;
4173 
4174     case MINUS:
4175       /* Avoid outputting things like x-x or x+5-x,
4176 	 since some assemblers can't handle that.  */
4177       x = simplify_subtraction (x);
4178       if (GET_CODE (x) != MINUS)
4179 	goto restart;
4180 
4181       output_addr_const (file, XEXP (x, 0));
4182       fprintf (file, "-");
4183       if ((CONST_INT_P (XEXP (x, 1)) && INTVAL (XEXP (x, 1)) >= 0)
4184 	  || GET_CODE (XEXP (x, 1)) == PC
4185 	  || GET_CODE (XEXP (x, 1)) == SYMBOL_REF)
4186 	output_addr_const (file, XEXP (x, 1));
4187       else
4188 	{
4189 	  fputs (targetm.asm_out.open_paren, file);
4190 	  output_addr_const (file, XEXP (x, 1));
4191 	  fputs (targetm.asm_out.close_paren, file);
4192 	}
4193       break;
4194 
4195     case ZERO_EXTEND:
4196     case SIGN_EXTEND:
4197     case SUBREG:
4198     case TRUNCATE:
4199       output_addr_const (file, XEXP (x, 0));
4200       break;
4201 
4202     default:
4203       if (targetm.asm_out.output_addr_const_extra (file, x))
4204 	break;
4205 
4206       output_operand_lossage ("invalid expression as operand");
4207     }
4208 }
4209 
4210 /* Output a quoted string.  */
4211 
4212 void
output_quoted_string(FILE * asm_file,const char * string)4213 output_quoted_string (FILE *asm_file, const char *string)
4214 {
4215 #ifdef OUTPUT_QUOTED_STRING
4216   OUTPUT_QUOTED_STRING (asm_file, string);
4217 #else
4218   char c;
4219 
4220   putc ('\"', asm_file);
4221   while ((c = *string++) != 0)
4222     {
4223       if (ISPRINT (c))
4224 	{
4225 	  if (c == '\"' || c == '\\')
4226 	    putc ('\\', asm_file);
4227 	  putc (c, asm_file);
4228 	}
4229       else
4230 	fprintf (asm_file, "\\%03o", (unsigned char) c);
4231     }
4232   putc ('\"', asm_file);
4233 #endif
4234 }
4235 
4236 /* Write a HOST_WIDE_INT number in hex form 0x1234, fast. */
4237 
4238 void
fprint_whex(FILE * f,unsigned HOST_WIDE_INT value)4239 fprint_whex (FILE *f, unsigned HOST_WIDE_INT value)
4240 {
4241   char buf[2 + CHAR_BIT * sizeof (value) / 4];
4242   if (value == 0)
4243     putc ('0', f);
4244   else
4245     {
4246       char *p = buf + sizeof (buf);
4247       do
4248         *--p = "0123456789abcdef"[value % 16];
4249       while ((value /= 16) != 0);
4250       *--p = 'x';
4251       *--p = '0';
4252       fwrite (p, 1, buf + sizeof (buf) - p, f);
4253     }
4254 }
4255 
4256 /* Internal function that prints an unsigned long in decimal in reverse.
4257    The output string IS NOT null-terminated. */
4258 
4259 static int
sprint_ul_rev(char * s,unsigned long value)4260 sprint_ul_rev (char *s, unsigned long value)
4261 {
4262   int i = 0;
4263   do
4264     {
4265       s[i] = "0123456789"[value % 10];
4266       value /= 10;
4267       i++;
4268       /* alternate version, without modulo */
4269       /* oldval = value; */
4270       /* value /= 10; */
4271       /* s[i] = "0123456789" [oldval - 10*value]; */
4272       /* i++ */
4273     }
4274   while (value != 0);
4275   return i;
4276 }
4277 
4278 /* Write an unsigned long as decimal to a file, fast. */
4279 
4280 void
fprint_ul(FILE * f,unsigned long value)4281 fprint_ul (FILE *f, unsigned long value)
4282 {
4283   /* python says: len(str(2**64)) == 20 */
4284   char s[20];
4285   int i;
4286 
4287   i = sprint_ul_rev (s, value);
4288 
4289   /* It's probably too small to bother with string reversal and fputs. */
4290   do
4291     {
4292       i--;
4293       putc (s[i], f);
4294     }
4295   while (i != 0);
4296 }
4297 
4298 /* Write an unsigned long as decimal to a string, fast.
4299    s must be wide enough to not overflow, at least 21 chars.
4300    Returns the length of the string (without terminating '\0'). */
4301 
4302 int
sprint_ul(char * s,unsigned long value)4303 sprint_ul (char *s, unsigned long value)
4304 {
4305   int len = sprint_ul_rev (s, value);
4306   s[len] = '\0';
4307 
4308   std::reverse (s, s + len);
4309   return len;
4310 }
4311 
4312 /* A poor man's fprintf, with the added features of %I, %R, %L, and %U.
4313    %R prints the value of REGISTER_PREFIX.
4314    %L prints the value of LOCAL_LABEL_PREFIX.
4315    %U prints the value of USER_LABEL_PREFIX.
4316    %I prints the value of IMMEDIATE_PREFIX.
4317    %O runs ASM_OUTPUT_OPCODE to transform what follows in the string.
4318    Also supported are %d, %i, %u, %x, %X, %o, %c, %s and %%.
4319 
4320    We handle alternate assembler dialects here, just like output_asm_insn.  */
4321 
4322 void
asm_fprintf(FILE * file,const char * p,...)4323 asm_fprintf (FILE *file, const char *p, ...)
4324 {
4325   char buf[10];
4326   char *q, c;
4327 #ifdef ASSEMBLER_DIALECT
4328   int dialect = 0;
4329 #endif
4330   va_list argptr;
4331 
4332   va_start (argptr, p);
4333 
4334   buf[0] = '%';
4335 
4336   while ((c = *p++))
4337     switch (c)
4338       {
4339 #ifdef ASSEMBLER_DIALECT
4340       case '{':
4341       case '}':
4342       case '|':
4343 	p = do_assembler_dialects (p, &dialect);
4344 	break;
4345 #endif
4346 
4347       case '%':
4348 	c = *p++;
4349 	q = &buf[1];
4350 	while (strchr ("-+ #0", c))
4351 	  {
4352 	    *q++ = c;
4353 	    c = *p++;
4354 	  }
4355 	while (ISDIGIT (c) || c == '.')
4356 	  {
4357 	    *q++ = c;
4358 	    c = *p++;
4359 	  }
4360 	switch (c)
4361 	  {
4362 	  case '%':
4363 	    putc ('%', file);
4364 	    break;
4365 
4366 	  case 'd':  case 'i':  case 'u':
4367 	  case 'x':  case 'X':  case 'o':
4368 	  case 'c':
4369 	    *q++ = c;
4370 	    *q = 0;
4371 	    fprintf (file, buf, va_arg (argptr, int));
4372 	    break;
4373 
4374 	  case 'w':
4375 	    /* This is a prefix to the 'd', 'i', 'u', 'x', 'X', and
4376 	       'o' cases, but we do not check for those cases.  It
4377 	       means that the value is a HOST_WIDE_INT, which may be
4378 	       either `long' or `long long'.  */
4379 	    memcpy (q, HOST_WIDE_INT_PRINT, strlen (HOST_WIDE_INT_PRINT));
4380 	    q += strlen (HOST_WIDE_INT_PRINT);
4381 	    *q++ = *p++;
4382 	    *q = 0;
4383 	    fprintf (file, buf, va_arg (argptr, HOST_WIDE_INT));
4384 	    break;
4385 
4386 	  case 'l':
4387 	    *q++ = c;
4388 #ifdef HAVE_LONG_LONG
4389 	    if (*p == 'l')
4390 	      {
4391 		*q++ = *p++;
4392 		*q++ = *p++;
4393 		*q = 0;
4394 		fprintf (file, buf, va_arg (argptr, long long));
4395 	      }
4396 	    else
4397 #endif
4398 	      {
4399 		*q++ = *p++;
4400 		*q = 0;
4401 		fprintf (file, buf, va_arg (argptr, long));
4402 	      }
4403 
4404 	    break;
4405 
4406 	  case 's':
4407 	    *q++ = c;
4408 	    *q = 0;
4409 	    fprintf (file, buf, va_arg (argptr, char *));
4410 	    break;
4411 
4412 	  case 'O':
4413 #ifdef ASM_OUTPUT_OPCODE
4414 	    ASM_OUTPUT_OPCODE (asm_out_file, p);
4415 #endif
4416 	    break;
4417 
4418 	  case 'R':
4419 #ifdef REGISTER_PREFIX
4420 	    fprintf (file, "%s", REGISTER_PREFIX);
4421 #endif
4422 	    break;
4423 
4424 	  case 'I':
4425 #ifdef IMMEDIATE_PREFIX
4426 	    fprintf (file, "%s", IMMEDIATE_PREFIX);
4427 #endif
4428 	    break;
4429 
4430 	  case 'L':
4431 #ifdef LOCAL_LABEL_PREFIX
4432 	    fprintf (file, "%s", LOCAL_LABEL_PREFIX);
4433 #endif
4434 	    break;
4435 
4436 	  case 'U':
4437 	    fputs (user_label_prefix, file);
4438 	    break;
4439 
4440 #ifdef ASM_FPRINTF_EXTENSIONS
4441 	    /* Uppercase letters are reserved for general use by asm_fprintf
4442 	       and so are not available to target specific code.  In order to
4443 	       prevent the ASM_FPRINTF_EXTENSIONS macro from using them then,
4444 	       they are defined here.  As they get turned into real extensions
4445 	       to asm_fprintf they should be removed from this list.  */
4446 	  case 'A': case 'B': case 'C': case 'D': case 'E':
4447 	  case 'F': case 'G': case 'H': case 'J': case 'K':
4448 	  case 'M': case 'N': case 'P': case 'Q': case 'S':
4449 	  case 'T': case 'V': case 'W': case 'Y': case 'Z':
4450 	    break;
4451 
4452 	  ASM_FPRINTF_EXTENSIONS (file, argptr, p)
4453 #endif
4454 	  default:
4455 	    gcc_unreachable ();
4456 	  }
4457 	break;
4458 
4459       default:
4460 	putc (c, file);
4461       }
4462   va_end (argptr);
4463 }
4464 
4465 /* Return nonzero if this function has no function calls.  */
4466 
4467 int
leaf_function_p(void)4468 leaf_function_p (void)
4469 {
4470   rtx_insn *insn;
4471 
4472   /* Ensure we walk the entire function body.  */
4473   gcc_assert (!in_sequence_p ());
4474 
4475   /* Some back-ends (e.g. s390) want leaf functions to stay leaf
4476      functions even if they call mcount.  */
4477   if (crtl->profile && !targetm.keep_leaf_when_profiled ())
4478     return 0;
4479 
4480   for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
4481     {
4482       if (CALL_P (insn)
4483 	  && ! SIBLING_CALL_P (insn))
4484 	return 0;
4485       if (NONJUMP_INSN_P (insn)
4486 	  && GET_CODE (PATTERN (insn)) == SEQUENCE
4487 	  && CALL_P (XVECEXP (PATTERN (insn), 0, 0))
4488 	  && ! SIBLING_CALL_P (XVECEXP (PATTERN (insn), 0, 0)))
4489 	return 0;
4490     }
4491 
4492   return 1;
4493 }
4494 
4495 /* Return 1 if branch is a forward branch.
4496    Uses insn_shuid array, so it works only in the final pass.  May be used by
4497    output templates to customary add branch prediction hints.
4498  */
4499 int
final_forward_branch_p(rtx_insn * insn)4500 final_forward_branch_p (rtx_insn *insn)
4501 {
4502   int insn_id, label_id;
4503 
4504   gcc_assert (uid_shuid);
4505   insn_id = INSN_SHUID (insn);
4506   label_id = INSN_SHUID (JUMP_LABEL (insn));
4507   /* We've hit some insns that does not have id information available.  */
4508   gcc_assert (insn_id && label_id);
4509   return insn_id < label_id;
4510 }
4511 
4512 /* On some machines, a function with no call insns
4513    can run faster if it doesn't create its own register window.
4514    When output, the leaf function should use only the "output"
4515    registers.  Ordinarily, the function would be compiled to use
4516    the "input" registers to find its arguments; it is a candidate
4517    for leaf treatment if it uses only the "input" registers.
4518    Leaf function treatment means renumbering so the function
4519    uses the "output" registers instead.  */
4520 
4521 #ifdef LEAF_REGISTERS
4522 
4523 /* Return 1 if this function uses only the registers that can be
4524    safely renumbered.  */
4525 
4526 int
only_leaf_regs_used(void)4527 only_leaf_regs_used (void)
4528 {
4529   int i;
4530   const char *const permitted_reg_in_leaf_functions = LEAF_REGISTERS;
4531 
4532   for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
4533     if ((df_regs_ever_live_p (i) || global_regs[i])
4534 	&& ! permitted_reg_in_leaf_functions[i])
4535       return 0;
4536 
4537   if (crtl->uses_pic_offset_table
4538       && pic_offset_table_rtx != 0
4539       && REG_P (pic_offset_table_rtx)
4540       && ! permitted_reg_in_leaf_functions[REGNO (pic_offset_table_rtx)])
4541     return 0;
4542 
4543   return 1;
4544 }
4545 
4546 /* Scan all instructions and renumber all registers into those
4547    available in leaf functions.  */
4548 
4549 static void
leaf_renumber_regs(rtx_insn * first)4550 leaf_renumber_regs (rtx_insn *first)
4551 {
4552   rtx_insn *insn;
4553 
4554   /* Renumber only the actual patterns.
4555      The reg-notes can contain frame pointer refs,
4556      and renumbering them could crash, and should not be needed.  */
4557   for (insn = first; insn; insn = NEXT_INSN (insn))
4558     if (INSN_P (insn))
4559       leaf_renumber_regs_insn (PATTERN (insn));
4560 }
4561 
4562 /* Scan IN_RTX and its subexpressions, and renumber all regs into those
4563    available in leaf functions.  */
4564 
4565 void
leaf_renumber_regs_insn(rtx in_rtx)4566 leaf_renumber_regs_insn (rtx in_rtx)
4567 {
4568   int i, j;
4569   const char *format_ptr;
4570 
4571   if (in_rtx == 0)
4572     return;
4573 
4574   /* Renumber all input-registers into output-registers.
4575      renumbered_regs would be 1 for an output-register;
4576      they  */
4577 
4578   if (REG_P (in_rtx))
4579     {
4580       int newreg;
4581 
4582       /* Don't renumber the same reg twice.  */
4583       if (in_rtx->used)
4584 	return;
4585 
4586       newreg = REGNO (in_rtx);
4587       /* Don't try to renumber pseudo regs.  It is possible for a pseudo reg
4588 	 to reach here as part of a REG_NOTE.  */
4589       if (newreg >= FIRST_PSEUDO_REGISTER)
4590 	{
4591 	  in_rtx->used = 1;
4592 	  return;
4593 	}
4594       newreg = LEAF_REG_REMAP (newreg);
4595       gcc_assert (newreg >= 0);
4596       df_set_regs_ever_live (REGNO (in_rtx), false);
4597       df_set_regs_ever_live (newreg, true);
4598       SET_REGNO (in_rtx, newreg);
4599       in_rtx->used = 1;
4600       return;
4601     }
4602 
4603   if (INSN_P (in_rtx))
4604     {
4605       /* Inside a SEQUENCE, we find insns.
4606 	 Renumber just the patterns of these insns,
4607 	 just as we do for the top-level insns.  */
4608       leaf_renumber_regs_insn (PATTERN (in_rtx));
4609       return;
4610     }
4611 
4612   format_ptr = GET_RTX_FORMAT (GET_CODE (in_rtx));
4613 
4614   for (i = 0; i < GET_RTX_LENGTH (GET_CODE (in_rtx)); i++)
4615     switch (*format_ptr++)
4616       {
4617       case 'e':
4618 	leaf_renumber_regs_insn (XEXP (in_rtx, i));
4619 	break;
4620 
4621       case 'E':
4622 	if (XVEC (in_rtx, i) != NULL)
4623 	  for (j = 0; j < XVECLEN (in_rtx, i); j++)
4624 	    leaf_renumber_regs_insn (XVECEXP (in_rtx, i, j));
4625 	break;
4626 
4627       case 'S':
4628       case 's':
4629       case '0':
4630       case 'i':
4631       case 'w':
4632       case 'p':
4633       case 'n':
4634       case 'u':
4635 	break;
4636 
4637       default:
4638 	gcc_unreachable ();
4639       }
4640 }
4641 #endif
4642 
4643 /* Turn the RTL into assembly.  */
4644 static unsigned int
rest_of_handle_final(void)4645 rest_of_handle_final (void)
4646 {
4647   const char *fnname = get_fnname_from_decl (current_function_decl);
4648 
4649   /* Turn debug markers into notes if the var-tracking pass has not
4650      been invoked.  */
4651   if (!flag_var_tracking && MAY_HAVE_DEBUG_MARKER_INSNS)
4652     delete_vta_debug_insns (false);
4653 
4654   assemble_start_function (current_function_decl, fnname);
4655   rtx_insn *first = get_insns ();
4656   int seen = 0;
4657   final_start_function_1 (&first, asm_out_file, &seen, optimize);
4658   final_1 (first, asm_out_file, seen, optimize);
4659   if (flag_ipa_ra
4660       && !lookup_attribute ("noipa", DECL_ATTRIBUTES (current_function_decl))
4661       /* Functions with naked attributes are supported only with basic asm
4662 	 statements in the body, thus for supported use cases the information
4663 	 on clobbered registers is not available.  */
4664       && !lookup_attribute ("naked", DECL_ATTRIBUTES (current_function_decl)))
4665     collect_fn_hard_reg_usage ();
4666   final_end_function ();
4667 
4668   /* The IA-64 ".handlerdata" directive must be issued before the ".endp"
4669      directive that closes the procedure descriptor.  Similarly, for x64 SEH.
4670      Otherwise it's not strictly necessary, but it doesn't hurt either.  */
4671   output_function_exception_table (crtl->has_bb_partition ? 1 : 0);
4672 
4673   assemble_end_function (current_function_decl, fnname);
4674 
4675   /* Free up reg info memory.  */
4676   free_reg_info ();
4677 
4678   if (! quiet_flag)
4679     fflush (asm_out_file);
4680 
4681   /* Write DBX symbols if requested.  */
4682 
4683   /* Note that for those inline functions where we don't initially
4684      know for certain that we will be generating an out-of-line copy,
4685      the first invocation of this routine (rest_of_compilation) will
4686      skip over this code by doing a `goto exit_rest_of_compilation;'.
4687      Later on, wrapup_global_declarations will (indirectly) call
4688      rest_of_compilation again for those inline functions that need
4689      to have out-of-line copies generated.  During that call, we
4690      *will* be routed past here.  */
4691 
4692   timevar_push (TV_SYMOUT);
4693   if (!DECL_IGNORED_P (current_function_decl))
4694     debug_hooks->function_decl (current_function_decl);
4695   timevar_pop (TV_SYMOUT);
4696 
4697   /* Release the blocks that are linked to DECL_INITIAL() to free the memory.  */
4698   DECL_INITIAL (current_function_decl) = error_mark_node;
4699 
4700   if (DECL_STATIC_CONSTRUCTOR (current_function_decl)
4701       && targetm.have_ctors_dtors)
4702     targetm.asm_out.constructor (XEXP (DECL_RTL (current_function_decl), 0),
4703 				 decl_init_priority_lookup
4704 				   (current_function_decl));
4705   if (DECL_STATIC_DESTRUCTOR (current_function_decl)
4706       && targetm.have_ctors_dtors)
4707     targetm.asm_out.destructor (XEXP (DECL_RTL (current_function_decl), 0),
4708 				decl_fini_priority_lookup
4709 				  (current_function_decl));
4710   return 0;
4711 }
4712 
4713 namespace {
4714 
4715 const pass_data pass_data_final =
4716 {
4717   RTL_PASS, /* type */
4718   "final", /* name */
4719   OPTGROUP_NONE, /* optinfo_flags */
4720   TV_FINAL, /* tv_id */
4721   0, /* properties_required */
4722   0, /* properties_provided */
4723   0, /* properties_destroyed */
4724   0, /* todo_flags_start */
4725   0, /* todo_flags_finish */
4726 };
4727 
4728 class pass_final : public rtl_opt_pass
4729 {
4730 public:
pass_final(gcc::context * ctxt)4731   pass_final (gcc::context *ctxt)
4732     : rtl_opt_pass (pass_data_final, ctxt)
4733   {}
4734 
4735   /* opt_pass methods: */
execute(function *)4736   virtual unsigned int execute (function *) { return rest_of_handle_final (); }
4737 
4738 }; // class pass_final
4739 
4740 } // anon namespace
4741 
4742 rtl_opt_pass *
make_pass_final(gcc::context * ctxt)4743 make_pass_final (gcc::context *ctxt)
4744 {
4745   return new pass_final (ctxt);
4746 }
4747 
4748 
4749 static unsigned int
rest_of_handle_shorten_branches(void)4750 rest_of_handle_shorten_branches (void)
4751 {
4752   /* Shorten branches.  */
4753   shorten_branches (get_insns ());
4754   return 0;
4755 }
4756 
4757 namespace {
4758 
4759 const pass_data pass_data_shorten_branches =
4760 {
4761   RTL_PASS, /* type */
4762   "shorten", /* name */
4763   OPTGROUP_NONE, /* optinfo_flags */
4764   TV_SHORTEN_BRANCH, /* tv_id */
4765   0, /* properties_required */
4766   0, /* properties_provided */
4767   0, /* properties_destroyed */
4768   0, /* todo_flags_start */
4769   0, /* todo_flags_finish */
4770 };
4771 
4772 class pass_shorten_branches : public rtl_opt_pass
4773 {
4774 public:
pass_shorten_branches(gcc::context * ctxt)4775   pass_shorten_branches (gcc::context *ctxt)
4776     : rtl_opt_pass (pass_data_shorten_branches, ctxt)
4777   {}
4778 
4779   /* opt_pass methods: */
execute(function *)4780   virtual unsigned int execute (function *)
4781     {
4782       return rest_of_handle_shorten_branches ();
4783     }
4784 
4785 }; // class pass_shorten_branches
4786 
4787 } // anon namespace
4788 
4789 rtl_opt_pass *
make_pass_shorten_branches(gcc::context * ctxt)4790 make_pass_shorten_branches (gcc::context *ctxt)
4791 {
4792   return new pass_shorten_branches (ctxt);
4793 }
4794 
4795 
4796 static unsigned int
rest_of_clean_state(void)4797 rest_of_clean_state (void)
4798 {
4799   rtx_insn *insn, *next;
4800   FILE *final_output = NULL;
4801   int save_unnumbered = flag_dump_unnumbered;
4802   int save_noaddr = flag_dump_noaddr;
4803 
4804   if (flag_dump_final_insns)
4805     {
4806       final_output = fopen (flag_dump_final_insns, "a");
4807       if (!final_output)
4808 	{
4809 	  error ("could not open final insn dump file %qs: %m",
4810 		 flag_dump_final_insns);
4811 	  flag_dump_final_insns = NULL;
4812 	}
4813       else
4814 	{
4815 	  flag_dump_noaddr = flag_dump_unnumbered = 1;
4816 	  if (flag_compare_debug_opt || flag_compare_debug)
4817 	    dump_flags |= TDF_NOUID | TDF_COMPARE_DEBUG;
4818 	  dump_function_header (final_output, current_function_decl,
4819 				dump_flags);
4820 	  final_insns_dump_p = true;
4821 
4822 	  for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
4823 	    if (LABEL_P (insn))
4824 	      INSN_UID (insn) = CODE_LABEL_NUMBER (insn);
4825 	    else
4826 	      {
4827 		if (NOTE_P (insn))
4828 		  set_block_for_insn (insn, NULL);
4829 		INSN_UID (insn) = 0;
4830 	      }
4831 	}
4832     }
4833 
4834   /* It is very important to decompose the RTL instruction chain here:
4835      debug information keeps pointing into CODE_LABEL insns inside the function
4836      body.  If these remain pointing to the other insns, we end up preserving
4837      whole RTL chain and attached detailed debug info in memory.  */
4838   for (insn = get_insns (); insn; insn = next)
4839     {
4840       next = NEXT_INSN (insn);
4841       SET_NEXT_INSN (insn) = NULL;
4842       SET_PREV_INSN (insn) = NULL;
4843 
4844       rtx_insn *call_insn = insn;
4845       if (NONJUMP_INSN_P (call_insn)
4846 	  && GET_CODE (PATTERN (call_insn)) == SEQUENCE)
4847 	{
4848 	  rtx_sequence *seq = as_a <rtx_sequence *> (PATTERN (call_insn));
4849 	  call_insn = seq->insn (0);
4850 	}
4851       if (CALL_P (call_insn))
4852 	{
4853 	  rtx note
4854 	    = find_reg_note (call_insn, REG_CALL_ARG_LOCATION, NULL_RTX);
4855 	  if (note)
4856 	    remove_note (call_insn, note);
4857 	}
4858 
4859       if (final_output
4860 	  && (!NOTE_P (insn)
4861 	      || (NOTE_KIND (insn) != NOTE_INSN_VAR_LOCATION
4862 		  && NOTE_KIND (insn) != NOTE_INSN_BEGIN_STMT
4863 		  && NOTE_KIND (insn) != NOTE_INSN_INLINE_ENTRY
4864 		  && NOTE_KIND (insn) != NOTE_INSN_BLOCK_BEG
4865 		  && NOTE_KIND (insn) != NOTE_INSN_BLOCK_END
4866 		  && NOTE_KIND (insn) != NOTE_INSN_DELETED_DEBUG_LABEL)))
4867 	print_rtl_single (final_output, insn);
4868     }
4869 
4870   if (final_output)
4871     {
4872       flag_dump_noaddr = save_noaddr;
4873       flag_dump_unnumbered = save_unnumbered;
4874       final_insns_dump_p = false;
4875 
4876       if (fclose (final_output))
4877 	{
4878 	  error ("could not close final insn dump file %qs: %m",
4879 		 flag_dump_final_insns);
4880 	  flag_dump_final_insns = NULL;
4881 	}
4882     }
4883 
4884   flag_rerun_cse_after_global_opts = 0;
4885   reload_completed = 0;
4886   epilogue_completed = 0;
4887 #ifdef STACK_REGS
4888   regstack_completed = 0;
4889 #endif
4890 
4891   /* Clear out the insn_length contents now that they are no
4892      longer valid.  */
4893   init_insn_lengths ();
4894 
4895   /* Show no temporary slots allocated.  */
4896   init_temp_slots ();
4897 
4898   free_bb_for_insn ();
4899 
4900   if (cfun->gimple_df)
4901     delete_tree_ssa (cfun);
4902 
4903   /* We can reduce stack alignment on call site only when we are sure that
4904      the function body just produced will be actually used in the final
4905      executable.  */
4906   if (flag_ipa_stack_alignment
4907       && decl_binds_to_current_def_p (current_function_decl))
4908     {
4909       unsigned int pref = crtl->preferred_stack_boundary;
4910       if (crtl->stack_alignment_needed > crtl->preferred_stack_boundary)
4911         pref = crtl->stack_alignment_needed;
4912       cgraph_node::rtl_info (current_function_decl)
4913 	->preferred_incoming_stack_boundary = pref;
4914     }
4915 
4916   /* Make sure volatile mem refs aren't considered valid operands for
4917      arithmetic insns.  We must call this here if this is a nested inline
4918      function, since the above code leaves us in the init_recog state,
4919      and the function context push/pop code does not save/restore volatile_ok.
4920 
4921      ??? Maybe it isn't necessary for expand_start_function to call this
4922      anymore if we do it here?  */
4923 
4924   init_recog_no_volatile ();
4925 
4926   /* We're done with this function.  Free up memory if we can.  */
4927   free_after_parsing (cfun);
4928   free_after_compilation (cfun);
4929   return 0;
4930 }
4931 
4932 namespace {
4933 
4934 const pass_data pass_data_clean_state =
4935 {
4936   RTL_PASS, /* type */
4937   "*clean_state", /* name */
4938   OPTGROUP_NONE, /* optinfo_flags */
4939   TV_FINAL, /* tv_id */
4940   0, /* properties_required */
4941   0, /* properties_provided */
4942   PROP_rtl, /* properties_destroyed */
4943   0, /* todo_flags_start */
4944   0, /* todo_flags_finish */
4945 };
4946 
4947 class pass_clean_state : public rtl_opt_pass
4948 {
4949 public:
pass_clean_state(gcc::context * ctxt)4950   pass_clean_state (gcc::context *ctxt)
4951     : rtl_opt_pass (pass_data_clean_state, ctxt)
4952   {}
4953 
4954   /* opt_pass methods: */
execute(function *)4955   virtual unsigned int execute (function *)
4956     {
4957       return rest_of_clean_state ();
4958     }
4959 
4960 }; // class pass_clean_state
4961 
4962 } // anon namespace
4963 
4964 rtl_opt_pass *
make_pass_clean_state(gcc::context * ctxt)4965 make_pass_clean_state (gcc::context *ctxt)
4966 {
4967   return new pass_clean_state (ctxt);
4968 }
4969 
4970 /* Return true if INSN is a call to the current function.  */
4971 
4972 static bool
self_recursive_call_p(rtx_insn * insn)4973 self_recursive_call_p (rtx_insn *insn)
4974 {
4975   tree fndecl = get_call_fndecl (insn);
4976   return (fndecl == current_function_decl
4977 	  && decl_binds_to_current_def_p (fndecl));
4978 }
4979 
4980 /* Collect hard register usage for the current function.  */
4981 
4982 static void
collect_fn_hard_reg_usage(void)4983 collect_fn_hard_reg_usage (void)
4984 {
4985   rtx_insn *insn;
4986 #ifdef STACK_REGS
4987   int i;
4988 #endif
4989   struct cgraph_rtl_info *node;
4990   HARD_REG_SET function_used_regs;
4991 
4992   /* ??? To be removed when all the ports have been fixed.  */
4993   if (!targetm.call_fusage_contains_non_callee_clobbers)
4994     return;
4995 
4996   /* Be conservative - mark fixed and global registers as used.  */
4997   function_used_regs = fixed_reg_set;
4998 
4999 #ifdef STACK_REGS
5000   /* Handle STACK_REGS conservatively, since the df-framework does not
5001      provide accurate information for them.  */
5002 
5003   for (i = FIRST_STACK_REG; i <= LAST_STACK_REG; i++)
5004     SET_HARD_REG_BIT (function_used_regs, i);
5005 #endif
5006 
5007   for (insn = get_insns (); insn != NULL_RTX; insn = next_insn (insn))
5008     {
5009       HARD_REG_SET insn_used_regs;
5010 
5011       if (!NONDEBUG_INSN_P (insn))
5012 	continue;
5013 
5014       if (CALL_P (insn)
5015 	  && !self_recursive_call_p (insn))
5016 	function_used_regs
5017 	  |= insn_callee_abi (insn).full_and_partial_reg_clobbers ();
5018 
5019       find_all_hard_reg_sets (insn, &insn_used_regs, false);
5020       function_used_regs |= insn_used_regs;
5021 
5022       if (hard_reg_set_subset_p (crtl->abi->full_and_partial_reg_clobbers (),
5023 				 function_used_regs))
5024 	return;
5025     }
5026 
5027   /* Mask out fully-saved registers, so that they don't affect equality
5028      comparisons between function_abis.  */
5029   function_used_regs &= crtl->abi->full_and_partial_reg_clobbers ();
5030 
5031   node = cgraph_node::rtl_info (current_function_decl);
5032   gcc_assert (node != NULL);
5033 
5034   node->function_used_regs = function_used_regs;
5035 }
5036