xref: /netbsd-src/sys/dev/sdmmc/sdhc.c (revision 0d209957b55e1d5528b70c9299b201eca7011696)
1 /*	$NetBSD: sdhc.c,v 1.119 2024/05/09 01:33:13 dyoung Exp $	*/
2 /*	$OpenBSD: sdhc.c,v 1.25 2009/01/13 19:44:20 grange Exp $	*/
3 
4 /*
5  * Copyright (c) 2006 Uwe Stuehler <uwe@openbsd.org>
6  *
7  * Permission to use, copy, modify, and distribute this software for any
8  * purpose with or without fee is hereby granted, provided that the above
9  * copyright notice and this permission notice appear in all copies.
10  *
11  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
12  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
13  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
14  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
15  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
16  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
17  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
18  */
19 
20 /*
21  * SD Host Controller driver based on the SD Host Controller Standard
22  * Simplified Specification Version 1.00 (www.sdcard.com).
23  */
24 
25 #include <sys/cdefs.h>
26 __KERNEL_RCSID(0, "$NetBSD: sdhc.c,v 1.119 2024/05/09 01:33:13 dyoung Exp $");
27 
28 #ifdef _KERNEL_OPT
29 #include "opt_sdmmc.h"
30 #endif
31 
32 #include <sys/param.h>
33 #include <sys/device.h>
34 #include <sys/kernel.h>
35 #include <sys/malloc.h>
36 #include <sys/systm.h>
37 #include <sys/mutex.h>
38 #include <sys/condvar.h>
39 #include <sys/atomic.h>
40 
41 #include <dev/sdmmc/sdhcreg.h>
42 #include <dev/sdmmc/sdhcvar.h>
43 #include <dev/sdmmc/sdmmcchip.h>
44 #include <dev/sdmmc/sdmmcreg.h>
45 #include <dev/sdmmc/sdmmcvar.h>
46 
47 #ifdef SDHC_DEBUG
48 int sdhcdebug = 1;
49 #define DPRINTF(n,s)	do { if ((n) <= sdhcdebug) printf s; } while (0)
50 void	sdhc_dump_regs(struct sdhc_host *);
51 #else
52 #define DPRINTF(n,s)	do {} while (0)
53 #endif
54 
55 #define SDHC_COMMAND_TIMEOUT	hz
56 #define SDHC_BUFFER_TIMEOUT	hz
57 #define SDHC_TRANSFER_TIMEOUT	hz
58 #define SDHC_DMA_TIMEOUT	(hz*3)
59 #define SDHC_TUNING_TIMEOUT	hz
60 
61 struct sdhc_host {
62 	struct sdhc_softc *sc;		/* host controller device */
63 
64 	bus_space_tag_t iot;		/* host register set tag */
65 	bus_space_handle_t ioh;		/* host register set handle */
66 	bus_size_t ios;			/* host register space size */
67 	bus_dma_tag_t dmat;		/* host DMA tag */
68 
69 	device_t sdmmc;			/* generic SD/MMC device */
70 
71 	u_int clkbase;			/* base clock frequency in KHz */
72 	int maxblklen;			/* maximum block length */
73 	uint32_t ocr;			/* OCR value from capabilities */
74 
75 	uint8_t regs[14];		/* host controller state */
76 
77 	uint16_t intr_status;		/* soft interrupt status */
78 	uint16_t intr_error_status;	/* soft error status */
79 	kmutex_t intr_lock;
80 	kmutex_t bus_clock_lock;
81 	kcondvar_t intr_cv;
82 
83 	callout_t tuning_timer;
84 	int tuning_timing;
85 	u_int tuning_timer_count;
86 	u_int tuning_timer_pending;
87 
88 	int specver;			/* spec. version */
89 
90 	uint32_t flags;			/* flags for this host */
91 #define SHF_USE_DMA		0x0001
92 #define SHF_USE_4BIT_MODE	0x0002
93 #define SHF_USE_8BIT_MODE	0x0004
94 #define SHF_MODE_DMAEN		0x0008 /* needs SDHC_DMA_ENABLE in mode */
95 #define SHF_USE_ADMA2_32	0x0010
96 #define SHF_USE_ADMA2_64	0x0020
97 #define SHF_USE_ADMA2_MASK	0x0030
98 
99 	bus_dmamap_t		adma_map;
100 	bus_dma_segment_t	adma_segs[1];
101 	void			*adma2;
102 
103 	uint8_t			vdd;	/* last vdd setting */
104 };
105 
106 #define HDEVNAME(hp)	(device_xname((hp)->sc->sc_dev))
107 
108 static uint8_t
hread1(struct sdhc_host * hp,bus_size_t reg)109 hread1(struct sdhc_host *hp, bus_size_t reg)
110 {
111 
112 	if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS))
113 		return bus_space_read_1(hp->iot, hp->ioh, reg);
114 	return bus_space_read_4(hp->iot, hp->ioh, reg & -4) >> (8 * (reg & 3));
115 }
116 
117 static uint16_t
hread2(struct sdhc_host * hp,bus_size_t reg)118 hread2(struct sdhc_host *hp, bus_size_t reg)
119 {
120 
121 	if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS))
122 		return bus_space_read_2(hp->iot, hp->ioh, reg);
123 	return bus_space_read_4(hp->iot, hp->ioh, reg & -4) >> (8 * (reg & 2));
124 }
125 
126 #define HREAD1(hp, reg)		hread1(hp, reg)
127 #define HREAD2(hp, reg)		hread2(hp, reg)
128 #define HREAD4(hp, reg)		\
129 	(bus_space_read_4((hp)->iot, (hp)->ioh, (reg)))
130 
131 
132 static void
hwrite1(struct sdhc_host * hp,bus_size_t o,uint8_t val)133 hwrite1(struct sdhc_host *hp, bus_size_t o, uint8_t val)
134 {
135 
136 	if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) {
137 		bus_space_write_1(hp->iot, hp->ioh, o, val);
138 	} else {
139 		const size_t shift = 8 * (o & 3);
140 		o &= -4;
141 		uint32_t tmp = bus_space_read_4(hp->iot, hp->ioh, o);
142 		tmp = (val << shift) | (tmp & ~(0xffU << shift));
143 		bus_space_write_4(hp->iot, hp->ioh, o, tmp);
144 	}
145 	if (hp->sc->sc_write_delay != 0) {
146 		delay(hp->sc->sc_write_delay);
147 	}
148 }
149 
150 static void
hwrite2(struct sdhc_host * hp,bus_size_t o,uint16_t val)151 hwrite2(struct sdhc_host *hp, bus_size_t o, uint16_t val)
152 {
153 
154 	if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) {
155 		bus_space_write_2(hp->iot, hp->ioh, o, val);
156 	} else {
157 		const size_t shift = 8 * (o & 2);
158 		o &= -4;
159 		uint32_t tmp = bus_space_read_4(hp->iot, hp->ioh, o);
160 		tmp = (val << shift) | (tmp & ~(0xffffU << shift));
161 		bus_space_write_4(hp->iot, hp->ioh, o, tmp);
162 	}
163 	if (hp->sc->sc_write_delay != 0) {
164 		delay(hp->sc->sc_write_delay);
165 	}
166 }
167 
168 static void
hwrite4(struct sdhc_host * hp,bus_size_t o,uint32_t val)169 hwrite4(struct sdhc_host *hp, bus_size_t o, uint32_t val)
170 {
171 
172 	bus_space_write_4(hp->iot, hp->ioh, o, val);
173 	if (hp->sc->sc_write_delay != 0) {
174 		delay(hp->sc->sc_write_delay);
175 	}
176 }
177 
178 #define HWRITE1(hp, reg, val)		hwrite1(hp, reg, val)
179 #define HWRITE2(hp, reg, val)		hwrite2(hp, reg, val)
180 #define HWRITE4(hp, reg, val)		hwrite4(hp, reg, val)
181 
182 #define HCLR1(hp, reg, bits)						\
183 	do if ((bits) != 0) HWRITE1((hp), (reg), HREAD1((hp), (reg)) & ~(bits)); while (0)
184 #define HCLR2(hp, reg, bits)						\
185 	do if ((bits) != 0) HWRITE2((hp), (reg), HREAD2((hp), (reg)) & ~(bits)); while (0)
186 #define HCLR4(hp, reg, bits)						\
187 	do if ((bits) != 0) HWRITE4((hp), (reg), HREAD4((hp), (reg)) & ~(bits)); while (0)
188 #define HSET1(hp, reg, bits)						\
189 	do if ((bits) != 0) HWRITE1((hp), (reg), HREAD1((hp), (reg)) | (bits)); while (0)
190 #define HSET2(hp, reg, bits)						\
191 	do if ((bits) != 0) HWRITE2((hp), (reg), HREAD2((hp), (reg)) | (bits)); while (0)
192 #define HSET4(hp, reg, bits)						\
193 	do if ((bits) != 0) HWRITE4((hp), (reg), HREAD4((hp), (reg)) | (bits)); while (0)
194 
195 static int	sdhc_host_reset(sdmmc_chipset_handle_t);
196 static int	sdhc_host_reset1(sdmmc_chipset_handle_t);
197 static uint32_t	sdhc_host_ocr(sdmmc_chipset_handle_t);
198 static int	sdhc_host_maxblklen(sdmmc_chipset_handle_t);
199 static int	sdhc_card_detect(sdmmc_chipset_handle_t);
200 static int	sdhc_write_protect(sdmmc_chipset_handle_t);
201 static int	sdhc_bus_power(sdmmc_chipset_handle_t, uint32_t);
202 static int	sdhc_bus_clock_ddr(sdmmc_chipset_handle_t, int, bool);
203 static int	sdhc_bus_width(sdmmc_chipset_handle_t, int);
204 static int	sdhc_bus_rod(sdmmc_chipset_handle_t, int);
205 static void	sdhc_card_enable_intr(sdmmc_chipset_handle_t, int);
206 static void	sdhc_card_intr_ack(sdmmc_chipset_handle_t);
207 static void	sdhc_exec_command(sdmmc_chipset_handle_t,
208 		    struct sdmmc_command *);
209 static int	sdhc_signal_voltage(sdmmc_chipset_handle_t, int);
210 static int	sdhc_execute_tuning1(struct sdhc_host *, int);
211 static int	sdhc_execute_tuning(sdmmc_chipset_handle_t, int);
212 static void	sdhc_tuning_timer(void *);
213 static void	sdhc_hw_reset(sdmmc_chipset_handle_t);
214 static int	sdhc_start_command(struct sdhc_host *, struct sdmmc_command *);
215 static int	sdhc_wait_state(struct sdhc_host *, uint32_t, uint32_t);
216 static int	sdhc_soft_reset(struct sdhc_host *, int);
217 static int	sdhc_wait_intr(struct sdhc_host *, int, int, bool);
218 static void	sdhc_transfer_data(struct sdhc_host *, struct sdmmc_command *);
219 static int	sdhc_transfer_data_dma(struct sdhc_host *, struct sdmmc_command *);
220 static int	sdhc_transfer_data_pio(struct sdhc_host *, struct sdmmc_command *);
221 static void	sdhc_read_data_pio(struct sdhc_host *, uint8_t *, u_int);
222 static void	sdhc_write_data_pio(struct sdhc_host *, uint8_t *, u_int);
223 static void	esdhc_read_data_pio(struct sdhc_host *, uint8_t *, u_int);
224 static void	esdhc_write_data_pio(struct sdhc_host *, uint8_t *, u_int);
225 
226 static struct sdmmc_chip_functions sdhc_functions = {
227 	/* host controller reset */
228 	.host_reset = sdhc_host_reset,
229 
230 	/* host controller capabilities */
231 	.host_ocr = sdhc_host_ocr,
232 	.host_maxblklen = sdhc_host_maxblklen,
233 
234 	/* card detection */
235 	.card_detect = sdhc_card_detect,
236 
237 	/* write protect */
238 	.write_protect = sdhc_write_protect,
239 
240 	/* bus power, clock frequency, width and ROD(OpenDrain/PushPull) */
241 	.bus_power = sdhc_bus_power,
242 	.bus_clock = NULL,	/* see sdhc_bus_clock_ddr */
243 	.bus_width = sdhc_bus_width,
244 	.bus_rod = sdhc_bus_rod,
245 
246 	/* command execution */
247 	.exec_command = sdhc_exec_command,
248 
249 	/* card interrupt */
250 	.card_enable_intr = sdhc_card_enable_intr,
251 	.card_intr_ack = sdhc_card_intr_ack,
252 
253 	/* UHS functions */
254 	.signal_voltage = sdhc_signal_voltage,
255 	.bus_clock_ddr = sdhc_bus_clock_ddr,
256 	.execute_tuning = sdhc_execute_tuning,
257 	.hw_reset = sdhc_hw_reset,
258 };
259 
260 static int
sdhc_cfprint(void * aux,const char * pnp)261 sdhc_cfprint(void *aux, const char *pnp)
262 {
263 	const struct sdmmcbus_attach_args * const saa = aux;
264 	const struct sdhc_host * const hp = saa->saa_sch;
265 
266 	if (pnp) {
267 		aprint_normal("sdmmc at %s", pnp);
268 	}
269 	for (size_t host = 0; host < hp->sc->sc_nhosts; host++) {
270 		if (hp->sc->sc_host[host] == hp) {
271 			aprint_normal(" slot %zu", host);
272 		}
273 	}
274 
275 	return UNCONF;
276 }
277 
278 /*
279  * Called by attachment driver.  For each SD card slot there is one SD
280  * host controller standard register set. (1.3)
281  */
282 int
sdhc_host_found(struct sdhc_softc * sc,bus_space_tag_t iot,bus_space_handle_t ioh,bus_size_t iosize)283 sdhc_host_found(struct sdhc_softc *sc, bus_space_tag_t iot,
284     bus_space_handle_t ioh, bus_size_t iosize)
285 {
286 	struct sdmmcbus_attach_args saa;
287 	struct sdhc_host *hp;
288 	uint32_t caps, caps2;
289 	uint16_t sdhcver;
290 	int error;
291 
292 	/* Allocate one more host structure. */
293 	hp = malloc(sizeof(struct sdhc_host), M_DEVBUF, M_WAITOK|M_ZERO);
294 	if (hp == NULL) {
295 		aprint_error_dev(sc->sc_dev,
296 		    "couldn't alloc memory (sdhc host)\n");
297 		goto err1;
298 	}
299 	sc->sc_host[sc->sc_nhosts++] = hp;
300 
301 	/* Fill in the new host structure. */
302 	hp->sc = sc;
303 	hp->iot = iot;
304 	hp->ioh = ioh;
305 	hp->ios = iosize;
306 	hp->dmat = sc->sc_dmat;
307 
308 	mutex_init(&hp->intr_lock, MUTEX_DEFAULT, IPL_SDMMC);
309 	mutex_init(&hp->bus_clock_lock, MUTEX_DEFAULT, IPL_NONE);
310 	cv_init(&hp->intr_cv, "sdhcintr");
311 	callout_init(&hp->tuning_timer, CALLOUT_MPSAFE);
312 	callout_setfunc(&hp->tuning_timer, sdhc_tuning_timer, hp);
313 
314 	if (ISSET(hp->sc->sc_flags, SDHC_FLAG_USDHC)) {
315 		sdhcver = SDHC_SPEC_VERS_300 << SDHC_SPEC_VERS_SHIFT;
316 	} else if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
317 		sdhcver = HREAD4(hp, SDHC_ESDHC_HOST_CTL_VERSION);
318 	} else if (iosize <= SDHC_HOST_CTL_VERSION) {
319 		sdhcver = SDHC_SPEC_NOVERS << SDHC_SPEC_VERS_SHIFT;
320 	} else {
321 		sdhcver = HREAD2(hp, SDHC_HOST_CTL_VERSION);
322 	}
323 	aprint_normal_dev(sc->sc_dev, "SDHC ");
324 	hp->specver = SDHC_SPEC_VERSION(sdhcver);
325 	switch (SDHC_SPEC_VERSION(sdhcver)) {
326 	case SDHC_SPEC_VERS_100:
327 		aprint_normal("1.0");
328 		break;
329 	case SDHC_SPEC_VERS_200:
330 		aprint_normal("2.0");
331 		break;
332 	case SDHC_SPEC_VERS_300:
333 		aprint_normal("3.0");
334 		break;
335 	case SDHC_SPEC_VERS_400:
336 		aprint_normal("4.0");
337 		break;
338 	case SDHC_SPEC_VERS_410:
339 		aprint_normal("4.1");
340 		break;
341 	case SDHC_SPEC_VERS_420:
342 		aprint_normal("4.2");
343 		break;
344 	case SDHC_SPEC_NOVERS:
345 		hp->specver = -1;
346 		aprint_normal("NO-VERS");
347 		break;
348 	default:
349 		aprint_normal("unknown version(0x%x)",
350 		    SDHC_SPEC_VERSION(sdhcver));
351 		break;
352 	}
353 	if (SDHC_SPEC_VERSION(sdhcver) != SDHC_SPEC_NOVERS)
354 		aprint_normal(", rev %u", SDHC_VENDOR_VERSION(sdhcver));
355 
356 	/*
357 	 * Reset the host controller and enable interrupts.
358 	 */
359 	(void)sdhc_host_reset(hp);
360 
361 	if (ISSET(hp->sc->sc_flags, SDHC_FLAG_USDHC)) {
362 		/* init uSDHC registers */
363 		HWRITE4(hp, SDHC_MMC_BOOT, 0);
364 		HWRITE4(hp, SDHC_HOST_CTL, SDHC_USDHC_BURST_LEN_EN |
365 		    SDHC_USDHC_HOST_CTL_RESV23 | SDHC_USDHC_EMODE_LE);
366 		HWRITE4(hp, SDHC_WATERMARK_LEVEL,
367 		    (0x10 << SDHC_WATERMARK_WR_BRST_SHIFT) |
368 		    (0x40 << SDHC_WATERMARK_WRITE_SHIFT) |
369 		    (0x10 << SDHC_WATERMARK_RD_BRST_SHIFT) |
370 		    (0x40 << SDHC_WATERMARK_READ_SHIFT));
371 		HSET4(hp, SDHC_VEND_SPEC,
372 		    SDHC_VEND_SPEC_MBO |
373 		    SDHC_VEND_SPEC_CARD_CLK_SOFT_EN |
374 		    SDHC_VEND_SPEC_IPG_PERCLK_SOFT_EN |
375 		    SDHC_VEND_SPEC_HCLK_SOFT_EN |
376 		    SDHC_VEND_SPEC_IPG_CLK_SOFT_EN |
377 		    SDHC_VEND_SPEC_AC12_WR_CHKBUSY_EN |
378 		    SDHC_VEND_SPEC_FRC_SDCLK_ON);
379 	}
380 
381 	/* Determine host capabilities. */
382 	if (ISSET(sc->sc_flags, SDHC_FLAG_HOSTCAPS)) {
383 		caps = sc->sc_caps;
384 		caps2 = sc->sc_caps2;
385 	} else if (ISSET(hp->sc->sc_flags, SDHC_FLAG_USDHC)) {
386 		/* uSDHC capability register is little bit different */
387 		caps = HREAD4(hp, SDHC_CAPABILITIES);
388 		caps |= SDHC_8BIT_SUPP;
389 		if (caps & SDHC_ADMA1_SUPP)
390 			caps |= SDHC_ADMA2_SUPP;
391 		sc->sc_caps = caps;
392 		/* uSDHC has no SDHC_CAPABILITIES2 register */
393 		caps2 = sc->sc_caps2 = SDHC_SDR50_SUPP | SDHC_DDR50_SUPP;
394 	} else {
395 		caps = sc->sc_caps = HREAD4(hp, SDHC_CAPABILITIES);
396 		if (hp->specver >= SDHC_SPEC_VERS_300) {
397 			caps2 = sc->sc_caps2 = HREAD4(hp, SDHC_CAPABILITIES2);
398 		} else {
399 			caps2 = sc->sc_caps2 = 0;
400 		}
401 	}
402 
403 	aprint_verbose(", caps <%08x/%08x>", caps, caps2);
404 
405 	const u_int retuning_mode = (caps2 >> SDHC_RETUNING_MODES_SHIFT) &
406 	    SDHC_RETUNING_MODES_MASK;
407 	if (retuning_mode == SDHC_RETUNING_MODE_1) {
408 		hp->tuning_timer_count = (caps2 >> SDHC_TIMER_COUNT_SHIFT) &
409 		    SDHC_TIMER_COUNT_MASK;
410 		if (hp->tuning_timer_count == 0xf)
411 			hp->tuning_timer_count = 0;
412 		if (hp->tuning_timer_count)
413 			hp->tuning_timer_count =
414 			    1 << (hp->tuning_timer_count - 1);
415 	}
416 
417 	/*
418 	 * Use DMA if the host system and the controller support it.
419 	 * Supports integrated or external DMA egine, with or without
420 	 * SDHC_DMA_ENABLE in the command.
421 	 */
422 	if (ISSET(sc->sc_flags, SDHC_FLAG_FORCE_DMA) ||
423 	    (ISSET(sc->sc_flags, SDHC_FLAG_USE_DMA &&
424 	     ISSET(caps, SDHC_DMA_SUPPORT)))) {
425 		SET(hp->flags, SHF_USE_DMA);
426 
427 		if (ISSET(caps, SDHC_ADMA2_SUPP) &&
428 		    !ISSET(sc->sc_flags, SDHC_FLAG_BROKEN_ADMA)) {
429 			SET(hp->flags, SHF_MODE_DMAEN);
430 			/*
431 			 * 64-bit mode was present in the 2.00 spec, removed
432 			 * from 3.00, and re-added in 4.00 with a different
433 			 * descriptor layout. We only support 2.00 and 3.00
434 			 * descriptors for now.
435 			 */
436 			if (hp->specver == SDHC_SPEC_VERS_200 &&
437 			    ISSET(caps, SDHC_64BIT_SYS_BUS)) {
438 				SET(hp->flags, SHF_USE_ADMA2_64);
439 				aprint_normal(", 64-bit ADMA2");
440 			} else {
441 				SET(hp->flags, SHF_USE_ADMA2_32);
442 				aprint_normal(", 32-bit ADMA2");
443 			}
444 		} else {
445 			if (!ISSET(sc->sc_flags, SDHC_FLAG_EXTERNAL_DMA) ||
446 			    ISSET(sc->sc_flags, SDHC_FLAG_EXTDMA_DMAEN))
447 				SET(hp->flags, SHF_MODE_DMAEN);
448 			if (sc->sc_vendor_transfer_data_dma) {
449 				aprint_normal(", platform DMA");
450 			} else {
451 				aprint_normal(", SDMA");
452 			}
453 		}
454 	} else {
455 		aprint_normal(", PIO");
456 	}
457 
458 	/*
459 	 * Determine the base clock frequency. (2.2.24)
460 	 */
461 	if (hp->specver >= SDHC_SPEC_VERS_300) {
462 		hp->clkbase = SDHC_BASE_V3_FREQ_KHZ(caps);
463 	} else {
464 		hp->clkbase = SDHC_BASE_FREQ_KHZ(caps);
465 	}
466 	if (hp->clkbase == 0 ||
467 	    ISSET(sc->sc_flags, SDHC_FLAG_NO_CLKBASE)) {
468 		if (sc->sc_clkbase == 0) {
469 			/* The attachment driver must tell us. */
470 			aprint_error_dev(sc->sc_dev,
471 			    "unknown base clock frequency\n");
472 			goto err;
473 		}
474 		hp->clkbase = sc->sc_clkbase;
475 	}
476 	if (hp->clkbase < 10000 || hp->clkbase > 10000 * 256) {
477 		/* SDHC 1.0 supports only 10-63 MHz. */
478 		aprint_error_dev(sc->sc_dev,
479 		    "base clock frequency out of range: %u MHz\n",
480 		    hp->clkbase / 1000);
481 		goto err;
482 	}
483 	aprint_normal(", %u kHz", hp->clkbase);
484 
485 	/*
486 	 * XXX Set the data timeout counter value according to
487 	 * capabilities. (2.2.15)
488 	 */
489 	HWRITE1(hp, SDHC_TIMEOUT_CTL, SDHC_TIMEOUT_MAX);
490 #if 1
491 	if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED))
492 		HWRITE4(hp, SDHC_NINTR_STATUS, SDHC_CMD_TIMEOUT_ERROR << 16);
493 #endif
494 
495 	if (ISSET(caps, SDHC_EMBEDDED_SLOT))
496 		aprint_normal(", embedded slot");
497 
498 	/*
499 	 * Determine SD bus voltage levels supported by the controller.
500 	 */
501 	aprint_normal(",");
502 	if (ISSET(caps, SDHC_HIGH_SPEED_SUPP)) {
503 		SET(hp->ocr, MMC_OCR_HCS);
504 		aprint_normal(" HS");
505 	}
506 	if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_NO_1_8_V)) {
507 		if (ISSET(caps2, SDHC_SDR50_SUPP)) {
508 			SET(hp->ocr, MMC_OCR_S18A);
509 			aprint_normal(" SDR50");
510 		}
511 		if (ISSET(caps2, SDHC_DDR50_SUPP)) {
512 			SET(hp->ocr, MMC_OCR_S18A);
513 			aprint_normal(" DDR50");
514 		}
515 		if (ISSET(caps2, SDHC_SDR104_SUPP)) {
516 			SET(hp->ocr, MMC_OCR_S18A);
517 			aprint_normal(" SDR104 HS200");
518 		}
519 		if (ISSET(caps, SDHC_VOLTAGE_SUPP_1_8V)) {
520 			SET(hp->ocr, MMC_OCR_1_65V_1_95V);
521 			aprint_normal(" 1.8V");
522 		}
523 	}
524 	if (ISSET(caps, SDHC_VOLTAGE_SUPP_3_0V)) {
525 		SET(hp->ocr, MMC_OCR_2_9V_3_0V | MMC_OCR_3_0V_3_1V);
526 		aprint_normal(" 3.0V");
527 	}
528 	if (ISSET(caps, SDHC_VOLTAGE_SUPP_3_3V)) {
529 		SET(hp->ocr, MMC_OCR_3_2V_3_3V | MMC_OCR_3_3V_3_4V);
530 		aprint_normal(" 3.3V");
531 	}
532 	if (hp->specver >= SDHC_SPEC_VERS_300) {
533 		aprint_normal(", re-tuning mode %d", retuning_mode + 1);
534 		if (hp->tuning_timer_count)
535 			aprint_normal(" (%us timer)", hp->tuning_timer_count);
536 	}
537 
538 	/*
539 	 * Determine the maximum block length supported by the host
540 	 * controller. (2.2.24)
541 	 */
542 	switch((caps >> SDHC_MAX_BLK_LEN_SHIFT) & SDHC_MAX_BLK_LEN_MASK) {
543 	case SDHC_MAX_BLK_LEN_512:
544 		hp->maxblklen = 512;
545 		break;
546 
547 	case SDHC_MAX_BLK_LEN_1024:
548 		hp->maxblklen = 1024;
549 		break;
550 
551 	case SDHC_MAX_BLK_LEN_2048:
552 		hp->maxblklen = 2048;
553 		break;
554 
555 	case SDHC_MAX_BLK_LEN_4096:
556 		hp->maxblklen = 4096;
557 		break;
558 
559 	default:
560 		aprint_error_dev(sc->sc_dev, "max block length unknown\n");
561 		goto err;
562 	}
563 	aprint_normal(", %u byte blocks", hp->maxblklen);
564 	aprint_normal("\n");
565 
566 	if (ISSET(hp->flags, SHF_USE_ADMA2_MASK)) {
567 		int rseg;
568 
569 		/* Allocate ADMA2 descriptor memory */
570 		error = bus_dmamem_alloc(sc->sc_dmat, PAGE_SIZE, PAGE_SIZE,
571 		    PAGE_SIZE, hp->adma_segs, 1, &rseg, BUS_DMA_WAITOK);
572 		if (error) {
573 			aprint_error_dev(sc->sc_dev,
574 			    "ADMA2 dmamem_alloc failed (%d)\n", error);
575 			goto adma_done;
576 		}
577 		error = bus_dmamem_map(sc->sc_dmat, hp->adma_segs, rseg,
578 		    PAGE_SIZE, (void **)&hp->adma2, BUS_DMA_WAITOK);
579 		if (error) {
580 			aprint_error_dev(sc->sc_dev,
581 			    "ADMA2 dmamem_map failed (%d)\n", error);
582 			goto adma_done;
583 		}
584 		error = bus_dmamap_create(sc->sc_dmat, PAGE_SIZE, 1, PAGE_SIZE,
585 		    0, BUS_DMA_WAITOK, &hp->adma_map);
586 		if (error) {
587 			aprint_error_dev(sc->sc_dev,
588 			    "ADMA2 dmamap_create failed (%d)\n", error);
589 			goto adma_done;
590 		}
591 		error = bus_dmamap_load(sc->sc_dmat, hp->adma_map,
592 		    hp->adma2, PAGE_SIZE, NULL,
593 		    BUS_DMA_WAITOK|BUS_DMA_WRITE);
594 		if (error) {
595 			aprint_error_dev(sc->sc_dev,
596 			    "ADMA2 dmamap_load failed (%d)\n", error);
597 			goto adma_done;
598 		}
599 
600 		memset(hp->adma2, 0, PAGE_SIZE);
601 
602 adma_done:
603 		if (error)
604 			CLR(hp->flags, SHF_USE_ADMA2_MASK);
605 	}
606 
607 	/*
608 	 * Attach the generic SD/MMC bus driver.  (The bus driver must
609 	 * not invoke any chipset functions before it is attached.)
610 	 */
611 	memset(&saa, 0, sizeof(saa));
612 	saa.saa_busname = "sdmmc";
613 	saa.saa_sct = &sdhc_functions;
614 	saa.saa_sch = hp;
615 	saa.saa_dmat = hp->dmat;
616 	saa.saa_clkmax = hp->clkbase;
617 	if (ISSET(sc->sc_flags, SDHC_FLAG_HAVE_CGM))
618 		saa.saa_clkmin = hp->clkbase / 256 / 2046;
619 	else if (ISSET(sc->sc_flags, SDHC_FLAG_HAVE_DVS))
620 		saa.saa_clkmin = hp->clkbase / 256 / 16;
621 	else if (hp->sc->sc_clkmsk != 0)
622 		saa.saa_clkmin = hp->clkbase / (hp->sc->sc_clkmsk >>
623 		    (ffs(hp->sc->sc_clkmsk) - 1));
624 	else if (hp->specver >= SDHC_SPEC_VERS_300)
625 		saa.saa_clkmin = hp->clkbase / 0x3ff;
626 	else
627 		saa.saa_clkmin = hp->clkbase / 256;
628 	if (!ISSET(sc->sc_flags, SDHC_FLAG_NO_AUTO_STOP))
629 		saa.saa_caps |= SMC_CAPS_AUTO_STOP;
630 	saa.saa_caps |= SMC_CAPS_4BIT_MODE;
631 	if (ISSET(sc->sc_flags, SDHC_FLAG_8BIT_MODE))
632 		saa.saa_caps |= SMC_CAPS_8BIT_MODE;
633 	if (ISSET(caps, SDHC_HIGH_SPEED_SUPP))
634 		saa.saa_caps |= SMC_CAPS_SD_HIGHSPEED |
635 				SMC_CAPS_MMC_HIGHSPEED;
636 	if (ISSET(caps2, SDHC_SDR104_SUPP))
637 		saa.saa_caps |= SMC_CAPS_UHS_SDR104 |
638 				SMC_CAPS_UHS_SDR50 |
639 				SMC_CAPS_MMC_HS200;
640 	if (ISSET(caps2, SDHC_SDR50_SUPP))
641 		saa.saa_caps |= SMC_CAPS_UHS_SDR50;
642 	if (ISSET(caps2, SDHC_DDR50_SUPP))
643 		saa.saa_caps |= SMC_CAPS_UHS_DDR50;
644 	if (ISSET(hp->flags, SHF_USE_DMA)) {
645 		saa.saa_caps |= SMC_CAPS_DMA;
646 		if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED))
647 			saa.saa_caps |= SMC_CAPS_MULTI_SEG_DMA;
648 	}
649 	if (ISSET(sc->sc_flags, SDHC_FLAG_SINGLE_ONLY))
650 		saa.saa_caps |= SMC_CAPS_SINGLE_ONLY;
651 	if (ISSET(sc->sc_flags, SDHC_FLAG_POLL_CARD_DET))
652 		saa.saa_caps |= SMC_CAPS_POLL_CARD_DET;
653 
654 	if (ISSET(sc->sc_flags, SDHC_FLAG_BROKEN_ADMA2_ZEROLEN))
655 		saa.saa_max_seg = 65535;
656 
657 	hp->sdmmc = config_found(sc->sc_dev, &saa, sdhc_cfprint, CFARGS_NONE);
658 
659 	return 0;
660 
661 err:
662 	callout_destroy(&hp->tuning_timer);
663 	cv_destroy(&hp->intr_cv);
664 	mutex_destroy(&hp->bus_clock_lock);
665 	mutex_destroy(&hp->intr_lock);
666 	free(hp, M_DEVBUF);
667 	sc->sc_host[--sc->sc_nhosts] = NULL;
668 err1:
669 	return 1;
670 }
671 
672 int
sdhc_detach(struct sdhc_softc * sc,int flags)673 sdhc_detach(struct sdhc_softc *sc, int flags)
674 {
675 	struct sdhc_host *hp;
676 	int rv = 0;
677 
678 	for (size_t n = 0; n < sc->sc_nhosts; n++) {
679 		hp = sc->sc_host[n];
680 		if (hp == NULL)
681 			continue;
682 		if (hp->sdmmc != NULL) {
683 			rv = config_detach(hp->sdmmc, flags);
684 			if (rv)
685 				break;
686 			hp->sdmmc = NULL;
687 		}
688 		/* disable interrupts */
689 		if ((flags & DETACH_FORCE) == 0) {
690 			mutex_enter(&hp->intr_lock);
691 			if (ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) {
692 				HWRITE4(hp, SDHC_NINTR_SIGNAL_EN, 0);
693 			} else {
694 				HWRITE2(hp, SDHC_NINTR_SIGNAL_EN, 0);
695 			}
696 			sdhc_soft_reset(hp, SDHC_RESET_ALL);
697 			mutex_exit(&hp->intr_lock);
698 		}
699 		callout_halt(&hp->tuning_timer, NULL);
700 		callout_destroy(&hp->tuning_timer);
701 		cv_destroy(&hp->intr_cv);
702 		mutex_destroy(&hp->intr_lock);
703 		if (hp->ios > 0) {
704 			bus_space_unmap(hp->iot, hp->ioh, hp->ios);
705 			hp->ios = 0;
706 		}
707 		if (ISSET(hp->flags, SHF_USE_ADMA2_MASK)) {
708 			bus_dmamap_unload(sc->sc_dmat, hp->adma_map);
709 			bus_dmamap_destroy(sc->sc_dmat, hp->adma_map);
710 			bus_dmamem_unmap(sc->sc_dmat, hp->adma2, PAGE_SIZE);
711 			bus_dmamem_free(sc->sc_dmat, hp->adma_segs, 1);
712 		}
713 		free(hp, M_DEVBUF);
714 		sc->sc_host[n] = NULL;
715 	}
716 
717 	return rv;
718 }
719 
720 bool
sdhc_suspend(device_t dev,const pmf_qual_t * qual)721 sdhc_suspend(device_t dev, const pmf_qual_t *qual)
722 {
723 	struct sdhc_softc *sc = device_private(dev);
724 	struct sdhc_host *hp;
725 	size_t i;
726 
727 	/* XXX poll for command completion or suspend command
728 	 * in progress */
729 
730 	/* Save the host controller state. */
731 	for (size_t n = 0; n < sc->sc_nhosts; n++) {
732 		hp = sc->sc_host[n];
733 		if (ISSET(sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) {
734 			for (i = 0; i < sizeof hp->regs; i += 4) {
735 				uint32_t v = HREAD4(hp, i);
736 				hp->regs[i + 0] = (v >> 0);
737 				hp->regs[i + 1] = (v >> 8);
738 				if (i + 3 < sizeof hp->regs) {
739 					hp->regs[i + 2] = (v >> 16);
740 					hp->regs[i + 3] = (v >> 24);
741 				}
742 			}
743 		} else {
744 			for (i = 0; i < sizeof hp->regs; i++) {
745 				hp->regs[i] = HREAD1(hp, i);
746 			}
747 		}
748 	}
749 	return true;
750 }
751 
752 bool
sdhc_resume(device_t dev,const pmf_qual_t * qual)753 sdhc_resume(device_t dev, const pmf_qual_t *qual)
754 {
755 	struct sdhc_softc *sc = device_private(dev);
756 	struct sdhc_host *hp;
757 	size_t i;
758 
759 	/* Restore the host controller state. */
760 	for (size_t n = 0; n < sc->sc_nhosts; n++) {
761 		hp = sc->sc_host[n];
762 		(void)sdhc_host_reset(hp);
763 		if (ISSET(sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) {
764 			for (i = 0; i < sizeof hp->regs; i += 4) {
765 				if (i + 3 < sizeof hp->regs) {
766 					HWRITE4(hp, i,
767 					    (hp->regs[i + 0] << 0)
768 					    | (hp->regs[i + 1] << 8)
769 					    | (hp->regs[i + 2] << 16)
770 					    | (hp->regs[i + 3] << 24));
771 				} else {
772 					HWRITE4(hp, i,
773 					    (hp->regs[i + 0] << 0)
774 					    | (hp->regs[i + 1] << 8));
775 				}
776 			}
777 		} else {
778 			for (i = 0; i < sizeof hp->regs; i++) {
779 				HWRITE1(hp, i, hp->regs[i]);
780 			}
781 		}
782 	}
783 	return true;
784 }
785 
786 bool
sdhc_shutdown(device_t dev,int flags)787 sdhc_shutdown(device_t dev, int flags)
788 {
789 	struct sdhc_softc *sc = device_private(dev);
790 	struct sdhc_host *hp;
791 
792 	/* XXX chip locks up if we don't disable it before reboot. */
793 	for (size_t i = 0; i < sc->sc_nhosts; i++) {
794 		hp = sc->sc_host[i];
795 		(void)sdhc_host_reset(hp);
796 	}
797 	return true;
798 }
799 
800 /*
801  * Reset the host controller.  Called during initialization, when
802  * cards are removed, upon resume, and during error recovery.
803  */
804 static int
sdhc_host_reset1(sdmmc_chipset_handle_t sch)805 sdhc_host_reset1(sdmmc_chipset_handle_t sch)
806 {
807 	struct sdhc_host *hp = (struct sdhc_host *)sch;
808 	uint32_t sdhcimask;
809 	int error;
810 
811 	KASSERT(mutex_owned(&hp->intr_lock));
812 
813 	/* Disable all interrupts. */
814 	if (ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) {
815 		HWRITE4(hp, SDHC_NINTR_SIGNAL_EN, 0);
816 	} else {
817 		HWRITE2(hp, SDHC_NINTR_SIGNAL_EN, 0);
818 	}
819 
820 	/* Let sdhc_bus_power restore power */
821 	hp->vdd = 0;
822 
823 	/*
824 	 * Reset the entire host controller and wait up to 100ms for
825 	 * the controller to clear the reset bit.
826 	 */
827 	error = sdhc_soft_reset(hp, SDHC_RESET_ALL);
828 	if (error)
829 		goto out;
830 
831 	/* Set data timeout counter value to max for now. */
832 	HWRITE1(hp, SDHC_TIMEOUT_CTL, SDHC_TIMEOUT_MAX);
833 #if 1
834 	if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED))
835 		HWRITE4(hp, SDHC_NINTR_STATUS, SDHC_CMD_TIMEOUT_ERROR << 16);
836 #endif
837 
838 	/* Enable interrupts. */
839 	sdhcimask = SDHC_CARD_REMOVAL | SDHC_CARD_INSERTION |
840 	    SDHC_BUFFER_READ_READY | SDHC_BUFFER_WRITE_READY |
841 	    SDHC_DMA_INTERRUPT | SDHC_BLOCK_GAP_EVENT |
842 	    SDHC_TRANSFER_COMPLETE | SDHC_COMMAND_COMPLETE;
843 	if (ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) {
844 		sdhcimask |= SDHC_EINTR_STATUS_MASK << 16;
845 		HWRITE4(hp, SDHC_NINTR_STATUS_EN, sdhcimask);
846 		sdhcimask ^=
847 		    (SDHC_EINTR_STATUS_MASK ^ SDHC_EINTR_SIGNAL_MASK) << 16;
848 		sdhcimask ^= SDHC_BUFFER_READ_READY ^ SDHC_BUFFER_WRITE_READY;
849 		HWRITE4(hp, SDHC_NINTR_SIGNAL_EN, sdhcimask);
850 	} else {
851 		HWRITE2(hp, SDHC_NINTR_STATUS_EN, sdhcimask);
852 		HWRITE2(hp, SDHC_EINTR_STATUS_EN, SDHC_EINTR_STATUS_MASK);
853 		sdhcimask ^= SDHC_BUFFER_READ_READY ^ SDHC_BUFFER_WRITE_READY;
854 		HWRITE2(hp, SDHC_NINTR_SIGNAL_EN, sdhcimask);
855 		HWRITE2(hp, SDHC_EINTR_SIGNAL_EN, SDHC_EINTR_SIGNAL_MASK);
856 	}
857 
858 out:
859 	return error;
860 }
861 
862 static int
sdhc_host_reset(sdmmc_chipset_handle_t sch)863 sdhc_host_reset(sdmmc_chipset_handle_t sch)
864 {
865 	struct sdhc_host *hp = (struct sdhc_host *)sch;
866 	int error;
867 
868 	mutex_enter(&hp->intr_lock);
869 	error = sdhc_host_reset1(sch);
870 	mutex_exit(&hp->intr_lock);
871 
872 	return error;
873 }
874 
875 static uint32_t
sdhc_host_ocr(sdmmc_chipset_handle_t sch)876 sdhc_host_ocr(sdmmc_chipset_handle_t sch)
877 {
878 	struct sdhc_host *hp = (struct sdhc_host *)sch;
879 
880 	return hp->ocr;
881 }
882 
883 static int
sdhc_host_maxblklen(sdmmc_chipset_handle_t sch)884 sdhc_host_maxblklen(sdmmc_chipset_handle_t sch)
885 {
886 	struct sdhc_host *hp = (struct sdhc_host *)sch;
887 
888 	return hp->maxblklen;
889 }
890 
891 /*
892  * Return non-zero if the card is currently inserted.
893  */
894 static int
sdhc_card_detect(sdmmc_chipset_handle_t sch)895 sdhc_card_detect(sdmmc_chipset_handle_t sch)
896 {
897 	struct sdhc_host *hp = (struct sdhc_host *)sch;
898 	int r;
899 
900 	if (ISSET(hp->sc->sc_flags, SDHC_FLAG_NON_REMOVABLE))
901 		return 1;
902 
903 	if (hp->sc->sc_vendor_card_detect)
904 		return (*hp->sc->sc_vendor_card_detect)(hp->sc);
905 
906 	r = ISSET(HREAD4(hp, SDHC_PRESENT_STATE), SDHC_CARD_INSERTED);
907 
908 	return r ? 1 : 0;
909 }
910 
911 /*
912  * Return non-zero if the card is currently write-protected.
913  */
914 static int
sdhc_write_protect(sdmmc_chipset_handle_t sch)915 sdhc_write_protect(sdmmc_chipset_handle_t sch)
916 {
917 	struct sdhc_host *hp = (struct sdhc_host *)sch;
918 	int r;
919 
920 	if (hp->sc->sc_vendor_write_protect)
921 		return (*hp->sc->sc_vendor_write_protect)(hp->sc);
922 
923 	r = ISSET(HREAD4(hp, SDHC_PRESENT_STATE), SDHC_WRITE_PROTECT_SWITCH);
924 
925 	return r ? 0 : 1;
926 }
927 
928 /*
929  * Set or change SD bus voltage and enable or disable SD bus power.
930  * Return zero on success.
931  */
932 static int
sdhc_bus_power(sdmmc_chipset_handle_t sch,uint32_t ocr)933 sdhc_bus_power(sdmmc_chipset_handle_t sch, uint32_t ocr)
934 {
935 	struct sdhc_host *hp = (struct sdhc_host *)sch;
936 	uint8_t vdd;
937 	int error = 0;
938 	const uint32_t pcmask =
939 	    ~(SDHC_BUS_POWER | (SDHC_VOLTAGE_MASK << SDHC_VOLTAGE_SHIFT));
940 	uint32_t reg;
941 
942 	mutex_enter(&hp->intr_lock);
943 
944 	/*
945 	 * Disable bus power before voltage change.
946 	 */
947 	if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)
948 	    && !ISSET(hp->sc->sc_flags, SDHC_FLAG_NO_PWR0)) {
949 		hp->vdd = 0;
950 		HWRITE1(hp, SDHC_POWER_CTL, 0);
951 	}
952 
953 	/* If power is disabled, reset the host and return now. */
954 	if (ocr == 0) {
955 		(void)sdhc_host_reset1(hp);
956 		callout_halt(&hp->tuning_timer, &hp->intr_lock);
957 		goto out;
958 	}
959 
960 	/*
961 	 * Select the lowest voltage according to capabilities.
962 	 */
963 	ocr &= hp->ocr;
964 	if (ISSET(ocr, MMC_OCR_1_65V_1_95V)) {
965 		vdd = SDHC_VOLTAGE_1_8V;
966 	} else if (ISSET(ocr, MMC_OCR_2_9V_3_0V|MMC_OCR_3_0V_3_1V)) {
967 		vdd = SDHC_VOLTAGE_3_0V;
968 	} else if (ISSET(ocr, MMC_OCR_3_2V_3_3V|MMC_OCR_3_3V_3_4V)) {
969 		vdd = SDHC_VOLTAGE_3_3V;
970 	} else {
971 		/* Unsupported voltage level requested. */
972 		error = EINVAL;
973 		goto out;
974 	}
975 
976 	/*
977 	 * Did voltage change ?
978 	 */
979 	if (vdd == hp->vdd)
980 		goto out;
981 
982 	if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
983 		/*
984 		 * Enable bus power.  Wait at least 1 ms (or 74 clocks) plus
985 		 * voltage ramp until power rises.
986 		 */
987 
988 		if (ISSET(hp->sc->sc_flags, SDHC_FLAG_SINGLE_POWER_WRITE)) {
989 			HWRITE1(hp, SDHC_POWER_CTL,
990 			    (vdd << SDHC_VOLTAGE_SHIFT) | SDHC_BUS_POWER);
991 		} else {
992 			reg = HREAD1(hp, SDHC_POWER_CTL) & pcmask;
993 			HWRITE1(hp, SDHC_POWER_CTL, reg);
994 			sdmmc_delay(1);
995 			reg |= (vdd << SDHC_VOLTAGE_SHIFT);
996 			HWRITE1(hp, SDHC_POWER_CTL, reg);
997 			sdmmc_delay(1);
998 			reg |= SDHC_BUS_POWER;
999 			HWRITE1(hp, SDHC_POWER_CTL, reg);
1000 			sdmmc_delay(10000);
1001 		}
1002 
1003 		/*
1004 		 * The host system may not power the bus due to battery low,
1005 		 * etc.  In that case, the host controller should clear the
1006 		 * bus power bit.
1007 		 */
1008 		if (!ISSET(HREAD1(hp, SDHC_POWER_CTL), SDHC_BUS_POWER)) {
1009 			error = ENXIO;
1010 			goto out;
1011 		}
1012 	}
1013 
1014 	/* power successfully changed */
1015 	hp->vdd = vdd;
1016 
1017 out:
1018 	mutex_exit(&hp->intr_lock);
1019 
1020 	return error;
1021 }
1022 
1023 /*
1024  * Return the smallest possible base clock frequency divisor value
1025  * for the CLOCK_CTL register to produce `freq' (KHz).
1026  */
1027 static bool
sdhc_clock_divisor(struct sdhc_host * hp,u_int freq,u_int * divp)1028 sdhc_clock_divisor(struct sdhc_host *hp, u_int freq, u_int *divp)
1029 {
1030 	u_int div;
1031 
1032 	if (ISSET(hp->sc->sc_flags, SDHC_FLAG_HAVE_CGM)) {
1033 		for (div = hp->clkbase / freq; div <= 0x3ff; div++) {
1034 			if ((hp->clkbase / div) <= freq) {
1035 				*divp = SDHC_SDCLK_CGM
1036 				    | ((div & 0x300) << SDHC_SDCLK_XDIV_SHIFT)
1037 				    | ((div & 0x0ff) << SDHC_SDCLK_DIV_SHIFT);
1038 				//freq = hp->clkbase / div;
1039 				return true;
1040 			}
1041 		}
1042 		/* No divisor found. */
1043 		return false;
1044 	}
1045 	if (ISSET(hp->sc->sc_flags, SDHC_FLAG_HAVE_DVS)) {
1046 		u_int dvs = (hp->clkbase + freq - 1) / freq;
1047 		u_int roundup = dvs & 1;
1048 		for (dvs >>= 1, div = 1; div <= 256; div <<= 1, dvs >>= 1) {
1049 			if (dvs + roundup <= 16) {
1050 				dvs += roundup - 1;
1051 				*divp = (div << SDHC_SDCLK_DIV_SHIFT)
1052 				    |   (dvs << SDHC_SDCLK_DVS_SHIFT);
1053 				DPRINTF(2,
1054 				    ("%s: divisor for freq %u is %u * %u\n",
1055 				    HDEVNAME(hp), freq, div * 2, dvs + 1));
1056 				//freq = hp->clkbase / (div * 2) * (dvs + 1);
1057 				return true;
1058 			}
1059 			/*
1060 			 * If we drop bits, we need to round up the divisor.
1061 			 */
1062 			roundup |= dvs & 1;
1063 		}
1064 		/* No divisor found. */
1065 		return false;
1066 	}
1067 	if (hp->sc->sc_clkmsk != 0) {
1068 		div = howmany(hp->clkbase, freq);
1069 		if (div > (hp->sc->sc_clkmsk >> (ffs(hp->sc->sc_clkmsk) - 1)))
1070 			return false;
1071 		*divp = div << (ffs(hp->sc->sc_clkmsk) - 1);
1072 		//freq = hp->clkbase / div;
1073 		return true;
1074 	}
1075 	if (hp->specver >= SDHC_SPEC_VERS_300) {
1076 		div = howmany(hp->clkbase, freq);
1077 		div = div > 1 ? howmany(div, 2) : 0;
1078 		if (div > 0x3ff)
1079 			return false;
1080 		*divp = (((div >> 8) & SDHC_SDCLK_XDIV_MASK)
1081 			 << SDHC_SDCLK_XDIV_SHIFT) |
1082 			(((div >> 0) & SDHC_SDCLK_DIV_MASK)
1083 			 << SDHC_SDCLK_DIV_SHIFT);
1084 		//freq = hp->clkbase / (div ? div * 2 : 1);
1085 		return true;
1086 	} else {
1087 		for (div = 1; div <= 256; div *= 2) {
1088 			if ((hp->clkbase / div) <= freq) {
1089 				*divp = (div / 2) << SDHC_SDCLK_DIV_SHIFT;
1090 				//freq = hp->clkbase / div;
1091 				return true;
1092 			}
1093 		}
1094 		/* No divisor found. */
1095 		return false;
1096 	}
1097 	/* No divisor found. */
1098 	return false;
1099 }
1100 
1101 /*
1102  * Set or change SDCLK frequency or disable the SD clock.
1103  * Return zero on success.
1104  */
1105 static int
sdhc_bus_clock_ddr(sdmmc_chipset_handle_t sch,int freq,bool ddr)1106 sdhc_bus_clock_ddr(sdmmc_chipset_handle_t sch, int freq, bool ddr)
1107 {
1108 	struct sdhc_host *hp = (struct sdhc_host *)sch;
1109 	u_int div;
1110 	u_int timo;
1111 	int16_t reg;
1112 	int error = 0;
1113 	bool present __diagused;
1114 
1115 #ifdef DIAGNOSTIC
1116 	present = ISSET(HREAD4(hp, SDHC_PRESENT_STATE), SDHC_CMD_INHIBIT_MASK);
1117 
1118 	/* Must not stop the clock if commands are in progress. */
1119 	if (present && sdhc_card_detect(hp)) {
1120 		aprint_normal_dev(hp->sc->sc_dev,
1121 		    "%s: command in progress\n", __func__);
1122 	}
1123 #endif
1124 
1125 	if (hp->sc->sc_vendor_bus_clock) {
1126 		mutex_enter(&hp->bus_clock_lock);
1127 		error = (*hp->sc->sc_vendor_bus_clock)(hp->sc, freq);
1128 		mutex_exit(&hp->bus_clock_lock);
1129 		if (error != 0)
1130 			return error;
1131 	}
1132 
1133 	mutex_enter(&hp->intr_lock);
1134 
1135 	/*
1136 	 * Stop SD clock before changing the frequency.
1137 	 */
1138 	if (ISSET(hp->sc->sc_flags, SDHC_FLAG_USDHC)) {
1139 		HCLR4(hp, SDHC_VEND_SPEC,
1140 		    SDHC_VEND_SPEC_CARD_CLK_SOFT_EN |
1141 		    SDHC_VEND_SPEC_FRC_SDCLK_ON);
1142 		if (freq == SDMMC_SDCLK_OFF) {
1143 			goto out;
1144 		}
1145 	} else if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
1146 		HCLR4(hp, SDHC_CLOCK_CTL, 0xfff8);
1147 		if (freq == SDMMC_SDCLK_OFF) {
1148 			HSET4(hp, SDHC_CLOCK_CTL, 0x80f0);
1149 			goto out;
1150 		}
1151 	} else {
1152 		HCLR2(hp, SDHC_CLOCK_CTL, SDHC_SDCLK_ENABLE);
1153 		if (freq == SDMMC_SDCLK_OFF)
1154 			goto out;
1155 	}
1156 
1157 	if (ISSET(hp->sc->sc_flags, SDHC_FLAG_USDHC)) {
1158 		if (ddr)
1159 			HSET4(hp, SDHC_MIX_CTRL, SDHC_USDHC_DDR_EN);
1160 		else
1161 			HCLR4(hp, SDHC_MIX_CTRL, SDHC_USDHC_DDR_EN);
1162 	} else if (hp->specver >= SDHC_SPEC_VERS_300) {
1163 		HCLR2(hp, SDHC_HOST_CTL2, SDHC_UHS_MODE_SELECT_MASK);
1164 		if (freq > 100000) {
1165 			HSET2(hp, SDHC_HOST_CTL2, SDHC_UHS_MODE_SELECT_SDR104);
1166 		} else if (freq > 50000) {
1167 			if (ddr) {
1168 				HSET2(hp, SDHC_HOST_CTL2,
1169 				    SDHC_UHS_MODE_SELECT_DDR50);
1170 			} else {
1171 				HSET2(hp, SDHC_HOST_CTL2,
1172 				    SDHC_UHS_MODE_SELECT_SDR50);
1173 			}
1174 		} else if (freq > 25000) {
1175 			if (ddr) {
1176 				HSET2(hp, SDHC_HOST_CTL2,
1177 				    SDHC_UHS_MODE_SELECT_DDR50);
1178 			} else {
1179 				HSET2(hp, SDHC_HOST_CTL2,
1180 				    SDHC_UHS_MODE_SELECT_SDR25);
1181 			}
1182 		} else if (freq > 400) {
1183 			HSET2(hp, SDHC_HOST_CTL2, SDHC_UHS_MODE_SELECT_SDR12);
1184 		}
1185 	}
1186 
1187 	/*
1188 	 * Slow down Ricoh 5U823 controller that isn't reliable
1189 	 * at 100MHz bus clock.
1190 	 */
1191 	if (ISSET(hp->sc->sc_flags, SDHC_FLAG_SLOW_SDR50)) {
1192 		if (freq == 100000)
1193 			--freq;
1194 	}
1195 
1196 	/*
1197 	 * Set the minimum base clock frequency divisor.
1198 	 */
1199 	if (!sdhc_clock_divisor(hp, freq, &div)) {
1200 		/* Invalid base clock frequency or `freq' value. */
1201 		aprint_error_dev(hp->sc->sc_dev,
1202 			"Invalid bus clock %d kHz\n", freq);
1203 		error = EINVAL;
1204 		goto out;
1205 	}
1206 	if (ISSET(hp->sc->sc_flags, SDHC_FLAG_USDHC)) {
1207 		if (ddr) {
1208 			/* in ddr mode, divisor >>= 1 */
1209 			div = ((div >> 1) & (SDHC_SDCLK_DIV_MASK <<
1210 			    SDHC_SDCLK_DIV_SHIFT)) |
1211 			    (div & (SDHC_SDCLK_DVS_MASK <<
1212 			    SDHC_SDCLK_DVS_SHIFT));
1213 		}
1214 		for (timo = 1000; timo > 0; timo--) {
1215 			if (ISSET(HREAD4(hp, SDHC_PRESENT_STATE), SDHC_SDSTB))
1216 				break;
1217 			sdmmc_delay(10);
1218 		}
1219 		HWRITE4(hp, SDHC_CLOCK_CTL,
1220 		    div | (SDHC_TIMEOUT_MAX << 16) | 0x0f);
1221 	} else if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
1222 		HWRITE4(hp, SDHC_CLOCK_CTL,
1223 		    div | (SDHC_TIMEOUT_MAX << 16));
1224 	} else {
1225 		reg = HREAD2(hp, SDHC_CLOCK_CTL);
1226 		reg &= (SDHC_INTCLK_STABLE | SDHC_INTCLK_ENABLE);
1227 		HWRITE2(hp, SDHC_CLOCK_CTL, reg | div);
1228 	}
1229 
1230 	/*
1231 	 * Start internal clock.  Wait 10ms for stabilization.
1232 	 */
1233 	if (ISSET(hp->sc->sc_flags, SDHC_FLAG_USDHC)) {
1234 		HSET4(hp, SDHC_VEND_SPEC,
1235 		    SDHC_VEND_SPEC_CARD_CLK_SOFT_EN |
1236 		    SDHC_VEND_SPEC_FRC_SDCLK_ON);
1237 	} else if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
1238 		sdmmc_delay(10000);
1239 		HSET4(hp, SDHC_CLOCK_CTL,
1240 		    8 | SDHC_INTCLK_ENABLE | SDHC_INTCLK_STABLE);
1241 	} else {
1242 		HSET2(hp, SDHC_CLOCK_CTL, SDHC_INTCLK_ENABLE);
1243 		for (timo = 1000; timo > 0; timo--) {
1244 			if (ISSET(HREAD2(hp, SDHC_CLOCK_CTL),
1245 			    SDHC_INTCLK_STABLE))
1246 				break;
1247 			sdmmc_delay(10);
1248 		}
1249 		if (timo == 0) {
1250 			error = ETIMEDOUT;
1251 			DPRINTF(1,("%s: timeout\n", __func__));
1252 			goto out;
1253 		}
1254 	}
1255 
1256 	if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED | SDHC_FLAG_USDHC)) {
1257 		HSET1(hp, SDHC_SOFTWARE_RESET, SDHC_INIT_ACTIVE);
1258 		/*
1259 		 * Sending 80 clocks at 400kHz takes 200us.
1260 		 * So delay for that time + slop and then
1261 		 * check a few times for completion.
1262 		 */
1263 		sdmmc_delay(210);
1264 		for (timo = 10; timo > 0; timo--) {
1265 			if (!ISSET(HREAD1(hp, SDHC_SOFTWARE_RESET),
1266 			    SDHC_INIT_ACTIVE))
1267 				break;
1268 			sdmmc_delay(10);
1269 		}
1270 		DPRINTF(2,("%s: %u init spins\n", __func__, 10 - timo));
1271 
1272 		/*
1273 		 * Enable SD clock.
1274 		 */
1275 		if (ISSET(hp->sc->sc_flags, SDHC_FLAG_USDHC)) {
1276 			HSET4(hp, SDHC_VEND_SPEC,
1277 			    SDHC_VEND_SPEC_CARD_CLK_SOFT_EN |
1278 			    SDHC_VEND_SPEC_FRC_SDCLK_ON);
1279 		} else {
1280 			HSET4(hp, SDHC_CLOCK_CTL, SDHC_SDCLK_ENABLE);
1281 		}
1282 	} else {
1283 		/*
1284 		 * Enable SD clock.
1285 		 */
1286 		HSET2(hp, SDHC_CLOCK_CTL, SDHC_SDCLK_ENABLE);
1287 
1288 		if (freq > 25000 &&
1289 		    !ISSET(hp->sc->sc_flags, SDHC_FLAG_NO_HS_BIT))
1290 			HSET1(hp, SDHC_HOST_CTL, SDHC_HIGH_SPEED);
1291 		else
1292 			HCLR1(hp, SDHC_HOST_CTL, SDHC_HIGH_SPEED);
1293 	}
1294 
1295 	mutex_exit(&hp->intr_lock);
1296 
1297 	if (hp->sc->sc_vendor_bus_clock_post) {
1298 		mutex_enter(&hp->bus_clock_lock);
1299 		error = (*hp->sc->sc_vendor_bus_clock_post)(hp->sc, freq);
1300 		mutex_exit(&hp->bus_clock_lock);
1301 	}
1302 	return error;
1303 
1304 out:
1305 	mutex_exit(&hp->intr_lock);
1306 
1307 	return error;
1308 }
1309 
1310 static int
sdhc_bus_width(sdmmc_chipset_handle_t sch,int width)1311 sdhc_bus_width(sdmmc_chipset_handle_t sch, int width)
1312 {
1313 	struct sdhc_host *hp = (struct sdhc_host *)sch;
1314 	int reg;
1315 
1316 	switch (width) {
1317 	case 1:
1318 	case 4:
1319 		break;
1320 
1321 	case 8:
1322 		if (ISSET(hp->sc->sc_flags, SDHC_FLAG_8BIT_MODE))
1323 			break;
1324 		/* FALLTHROUGH */
1325 	default:
1326 		DPRINTF(0,("%s: unsupported bus width (%d)\n",
1327 		    HDEVNAME(hp), width));
1328 		return 1;
1329 	}
1330 
1331 	if (hp->sc->sc_vendor_bus_width) {
1332 		const int error = hp->sc->sc_vendor_bus_width(hp->sc, width);
1333 		if (error != 0)
1334 			return error;
1335 	}
1336 
1337 	mutex_enter(&hp->intr_lock);
1338 
1339 	reg = HREAD1(hp, SDHC_HOST_CTL);
1340 	if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED | SDHC_FLAG_USDHC)) {
1341 		reg &= ~(SDHC_4BIT_MODE|SDHC_ESDHC_8BIT_MODE);
1342 		if (width == 4)
1343 			reg |= SDHC_4BIT_MODE;
1344 		else if (width == 8)
1345 			reg |= SDHC_ESDHC_8BIT_MODE;
1346 	} else {
1347 		reg &= ~SDHC_4BIT_MODE;
1348 		if (hp->specver >= SDHC_SPEC_VERS_300) {
1349 			reg &= ~SDHC_8BIT_MODE;
1350 		}
1351 		if (width == 4) {
1352 			reg |= SDHC_4BIT_MODE;
1353 		} else if (width == 8 && hp->specver >= SDHC_SPEC_VERS_300) {
1354 			reg |= SDHC_8BIT_MODE;
1355 		}
1356 	}
1357 	HWRITE1(hp, SDHC_HOST_CTL, reg);
1358 
1359 	mutex_exit(&hp->intr_lock);
1360 
1361 	return 0;
1362 }
1363 
1364 static int
sdhc_bus_rod(sdmmc_chipset_handle_t sch,int on)1365 sdhc_bus_rod(sdmmc_chipset_handle_t sch, int on)
1366 {
1367 	struct sdhc_host *hp = (struct sdhc_host *)sch;
1368 
1369 	if (hp->sc->sc_vendor_rod)
1370 		return (*hp->sc->sc_vendor_rod)(hp->sc, on);
1371 
1372 	return 0;
1373 }
1374 
1375 static void
sdhc_card_enable_intr(sdmmc_chipset_handle_t sch,int enable)1376 sdhc_card_enable_intr(sdmmc_chipset_handle_t sch, int enable)
1377 {
1378 	struct sdhc_host *hp = (struct sdhc_host *)sch;
1379 
1380 	if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED | SDHC_FLAG_USDHC)) {
1381 		mutex_enter(&hp->intr_lock);
1382 		if (enable) {
1383 			HSET2(hp, SDHC_NINTR_STATUS_EN, SDHC_CARD_INTERRUPT);
1384 			HSET2(hp, SDHC_NINTR_SIGNAL_EN, SDHC_CARD_INTERRUPT);
1385 		} else {
1386 			HCLR2(hp, SDHC_NINTR_SIGNAL_EN, SDHC_CARD_INTERRUPT);
1387 			HCLR2(hp, SDHC_NINTR_STATUS_EN, SDHC_CARD_INTERRUPT);
1388 		}
1389 		mutex_exit(&hp->intr_lock);
1390 	}
1391 }
1392 
1393 static void
sdhc_card_intr_ack(sdmmc_chipset_handle_t sch)1394 sdhc_card_intr_ack(sdmmc_chipset_handle_t sch)
1395 {
1396 	struct sdhc_host *hp = (struct sdhc_host *)sch;
1397 
1398 	if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED | SDHC_FLAG_USDHC)) {
1399 		mutex_enter(&hp->intr_lock);
1400 		HSET2(hp, SDHC_NINTR_STATUS_EN, SDHC_CARD_INTERRUPT);
1401 		mutex_exit(&hp->intr_lock);
1402 	}
1403 }
1404 
1405 static int
sdhc_signal_voltage(sdmmc_chipset_handle_t sch,int signal_voltage)1406 sdhc_signal_voltage(sdmmc_chipset_handle_t sch, int signal_voltage)
1407 {
1408 	struct sdhc_host *hp = (struct sdhc_host *)sch;
1409 	int error = 0;
1410 
1411 	if (hp->specver < SDHC_SPEC_VERS_300)
1412 		return EINVAL;
1413 
1414 	mutex_enter(&hp->intr_lock);
1415 	switch (signal_voltage) {
1416 	case SDMMC_SIGNAL_VOLTAGE_180:
1417 		if (hp->sc->sc_vendor_signal_voltage != NULL) {
1418 			error = hp->sc->sc_vendor_signal_voltage(hp->sc,
1419 			    signal_voltage);
1420 			if (error != 0)
1421 				break;
1422 		}
1423 		if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_USDHC))
1424 			HSET2(hp, SDHC_HOST_CTL2, SDHC_1_8V_SIGNAL_EN);
1425 		break;
1426 	case SDMMC_SIGNAL_VOLTAGE_330:
1427 		if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_USDHC))
1428 			HCLR2(hp, SDHC_HOST_CTL2, SDHC_1_8V_SIGNAL_EN);
1429 		if (hp->sc->sc_vendor_signal_voltage != NULL) {
1430 			error = hp->sc->sc_vendor_signal_voltage(hp->sc,
1431 			    signal_voltage);
1432 			if (error != 0)
1433 				break;
1434 		}
1435 		break;
1436 	default:
1437 		error = EINVAL;
1438 		break;
1439 	}
1440 	mutex_exit(&hp->intr_lock);
1441 
1442 	return error;
1443 }
1444 
1445 /*
1446  * Sampling clock tuning procedure (UHS)
1447  */
1448 static int
sdhc_execute_tuning1(struct sdhc_host * hp,int timing)1449 sdhc_execute_tuning1(struct sdhc_host *hp, int timing)
1450 {
1451 	struct sdmmc_command cmd;
1452 	uint8_t hostctl;
1453 	int opcode, error, retry = 40;
1454 
1455 	KASSERT(mutex_owned(&hp->intr_lock));
1456 
1457 	hp->tuning_timing = timing;
1458 
1459 	switch (timing) {
1460 	case SDMMC_TIMING_MMC_HS200:
1461 		opcode = MMC_SEND_TUNING_BLOCK_HS200;
1462 		break;
1463 	case SDMMC_TIMING_UHS_SDR50:
1464 		if (!ISSET(hp->sc->sc_caps2, SDHC_TUNING_SDR50))
1465 			return 0;
1466 		/* FALLTHROUGH */
1467 	case SDMMC_TIMING_UHS_SDR104:
1468 		opcode = MMC_SEND_TUNING_BLOCK;
1469 		break;
1470 	default:
1471 		return EINVAL;
1472 	}
1473 
1474 	hostctl = HREAD1(hp, SDHC_HOST_CTL);
1475 
1476 	/* enable buffer read ready interrupt */
1477 	HSET2(hp, SDHC_NINTR_SIGNAL_EN, SDHC_BUFFER_READ_READY);
1478 	HSET2(hp, SDHC_NINTR_STATUS_EN, SDHC_BUFFER_READ_READY);
1479 
1480 	/* disable DMA */
1481 	HCLR1(hp, SDHC_HOST_CTL, SDHC_DMA_SELECT);
1482 
1483 	/* reset tuning circuit */
1484 	HCLR2(hp, SDHC_HOST_CTL2, SDHC_SAMPLING_CLOCK_SEL);
1485 
1486 	/* start of tuning */
1487 	HWRITE2(hp, SDHC_HOST_CTL2, SDHC_EXECUTE_TUNING);
1488 
1489 	do {
1490 		memset(&cmd, 0, sizeof(cmd));
1491 		cmd.c_opcode = opcode;
1492 		cmd.c_arg = 0;
1493 		cmd.c_flags = SCF_CMD_ADTC | SCF_CMD_READ | SCF_RSP_R1;
1494 		if (ISSET(hostctl, SDHC_8BIT_MODE)) {
1495 			cmd.c_blklen = cmd.c_datalen = 128;
1496 		} else {
1497 			cmd.c_blklen = cmd.c_datalen = 64;
1498 		}
1499 
1500 		error = sdhc_start_command(hp, &cmd);
1501 		if (error)
1502 			break;
1503 
1504 		if (!sdhc_wait_intr(hp, SDHC_BUFFER_READ_READY,
1505 		    SDHC_TUNING_TIMEOUT, false)) {
1506 			break;
1507 		}
1508 
1509 		delay(1000);
1510 	} while (HREAD2(hp, SDHC_HOST_CTL2) & SDHC_EXECUTE_TUNING && --retry);
1511 
1512 	/* disable buffer read ready interrupt */
1513 	HCLR2(hp, SDHC_NINTR_SIGNAL_EN, SDHC_BUFFER_READ_READY);
1514 	HCLR2(hp, SDHC_NINTR_STATUS_EN, SDHC_BUFFER_READ_READY);
1515 
1516 	if (HREAD2(hp, SDHC_HOST_CTL2) & SDHC_EXECUTE_TUNING) {
1517 		HCLR2(hp, SDHC_HOST_CTL2,
1518 		    SDHC_SAMPLING_CLOCK_SEL|SDHC_EXECUTE_TUNING);
1519 		sdhc_soft_reset(hp, SDHC_RESET_DAT|SDHC_RESET_CMD);
1520 		aprint_error_dev(hp->sc->sc_dev,
1521 		    "tuning did not complete, using fixed sampling clock\n");
1522 		return 0;		/* tuning did not complete */
1523 	}
1524 
1525 	if ((HREAD2(hp, SDHC_HOST_CTL2) & SDHC_SAMPLING_CLOCK_SEL) == 0) {
1526 		HCLR2(hp, SDHC_HOST_CTL2,
1527 		    SDHC_SAMPLING_CLOCK_SEL|SDHC_EXECUTE_TUNING);
1528 		sdhc_soft_reset(hp, SDHC_RESET_DAT|SDHC_RESET_CMD);
1529 		aprint_error_dev(hp->sc->sc_dev,
1530 		    "tuning failed, using fixed sampling clock\n");
1531 		return 0;		/* tuning failed */
1532 	}
1533 
1534 	if (hp->tuning_timer_count) {
1535 		callout_schedule(&hp->tuning_timer,
1536 		    hz * hp->tuning_timer_count);
1537 	}
1538 
1539 	return 0;		/* tuning completed */
1540 }
1541 
1542 static int
sdhc_execute_tuning(sdmmc_chipset_handle_t sch,int timing)1543 sdhc_execute_tuning(sdmmc_chipset_handle_t sch, int timing)
1544 {
1545 	struct sdhc_host *hp = (struct sdhc_host *)sch;
1546 	int error;
1547 
1548 	mutex_enter(&hp->intr_lock);
1549 	error = sdhc_execute_tuning1(hp, timing);
1550 	mutex_exit(&hp->intr_lock);
1551 	return error;
1552 }
1553 
1554 static void
sdhc_tuning_timer(void * arg)1555 sdhc_tuning_timer(void *arg)
1556 {
1557 	struct sdhc_host *hp = arg;
1558 
1559 	atomic_swap_uint(&hp->tuning_timer_pending, 1);
1560 }
1561 
1562 static void
sdhc_hw_reset(sdmmc_chipset_handle_t sch)1563 sdhc_hw_reset(sdmmc_chipset_handle_t sch)
1564 {
1565 	struct sdhc_host *hp = (struct sdhc_host *)sch;
1566 	struct sdhc_softc *sc = hp->sc;
1567 
1568 	if (sc->sc_vendor_hw_reset != NULL)
1569 		sc->sc_vendor_hw_reset(sc, hp);
1570 }
1571 
1572 static int
sdhc_wait_state(struct sdhc_host * hp,uint32_t mask,uint32_t value)1573 sdhc_wait_state(struct sdhc_host *hp, uint32_t mask, uint32_t value)
1574 {
1575 	uint32_t state;
1576 	int timeout;
1577 
1578 	for (timeout = 100000; timeout > 0; timeout--) {
1579 		if (((state = HREAD4(hp, SDHC_PRESENT_STATE)) & mask) == value)
1580 			return 0;
1581 		sdmmc_delay(10);
1582 	}
1583 	aprint_error_dev(hp->sc->sc_dev, "timeout waiting for mask %#x value %#x (state=%#x)\n",
1584 	    mask, value, state);
1585 	return ETIMEDOUT;
1586 }
1587 
1588 static void
sdhc_exec_command(sdmmc_chipset_handle_t sch,struct sdmmc_command * cmd)1589 sdhc_exec_command(sdmmc_chipset_handle_t sch, struct sdmmc_command *cmd)
1590 {
1591 	struct sdhc_host *hp = (struct sdhc_host *)sch;
1592 	int error;
1593 	bool probing;
1594 
1595 	mutex_enter(&hp->intr_lock);
1596 
1597 	if (atomic_cas_uint(&hp->tuning_timer_pending, 1, 0) == 1) {
1598 		(void)sdhc_execute_tuning1(hp, hp->tuning_timing);
1599 	}
1600 
1601 	if (cmd->c_data &&
1602 	    ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED | SDHC_FLAG_USDHC)) {
1603 		const uint16_t ready = SDHC_BUFFER_READ_READY | SDHC_BUFFER_WRITE_READY;
1604 		if (ISSET(hp->flags, SHF_USE_DMA)) {
1605 			HCLR2(hp, SDHC_NINTR_SIGNAL_EN, ready);
1606 			HCLR2(hp, SDHC_NINTR_STATUS_EN, ready);
1607 		} else {
1608 			HSET2(hp, SDHC_NINTR_SIGNAL_EN, ready);
1609 			HSET2(hp, SDHC_NINTR_STATUS_EN, ready);
1610 		}
1611 	}
1612 
1613 	if (ISSET(hp->sc->sc_flags, SDHC_FLAG_NO_TIMEOUT)) {
1614 		const uint16_t eintr = SDHC_CMD_TIMEOUT_ERROR;
1615 		if (cmd->c_data != NULL) {
1616 			HCLR2(hp, SDHC_EINTR_SIGNAL_EN, eintr);
1617 			HCLR2(hp, SDHC_EINTR_STATUS_EN, eintr);
1618 		} else {
1619 			HSET2(hp, SDHC_EINTR_SIGNAL_EN, eintr);
1620 			HSET2(hp, SDHC_EINTR_STATUS_EN, eintr);
1621 		}
1622 	}
1623 
1624 	if (ISSET(hp->sc->sc_flags, SDHC_FLAG_STOP_WITH_TC)) {
1625 		if (cmd->c_opcode == MMC_STOP_TRANSMISSION)
1626 			SET(cmd->c_flags, SCF_RSP_BSY);
1627 	}
1628 
1629 	/*
1630 	 * Start the MMC command, or mark `cmd' as failed and return.
1631 	 */
1632 	error = sdhc_start_command(hp, cmd);
1633 	if (error) {
1634 		cmd->c_error = error;
1635 		goto out;
1636 	}
1637 
1638 	/*
1639 	 * Wait until the command phase is done, or until the command
1640 	 * is marked done for any other reason.
1641 	 */
1642 	probing = (cmd->c_flags & SCF_TOUT_OK) != 0;
1643 	if (!sdhc_wait_intr(hp, SDHC_COMMAND_COMPLETE, SDHC_COMMAND_TIMEOUT*3, probing)) {
1644 		DPRINTF(1,("%s: timeout for command\n", __func__));
1645 		sdmmc_delay(50);
1646 		cmd->c_error = ETIMEDOUT;
1647 		goto out;
1648 	}
1649 
1650 	/*
1651 	 * The host controller removes bits [0:7] from the response
1652 	 * data (CRC) and we pass the data up unchanged to the bus
1653 	 * driver (without padding).
1654 	 */
1655 	if (cmd->c_error == 0 && ISSET(cmd->c_flags, SCF_RSP_PRESENT)) {
1656 		cmd->c_resp[0] = HREAD4(hp, SDHC_RESPONSE + 0);
1657 		if (ISSET(cmd->c_flags, SCF_RSP_136)) {
1658 			cmd->c_resp[1] = HREAD4(hp, SDHC_RESPONSE + 4);
1659 			cmd->c_resp[2] = HREAD4(hp, SDHC_RESPONSE + 8);
1660 			cmd->c_resp[3] = HREAD4(hp, SDHC_RESPONSE + 12);
1661 			if (ISSET(hp->sc->sc_flags, SDHC_FLAG_RSP136_CRC)) {
1662 				cmd->c_resp[0] = (cmd->c_resp[0] >> 8) |
1663 				    (cmd->c_resp[1] << 24);
1664 				cmd->c_resp[1] = (cmd->c_resp[1] >> 8) |
1665 				    (cmd->c_resp[2] << 24);
1666 				cmd->c_resp[2] = (cmd->c_resp[2] >> 8) |
1667 				    (cmd->c_resp[3] << 24);
1668 				cmd->c_resp[3] = (cmd->c_resp[3] >> 8);
1669 			}
1670 		}
1671 	}
1672 	DPRINTF(1,("%s: resp = %08x\n", HDEVNAME(hp), cmd->c_resp[0]));
1673 
1674 	/*
1675 	 * If the command has data to transfer in any direction,
1676 	 * execute the transfer now.
1677 	 */
1678 	if (cmd->c_error == 0 && cmd->c_data != NULL)
1679 		sdhc_transfer_data(hp, cmd);
1680 	else if (ISSET(cmd->c_flags, SCF_RSP_BSY)) {
1681 		if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_NO_BUSY_INTR) &&
1682 		    !sdhc_wait_intr(hp, SDHC_TRANSFER_COMPLETE, hz * 10, false)) {
1683 			DPRINTF(1,("%s: sdhc_exec_command: RSP_BSY\n",
1684 			    HDEVNAME(hp)));
1685 			cmd->c_error = ETIMEDOUT;
1686 			goto out;
1687 		}
1688 	}
1689 
1690 out:
1691 	if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)
1692 	    && !ISSET(hp->sc->sc_flags, SDHC_FLAG_NO_LED_ON)) {
1693 		/* Turn off the LED. */
1694 		HCLR1(hp, SDHC_HOST_CTL, SDHC_LED_ON);
1695 	}
1696 	SET(cmd->c_flags, SCF_ITSDONE);
1697 
1698 	if (ISSET(hp->sc->sc_flags, SDHC_FLAG_NO_AUTO_STOP) &&
1699 	    cmd->c_opcode == MMC_STOP_TRANSMISSION)
1700 		(void)sdhc_soft_reset(hp, SDHC_RESET_CMD|SDHC_RESET_DAT);
1701 
1702 	mutex_exit(&hp->intr_lock);
1703 
1704 	DPRINTF(1,("%s: cmd %d %s (flags=%08x error=%d)\n", HDEVNAME(hp),
1705 	    cmd->c_opcode, (cmd->c_error == 0) ? "done" : "abort",
1706 	    cmd->c_flags, cmd->c_error));
1707 }
1708 
1709 static int
sdhc_start_command(struct sdhc_host * hp,struct sdmmc_command * cmd)1710 sdhc_start_command(struct sdhc_host *hp, struct sdmmc_command *cmd)
1711 {
1712 	struct sdhc_softc * const sc = hp->sc;
1713 	uint16_t blksize = 0;
1714 	uint16_t blkcount = 0;
1715 	uint16_t mode;
1716 	uint16_t command;
1717 	uint32_t pmask;
1718 	int error;
1719 
1720 	KASSERT(mutex_owned(&hp->intr_lock));
1721 
1722 	DPRINTF(1,("%s: start cmd %d arg=%08x data=%p dlen=%d flags=%08x, status=%#x\n",
1723 	    HDEVNAME(hp), cmd->c_opcode, cmd->c_arg, cmd->c_data,
1724 	    cmd->c_datalen, cmd->c_flags, HREAD4(hp, SDHC_NINTR_STATUS)));
1725 
1726 	/*
1727 	 * The maximum block length for commands should be the minimum
1728 	 * of the host buffer size and the card buffer size. (1.7.2)
1729 	 */
1730 
1731 	/* Fragment the data into proper blocks. */
1732 	if (cmd->c_datalen > 0) {
1733 		blksize = MIN(cmd->c_datalen, cmd->c_blklen);
1734 		blkcount = cmd->c_datalen / blksize;
1735 		if (cmd->c_datalen % blksize > 0) {
1736 			/* XXX: Split this command. (1.7.4) */
1737 			aprint_error_dev(sc->sc_dev,
1738 			    "data not a multiple of %u bytes\n", blksize);
1739 			return EINVAL;
1740 		}
1741 	}
1742 
1743 	/* Check limit imposed by 9-bit block count. (1.7.2) */
1744 	if (blkcount > SDHC_BLOCK_COUNT_MAX) {
1745 		aprint_error_dev(sc->sc_dev, "too much data\n");
1746 		return EINVAL;
1747 	}
1748 
1749 	/* Prepare transfer mode register value. (2.2.5) */
1750 	mode = 0;
1751 	if (ISSET(cmd->c_flags, SCF_CMD_READ))
1752 		mode |= SDHC_READ_MODE;
1753 	if (blkcount > 0) {
1754 		mode |= SDHC_BLOCK_COUNT_ENABLE;
1755 		if (blkcount > 1) {
1756 			mode |= SDHC_MULTI_BLOCK_MODE;
1757 			if (!ISSET(sc->sc_flags, SDHC_FLAG_NO_AUTO_STOP)
1758 			    && !ISSET(cmd->c_flags, SCF_NO_STOP))
1759 				mode |= SDHC_AUTO_CMD12_ENABLE;
1760 		}
1761 	}
1762 	if (cmd->c_dmamap != NULL && cmd->c_datalen > 0 &&
1763 	    ISSET(hp->flags,  SHF_MODE_DMAEN)) {
1764 		mode |= SDHC_DMA_ENABLE;
1765 	}
1766 
1767 	/*
1768 	 * Prepare command register value. (2.2.6)
1769 	 */
1770 	command = (cmd->c_opcode & SDHC_COMMAND_INDEX_MASK) << SDHC_COMMAND_INDEX_SHIFT;
1771 
1772 	if (ISSET(cmd->c_flags, SCF_RSP_CRC))
1773 		command |= SDHC_CRC_CHECK_ENABLE;
1774 	if (ISSET(cmd->c_flags, SCF_RSP_IDX))
1775 		command |= SDHC_INDEX_CHECK_ENABLE;
1776 	if (cmd->c_datalen > 0)
1777 		command |= SDHC_DATA_PRESENT_SELECT;
1778 
1779 	if (!ISSET(cmd->c_flags, SCF_RSP_PRESENT))
1780 		command |= SDHC_NO_RESPONSE;
1781 	else if (ISSET(cmd->c_flags, SCF_RSP_136))
1782 		command |= SDHC_RESP_LEN_136;
1783 	else if (ISSET(cmd->c_flags, SCF_RSP_BSY))
1784 		command |= SDHC_RESP_LEN_48_CHK_BUSY;
1785 	else
1786 		command |= SDHC_RESP_LEN_48;
1787 
1788 	/* Wait until command and optionally data inhibit bits are clear. (1.5) */
1789 	pmask = SDHC_CMD_INHIBIT_CMD;
1790 	if (cmd->c_flags & (SCF_CMD_ADTC|SCF_RSP_BSY))
1791 		pmask |= SDHC_CMD_INHIBIT_DAT;
1792 	error = sdhc_wait_state(hp, pmask, 0);
1793 	if (error) {
1794 		(void) sdhc_soft_reset(hp, SDHC_RESET_DAT|SDHC_RESET_CMD);
1795 		device_printf(sc->sc_dev, "command or data phase inhibited\n");
1796 		return error;
1797 	}
1798 
1799 	DPRINTF(1,("%s: writing cmd: blksize=%d blkcnt=%d mode=%04x cmd=%04x\n",
1800 	    HDEVNAME(hp), blksize, blkcount, mode, command));
1801 
1802 	if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED | SDHC_FLAG_USDHC)) {
1803 		blksize |= (MAX(0, PAGE_SHIFT - 12) & SDHC_DMA_BOUNDARY_MASK) <<
1804 		    SDHC_DMA_BOUNDARY_SHIFT;	/* PAGE_SIZE DMA boundary */
1805 	}
1806 
1807 	if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
1808 		/* Alert the user not to remove the card. */
1809 		HSET1(hp, SDHC_HOST_CTL, SDHC_LED_ON);
1810 	}
1811 
1812 	/* Set DMA start address. */
1813 	if (ISSET(hp->flags, SHF_USE_ADMA2_MASK) && cmd->c_data != NULL) {
1814 		for (int seg = 0; seg < cmd->c_dmamap->dm_nsegs; seg++) {
1815 			bus_addr_t paddr =
1816 			    cmd->c_dmamap->dm_segs[seg].ds_addr;
1817 			uint16_t len =
1818 			    cmd->c_dmamap->dm_segs[seg].ds_len == 65536 ?
1819 			    0 : cmd->c_dmamap->dm_segs[seg].ds_len;
1820 			uint16_t attr =
1821 			    SDHC_ADMA2_VALID | SDHC_ADMA2_ACT_TRANS;
1822 			if (seg == cmd->c_dmamap->dm_nsegs - 1) {
1823 				attr |= SDHC_ADMA2_END;
1824 			}
1825 			if (ISSET(hp->flags, SHF_USE_ADMA2_32)) {
1826 				struct sdhc_adma2_descriptor32 *desc =
1827 				    hp->adma2;
1828 				desc[seg].attribute = htole16(attr);
1829 				desc[seg].length = htole16(len);
1830 				desc[seg].address = htole32(paddr);
1831 			} else {
1832 				struct sdhc_adma2_descriptor64 *desc =
1833 				    hp->adma2;
1834 				desc[seg].attribute = htole16(attr);
1835 				desc[seg].length = htole16(len);
1836 				desc[seg].address = htole32(paddr & 0xffffffff);
1837 				desc[seg].address_hi = htole32(
1838 				    (uint64_t)paddr >> 32);
1839 			}
1840 		}
1841 		if (ISSET(hp->flags, SHF_USE_ADMA2_32)) {
1842 			struct sdhc_adma2_descriptor32 *desc = hp->adma2;
1843 			desc[cmd->c_dmamap->dm_nsegs].attribute = htole16(0);
1844 		} else {
1845 			struct sdhc_adma2_descriptor64 *desc = hp->adma2;
1846 			desc[cmd->c_dmamap->dm_nsegs].attribute = htole16(0);
1847 		}
1848 		bus_dmamap_sync(sc->sc_dmat, hp->adma_map, 0, PAGE_SIZE,
1849 		    BUS_DMASYNC_PREWRITE);
1850 
1851 		const bus_addr_t desc_addr = hp->adma_map->dm_segs[0].ds_addr;
1852 		HWRITE4(hp, SDHC_ADMA_SYSTEM_ADDR, desc_addr & 0xffffffff);
1853 		if (ISSET(hp->flags, SHF_USE_ADMA2_64)) {
1854 			HWRITE4(hp, SDHC_ADMA_SYSTEM_ADDR + 4,
1855 			    (uint64_t)desc_addr >> 32);
1856 		}
1857 
1858 		if (ISSET(hp->sc->sc_flags, SDHC_FLAG_USDHC)) {
1859 			HCLR4(hp, SDHC_HOST_CTL, SDHC_USDHC_DMA_SELECT);
1860 			HSET4(hp, SDHC_HOST_CTL, SDHC_USDHC_DMA_SELECT_ADMA2);
1861 		} else {
1862 			HCLR1(hp, SDHC_HOST_CTL, SDHC_DMA_SELECT);
1863 			HSET1(hp, SDHC_HOST_CTL, SDHC_DMA_SELECT_ADMA2);
1864 		}
1865 	} else if (ISSET(mode, SDHC_DMA_ENABLE) &&
1866 	    !ISSET(sc->sc_flags, SDHC_FLAG_EXTERNAL_DMA)) {
1867 		if (ISSET(hp->sc->sc_flags, SDHC_FLAG_USDHC)) {
1868 			HCLR4(hp, SDHC_HOST_CTL, SDHC_USDHC_DMA_SELECT);
1869 		}
1870 		HWRITE4(hp, SDHC_DMA_ADDR, cmd->c_dmamap->dm_segs[0].ds_addr);
1871 	}
1872 
1873 	/*
1874 	 * Start a CPU data transfer.  Writing to the high order byte
1875 	 * of the SDHC_COMMAND register triggers the SD command. (1.5)
1876 	 */
1877 	if (ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) {
1878 		HWRITE4(hp, SDHC_BLOCK_SIZE, blksize | (blkcount << 16));
1879 		HWRITE4(hp, SDHC_ARGUMENT, cmd->c_arg);
1880 		if (ISSET(hp->sc->sc_flags, SDHC_FLAG_USDHC)) {
1881 			/* mode bits is in MIX_CTRL register on uSDHC */
1882 			HWRITE4(hp, SDHC_MIX_CTRL, mode |
1883 			    (HREAD4(hp, SDHC_MIX_CTRL) & ~SDHC_TRANSFER_MODE_MASK));
1884 			if (cmd->c_opcode == MMC_STOP_TRANSMISSION)
1885 				command |= SDHC_COMMAND_TYPE_ABORT;
1886 			HWRITE4(hp, SDHC_TRANSFER_MODE, command << 16);
1887 		} else {
1888 			HWRITE4(hp, SDHC_TRANSFER_MODE, mode | (command << 16));
1889 		}
1890 	} else {
1891 		HWRITE2(hp, SDHC_BLOCK_SIZE, blksize);
1892 		HWRITE2(hp, SDHC_BLOCK_COUNT, blkcount);
1893 		HWRITE4(hp, SDHC_ARGUMENT, cmd->c_arg);
1894 		HWRITE2(hp, SDHC_TRANSFER_MODE, mode);
1895 		HWRITE2(hp, SDHC_COMMAND, command);
1896 	}
1897 
1898 	return 0;
1899 }
1900 
1901 static void
sdhc_transfer_data(struct sdhc_host * hp,struct sdmmc_command * cmd)1902 sdhc_transfer_data(struct sdhc_host *hp, struct sdmmc_command *cmd)
1903 {
1904 	struct sdhc_softc *sc = hp->sc;
1905 	int error;
1906 
1907 	KASSERT(mutex_owned(&hp->intr_lock));
1908 
1909 	DPRINTF(1,("%s: data transfer: resp=%08x datalen=%u\n", HDEVNAME(hp),
1910 	    MMC_R1(cmd->c_resp), cmd->c_datalen));
1911 
1912 #ifdef SDHC_DEBUG
1913 	/* XXX I forgot why I wanted to know when this happens :-( */
1914 	if ((cmd->c_opcode == 52 || cmd->c_opcode == 53) &&
1915 	    ISSET(MMC_R1(cmd->c_resp), 0xcb00)) {
1916 		aprint_error_dev(hp->sc->sc_dev,
1917 		    "CMD52/53 error response flags %#x\n",
1918 		    MMC_R1(cmd->c_resp) & 0xff00);
1919 	}
1920 #endif
1921 
1922 	if (cmd->c_dmamap != NULL) {
1923 		if (hp->sc->sc_vendor_transfer_data_dma != NULL) {
1924 			error = hp->sc->sc_vendor_transfer_data_dma(sc, cmd);
1925 			if (error == 0 && !sdhc_wait_intr(hp,
1926 			    SDHC_TRANSFER_COMPLETE, SDHC_DMA_TIMEOUT, false)) {
1927 				DPRINTF(1,("%s: timeout\n", __func__));
1928 				error = ETIMEDOUT;
1929 			}
1930 		} else {
1931 			error = sdhc_transfer_data_dma(hp, cmd);
1932 		}
1933 	} else
1934 		error = sdhc_transfer_data_pio(hp, cmd);
1935 	if (error)
1936 		cmd->c_error = error;
1937 	SET(cmd->c_flags, SCF_ITSDONE);
1938 
1939 	DPRINTF(1,("%s: data transfer done (error=%d)\n",
1940 	    HDEVNAME(hp), cmd->c_error));
1941 }
1942 
1943 static int
sdhc_transfer_data_dma(struct sdhc_host * hp,struct sdmmc_command * cmd)1944 sdhc_transfer_data_dma(struct sdhc_host *hp, struct sdmmc_command *cmd)
1945 {
1946 	bus_dma_segment_t *dm_segs = cmd->c_dmamap->dm_segs;
1947 	bus_addr_t posaddr;
1948 	bus_addr_t segaddr;
1949 	bus_size_t seglen;
1950 	u_int seg = 0;
1951 	int error = 0;
1952 	int status;
1953 
1954 	KASSERT(mutex_owned(&hp->intr_lock));
1955 	KASSERT(HREAD2(hp, SDHC_NINTR_STATUS_EN) & SDHC_DMA_INTERRUPT);
1956 	KASSERT(HREAD2(hp, SDHC_NINTR_SIGNAL_EN) & SDHC_DMA_INTERRUPT);
1957 	KASSERT(HREAD2(hp, SDHC_NINTR_STATUS_EN) & SDHC_TRANSFER_COMPLETE);
1958 	KASSERT(HREAD2(hp, SDHC_NINTR_SIGNAL_EN) & SDHC_TRANSFER_COMPLETE);
1959 
1960 	for (;;) {
1961 		status = sdhc_wait_intr(hp,
1962 		    SDHC_DMA_INTERRUPT|SDHC_TRANSFER_COMPLETE,
1963 		    SDHC_DMA_TIMEOUT, false);
1964 
1965 		if (status & SDHC_TRANSFER_COMPLETE) {
1966 			break;
1967 		}
1968 		if (!status) {
1969 			DPRINTF(1,("%s: timeout\n", __func__));
1970 			error = ETIMEDOUT;
1971 			break;
1972 		}
1973 
1974 		if (ISSET(hp->flags, SHF_USE_ADMA2_MASK)) {
1975 			continue;
1976 		}
1977 
1978 		if ((status & SDHC_DMA_INTERRUPT) == 0) {
1979 			continue;
1980 		}
1981 
1982 		/* DMA Interrupt (boundary crossing) */
1983 
1984 		segaddr = dm_segs[seg].ds_addr;
1985 		seglen = dm_segs[seg].ds_len;
1986 		posaddr = HREAD4(hp, SDHC_DMA_ADDR);
1987 
1988 		if ((seg == (cmd->c_dmamap->dm_nsegs-1)) && (posaddr == (segaddr + seglen))) {
1989 			continue;
1990 		}
1991 		if ((posaddr >= segaddr) && (posaddr < (segaddr + seglen)))
1992 			HWRITE4(hp, SDHC_DMA_ADDR, posaddr);
1993 		else if ((posaddr >= segaddr) && (posaddr == (segaddr + seglen)) && (seg + 1) < cmd->c_dmamap->dm_nsegs)
1994 			HWRITE4(hp, SDHC_DMA_ADDR, dm_segs[++seg].ds_addr);
1995 		KASSERT(seg < cmd->c_dmamap->dm_nsegs);
1996 	}
1997 
1998 	if (ISSET(hp->flags, SHF_USE_ADMA2_MASK)) {
1999 		bus_dmamap_sync(hp->sc->sc_dmat, hp->adma_map, 0,
2000 		    PAGE_SIZE, BUS_DMASYNC_POSTWRITE);
2001 	}
2002 
2003 	return error;
2004 }
2005 
2006 static int
sdhc_transfer_data_pio(struct sdhc_host * hp,struct sdmmc_command * cmd)2007 sdhc_transfer_data_pio(struct sdhc_host *hp, struct sdmmc_command *cmd)
2008 {
2009 	uint8_t *data = cmd->c_data;
2010 	void (*pio_func)(struct sdhc_host *, uint8_t *, u_int);
2011 	u_int len, datalen;
2012 	u_int imask;
2013 	u_int pmask;
2014 	int error = 0;
2015 
2016 	KASSERT(mutex_owned(&hp->intr_lock));
2017 
2018 	if (ISSET(cmd->c_flags, SCF_CMD_READ)) {
2019 		imask = SDHC_BUFFER_READ_READY;
2020 		pmask = SDHC_BUFFER_READ_ENABLE;
2021 		if (ISSET(hp->sc->sc_flags,
2022 		    SDHC_FLAG_ENHANCED | SDHC_FLAG_USDHC)) {
2023 			pio_func = esdhc_read_data_pio;
2024 		} else {
2025 			pio_func = sdhc_read_data_pio;
2026 		}
2027 	} else {
2028 		imask = SDHC_BUFFER_WRITE_READY;
2029 		pmask = SDHC_BUFFER_WRITE_ENABLE;
2030 		if (ISSET(hp->sc->sc_flags,
2031 		    SDHC_FLAG_ENHANCED | SDHC_FLAG_USDHC)) {
2032 			pio_func = esdhc_write_data_pio;
2033 		} else {
2034 			pio_func = sdhc_write_data_pio;
2035 		}
2036 	}
2037 	datalen = cmd->c_datalen;
2038 
2039 	KASSERT(mutex_owned(&hp->intr_lock));
2040 	KASSERT(HREAD2(hp, SDHC_NINTR_STATUS_EN) & imask);
2041 	KASSERT(HREAD2(hp, SDHC_NINTR_STATUS_EN) & SDHC_TRANSFER_COMPLETE);
2042 	KASSERT(HREAD2(hp, SDHC_NINTR_SIGNAL_EN) & SDHC_TRANSFER_COMPLETE);
2043 
2044 	while (datalen > 0) {
2045 		if (!ISSET(HREAD4(hp, SDHC_PRESENT_STATE), pmask)) {
2046 			if (ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) {
2047 				HSET4(hp, SDHC_NINTR_SIGNAL_EN, imask);
2048 			} else {
2049 				HSET2(hp, SDHC_NINTR_SIGNAL_EN, imask);
2050 			}
2051 			if (!sdhc_wait_intr(hp, imask, SDHC_BUFFER_TIMEOUT, false)) {
2052 				DPRINTF(1,("%s: timeout\n", __func__));
2053 				error = ETIMEDOUT;
2054 				break;
2055 			}
2056 
2057 			error = sdhc_wait_state(hp, pmask, pmask);
2058 			if (error)
2059 				break;
2060 		}
2061 
2062 		len = MIN(datalen, cmd->c_blklen);
2063 		(*pio_func)(hp, data, len);
2064 		DPRINTF(2,("%s: pio data transfer %u @ %p\n",
2065 		    HDEVNAME(hp), len, data));
2066 
2067 		data += len;
2068 		datalen -= len;
2069 	}
2070 
2071 	if (error == 0 && !sdhc_wait_intr(hp, SDHC_TRANSFER_COMPLETE,
2072 	    SDHC_TRANSFER_TIMEOUT, false)) {
2073 		DPRINTF(1,("%s: timeout for transfer\n", __func__));
2074 		error = ETIMEDOUT;
2075 	}
2076 
2077 	return error;
2078 }
2079 
2080 static void
sdhc_read_data_pio(struct sdhc_host * hp,uint8_t * data,u_int datalen)2081 sdhc_read_data_pio(struct sdhc_host *hp, uint8_t *data, u_int datalen)
2082 {
2083 
2084 	if (((__uintptr_t)data & 3) == 0) {
2085 		while (datalen > 3) {
2086 			*(uint32_t *)data = le32toh(HREAD4(hp, SDHC_DATA));
2087 			data += 4;
2088 			datalen -= 4;
2089 		}
2090 		if (datalen > 1) {
2091 			*(uint16_t *)data = le16toh(HREAD2(hp, SDHC_DATA));
2092 			data += 2;
2093 			datalen -= 2;
2094 		}
2095 		if (datalen > 0) {
2096 			*data = HREAD1(hp, SDHC_DATA);
2097 			data += 1;
2098 			datalen -= 1;
2099 		}
2100 	} else if (((__uintptr_t)data & 1) == 0) {
2101 		while (datalen > 1) {
2102 			*(uint16_t *)data = le16toh(HREAD2(hp, SDHC_DATA));
2103 			data += 2;
2104 			datalen -= 2;
2105 		}
2106 		if (datalen > 0) {
2107 			*data = HREAD1(hp, SDHC_DATA);
2108 			data += 1;
2109 			datalen -= 1;
2110 		}
2111 	} else {
2112 		while (datalen > 0) {
2113 			*data = HREAD1(hp, SDHC_DATA);
2114 			data += 1;
2115 			datalen -= 1;
2116 		}
2117 	}
2118 }
2119 
2120 static void
sdhc_write_data_pio(struct sdhc_host * hp,uint8_t * data,u_int datalen)2121 sdhc_write_data_pio(struct sdhc_host *hp, uint8_t *data, u_int datalen)
2122 {
2123 
2124 	if (((__uintptr_t)data & 3) == 0) {
2125 		while (datalen > 3) {
2126 			HWRITE4(hp, SDHC_DATA, htole32(*(uint32_t *)data));
2127 			data += 4;
2128 			datalen -= 4;
2129 		}
2130 		if (datalen > 1) {
2131 			HWRITE2(hp, SDHC_DATA, htole16(*(uint16_t *)data));
2132 			data += 2;
2133 			datalen -= 2;
2134 		}
2135 		if (datalen > 0) {
2136 			HWRITE1(hp, SDHC_DATA, *data);
2137 			data += 1;
2138 			datalen -= 1;
2139 		}
2140 	} else if (((__uintptr_t)data & 1) == 0) {
2141 		while (datalen > 1) {
2142 			HWRITE2(hp, SDHC_DATA, htole16(*(uint16_t *)data));
2143 			data += 2;
2144 			datalen -= 2;
2145 		}
2146 		if (datalen > 0) {
2147 			HWRITE1(hp, SDHC_DATA, *data);
2148 			data += 1;
2149 			datalen -= 1;
2150 		}
2151 	} else {
2152 		while (datalen > 0) {
2153 			HWRITE1(hp, SDHC_DATA, *data);
2154 			data += 1;
2155 			datalen -= 1;
2156 		}
2157 	}
2158 }
2159 
2160 static void
esdhc_read_data_pio(struct sdhc_host * hp,uint8_t * data,u_int datalen)2161 esdhc_read_data_pio(struct sdhc_host *hp, uint8_t *data, u_int datalen)
2162 {
2163 	uint16_t status = HREAD2(hp, SDHC_NINTR_STATUS);
2164 	uint32_t v;
2165 
2166 	const size_t watermark = (HREAD4(hp, SDHC_WATERMARK_LEVEL) >> SDHC_WATERMARK_READ_SHIFT) & SDHC_WATERMARK_READ_MASK;
2167 	size_t count = 0;
2168 
2169 	while (datalen > 3 && !ISSET(status, SDHC_TRANSFER_COMPLETE)) {
2170 		if (count == 0) {
2171 			/*
2172 			 * If we've drained "watermark" words, we need to wait
2173 			 * a little bit so the read FIFO can refill.
2174 			 */
2175 			sdmmc_delay(10);
2176 			count = watermark;
2177 		}
2178 		v = HREAD4(hp, SDHC_DATA);
2179 		v = le32toh(v);
2180 		*(uint32_t *)data = v;
2181 		data += 4;
2182 		datalen -= 4;
2183 		status = HREAD2(hp, SDHC_NINTR_STATUS);
2184 		count--;
2185 	}
2186 	if (datalen > 0 && !ISSET(status, SDHC_TRANSFER_COMPLETE)) {
2187 		if (count == 0) {
2188 			sdmmc_delay(10);
2189 		}
2190 		v = HREAD4(hp, SDHC_DATA);
2191 		v = le32toh(v);
2192 		do {
2193 			*data++ = v;
2194 			v >>= 8;
2195 		} while (--datalen > 0);
2196 	}
2197 }
2198 
2199 static void
esdhc_write_data_pio(struct sdhc_host * hp,uint8_t * data,u_int datalen)2200 esdhc_write_data_pio(struct sdhc_host *hp, uint8_t *data, u_int datalen)
2201 {
2202 	uint16_t status = HREAD2(hp, SDHC_NINTR_STATUS);
2203 	uint32_t v;
2204 
2205 	const size_t watermark = (HREAD4(hp, SDHC_WATERMARK_LEVEL) >> SDHC_WATERMARK_WRITE_SHIFT) & SDHC_WATERMARK_WRITE_MASK;
2206 	size_t count = watermark;
2207 
2208 	while (datalen > 3 && !ISSET(status, SDHC_TRANSFER_COMPLETE)) {
2209 		if (count == 0) {
2210 			sdmmc_delay(10);
2211 			count = watermark;
2212 		}
2213 		v = *(uint32_t *)data;
2214 		v = htole32(v);
2215 		HWRITE4(hp, SDHC_DATA, v);
2216 		data += 4;
2217 		datalen -= 4;
2218 		status = HREAD2(hp, SDHC_NINTR_STATUS);
2219 		count--;
2220 	}
2221 	if (datalen > 0 && !ISSET(status, SDHC_TRANSFER_COMPLETE)) {
2222 		if (count == 0) {
2223 			sdmmc_delay(10);
2224 		}
2225 		v = *(uint32_t *)data;
2226 		v = htole32(v);
2227 		HWRITE4(hp, SDHC_DATA, v);
2228 	}
2229 }
2230 
2231 /* Prepare for another command. */
2232 static int
sdhc_soft_reset(struct sdhc_host * hp,int mask)2233 sdhc_soft_reset(struct sdhc_host *hp, int mask)
2234 {
2235 	int timo;
2236 
2237 	KASSERT(mutex_owned(&hp->intr_lock));
2238 
2239 	DPRINTF(1,("%s: software reset reg=%08x\n", HDEVNAME(hp), mask));
2240 
2241 	/* Request the reset.  */
2242 	HWRITE1(hp, SDHC_SOFTWARE_RESET, mask);
2243 
2244 	/*
2245 	 * If necessary, wait for the controller to set the bits to
2246 	 * acknowledge the reset.
2247 	 */
2248 	if (ISSET(hp->sc->sc_flags, SDHC_FLAG_WAIT_RESET) &&
2249 	    ISSET(mask, (SDHC_RESET_DAT | SDHC_RESET_CMD))) {
2250 		for (timo = 10000; timo > 0; timo--) {
2251 			if (ISSET(HREAD1(hp, SDHC_SOFTWARE_RESET), mask))
2252 				break;
2253 			/* Short delay because I worry we may miss it...  */
2254 			sdmmc_delay(1);
2255 		}
2256 		if (timo == 0) {
2257 			DPRINTF(1,("%s: timeout for reset on\n", __func__));
2258 			return ETIMEDOUT;
2259 		}
2260 	}
2261 
2262 	/*
2263 	 * Wait for the controller to clear the bits to indicate that
2264 	 * the reset has completed.
2265 	 */
2266 	for (timo = 10; timo > 0; timo--) {
2267 		if (!ISSET(HREAD1(hp, SDHC_SOFTWARE_RESET), mask))
2268 			break;
2269 		sdmmc_delay(10000);
2270 	}
2271 	if (timo == 0) {
2272 		DPRINTF(1,("%s: timeout reg=%08x\n", HDEVNAME(hp),
2273 		    HREAD1(hp, SDHC_SOFTWARE_RESET)));
2274 		return ETIMEDOUT;
2275 	}
2276 
2277 	if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
2278 		HSET4(hp, SDHC_DMA_CTL, SDHC_DMA_SNOOP);
2279 	}
2280 
2281 	return 0;
2282 }
2283 
2284 static int
sdhc_wait_intr(struct sdhc_host * hp,int mask,int timo,bool probing)2285 sdhc_wait_intr(struct sdhc_host *hp, int mask, int timo, bool probing)
2286 {
2287 	int status, error, nointr;
2288 
2289 	KASSERT(mutex_owned(&hp->intr_lock));
2290 
2291 	mask |= SDHC_ERROR_INTERRUPT;
2292 
2293 	nointr = 0;
2294 	status = hp->intr_status & mask;
2295 	while (status == 0) {
2296 		if (cv_timedwait(&hp->intr_cv, &hp->intr_lock, timo)
2297 		    == EWOULDBLOCK) {
2298 			nointr = 1;
2299 			break;
2300 		}
2301 		status = hp->intr_status & mask;
2302 	}
2303 	error = hp->intr_error_status;
2304 
2305 	DPRINTF(2,("%s: intr status %#x error %#x\n", HDEVNAME(hp), status,
2306 	    error));
2307 
2308 	hp->intr_status &= ~status;
2309 	hp->intr_error_status &= ~error;
2310 
2311 	if (ISSET(status, SDHC_ERROR_INTERRUPT)) {
2312 		if (ISSET(error, SDHC_DMA_ERROR))
2313 			device_printf(hp->sc->sc_dev,"dma error\n");
2314 		if (ISSET(error, SDHC_ADMA_ERROR))
2315 			device_printf(hp->sc->sc_dev,"adma error\n");
2316 		if (ISSET(error, SDHC_AUTO_CMD12_ERROR))
2317 			device_printf(hp->sc->sc_dev,"auto_cmd12 error\n");
2318 		if (ISSET(error, SDHC_CURRENT_LIMIT_ERROR))
2319 			device_printf(hp->sc->sc_dev,"current limit error\n");
2320 		if (ISSET(error, SDHC_DATA_END_BIT_ERROR))
2321 			device_printf(hp->sc->sc_dev,"data end bit error\n");
2322 		if (ISSET(error, SDHC_DATA_CRC_ERROR))
2323 			device_printf(hp->sc->sc_dev,"data crc error\n");
2324 		if (ISSET(error, SDHC_DATA_TIMEOUT_ERROR))
2325 			device_printf(hp->sc->sc_dev,"data timeout error\n");
2326 		if (ISSET(error, SDHC_CMD_INDEX_ERROR))
2327 			device_printf(hp->sc->sc_dev,"cmd index error\n");
2328 		if (ISSET(error, SDHC_CMD_END_BIT_ERROR))
2329 			device_printf(hp->sc->sc_dev,"cmd end bit error\n");
2330 		if (ISSET(error, SDHC_CMD_CRC_ERROR))
2331 			device_printf(hp->sc->sc_dev,"cmd crc error\n");
2332 		if (ISSET(error, SDHC_CMD_TIMEOUT_ERROR)) {
2333 			if (!probing)
2334 				device_printf(hp->sc->sc_dev,"cmd timeout error\n");
2335 #ifdef SDHC_DEBUG
2336 			else if (sdhcdebug > 0)
2337 				device_printf(hp->sc->sc_dev,"cmd timeout (expected)\n");
2338 #endif
2339 		}
2340 		if ((error & ~SDHC_EINTR_STATUS_MASK) != 0)
2341 			device_printf(hp->sc->sc_dev,"vendor error %#x\n",
2342 				(error & ~SDHC_EINTR_STATUS_MASK));
2343 		if (error == 0)
2344 			device_printf(hp->sc->sc_dev,"no error\n");
2345 
2346 		/* Command timeout has higher priority than command complete. */
2347 		if (ISSET(error, SDHC_CMD_TIMEOUT_ERROR))
2348 			CLR(status, SDHC_COMMAND_COMPLETE);
2349 
2350 		/* Transfer complete has higher priority than data timeout. */
2351 		if (ISSET(status, SDHC_TRANSFER_COMPLETE))
2352 			CLR(error, SDHC_DATA_TIMEOUT_ERROR);
2353 	}
2354 
2355 	if (nointr ||
2356 	    (ISSET(status, SDHC_ERROR_INTERRUPT) && error)) {
2357 		if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED))
2358 			(void)sdhc_soft_reset(hp, SDHC_RESET_CMD|SDHC_RESET_DAT);
2359 		hp->intr_error_status = 0;
2360 		status = 0;
2361 	}
2362 
2363 	return status;
2364 }
2365 
2366 /*
2367  * Established by attachment driver at interrupt priority IPL_SDMMC.
2368  */
2369 int
sdhc_intr(void * arg)2370 sdhc_intr(void *arg)
2371 {
2372 	struct sdhc_softc *sc = (struct sdhc_softc *)arg;
2373 	struct sdhc_host *hp;
2374 	int done = 0;
2375 	uint16_t status;
2376 	uint16_t error;
2377 
2378 	/* We got an interrupt, but we don't know from which slot. */
2379 	for (size_t host = 0; host < sc->sc_nhosts; host++) {
2380 		hp = sc->sc_host[host];
2381 		if (hp == NULL)
2382 			continue;
2383 
2384 		mutex_enter(&hp->intr_lock);
2385 
2386 		if (ISSET(sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) {
2387 			/* Find out which interrupts are pending. */
2388 			uint32_t xstatus = HREAD4(hp, SDHC_NINTR_STATUS);
2389 			status = xstatus;
2390 			error = xstatus >> 16;
2391 			if (ISSET(sc->sc_flags, SDHC_FLAG_USDHC) &&
2392 			    (xstatus & SDHC_TRANSFER_COMPLETE) &&
2393 			    !(xstatus & SDHC_DMA_INTERRUPT)) {
2394 				/* read again due to uSDHC errata */
2395 				status = xstatus = HREAD4(hp,
2396 				    SDHC_NINTR_STATUS);
2397 				error = xstatus >> 16;
2398 			}
2399 			if (ISSET(sc->sc_flags,
2400 			    SDHC_FLAG_ENHANCED | SDHC_FLAG_USDHC)) {
2401 				if ((error & SDHC_NINTR_STATUS_MASK) != 0)
2402 					SET(status, SDHC_ERROR_INTERRUPT);
2403 			}
2404 			if (error)
2405 				xstatus |= SDHC_ERROR_INTERRUPT;
2406 			else if (!ISSET(status, SDHC_NINTR_STATUS_MASK))
2407 				goto next_port; /* no interrupt for us */
2408 			/* Acknowledge the interrupts we are about to handle. */
2409 			HWRITE4(hp, SDHC_NINTR_STATUS, xstatus);
2410 		} else {
2411 			/* Find out which interrupts are pending. */
2412 			error = 0;
2413 			status = HREAD2(hp, SDHC_NINTR_STATUS);
2414 			if (!ISSET(status, SDHC_NINTR_STATUS_MASK))
2415 				goto next_port; /* no interrupt for us */
2416 			/* Acknowledge the interrupts we are about to handle. */
2417 			HWRITE2(hp, SDHC_NINTR_STATUS, status);
2418 			if (ISSET(status, SDHC_ERROR_INTERRUPT)) {
2419 				/* Acknowledge error interrupts. */
2420 				error = HREAD2(hp, SDHC_EINTR_STATUS);
2421 				HWRITE2(hp, SDHC_EINTR_STATUS, error);
2422 			}
2423 		}
2424 
2425 		DPRINTF(2,("%s: interrupt status=%x error=%x\n", HDEVNAME(hp),
2426 		    status, error));
2427 
2428 		/* Claim this interrupt. */
2429 		done = 1;
2430 
2431 		if (ISSET(status, SDHC_ERROR_INTERRUPT) &&
2432 		    ISSET(error, SDHC_ADMA_ERROR)) {
2433 			uint8_t adma_err = HREAD1(hp, SDHC_ADMA_ERROR_STATUS);
2434 			printf("%s: ADMA error, status %02x\n", HDEVNAME(hp),
2435 			    adma_err);
2436 		}
2437 
2438 		/*
2439 		 * Wake up the sdmmc event thread to scan for cards.
2440 		 */
2441 		if (ISSET(status, SDHC_CARD_REMOVAL|SDHC_CARD_INSERTION)) {
2442 			if (hp->sdmmc != NULL) {
2443 				sdmmc_needs_discover(hp->sdmmc);
2444 			}
2445 			if (ISSET(sc->sc_flags,
2446 			    SDHC_FLAG_ENHANCED | SDHC_FLAG_USDHC)) {
2447 				HCLR4(hp, SDHC_NINTR_STATUS_EN,
2448 				    status & (SDHC_CARD_REMOVAL|SDHC_CARD_INSERTION));
2449 				HCLR4(hp, SDHC_NINTR_SIGNAL_EN,
2450 				    status & (SDHC_CARD_REMOVAL|SDHC_CARD_INSERTION));
2451 			}
2452 		}
2453 
2454 		/*
2455 		 * Schedule re-tuning process (UHS).
2456 		 */
2457 		if (ISSET(status, SDHC_RETUNING_EVENT)) {
2458 			atomic_swap_uint(&hp->tuning_timer_pending, 1);
2459 		}
2460 
2461 		/*
2462 		 * Wake up the blocking process to service command
2463 		 * related interrupt(s).
2464 		 */
2465 		if (ISSET(status, SDHC_COMMAND_COMPLETE|SDHC_ERROR_INTERRUPT|
2466 		    SDHC_BUFFER_READ_READY|SDHC_BUFFER_WRITE_READY|
2467 		    SDHC_TRANSFER_COMPLETE|SDHC_DMA_INTERRUPT)) {
2468 			hp->intr_error_status |= error;
2469 			hp->intr_status |= status;
2470 			if (ISSET(sc->sc_flags,
2471 			    SDHC_FLAG_ENHANCED | SDHC_FLAG_USDHC)) {
2472 				HCLR4(hp, SDHC_NINTR_SIGNAL_EN,
2473 				    status & (SDHC_BUFFER_READ_READY|SDHC_BUFFER_WRITE_READY));
2474 			}
2475 			cv_broadcast(&hp->intr_cv);
2476 		}
2477 
2478 		/*
2479 		 * Service SD card interrupts.
2480 		 */
2481 		if (!ISSET(sc->sc_flags, SDHC_FLAG_ENHANCED | SDHC_FLAG_USDHC)
2482 		    && ISSET(status, SDHC_CARD_INTERRUPT)) {
2483 			DPRINTF(0,("%s: card interrupt\n", HDEVNAME(hp)));
2484 			HCLR2(hp, SDHC_NINTR_STATUS_EN, SDHC_CARD_INTERRUPT);
2485 			sdmmc_card_intr(hp->sdmmc);
2486 		}
2487 next_port:
2488 		mutex_exit(&hp->intr_lock);
2489 	}
2490 
2491 	return done;
2492 }
2493 
2494 kmutex_t *
sdhc_host_lock(struct sdhc_host * hp)2495 sdhc_host_lock(struct sdhc_host *hp)
2496 {
2497 	return &hp->intr_lock;
2498 }
2499 
2500 uint8_t
sdhc_host_read_1(struct sdhc_host * hp,int reg)2501 sdhc_host_read_1(struct sdhc_host *hp, int reg)
2502 {
2503 	return HREAD1(hp, reg);
2504 }
2505 
2506 uint16_t
sdhc_host_read_2(struct sdhc_host * hp,int reg)2507 sdhc_host_read_2(struct sdhc_host *hp, int reg)
2508 {
2509 	return HREAD2(hp, reg);
2510 }
2511 
2512 uint32_t
sdhc_host_read_4(struct sdhc_host * hp,int reg)2513 sdhc_host_read_4(struct sdhc_host *hp, int reg)
2514 {
2515 	return HREAD4(hp, reg);
2516 }
2517 
2518 void
sdhc_host_write_1(struct sdhc_host * hp,int reg,uint8_t val)2519 sdhc_host_write_1(struct sdhc_host *hp, int reg, uint8_t val)
2520 {
2521 	HWRITE1(hp, reg, val);
2522 }
2523 
2524 void
sdhc_host_write_2(struct sdhc_host * hp,int reg,uint16_t val)2525 sdhc_host_write_2(struct sdhc_host *hp, int reg, uint16_t val)
2526 {
2527 	HWRITE2(hp, reg, val);
2528 }
2529 
2530 void
sdhc_host_write_4(struct sdhc_host * hp,int reg,uint32_t val)2531 sdhc_host_write_4(struct sdhc_host *hp, int reg, uint32_t val)
2532 {
2533 	HWRITE4(hp, reg, val);
2534 }
2535 
2536 #ifdef SDHC_DEBUG
2537 void
sdhc_dump_regs(struct sdhc_host * hp)2538 sdhc_dump_regs(struct sdhc_host *hp)
2539 {
2540 
2541 	printf("0x%02x PRESENT_STATE:    %x\n", SDHC_PRESENT_STATE,
2542 	    HREAD4(hp, SDHC_PRESENT_STATE));
2543 	if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED))
2544 		printf("0x%02x POWER_CTL:        %x\n", SDHC_POWER_CTL,
2545 		    HREAD1(hp, SDHC_POWER_CTL));
2546 	printf("0x%02x NINTR_STATUS:     %x\n", SDHC_NINTR_STATUS,
2547 	    HREAD2(hp, SDHC_NINTR_STATUS));
2548 	printf("0x%02x EINTR_STATUS:     %x\n", SDHC_EINTR_STATUS,
2549 	    HREAD2(hp, SDHC_EINTR_STATUS));
2550 	printf("0x%02x NINTR_STATUS_EN:  %x\n", SDHC_NINTR_STATUS_EN,
2551 	    HREAD2(hp, SDHC_NINTR_STATUS_EN));
2552 	printf("0x%02x EINTR_STATUS_EN:  %x\n", SDHC_EINTR_STATUS_EN,
2553 	    HREAD2(hp, SDHC_EINTR_STATUS_EN));
2554 	printf("0x%02x NINTR_SIGNAL_EN:  %x\n", SDHC_NINTR_SIGNAL_EN,
2555 	    HREAD2(hp, SDHC_NINTR_SIGNAL_EN));
2556 	printf("0x%02x EINTR_SIGNAL_EN:  %x\n", SDHC_EINTR_SIGNAL_EN,
2557 	    HREAD2(hp, SDHC_EINTR_SIGNAL_EN));
2558 	printf("0x%02x CAPABILITIES:     %x\n", SDHC_CAPABILITIES,
2559 	    HREAD4(hp, SDHC_CAPABILITIES));
2560 	printf("0x%02x MAX_CAPABILITIES: %x\n", SDHC_MAX_CAPABILITIES,
2561 	    HREAD4(hp, SDHC_MAX_CAPABILITIES));
2562 }
2563 #endif
2564