xref: /netbsd-src/sys/dev/ic/rt2661.c (revision 076e35792dd3cbda10d623a5f694d79c3a305d2c)
1 /*	$NetBSD: rt2661.c,v 1.44 2021/06/16 00:21:18 riastradh Exp $	*/
2 /*	$OpenBSD: rt2661.c,v 1.17 2006/05/01 08:41:11 damien Exp $	*/
3 /*	$FreeBSD: rt2560.c,v 1.5 2006/06/02 19:59:31 csjp Exp $	*/
4 
5 /*-
6  * Copyright (c) 2006
7  *	Damien Bergamini <damien.bergamini@free.fr>
8  *
9  * Permission to use, copy, modify, and distribute this software for any
10  * purpose with or without fee is hereby granted, provided that the above
11  * copyright notice and this permission notice appear in all copies.
12  *
13  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
14  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
15  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
16  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
17  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
18  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
19  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
20  */
21 
22 /*-
23  * Ralink Technology RT2561, RT2561S and RT2661 chipset driver
24  * http://www.ralinktech.com/
25  */
26 
27 #include <sys/cdefs.h>
28 __KERNEL_RCSID(0, "$NetBSD: rt2661.c,v 1.44 2021/06/16 00:21:18 riastradh Exp $");
29 
30 
31 #include <sys/param.h>
32 #include <sys/sockio.h>
33 #include <sys/sysctl.h>
34 #include <sys/mbuf.h>
35 #include <sys/kernel.h>
36 #include <sys/socket.h>
37 #include <sys/systm.h>
38 #include <sys/malloc.h>
39 #include <sys/callout.h>
40 #include <sys/conf.h>
41 #include <sys/device.h>
42 
43 #include <sys/bus.h>
44 #include <machine/endian.h>
45 #include <sys/intr.h>
46 
47 #include <net/bpf.h>
48 #include <net/if.h>
49 #include <net/if_arp.h>
50 #include <net/if_dl.h>
51 #include <net/if_media.h>
52 #include <net/if_types.h>
53 #include <net/if_ether.h>
54 
55 #include <netinet/in.h>
56 #include <netinet/in_systm.h>
57 #include <netinet/in_var.h>
58 #include <netinet/ip.h>
59 
60 #include <net80211/ieee80211_var.h>
61 #include <net80211/ieee80211_amrr.h>
62 #include <net80211/ieee80211_radiotap.h>
63 
64 #include <dev/ic/rt2661reg.h>
65 #include <dev/ic/rt2661var.h>
66 
67 #include <dev/pci/pcireg.h>
68 #include <dev/pci/pcivar.h>
69 #include <dev/pci/pcidevs.h>
70 
71 #include <dev/firmload.h>
72 
73 #ifdef RAL_DEBUG
74 #define DPRINTF(x)	do { if (rt2661_debug > 0) printf x; } while (0)
75 #define DPRINTFN(n, x)	do { if (rt2661_debug >= (n)) printf x; } while (0)
76 int rt2661_debug = 0;
77 #else
78 #define DPRINTF(x)
79 #define DPRINTFN(n, x)
80 #endif
81 
82 static int	rt2661_alloc_tx_ring(struct rt2661_softc *,
83 		    struct rt2661_tx_ring *, int);
84 static void	rt2661_reset_tx_ring(struct rt2661_softc *,
85 		    struct rt2661_tx_ring *);
86 static void	rt2661_free_tx_ring(struct rt2661_softc *,
87 		    struct rt2661_tx_ring *);
88 static int	rt2661_alloc_rx_ring(struct rt2661_softc *,
89 		    struct rt2661_rx_ring *, int);
90 static void	rt2661_reset_rx_ring(struct rt2661_softc *,
91 		    struct rt2661_rx_ring *);
92 static void	rt2661_free_rx_ring(struct rt2661_softc *,
93 		    struct rt2661_rx_ring *);
94 static struct ieee80211_node *
95 		rt2661_node_alloc(struct ieee80211_node_table *);
96 static int	rt2661_media_change(struct ifnet *);
97 static void	rt2661_next_scan(void *);
98 static void	rt2661_iter_func(void *, struct ieee80211_node *);
99 static void	rt2661_updatestats(void *);
100 static void	rt2661_newassoc(struct ieee80211_node *, int);
101 static int	rt2661_newstate(struct ieee80211com *, enum ieee80211_state,
102 		    int);
103 static uint16_t	rt2661_eeprom_read(struct rt2661_softc *, uint8_t);
104 static void	rt2661_tx_intr(struct rt2661_softc *);
105 static void	rt2661_tx_dma_intr(struct rt2661_softc *,
106 		    struct rt2661_tx_ring *);
107 static void	rt2661_rx_intr(struct rt2661_softc *);
108 static void	rt2661_mcu_beacon_expire(struct rt2661_softc *);
109 static void	rt2661_mcu_wakeup(struct rt2661_softc *);
110 static void	rt2661_mcu_cmd_intr(struct rt2661_softc *);
111 int		rt2661_intr(void *);
112 static uint8_t	rt2661_rxrate(struct rt2661_rx_desc *);
113 static int	rt2661_ack_rate(struct ieee80211com *, int);
114 static uint16_t	rt2661_txtime(int, int, uint32_t);
115 static uint8_t	rt2661_plcp_signal(int);
116 static void	rt2661_setup_tx_desc(struct rt2661_softc *,
117 		    struct rt2661_tx_desc *, uint32_t, uint16_t, int, int,
118 		    const bus_dma_segment_t *, int, int);
119 static int	rt2661_tx_mgt(struct rt2661_softc *, struct mbuf *,
120 		    struct ieee80211_node *);
121 static struct mbuf *
122 		rt2661_get_rts(struct rt2661_softc *,
123 		    struct ieee80211_frame *, uint16_t);
124 static int	rt2661_tx_data(struct rt2661_softc *, struct mbuf *,
125 		    struct ieee80211_node *, int);
126 static void	rt2661_start(struct ifnet *);
127 static void	rt2661_watchdog(struct ifnet *);
128 static int	rt2661_reset(struct ifnet *);
129 static int	rt2661_ioctl(struct ifnet *, u_long, void *);
130 static void	rt2661_bbp_write(struct rt2661_softc *, uint8_t, uint8_t);
131 static uint8_t	rt2661_bbp_read(struct rt2661_softc *, uint8_t);
132 static void	rt2661_rf_write(struct rt2661_softc *, uint8_t, uint32_t);
133 static int	rt2661_tx_cmd(struct rt2661_softc *, uint8_t, uint16_t);
134 static void	rt2661_select_antenna(struct rt2661_softc *);
135 static void	rt2661_enable_mrr(struct rt2661_softc *);
136 static void	rt2661_set_txpreamble(struct rt2661_softc *);
137 static void	rt2661_set_basicrates(struct rt2661_softc *,
138 			const struct ieee80211_rateset *);
139 static void	rt2661_select_band(struct rt2661_softc *,
140 		    struct ieee80211_channel *);
141 static void	rt2661_set_chan(struct rt2661_softc *,
142 		    struct ieee80211_channel *);
143 static void	rt2661_set_bssid(struct rt2661_softc *, const uint8_t *);
144 static void	rt2661_set_macaddr(struct rt2661_softc *, const uint8_t *);
145 static void	rt2661_update_promisc(struct rt2661_softc *);
146 #if 0
147 static int	rt2661_wme_update(struct ieee80211com *);
148 #endif
149 
150 static void	rt2661_updateslot(struct ifnet *);
151 static void	rt2661_set_slottime(struct rt2661_softc *);
152 static const char *
153 		rt2661_get_rf(int);
154 static void	rt2661_read_eeprom(struct rt2661_softc *);
155 static int	rt2661_bbp_init(struct rt2661_softc *);
156 static int     	rt2661_init(struct ifnet *);
157 static void	rt2661_stop(struct ifnet *, int);
158 static int	rt2661_load_microcode(struct rt2661_softc *, const uint8_t *,
159 		    int);
160 static void	rt2661_rx_tune(struct rt2661_softc *);
161 #ifdef notyet
162 static void	rt2661_radar_start(struct rt2661_softc *);
163 static int	rt2661_radar_stop(struct rt2661_softc *);
164 #endif
165 static int	rt2661_prepare_beacon(struct rt2661_softc *);
166 static void	rt2661_enable_tsf_sync(struct rt2661_softc *);
167 static int	rt2661_get_rssi(struct rt2661_softc *, uint8_t);
168 static void	rt2661_softintr(void *);
169 
170 static const struct {
171 	uint32_t	reg;
172 	uint32_t	val;
173 } rt2661_def_mac[] = {
174 	RT2661_DEF_MAC
175 };
176 
177 static const struct {
178 	uint8_t	reg;
179 	uint8_t	val;
180 } rt2661_def_bbp[] = {
181 	RT2661_DEF_BBP
182 };
183 
184 static const struct rfprog {
185 	uint8_t		chan;
186 	uint32_t	r1, r2, r3, r4;
187 } rt2661_rf5225_1[] = {
188 	RT2661_RF5225_1
189 }, rt2661_rf5225_2[] = {
190 	RT2661_RF5225_2
191 };
192 
193 int
rt2661_attach(void * xsc,int id)194 rt2661_attach(void *xsc, int id)
195 {
196 	struct rt2661_softc *sc = xsc;
197 	struct ieee80211com *ic = &sc->sc_ic;
198 	struct ifnet *ifp = &sc->sc_if;
199 	uint32_t val;
200 	int error, i, ntries;
201 
202 	sc->sc_id = id;
203 
204 	sc->amrr.amrr_min_success_threshold =  1;
205 	sc->amrr.amrr_max_success_threshold = 15;
206 	callout_init(&sc->scan_ch, 0);
207 	callout_init(&sc->amrr_ch, 0);
208 
209 	/* wait for NIC to initialize */
210 	for (ntries = 0; ntries < 1000; ntries++) {
211 		if ((val = RAL_READ(sc, RT2661_MAC_CSR0)) != 0)
212 			break;
213 		DELAY(1000);
214 	}
215 	if (ntries == 1000) {
216 		aprint_error_dev(sc->sc_dev, "timeout waiting for NIC to initialize\n");
217 		return EIO;
218 	}
219 
220 	/* retrieve RF rev. no and various other things from EEPROM */
221 	rt2661_read_eeprom(sc);
222 	aprint_normal_dev(sc->sc_dev, "802.11 address %s\n",
223 	    ether_sprintf(ic->ic_myaddr));
224 
225 	aprint_normal_dev(sc->sc_dev, "MAC/BBP RT%X, RF %s\n", val,
226 	    rt2661_get_rf(sc->rf_rev));
227 
228 	sc->sc_soft_ih = softint_establish(SOFTINT_NET, rt2661_softintr, sc);
229 	if (sc->sc_soft_ih == NULL) {
230 		aprint_error_dev(sc->sc_dev, "could not establish softint\n");
231 		goto fail0;
232 	}
233 
234 	/*
235 	 * Allocate Tx and Rx rings.
236 	 */
237 	error = rt2661_alloc_tx_ring(sc, &sc->txq[0], RT2661_TX_RING_COUNT);
238 	if (error != 0) {
239 		aprint_error_dev(sc->sc_dev, "could not allocate Tx ring 0\n");
240 		goto fail1;
241 	}
242 
243 	error = rt2661_alloc_tx_ring(sc, &sc->txq[1], RT2661_TX_RING_COUNT);
244 	if (error != 0) {
245 		aprint_error_dev(sc->sc_dev, "could not allocate Tx ring 1\n");
246 		goto fail2;
247 	}
248 
249 	error = rt2661_alloc_tx_ring(sc, &sc->txq[2], RT2661_TX_RING_COUNT);
250 	if (error != 0) {
251 		aprint_error_dev(sc->sc_dev, "could not allocate Tx ring 2\n");
252 		goto fail3;
253 	}
254 
255 	error = rt2661_alloc_tx_ring(sc, &sc->txq[3], RT2661_TX_RING_COUNT);
256 	if (error != 0) {
257 		aprint_error_dev(sc->sc_dev, "could not allocate Tx ring 3\n");
258 		goto fail4;
259 	}
260 
261 	error = rt2661_alloc_tx_ring(sc, &sc->mgtq, RT2661_MGT_RING_COUNT);
262 	if (error != 0) {
263 		aprint_error_dev(sc->sc_dev, "could not allocate Mgt ring\n");
264 		goto fail5;
265 	}
266 
267 	error = rt2661_alloc_rx_ring(sc, &sc->rxq, RT2661_RX_RING_COUNT);
268 	if (error != 0) {
269 		aprint_error_dev(sc->sc_dev, "could not allocate Rx ring\n");
270 		goto fail6;
271 	}
272 
273 	ifp->if_softc = sc;
274 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
275 	ifp->if_init = rt2661_init;
276 	ifp->if_stop = rt2661_stop;
277 	ifp->if_ioctl = rt2661_ioctl;
278 	ifp->if_start = rt2661_start;
279 	ifp->if_watchdog = rt2661_watchdog;
280 	IFQ_SET_READY(&ifp->if_snd);
281 	memcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
282 
283 	ic->ic_ifp = ifp;
284 	ic->ic_phytype = IEEE80211_T_OFDM; /* not only, but not used */
285 	ic->ic_opmode = IEEE80211_M_STA; /* default to BSS mode */
286 	ic->ic_state = IEEE80211_S_INIT;
287 
288 	/* set device capabilities */
289 	ic->ic_caps =
290 	    IEEE80211_C_IBSS |		/* IBSS mode supported */
291 	    IEEE80211_C_MONITOR |	/* monitor mode supported */
292 	    IEEE80211_C_HOSTAP |	/* HostAP mode supported */
293 	    IEEE80211_C_TXPMGT |	/* tx power management */
294 	    IEEE80211_C_SHPREAMBLE |	/* short preamble supported */
295 	    IEEE80211_C_SHSLOT |	/* short slot time supported */
296 	    IEEE80211_C_WPA;		/* 802.11i */
297 
298 	if (sc->rf_rev == RT2661_RF_5225 || sc->rf_rev == RT2661_RF_5325) {
299 		/* set supported .11a rates */
300 		ic->ic_sup_rates[IEEE80211_MODE_11A] = ieee80211_std_rateset_11a;
301 
302 		/* set supported .11a channels */
303 		for (i = 36; i <= 64; i += 4) {
304 			ic->ic_channels[i].ic_freq =
305 			    ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ);
306 			ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A;
307 		}
308 		for (i = 100; i <= 140; i += 4) {
309 			ic->ic_channels[i].ic_freq =
310 			    ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ);
311 			ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A;
312 		}
313 		for (i = 149; i <= 165; i += 4) {
314 			ic->ic_channels[i].ic_freq =
315 			    ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ);
316 			ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A;
317 		}
318 	}
319 
320 	/* set supported .11b and .11g rates */
321 	ic->ic_sup_rates[IEEE80211_MODE_11B] = ieee80211_std_rateset_11b;
322 	ic->ic_sup_rates[IEEE80211_MODE_11G] = ieee80211_std_rateset_11g;
323 
324 	/* set supported .11b and .11g channels (1 through 14) */
325 	for (i = 1; i <= 14; i++) {
326 		ic->ic_channels[i].ic_freq =
327 		    ieee80211_ieee2mhz(i, IEEE80211_CHAN_2GHZ);
328 		ic->ic_channels[i].ic_flags =
329 		    IEEE80211_CHAN_CCK | IEEE80211_CHAN_OFDM |
330 		    IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ;
331 	}
332 
333 	if_initialize(ifp);
334 	ieee80211_ifattach(ic);
335 	/* Use common softint-based if_input */
336 	ifp->if_percpuq = if_percpuq_create(ifp);
337 	if_register(ifp);
338 
339 	ic->ic_node_alloc = rt2661_node_alloc;
340 	ic->ic_newassoc = rt2661_newassoc;
341 	ic->ic_updateslot = rt2661_updateslot;
342 	ic->ic_reset = rt2661_reset;
343 
344 	/* override state transition machine */
345 	sc->sc_newstate = ic->ic_newstate;
346 	ic->ic_newstate = rt2661_newstate;
347 	ieee80211_media_init(ic, rt2661_media_change, ieee80211_media_status);
348 
349 	bpf_attach2(ifp, DLT_IEEE802_11_RADIO,
350 	    sizeof(struct ieee80211_frame) + sizeof(sc->sc_txtap),
351 	    &sc->sc_drvbpf);
352 
353 	sc->sc_rxtap_len = roundup(sizeof(sc->sc_rxtap), sizeof(u_int32_t));
354 	sc->sc_rxtap.wr_ihdr.it_len = htole16(sc->sc_rxtap_len);
355 	sc->sc_rxtap.wr_ihdr.it_present = htole32(RT2661_RX_RADIOTAP_PRESENT);
356 
357 	sc->sc_txtap_len = roundup(sizeof(sc->sc_txtap), sizeof(u_int32_t));
358 	sc->sc_txtap.wt_ihdr.it_len = htole16(sc->sc_txtap_len);
359 	sc->sc_txtap.wt_ihdr.it_present = htole32(RT2661_TX_RADIOTAP_PRESENT);
360 
361 	ieee80211_announce(ic);
362 
363 	if (pmf_device_register(sc->sc_dev, NULL, NULL))
364 		pmf_class_network_register(sc->sc_dev, ifp);
365 	else
366 		aprint_error_dev(sc->sc_dev,
367 		    "couldn't establish power handler\n");
368 
369 	return 0;
370 
371 fail6:	rt2661_free_tx_ring(sc, &sc->mgtq);
372 fail5:	rt2661_free_tx_ring(sc, &sc->txq[3]);
373 fail4:	rt2661_free_tx_ring(sc, &sc->txq[2]);
374 fail3:	rt2661_free_tx_ring(sc, &sc->txq[1]);
375 fail2:	rt2661_free_tx_ring(sc, &sc->txq[0]);
376 fail1:	softint_disestablish(sc->sc_soft_ih);
377 	sc->sc_soft_ih = NULL;
378 fail0:	return ENXIO;
379 }
380 
381 int
rt2661_detach(void * xsc)382 rt2661_detach(void *xsc)
383 {
384 	struct rt2661_softc *sc = xsc;
385 	struct ifnet *ifp = &sc->sc_if;
386 
387 	callout_stop(&sc->scan_ch);
388 	callout_stop(&sc->amrr_ch);
389 
390 	pmf_device_deregister(sc->sc_dev);
391 
392 	ieee80211_ifdetach(&sc->sc_ic);
393 	if_detach(ifp);
394 
395 	rt2661_free_tx_ring(sc, &sc->txq[0]);
396 	rt2661_free_tx_ring(sc, &sc->txq[1]);
397 	rt2661_free_tx_ring(sc, &sc->txq[2]);
398 	rt2661_free_tx_ring(sc, &sc->txq[3]);
399 	rt2661_free_tx_ring(sc, &sc->mgtq);
400 	rt2661_free_rx_ring(sc, &sc->rxq);
401 
402 	if (sc->sc_soft_ih != NULL) {
403 		softint_disestablish(sc->sc_soft_ih);
404 		sc->sc_soft_ih = NULL;
405 	}
406 
407 	return 0;
408 }
409 
410 static int
rt2661_alloc_tx_ring(struct rt2661_softc * sc,struct rt2661_tx_ring * ring,int count)411 rt2661_alloc_tx_ring(struct rt2661_softc *sc, struct rt2661_tx_ring *ring,
412     int count)
413 {
414 	int i, nsegs, error;
415 
416 	ring->count = count;
417 	ring->queued = 0;
418 	ring->cur = ring->next = ring->stat = 0;
419 
420 	error = bus_dmamap_create(sc->sc_dmat, count * RT2661_TX_DESC_SIZE, 1,
421 	    count * RT2661_TX_DESC_SIZE, 0, BUS_DMA_NOWAIT, &ring->map);
422 	if (error != 0) {
423 		aprint_error_dev(sc->sc_dev, "could not create desc DMA map\n");
424 		goto fail;
425 	}
426 
427 	error = bus_dmamem_alloc(sc->sc_dmat, count * RT2661_TX_DESC_SIZE,
428 	    PAGE_SIZE, 0, &ring->seg, 1, &nsegs, BUS_DMA_NOWAIT);
429 	if (error != 0) {
430 		aprint_error_dev(sc->sc_dev, "could not allocate DMA memory\n");
431 		goto fail;
432 	}
433 
434 	error = bus_dmamem_map(sc->sc_dmat, &ring->seg, nsegs,
435 	    count * RT2661_TX_DESC_SIZE, (void **)&ring->desc,
436 	    BUS_DMA_NOWAIT);
437 	if (error != 0) {
438 		aprint_error_dev(sc->sc_dev, "could not map desc DMA memory\n");
439 		goto fail;
440 	}
441 
442 	error = bus_dmamap_load(sc->sc_dmat, ring->map, ring->desc,
443 	    count * RT2661_TX_DESC_SIZE, NULL, BUS_DMA_NOWAIT);
444 	if (error != 0) {
445 		aprint_error_dev(sc->sc_dev, "could not load desc DMA map\n");
446 		goto fail;
447 	}
448 
449 	memset(ring->desc, 0, count * RT2661_TX_DESC_SIZE);
450 	ring->physaddr = ring->map->dm_segs->ds_addr;
451 
452 	ring->data = malloc(count * sizeof (struct rt2661_tx_data), M_DEVBUF,
453 	    M_WAITOK | M_ZERO);
454 
455 	for (i = 0; i < count; i++) {
456 		error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
457 		    RT2661_MAX_SCATTER, MCLBYTES, 0, BUS_DMA_NOWAIT,
458 		    &ring->data[i].map);
459 		if (error != 0) {
460 			aprint_error_dev(sc->sc_dev, "could not create DMA map\n");
461 			goto fail;
462 		}
463 	}
464 
465 	return 0;
466 
467 fail:	rt2661_free_tx_ring(sc, ring);
468 	return error;
469 }
470 
471 static void
rt2661_reset_tx_ring(struct rt2661_softc * sc,struct rt2661_tx_ring * ring)472 rt2661_reset_tx_ring(struct rt2661_softc *sc, struct rt2661_tx_ring *ring)
473 {
474 	struct rt2661_tx_desc *desc;
475 	struct rt2661_tx_data *data;
476 	int i;
477 
478 	for (i = 0; i < ring->count; i++) {
479 		desc = &ring->desc[i];
480 		data = &ring->data[i];
481 
482 		if (data->m != NULL) {
483 			bus_dmamap_sync(sc->sc_dmat, data->map, 0,
484 			    data->map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
485 			bus_dmamap_unload(sc->sc_dmat, data->map);
486 			m_freem(data->m);
487 			data->m = NULL;
488 		}
489 
490 		if (data->ni != NULL) {
491 			ieee80211_free_node(data->ni);
492 			data->ni = NULL;
493 		}
494 
495 		desc->flags = 0;
496 	}
497 
498 	bus_dmamap_sync(sc->sc_dmat, ring->map, 0, ring->map->dm_mapsize,
499 	    BUS_DMASYNC_PREWRITE);
500 
501 	ring->queued = 0;
502 	ring->cur = ring->next = ring->stat = 0;
503 }
504 
505 
506 static void
rt2661_free_tx_ring(struct rt2661_softc * sc,struct rt2661_tx_ring * ring)507 rt2661_free_tx_ring(struct rt2661_softc *sc, struct rt2661_tx_ring *ring)
508 {
509 	struct rt2661_tx_data *data;
510 	int i;
511 
512 	if (ring->desc != NULL) {
513 		bus_dmamap_sync(sc->sc_dmat, ring->map, 0,
514 		    ring->map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
515 		bus_dmamap_unload(sc->sc_dmat, ring->map);
516 		bus_dmamem_unmap(sc->sc_dmat, (void *)ring->desc,
517 		    ring->count * RT2661_TX_DESC_SIZE);
518 		bus_dmamem_free(sc->sc_dmat, &ring->seg, 1);
519 	}
520 
521 	if (ring->data != NULL) {
522 		for (i = 0; i < ring->count; i++) {
523 			data = &ring->data[i];
524 
525 			if (data->m != NULL) {
526 				bus_dmamap_sync(sc->sc_dmat, data->map, 0,
527 				    data->map->dm_mapsize,
528 				    BUS_DMASYNC_POSTWRITE);
529 				bus_dmamap_unload(sc->sc_dmat, data->map);
530 				m_freem(data->m);
531 			}
532 
533 			if (data->ni != NULL)
534 				ieee80211_free_node(data->ni);
535 
536 			if (data->map != NULL)
537 				bus_dmamap_destroy(sc->sc_dmat, data->map);
538 		}
539 		free(ring->data, M_DEVBUF);
540 	}
541 }
542 
543 static int
rt2661_alloc_rx_ring(struct rt2661_softc * sc,struct rt2661_rx_ring * ring,int count)544 rt2661_alloc_rx_ring(struct rt2661_softc *sc, struct rt2661_rx_ring *ring,
545     int count)
546 {
547 	struct rt2661_rx_desc *desc;
548 	struct rt2661_rx_data *data;
549 	int i, nsegs, error;
550 
551 	ring->count = count;
552 	ring->cur = ring->next = 0;
553 
554 	error = bus_dmamap_create(sc->sc_dmat, count * RT2661_RX_DESC_SIZE, 1,
555 	    count * RT2661_RX_DESC_SIZE, 0, BUS_DMA_NOWAIT, &ring->map);
556 	if (error != 0) {
557 		aprint_error_dev(sc->sc_dev, "could not create desc DMA map\n");
558 		goto fail;
559 	}
560 
561 	error = bus_dmamem_alloc(sc->sc_dmat, count * RT2661_RX_DESC_SIZE,
562 	    PAGE_SIZE, 0, &ring->seg, 1, &nsegs, BUS_DMA_NOWAIT);
563 	if (error != 0) {
564 		aprint_error_dev(sc->sc_dev, "could not allocate DMA memory\n");
565 		goto fail;
566 	}
567 
568 	error = bus_dmamem_map(sc->sc_dmat, &ring->seg, nsegs,
569 	    count * RT2661_RX_DESC_SIZE, (void **)&ring->desc,
570 	    BUS_DMA_NOWAIT);
571 	if (error != 0) {
572 		aprint_error_dev(sc->sc_dev, "could not map desc DMA memory\n");
573 		goto fail;
574 	}
575 
576 	error = bus_dmamap_load(sc->sc_dmat, ring->map, ring->desc,
577 	    count * RT2661_RX_DESC_SIZE, NULL, BUS_DMA_NOWAIT);
578 	if (error != 0) {
579 		aprint_error_dev(sc->sc_dev, "could not load desc DMA map\n");
580 		goto fail;
581 	}
582 
583 	memset(ring->desc, 0, count * RT2661_RX_DESC_SIZE);
584 	ring->physaddr = ring->map->dm_segs->ds_addr;
585 
586 	ring->data = malloc(count * sizeof (struct rt2661_rx_data), M_DEVBUF,
587 	    M_WAITOK | M_ZERO);
588 
589 	/*
590 	 * Pre-allocate Rx buffers and populate Rx ring.
591 	 */
592 	for (i = 0; i < count; i++) {
593 		desc = &sc->rxq.desc[i];
594 		data = &sc->rxq.data[i];
595 
596 		error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1, MCLBYTES,
597 		    0, BUS_DMA_NOWAIT, &data->map);
598 		if (error != 0) {
599 			aprint_error_dev(sc->sc_dev, "could not create DMA map\n");
600 			goto fail;
601 		}
602 
603 		MGETHDR(data->m, M_DONTWAIT, MT_DATA);
604 		if (data->m == NULL) {
605 			aprint_error_dev(sc->sc_dev, "could not allocate rx mbuf\n");
606 			error = ENOMEM;
607 			goto fail;
608 		}
609 
610 		MCLGET(data->m, M_DONTWAIT);
611 		if (!(data->m->m_flags & M_EXT)) {
612 			aprint_error_dev(sc->sc_dev, "could not allocate rx mbuf cluster\n");
613 			error = ENOMEM;
614 			goto fail;
615 		}
616 
617 		error = bus_dmamap_load(sc->sc_dmat, data->map,
618 		    mtod(data->m, void *), MCLBYTES, NULL, BUS_DMA_NOWAIT);
619 		if (error != 0) {
620 			aprint_error_dev(sc->sc_dev, "could not load rx buf DMA map");
621 			goto fail;
622 		}
623 
624 		desc->physaddr = htole32(data->map->dm_segs->ds_addr);
625 		desc->flags = htole32(RT2661_RX_BUSY);
626 	}
627 
628 	bus_dmamap_sync(sc->sc_dmat, ring->map, 0, ring->map->dm_mapsize,
629 	    BUS_DMASYNC_PREWRITE);
630 
631 	return 0;
632 
633 fail:	rt2661_free_rx_ring(sc, ring);
634 	return error;
635 }
636 
637 static void
rt2661_reset_rx_ring(struct rt2661_softc * sc,struct rt2661_rx_ring * ring)638 rt2661_reset_rx_ring(struct rt2661_softc *sc, struct rt2661_rx_ring *ring)
639 {
640 	int i;
641 
642 	for (i = 0; i < ring->count; i++)
643 		ring->desc[i].flags = htole32(RT2661_RX_BUSY);
644 
645 	bus_dmamap_sync(sc->sc_dmat, ring->map, 0, ring->map->dm_mapsize,
646 	    BUS_DMASYNC_PREWRITE);
647 
648 	ring->cur = ring->next = 0;
649 }
650 
651 static void
rt2661_free_rx_ring(struct rt2661_softc * sc,struct rt2661_rx_ring * ring)652 rt2661_free_rx_ring(struct rt2661_softc *sc, struct rt2661_rx_ring *ring)
653 {
654 	struct rt2661_rx_data *data;
655 	int i;
656 
657 	if (ring->desc != NULL) {
658 		bus_dmamap_sync(sc->sc_dmat, ring->map, 0,
659 		    ring->map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
660 		bus_dmamap_unload(sc->sc_dmat, ring->map);
661 		bus_dmamem_unmap(sc->sc_dmat, (void *)ring->desc,
662 		    ring->count * RT2661_RX_DESC_SIZE);
663 		bus_dmamem_free(sc->sc_dmat, &ring->seg, 1);
664 	}
665 
666 	if (ring->data != NULL) {
667 		for (i = 0; i < ring->count; i++) {
668 			data = &ring->data[i];
669 
670 			if (data->m != NULL) {
671 				bus_dmamap_sync(sc->sc_dmat, data->map, 0,
672 				    data->map->dm_mapsize,
673 				    BUS_DMASYNC_POSTREAD);
674 				bus_dmamap_unload(sc->sc_dmat, data->map);
675 				m_freem(data->m);
676 			}
677 
678 			if (data->map != NULL)
679 				bus_dmamap_destroy(sc->sc_dmat, data->map);
680 		}
681 		free(ring->data, M_DEVBUF);
682 	}
683 }
684 
685 static struct ieee80211_node *
rt2661_node_alloc(struct ieee80211_node_table * nt)686 rt2661_node_alloc(struct ieee80211_node_table *nt)
687 {
688 	struct rt2661_node *rn;
689 
690 	rn = malloc(sizeof (struct rt2661_node), M_80211_NODE,
691 	    M_NOWAIT | M_ZERO);
692 
693 	return (rn != NULL) ? &rn->ni : NULL;
694 }
695 
696 static int
rt2661_media_change(struct ifnet * ifp)697 rt2661_media_change(struct ifnet *ifp)
698 {
699 	int error;
700 
701 	error = ieee80211_media_change(ifp);
702 	if (error != ENETRESET)
703 		return error;
704 
705 	if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) == (IFF_UP | IFF_RUNNING))
706 		rt2661_init(ifp);
707 
708 	return 0;
709 }
710 
711 /*
712  * This function is called periodically (every 200ms) during scanning to
713  * switch from one channel to another.
714  */
715 static void
rt2661_next_scan(void * arg)716 rt2661_next_scan(void *arg)
717 {
718 	struct rt2661_softc *sc = arg;
719 	struct ieee80211com *ic = &sc->sc_ic;
720 	int s;
721 
722 	s = splnet();
723 	if (ic->ic_state == IEEE80211_S_SCAN)
724 		ieee80211_next_scan(ic);
725 	splx(s);
726 }
727 
728 /*
729  * This function is called for each neighbor node.
730  */
731 static void
rt2661_iter_func(void * arg,struct ieee80211_node * ni)732 rt2661_iter_func(void *arg, struct ieee80211_node *ni)
733 {
734 	struct rt2661_softc *sc = arg;
735 	struct rt2661_node *rn = (struct rt2661_node *)ni;
736 
737 	ieee80211_amrr_choose(&sc->amrr, ni, &rn->amn);
738 }
739 
740 /*
741  * This function is called periodically (every 500ms) in RUN state to update
742  * various settings like rate control statistics or Rx sensitivity.
743  */
744 static void
rt2661_updatestats(void * arg)745 rt2661_updatestats(void *arg)
746 {
747 	struct rt2661_softc *sc = arg;
748 	struct ieee80211com *ic = &sc->sc_ic;
749 	int s;
750 
751 	s = splnet();
752 	if (ic->ic_opmode == IEEE80211_M_STA)
753 		rt2661_iter_func(sc, ic->ic_bss);
754 	else
755 		ieee80211_iterate_nodes(&ic->ic_sta, rt2661_iter_func, arg);
756 
757 	/* update rx sensitivity every 1 sec */
758 	if (++sc->ncalls & 1)
759 		rt2661_rx_tune(sc);
760 	splx(s);
761 
762 	callout_reset(&sc->amrr_ch, hz / 2, rt2661_updatestats, sc);
763 }
764 
765 static void
rt2661_newassoc(struct ieee80211_node * ni,int isnew)766 rt2661_newassoc(struct ieee80211_node *ni, int isnew)
767 {
768 	struct rt2661_softc *sc = ni->ni_ic->ic_ifp->if_softc;
769 	int i;
770 
771 	ieee80211_amrr_node_init(&sc->amrr, &((struct rt2661_node *)ni)->amn);
772 
773 	/* set rate to some reasonable initial value */
774 	for (i = ni->ni_rates.rs_nrates - 1;
775 	     i > 0 && (ni->ni_rates.rs_rates[i] & IEEE80211_RATE_VAL) > 72;
776 	     i--);
777 	ni->ni_txrate = i;
778 }
779 
780 static int
rt2661_newstate(struct ieee80211com * ic,enum ieee80211_state nstate,int arg)781 rt2661_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
782 {
783 	struct rt2661_softc *sc = ic->ic_ifp->if_softc;
784 	enum ieee80211_state ostate;
785 	struct ieee80211_node *ni;
786 	uint32_t tmp;
787 
788 	ostate = ic->ic_state;
789 	callout_stop(&sc->scan_ch);
790 
791 	switch (nstate) {
792 	case IEEE80211_S_INIT:
793 		callout_stop(&sc->amrr_ch);
794 
795 		if (ostate == IEEE80211_S_RUN) {
796 			/* abort TSF synchronization */
797 			tmp = RAL_READ(sc, RT2661_TXRX_CSR9);
798 			RAL_WRITE(sc, RT2661_TXRX_CSR9, tmp & ~0x00ffffff);
799 		}
800 		break;
801 
802 	case IEEE80211_S_SCAN:
803 		rt2661_set_chan(sc, ic->ic_curchan);
804 		callout_reset(&sc->scan_ch, hz / 5, rt2661_next_scan, sc);
805 		break;
806 
807 	case IEEE80211_S_AUTH:
808 	case IEEE80211_S_ASSOC:
809 		rt2661_set_chan(sc, ic->ic_curchan);
810 		break;
811 
812 	case IEEE80211_S_RUN:
813 		rt2661_set_chan(sc, ic->ic_curchan);
814 
815 		ni = ic->ic_bss;
816 
817 		if (ic->ic_opmode != IEEE80211_M_MONITOR) {
818 			rt2661_set_slottime(sc);
819 			rt2661_enable_mrr(sc);
820 			rt2661_set_txpreamble(sc);
821 			rt2661_set_basicrates(sc, &ni->ni_rates);
822 			rt2661_set_bssid(sc, ni->ni_bssid);
823 		}
824 
825 		if (ic->ic_opmode == IEEE80211_M_HOSTAP ||
826 		    ic->ic_opmode == IEEE80211_M_IBSS)
827 			rt2661_prepare_beacon(sc);
828 
829 		if (ic->ic_opmode == IEEE80211_M_STA) {
830 			/* fake a join to init the tx rate */
831 			rt2661_newassoc(ni, 1);
832 		}
833 
834 		if (ic->ic_opmode != IEEE80211_M_MONITOR) {
835 			sc->ncalls = 0;
836 			sc->avg_rssi = -95;	/* reset EMA */
837 			callout_reset(&sc->amrr_ch, hz / 2,
838 			    rt2661_updatestats, sc);
839 			rt2661_enable_tsf_sync(sc);
840 		}
841 		break;
842 	}
843 
844 	return sc->sc_newstate(ic, nstate, arg);
845 }
846 
847 /*
848  * Read 16 bits at address 'addr' from the serial EEPROM (either 93C46 or
849  * 93C66).
850  */
851 static uint16_t
rt2661_eeprom_read(struct rt2661_softc * sc,uint8_t addr)852 rt2661_eeprom_read(struct rt2661_softc *sc, uint8_t addr)
853 {
854 	uint32_t tmp;
855 	uint16_t val;
856 	int n;
857 
858 	/* clock C once before the first command */
859 	RT2661_EEPROM_CTL(sc, 0);
860 
861 	RT2661_EEPROM_CTL(sc, RT2661_S);
862 	RT2661_EEPROM_CTL(sc, RT2661_S | RT2661_C);
863 	RT2661_EEPROM_CTL(sc, RT2661_S);
864 
865 	/* write start bit (1) */
866 	RT2661_EEPROM_CTL(sc, RT2661_S | RT2661_D);
867 	RT2661_EEPROM_CTL(sc, RT2661_S | RT2661_D | RT2661_C);
868 
869 	/* write READ opcode (10) */
870 	RT2661_EEPROM_CTL(sc, RT2661_S | RT2661_D);
871 	RT2661_EEPROM_CTL(sc, RT2661_S | RT2661_D | RT2661_C);
872 	RT2661_EEPROM_CTL(sc, RT2661_S);
873 	RT2661_EEPROM_CTL(sc, RT2661_S | RT2661_C);
874 
875 	/* write address (A5-A0 or A7-A0) */
876 	n = (RAL_READ(sc, RT2661_E2PROM_CSR) & RT2661_93C46) ? 5 : 7;
877 	for (; n >= 0; n--) {
878 		RT2661_EEPROM_CTL(sc, RT2661_S |
879 		    (((addr >> n) & 1) << RT2661_SHIFT_D));
880 		RT2661_EEPROM_CTL(sc, RT2661_S |
881 		    (((addr >> n) & 1) << RT2661_SHIFT_D) | RT2661_C);
882 	}
883 
884 	RT2661_EEPROM_CTL(sc, RT2661_S);
885 
886 	/* read data Q15-Q0 */
887 	val = 0;
888 	for (n = 15; n >= 0; n--) {
889 		RT2661_EEPROM_CTL(sc, RT2661_S | RT2661_C);
890 		tmp = RAL_READ(sc, RT2661_E2PROM_CSR);
891 		val |= ((tmp & RT2661_Q) >> RT2661_SHIFT_Q) << n;
892 		RT2661_EEPROM_CTL(sc, RT2661_S);
893 	}
894 
895 	RT2661_EEPROM_CTL(sc, 0);
896 
897 	/* clear Chip Select and clock C */
898 	RT2661_EEPROM_CTL(sc, RT2661_S);
899 	RT2661_EEPROM_CTL(sc, 0);
900 	RT2661_EEPROM_CTL(sc, RT2661_C);
901 
902 	return val;
903 }
904 
905 static void
rt2661_tx_intr(struct rt2661_softc * sc)906 rt2661_tx_intr(struct rt2661_softc *sc)
907 {
908 	struct ifnet *ifp = &sc->sc_if;
909 	struct rt2661_tx_ring *txq;
910 	struct rt2661_tx_data *data;
911 	struct rt2661_node *rn;
912 	uint32_t val;
913 	int qid, retrycnt, s;
914 
915 	s = splnet();
916 
917 	for (;;) {
918 		val = RAL_READ(sc, RT2661_STA_CSR4);
919 		if (!(val & RT2661_TX_STAT_VALID))
920 			break;
921 
922 		/* retrieve the queue in which this frame was sent */
923 		qid = RT2661_TX_QID(val);
924 		txq = (qid <= 3) ? &sc->txq[qid] : &sc->mgtq;
925 
926 		/* retrieve rate control algorithm context */
927 		data = &txq->data[txq->stat];
928 		rn = (struct rt2661_node *)data->ni;
929 
930 		/* if no frame has been sent, ignore */
931 		if (rn == NULL)
932 			continue;
933 
934 		switch (RT2661_TX_RESULT(val)) {
935 		case RT2661_TX_SUCCESS:
936 			retrycnt = RT2661_TX_RETRYCNT(val);
937 
938 			DPRINTFN(10, ("data frame sent successfully after "
939 			    "%d retries\n", retrycnt));
940 			rn->amn.amn_txcnt++;
941 			if (retrycnt > 0)
942 				rn->amn.amn_retrycnt++;
943 			if_statinc(ifp, if_opackets);
944 			break;
945 
946 		case RT2661_TX_RETRY_FAIL:
947 			DPRINTFN(9, ("sending data frame failed (too much "
948 			    "retries)\n"));
949 			rn->amn.amn_txcnt++;
950 			rn->amn.amn_retrycnt++;
951 			if_statinc(ifp, if_oerrors);
952 			break;
953 
954 		default:
955 			/* other failure */
956 			aprint_error_dev(sc->sc_dev, "sending data frame failed 0x%08x\n", val);
957 			if_statinc(ifp, if_oerrors);
958 		}
959 
960 		ieee80211_free_node(data->ni);
961 		data->ni = NULL;
962 
963 		DPRINTFN(15, ("tx done q=%d idx=%u\n", qid, txq->stat));
964 
965 		txq->queued--;
966 		if (++txq->stat >= txq->count)	/* faster than % count */
967 			txq->stat = 0;
968 	}
969 
970 	sc->sc_tx_timer = 0;
971 	ifp->if_flags &= ~IFF_OACTIVE;
972 	rt2661_start(ifp); /* in softint */
973 
974 	splx(s);
975 }
976 
977 static void
rt2661_tx_dma_intr(struct rt2661_softc * sc,struct rt2661_tx_ring * txq)978 rt2661_tx_dma_intr(struct rt2661_softc *sc, struct rt2661_tx_ring *txq)
979 {
980 	struct rt2661_tx_desc *desc;
981 	struct rt2661_tx_data *data;
982 
983 	for (;;) {
984 		desc = &txq->desc[txq->next];
985 		data = &txq->data[txq->next];
986 
987 		bus_dmamap_sync(sc->sc_dmat, txq->map,
988 		    txq->next * RT2661_TX_DESC_SIZE, RT2661_TX_DESC_SIZE,
989 		    BUS_DMASYNC_POSTREAD);
990 
991 		if ((le32toh(desc->flags) & RT2661_TX_BUSY) ||
992 		    !(le32toh(desc->flags) & RT2661_TX_VALID))
993 			break;
994 
995 		bus_dmamap_sync(sc->sc_dmat, data->map, 0,
996 		    data->map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
997 		bus_dmamap_unload(sc->sc_dmat, data->map);
998 		m_freem(data->m);
999 		data->m = NULL;
1000 		/* node reference is released in rt2661_tx_intr() */
1001 
1002 		/* descriptor is no longer valid */
1003 		desc->flags &= ~htole32(RT2661_TX_VALID);
1004 
1005 		bus_dmamap_sync(sc->sc_dmat, txq->map,
1006 		    txq->next * RT2661_TX_DESC_SIZE, RT2661_TX_DESC_SIZE,
1007 		    BUS_DMASYNC_PREWRITE);
1008 
1009 		DPRINTFN(15, ("tx dma done q=%p idx=%u\n", txq, txq->next));
1010 
1011 		if (++txq->next >= txq->count)	/* faster than % count */
1012 			txq->next = 0;
1013 	}
1014 }
1015 
1016 static void
rt2661_rx_intr(struct rt2661_softc * sc)1017 rt2661_rx_intr(struct rt2661_softc *sc)
1018 {
1019 	struct ieee80211com *ic = &sc->sc_ic;
1020 	struct ifnet *ifp = &sc->sc_if;
1021 	struct rt2661_rx_desc *desc;
1022 	struct rt2661_rx_data *data;
1023 	struct ieee80211_frame *wh;
1024 	struct ieee80211_node *ni;
1025 	struct mbuf *mnew, *m;
1026 	int error, rssi, s;
1027 
1028 	for (;;) {
1029 		desc = &sc->rxq.desc[sc->rxq.cur];
1030 		data = &sc->rxq.data[sc->rxq.cur];
1031 
1032 		bus_dmamap_sync(sc->sc_dmat, sc->rxq.map,
1033 		    sc->rxq.cur * RT2661_RX_DESC_SIZE, RT2661_RX_DESC_SIZE,
1034 		    BUS_DMASYNC_POSTREAD);
1035 
1036 		if (le32toh(desc->flags) & RT2661_RX_BUSY)
1037 			break;
1038 
1039 		if ((le32toh(desc->flags) & RT2661_RX_PHY_ERROR) ||
1040 		    (le32toh(desc->flags) & RT2661_RX_CRC_ERROR)) {
1041 			/*
1042 			 * This should not happen since we did not request
1043 			 * to receive those frames when we filled TXRX_CSR0.
1044 			 */
1045 			DPRINTFN(5, ("PHY or CRC error flags 0x%08x\n",
1046 			    le32toh(desc->flags)));
1047 			if_statinc(ifp, if_ierrors);
1048 			goto skip;
1049 		}
1050 
1051 		if ((le32toh(desc->flags) & RT2661_RX_CIPHER_MASK) != 0) {
1052 			if_statinc(ifp, if_ierrors);
1053 			goto skip;
1054 		}
1055 
1056 		/*
1057 		 * Try to allocate a new mbuf for this ring element and load it
1058 		 * before processing the current mbuf. If the ring element
1059 		 * cannot be loaded, drop the received packet and reuse the old
1060 		 * mbuf. In the unlikely case that the old mbuf can't be
1061 		 * reloaded either, explicitly panic.
1062 		 */
1063 		MGETHDR(mnew, M_DONTWAIT, MT_DATA);
1064 		if (mnew == NULL) {
1065 			if_statinc(ifp, if_ierrors);
1066 			goto skip;
1067 		}
1068 
1069 		MCLGET(mnew, M_DONTWAIT);
1070 		if (!(mnew->m_flags & M_EXT)) {
1071 			m_freem(mnew);
1072 			if_statinc(ifp, if_ierrors);
1073 			goto skip;
1074 		}
1075 
1076 		bus_dmamap_sync(sc->sc_dmat, data->map, 0,
1077 		    data->map->dm_mapsize, BUS_DMASYNC_POSTREAD);
1078 		bus_dmamap_unload(sc->sc_dmat, data->map);
1079 
1080 		error = bus_dmamap_load(sc->sc_dmat, data->map,
1081 		    mtod(mnew, void *), MCLBYTES, NULL, BUS_DMA_NOWAIT);
1082 		if (error != 0) {
1083 			m_freem(mnew);
1084 
1085 			/* try to reload the old mbuf */
1086 			error = bus_dmamap_load(sc->sc_dmat, data->map,
1087 			    mtod(data->m, void *), MCLBYTES, NULL,
1088 			    BUS_DMA_NOWAIT);
1089 			if (error != 0) {
1090 				/* very unlikely that it will fail... */
1091 				panic("%s: could not load old rx mbuf",
1092 				    device_xname(sc->sc_dev));
1093 			}
1094 			/* physical address may have changed */
1095 			desc->physaddr = htole32(data->map->dm_segs->ds_addr);
1096 			if_statinc(ifp, if_ierrors);
1097 			goto skip;
1098 		}
1099 
1100 		/*
1101 	 	 * New mbuf successfully loaded, update Rx ring and continue
1102 		 * processing.
1103 		 */
1104 		m = data->m;
1105 		data->m = mnew;
1106 		desc->physaddr = htole32(data->map->dm_segs->ds_addr);
1107 
1108 		/* finalize mbuf */
1109 		m_set_rcvif(m, ifp);
1110 		m->m_pkthdr.len = m->m_len =
1111 		    (le32toh(desc->flags) >> 16) & 0xfff;
1112 
1113 		s = splnet();
1114 
1115 		if (sc->sc_drvbpf != NULL) {
1116 			struct rt2661_rx_radiotap_header *tap = &sc->sc_rxtap;
1117 			uint32_t tsf_lo, tsf_hi;
1118 
1119 			/* get timestamp (low and high 32 bits) */
1120 			tsf_hi = RAL_READ(sc, RT2661_TXRX_CSR13);
1121 			tsf_lo = RAL_READ(sc, RT2661_TXRX_CSR12);
1122 
1123 			tap->wr_tsf =
1124 			    htole64(((uint64_t)tsf_hi << 32) | tsf_lo);
1125 			tap->wr_flags = 0;
1126 			tap->wr_rate = rt2661_rxrate(desc);
1127 			tap->wr_chan_freq = htole16(sc->sc_curchan->ic_freq);
1128 			tap->wr_chan_flags = htole16(sc->sc_curchan->ic_flags);
1129 			tap->wr_antsignal = desc->rssi;
1130 
1131 			bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_rxtap_len, m,
1132 			    BPF_D_IN);
1133 		}
1134 
1135 		wh = mtod(m, struct ieee80211_frame *);
1136 		ni = ieee80211_find_rxnode(ic,
1137 		    (struct ieee80211_frame_min *)wh);
1138 
1139 		/* send the frame to the 802.11 layer */
1140 		ieee80211_input(ic, m, ni, desc->rssi, 0);
1141 
1142 		/*-
1143 		 * Keep track of the average RSSI using an Exponential Moving
1144 		 * Average (EMA) of 8 Wilder's days:
1145 		 *     avg = (1 / N) x rssi + ((N - 1) / N) x avg
1146 		 */
1147 		rssi = rt2661_get_rssi(sc, desc->rssi);
1148 		sc->avg_rssi = (rssi + 7 * sc->avg_rssi) / 8;
1149 
1150 		/* node is no longer needed */
1151 		ieee80211_free_node(ni);
1152 
1153 		splx(s);
1154 
1155 skip:		desc->flags |= htole32(RT2661_RX_BUSY);
1156 
1157 		bus_dmamap_sync(sc->sc_dmat, sc->rxq.map,
1158 		    sc->rxq.cur * RT2661_RX_DESC_SIZE, RT2661_RX_DESC_SIZE,
1159 		    BUS_DMASYNC_PREWRITE);
1160 
1161 		DPRINTFN(16, ("rx intr idx=%u\n", sc->rxq.cur));
1162 
1163 		sc->rxq.cur = (sc->rxq.cur + 1) % RT2661_RX_RING_COUNT;
1164 	}
1165 
1166 	/*
1167 	 * In HostAP mode, ieee80211_input() will enqueue packets in if_snd
1168 	 * without calling if_start().
1169 	 */
1170 	s = splnet();
1171 	if (!IFQ_IS_EMPTY(&ifp->if_snd) && !(ifp->if_flags & IFF_OACTIVE))
1172 		rt2661_start(ifp);
1173 	splx(s);
1174 }
1175 
1176 /*
1177  * This function is called in HostAP or IBSS modes when it's time to send a
1178  * new beacon (every ni_intval milliseconds).
1179  */
1180 static void
rt2661_mcu_beacon_expire(struct rt2661_softc * sc)1181 rt2661_mcu_beacon_expire(struct rt2661_softc *sc)
1182 {
1183 	struct ieee80211com *ic = &sc->sc_ic;
1184 
1185 	if (sc->sc_flags & RT2661_UPDATE_SLOT) {
1186 		sc->sc_flags &= ~RT2661_UPDATE_SLOT;
1187 		sc->sc_flags |= RT2661_SET_SLOTTIME;
1188 	} else if (sc->sc_flags & RT2661_SET_SLOTTIME) {
1189 		sc->sc_flags &= ~RT2661_SET_SLOTTIME;
1190 		rt2661_set_slottime(sc);
1191 	}
1192 
1193 	if (ic->ic_curmode == IEEE80211_MODE_11G) {
1194 		/* update ERP Information Element */
1195 		RAL_WRITE_1(sc, sc->erp_csr, ic->ic_bss->ni_erp);
1196 		RAL_RW_BARRIER_1(sc, sc->erp_csr);
1197 	}
1198 
1199 	DPRINTFN(15, ("beacon expired\n"));
1200 }
1201 
1202 static void
rt2661_mcu_wakeup(struct rt2661_softc * sc)1203 rt2661_mcu_wakeup(struct rt2661_softc *sc)
1204 {
1205 	RAL_WRITE(sc, RT2661_MAC_CSR11, 5 << 16);
1206 
1207 	RAL_WRITE(sc, RT2661_SOFT_RESET_CSR, 0x7);
1208 	RAL_WRITE(sc, RT2661_IO_CNTL_CSR, 0x18);
1209 	RAL_WRITE(sc, RT2661_PCI_USEC_CSR, 0x20);
1210 
1211 	/* send wakeup command to MCU */
1212 	rt2661_tx_cmd(sc, RT2661_MCU_CMD_WAKEUP, 0);
1213 }
1214 
1215 static void
rt2661_mcu_cmd_intr(struct rt2661_softc * sc)1216 rt2661_mcu_cmd_intr(struct rt2661_softc *sc)
1217 {
1218 	RAL_READ(sc, RT2661_M2H_CMD_DONE_CSR);
1219 	RAL_WRITE(sc, RT2661_M2H_CMD_DONE_CSR, 0xffffffff);
1220 }
1221 
1222 int
rt2661_intr(void * arg)1223 rt2661_intr(void *arg)
1224 {
1225 	struct rt2661_softc *sc = arg;
1226 	struct ifnet *ifp = &sc->sc_if;
1227 	uint32_t r1, r2;
1228 
1229 	/* don't re-enable interrupts if we're shutting down */
1230 	if (!(ifp->if_flags & IFF_RUNNING)) {
1231 		/* disable MAC and MCU interrupts */
1232 		RAL_WRITE(sc, RT2661_INT_MASK_CSR, 0xffffff7f);
1233 		RAL_WRITE(sc, RT2661_MCU_INT_MASK_CSR, 0xffffffff);
1234 		return 0;
1235 	}
1236 
1237 	r1 = RAL_READ(sc, RT2661_INT_SOURCE_CSR);
1238 	r2 = RAL_READ(sc, RT2661_MCU_INT_SOURCE_CSR);
1239 
1240 	if ((r1 & RT2661_INT_CSR_ALL) == 0 && (r2 & RT2661_MCU_INT_ALL) == 0)
1241 		return 0;
1242 
1243 	/* disable interrupts */
1244 	RAL_WRITE(sc, RT2661_INT_MASK_CSR, 0xffffff7f);
1245 	RAL_WRITE(sc, RT2661_MCU_INT_MASK_CSR, 0xffffffff);
1246 
1247 	softint_schedule(sc->sc_soft_ih);
1248 	return 1;
1249 }
1250 
1251 static void
rt2661_softintr(void * arg)1252 rt2661_softintr(void *arg)
1253 {
1254 	struct rt2661_softc *sc = arg;
1255 	uint32_t r1, r2;
1256 
1257 	for (;;) {
1258 		r1 = RAL_READ(sc, RT2661_INT_SOURCE_CSR);
1259 		r2 = RAL_READ(sc, RT2661_MCU_INT_SOURCE_CSR);
1260 
1261 		if ((r1 & RT2661_INT_CSR_ALL) == 0 &&
1262 		    (r2 & RT2661_MCU_INT_ALL) == 0)
1263 			break;
1264 
1265 		RAL_WRITE(sc, RT2661_INT_SOURCE_CSR, r1);
1266 		RAL_WRITE(sc, RT2661_MCU_INT_SOURCE_CSR, r2);
1267 
1268 		if (r1 & RT2661_MGT_DONE)
1269 			rt2661_tx_dma_intr(sc, &sc->mgtq);
1270 
1271 		if (r1 & RT2661_RX_DONE)
1272 			rt2661_rx_intr(sc);
1273 
1274 		if (r1 & RT2661_TX0_DMA_DONE)
1275 			rt2661_tx_dma_intr(sc, &sc->txq[0]);
1276 
1277 		if (r1 & RT2661_TX1_DMA_DONE)
1278 			rt2661_tx_dma_intr(sc, &sc->txq[1]);
1279 
1280 		if (r1 & RT2661_TX2_DMA_DONE)
1281 			rt2661_tx_dma_intr(sc, &sc->txq[2]);
1282 
1283 		if (r1 & RT2661_TX3_DMA_DONE)
1284 			rt2661_tx_dma_intr(sc, &sc->txq[3]);
1285 
1286 		if (r1 & RT2661_TX_DONE)
1287 			rt2661_tx_intr(sc);
1288 
1289 		if (r2 & RT2661_MCU_CMD_DONE)
1290 			rt2661_mcu_cmd_intr(sc);
1291 
1292 		if (r2 & RT2661_MCU_BEACON_EXPIRE)
1293 			rt2661_mcu_beacon_expire(sc);
1294 
1295 		if (r2 & RT2661_MCU_WAKEUP)
1296 			rt2661_mcu_wakeup(sc);
1297 	}
1298 
1299 	/* enable interrupts */
1300 	RAL_WRITE(sc, RT2661_INT_MASK_CSR, 0x0000ff10);
1301 	RAL_WRITE(sc, RT2661_MCU_INT_MASK_CSR, 0);
1302 }
1303 
1304 /* quickly determine if a given rate is CCK or OFDM */
1305 #define RAL_RATE_IS_OFDM(rate) ((rate) >= 12 && (rate) != 22)
1306 
1307 #define RAL_ACK_SIZE	14	/* 10 + 4(FCS) */
1308 #define RAL_CTS_SIZE	14	/* 10 + 4(FCS) */
1309 
1310 /*
1311  * This function is only used by the Rx radiotap code. It returns the rate at
1312  * which a given frame was received.
1313  */
1314 static uint8_t
rt2661_rxrate(struct rt2661_rx_desc * desc)1315 rt2661_rxrate(struct rt2661_rx_desc *desc)
1316 {
1317 	if (le32toh(desc->flags) & RT2661_RX_OFDM) {
1318 		/* reverse function of rt2661_plcp_signal */
1319 		switch (desc->rate & 0xf) {
1320 		case 0xb:	return 12;
1321 		case 0xf:	return 18;
1322 		case 0xa:	return 24;
1323 		case 0xe:	return 36;
1324 		case 0x9:	return 48;
1325 		case 0xd:	return 72;
1326 		case 0x8:	return 96;
1327 		case 0xc:	return 108;
1328 		}
1329 	} else {
1330 		if (desc->rate == 10)
1331 			return 2;
1332 		if (desc->rate == 20)
1333 			return 4;
1334 		if (desc->rate == 55)
1335 			return 11;
1336 		if (desc->rate == 110)
1337 			return 22;
1338 	}
1339 	return 2;	/* should not get there */
1340 }
1341 
1342 /*
1343  * Return the expected ack rate for a frame transmitted at rate `rate'.
1344  * XXX: this should depend on the destination node basic rate set.
1345  */
1346 static int
rt2661_ack_rate(struct ieee80211com * ic,int rate)1347 rt2661_ack_rate(struct ieee80211com *ic, int rate)
1348 {
1349 	switch (rate) {
1350 	/* CCK rates */
1351 	case 2:
1352 		return 2;
1353 	case 4:
1354 	case 11:
1355 	case 22:
1356 		return (ic->ic_curmode == IEEE80211_MODE_11B) ? 4 : rate;
1357 
1358 	/* OFDM rates */
1359 	case 12:
1360 	case 18:
1361 		return 12;
1362 	case 24:
1363 	case 36:
1364 		return 24;
1365 	case 48:
1366 	case 72:
1367 	case 96:
1368 	case 108:
1369 		return 48;
1370 	}
1371 
1372 	/* default to 1Mbps */
1373 	return 2;
1374 }
1375 
1376 /*
1377  * Compute the duration (in us) needed to transmit `len' bytes at rate `rate'.
1378  * The function automatically determines the operating mode depending on the
1379  * given rate. `flags' indicates whether short preamble is in use or not.
1380  */
1381 static uint16_t
rt2661_txtime(int len,int rate,uint32_t flags)1382 rt2661_txtime(int len, int rate, uint32_t flags)
1383 {
1384 	uint16_t txtime;
1385 
1386 	if (RAL_RATE_IS_OFDM(rate)) {
1387 		/* IEEE Std 802.11g-2003, pp. 44 */
1388 		txtime = (8 + 4 * len + 3 + rate - 1) / rate;
1389 		txtime = 16 + 4 + 4 * txtime + 6;
1390 	} else {
1391 		/* IEEE Std 802.11b-1999, pp. 28 */
1392 		txtime = (16 * len + rate - 1) / rate;
1393 		if (rate != 2 && (flags & IEEE80211_F_SHPREAMBLE))
1394 			txtime +=  72 + 24;
1395 		else
1396 			txtime += 144 + 48;
1397 	}
1398 	return txtime;
1399 }
1400 
1401 static uint8_t
rt2661_plcp_signal(int rate)1402 rt2661_plcp_signal(int rate)
1403 {
1404 	switch (rate) {
1405 	/* CCK rates (returned values are device-dependent) */
1406 	case 2:		return 0x0;
1407 	case 4:		return 0x1;
1408 	case 11:	return 0x2;
1409 	case 22:	return 0x3;
1410 
1411 	/* OFDM rates (cf IEEE Std 802.11a-1999, pp. 14 Table 80) */
1412 	case 12:	return 0xb;
1413 	case 18:	return 0xf;
1414 	case 24:	return 0xa;
1415 	case 36:	return 0xe;
1416 	case 48:	return 0x9;
1417 	case 72:	return 0xd;
1418 	case 96:	return 0x8;
1419 	case 108:	return 0xc;
1420 
1421 	/* unsupported rates (should not get there) */
1422 	default:	return 0xff;
1423 	}
1424 }
1425 
1426 static void
rt2661_setup_tx_desc(struct rt2661_softc * sc,struct rt2661_tx_desc * desc,uint32_t flags,uint16_t xflags,int len,int rate,const bus_dma_segment_t * segs,int nsegs,int ac)1427 rt2661_setup_tx_desc(struct rt2661_softc *sc, struct rt2661_tx_desc *desc,
1428     uint32_t flags, uint16_t xflags, int len, int rate,
1429     const bus_dma_segment_t *segs, int nsegs, int ac)
1430 {
1431 	struct ieee80211com *ic = &sc->sc_ic;
1432 	uint16_t plcp_length;
1433 	int i, remainder;
1434 
1435 	desc->flags = htole32(flags);
1436 	desc->flags |= htole32(len << 16);
1437 
1438 	desc->xflags = htole16(xflags);
1439 	desc->xflags |= htole16(nsegs << 13);
1440 
1441 	desc->wme = htole16(
1442 	    RT2661_QID(ac) |
1443 	    RT2661_AIFSN(2) |
1444 	    RT2661_LOGCWMIN(4) |
1445 	    RT2661_LOGCWMAX(10));
1446 
1447 	/*
1448 	 * Remember in which queue this frame was sent. This field is driver
1449 	 * private data only. It will be made available by the NIC in STA_CSR4
1450 	 * on Tx interrupts.
1451 	 */
1452 	desc->qid = ac;
1453 
1454 	/* setup PLCP fields */
1455 	desc->plcp_signal  = rt2661_plcp_signal(rate);
1456 	desc->plcp_service = 4;
1457 
1458 	len += IEEE80211_CRC_LEN;
1459 	if (RAL_RATE_IS_OFDM(rate)) {
1460 		desc->flags |= htole32(RT2661_TX_OFDM);
1461 
1462 		plcp_length = len & 0xfff;
1463 		desc->plcp_length_hi = plcp_length >> 6;
1464 		desc->plcp_length_lo = plcp_length & 0x3f;
1465 	} else {
1466 		plcp_length = (16 * len + rate - 1) / rate;
1467 		if (rate == 22) {
1468 			remainder = (16 * len) % 22;
1469 			if (remainder != 0 && remainder < 7)
1470 				desc->plcp_service |= RT2661_PLCP_LENGEXT;
1471 		}
1472 		desc->plcp_length_hi = plcp_length >> 8;
1473 		desc->plcp_length_lo = plcp_length & 0xff;
1474 
1475 		if (rate != 2 && (ic->ic_flags & IEEE80211_F_SHPREAMBLE))
1476 			desc->plcp_signal |= 0x08;
1477 	}
1478 
1479 	/* RT2x61 supports scatter with up to 5 segments */
1480 	for (i = 0; i < nsegs; i++) {
1481 		desc->addr[i] = htole32(segs[i].ds_addr);
1482 		desc->len [i] = htole16(segs[i].ds_len);
1483 	}
1484 
1485 	desc->flags |= htole32(RT2661_TX_BUSY | RT2661_TX_VALID);
1486 }
1487 
1488 static int
rt2661_tx_mgt(struct rt2661_softc * sc,struct mbuf * m0,struct ieee80211_node * ni)1489 rt2661_tx_mgt(struct rt2661_softc *sc, struct mbuf *m0,
1490     struct ieee80211_node *ni)
1491 {
1492 	struct ieee80211com *ic = &sc->sc_ic;
1493 	struct rt2661_tx_desc *desc;
1494 	struct rt2661_tx_data *data;
1495 	struct ieee80211_frame *wh;
1496 	uint16_t dur;
1497 	uint32_t flags = 0;
1498 	int rate, error;
1499 
1500 	desc = &sc->mgtq.desc[sc->mgtq.cur];
1501 	data = &sc->mgtq.data[sc->mgtq.cur];
1502 
1503 	/* send mgt frames at the lowest available rate */
1504 	rate = IEEE80211_IS_CHAN_5GHZ(ic->ic_curchan) ? 12 : 2;
1505 
1506 	wh = mtod(m0, struct ieee80211_frame *);
1507 
1508 	if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
1509 		if (ieee80211_crypto_encap(ic, ni, m0) == NULL) {
1510 			m_freem(m0);
1511 			return ENOBUFS;
1512 		}
1513 
1514 		/* packet header may have moved, reset our local pointer */
1515 		wh = mtod(m0, struct ieee80211_frame *);
1516 	}
1517 
1518 	error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m0,
1519 	    BUS_DMA_NOWAIT);
1520 	if (error != 0) {
1521 		aprint_error_dev(sc->sc_dev, "could not map mbuf (error %d)\n",
1522 		    error);
1523 		m_freem(m0);
1524 		return error;
1525 	}
1526 
1527 	if (sc->sc_drvbpf != NULL) {
1528 		struct rt2661_tx_radiotap_header *tap = &sc->sc_txtap;
1529 
1530 		tap->wt_flags = 0;
1531 		tap->wt_rate = rate;
1532 		tap->wt_chan_freq = htole16(sc->sc_curchan->ic_freq);
1533 		tap->wt_chan_flags = htole16(sc->sc_curchan->ic_flags);
1534 
1535 		bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m0, BPF_D_OUT);
1536 	}
1537 
1538 	data->m = m0;
1539 	data->ni = ni;
1540 
1541 	if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
1542 		flags |= RT2661_TX_NEED_ACK;
1543 
1544 		dur = rt2661_txtime(RAL_ACK_SIZE, rate, ic->ic_flags) +
1545 		    sc->sifs;
1546 		*(uint16_t *)wh->i_dur = htole16(dur);
1547 
1548 		/* tell hardware to set timestamp in probe responses */
1549 		if ((wh->i_fc[0] &
1550 		    (IEEE80211_FC0_TYPE_MASK | IEEE80211_FC0_SUBTYPE_MASK)) ==
1551 		    (IEEE80211_FC0_TYPE_MGT | IEEE80211_FC0_SUBTYPE_PROBE_RESP))
1552 			flags |= RT2661_TX_TIMESTAMP;
1553 	}
1554 
1555 	rt2661_setup_tx_desc(sc, desc, flags, 0 /* XXX HWSEQ */,
1556 	    m0->m_pkthdr.len, rate, data->map->dm_segs, data->map->dm_nsegs,
1557 	    RT2661_QID_MGT);
1558 
1559 	bus_dmamap_sync(sc->sc_dmat, data->map, 0, data->map->dm_mapsize,
1560 	    BUS_DMASYNC_PREWRITE);
1561 	bus_dmamap_sync(sc->sc_dmat, sc->mgtq.map,
1562 	    sc->mgtq.cur * RT2661_TX_DESC_SIZE, RT2661_TX_DESC_SIZE,
1563 	    BUS_DMASYNC_PREWRITE);
1564 
1565 	DPRINTFN(10, ("sending mgt frame len=%u idx=%u rate=%u\n",
1566 	    m0->m_pkthdr.len, sc->mgtq.cur, rate));
1567 
1568 	/* kick mgt */
1569 	sc->mgtq.queued++;
1570 	sc->mgtq.cur = (sc->mgtq.cur + 1) % RT2661_MGT_RING_COUNT;
1571 	RAL_WRITE(sc, RT2661_TX_CNTL_CSR, RT2661_KICK_MGT);
1572 
1573 	return 0;
1574 }
1575 
1576 /*
1577  * Build a RTS control frame.
1578  */
1579 static struct mbuf *
rt2661_get_rts(struct rt2661_softc * sc,struct ieee80211_frame * wh,uint16_t dur)1580 rt2661_get_rts(struct rt2661_softc *sc, struct ieee80211_frame *wh,
1581     uint16_t dur)
1582 {
1583 	struct ieee80211_frame_rts *rts;
1584 	struct mbuf *m;
1585 
1586 	MGETHDR(m, M_DONTWAIT, MT_DATA);
1587 	if (m == NULL) {
1588 		sc->sc_ic.ic_stats.is_tx_nobuf++;
1589 		aprint_error_dev(sc->sc_dev, "could not allocate RTS frame\n");
1590 		return NULL;
1591 	}
1592 
1593 	rts = mtod(m, struct ieee80211_frame_rts *);
1594 
1595 	rts->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_CTL |
1596 	    IEEE80211_FC0_SUBTYPE_RTS;
1597 	rts->i_fc[1] = IEEE80211_FC1_DIR_NODS;
1598 	*(uint16_t *)rts->i_dur = htole16(dur);
1599 	IEEE80211_ADDR_COPY(rts->i_ra, wh->i_addr1);
1600 	IEEE80211_ADDR_COPY(rts->i_ta, wh->i_addr2);
1601 
1602 	m->m_pkthdr.len = m->m_len = sizeof (struct ieee80211_frame_rts);
1603 
1604 	return m;
1605 }
1606 
1607 static int
rt2661_tx_data(struct rt2661_softc * sc,struct mbuf * m0,struct ieee80211_node * ni,int ac)1608 rt2661_tx_data(struct rt2661_softc *sc, struct mbuf *m0,
1609     struct ieee80211_node *ni, int ac)
1610 {
1611 	struct ieee80211com *ic = &sc->sc_ic;
1612 	struct rt2661_tx_ring *txq = &sc->txq[ac];
1613 	struct rt2661_tx_desc *desc;
1614 	struct rt2661_tx_data *data;
1615 	struct ieee80211_frame *wh;
1616 	struct ieee80211_key *k;
1617 	struct mbuf *mnew;
1618 	uint16_t dur;
1619 	uint32_t flags = 0;
1620 	int rate, useprot, error, tid;
1621 
1622 	wh = mtod(m0, struct ieee80211_frame *);
1623 
1624 	if (ic->ic_fixed_rate != IEEE80211_FIXED_RATE_NONE) {
1625 		rate = ic->ic_sup_rates[ic->ic_curmode].
1626 		    rs_rates[ic->ic_fixed_rate];
1627 	} else
1628 		rate = ni->ni_rates.rs_rates[ni->ni_txrate];
1629 	rate &= IEEE80211_RATE_VAL;
1630 	if (rate == 0)
1631 		rate = 2;	/* XXX should not happen */
1632 
1633 	if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
1634 		k = ieee80211_crypto_encap(ic, ni, m0);
1635 		if (k == NULL) {
1636 			m_freem(m0);
1637 			return ENOBUFS;
1638 		}
1639 
1640 		/* packet header may have moved, reset our local pointer */
1641 		wh = mtod(m0, struct ieee80211_frame *);
1642 	}
1643 
1644 	/*
1645 	 * Packet Bursting: backoff after ppb=8 frames to give other STAs a
1646 	 * chance to contend for the wireless medium.
1647 	 */
1648 	tid = WME_AC_TO_TID(M_WME_GETAC(m0));
1649 	if (ic->ic_opmode == IEEE80211_M_STA && (ni->ni_txseqs[tid] & 7))
1650 		flags |= RT2661_TX_IFS_SIFS;
1651 
1652 	/*
1653 	 * IEEE Std 802.11-1999, pp 82: "A STA shall use an RTS/CTS exchange
1654 	 * for directed frames only when the length of the MPDU is greater
1655 	 * than the length threshold indicated by" ic_rtsthreshold.
1656 	 *
1657 	 * IEEE Std 802.11-2003g, pp 13: "ERP STAs shall use protection
1658 	 * mechanism (such as RTS/CTS or CTS-to-self) for ERP-OFDM MPDUs of
1659 	 * type Data or an MMPDU".
1660 	 */
1661 	useprot = !IEEE80211_IS_MULTICAST(wh->i_addr1) &&
1662 	    (m0->m_pkthdr.len + IEEE80211_CRC_LEN > ic->ic_rtsthreshold ||
1663 	    ((ic->ic_flags & IEEE80211_F_USEPROT) && RAL_RATE_IS_OFDM(rate)));
1664 	if (useprot) {
1665 		struct mbuf *m;
1666 		int rtsrate, ackrate;
1667 
1668 		rtsrate = IEEE80211_IS_CHAN_5GHZ(ic->ic_curchan) ? 12 : 2;
1669 		ackrate = rt2661_ack_rate(ic, rate);
1670 
1671 		dur = rt2661_txtime(m0->m_pkthdr.len + 4, rate, ic->ic_flags) +
1672 		      rt2661_txtime(RAL_CTS_SIZE, rtsrate, ic->ic_flags) +
1673 		      rt2661_txtime(RAL_ACK_SIZE, ackrate, ic->ic_flags) +
1674 		      3 * sc->sifs;
1675 
1676 		m = rt2661_get_rts(sc, wh, dur);
1677 		if (m == NULL) {
1678 			aprint_error_dev(sc->sc_dev, "could not allocate RTS "
1679 			    "frame\n");
1680 			m_freem(m0);
1681 			return ENOBUFS;
1682 		}
1683 
1684 		desc = &txq->desc[txq->cur];
1685 		data = &txq->data[txq->cur];
1686 
1687 		error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m,
1688 		    BUS_DMA_NOWAIT);
1689 		if (error != 0) {
1690 			aprint_error_dev(sc->sc_dev, "could not map mbuf (error %d)\n", error);
1691 			m_freem(m);
1692 			m_freem(m0);
1693 			return error;
1694 		}
1695 
1696 		/* avoid multiple free() of the same node for each fragment */
1697 		ieee80211_ref_node(ni);
1698 
1699 		data->m = m;
1700 		data->ni = ni;
1701 
1702 		rt2661_setup_tx_desc(sc, desc, RT2661_TX_NEED_ACK |
1703 		    RT2661_TX_MORE_FRAG, 0, m->m_pkthdr.len, rtsrate,
1704 		    data->map->dm_segs, data->map->dm_nsegs, ac);
1705 
1706 		bus_dmamap_sync(sc->sc_dmat, data->map, 0,
1707 		    data->map->dm_mapsize, BUS_DMASYNC_PREWRITE);
1708 		bus_dmamap_sync(sc->sc_dmat, txq->map,
1709 		    txq->cur * RT2661_TX_DESC_SIZE, RT2661_TX_DESC_SIZE,
1710 		    BUS_DMASYNC_PREWRITE);
1711 
1712 		txq->queued++;
1713 		txq->cur = (txq->cur + 1) % RT2661_TX_RING_COUNT;
1714 
1715 		flags |= RT2661_TX_LONG_RETRY | RT2661_TX_IFS_SIFS;
1716 	}
1717 
1718 	data = &txq->data[txq->cur];
1719 	desc = &txq->desc[txq->cur];
1720 
1721 	error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m0,
1722 	    BUS_DMA_NOWAIT);
1723 	if (error != 0 && error != EFBIG) {
1724 		aprint_error_dev(sc->sc_dev, "could not map mbuf (error %d)\n",
1725 		    error);
1726 		m_freem(m0);
1727 		return error;
1728 	}
1729 	if (error != 0) {
1730 		/* too many fragments, linearize */
1731 
1732 		MGETHDR(mnew, M_DONTWAIT, MT_DATA);
1733 		if (mnew == NULL) {
1734 			m_freem(m0);
1735 			return ENOMEM;
1736 		}
1737 
1738 		m_copy_pkthdr(mnew, m0);
1739 		if (m0->m_pkthdr.len > MHLEN) {
1740 			MCLGET(mnew, M_DONTWAIT);
1741 			if (!(mnew->m_flags & M_EXT)) {
1742 				m_freem(m0);
1743 				m_freem(mnew);
1744 				return ENOMEM;
1745 			}
1746 		}
1747 
1748 		m_copydata(m0, 0, m0->m_pkthdr.len, mtod(mnew, void *));
1749 		m_freem(m0);
1750 		mnew->m_len = mnew->m_pkthdr.len;
1751 		m0 = mnew;
1752 
1753 		error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m0,
1754 		    BUS_DMA_NOWAIT);
1755 		if (error != 0) {
1756 			aprint_error_dev(sc->sc_dev, "could not map mbuf (error %d)\n", error);
1757 			m_freem(m0);
1758 			return error;
1759 		}
1760 
1761 		/* packet header have moved, reset our local pointer */
1762 		wh = mtod(m0, struct ieee80211_frame *);
1763 	}
1764 
1765 	if (sc->sc_drvbpf != NULL) {
1766 		struct rt2661_tx_radiotap_header *tap = &sc->sc_txtap;
1767 
1768 		tap->wt_flags = 0;
1769 		tap->wt_rate = rate;
1770 		tap->wt_chan_freq = htole16(sc->sc_curchan->ic_freq);
1771 		tap->wt_chan_flags = htole16(sc->sc_curchan->ic_flags);
1772 
1773 		bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m0, BPF_D_OUT);
1774 	}
1775 
1776 	data->m = m0;
1777 	data->ni = ni;
1778 
1779 	if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
1780 		flags |= RT2661_TX_NEED_ACK;
1781 
1782 		dur = rt2661_txtime(RAL_ACK_SIZE, rt2661_ack_rate(ic, rate),
1783 		    ic->ic_flags) + sc->sifs;
1784 		*(uint16_t *)wh->i_dur = htole16(dur);
1785 	}
1786 
1787 	rt2661_setup_tx_desc(sc, desc, flags, 0, m0->m_pkthdr.len, rate,
1788 	    data->map->dm_segs, data->map->dm_nsegs, ac);
1789 
1790 	bus_dmamap_sync(sc->sc_dmat, data->map, 0, data->map->dm_mapsize,
1791 	    BUS_DMASYNC_PREWRITE);
1792 	bus_dmamap_sync(sc->sc_dmat, txq->map, txq->cur * RT2661_TX_DESC_SIZE,
1793 	    RT2661_TX_DESC_SIZE, BUS_DMASYNC_PREWRITE);
1794 
1795 	DPRINTFN(10, ("sending data frame len=%u idx=%u rate=%u\n",
1796 	    m0->m_pkthdr.len, txq->cur, rate));
1797 
1798 	/* kick Tx */
1799 	txq->queued++;
1800 	txq->cur = (txq->cur + 1) % RT2661_TX_RING_COUNT;
1801 	RAL_WRITE(sc, RT2661_TX_CNTL_CSR, 1);
1802 
1803 	return 0;
1804 }
1805 
1806 static void
rt2661_start(struct ifnet * ifp)1807 rt2661_start(struct ifnet *ifp)
1808 {
1809 	struct rt2661_softc *sc = ifp->if_softc;
1810 	struct ieee80211com *ic = &sc->sc_ic;
1811 	struct mbuf *m0;
1812 	struct ether_header *eh;
1813 	struct ieee80211_node *ni = NULL;
1814 
1815 	/*
1816 	 * net80211 may still try to send management frames even if the
1817 	 * IFF_RUNNING flag is not set...
1818 	 */
1819 	if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
1820 		return;
1821 
1822 	for (;;) {
1823 		IF_POLL(&ic->ic_mgtq, m0);
1824 		if (m0 != NULL) {
1825 			if (sc->mgtq.queued >= RT2661_MGT_RING_COUNT) {
1826 				ifp->if_flags |= IFF_OACTIVE;
1827 				break;
1828 			}
1829 			IF_DEQUEUE(&ic->ic_mgtq, m0);
1830 			if (m0 == NULL)
1831 				break;
1832 
1833 			ni = M_GETCTX(m0, struct ieee80211_node *);
1834 			M_CLEARCTX(m0);
1835 			bpf_mtap3(ic->ic_rawbpf, m0, BPF_D_OUT);
1836 			if (rt2661_tx_mgt(sc, m0, ni) != 0)
1837 				break;
1838 
1839 		} else {
1840 			IF_POLL(&ifp->if_snd, m0);
1841 			if (m0 == NULL || ic->ic_state != IEEE80211_S_RUN)
1842 				break;
1843 
1844 			if (sc->txq[0].queued >= RT2661_TX_RING_COUNT - 1) {
1845 				/* there is no place left in this ring */
1846 				ifp->if_flags |= IFF_OACTIVE;
1847 				break;
1848 			}
1849 
1850 			IFQ_DEQUEUE(&ifp->if_snd, m0);
1851 
1852 			if (m0->m_len < sizeof (struct ether_header) &&
1853 			    !(m0 = m_pullup(m0, sizeof (struct ether_header))))
1854 				continue;
1855 
1856 			eh = mtod(m0, struct ether_header *);
1857 			ni = ieee80211_find_txnode(ic, eh->ether_dhost);
1858 			if (ni == NULL) {
1859 				m_freem(m0);
1860 				if_statinc(ifp, if_oerrors);
1861 				continue;
1862 			}
1863 
1864 			bpf_mtap(ifp, m0, BPF_D_OUT);
1865 			m0 = ieee80211_encap(ic, m0, ni);
1866 			if (m0 == NULL) {
1867 				ieee80211_free_node(ni);
1868 				if_statinc(ifp, if_oerrors);
1869 				continue;
1870 			}
1871 			bpf_mtap3(ic->ic_rawbpf, m0, BPF_D_OUT);
1872 			if (rt2661_tx_data(sc, m0, ni, 0) != 0) {
1873 				if (ni != NULL)
1874 					ieee80211_free_node(ni);
1875 				if_statinc(ifp, if_oerrors);
1876 				break;
1877 			}
1878 		}
1879 
1880 		sc->sc_tx_timer = 5;
1881 		ifp->if_timer = 1;
1882 	}
1883 }
1884 
1885 static void
rt2661_watchdog(struct ifnet * ifp)1886 rt2661_watchdog(struct ifnet *ifp)
1887 {
1888 	struct rt2661_softc *sc = ifp->if_softc;
1889 
1890 	ifp->if_timer = 0;
1891 
1892 	if (sc->sc_tx_timer > 0) {
1893 		if (--sc->sc_tx_timer == 0) {
1894 			aprint_error_dev(sc->sc_dev, "device timeout\n");
1895 			rt2661_init(ifp);
1896 			if_statinc(ifp, if_oerrors);
1897 			return;
1898 		}
1899 		ifp->if_timer = 1;
1900 	}
1901 
1902 	ieee80211_watchdog(&sc->sc_ic);
1903 }
1904 
1905 /*
1906  * This function allows for fast channel switching in monitor mode (used by
1907  * kismet). In IBSS mode, we must explicitly reset the interface to
1908  * generate a new beacon frame.
1909  */
1910 static int
rt2661_reset(struct ifnet * ifp)1911 rt2661_reset(struct ifnet *ifp)
1912 {
1913 	struct rt2661_softc *sc = ifp->if_softc;
1914 	struct ieee80211com *ic = &sc->sc_ic;
1915 
1916 	if (ic->ic_opmode != IEEE80211_M_MONITOR)
1917 		return ENETRESET;
1918 
1919 	rt2661_set_chan(sc, ic->ic_curchan);
1920 
1921 	return 0;
1922 }
1923 
1924 static int
rt2661_ioctl(struct ifnet * ifp,u_long cmd,void * data)1925 rt2661_ioctl(struct ifnet *ifp, u_long cmd, void *data)
1926 {
1927 	struct rt2661_softc *sc = ifp->if_softc;
1928 	struct ieee80211com *ic = &sc->sc_ic;
1929 	int s, error = 0;
1930 
1931 	s = splnet();
1932 
1933 	switch (cmd) {
1934 	case SIOCSIFFLAGS:
1935 		if ((error = ifioctl_common(ifp, cmd, data)) != 0)
1936 			break;
1937 		if (ifp->if_flags & IFF_UP) {
1938 			if (ifp->if_flags & IFF_RUNNING)
1939 				rt2661_update_promisc(sc);
1940 			else
1941 				rt2661_init(ifp);
1942 		} else {
1943 			if (ifp->if_flags & IFF_RUNNING)
1944 				rt2661_stop(ifp, 1);
1945 		}
1946 		break;
1947 
1948 	case SIOCADDMULTI:
1949 	case SIOCDELMULTI:
1950 		/* XXX no h/w multicast filter? --dyoung */
1951 		if ((error = ether_ioctl(ifp, cmd, data)) == ENETRESET)
1952 			error = 0;
1953 		break;
1954 
1955 	case SIOCS80211CHANNEL:
1956 		/*
1957 		 * This allows for fast channel switching in monitor mode
1958 		 * (used by kismet). In IBSS mode, we must explicitly reset
1959 		 * the interface to generate a new beacon frame.
1960 		 */
1961 		error = ieee80211_ioctl(ic, cmd, data);
1962 		if (error == ENETRESET &&
1963 		    ic->ic_opmode == IEEE80211_M_MONITOR) {
1964 			if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) ==
1965 			     (IFF_UP | IFF_RUNNING))
1966 				rt2661_set_chan(sc, ic->ic_ibss_chan);
1967 			error = 0;
1968 		}
1969 		break;
1970 
1971 	default:
1972 		error = ieee80211_ioctl(ic, cmd, data);
1973 
1974 	}
1975 
1976 	if (error == ENETRESET) {
1977 		if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) ==
1978 		    (IFF_UP | IFF_RUNNING))
1979 			rt2661_init(ifp);
1980 		error = 0;
1981 	}
1982 
1983 	splx(s);
1984 
1985 	return error;
1986 }
1987 
1988 static void
rt2661_bbp_write(struct rt2661_softc * sc,uint8_t reg,uint8_t val)1989 rt2661_bbp_write(struct rt2661_softc *sc, uint8_t reg, uint8_t val)
1990 {
1991 	uint32_t tmp;
1992 	int ntries;
1993 
1994 	for (ntries = 0; ntries < 100; ntries++) {
1995 		if (!(RAL_READ(sc, RT2661_PHY_CSR3) & RT2661_BBP_BUSY))
1996 			break;
1997 		DELAY(1);
1998 	}
1999 	if (ntries == 100) {
2000 		aprint_error_dev(sc->sc_dev, "could not write to BBP\n");
2001 		return;
2002 	}
2003 
2004 	tmp = RT2661_BBP_BUSY | (reg & 0x7f) << 8 | val;
2005 	RAL_WRITE(sc, RT2661_PHY_CSR3, tmp);
2006 
2007 	DPRINTFN(15, ("BBP R%u <- 0x%02x\n", reg, val));
2008 }
2009 
2010 static uint8_t
rt2661_bbp_read(struct rt2661_softc * sc,uint8_t reg)2011 rt2661_bbp_read(struct rt2661_softc *sc, uint8_t reg)
2012 {
2013 	uint32_t val;
2014 	int ntries;
2015 
2016 	for (ntries = 0; ntries < 100; ntries++) {
2017 		if (!(RAL_READ(sc, RT2661_PHY_CSR3) & RT2661_BBP_BUSY))
2018 			break;
2019 		DELAY(1);
2020 	}
2021 	if (ntries == 100) {
2022 		aprint_error_dev(sc->sc_dev, "could not read from BBP\n");
2023 		return 0;
2024 	}
2025 
2026 	val = RT2661_BBP_BUSY | RT2661_BBP_READ | reg << 8;
2027 	RAL_WRITE(sc, RT2661_PHY_CSR3, val);
2028 
2029 	for (ntries = 0; ntries < 100; ntries++) {
2030 		val = RAL_READ(sc, RT2661_PHY_CSR3);
2031 		if (!(val & RT2661_BBP_BUSY))
2032 			return val & 0xff;
2033 		DELAY(1);
2034 	}
2035 
2036 	aprint_error_dev(sc->sc_dev, "could not read from BBP\n");
2037 	return 0;
2038 }
2039 
2040 static void
rt2661_rf_write(struct rt2661_softc * sc,uint8_t reg,uint32_t val)2041 rt2661_rf_write(struct rt2661_softc *sc, uint8_t reg, uint32_t val)
2042 {
2043 	uint32_t tmp;
2044 	int ntries;
2045 
2046 	for (ntries = 0; ntries < 100; ntries++) {
2047 		if (!(RAL_READ(sc, RT2661_PHY_CSR4) & RT2661_RF_BUSY))
2048 			break;
2049 		DELAY(1);
2050 	}
2051 	if (ntries == 100) {
2052 		aprint_error_dev(sc->sc_dev, "could not write to RF\n");
2053 		return;
2054 	}
2055 	tmp = RT2661_RF_BUSY | RT2661_RF_21BIT | (val & 0x1fffff) << 2 |
2056 	    (reg & 3);
2057 	RAL_WRITE(sc, RT2661_PHY_CSR4, tmp);
2058 
2059 	/* remember last written value in sc */
2060 	sc->rf_regs[reg] = val;
2061 
2062 	DPRINTFN(15, ("RF R[%u] <- 0x%05x\n", reg & 3, val & 0x1fffff));
2063 }
2064 
2065 static int
rt2661_tx_cmd(struct rt2661_softc * sc,uint8_t cmd,uint16_t arg)2066 rt2661_tx_cmd(struct rt2661_softc *sc, uint8_t cmd, uint16_t arg)
2067 {
2068 	if (RAL_READ(sc, RT2661_H2M_MAILBOX_CSR) & RT2661_H2M_BUSY)
2069 		return EIO;	/* there is already a command pending */
2070 
2071 	RAL_WRITE(sc, RT2661_H2M_MAILBOX_CSR,
2072 	    RT2661_H2M_BUSY | RT2661_TOKEN_NO_INTR << 16 | arg);
2073 
2074 	RAL_WRITE(sc, RT2661_HOST_CMD_CSR, RT2661_KICK_CMD | cmd);
2075 
2076 	return 0;
2077 }
2078 
2079 static void
rt2661_select_antenna(struct rt2661_softc * sc)2080 rt2661_select_antenna(struct rt2661_softc *sc)
2081 {
2082 	uint8_t bbp4, bbp77;
2083 	uint32_t tmp;
2084 
2085 	bbp4  = rt2661_bbp_read(sc,  4);
2086 	bbp77 = rt2661_bbp_read(sc, 77);
2087 
2088 	/* TBD */
2089 
2090 	/* make sure Rx is disabled before switching antenna */
2091 	tmp = RAL_READ(sc, RT2661_TXRX_CSR0);
2092 	RAL_WRITE(sc, RT2661_TXRX_CSR0, tmp | RT2661_DISABLE_RX);
2093 
2094 	rt2661_bbp_write(sc,  4, bbp4);
2095 	rt2661_bbp_write(sc, 77, bbp77);
2096 
2097 	/* restore Rx filter */
2098 	RAL_WRITE(sc, RT2661_TXRX_CSR0, tmp);
2099 }
2100 
2101 /*
2102  * Enable multi-rate retries for frames sent at OFDM rates.
2103  * In 802.11b/g mode, allow fallback to CCK rates.
2104  */
2105 static void
rt2661_enable_mrr(struct rt2661_softc * sc)2106 rt2661_enable_mrr(struct rt2661_softc *sc)
2107 {
2108 	struct ieee80211com *ic = &sc->sc_ic;
2109 	uint32_t tmp;
2110 
2111 	tmp = RAL_READ(sc, RT2661_TXRX_CSR4);
2112 
2113 	tmp &= ~RT2661_MRR_CCK_FALLBACK;
2114 	if (!IEEE80211_IS_CHAN_5GHZ(ic->ic_bss->ni_chan))
2115 		tmp |= RT2661_MRR_CCK_FALLBACK;
2116 	tmp |= RT2661_MRR_ENABLED;
2117 
2118 	RAL_WRITE(sc, RT2661_TXRX_CSR4, tmp);
2119 }
2120 
2121 static void
rt2661_set_txpreamble(struct rt2661_softc * sc)2122 rt2661_set_txpreamble(struct rt2661_softc *sc)
2123 {
2124 	uint32_t tmp;
2125 
2126 	tmp = RAL_READ(sc, RT2661_TXRX_CSR4);
2127 
2128 	tmp &= ~RT2661_SHORT_PREAMBLE;
2129 	if (sc->sc_ic.ic_flags & IEEE80211_F_SHPREAMBLE)
2130 		tmp |= RT2661_SHORT_PREAMBLE;
2131 
2132 	RAL_WRITE(sc, RT2661_TXRX_CSR4, tmp);
2133 }
2134 
2135 static void
rt2661_set_basicrates(struct rt2661_softc * sc,const struct ieee80211_rateset * rs)2136 rt2661_set_basicrates(struct rt2661_softc *sc,
2137     const struct ieee80211_rateset *rs)
2138 {
2139 #define RV(r)	((r) & IEEE80211_RATE_VAL)
2140 	uint32_t mask = 0;
2141 	uint8_t rate;
2142 	int i, j;
2143 
2144 	for (i = 0; i < rs->rs_nrates; i++) {
2145 		rate = rs->rs_rates[i];
2146 
2147 		if (!(rate & IEEE80211_RATE_BASIC))
2148 			continue;
2149 
2150 		/*
2151 		 * Find h/w rate index.  We know it exists because the rate
2152 		 * set has already been negotiated.
2153 		 */
2154 		for (j = 0; ieee80211_std_rateset_11g.rs_rates[j] != RV(rate); j++);
2155 
2156 		mask |= 1 << j;
2157 	}
2158 
2159 	RAL_WRITE(sc, RT2661_TXRX_CSR5, mask);
2160 
2161 	DPRINTF(("Setting basic rate mask to 0x%x\n", mask));
2162 #undef RV
2163 }
2164 
2165 /*
2166  * Reprogram MAC/BBP to switch to a new band.  Values taken from the reference
2167  * driver.
2168  */
2169 static void
rt2661_select_band(struct rt2661_softc * sc,struct ieee80211_channel * c)2170 rt2661_select_band(struct rt2661_softc *sc, struct ieee80211_channel *c)
2171 {
2172 	uint8_t bbp17, bbp35, bbp96, bbp97, bbp98, bbp104;
2173 	uint32_t tmp;
2174 
2175 	/* update all BBP registers that depend on the band */
2176 	bbp17 = 0x20; bbp96 = 0x48; bbp104 = 0x2c;
2177 	bbp35 = 0x50; bbp97 = 0x48; bbp98  = 0x48;
2178 	if (IEEE80211_IS_CHAN_5GHZ(c)) {
2179 		bbp17 += 0x08; bbp96 += 0x10; bbp104 += 0x0c;
2180 		bbp35 += 0x10; bbp97 += 0x10; bbp98  += 0x10;
2181 	}
2182 	if ((IEEE80211_IS_CHAN_2GHZ(c) && sc->ext_2ghz_lna) ||
2183 	    (IEEE80211_IS_CHAN_5GHZ(c) && sc->ext_5ghz_lna)) {
2184 		bbp17 += 0x10; bbp96 += 0x10; bbp104 += 0x10;
2185 	}
2186 
2187 	sc->bbp17 = bbp17;
2188 	rt2661_bbp_write(sc,  17, bbp17);
2189 	rt2661_bbp_write(sc,  96, bbp96);
2190 	rt2661_bbp_write(sc, 104, bbp104);
2191 
2192 	if ((IEEE80211_IS_CHAN_2GHZ(c) && sc->ext_2ghz_lna) ||
2193 	    (IEEE80211_IS_CHAN_5GHZ(c) && sc->ext_5ghz_lna)) {
2194 		rt2661_bbp_write(sc, 75, 0x80);
2195 		rt2661_bbp_write(sc, 86, 0x80);
2196 		rt2661_bbp_write(sc, 88, 0x80);
2197 	}
2198 
2199 	rt2661_bbp_write(sc, 35, bbp35);
2200 	rt2661_bbp_write(sc, 97, bbp97);
2201 	rt2661_bbp_write(sc, 98, bbp98);
2202 
2203 	tmp = RAL_READ(sc, RT2661_PHY_CSR0);
2204 	tmp &= ~(RT2661_PA_PE_2GHZ | RT2661_PA_PE_5GHZ);
2205 	if (IEEE80211_IS_CHAN_2GHZ(c))
2206 		tmp |= RT2661_PA_PE_2GHZ;
2207 	else
2208 		tmp |= RT2661_PA_PE_5GHZ;
2209 	RAL_WRITE(sc, RT2661_PHY_CSR0, tmp);
2210 
2211 	/* 802.11a uses a 16 microseconds short interframe space */
2212 	sc->sifs = IEEE80211_IS_CHAN_5GHZ(c) ? 16 : 10;
2213 }
2214 
2215 static void
rt2661_set_chan(struct rt2661_softc * sc,struct ieee80211_channel * c)2216 rt2661_set_chan(struct rt2661_softc *sc, struct ieee80211_channel *c)
2217 {
2218 	struct ieee80211com *ic = &sc->sc_ic;
2219 	const struct rfprog *rfprog;
2220 	uint8_t bbp3, bbp94 = RT2661_BBPR94_DEFAULT;
2221 	int8_t power;
2222 	u_int i, chan;
2223 
2224 	chan = ieee80211_chan2ieee(ic, c);
2225 	if (chan == 0 || chan == IEEE80211_CHAN_ANY)
2226 		return;
2227 
2228 	/* select the appropriate RF settings based on what EEPROM says */
2229 	rfprog = (sc->rfprog == 0) ? rt2661_rf5225_1 : rt2661_rf5225_2;
2230 
2231 	/* find the settings for this channel (we know it exists) */
2232 	for (i = 0; rfprog[i].chan != chan; i++);
2233 
2234 	power = sc->txpow[i];
2235 	if (power < 0) {
2236 		bbp94 += power;
2237 		power = 0;
2238 	} else if (power > 31) {
2239 		bbp94 += power - 31;
2240 		power = 31;
2241 	}
2242 
2243 	/*
2244 	 * If we've yet to select a channel, or we are switching from the
2245 	 * 2GHz band to the 5GHz band or vice-versa, BBP registers need to
2246 	 * be reprogrammed.
2247 	 */
2248 	if (sc->sc_curchan == NULL || c->ic_flags != sc->sc_curchan->ic_flags) {
2249 		rt2661_select_band(sc, c);
2250 		rt2661_select_antenna(sc);
2251 	}
2252 	sc->sc_curchan = c;
2253 
2254 	rt2661_rf_write(sc, RAL_RF1, rfprog[i].r1);
2255 	rt2661_rf_write(sc, RAL_RF2, rfprog[i].r2);
2256 	rt2661_rf_write(sc, RAL_RF3, rfprog[i].r3 | power << 7);
2257 	rt2661_rf_write(sc, RAL_RF4, rfprog[i].r4 | sc->rffreq << 10);
2258 
2259 	DELAY(200);
2260 
2261 	rt2661_rf_write(sc, RAL_RF1, rfprog[i].r1);
2262 	rt2661_rf_write(sc, RAL_RF2, rfprog[i].r2);
2263 	rt2661_rf_write(sc, RAL_RF3, rfprog[i].r3 | power << 7 | 1);
2264 	rt2661_rf_write(sc, RAL_RF4, rfprog[i].r4 | sc->rffreq << 10);
2265 
2266 	DELAY(200);
2267 
2268 	rt2661_rf_write(sc, RAL_RF1, rfprog[i].r1);
2269 	rt2661_rf_write(sc, RAL_RF2, rfprog[i].r2);
2270 	rt2661_rf_write(sc, RAL_RF3, rfprog[i].r3 | power << 7);
2271 	rt2661_rf_write(sc, RAL_RF4, rfprog[i].r4 | sc->rffreq << 10);
2272 
2273 	/* enable smart mode for MIMO-capable RFs */
2274 	bbp3 = rt2661_bbp_read(sc, 3);
2275 
2276 	bbp3 &= ~RT2661_SMART_MODE;
2277 	if (sc->rf_rev == RT2661_RF_5325 || sc->rf_rev == RT2661_RF_2529)
2278 		bbp3 |= RT2661_SMART_MODE;
2279 
2280 	rt2661_bbp_write(sc, 3, bbp3);
2281 
2282 	if (bbp94 != RT2661_BBPR94_DEFAULT)
2283 		rt2661_bbp_write(sc, 94, bbp94);
2284 
2285 	/* 5GHz radio needs a 1ms delay here */
2286 	if (IEEE80211_IS_CHAN_5GHZ(c))
2287 		DELAY(1000);
2288 }
2289 
2290 static void
rt2661_set_bssid(struct rt2661_softc * sc,const uint8_t * bssid)2291 rt2661_set_bssid(struct rt2661_softc *sc, const uint8_t *bssid)
2292 {
2293 	uint32_t tmp;
2294 
2295 	tmp = bssid[0] | bssid[1] << 8 | bssid[2] << 16 | bssid[3] << 24;
2296 	RAL_WRITE(sc, RT2661_MAC_CSR4, tmp);
2297 
2298 	tmp = bssid[4] | bssid[5] << 8 | RT2661_ONE_BSSID << 16;
2299 	RAL_WRITE(sc, RT2661_MAC_CSR5, tmp);
2300 }
2301 
2302 static void
rt2661_set_macaddr(struct rt2661_softc * sc,const uint8_t * addr)2303 rt2661_set_macaddr(struct rt2661_softc *sc, const uint8_t *addr)
2304 {
2305 	uint32_t tmp;
2306 
2307 	tmp = addr[0] | addr[1] << 8 | addr[2] << 16 | addr[3] << 24;
2308 	RAL_WRITE(sc, RT2661_MAC_CSR2, tmp);
2309 
2310 	tmp = addr[4] | addr[5] << 8 | 0xff << 16;
2311 	RAL_WRITE(sc, RT2661_MAC_CSR3, tmp);
2312 }
2313 
2314 static void
rt2661_update_promisc(struct rt2661_softc * sc)2315 rt2661_update_promisc(struct rt2661_softc *sc)
2316 {
2317 	struct ifnet *ifp = sc->sc_ic.ic_ifp;
2318 	uint32_t tmp;
2319 
2320 	tmp = RAL_READ(sc, RT2661_TXRX_CSR0);
2321 
2322 	tmp &= ~RT2661_DROP_NOT_TO_ME;
2323 	if (!(ifp->if_flags & IFF_PROMISC))
2324 		tmp |= RT2661_DROP_NOT_TO_ME;
2325 
2326 	RAL_WRITE(sc, RT2661_TXRX_CSR0, tmp);
2327 
2328 	DPRINTF(("%s promiscuous mode\n", (ifp->if_flags & IFF_PROMISC) ?
2329 	    "entering" : "leaving"));
2330 }
2331 
2332 #if 0
2333 /*
2334  * Update QoS (802.11e) settings for each h/w Tx ring.
2335  */
2336 static int
2337 rt2661_wme_update(struct ieee80211com *ic)
2338 {
2339 	struct rt2661_softc *sc = ic->ic_ifp->if_softc;
2340 	const struct wmeParams *wmep;
2341 
2342 	wmep = ic->ic_wme.wme_chanParams.cap_wmeParams;
2343 
2344 	/* XXX: not sure about shifts. */
2345 	/* XXX: the reference driver plays with AC_VI settings too. */
2346 
2347 	/* update TxOp */
2348 	RAL_WRITE(sc, RT2661_AC_TXOP_CSR0,
2349 	    wmep[WME_AC_BE].wmep_txopLimit << 16 |
2350 	    wmep[WME_AC_BK].wmep_txopLimit);
2351 	RAL_WRITE(sc, RT2661_AC_TXOP_CSR1,
2352 	    wmep[WME_AC_VI].wmep_txopLimit << 16 |
2353 	    wmep[WME_AC_VO].wmep_txopLimit);
2354 
2355 	/* update CWmin */
2356 	RAL_WRITE(sc, RT2661_CWMIN_CSR,
2357 	    wmep[WME_AC_BE].wmep_logcwmin << 12 |
2358 	    wmep[WME_AC_BK].wmep_logcwmin <<  8 |
2359 	    wmep[WME_AC_VI].wmep_logcwmin <<  4 |
2360 	    wmep[WME_AC_VO].wmep_logcwmin);
2361 
2362 	/* update CWmax */
2363 	RAL_WRITE(sc, RT2661_CWMAX_CSR,
2364 	    wmep[WME_AC_BE].wmep_logcwmax << 12 |
2365 	    wmep[WME_AC_BK].wmep_logcwmax <<  8 |
2366 	    wmep[WME_AC_VI].wmep_logcwmax <<  4 |
2367 	    wmep[WME_AC_VO].wmep_logcwmax);
2368 
2369 	/* update Aifsn */
2370 	RAL_WRITE(sc, RT2661_AIFSN_CSR,
2371 	    wmep[WME_AC_BE].wmep_aifsn << 12 |
2372 	    wmep[WME_AC_BK].wmep_aifsn <<  8 |
2373 	    wmep[WME_AC_VI].wmep_aifsn <<  4 |
2374 	    wmep[WME_AC_VO].wmep_aifsn);
2375 
2376 	return 0;
2377 }
2378 #endif
2379 
2380 static void
rt2661_updateslot(struct ifnet * ifp)2381 rt2661_updateslot(struct ifnet *ifp)
2382 {
2383 	struct rt2661_softc *sc = ifp->if_softc;
2384 	struct ieee80211com *ic = &sc->sc_ic;
2385 
2386 	if (ic->ic_opmode == IEEE80211_M_HOSTAP) {
2387 		/*
2388 		 * In HostAP mode, we defer setting of new slot time until
2389 		 * updated ERP Information Element has propagated to all
2390 		 * associated STAs.
2391 		 */
2392 		sc->sc_flags |= RT2661_UPDATE_SLOT;
2393 	} else
2394 		rt2661_set_slottime(sc);
2395 }
2396 
2397 static void
rt2661_set_slottime(struct rt2661_softc * sc)2398 rt2661_set_slottime(struct rt2661_softc *sc)
2399 {
2400 	struct ieee80211com *ic = &sc->sc_ic;
2401 	uint8_t slottime;
2402 	uint32_t tmp;
2403 
2404 	slottime = (ic->ic_flags & IEEE80211_F_SHSLOT) ? 9 : 20;
2405 
2406 	tmp = RAL_READ(sc, RT2661_MAC_CSR9);
2407 	tmp = (tmp & ~0xff) | slottime;
2408 	RAL_WRITE(sc, RT2661_MAC_CSR9, tmp);
2409 
2410 	DPRINTF(("setting slot time to %uus\n", slottime));
2411 }
2412 
2413 static const char *
rt2661_get_rf(int rev)2414 rt2661_get_rf(int rev)
2415 {
2416 	switch (rev) {
2417 	case RT2661_RF_5225:	return "RT5225";
2418 	case RT2661_RF_5325:	return "RT5325 (MIMO XR)";
2419 	case RT2661_RF_2527:	return "RT2527";
2420 	case RT2661_RF_2529:	return "RT2529 (MIMO XR)";
2421 	default:		return "unknown";
2422 	}
2423 }
2424 
2425 static void
rt2661_read_eeprom(struct rt2661_softc * sc)2426 rt2661_read_eeprom(struct rt2661_softc *sc)
2427 {
2428 	struct ieee80211com *ic = &sc->sc_ic;
2429 	uint16_t val;
2430 	int i;
2431 
2432 	/* read MAC address */
2433 	val = rt2661_eeprom_read(sc, RT2661_EEPROM_MAC01);
2434 	ic->ic_myaddr[0] = val & 0xff;
2435 	ic->ic_myaddr[1] = val >> 8;
2436 
2437 	val = rt2661_eeprom_read(sc, RT2661_EEPROM_MAC23);
2438 	ic->ic_myaddr[2] = val & 0xff;
2439 	ic->ic_myaddr[3] = val >> 8;
2440 
2441 	val = rt2661_eeprom_read(sc, RT2661_EEPROM_MAC45);
2442 	ic->ic_myaddr[4] = val & 0xff;
2443 	ic->ic_myaddr[5] = val >> 8;
2444 
2445 	val = rt2661_eeprom_read(sc, RT2661_EEPROM_ANTENNA);
2446 	/* XXX: test if different from 0xffff? */
2447 	sc->rf_rev   = (val >> 11) & 0x1f;
2448 	sc->hw_radio = (val >> 10) & 0x1;
2449 	sc->rx_ant   = (val >> 4)  & 0x3;
2450 	sc->tx_ant   = (val >> 2)  & 0x3;
2451 	sc->nb_ant   = val & 0x3;
2452 
2453 	DPRINTF(("RF revision=%d\n", sc->rf_rev));
2454 
2455 	val = rt2661_eeprom_read(sc, RT2661_EEPROM_CONFIG2);
2456 	sc->ext_5ghz_lna = (val >> 6) & 0x1;
2457 	sc->ext_2ghz_lna = (val >> 4) & 0x1;
2458 
2459 	DPRINTF(("External 2GHz LNA=%d\nExternal 5GHz LNA=%d\n",
2460 	    sc->ext_2ghz_lna, sc->ext_5ghz_lna));
2461 
2462 	val = rt2661_eeprom_read(sc, RT2661_EEPROM_RSSI_2GHZ_OFFSET);
2463 	if ((val & 0xff) != 0xff)
2464 		sc->rssi_2ghz_corr = (int8_t)(val & 0xff);	/* signed */
2465 
2466 	val = rt2661_eeprom_read(sc, RT2661_EEPROM_RSSI_5GHZ_OFFSET);
2467 	if ((val & 0xff) != 0xff)
2468 		sc->rssi_5ghz_corr = (int8_t)(val & 0xff);	/* signed */
2469 
2470 	/* adjust RSSI correction for external low-noise amplifier */
2471 	if (sc->ext_2ghz_lna)
2472 		sc->rssi_2ghz_corr -= 14;
2473 	if (sc->ext_5ghz_lna)
2474 		sc->rssi_5ghz_corr -= 14;
2475 
2476 	DPRINTF(("RSSI 2GHz corr=%d\nRSSI 5GHz corr=%d\n",
2477 	    sc->rssi_2ghz_corr, sc->rssi_5ghz_corr));
2478 
2479 	val = rt2661_eeprom_read(sc, RT2661_EEPROM_FREQ_OFFSET);
2480 	if ((val >> 8) != 0xff)
2481 		sc->rfprog = (val >> 8) & 0x3;
2482 	if ((val & 0xff) != 0xff)
2483 		sc->rffreq = val & 0xff;
2484 
2485 	DPRINTF(("RF prog=%d\nRF freq=%d\n", sc->rfprog, sc->rffreq));
2486 
2487 	/* read Tx power for all a/b/g channels */
2488 	for (i = 0; i < 19; i++) {
2489 		val = rt2661_eeprom_read(sc, RT2661_EEPROM_TXPOWER + i);
2490 		sc->txpow[i * 2] = (int8_t)(val >> 8);		/* signed */
2491 		DPRINTF(("Channel=%d Tx power=%d\n",
2492 		    rt2661_rf5225_1[i * 2].chan, sc->txpow[i * 2]));
2493 		sc->txpow[i * 2 + 1] = (int8_t)(val & 0xff);	/* signed */
2494 		DPRINTF(("Channel=%d Tx power=%d\n",
2495 		    rt2661_rf5225_1[i * 2 + 1].chan, sc->txpow[i * 2 + 1]));
2496 	}
2497 
2498 	/* read vendor-specific BBP values */
2499 	for (i = 0; i < 16; i++) {
2500 		val = rt2661_eeprom_read(sc, RT2661_EEPROM_BBP_BASE + i);
2501 		if (val == 0 || val == 0xffff)
2502 			continue;	/* skip invalid entries */
2503 		sc->bbp_prom[i].reg = val >> 8;
2504 		sc->bbp_prom[i].val = val & 0xff;
2505 		DPRINTF(("BBP R%d=%02x\n", sc->bbp_prom[i].reg,
2506 		    sc->bbp_prom[i].val));
2507 	}
2508 }
2509 
2510 static int
rt2661_bbp_init(struct rt2661_softc * sc)2511 rt2661_bbp_init(struct rt2661_softc *sc)
2512 {
2513 #define N(a)	(sizeof (a) / sizeof ((a)[0]))
2514 	int i, ntries;
2515 	uint8_t val;
2516 
2517 	/* wait for BBP to be ready */
2518 	for (ntries = 0; ntries < 100; ntries++) {
2519 		val = rt2661_bbp_read(sc, 0);
2520 		if (val != 0 && val != 0xff)
2521 			break;
2522 		DELAY(100);
2523 	}
2524 	if (ntries == 100) {
2525 		aprint_error_dev(sc->sc_dev, "timeout waiting for BBP\n");
2526 		return EIO;
2527 	}
2528 
2529 	/* initialize BBP registers to default values */
2530 	for (i = 0; i < N(rt2661_def_bbp); i++) {
2531 		rt2661_bbp_write(sc, rt2661_def_bbp[i].reg,
2532 		    rt2661_def_bbp[i].val);
2533 	}
2534 
2535 	/* write vendor-specific BBP values (from EEPROM) */
2536 	for (i = 0; i < 16; i++) {
2537 		if (sc->bbp_prom[i].reg == 0)
2538 			continue;
2539 		rt2661_bbp_write(sc, sc->bbp_prom[i].reg, sc->bbp_prom[i].val);
2540 	}
2541 
2542 	return 0;
2543 #undef N
2544 }
2545 
2546 static int
rt2661_init(struct ifnet * ifp)2547 rt2661_init(struct ifnet *ifp)
2548 {
2549 #define N(a)	(sizeof (a) / sizeof ((a)[0]))
2550 	struct rt2661_softc *sc = ifp->if_softc;
2551 	struct ieee80211com *ic = &sc->sc_ic;
2552 	const char *name = NULL;	/* make lint happy */
2553 	uint8_t *ucode;
2554 	size_t size;
2555 	uint32_t tmp, star[3];
2556 	int i, ntries;
2557 	firmware_handle_t fh;
2558 
2559 	/* for CardBus, power on the socket */
2560 	if (!(sc->sc_flags & RT2661_ENABLED)) {
2561 		if (sc->sc_enable != NULL && (*sc->sc_enable)(sc) != 0) {
2562 			aprint_error_dev(sc->sc_dev, "could not enable device\n");
2563 			return EIO;
2564 		}
2565 		sc->sc_flags |= RT2661_ENABLED;
2566 	}
2567 
2568 	rt2661_stop(ifp, 0);
2569 
2570 	if (!(sc->sc_flags & RT2661_FWLOADED)) {
2571 		switch (sc->sc_id) {
2572 		case PCI_PRODUCT_RALINK_RT2561:
2573 			name = "ral-rt2561";
2574 			break;
2575 		case PCI_PRODUCT_RALINK_RT2561S:
2576 			name = "ral-rt2561s";
2577 			break;
2578 		case PCI_PRODUCT_RALINK_RT2661:
2579 			name = "ral-rt2661";
2580 			break;
2581 		}
2582 
2583 		if (firmware_open("ral", name, &fh) != 0) {
2584 			aprint_error_dev(sc->sc_dev, "could not open microcode %s\n", name);
2585 			rt2661_stop(ifp, 1);
2586 			return EIO;
2587 		}
2588 
2589 		size = firmware_get_size(fh);
2590 		if (!(ucode = firmware_malloc(size))) {
2591 			aprint_error_dev(sc->sc_dev, "could not alloc microcode memory\n");
2592 			firmware_close(fh);
2593 			rt2661_stop(ifp, 1);
2594 			return ENOMEM;
2595 		}
2596 
2597 		if (firmware_read(fh, 0, ucode, size) != 0) {
2598 			aprint_error_dev(sc->sc_dev, "could not read microcode %s\n", name);
2599 			firmware_free(ucode, size);
2600 			firmware_close(fh);
2601 			rt2661_stop(ifp, 1);
2602 			return EIO;
2603 		}
2604 
2605 		if (rt2661_load_microcode(sc, ucode, size) != 0) {
2606 			aprint_error_dev(sc->sc_dev, "could not load 8051 microcode\n");
2607 			firmware_free(ucode, size);
2608 			firmware_close(fh);
2609 			rt2661_stop(ifp, 1);
2610 			return EIO;
2611 		}
2612 
2613 		firmware_free(ucode, size);
2614 		firmware_close(fh);
2615 		sc->sc_flags |= RT2661_FWLOADED;
2616 	}
2617 
2618 	/* initialize Tx rings */
2619 	RAL_WRITE(sc, RT2661_AC1_BASE_CSR, sc->txq[1].physaddr);
2620 	RAL_WRITE(sc, RT2661_AC0_BASE_CSR, sc->txq[0].physaddr);
2621 	RAL_WRITE(sc, RT2661_AC2_BASE_CSR, sc->txq[2].physaddr);
2622 	RAL_WRITE(sc, RT2661_AC3_BASE_CSR, sc->txq[3].physaddr);
2623 
2624 	/* initialize Mgt ring */
2625 	RAL_WRITE(sc, RT2661_MGT_BASE_CSR, sc->mgtq.physaddr);
2626 
2627 	/* initialize Rx ring */
2628 	RAL_WRITE(sc, RT2661_RX_BASE_CSR, sc->rxq.physaddr);
2629 
2630 	/* initialize Tx rings sizes */
2631 	RAL_WRITE(sc, RT2661_TX_RING_CSR0,
2632 	    RT2661_TX_RING_COUNT << 24 |
2633 	    RT2661_TX_RING_COUNT << 16 |
2634 	    RT2661_TX_RING_COUNT <<  8 |
2635 	    RT2661_TX_RING_COUNT);
2636 
2637 	RAL_WRITE(sc, RT2661_TX_RING_CSR1,
2638 	    RT2661_TX_DESC_WSIZE << 16 |
2639 	    RT2661_TX_RING_COUNT <<  8 |	/* XXX: HCCA ring unused */
2640 	    RT2661_MGT_RING_COUNT);
2641 
2642 	/* initialize Rx rings */
2643 	RAL_WRITE(sc, RT2661_RX_RING_CSR,
2644 	    RT2661_RX_DESC_BACK  << 16 |
2645 	    RT2661_RX_DESC_WSIZE <<  8 |
2646 	    RT2661_RX_RING_COUNT);
2647 
2648 	/* XXX: some magic here */
2649 	RAL_WRITE(sc, RT2661_TX_DMA_DST_CSR, 0xaa);
2650 
2651 	/* load base addresses of all 5 Tx rings (4 data + 1 mgt) */
2652 	RAL_WRITE(sc, RT2661_LOAD_TX_RING_CSR, 0x1f);
2653 
2654 	/* load base address of Rx ring */
2655 	RAL_WRITE(sc, RT2661_RX_CNTL_CSR, 2);
2656 
2657 	/* initialize MAC registers to default values */
2658 	for (i = 0; i < N(rt2661_def_mac); i++)
2659 		RAL_WRITE(sc, rt2661_def_mac[i].reg, rt2661_def_mac[i].val);
2660 
2661 	IEEE80211_ADDR_COPY(ic->ic_myaddr, CLLADDR(ifp->if_sadl));
2662 	rt2661_set_macaddr(sc, ic->ic_myaddr);
2663 
2664 	/* set host ready */
2665 	RAL_WRITE(sc, RT2661_MAC_CSR1, 3);
2666 	RAL_WRITE(sc, RT2661_MAC_CSR1, 0);
2667 
2668 	/* wait for BBP/RF to wakeup */
2669 	for (ntries = 0; ntries < 1000; ntries++) {
2670 		if (RAL_READ(sc, RT2661_MAC_CSR12) & 8)
2671 			break;
2672 		DELAY(1000);
2673 	}
2674 	if (ntries == 1000) {
2675 		printf("timeout waiting for BBP/RF to wakeup\n");
2676 		rt2661_stop(ifp, 1);
2677 		return EIO;
2678 	}
2679 
2680 	if (rt2661_bbp_init(sc) != 0) {
2681 		rt2661_stop(ifp, 1);
2682 		return EIO;
2683 	}
2684 
2685 	/* select default channel */
2686 	sc->sc_curchan = ic->ic_curchan;
2687 	rt2661_select_band(sc, sc->sc_curchan);
2688 	rt2661_select_antenna(sc);
2689 	rt2661_set_chan(sc, sc->sc_curchan);
2690 
2691 	/* update Rx filter */
2692 	tmp = RAL_READ(sc, RT2661_TXRX_CSR0) & 0xffff;
2693 
2694 	tmp |= RT2661_DROP_PHY_ERROR | RT2661_DROP_CRC_ERROR;
2695 	if (ic->ic_opmode != IEEE80211_M_MONITOR) {
2696 		tmp |= RT2661_DROP_CTL | RT2661_DROP_VER_ERROR |
2697 		       RT2661_DROP_ACKCTS;
2698 		if (ic->ic_opmode != IEEE80211_M_HOSTAP)
2699 			tmp |= RT2661_DROP_TODS;
2700 		if (!(ifp->if_flags & IFF_PROMISC))
2701 			tmp |= RT2661_DROP_NOT_TO_ME;
2702 	}
2703 
2704 	RAL_WRITE(sc, RT2661_TXRX_CSR0, tmp);
2705 
2706 	/* clear STA registers */
2707 	RAL_READ_REGION_4(sc, RT2661_STA_CSR0, star, N(star));
2708 
2709 	/* initialize ASIC */
2710 	RAL_WRITE(sc, RT2661_MAC_CSR1, 4);
2711 
2712 	/* clear any pending interrupt */
2713 	RAL_WRITE(sc, RT2661_INT_SOURCE_CSR, 0xffffffff);
2714 
2715 	/* enable interrupts */
2716 	RAL_WRITE(sc, RT2661_INT_MASK_CSR, 0x0000ff10);
2717 	RAL_WRITE(sc, RT2661_MCU_INT_MASK_CSR, 0);
2718 
2719 	/* kick Rx */
2720 	RAL_WRITE(sc, RT2661_RX_CNTL_CSR, 1);
2721 
2722 	ifp->if_flags &= ~IFF_OACTIVE;
2723 	ifp->if_flags |= IFF_RUNNING;
2724 
2725 	if (ic->ic_opmode != IEEE80211_M_MONITOR) {
2726 		if (ic->ic_roaming != IEEE80211_ROAMING_MANUAL)
2727 			ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
2728 	} else
2729 		ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
2730 
2731 	return 0;
2732 #undef N
2733 }
2734 
2735 static void
rt2661_stop(struct ifnet * ifp,int disable)2736 rt2661_stop(struct ifnet *ifp, int disable)
2737 {
2738 	struct rt2661_softc *sc = ifp->if_softc;
2739 	struct ieee80211com *ic = &sc->sc_ic;
2740 	uint32_t tmp;
2741 
2742 	sc->sc_tx_timer = 0;
2743 	ifp->if_timer = 0;
2744 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2745 
2746 	ieee80211_new_state(ic, IEEE80211_S_INIT, -1);	/* free all nodes */
2747 
2748 	/* abort Tx (for all 5 Tx rings) */
2749 	RAL_WRITE(sc, RT2661_TX_CNTL_CSR, 0x1f << 16);
2750 
2751 	/* disable Rx (value remains after reset!) */
2752 	tmp = RAL_READ(sc, RT2661_TXRX_CSR0);
2753 	RAL_WRITE(sc, RT2661_TXRX_CSR0, tmp | RT2661_DISABLE_RX);
2754 
2755 	/* reset ASIC */
2756 	RAL_WRITE(sc, RT2661_MAC_CSR1, 3);
2757 	RAL_WRITE(sc, RT2661_MAC_CSR1, 0);
2758 
2759 	/* disable interrupts */
2760 	RAL_WRITE(sc, RT2661_INT_MASK_CSR, 0xffffff7f);
2761 	RAL_WRITE(sc, RT2661_MCU_INT_MASK_CSR, 0xffffffff);
2762 
2763 	/* clear any pending interrupt */
2764 	RAL_WRITE(sc, RT2661_INT_SOURCE_CSR, 0xffffffff);
2765 	RAL_WRITE(sc, RT2661_MCU_INT_SOURCE_CSR, 0xffffffff);
2766 
2767 	/* reset Tx and Rx rings */
2768 	rt2661_reset_tx_ring(sc, &sc->txq[0]);
2769 	rt2661_reset_tx_ring(sc, &sc->txq[1]);
2770 	rt2661_reset_tx_ring(sc, &sc->txq[2]);
2771 	rt2661_reset_tx_ring(sc, &sc->txq[3]);
2772 	rt2661_reset_tx_ring(sc, &sc->mgtq);
2773 	rt2661_reset_rx_ring(sc, &sc->rxq);
2774 
2775 	/* for CardBus, power down the socket */
2776 	if (disable && sc->sc_disable != NULL) {
2777 		if (sc->sc_flags & RT2661_ENABLED) {
2778 			(*sc->sc_disable)(sc);
2779 			sc->sc_flags &= ~(RT2661_ENABLED | RT2661_FWLOADED);
2780 		}
2781 	}
2782 }
2783 
2784 static int
rt2661_load_microcode(struct rt2661_softc * sc,const uint8_t * ucode,int size)2785 rt2661_load_microcode(struct rt2661_softc *sc, const uint8_t *ucode, int size)
2786 {
2787 	int ntries;
2788 
2789 	/* reset 8051 */
2790 	RAL_WRITE(sc, RT2661_MCU_CNTL_CSR, RT2661_MCU_RESET);
2791 
2792 	/* cancel any pending Host to MCU command */
2793 	RAL_WRITE(sc, RT2661_H2M_MAILBOX_CSR, 0);
2794 	RAL_WRITE(sc, RT2661_M2H_CMD_DONE_CSR, 0xffffffff);
2795 	RAL_WRITE(sc, RT2661_HOST_CMD_CSR, 0);
2796 
2797 	/* write 8051's microcode */
2798 	RAL_WRITE(sc, RT2661_MCU_CNTL_CSR, RT2661_MCU_RESET | RT2661_MCU_SEL);
2799 	RAL_WRITE_REGION_1(sc, RT2661_MCU_CODE_BASE, ucode, size);
2800 	RAL_WRITE(sc, RT2661_MCU_CNTL_CSR, RT2661_MCU_RESET);
2801 
2802 	/* kick 8051's ass */
2803 	RAL_WRITE(sc, RT2661_MCU_CNTL_CSR, 0);
2804 
2805 	/* wait for 8051 to initialize */
2806 	for (ntries = 0; ntries < 500; ntries++) {
2807 		if (RAL_READ(sc, RT2661_MCU_CNTL_CSR) & RT2661_MCU_READY)
2808 			break;
2809 		DELAY(100);
2810 	}
2811 	if (ntries == 500) {
2812 		printf("timeout waiting for MCU to initialize\n");
2813 		return EIO;
2814 	}
2815 	return 0;
2816 }
2817 
2818 /*
2819  * Dynamically tune Rx sensitivity (BBP register 17) based on average RSSI and
2820  * false CCA count.  This function is called periodically (every seconds) when
2821  * in the RUN state.  Values taken from the reference driver.
2822  */
2823 static void
rt2661_rx_tune(struct rt2661_softc * sc)2824 rt2661_rx_tune(struct rt2661_softc *sc)
2825 {
2826 	uint8_t bbp17;
2827 	uint16_t cca;
2828 	int lo, hi, dbm;
2829 
2830 	/*
2831 	 * Tuning range depends on operating band and on the presence of an
2832 	 * external low-noise amplifier.
2833 	 */
2834 	lo = 0x20;
2835 	if (IEEE80211_IS_CHAN_5GHZ(sc->sc_curchan))
2836 		lo += 0x08;
2837 	if ((IEEE80211_IS_CHAN_2GHZ(sc->sc_curchan) && sc->ext_2ghz_lna) ||
2838 	    (IEEE80211_IS_CHAN_5GHZ(sc->sc_curchan) && sc->ext_5ghz_lna))
2839 		lo += 0x10;
2840 	hi = lo + 0x20;
2841 
2842 	dbm = sc->avg_rssi;
2843 	/* retrieve false CCA count since last call (clear on read) */
2844 	cca = RAL_READ(sc, RT2661_STA_CSR1) & 0xffff;
2845 
2846 	DPRINTFN(2, ("RSSI=%ddBm false CCA=%d\n", dbm, cca));
2847 
2848 	if (dbm < -74) {
2849 		/* very bad RSSI, tune using false CCA count */
2850 		bbp17 = sc->bbp17; /* current value */
2851 
2852 		hi -= 2 * (-74 - dbm);
2853 		if (hi < lo)
2854 			hi = lo;
2855 
2856 		if (bbp17 > hi)
2857 			bbp17 = hi;
2858 		else if (cca > 512)
2859 			bbp17 = uimin(bbp17 + 1, hi);
2860 		else if (cca < 100)
2861 			bbp17 = uimax(bbp17 - 1, lo);
2862 
2863 	} else if (dbm < -66) {
2864 		bbp17 = lo + 0x08;
2865 	} else if (dbm < -58) {
2866 		bbp17 = lo + 0x10;
2867 	} else if (dbm < -35) {
2868 		bbp17 = hi;
2869 	} else {	/* very good RSSI >= -35dBm */
2870 		bbp17 = 0x60;	/* very low sensitivity */
2871 	}
2872 
2873 	if (bbp17 != sc->bbp17) {
2874 		DPRINTF(("BBP17 %x->%x\n", sc->bbp17, bbp17));
2875 		rt2661_bbp_write(sc, 17, bbp17);
2876 		sc->bbp17 = bbp17;
2877 	}
2878 }
2879 
2880 #ifdef notyet
2881 /*
2882  * Enter/Leave radar detection mode.
2883  * This is for 802.11h additional regulatory domains.
2884  */
2885 static void
rt2661_radar_start(struct rt2661_softc * sc)2886 rt2661_radar_start(struct rt2661_softc *sc)
2887 {
2888 	uint32_t tmp;
2889 
2890 	/* disable Rx */
2891 	tmp = RAL_READ(sc, RT2661_TXRX_CSR0);
2892 	RAL_WRITE(sc, RT2661_TXRX_CSR0, tmp | RT2661_DISABLE_RX);
2893 
2894 	rt2661_bbp_write(sc, 82, 0x20);
2895 	rt2661_bbp_write(sc, 83, 0x00);
2896 	rt2661_bbp_write(sc, 84, 0x40);
2897 
2898 	/* save current BBP registers values */
2899 	sc->bbp18 = rt2661_bbp_read(sc, 18);
2900 	sc->bbp21 = rt2661_bbp_read(sc, 21);
2901 	sc->bbp22 = rt2661_bbp_read(sc, 22);
2902 	sc->bbp16 = rt2661_bbp_read(sc, 16);
2903 	sc->bbp17 = rt2661_bbp_read(sc, 17);
2904 	sc->bbp64 = rt2661_bbp_read(sc, 64);
2905 
2906 	rt2661_bbp_write(sc, 18, 0xff);
2907 	rt2661_bbp_write(sc, 21, 0x3f);
2908 	rt2661_bbp_write(sc, 22, 0x3f);
2909 	rt2661_bbp_write(sc, 16, 0xbd);
2910 	rt2661_bbp_write(sc, 17, sc->ext_5ghz_lna ? 0x44 : 0x34);
2911 	rt2661_bbp_write(sc, 64, 0x21);
2912 
2913 	/* restore Rx filter */
2914 	RAL_WRITE(sc, RT2661_TXRX_CSR0, tmp);
2915 }
2916 
2917 static int
rt2661_radar_stop(struct rt2661_softc * sc)2918 rt2661_radar_stop(struct rt2661_softc *sc)
2919 {
2920 	uint8_t bbp66;
2921 
2922 	/* read radar detection result */
2923 	bbp66 = rt2661_bbp_read(sc, 66);
2924 
2925 	/* restore BBP registers values */
2926 	rt2661_bbp_write(sc, 16, sc->bbp16);
2927 	rt2661_bbp_write(sc, 17, sc->bbp17);
2928 	rt2661_bbp_write(sc, 18, sc->bbp18);
2929 	rt2661_bbp_write(sc, 21, sc->bbp21);
2930 	rt2661_bbp_write(sc, 22, sc->bbp22);
2931 	rt2661_bbp_write(sc, 64, sc->bbp64);
2932 
2933 	return bbp66 == 1;
2934 }
2935 #endif
2936 
2937 static int
rt2661_prepare_beacon(struct rt2661_softc * sc)2938 rt2661_prepare_beacon(struct rt2661_softc *sc)
2939 {
2940 	struct ieee80211com *ic = &sc->sc_ic;
2941 	struct ieee80211_node *ni = ic->ic_bss;
2942 	struct rt2661_tx_desc desc;
2943 	struct mbuf *m0;
2944 	struct ieee80211_beacon_offsets bo;
2945 	int rate;
2946 
2947 	m0 = ieee80211_beacon_alloc(ic, ni, &bo);
2948 	if (m0 == NULL) {
2949 		aprint_error_dev(sc->sc_dev, "could not allocate beacon frame\n");
2950 		return ENOBUFS;
2951 	}
2952 
2953 	/* send beacons at the lowest available rate */
2954 	rate = IEEE80211_IS_CHAN_5GHZ(ni->ni_chan) ? 12 : 2;
2955 
2956 	rt2661_setup_tx_desc(sc, &desc, RT2661_TX_TIMESTAMP, RT2661_TX_HWSEQ,
2957 	    m0->m_pkthdr.len, rate, NULL, 0, RT2661_QID_MGT);
2958 
2959 	/* copy the first 24 bytes of Tx descriptor into NIC memory */
2960 	RAL_WRITE_REGION_1(sc, RT2661_HW_BEACON_BASE0, (uint8_t *)&desc, 24);
2961 
2962 	/* copy beacon header and payload into NIC memory */
2963 	RAL_WRITE_REGION_1(sc, RT2661_HW_BEACON_BASE0 + 24,
2964 	    mtod(m0, uint8_t *), m0->m_pkthdr.len);
2965 
2966 	m_freem(m0);
2967 
2968 	/*
2969 	 * Store offset of ERP Information Element so that we can update it
2970 	 * dynamically when the slot time changes.
2971 	 * XXX: this is ugly since it depends on how net80211 builds beacon
2972 	 * frames but ieee80211_beacon_alloc() doesn't store offsets for us.
2973 	 */
2974 	if (ic->ic_curmode == IEEE80211_MODE_11G) {
2975 		sc->erp_csr =
2976 		    RT2661_HW_BEACON_BASE0 + 24 +
2977 		    sizeof (struct ieee80211_frame) +
2978 		    8 + 2 + 2 + 2 + ni->ni_esslen +
2979 		    2 + uimin(ni->ni_rates.rs_nrates, IEEE80211_RATE_SIZE) +
2980 		    2 + 1 +
2981 		    ((ic->ic_opmode == IEEE80211_M_IBSS) ? 4 : 6) +
2982 		    2;
2983 	}
2984 
2985 	return 0;
2986 }
2987 
2988 /*
2989  * Enable TSF synchronization and tell h/w to start sending beacons for IBSS
2990  * and HostAP operating modes.
2991  */
2992 static void
rt2661_enable_tsf_sync(struct rt2661_softc * sc)2993 rt2661_enable_tsf_sync(struct rt2661_softc *sc)
2994 {
2995 	struct ieee80211com *ic = &sc->sc_ic;
2996 	uint32_t tmp;
2997 
2998 	if (ic->ic_opmode != IEEE80211_M_STA) {
2999 		/*
3000 		 * Change default 16ms TBTT adjustment to 8ms.
3001 		 * Must be done before enabling beacon generation.
3002 		 */
3003 		RAL_WRITE(sc, RT2661_TXRX_CSR10, 1 << 12 | 8);
3004 	}
3005 
3006 	tmp = RAL_READ(sc, RT2661_TXRX_CSR9) & 0xff000000;
3007 
3008 	/* set beacon interval (in 1/16ms unit) */
3009 	tmp |= ic->ic_bss->ni_intval * 16;
3010 
3011 	tmp |= RT2661_TSF_TICKING | RT2661_ENABLE_TBTT;
3012 	if (ic->ic_opmode == IEEE80211_M_STA)
3013 		tmp |= RT2661_TSF_MODE(1);
3014 	else
3015 		tmp |= RT2661_TSF_MODE(2) | RT2661_GENERATE_BEACON;
3016 
3017 	RAL_WRITE(sc, RT2661_TXRX_CSR9, tmp);
3018 }
3019 
3020 /*
3021  * Retrieve the "Received Signal Strength Indicator" from the raw values
3022  * contained in Rx descriptors.  The computation depends on which band the
3023  * frame was received.  Correction values taken from the reference driver.
3024  */
3025 static int
rt2661_get_rssi(struct rt2661_softc * sc,uint8_t raw)3026 rt2661_get_rssi(struct rt2661_softc *sc, uint8_t raw)
3027 {
3028 	int lna, agc, rssi;
3029 
3030 	lna = (raw >> 5) & 0x3;
3031 	agc = raw & 0x1f;
3032 
3033 	rssi = 2 * agc;
3034 
3035 	if (IEEE80211_IS_CHAN_2GHZ(sc->sc_curchan)) {
3036 		rssi += sc->rssi_2ghz_corr;
3037 
3038 		if (lna == 1)
3039 			rssi -= 64;
3040 		else if (lna == 2)
3041 			rssi -= 74;
3042 		else if (lna == 3)
3043 			rssi -= 90;
3044 	} else {
3045 		rssi += sc->rssi_5ghz_corr;
3046 
3047 		if (lna == 1)
3048 			rssi -= 64;
3049 		else if (lna == 2)
3050 			rssi -= 86;
3051 		else if (lna == 3)
3052 			rssi -= 100;
3053 	}
3054 	return rssi;
3055 }
3056