xref: /netbsd-src/sys/dev/ic/dm9000.c (revision 0ff9f465c058672e5a99e61ac4d241f1d7cbe212)
1 /*	$NetBSD: dm9000.c,v 1.38 2024/12/01 20:24:23 andvar Exp $	*/
2 
3 /*
4  * Copyright (c) 2009 Paul Fleischer
5  * All rights reserved.
6  *
7  * 1. Redistributions of source code must retain the above copyright
8  *    notice, this list of conditions and the following disclaimer.
9  * 2. Redistributions in binary form must reproduce the above copyright
10  *    notice, this list of conditions and the following disclaimer in the
11  *    documentation and/or other materials provided with the distribution.
12  * 3. The name of the company nor the name of the author may be used to
13  *    endorse or promote products derived from this software without specific
14  *    prior written permission.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
17  * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
18  * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
19  * IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
20  * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
21  * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
22  * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26  * SUCH DAMAGE.
27  */
28 
29 /* based on sys/dev/ic/cs89x0.c */
30 /*
31  * Copyright (c) 2004 Christopher Gilbert
32  * All rights reserved.
33  *
34  * 1. Redistributions of source code must retain the above copyright
35  *    notice, this list of conditions and the following disclaimer.
36  * 2. Redistributions in binary form must reproduce the above copyright
37  *    notice, this list of conditions and the following disclaimer in the
38  *    documentation and/or other materials provided with the distribution.
39  * 3. The name of the company nor the name of the author may be used to
40  *    endorse or promote products derived from this software without specific
41  *    prior written permission.
42  *
43  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
44  * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
45  * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
46  * IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
47  * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
48  * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
49  * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
50  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
51  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
52  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
53  * SUCH DAMAGE.
54  */
55 
56 /*
57  * Copyright 1997
58  * Digital Equipment Corporation. All rights reserved.
59  *
60  * This software is furnished under license and may be used and
61  * copied only in accordance with the following terms and conditions.
62  * Subject to these conditions, you may download, copy, install,
63  * use, modify and distribute this software in source and/or binary
64  * form. No title or ownership is transferred hereby.
65  *
66  * 1) Any source code used, modified or distributed must reproduce
67  *    and retain this copyright notice and list of conditions as
68  *    they appear in the source file.
69  *
70  * 2) No right is granted to use any trade name, trademark, or logo of
71  *    Digital Equipment Corporation. Neither the "Digital Equipment
72  *    Corporation" name nor any trademark or logo of Digital Equipment
73  *    Corporation may be used to endorse or promote products derived
74  *    from this software without the prior written permission of
75  *    Digital Equipment Corporation.
76  *
77  * 3) This software is provided "AS-IS" and any express or implied
78  *    warranties, including but not limited to, any implied warranties
79  *    of merchantability, fitness for a particular purpose, or
80  *    non-infringement are disclaimed. In no event shall DIGITAL be
81  *    liable for any damages whatsoever, and in particular, DIGITAL
82  *    shall not be liable for special, indirect, consequential, or
83  *    incidental damages or damages for lost profits, loss of
84  *    revenue or loss of use, whether such damages arise in contract,
85  *    negligence, tort, under statute, in equity, at law or otherwise,
86  *    even if advised of the possibility of such damage.
87  */
88 
89 #include <sys/cdefs.h>
90 
91 #include <sys/param.h>
92 #include <sys/bus.h>
93 #include <sys/intr.h>
94 #include <sys/device.h>
95 #include <sys/mbuf.h>
96 #include <sys/sockio.h>
97 #include <sys/errno.h>
98 #include <sys/cprng.h>
99 #include <sys/rndsource.h>
100 #include <sys/kernel.h>
101 #include <sys/systm.h>
102 
103 #include <net/if.h>
104 #include <net/if_dl.h>
105 #include <net/if_ether.h>
106 #include <net/if_media.h>
107 #include <dev/mii/mii.h>
108 #include <dev/mii/miivar.h>
109 #include <net/bpf.h>
110 
111 #include <dev/ic/dm9000var.h>
112 #include <dev/ic/dm9000reg.h>
113 
114 #if 1
115 #undef DM9000_DEBUG
116 #undef DM9000_TX_DEBUG
117 #undef DM9000_TX_DATA_DEBUG
118 #undef DM9000_RX_DEBUG
119 #undef  DM9000_RX_DATA_DEBUG
120 #else
121 #define DM9000_DEBUG
122 #define  DM9000_TX_DEBUG
123 #define DM9000_TX_DATA_DEBUG
124 #define DM9000_RX_DEBUG
125 #define  DM9000_RX_DATA_DEBUG
126 #endif
127 
128 #ifdef DM9000_DEBUG
129 #define DPRINTF(s) do {printf s; } while (/*CONSTCOND*/0)
130 #else
131 #define DPRINTF(s) do {} while (/*CONSTCOND*/0)
132 #endif
133 
134 #ifdef DM9000_TX_DEBUG
135 #define TX_DPRINTF(s) do {printf s; } while (/*CONSTCOND*/0)
136 #else
137 #define TX_DPRINTF(s) do {} while (/*CONSTCOND*/0)
138 #endif
139 
140 #ifdef DM9000_RX_DEBUG
141 #define RX_DPRINTF(s) do {printf s; } while (/*CONSTCOND*/0)
142 #else
143 #define RX_DPRINTF(s) do {} while (/*CONSTCOND*/0)
144 #endif
145 
146 #ifdef DM9000_RX_DATA_DEBUG
147 #define RX_DATA_DPRINTF(s) do {printf s; } while (/*CONSTCOND*/0)
148 #else
149 #define RX_DATA_DPRINTF(s) do {} while (/*CONSTCOND*/0)
150 #endif
151 
152 #ifdef DM9000_TX_DATA_DEBUG
153 #define TX_DATA_DPRINTF(s) do {printf s; } while (/*CONSTCOND*/0)
154 #else
155 #define TX_DATA_DPRINTF(s) do {} while (/*CONSTCOND*/0)
156 #endif
157 
158 static void dme_reset(struct dme_softc *);
159 static int dme_init(struct ifnet *);
160 static void dme_stop(struct ifnet *, int);
161 static void dme_start(struct ifnet *);
162 static int dme_ioctl(struct ifnet *, u_long, void *);
163 
164 static void dme_set_rcvfilt(struct dme_softc *);
165 static void mii_statchg(struct ifnet *);
166 static void lnkchg(struct dme_softc *);
167 static void phy_tick(void *);
168 static int mii_readreg(device_t, int, int, uint16_t *);
169 static int mii_writereg(device_t, int, int, uint16_t);
170 
171 static void dme_prepare(struct ifnet *);
172 static void dme_transmit(struct ifnet *);
173 static void dme_receive(struct ifnet *);
174 
175 static int pkt_read_2(struct dme_softc *, struct mbuf **);
176 static int pkt_write_2(struct dme_softc *, struct mbuf *);
177 static int pkt_read_1(struct dme_softc *, struct mbuf **);
178 static int pkt_write_1(struct dme_softc *, struct mbuf *);
179 #define PKT_READ(ii,m) (*(ii)->sc_pkt_read)((ii),(m))
180 #define PKT_WRITE(ii,m) (*(ii)->sc_pkt_write)((ii),(m))
181 
182 #define ETHER_IS_ONE(x) \
183 	   (((x)[0] & (x)[1] & (x)[2] & (x)[3] & (x)[4] & (x)[5]) == 255)
184 #define ETHER_IS_ZERO(x) \
185 	   (((x)[0] | (x)[1] | (x)[2] | (x)[3] | (x)[4] | (x)[5]) == 0)
186 
187 int
188 dme_attach(struct dme_softc *sc, const uint8_t *notusedanymore)
189 {
190 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
191 	struct mii_data *mii = &sc->sc_mii;
192 	struct ifmedia *ifm = &mii->mii_media;
193 	uint8_t b[2];
194 	uint16_t io_mode;
195 	uint8_t enaddr[ETHER_ADDR_LEN];
196 	prop_dictionary_t dict;
197 	prop_data_t ea;
198 
199 	dme_read_c(sc, DM9000_VID0, b, 2);
200 	sc->sc_vendor_id = le16toh((uint16_t)b[1] << 8 | b[0]);
201 	dme_read_c(sc, DM9000_PID0, b, 2);
202 	sc->sc_product_id = le16toh((uint16_t)b[1] << 8 | b[0]);
203 
204 	/* TODO: Check the vendor ID as well */
205 	if (sc->sc_product_id != 0x9000) {
206 		panic("dme_attach: product id mismatch (0x%hx != 0x9000)",
207 		    sc->sc_product_id);
208 	}
209 #if 1 || DM9000_DEBUG
210 	{
211 		dme_read_c(sc, DM9000_PAB0, enaddr, 6);
212 		aprint_normal_dev(sc->sc_dev,
213 		    "DM9000 was configured with MAC address: %s\n",
214 		    ether_sprintf(enaddr));
215 	}
216 #endif
217 	dict = device_properties(sc->sc_dev);
218 	ea = (dict) ? prop_dictionary_get(dict, "mac-address") : NULL;
219 	if (ea != NULL) {
220 	       /*
221 		 * If the MAC address is overridden by a device property,
222 		 * use that.
223 		 */
224 		KASSERT(prop_object_type(ea) == PROP_TYPE_DATA);
225 		KASSERT(prop_data_size(ea) == ETHER_ADDR_LEN);
226 		memcpy(enaddr, prop_data_value(ea), ETHER_ADDR_LEN);
227 		aprint_debug_dev(sc->sc_dev, "got MAC address!\n");
228 	} else {
229 		/*
230 		 * If we did not get an externally configure address,
231 		 * try to read one from the current setup, before
232 		 * resetting the chip.
233 		 */
234 		dme_read_c(sc, DM9000_PAB0, enaddr, 6);
235 		if (ETHER_IS_ONE(enaddr) || ETHER_IS_ZERO(enaddr)) {
236 			/* make a random MAC address */
237 			uint32_t maclo = 0x00f2 | (cprng_strong32() << 16);
238 			uint32_t machi = cprng_strong32();
239 			enaddr[0] = maclo;
240 			enaddr[1] = maclo >> 8;
241 			enaddr[2] = maclo >> 16;
242 			enaddr[3] = maclo >> 26;
243 			enaddr[4] = machi;
244 			enaddr[5] = machi >> 8;
245 		}
246 	}
247 	/* TODO: perform explicit EEPROM read op if it's available */
248 
249 	dme_reset(sc);
250 
251 	mii->mii_ifp = ifp;
252 	mii->mii_readreg = mii_readreg;
253 	mii->mii_writereg = mii_writereg;
254 	mii->mii_statchg = mii_statchg;
255 
256 	/* assume davicom PHY at 1. ext PHY could be hooked but only at 0-3 */
257 	sc->sc_ethercom.ec_mii = mii;
258 	ifmedia_init(ifm, 0, ether_mediachange, ether_mediastatus);
259 	mii_attach(sc->sc_dev, mii, 0xffffffff, 1 /* PHY 1 */,
260 		MII_OFFSET_ANY, 0);
261 	if (LIST_FIRST(&mii->mii_phys) == NULL) {
262 		ifmedia_add(ifm, IFM_ETHER | IFM_NONE, 0, NULL);
263 		ifmedia_set(ifm, IFM_ETHER | IFM_NONE);
264 	} else
265 		ifmedia_set(ifm, IFM_ETHER | IFM_AUTO);
266 	ifm->ifm_media = ifm->ifm_cur->ifm_media;
267 
268 	strlcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
269 	ifp->if_softc = sc;
270 	ifp->if_flags = IFF_SIMPLEX | IFF_BROADCAST | IFF_MULTICAST;
271 	ifp->if_init = dme_init;
272 	ifp->if_start = dme_start;
273 	ifp->if_stop = dme_stop;
274 	ifp->if_ioctl = dme_ioctl;
275 	ifp->if_watchdog = NULL; /* no watchdog used */
276 	IFQ_SET_MAXLEN(&ifp->if_snd, IFQ_MAXLEN);
277 	IFQ_SET_READY(&ifp->if_snd);
278 
279 	if_attach(ifp);
280 	ether_ifattach(ifp, enaddr);
281 	if_deferred_start_init(ifp, NULL);
282 
283 	rnd_attach_source(&sc->rnd_source, device_xname(sc->sc_dev),
284             RND_TYPE_NET, RND_FLAG_DEFAULT);
285 
286 	/* might be unnecessary as link change interrupt works well */
287 	callout_init(&sc->sc_link_callout, 0);
288 	callout_setfunc(&sc->sc_link_callout, phy_tick, sc);
289 
290 	io_mode = (dme_read(sc, DM9000_ISR) &
291 	    DM9000_IOMODE_MASK) >> DM9000_IOMODE_SHIFT;
292 
293 	/* frame body read/write ops in 2 byte quantity or byte-wise. */
294 	DPRINTF(("DM9000 Operation Mode: "));
295 	switch (io_mode) {
296 	case DM9000_MODE_8BIT:
297 		DPRINTF(("8-bit mode"));
298 		sc->sc_data_width = 1;
299 		sc->sc_pkt_write = pkt_write_1;
300 		sc->sc_pkt_read = pkt_read_1;
301 		break;
302 	case DM9000_MODE_16BIT:
303 		DPRINTF(("16-bit mode"));
304 		sc->sc_data_width = 2;
305 		sc->sc_pkt_write = pkt_write_2;
306 		sc->sc_pkt_read = pkt_read_2;
307 		break;
308 	case DM9000_MODE_32BIT:
309 		DPRINTF(("32-bit mode"));
310 		sc->sc_data_width = 4;
311 		panic("32bit mode is unsupported\n");
312 		break;
313 	default:
314 		DPRINTF(("Invalid mode"));
315 		break;
316 	}
317 	DPRINTF(("\n"));
318 
319 	return 0;
320 }
321 
322 int
323 dme_detach(struct dme_softc *sc)
324 {
325 	return 0;
326 }
327 
328 /* Software Initialize/Reset of the DM9000 */
329 static void
330 dme_reset(struct dme_softc *sc)
331 {
332 	uint8_t misc;
333 
334 	/* We only re-initialized the PHY in this function the first time it is
335 	 * called. */
336 	if (!sc->sc_phy_initialized) {
337 		/* PHY Reset */
338 		mii_writereg(sc->sc_dev, 1, MII_BMCR, BMCR_RESET);
339 
340 		/* PHY Power Down */
341 		misc = dme_read(sc, DM9000_GPR);
342 		dme_write(sc, DM9000_GPR, misc | DM9000_GPR_PHY_PWROFF);
343 	}
344 
345 	/* Reset the DM9000 twice, as described in section 2 of the Programming
346 	 * Guide.
347 	 * The PHY is initialized and enabled between those two resets.
348 	 */
349 
350 	/* Software Reset */
351 	dme_write(sc, DM9000_NCR,
352 	    DM9000_NCR_RST | DM9000_NCR_LBK_MAC_INTERNAL);
353 	delay(20);
354 	dme_write(sc, DM9000_NCR, 0x0);
355 
356 	if (!sc->sc_phy_initialized) {
357 		/* PHY Enable */
358 		misc = dme_read(sc, DM9000_GPR);
359 		dme_write(sc, DM9000_GPR, misc & ~DM9000_GPR_PHY_PWROFF);
360 		misc = dme_read(sc, DM9000_GPCR);
361 		dme_write(sc, DM9000_GPCR, misc | DM9000_GPCR_GPIO0_OUT);
362 
363 		dme_write(sc, DM9000_NCR,
364 		    DM9000_NCR_RST | DM9000_NCR_LBK_MAC_INTERNAL);
365 		delay(20);
366 		dme_write(sc, DM9000_NCR, 0x0);
367 	}
368 
369 	/* Select internal PHY, no wakeup event, no collosion mode,
370 	 * normal loopback mode.
371 	 */
372 	dme_write(sc, DM9000_NCR, DM9000_NCR_LBK_NORMAL);
373 
374 	/* Will clear TX1END, TX2END, and WAKEST fields by reading DM9000_NSR*/
375 	dme_read(sc, DM9000_NSR);
376 
377 	/* Enable wraparound of read/write pointer, frame received latch,
378 	 * and frame transmitted latch.
379 	 */
380 	dme_write(sc, DM9000_IMR,
381 	    DM9000_IMR_PAR | DM9000_IMR_PRM | DM9000_IMR_PTM);
382 
383 	dme_write(sc, DM9000_RCR,
384 	    DM9000_RCR_DIS_CRC | DM9000_RCR_DIS_LONG | DM9000_RCR_WTDIS);
385 
386 	sc->sc_phy_initialized = 1;
387 }
388 
389 static int
390 dme_init(struct ifnet *ifp)
391 {
392 	struct dme_softc *sc = ifp->if_softc;
393 
394 	dme_stop(ifp, 0);
395 	dme_reset(sc);
396 	dme_write_c(sc, DM9000_PAB0, CLLADDR(ifp->if_sadl), ETHER_ADDR_LEN);
397 	dme_set_rcvfilt(sc);
398 	(void)ether_mediachange(ifp);
399 
400 	sc->txbusy = sc->txready = 0;
401 
402 	ifp->if_flags |= IFF_RUNNING;
403 	callout_schedule(&sc->sc_link_callout, hz);
404 
405 	return 0;
406 }
407 
408 /* Configure multicast filter */
409 static void
410 dme_set_rcvfilt(struct dme_softc *sc)
411 {
412 	struct ethercom	*ec = &sc->sc_ethercom;
413 	struct ifnet *ifp = &ec->ec_if;
414 	struct ether_multi *enm;
415 	struct ether_multistep step;
416 	uint8_t mchash[8] = { 0, 0, 0, 0, 0, 0, 0, 0 }; /* 64bit mchash */
417 	uint32_t h = 0;
418 	int rcr;
419 
420 	rcr = dme_read(sc, DM9000_RCR);
421 	rcr &= ~(DM9000_RCR_PRMSC | DM9000_RCR_ALL);
422 	dme_write(sc, DM9000_RCR, rcr &~ DM9000_RCR_RXEN);
423 
424 	ETHER_LOCK(ec);
425 	if (ifp->if_flags & IFF_PROMISC) {
426 		ec->ec_flags |= ETHER_F_ALLMULTI;
427 		ETHER_UNLOCK(ec);
428 		/* run promisc. mode */
429 		rcr |= DM9000_RCR_PRMSC;
430 		goto update;
431 	}
432 	ec->ec_flags &= ~ETHER_F_ALLMULTI;
433 	ETHER_FIRST_MULTI(step, ec, enm);
434 	while (enm != NULL) {
435 		if (memcpy(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
436 			/*
437 			 * We must listen to a range of multicast addresses.
438 			 * For now, just accept all multicasts, rather than
439 			 * trying to set only those filter bits needed to match
440 			 * the range.  (At this time, the only use of address
441 			 * ranges is for IP multicast routing, for which the
442 			 * range is big enough to require all bits set.)
443 			 */
444 			ec->ec_flags |= ETHER_F_ALLMULTI;
445 			ETHER_UNLOCK(ec);
446 			memset(mchash, 0xff, sizeof(mchash)); /* necessary? */
447 			/* accept all mulicast frame */
448 			rcr |= DM9000_RCR_ALL;
449 			goto update;
450 		}
451 		h = ether_crc32_le(enm->enm_addrlo, ETHER_ADDR_LEN) & 0x3f;
452 		/* 3(5:3) and 3(2:0) sampling to have uint8_t[8] */
453 		mchash[h / 8] |= 1 << (h % 8);
454 		ETHER_NEXT_MULTI(step, enm);
455 	}
456 	ETHER_UNLOCK(ec);
457 	/* DM9000 receive filter is always on */
458 	mchash[7] |= 0x80; /* to catch bcast frame */
459  update:
460 	dme_write_c(sc, DM9000_MAB0, mchash, sizeof(mchash));
461 	dme_write(sc, DM9000_RCR, rcr | DM9000_RCR_RXEN);
462 	return;
463 }
464 
465 void
466 lnkchg(struct dme_softc *sc)
467 {
468 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
469 	struct ifmediareq ifmr;
470 
471 	ether_mediastatus(ifp, &ifmr);
472 }
473 
474 static void
475 mii_statchg(struct ifnet *ifp)
476 {
477 	struct dme_softc *sc = ifp->if_softc;
478 	struct mii_data *mii = &sc->sc_mii;
479 	uint8_t fcr, ncr;
480 
481 #if 0
482 	const uint8_t Mbps[2] = { 10, 100 };
483 	uint8_t nsr = dme_read(sc, DM9000_NSR);
484 	int spd = Mbps[!!(nsr & DM9000_NSR_SPEED)];
485 	/* speed/duplexity available also in reg 0x11 of internal PHY */
486 	if (nsr & DM9000_NSR_LINKST)
487 		printf("link up,spd%d", spd);
488 	else
489 		printf("link down");
490 
491 	/* show resolved mii(4) parameters */
492 	printf("MII spd%d",
493 	    (int)(sc->sc_ethercom.ec_if.if_baudrate / IF_Mbps(1)));
494 	if (mii->mii_media_active & IFM_FDX)
495 		printf(",full-duplex");
496 	printf("\n");
497 #endif
498 
499 	/* Adjust duplexity and PAUSE flow control. */
500 	fcr = dme_read(sc, DM9000_FCR) &~ DM9000_FCR_FLCE;
501 	ncr = dme_read(sc, DM9000_NCR) &~ DM9000_NCR_FDX;
502 	if ((mii->mii_media_active & IFM_FDX)
503 	    && (mii->mii_media_active & IFM_FLOW)) {
504 		fcr |= DM9000_FCR_FLCE;
505 		ncr |= DM9000_NCR_FDX;
506 	}
507 	dme_write(sc, DM9000_FCR, fcr);
508 	dme_write(sc, DM9000_NCR, ncr);
509 }
510 
511 static void
512 phy_tick(void *arg)
513 {
514 	struct dme_softc *sc = arg;
515 	struct mii_data *mii = &sc->sc_mii;
516 	int s;
517 
518 	s = splnet();
519 	mii_tick(mii);
520 	splx(s);
521 
522 	callout_schedule(&sc->sc_link_callout, hz);
523 }
524 
525 static int
526 mii_readreg(device_t self, int phy, int reg, uint16_t *val)
527 {
528 	struct dme_softc *sc = device_private(self);
529 
530 	if (phy != 1)
531 		return EINVAL;
532 
533 	/* Select Register to read*/
534 	dme_write(sc, DM9000_EPAR, DM9000_EPAR_INT_PHY +
535 	    (reg & DM9000_EPAR_EROA_MASK));
536 	/* Select read operation (DM9000_EPCR_ERPRR) from the PHY */
537 	dme_write(sc, DM9000_EPCR, DM9000_EPCR_ERPRR + DM9000_EPCR_EPOS_PHY);
538 
539 	/* Wait until access to PHY has completed */
540 	while (dme_read(sc, DM9000_EPCR) & DM9000_EPCR_ERRE)
541 		;
542 
543 	/* Reset ERPRR-bit */
544 	dme_write(sc, DM9000_EPCR, DM9000_EPCR_EPOS_PHY);
545 
546 	*val = dme_read(sc, DM9000_EPDRL) | (dme_read(sc, DM9000_EPDRH) << 8);
547 	return 0;
548 }
549 
550 static int
551 mii_writereg(device_t self, int phy, int reg, uint16_t val)
552 {
553 	struct dme_softc *sc = device_private(self);
554 
555 	if (phy != 1)
556 		return EINVAL;
557 
558 	/* Select Register to write */
559 	dme_write(sc, DM9000_EPAR, DM9000_EPAR_INT_PHY +
560 	    (reg & DM9000_EPAR_EROA_MASK));
561 
562 	/* Write data to the two data registers */
563 	dme_write(sc, DM9000_EPDRL, val & 0xFF);
564 	dme_write(sc, DM9000_EPDRH, (val >> 8) & 0xFF);
565 
566 	/* Select write operation (DM9000_EPCR_ERPRW) from the PHY */
567 	dme_write(sc, DM9000_EPCR, DM9000_EPCR_ERPRW + DM9000_EPCR_EPOS_PHY);
568 
569 	/* Wait until access to PHY has completed */
570 	while (dme_read(sc, DM9000_EPCR) & DM9000_EPCR_ERRE)
571 		;
572 
573 	/* Reset ERPRR-bit */
574 	dme_write(sc, DM9000_EPCR, DM9000_EPCR_EPOS_PHY);
575 
576 	return 0;
577 }
578 
579 void
580 dme_stop(struct ifnet *ifp, int disable)
581 {
582 	struct dme_softc *sc = ifp->if_softc;
583 
584 	/* Not quite sure what to do when called with disable == 0 */
585 	if (disable) {
586 		/* Disable RX */
587 		dme_write(sc, DM9000_RCR, 0x0);
588 	}
589 	mii_down(&sc->sc_mii);
590 	callout_stop(&sc->sc_link_callout);
591 
592 	ifp->if_flags &= ~IFF_RUNNING;
593 	ifp->if_timer = 0;
594 }
595 
596 static void
597 dme_start(struct ifnet *ifp)
598 {
599 	struct dme_softc *sc = ifp->if_softc;
600 
601 	if ((ifp->if_flags & IFF_RUNNING) == 0) {
602 		return;
603 	}
604 	if (!sc->txready) {
605 		dme_prepare(ifp);
606 	}
607 	if (sc->txbusy) {
608 		/*
609 		 * We need to wait until the current frame has
610 		 * been transmitted.
611 		 */
612 		return;
613 	}
614 	if (sc->txready) {
615 		/* We are ready to transmit right away */
616 		dme_transmit(ifp);
617 	}
618 	dme_prepare(ifp); /* Prepare next one */
619 }
620 
621 /* Prepare data to be transmitted (i.e. dequeue and load it into the DM9000) */
622 static void
623 dme_prepare(struct ifnet *ifp)
624 {
625 	struct dme_softc *sc = ifp->if_softc;
626 	uint16_t length;
627 	struct mbuf *m;
628 
629 	KASSERT(!sc->txready);
630 
631 	IFQ_DEQUEUE(&ifp->if_snd, m);
632 	if (m == NULL) {
633 		TX_DPRINTF(("dme_prepare: Nothing to transmit\n"));
634 		return; /* Nothing to transmit */
635 	}
636 
637 	/* Element has now been removed from the queue, so we better send it */
638 
639 	bpf_mtap(ifp, m, BPF_D_OUT);
640 
641 	/* Setup the DM9000 to accept the writes, and then write each buf in
642 	   the chain. */
643 
644 	TX_DATA_DPRINTF(("dme_prepare: Writing data: "));
645 	bus_space_write_1(sc->sc_iot, sc->sc_ioh, sc->dme_io, DM9000_MWCMD);
646 	length = PKT_WRITE(sc, m);
647 	bpf_mtap(ifp, m, BPF_D_OUT);
648 	TX_DATA_DPRINTF(("\n"));
649 
650 	if (length % sc->sc_data_width != 0)
651 		panic("dme_prepare: length is not compatible with IO_MODE");
652 
653 	sc->txready_length = length;
654 	sc->txready = 1;
655 	m_freem(m);
656 }
657 
658 /* Transmit prepared data */
659 static void
660 dme_transmit(struct ifnet *ifp)
661 {
662 	struct dme_softc *sc = ifp->if_softc;
663 
664 	TX_DPRINTF(("dme_transmit: PRE: txready: %d, txbusy: %d\n",
665 		sc->txready, sc->txbusy));
666 
667 	/* prime frame length first */
668 	dme_write(sc, DM9000_TXPLL, sc->txready_length & 0xff);
669 	dme_write(sc, DM9000_TXPLH, (sc->txready_length >> 8) & 0xff);
670 	/* read isr next */
671 	dme_read(sc, DM9000_ISR);
672 	/* finally issue a request to send */
673 	dme_write(sc, DM9000_TCR, DM9000_TCR_TXREQ);
674 	sc->txready = 0;
675 	sc->txbusy = 1;
676 	sc->txready_length = 0;
677 }
678 
679 /* Receive data */
680 static void
681 dme_receive(struct ifnet *ifp)
682 {
683 	struct dme_softc *sc = ifp->if_softc;
684 	struct mbuf *m;
685 	uint8_t avail, rsr;
686 
687 	DPRINTF(("inside dme_receive\n"));
688 
689 	/* frame has just arrived, retrieve it */
690 	/* called right after Rx frame available interrupt */
691 	do {
692 		/* "no increment" read to get the avail byte without
693 		   moving past it. */
694 		bus_space_write_1(sc->sc_iot, sc->sc_ioh, sc->dme_io,
695 			DM9000_MRCMDX);
696 		/* Read twice */
697 		avail = bus_space_read_1(sc->sc_iot, sc->sc_ioh, sc->dme_data);
698 		avail = bus_space_read_1(sc->sc_iot, sc->sc_ioh, sc->dme_data);
699 		avail &= 03;	/* 1:0 we only want these bits */
700 		if (avail == 01) {
701 			/* Read with address increment. */
702 			bus_space_write_1(sc->sc_iot, sc->sc_ioh, sc->dme_io,
703 				DM9000_MRCMD);
704 			rsr = PKT_READ(sc, &m);
705 			if (m == NULL) {
706 				/* failed to allocate a receive buffer */
707 				RX_DPRINTF(("dme_receive: "
708 					"Error allocating buffer\n"));
709 				if_statinc(ifp, if_ierrors);
710 				continue;
711 			}
712 			if (rsr & (DM9000_RSR_CE | DM9000_RSR_PLE)) {
713 				/* Error while receiving the frame,
714 				 * discard it and keep track of counters
715 				 */
716 				RX_DPRINTF(("dme_receive: "
717 					"Error reciving frame\n"));
718 				if_statinc(ifp, if_ierrors);
719 				continue;
720 			}
721 			if (rsr & DM9000_RSR_LCS) {
722 				if_statinc(ifp, if_collisions);
723 				continue;
724 			}
725 			/* pick and forward this frame to ifq */
726 			if_percpuq_enqueue(ifp->if_percpuq, m);
727 		} else if (avail != 00) {
728 			/* Should this be logged somehow? */
729 			printf("%s: Resetting chip\n",
730 			       device_xname(sc->sc_dev));
731 			dme_reset(sc);
732 			break;
733 		}
734 	} while (avail == 01);
735 	/* frame received successfully */
736 }
737 
738 int
739 dme_intr(void *arg)
740 {
741 	struct dme_softc *sc = arg;
742 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
743 	uint8_t isr, nsr, tsr;
744 
745 	DPRINTF(("dme_intr: Begin\n"));
746 
747 	/* Disable interrupts */
748 	dme_write(sc, DM9000_IMR, DM9000_IMR_PAR);
749 
750 	isr = dme_read(sc, DM9000_ISR);
751 	dme_write(sc, DM9000_ISR, isr); /* write to clear */
752 
753 	if (isr & DM9000_ISR_PRS) {
754 		KASSERT(ifp->if_flags & IFF_RUNNING);
755 		dme_receive(ifp);
756 	}
757 	if (isr & DM9000_ISR_LNKCHNG)
758 		lnkchg(sc);
759 	if (isr & DM9000_ISR_PTS) {
760 		tsr = 0x01; /* Initialize to an error value */
761 
762 		/* A frame has been transmitted */
763 		sc->txbusy = 0;
764 
765 		nsr = dme_read(sc, DM9000_NSR);
766 		if (nsr & DM9000_NSR_TX1END) {
767 			tsr = dme_read(sc, DM9000_TSR1);
768 			TX_DPRINTF(("dme_intr: Sent using channel 0\n"));
769 		} else if (nsr & DM9000_NSR_TX2END) {
770 			tsr = dme_read(sc, DM9000_TSR2);
771 			TX_DPRINTF(("dme_intr: Sent using channel 1\n"));
772 		}
773 
774 		if (tsr == 0x0) {
775 			/* Frame successfully sent */
776 			if_statinc(ifp, if_opackets);
777 		} else {
778 			if_statinc(ifp, if_oerrors);
779 		}
780 
781 		/* If we have nothing ready to transmit, prepare something */
782 		if (!sc->txready)
783 			dme_prepare(ifp);
784 
785 		if (sc->txready)
786 			dme_transmit(ifp);
787 
788 		/* Prepare the next frame */
789 		dme_prepare(ifp);
790 
791 		if_schedule_deferred_start(ifp);
792 	}
793 
794 	/* Enable interrupts again */
795 	dme_write(sc, DM9000_IMR,
796 	    DM9000_IMR_PAR | DM9000_IMR_PRM | DM9000_IMR_PTM);
797 
798 	DPRINTF(("dme_intr: End\n"));
799 
800 	return (isr != 0);
801 }
802 
803 static int
804 dme_ioctl(struct ifnet *ifp, u_long cmd, void *data)
805 {
806 	struct dme_softc *sc = ifp->if_softc;
807 	struct ifreq *ifr = (struct ifreq *)data;
808 	struct ifmedia *ifm = &sc->sc_mii.mii_media;
809 	int s, error;
810 
811 	s = splnet();
812 	switch (cmd) {
813 	case SIOCSIFMEDIA:
814 		/* Flow control requires full-duplex mode. */
815 		if (IFM_SUBTYPE(ifr->ifr_media) == IFM_AUTO ||
816 		    (ifr->ifr_media & IFM_FDX) == 0)
817 			ifr->ifr_media &= ~IFM_ETH_FMASK;
818 		if (IFM_SUBTYPE(ifr->ifr_media) != IFM_AUTO) {
819 			if ((ifr->ifr_media & IFM_ETH_FMASK) == IFM_FLOW) {
820 				ifr->ifr_media |=
821 					IFM_ETH_TXPAUSE | IFM_ETH_RXPAUSE;
822 			}
823 		}
824 		error = ifmedia_ioctl(ifp, ifr, ifm, cmd);
825 		break;
826 	default:
827 		if ((error = ether_ioctl(ifp, cmd, data)) != ENETRESET)
828 			break;
829 		error = 0;
830 		if (cmd == SIOCSIFCAP)
831 			error = if_init(ifp);
832 		else if (cmd != SIOCADDMULTI && cmd != SIOCDELMULTI)
833 			;
834 		else if (ifp->if_flags && IFF_RUNNING) {
835 			/* Address list has changed, reconfigure filter */
836 			dme_set_rcvfilt(sc);
837 		}
838 		break;
839 	}
840 	splx(s);
841 	return error;
842 }
843 
844 static struct mbuf *
845 dme_alloc_receive_buffer(struct ifnet *ifp, unsigned int frame_length)
846 {
847 	struct dme_softc *sc = ifp->if_softc;
848 	struct mbuf *m;
849 	int pad, quantum;
850 
851 	quantum = sc->sc_data_width;
852 	MGETHDR(m, M_DONTWAIT, MT_DATA);
853 	if (m == NULL)
854 		return NULL;
855 
856 	m_set_rcvif(m, ifp);
857 	/* Ensure that we always allocate an even number of
858 	 * bytes in order to avoid writing beyond the buffer
859 	 */
860 	m->m_pkthdr.len = frame_length + (frame_length % quantum);
861 	pad = ALIGN(sizeof(struct ether_header)) -
862 		sizeof(struct ether_header);
863 	/* All our frames have the CRC attached */
864 	m->m_flags |= M_HASFCS;
865 	if (m->m_pkthdr.len + pad > MHLEN) {
866 		MCLGET(m, M_DONTWAIT);
867 		if ((m->m_flags & M_EXT) == 0) {
868 			m_freem(m);
869 			return NULL;
870 		}
871 	}
872 
873 	m->m_data += pad;
874 	m->m_len = frame_length + (frame_length % quantum);
875 
876 	return m;
877 }
878 
879 static int
880 pkt_write_2(struct dme_softc *sc, struct mbuf *bufChain)
881 {
882 	int left_over_count = 0; /* Number of bytes from previous mbuf, which
883 				    need to be written with the next.*/
884 	uint16_t left_over_buf = 0;
885 	int length = 0;
886 	struct mbuf *buf;
887 	uint8_t *write_ptr;
888 
889 	/* We expect that the DM9000 has been setup to accept writes before
890 	   this function is called. */
891 
892 	for (buf = bufChain; buf != NULL; buf = buf->m_next) {
893 		int to_write = buf->m_len;
894 
895 		length += to_write;
896 
897 		write_ptr = buf->m_data;
898 		while (to_write > 0 ||
899 		    (buf->m_next == NULL && left_over_count > 0)) {
900 			if (left_over_count > 0) {
901 				uint8_t b = 0;
902 				DPRINTF(("pkt_write_16: "
903 					 "Writing left over byte\n"));
904 
905 				if (to_write > 0) {
906 					b = *write_ptr;
907 					to_write--;
908 					write_ptr++;
909 
910 					DPRINTF(("Took single byte\n"));
911 				} else {
912 					DPRINTF(("Leftover in last run\n"));
913 					length++;
914 				}
915 
916 				/* Does shift direction depend on endianness? */
917 				left_over_buf = left_over_buf | (b << 8);
918 
919 				bus_space_write_2(sc->sc_iot, sc->sc_ioh,
920 						  sc->dme_data, left_over_buf);
921 				TX_DATA_DPRINTF(("%02X ", left_over_buf));
922 				left_over_count = 0;
923 			} else if ((long)write_ptr % 2 != 0) {
924 				/* Misaligned data */
925 				DPRINTF(("pkt_write_16: "
926 					 "Detected misaligned data\n"));
927 				left_over_buf = *write_ptr;
928 				left_over_count = 1;
929 				write_ptr++;
930 				to_write--;
931 			} else {
932 				int i;
933 				uint16_t *dptr = (uint16_t *)write_ptr;
934 
935 				/* A block of aligned data. */
936 				for (i = 0; i < to_write / 2; i++) {
937 					/* buf will be half-word aligned
938 					 * all the time
939 					 */
940 					bus_space_write_2(sc->sc_iot,
941 					    sc->sc_ioh, sc->dme_data, *dptr);
942 					TX_DATA_DPRINTF(("%02X %02X ",
943 					    *dptr & 0xFF, (*dptr >> 8) & 0xFF));
944 					dptr++;
945 				}
946 
947 				write_ptr += i * 2;
948 				if (to_write % 2 != 0) {
949 					DPRINTF(("pkt_write_16: "
950 						 "to_write %% 2: %d\n",
951 						 to_write % 2));
952 					left_over_count = 1;
953 					/* XXX: Does this depend on
954 					 * the endianness?
955 					 */
956 					left_over_buf = *write_ptr;
957 
958 					write_ptr++;
959 					to_write--;
960 					DPRINTF(("pkt_write_16: "
961 						 "to_write (after): %d\n",
962 						 to_write));
963 					DPRINTF(("pkt_write_16: i * 2: %d\n",
964 						 i*2));
965 				}
966 				to_write -= i * 2;
967 			}
968 		} /* while (...) */
969 	} /* for (...) */
970 
971 	return length;
972 }
973 
974 static int
975 pkt_read_2(struct dme_softc *sc, struct mbuf **outBuf)
976 {
977 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
978 	uint8_t rx_status;
979 	struct mbuf *m;
980 	uint16_t data;
981 	uint16_t frame_length;
982 	uint16_t i;
983 	uint16_t *buf;
984 
985 	data = bus_space_read_2(sc->sc_iot, sc->sc_ioh, sc->dme_data);
986 	rx_status = data & 0xFF;
987 
988 	frame_length = bus_space_read_2(sc->sc_iot,
989 					sc->sc_ioh, sc->dme_data);
990 	if (frame_length > ETHER_MAX_LEN) {
991 		printf("Got frame of length: %d\n", frame_length);
992 		printf("ETHER_MAX_LEN is: %d\n", ETHER_MAX_LEN);
993 		panic("Something is rotten");
994 	}
995 	RX_DPRINTF(("dme_receive: rx_statux: 0x%x, frame_length: %d\n",
996 		rx_status, frame_length));
997 
998 	m = dme_alloc_receive_buffer(ifp, frame_length);
999 	if (m == NULL) {
1000 		/*
1001 		 * didn't get a receive buffer, so we read the rest of the
1002 		 * frame, throw it away and return an error
1003 		 */
1004 		for (i = 0; i < frame_length; i += 2) {
1005 			data = bus_space_read_2(sc->sc_iot,
1006 					sc->sc_ioh, sc->dme_data);
1007 		}
1008 		*outBuf = NULL;
1009 		return 0;
1010 	}
1011 
1012 	buf = mtod(m, uint16_t*);
1013 
1014 	RX_DPRINTF(("dme_receive: "));
1015 
1016 	for (i = 0; i < frame_length; i += 2) {
1017 		data = bus_space_read_2(sc->sc_iot,
1018 					sc->sc_ioh, sc->dme_data);
1019 		if ( (frame_length % 2 != 0) &&
1020 		     (i == frame_length - 1) ) {
1021 			data = data & 0xff;
1022 			RX_DPRINTF((" L "));
1023 		}
1024 		*buf = data;
1025 		buf++;
1026 		RX_DATA_DPRINTF(("%02X %02X ", data & 0xff,
1027 				 (data >> 8) & 0xff));
1028 	}
1029 
1030 	RX_DATA_DPRINTF(("\n"));
1031 	RX_DPRINTF(("Read %d bytes\n", i));
1032 
1033 	*outBuf = m;
1034 	return rx_status;
1035 }
1036 
1037 static int
1038 pkt_write_1(struct dme_softc *sc, struct mbuf *bufChain)
1039 {
1040 	int length = 0, i;
1041 	struct mbuf *buf;
1042 	uint8_t *write_ptr;
1043 
1044 	/*
1045 	 * We expect that the DM9000 has been setup to accept writes before
1046 	 * this function is called.
1047 	 */
1048 
1049 	for (buf = bufChain; buf != NULL; buf = buf->m_next) {
1050 		int to_write = buf->m_len;
1051 
1052 		length += to_write;
1053 
1054 		write_ptr = buf->m_data;
1055 		for (i = 0; i < to_write; i++) {
1056 			bus_space_write_1(sc->sc_iot, sc->sc_ioh,
1057 			    sc->dme_data, *write_ptr);
1058 			write_ptr++;
1059 		}
1060 	} /* for (...) */
1061 
1062 	return length;
1063 }
1064 
1065 static int
1066 pkt_read_1(struct dme_softc *sc, struct mbuf **outBuf)
1067 {
1068 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1069 	uint8_t rx_status;
1070 	struct mbuf *m;
1071 	uint8_t *buf;
1072 	uint16_t frame_length;
1073 	uint16_t i, reg;
1074 	uint8_t data;
1075 
1076 	reg = bus_space_read_1(sc->sc_iot, sc->sc_ioh, sc->dme_data);
1077 	reg |= bus_space_read_1(sc->sc_iot, sc->sc_ioh, sc->dme_data) << 8;
1078 	rx_status = reg & 0xFF;
1079 
1080 	reg = bus_space_read_1(sc->sc_iot, sc->sc_ioh, sc->dme_data);
1081 	reg |= bus_space_read_1(sc->sc_iot, sc->sc_ioh, sc->dme_data) << 8;
1082 	frame_length = reg;
1083 
1084 	if (frame_length > ETHER_MAX_LEN) {
1085 		printf("Got frame of length: %d\n", frame_length);
1086 		printf("ETHER_MAX_LEN is: %d\n", ETHER_MAX_LEN);
1087 		panic("Something is rotten");
1088 	}
1089 	RX_DPRINTF(("dme_receive: "
1090 		    "rx_statux: 0x%x, frame_length: %d\n",
1091 		    rx_status, frame_length));
1092 
1093 	m = dme_alloc_receive_buffer(ifp, frame_length);
1094 	if (m == NULL) {
1095 		/*
1096 		 * didn't get a receive buffer, so we read the rest of the
1097 		 * frame, throw it away and return an error
1098 		 */
1099 		for (i = 0; i < frame_length; i++ ) {
1100 			data = bus_space_read_2(sc->sc_iot,
1101 					sc->sc_ioh, sc->dme_data);
1102 		}
1103 		*outBuf = NULL;
1104 		return 0;
1105 	}
1106 
1107 	buf = mtod(m, uint8_t *);
1108 
1109 	RX_DPRINTF(("dme_receive: "));
1110 	for (i = 0; i< frame_length; i += 1) {
1111 		data = bus_space_read_1(sc->sc_iot, sc->sc_ioh, sc->dme_data);
1112 		*buf = data;
1113 		buf++;
1114 		RX_DATA_DPRINTF(("%02X ", data));
1115 	}
1116 
1117 	RX_DATA_DPRINTF(("\n"));
1118 	RX_DPRINTF(("Read %d bytes\n", i));
1119 
1120 	*outBuf = m;
1121 	return rx_status;
1122 }
1123