1 /* $NetBSD: if_cemac.c,v 1.45 2024/10/15 00:58:15 lloyd Exp $ */ 2 3 /* 4 * Copyright (c) 2015 Genetec Corporation. All rights reserved. 5 * Written by Hashimoto Kenichi for Genetec Corporation. 6 * 7 * Based on arch/arm/at91/at91emac.c 8 * 9 * Copyright (c) 2007 Embedtronics Oy 10 * All rights reserved. 11 * 12 * Copyright (c) 2004 Jesse Off 13 * All rights reserved. 14 * 15 * Redistribution and use in source and binary forms, with or without 16 * modification, are permitted provided that the following conditions 17 * are met: 18 * 1. Redistributions of source code must retain the above copyright 19 * notice, this list of conditions and the following disclaimer. 20 * 2. Redistributions in binary form must reproduce the above copyright 21 * notice, this list of conditions and the following disclaimer in the 22 * documentation and/or other materials provided with the distribution. 23 * 24 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS 25 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED 26 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 27 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS 28 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 29 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 30 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 31 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 32 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 33 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 34 * POSSIBILITY OF SUCH DAMAGE. 35 */ 36 37 /* 38 * Cadence EMAC/GEM ethernet controller IP driver 39 * used by arm/at91, arm/zynq SoC 40 */ 41 42 /* 43 * Lock order: 44 * 45 * IFNET_LOCK -> sc_mcast_lock 46 * IFNET_LOCK -> sc_intr_lock 47 */ 48 49 50 #include <sys/cdefs.h> 51 __KERNEL_RCSID(0, "$NetBSD: if_cemac.c,v 1.45 2024/10/15 00:58:15 lloyd Exp $"); 52 53 #include <sys/param.h> 54 #include <sys/types.h> 55 56 #include <sys/bus.h> 57 #include <sys/device.h> 58 #include <sys/kernel.h> 59 #include <sys/proc.h> 60 #include <sys/systm.h> 61 #include <sys/time.h> 62 63 #include <net/if.h> 64 #include <net/if_dl.h> 65 #include <net/if_types.h> 66 #include <net/if_media.h> 67 #include <net/if_ether.h> 68 #include <net/bpf.h> 69 70 #include <dev/mii/mii.h> 71 #include <dev/mii/miivar.h> 72 73 #ifdef INET 74 #include <netinet/in.h> 75 #include <netinet/in_systm.h> 76 #include <netinet/in_var.h> 77 #include <netinet/ip.h> 78 #include <netinet/if_inarp.h> 79 #endif 80 81 #include <dev/cadence/cemacreg.h> 82 #include <dev/cadence/if_cemacvar.h> 83 84 #ifndef CEMAC_WATCHDOG_TIMEOUT 85 #define CEMAC_WATCHDOG_TIMEOUT 5 86 #endif 87 static int cemac_watchdog_timeout = CEMAC_WATCHDOG_TIMEOUT; 88 89 #define DEFAULT_MDCDIV 32 90 91 #define CEMAC_READ(x) \ 92 bus_space_read_4(sc->sc_iot, sc->sc_ioh, (x)) 93 #define CEMAC_WRITE(x, y) \ 94 bus_space_write_4(sc->sc_iot, sc->sc_ioh, (x), (y)) 95 #define CEMAC_GEM_WRITE(x, y) \ 96 do { \ 97 if (ISSET(sc->cemac_flags, CEMAC_FLAG_GEM)) \ 98 bus_space_write_4(sc->sc_iot, sc->sc_ioh, (GEM_##x), (y)); \ 99 else \ 100 bus_space_write_4(sc->sc_iot, sc->sc_ioh, (ETH_##x), (y)); \ 101 } while(0) 102 103 static void cemac_init(struct cemac_softc *); 104 static int cemac_gctx(struct cemac_softc *); 105 static int cemac_mediachange(struct ifnet *); 106 static void cemac_mediastatus(struct ifnet *, struct ifmediareq *); 107 static int cemac_mii_readreg(device_t, int, int, uint16_t *); 108 static int cemac_mii_writereg(device_t, int, int, uint16_t); 109 static void cemac_statchg(struct ifnet *); 110 static void cemac_tick(void *); 111 static int cemac_ifioctl(struct ifnet *, u_long, void *); 112 static void cemac_ifstart(struct ifnet *); 113 static void cemac_ifstart_locked(struct ifnet *); 114 static void cemac_ifwatchdog(struct ifnet *); 115 static int cemac_ifinit(struct ifnet *); 116 static void cemac_ifstop(struct ifnet *, int); 117 static void cemac_setaddr(struct ifnet *); 118 119 #ifdef CEMAC_DEBUG 120 int cemac_debug = CEMAC_DEBUG; 121 #define DPRINTFN(n, fmt) if (cemac_debug >= (n)) printf fmt 122 #else 123 #define DPRINTFN(n, fmt) 124 #endif 125 126 /* 127 * Perform an interface watchdog reset. 128 */ 129 static void 130 cemac_handle_reset_work(struct work *work, void *arg) 131 { 132 struct cemac_softc * const sc = arg; 133 struct ifnet * const ifp = &sc->sc_ethercom.ec_if; 134 135 printf("%s: watchdog timeout -- resetting\n", ifp->if_xname); 136 137 /* Don't want ioctl operations to happen */ 138 IFNET_LOCK(ifp); 139 140 /* reset the interface. */ 141 cemac_ifinit(ifp); 142 143 IFNET_UNLOCK(ifp); 144 145 /* 146 * There are still some upper layer processing which call 147 * ifp->if_start(). e.g. ALTQ or one CPU system 148 */ 149 /* Try to get more packets going. */ 150 ifp->if_start(ifp); 151 152 atomic_store_relaxed(&sc->sc_reset_pending, 0); 153 } 154 155 156 void 157 cemac_attach_common(struct cemac_softc *sc) 158 { 159 uint32_t u; 160 161 aprint_naive("\n"); 162 if (ISSET(sc->cemac_flags, CEMAC_FLAG_GEM)) 163 aprint_normal(": Cadence Gigabit Ethernet Controller\n"); 164 else 165 aprint_normal(": Cadence Ethernet Controller\n"); 166 167 /* configure emac: */ 168 CEMAC_WRITE(ETH_CTL, 0); // disable everything 169 CEMAC_WRITE(ETH_IDR, -1); // disable interrupts 170 CEMAC_WRITE(ETH_RBQP, 0); // clear receive 171 CEMAC_WRITE(ETH_TBQP, 0); // clear transmit 172 if (ISSET(sc->cemac_flags, CEMAC_FLAG_GEM)) 173 CEMAC_WRITE(ETH_CFG, 174 GEM_CFG_CLK_64 | GEM_CFG_GEN | ETH_CFG_SPD | ETH_CFG_FD); 175 else 176 CEMAC_WRITE(ETH_CFG, 177 ETH_CFG_CLK_32 | ETH_CFG_SPD | ETH_CFG_FD | ETH_CFG_BIG); 178 //CEMAC_WRITE(ETH_TCR, 0); // send nothing 179 //(void)CEMAC_READ(ETH_ISR); 180 u = CEMAC_READ(ETH_TSR); 181 CEMAC_WRITE(ETH_TSR, (u & (ETH_TSR_UND | ETH_TSR_COMP | ETH_TSR_BNQ 182 | ETH_TSR_IDLE | ETH_TSR_RLE 183 | ETH_TSR_COL | ETH_TSR_OVR))); 184 u = CEMAC_READ(ETH_RSR); 185 CEMAC_WRITE(ETH_RSR, (u & (ETH_RSR_OVR | ETH_RSR_REC | ETH_RSR_BNA))); 186 187 /* Fetch the Ethernet address from property if set. */ 188 prop_dictionary_t prop = device_properties(sc->sc_dev); 189 prop_data_t enaddr = prop_dictionary_get(prop, "mac-address"); 190 191 if (enaddr != NULL) { 192 KASSERT(prop_object_type(enaddr) == PROP_TYPE_DATA); 193 KASSERT(prop_data_size(enaddr) == ETHER_ADDR_LEN); 194 memcpy(sc->sc_enaddr, prop_data_value(enaddr), 195 ETHER_ADDR_LEN); 196 } else { 197 static const uint8_t hardcoded[ETHER_ADDR_LEN] = { 198 0x00, 0x0d, 0x10, 0x81, 0x0c, 0x94 199 }; 200 memcpy(sc->sc_enaddr, hardcoded, ETHER_ADDR_LEN); 201 } 202 203 cemac_init(sc); 204 } 205 206 static int 207 cemac_gctx(struct cemac_softc *sc) 208 { 209 uint32_t tsr; 210 211 tsr = CEMAC_READ(ETH_TSR); 212 if (!ISSET(sc->cemac_flags, CEMAC_FLAG_GEM)) { 213 // no space left 214 if (!(tsr & ETH_TSR_BNQ)) 215 return 0; 216 } else { 217 if (tsr & GEM_TSR_TXGO) 218 return 0; 219 } 220 CEMAC_WRITE(ETH_TSR, tsr); 221 222 // free sent frames 223 while (sc->txqc > (ISSET(sc->cemac_flags, CEMAC_FLAG_GEM) ? 0 : 224 (tsr & ETH_TSR_IDLE ? 0 : 1))) { 225 int bi = sc->txqi % TX_QLEN; 226 227 DPRINTFN(3,("%s: TDSC[%i].Addr 0x%08x\n", 228 __FUNCTION__, bi, sc->TDSC[bi].Addr)); 229 DPRINTFN(3,("%s: TDSC[%i].Info 0x%08x\n", 230 __FUNCTION__, bi, sc->TDSC[bi].Info)); 231 232 bus_dmamap_sync(sc->sc_dmat, sc->txq[bi].m_dmamap, 0, 233 sc->txq[bi].m->m_pkthdr.len, BUS_DMASYNC_POSTWRITE); 234 bus_dmamap_unload(sc->sc_dmat, sc->txq[bi].m_dmamap); 235 m_freem(sc->txq[bi].m); 236 DPRINTFN(2,("%s: freed idx #%i mbuf %p (txqc=%i)\n", 237 __FUNCTION__, bi, sc->txq[bi].m, sc->txqc)); 238 sc->txq[bi].m = NULL; 239 sc->txqi = (bi + 1) % TX_QLEN; 240 sc->txqc--; 241 } 242 243 // mark we're free 244 if (sc->sc_txbusy) { 245 sc->sc_txbusy = false; 246 /* Disable transmit-buffer-free interrupt */ 247 /*CEMAC_WRITE(ETH_IDR, ETH_ISR_TBRE);*/ 248 } 249 250 return 1; 251 } 252 253 int 254 cemac_intr(void *arg) 255 { 256 struct cemac_softc * const sc = arg; 257 struct ifnet * const ifp = &sc->sc_ethercom.ec_if; 258 uint32_t imr, isr, ctl; 259 #ifdef CEMAC_DEBUG 260 uint32_t rsr; 261 #endif 262 int bi; 263 264 mutex_enter(sc->sc_intr_lock); 265 if (sc->sc_stopping) { 266 mutex_exit(sc->sc_intr_lock); 267 return 0; 268 } 269 270 imr = ~CEMAC_READ(ETH_IMR); 271 if (!(imr & (ETH_ISR_RCOM | ETH_ISR_TBRE | ETH_ISR_TIDLE | 272 ETH_ISR_RBNA | ETH_ISR_ROVR | ETH_ISR_TCOM))) { 273 // interrupt not enabled, can't be us 274 mutex_exit(sc->sc_intr_lock); 275 return 0; 276 } 277 278 isr = CEMAC_READ(ETH_ISR); 279 CEMAC_WRITE(ETH_ISR, isr); 280 isr &= imr; 281 282 if (isr == 0) { 283 mutex_exit(sc->sc_intr_lock); 284 return 0; 285 } 286 287 #ifdef CEMAC_DEBUG 288 rsr = CEMAC_READ(ETH_RSR); // get receive status register 289 #endif 290 DPRINTFN(2, ("%s: isr=0x%08X rsr=0x%08X imr=0x%08X\n", __FUNCTION__, 291 isr, rsr, imr)); 292 293 net_stat_ref_t nsr = IF_STAT_GETREF(ifp); 294 // out of receive buffers 295 if (isr & ETH_ISR_RBNA) { 296 // clear interrupt 297 CEMAC_WRITE(ETH_RSR, ETH_RSR_BNA); 298 299 ctl = CEMAC_READ(ETH_CTL); 300 // disable receiver 301 CEMAC_WRITE(ETH_CTL, ctl & ~ETH_CTL_RE); 302 // clear BNA bit 303 CEMAC_WRITE(ETH_RSR, ETH_RSR_BNA); 304 // re-enable receiver 305 CEMAC_WRITE(ETH_CTL, ctl | ETH_CTL_RE); 306 307 if_statinc_ref(ifp, nsr, if_ierrors); 308 if_statinc_ref(ifp, nsr, if_ipackets); 309 DPRINTFN(1,("%s: out of receive buffers\n", __FUNCTION__)); 310 } 311 if (isr & ETH_ISR_ROVR) { 312 // clear interrupt 313 CEMAC_WRITE(ETH_RSR, ETH_RSR_OVR); 314 if_statinc_ref(ifp, nsr, if_ierrors); 315 if_statinc_ref(ifp, nsr, if_ipackets); 316 DPRINTFN(1,("%s: receive overrun\n", __FUNCTION__)); 317 } 318 319 // packet has been received! 320 if (isr & ETH_ISR_RCOM) { 321 uint32_t nfo; 322 DPRINTFN(2,("#2 RDSC[%i].INFO=0x%08X\n", sc->rxqi % RX_QLEN, 323 sc->RDSC[sc->rxqi % RX_QLEN].Info)); 324 while (sc->RDSC[(bi = sc->rxqi % RX_QLEN)].Addr & ETH_RDSC_F_USED) { 325 int fl, csum; 326 struct mbuf *m; 327 328 nfo = sc->RDSC[bi].Info; 329 fl = (nfo & ETH_RDSC_I_LEN) - 4; 330 DPRINTFN(2,("## nfo=0x%08X\n", nfo)); 331 332 MGETHDR(m, M_DONTWAIT, MT_DATA); 333 if (m != NULL) 334 MCLGET(m, M_DONTWAIT); 335 if (m != NULL && (m->m_flags & M_EXT)) { 336 bus_dmamap_sync(sc->sc_dmat, 337 sc->rxq[bi].m_dmamap, 0, MCLBYTES, 338 BUS_DMASYNC_POSTREAD); 339 bus_dmamap_unload(sc->sc_dmat, 340 sc->rxq[bi].m_dmamap); 341 m_set_rcvif(sc->rxq[bi].m, ifp); 342 sc->rxq[bi].m->m_pkthdr.len = 343 sc->rxq[bi].m->m_len = fl; 344 switch (nfo & ETH_RDSC_I_CHKSUM) { 345 case ETH_RDSC_I_CHKSUM_IP: 346 csum = M_CSUM_IPv4; 347 break; 348 case ETH_RDSC_I_CHKSUM_UDP: 349 csum = M_CSUM_IPv4 | M_CSUM_UDPv4 | 350 M_CSUM_UDPv6; 351 break; 352 case ETH_RDSC_I_CHKSUM_TCP: 353 csum = M_CSUM_IPv4 | M_CSUM_TCPv4 | 354 M_CSUM_TCPv6; 355 break; 356 default: 357 csum = 0; 358 break; 359 } 360 sc->rxq[bi].m->m_pkthdr.csum_flags = csum; 361 DPRINTFN(2,("received %u bytes packet\n", fl)); 362 if_percpuq_enqueue(ifp->if_percpuq, 363 sc->rxq[bi].m); 364 if (mtod(m, intptr_t) & 3) 365 m_adj(m, mtod(m, intptr_t) & 3); 366 sc->rxq[bi].m = m; 367 bus_dmamap_load(sc->sc_dmat, 368 sc->rxq[bi].m_dmamap, m->m_ext.ext_buf, 369 MCLBYTES, NULL, BUS_DMA_NOWAIT); 370 bus_dmamap_sync(sc->sc_dmat, 371 sc->rxq[bi].m_dmamap, 0, MCLBYTES, 372 BUS_DMASYNC_PREREAD); 373 sc->RDSC[bi].Info = 0; 374 sc->RDSC[bi].Addr = 375 sc->rxq[bi].m_dmamap->dm_segs[0].ds_addr 376 | (bi == (RX_QLEN-1) ? ETH_RDSC_F_WRAP : 0); 377 } else { 378 /* Drop packets until we can get replacement 379 * empty mbufs for the RXDQ. 380 */ 381 m_freem(m); 382 if_statinc_ref(ifp, nsr, if_ierrors); 383 } 384 sc->rxqi++; 385 } 386 } 387 388 IF_STAT_PUTREF(ifp); 389 390 if (cemac_gctx(sc) > 0) 391 if_schedule_deferred_start(ifp); 392 #if 0 // reloop 393 irq = CEMAC_READ(IntStsC); 394 if ((irq & (IntSts_RxSQ | IntSts_ECI)) != 0) 395 goto begin; 396 #endif 397 398 mutex_exit(sc->sc_intr_lock); 399 400 return 1; 401 } 402 403 404 static int 405 cemac_ifflags_cb(struct ethercom *ec) 406 { 407 struct ifnet * const ifp = &ec->ec_if; 408 struct cemac_softc * const sc = ifp->if_softc; 409 int ret = 0; 410 411 KASSERT(IFNET_LOCKED(ifp)); 412 mutex_enter(sc->sc_mcast_lock); 413 414 u_short change = ifp->if_flags ^ sc->sc_if_flags; 415 sc->sc_if_flags = ifp->if_flags; 416 417 if ((change & ~(IFF_CANTCHANGE | IFF_DEBUG)) != 0) { 418 ret = ENETRESET; 419 } else if ((change & IFF_PROMISC) != 0) { 420 if ((sc->sc_if_flags & IFF_RUNNING) != 0) 421 cemac_setaddr(ifp); 422 } 423 mutex_exit(sc->sc_mcast_lock); 424 425 return ret; 426 } 427 428 static void 429 cemac_init(struct cemac_softc *sc) 430 { 431 bus_dma_segment_t segs; 432 int rsegs, err, i; 433 struct ifnet * const ifp = &sc->sc_ethercom.ec_if; 434 struct mii_data * const mii = &sc->sc_mii; 435 uint32_t u; 436 #if 0 437 int mdcdiv = DEFAULT_MDCDIV; 438 #endif 439 440 callout_init(&sc->cemac_tick_ch, CALLOUT_MPSAFE); 441 callout_setfunc(&sc->cemac_tick_ch, cemac_tick, sc); 442 443 // ok... 444 CEMAC_WRITE(ETH_CTL, ETH_CTL_MPE); // disable everything 445 CEMAC_WRITE(ETH_IDR, -1); // disable interrupts 446 CEMAC_WRITE(ETH_RBQP, 0); // clear receive 447 CEMAC_WRITE(ETH_TBQP, 0); // clear transmit 448 if (ISSET(sc->cemac_flags, CEMAC_FLAG_GEM)) 449 CEMAC_WRITE(ETH_CFG, 450 GEM_CFG_CLK_64 | ETH_CFG_SPD | ETH_CFG_FD | ETH_CFG_BIG); 451 else 452 CEMAC_WRITE(ETH_CFG, 453 ETH_CFG_CLK_32 | ETH_CFG_SPD | ETH_CFG_FD | ETH_CFG_BIG); 454 if (ISSET(sc->cemac_flags, CEMAC_FLAG_GEM)) { 455 CEMAC_WRITE(GEM_DMA_CFG, 456 __SHIFTIN((MCLBYTES + 63) / 64, GEM_DMA_CFG_RX_BUF_SIZE) | 457 __SHIFTIN(3, GEM_DMA_CFG_RX_PKTBUF_MEMSZ_SEL) | 458 GEM_DMA_CFG_TX_PKTBUF_MEMSZ_SEL | 459 __SHIFTIN(16, GEM_DMA_CFG_AHB_FIXED_BURST_LEN) | 460 GEM_DMA_CFG_DISC_WHEN_NO_AHB); 461 } 462 // CEMAC_WRITE(ETH_TCR, 0); // send nothing 463 // (void)CEMAC_READ(ETH_ISR); 464 u = CEMAC_READ(ETH_TSR); 465 CEMAC_WRITE(ETH_TSR, (u & (ETH_TSR_UND | ETH_TSR_COMP | ETH_TSR_BNQ 466 | ETH_TSR_IDLE | ETH_TSR_RLE 467 | ETH_TSR_COL | ETH_TSR_OVR))); 468 u = CEMAC_READ(ETH_RSR); 469 CEMAC_WRITE(ETH_RSR, (u & (ETH_RSR_OVR | ETH_RSR_REC | ETH_RSR_BNA))); 470 471 #if 0 472 if (device_cfdata(sc->sc_dev)->cf_flags) 473 mdcdiv = device_cfdata(sc->sc_dev)->cf_flags; 474 #endif 475 /* set ethernet address */ 476 CEMAC_GEM_WRITE(SA1L, (sc->sc_enaddr[3] << 24) 477 | (sc->sc_enaddr[2] << 16) | (sc->sc_enaddr[1] << 8) 478 | (sc->sc_enaddr[0])); 479 CEMAC_GEM_WRITE(SA1H, (sc->sc_enaddr[5] << 8) 480 | (sc->sc_enaddr[4])); 481 CEMAC_GEM_WRITE(SA2L, 0); 482 CEMAC_GEM_WRITE(SA2H, 0); 483 CEMAC_GEM_WRITE(SA3L, 0); 484 CEMAC_GEM_WRITE(SA3H, 0); 485 CEMAC_GEM_WRITE(SA4L, 0); 486 CEMAC_GEM_WRITE(SA4H, 0); 487 488 char wqname[MAXCOMLEN]; 489 snprintf(wqname, sizeof(wqname), "%sReset", device_xname(sc->sc_dev)); 490 int error = workqueue_create(&sc->sc_reset_wq, wqname, 491 cemac_handle_reset_work, sc, PRI_NONE, IPL_SOFTCLOCK, 492 WQ_MPSAFE); 493 if (error) { 494 aprint_error_dev(sc->sc_dev, 495 "unable to create reset workqueue\n"); 496 return; 497 } 498 499 /* Allocate memory for receive queue descriptors */ 500 sc->rbqlen = roundup(ETH_DSC_SIZE * (RX_QLEN + 1) * 2, PAGE_SIZE); 501 DPRINTFN(1,("%s: rbqlen=%i\n", __FUNCTION__, sc->rbqlen)); 502 503 // see EMAC errata why forced to 16384 byte boundary 504 err = bus_dmamem_alloc(sc->sc_dmat, sc->rbqlen, 0, 505 MAX(16384, PAGE_SIZE), &segs, 1, &rsegs, BUS_DMA_WAITOK); 506 if (err == 0) { 507 DPRINTFN(1,("%s: -> bus_dmamem_map\n", __FUNCTION__)); 508 err = bus_dmamem_map(sc->sc_dmat, &segs, 1, sc->rbqlen, 509 &sc->rbqpage, (BUS_DMA_WAITOK | BUS_DMA_COHERENT)); 510 } 511 if (err == 0) { 512 DPRINTFN(1,("%s: -> bus_dmamap_create\n", __FUNCTION__)); 513 err = bus_dmamap_create(sc->sc_dmat, sc->rbqlen, 1, 514 sc->rbqlen, MAX(16384, PAGE_SIZE), BUS_DMA_WAITOK, 515 &sc->rbqpage_dmamap); 516 } 517 if (err == 0) { 518 DPRINTFN(1,("%s: -> bus_dmamap_load\n", __FUNCTION__)); 519 err = bus_dmamap_load(sc->sc_dmat, sc->rbqpage_dmamap, 520 sc->rbqpage, sc->rbqlen, NULL, BUS_DMA_WAITOK); 521 } 522 if (err != 0) 523 panic("%s: Cannot get DMA memory", device_xname(sc->sc_dev)); 524 525 sc->rbqpage_dsaddr = sc->rbqpage_dmamap->dm_segs[0].ds_addr; 526 memset(sc->rbqpage, 0, sc->rbqlen); 527 528 /* Allocate memory for transmit queue descriptors */ 529 sc->tbqlen = roundup(ETH_DSC_SIZE * (TX_QLEN + 1) * 2, PAGE_SIZE); 530 DPRINTFN(1,("%s: tbqlen=%i\n", __FUNCTION__, sc->tbqlen)); 531 532 // see EMAC errata why forced to 16384 byte boundary 533 err = bus_dmamem_alloc(sc->sc_dmat, sc->tbqlen, 0, 534 MAX(16384, PAGE_SIZE), &segs, 1, &rsegs, BUS_DMA_WAITOK); 535 if (err == 0) { 536 DPRINTFN(1,("%s: -> bus_dmamem_map\n", __FUNCTION__)); 537 err = bus_dmamem_map(sc->sc_dmat, &segs, 1, sc->tbqlen, 538 &sc->tbqpage, (BUS_DMA_WAITOK | BUS_DMA_COHERENT)); 539 } 540 if (err == 0) { 541 DPRINTFN(1,("%s: -> bus_dmamap_create\n", __FUNCTION__)); 542 err = bus_dmamap_create(sc->sc_dmat, sc->tbqlen, 1, 543 sc->tbqlen, MAX(16384, PAGE_SIZE), BUS_DMA_WAITOK, 544 &sc->tbqpage_dmamap); 545 } 546 if (err == 0) { 547 DPRINTFN(1,("%s: -> bus_dmamap_load\n", __FUNCTION__)); 548 err = bus_dmamap_load(sc->sc_dmat, sc->tbqpage_dmamap, 549 sc->tbqpage, sc->tbqlen, NULL, BUS_DMA_WAITOK); 550 } 551 if (err != 0) 552 panic("%s: Cannot get DMA memory", device_xname(sc->sc_dev)); 553 554 sc->tbqpage_dsaddr = sc->tbqpage_dmamap->dm_segs[0].ds_addr; 555 memset(sc->tbqpage, 0, sc->tbqlen); 556 557 /* Set up pointers to start of each queue in kernel addr space. 558 * Each descriptor queue or status queue entry uses 2 words 559 */ 560 sc->RDSC = (void *)sc->rbqpage; 561 sc->TDSC = (void *)sc->tbqpage; 562 563 /* init TX queue */ 564 for (i = 0; i < TX_QLEN; i++) { 565 sc->TDSC[i].Addr = 0; 566 sc->TDSC[i].Info = ETH_TDSC_I_USED | 567 (i == (TX_QLEN - 1) ? ETH_TDSC_I_WRAP : 0); 568 } 569 570 /* Populate the RXQ with mbufs */ 571 sc->rxqi = 0; 572 for (i = 0; i < RX_QLEN; i++) { 573 struct mbuf *m; 574 575 err = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1, MCLBYTES, 576 PAGE_SIZE, BUS_DMA_WAITOK, &sc->rxq[i].m_dmamap); 577 if (err) { 578 panic("%s: dmamap_create failed: %i\n", __FUNCTION__, 579 err); 580 } 581 MGETHDR(m, M_WAIT, MT_DATA); 582 MCLGET(m, M_WAIT); 583 sc->rxq[i].m = m; 584 if (mtod(m, intptr_t) & 3) { 585 m_adj(m, mtod(m, intptr_t) & 3); 586 } 587 err = bus_dmamap_load(sc->sc_dmat, sc->rxq[i].m_dmamap, 588 m->m_ext.ext_buf, MCLBYTES, NULL, 589 BUS_DMA_WAITOK); 590 if (err) { 591 panic("%s: dmamap_load failed: %i\n", __FUNCTION__, err); 592 } 593 sc->RDSC[i].Addr = sc->rxq[i].m_dmamap->dm_segs[0].ds_addr 594 | (i == (RX_QLEN-1) ? ETH_RDSC_F_WRAP : 0); 595 sc->RDSC[i].Info = 0; 596 bus_dmamap_sync(sc->sc_dmat, sc->rxq[i].m_dmamap, 0, 597 MCLBYTES, BUS_DMASYNC_PREREAD); 598 } 599 600 /* prepare transmit queue */ 601 for (i = 0; i < TX_QLEN; i++) { 602 err = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1, MCLBYTES, 0, 603 (BUS_DMA_WAITOK | BUS_DMA_ALLOCNOW), 604 &sc->txq[i].m_dmamap); 605 if (err) 606 panic("ARGH #1"); 607 sc->txq[i].m = NULL; 608 } 609 610 /* Program each queue's start addr, cur addr, and len registers 611 * with the physical addresses. 612 */ 613 CEMAC_WRITE(ETH_RBQP, (uint32_t)sc->rbqpage_dsaddr); 614 CEMAC_WRITE(ETH_TBQP, (uint32_t)sc->tbqpage_dsaddr); 615 616 sc->sc_mcast_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_SOFTNET); 617 sc->sc_intr_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NET); 618 619 /* Divide HCLK by 32 for MDC clock */ 620 sc->sc_ethercom.ec_mii = mii; 621 mii->mii_ifp = ifp; 622 mii->mii_readreg = cemac_mii_readreg; 623 mii->mii_writereg = cemac_mii_writereg; 624 mii->mii_statchg = cemac_statchg; 625 ifmedia_init(&mii->mii_media, IFM_IMASK, cemac_mediachange, 626 cemac_mediastatus); 627 mii_attach(sc->sc_dev, mii, 0xffffffff, sc->sc_phyno, MII_OFFSET_ANY, 0); 628 ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_AUTO); 629 630 #if 0 631 // enable / disable interrupts 632 CEMAC_WRITE(ETH_IDR, -1); 633 CEMAC_WRITE(ETH_IER, ETH_ISR_RCOM | ETH_ISR_TBRE | ETH_ISR_TIDLE 634 | ETH_ISR_RBNA | ETH_ISR_ROVR | ETH_ISR_TCOM); 635 // (void)CEMAC_READ(ETH_ISR); // why 636 637 // enable transmitter / receiver 638 CEMAC_WRITE(ETH_CTL, ETH_CTL_TE | ETH_CTL_RE | ETH_CTL_ISR 639 | ETH_CTL_CSR | ETH_CTL_MPE); 640 #endif 641 /* 642 * We can support hardware checksumming. 643 */ 644 ifp->if_capabilities |= 645 IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx | 646 IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx | 647 IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx | 648 IFCAP_CSUM_TCPv6_Tx | IFCAP_CSUM_TCPv6_Rx | 649 IFCAP_CSUM_UDPv6_Tx | IFCAP_CSUM_UDPv6_Rx; 650 651 /* 652 * We can support 802.1Q VLAN-sized frames. 653 */ 654 sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_MTU; 655 656 strcpy(ifp->if_xname, device_xname(sc->sc_dev)); 657 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST; 658 ifp->if_extflags = IFEF_MPSAFE; 659 ifp->if_ioctl = cemac_ifioctl; 660 ifp->if_start = cemac_ifstart; 661 ifp->if_watchdog = cemac_ifwatchdog; 662 ifp->if_init = cemac_ifinit; 663 ifp->if_stop = cemac_ifstop; 664 ifp->if_softc = sc; 665 IFQ_SET_READY(&ifp->if_snd); 666 if_attach(ifp); 667 if_deferred_start_init(ifp, NULL); 668 ether_ifattach(ifp, (sc)->sc_enaddr); 669 ether_set_ifflags_cb(&sc->sc_ethercom, cemac_ifflags_cb); 670 } 671 672 static int 673 cemac_mediachange(struct ifnet *ifp) 674 { 675 if (ifp->if_flags & IFF_UP) 676 cemac_ifinit(ifp); 677 return 0; 678 } 679 680 static void 681 cemac_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr) 682 { 683 struct cemac_softc * const sc = ifp->if_softc; 684 685 mii_pollstat(&sc->sc_mii); 686 ifmr->ifm_active = sc->sc_mii.mii_media_active; 687 ifmr->ifm_status = sc->sc_mii.mii_media_status; 688 } 689 690 691 static int 692 cemac_mii_readreg(device_t self, int phy, int reg, uint16_t *val) 693 { 694 struct cemac_softc * const sc = device_private(self); 695 696 CEMAC_WRITE(ETH_MAN, (ETH_MAN_HIGH | ETH_MAN_RW_RD 697 | ((phy << ETH_MAN_PHYA_SHIFT) & ETH_MAN_PHYA) 698 | ((reg << ETH_MAN_REGA_SHIFT) & ETH_MAN_REGA) 699 | ETH_MAN_CODE_IEEE802_3)); 700 while (!(CEMAC_READ(ETH_SR) & ETH_SR_IDLE)) 701 ; 702 703 *val = CEMAC_READ(ETH_MAN) & ETH_MAN_DATA; 704 return 0; 705 } 706 707 static int 708 cemac_mii_writereg(device_t self, int phy, int reg, uint16_t val) 709 { 710 struct cemac_softc * const sc = device_private(self); 711 712 CEMAC_WRITE(ETH_MAN, (ETH_MAN_HIGH | ETH_MAN_RW_WR 713 | ((phy << ETH_MAN_PHYA_SHIFT) & ETH_MAN_PHYA) 714 | ((reg << ETH_MAN_REGA_SHIFT) & ETH_MAN_REGA) 715 | ETH_MAN_CODE_IEEE802_3 716 | (val & ETH_MAN_DATA))); 717 while (!(CEMAC_READ(ETH_SR) & ETH_SR_IDLE)) 718 ; 719 720 return 0; 721 } 722 723 724 static void 725 cemac_statchg(struct ifnet *ifp) 726 { 727 struct cemac_softc * const sc = ifp->if_softc; 728 struct mii_data *mii = &sc->sc_mii; 729 uint32_t reg; 730 731 /* 732 * We must keep the MAC and the PHY in sync as 733 * to the status of full-duplex! 734 */ 735 reg = CEMAC_READ(ETH_CFG); 736 reg &= ~ETH_CFG_FD; 737 if (sc->sc_mii.mii_media_active & IFM_FDX) 738 reg |= ETH_CFG_FD; 739 740 reg &= ~ETH_CFG_SPD; 741 if (ISSET(sc->cemac_flags, CEMAC_FLAG_GEM)) 742 reg &= ~GEM_CFG_GEN; 743 switch (IFM_SUBTYPE(mii->mii_media_active)) { 744 case IFM_10_T: 745 break; 746 case IFM_100_TX: 747 reg |= ETH_CFG_SPD; 748 break; 749 case IFM_1000_T: 750 reg |= ETH_CFG_SPD | GEM_CFG_GEN; 751 break; 752 default: 753 break; 754 } 755 CEMAC_WRITE(ETH_CFG, reg); 756 } 757 758 static bool 759 cemac_watchdog_check(struct cemac_softc * const sc) 760 { 761 762 KASSERT(mutex_owned(sc->sc_intr_lock)); 763 764 if (!sc->sc_tx_sending) 765 return true; 766 767 if (time_uptime - sc->sc_tx_lastsent <= cemac_watchdog_timeout) 768 return true; 769 770 return false; 771 } 772 773 static bool 774 cemac_watchdog_tick(struct ifnet *ifp) 775 { 776 struct cemac_softc * const sc = ifp->if_softc; 777 778 KASSERT(mutex_owned(sc->sc_intr_lock)); 779 780 if (!sc->sc_trigger_reset && cemac_watchdog_check(sc)) 781 return true; 782 783 if (atomic_swap_uint(&sc->sc_reset_pending, 1) == 0) 784 workqueue_enqueue(sc->sc_reset_wq, &sc->sc_reset_work, NULL); 785 786 return false; 787 } 788 789 790 static void 791 cemac_tick(void *arg) 792 { 793 struct cemac_softc * const sc = arg; 794 struct ifnet * const ifp = &sc->sc_ethercom.ec_if; 795 796 mutex_enter(sc->sc_intr_lock); 797 if (sc->sc_stopping) { 798 mutex_exit(sc->sc_intr_lock); 799 return; 800 } 801 802 if (ISSET(sc->cemac_flags, CEMAC_FLAG_GEM)) 803 if_statadd(ifp, if_collisions, 804 CEMAC_READ(GEM_SCOL) + CEMAC_READ(GEM_MCOL)); 805 else 806 if_statadd(ifp, if_collisions, 807 CEMAC_READ(ETH_SCOL) + CEMAC_READ(ETH_MCOL)); 808 809 /* These misses are ok, they will happen if the RAM/CPU can't keep up */ 810 if (!ISSET(sc->cemac_flags, CEMAC_FLAG_GEM)) { 811 uint32_t misses = CEMAC_READ(ETH_DRFC); 812 if (misses > 0) 813 aprint_normal_ifnet(ifp, "%d rx misses\n", misses); 814 } 815 816 mii_tick(&sc->sc_mii); 817 818 const bool ok = cemac_watchdog_tick(ifp); 819 if (ok) 820 callout_schedule(&sc->cemac_tick_ch, hz); 821 822 mutex_exit(sc->sc_intr_lock); 823 } 824 825 826 static int 827 cemac_ifioctl(struct ifnet *ifp, u_long cmd, void *data) 828 { 829 struct cemac_softc * const sc = ifp->if_softc; 830 int error; 831 832 switch (cmd) { 833 case SIOCADDMULTI: 834 case SIOCDELMULTI: 835 break; 836 default: 837 KASSERT(IFNET_LOCKED(ifp)); 838 } 839 840 const int s = splnet(); 841 error = ether_ioctl(ifp, cmd, data); 842 splx(s); 843 844 if (error == ENETRESET) { 845 error = 0; 846 847 if (cmd == SIOCADDMULTI || cmd == SIOCDELMULTI) { 848 mutex_enter(sc->sc_mcast_lock); 849 if ((sc->sc_if_flags & IFF_RUNNING) != 0) 850 cemac_setaddr(ifp); 851 852 mutex_exit(sc->sc_mcast_lock); 853 } 854 } 855 856 return error; 857 } 858 859 860 861 static void 862 cemac_ifstart(struct ifnet *ifp) 863 { 864 struct cemac_softc * const sc = ifp->if_softc; 865 KASSERT(if_is_mpsafe(ifp)); 866 867 mutex_enter(sc->sc_intr_lock); 868 if (!sc->sc_stopping) { 869 cemac_ifstart_locked(ifp); 870 } 871 mutex_exit(sc->sc_intr_lock); 872 } 873 874 static void 875 cemac_ifstart_locked(struct ifnet *ifp) 876 { 877 struct cemac_softc * const sc = ifp->if_softc; 878 struct mbuf *m; 879 bus_dma_segment_t *segs; 880 int bi, err, nsegs; 881 882 KASSERT(mutex_owned(sc->sc_intr_lock)); 883 884 start: 885 if (cemac_gctx(sc) == 0) { 886 /* Enable transmit-buffer-free interrupt */ 887 CEMAC_WRITE(ETH_IER, ETH_ISR_TBRE); 888 sc->sc_txbusy = true; 889 return; 890 } 891 892 IFQ_POLL(&ifp->if_snd, m); 893 if (m == NULL) { 894 return; 895 } 896 897 bi = (sc->txqi + sc->txqc) % TX_QLEN; 898 if ((err = bus_dmamap_load_mbuf(sc->sc_dmat, sc->txq[bi].m_dmamap, m, 899 BUS_DMA_NOWAIT)) || 900 sc->txq[bi].m_dmamap->dm_segs[0].ds_addr & 0x3 || 901 sc->txq[bi].m_dmamap->dm_nsegs > 1) { 902 /* Copy entire mbuf chain to new single */ 903 struct mbuf *mn; 904 905 if (err == 0) 906 bus_dmamap_unload(sc->sc_dmat, sc->txq[bi].m_dmamap); 907 908 MGETHDR(mn, M_DONTWAIT, MT_DATA); 909 if (mn == NULL) 910 return; 911 if (m->m_pkthdr.len > MHLEN) { 912 MCLGET(mn, M_DONTWAIT); 913 if ((mn->m_flags & M_EXT) == 0) { 914 m_freem(mn); 915 return; 916 } 917 } 918 m_copydata(m, 0, m->m_pkthdr.len, mtod(mn, void *)); 919 mn->m_pkthdr.len = mn->m_len = m->m_pkthdr.len; 920 IFQ_DEQUEUE(&ifp->if_snd, m); 921 m_freem(m); 922 m = mn; 923 bus_dmamap_load_mbuf(sc->sc_dmat, sc->txq[bi].m_dmamap, m, 924 BUS_DMA_NOWAIT); 925 } else { 926 IFQ_DEQUEUE(&ifp->if_snd, m); 927 } 928 929 bpf_mtap(ifp, m, BPF_D_OUT); 930 931 nsegs = sc->txq[bi].m_dmamap->dm_nsegs; 932 segs = sc->txq[bi].m_dmamap->dm_segs; 933 if (nsegs > 1) 934 panic("#### ARGH #2"); 935 936 sc->txq[bi].m = m; 937 sc->txqc++; 938 939 DPRINTFN(2,("%s: start sending idx #%i mbuf %p (txqc=%i, phys %p), " 940 "len=%u\n", __FUNCTION__, bi, sc->txq[bi].m, sc->txqc, 941 (void *)segs->ds_addr, (unsigned)m->m_pkthdr.len)); 942 #ifdef DIAGNOSTIC 943 if (sc->txqc > TX_QLEN) 944 panic("%s: txqc %i > %i", __FUNCTION__, sc->txqc, TX_QLEN); 945 #endif 946 947 bus_dmamap_sync(sc->sc_dmat, sc->txq[bi].m_dmamap, 0, 948 sc->txq[bi].m_dmamap->dm_mapsize, BUS_DMASYNC_PREWRITE); 949 950 if (ISSET(sc->cemac_flags, CEMAC_FLAG_GEM)) { 951 sc->TDSC[bi].Addr = segs->ds_addr; 952 sc->TDSC[bi].Info = 953 __SHIFTIN(m->m_pkthdr.len, ETH_TDSC_I_LEN) | 954 ETH_TDSC_I_LAST_BUF | 955 (bi == (TX_QLEN - 1) ? ETH_TDSC_I_WRAP : 0); 956 957 DPRINTFN(3,("%s: TDSC[%i].Addr 0x%08x\n", 958 __FUNCTION__, bi, sc->TDSC[bi].Addr)); 959 DPRINTFN(3,("%s: TDSC[%i].Info 0x%08x\n", 960 __FUNCTION__, bi, sc->TDSC[bi].Info)); 961 962 uint32_t ctl = CEMAC_READ(ETH_CTL) | GEM_CTL_STARTTX; 963 CEMAC_WRITE(ETH_CTL, ctl); 964 DPRINTFN(3,("%s: ETH_CTL 0x%08x\n", __FUNCTION__, 965 CEMAC_READ(ETH_CTL))); 966 } else { 967 CEMAC_WRITE(ETH_TAR, segs->ds_addr); 968 CEMAC_WRITE(ETH_TCR, m->m_pkthdr.len); 969 } 970 sc->sc_tx_lastsent = time_uptime; 971 972 if (IFQ_IS_EMPTY(&ifp->if_snd) == 0) 973 goto start; 974 975 return; 976 } 977 978 static void 979 cemac_ifwatchdog(struct ifnet *ifp) 980 { 981 struct cemac_softc * const sc = ifp->if_softc; 982 983 if ((ifp->if_flags & IFF_RUNNING) == 0) 984 return; 985 aprint_error_ifnet(ifp, "device timeout, CTL = 0x%08x, CFG = 0x%08x\n", 986 CEMAC_READ(ETH_CTL), CEMAC_READ(ETH_CFG)); 987 } 988 989 static int 990 cemac_ifinit(struct ifnet *ifp) 991 { 992 struct cemac_softc * const sc = ifp->if_softc; 993 uint32_t dma, cfg; 994 995 ASSERT_SLEEPABLE(); 996 KASSERT(IFNET_LOCKED(ifp)); 997 998 /* Cancel pending I/O and flush buffers. */ 999 cemac_ifstop(ifp, 0); 1000 1001 if (ISSET(sc->cemac_flags, CEMAC_FLAG_GEM)) { 1002 1003 if (ifp->if_capenable & 1004 (IFCAP_CSUM_IPv4_Tx | 1005 IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_UDPv4_Tx | 1006 IFCAP_CSUM_TCPv6_Tx | IFCAP_CSUM_UDPv6_Tx)) { 1007 dma = CEMAC_READ(GEM_DMA_CFG); 1008 dma |= GEM_DMA_CFG_CHKSUM_GEN_OFFLOAD_EN; 1009 CEMAC_WRITE(GEM_DMA_CFG, dma); 1010 } 1011 if (ifp->if_capenable & 1012 (IFCAP_CSUM_IPv4_Rx | 1013 IFCAP_CSUM_TCPv4_Rx | IFCAP_CSUM_UDPv4_Rx | 1014 IFCAP_CSUM_TCPv6_Rx | IFCAP_CSUM_UDPv6_Rx)) { 1015 cfg = CEMAC_READ(ETH_CFG); 1016 cfg |= GEM_CFG_RXCOEN; 1017 CEMAC_WRITE(ETH_CFG, cfg); 1018 } 1019 } 1020 1021 // enable interrupts 1022 CEMAC_WRITE(ETH_IDR, -1); 1023 CEMAC_WRITE(ETH_IER, ETH_ISR_RCOM | ETH_ISR_TBRE | ETH_ISR_TIDLE 1024 | ETH_ISR_RBNA | ETH_ISR_ROVR | ETH_ISR_TCOM); 1025 1026 // enable transmitter / receiver 1027 CEMAC_WRITE(ETH_CTL, ETH_CTL_TE | ETH_CTL_RE | ETH_CTL_ISR 1028 | ETH_CTL_CSR | ETH_CTL_MPE); 1029 1030 mii_mediachg(&sc->sc_mii); 1031 callout_reset(&sc->cemac_tick_ch, hz, cemac_tick, sc); 1032 ifp->if_flags |= IFF_RUNNING; 1033 1034 mutex_enter(sc->sc_intr_lock); 1035 sc->sc_stopping = false; 1036 mutex_exit(sc->sc_intr_lock); 1037 1038 return 0; 1039 } 1040 1041 static void 1042 cemac_ifstop(struct ifnet *ifp, int disable) 1043 { 1044 // uint32_t u; 1045 struct cemac_softc * const sc = ifp->if_softc; 1046 1047 ASSERT_SLEEPABLE(); 1048 KASSERT(IFNET_LOCKED(ifp)); 1049 1050 ifp->if_flags &= ~IFF_RUNNING; 1051 1052 mutex_enter(sc->sc_mcast_lock); 1053 sc->sc_if_flags = ifp->if_flags; 1054 mutex_exit(sc->sc_mcast_lock); 1055 1056 mutex_enter(sc->sc_intr_lock); 1057 sc->sc_stopping = true; 1058 mutex_exit(sc->sc_intr_lock); 1059 1060 #if 0 1061 CEMAC_WRITE(ETH_CTL, ETH_CTL_MPE); // disable everything 1062 CEMAC_WRITE(ETH_IDR, -1); // disable interrupts 1063 // CEMAC_WRITE(ETH_RBQP, 0); // clear receive 1064 if (ISSET(sc->cemac_flags, CEMAC_FLAG_GEM)) 1065 CEMAC_WRITE(ETH_CFG, 1066 GEM_CFG_CLK_64 | ETH_CFG_SPD | ETH_CFG_FD | ETH_CFG_BIG); 1067 else 1068 CEMAC_WRITE(ETH_CFG, 1069 ETH_CFG_CLK_32 | ETH_CFG_SPD | ETH_CFG_FD | ETH_CFG_BIG); 1070 // CEMAC_WRITE(ETH_TCR, 0); // send nothing 1071 // (void)CEMAC_READ(ETH_ISR); 1072 u = CEMAC_READ(ETH_TSR); 1073 CEMAC_WRITE(ETH_TSR, (u & (ETH_TSR_UND | ETH_TSR_COMP | ETH_TSR_BNQ 1074 | ETH_TSR_IDLE | ETH_TSR_RLE 1075 | ETH_TSR_COL | ETH_TSR_OVR))); 1076 u = CEMAC_READ(ETH_RSR); 1077 CEMAC_WRITE(ETH_RSR, (u & (ETH_RSR_OVR | ETH_RSR_REC | ETH_RSR_BNA))); 1078 #endif 1079 callout_halt(&sc->cemac_tick_ch, NULL); 1080 1081 /* Down the MII. */ 1082 mii_down(&sc->sc_mii); 1083 1084 ifp->if_flags &= ~IFF_RUNNING; 1085 sc->sc_txbusy = false; 1086 sc->sc_mii.mii_media_status &= ~IFM_ACTIVE; 1087 } 1088 1089 static void 1090 cemac_setaddr(struct ifnet *ifp) 1091 { 1092 struct cemac_softc * const sc = ifp->if_softc; 1093 struct ethercom *ec = &sc->sc_ethercom; 1094 struct ether_multi *enm; 1095 struct ether_multistep step; 1096 uint8_t ias[3][ETHER_ADDR_LEN]; 1097 uint32_t h, nma = 0, hashes[2] = { 0, 0 }; 1098 uint32_t ctl = CEMAC_READ(ETH_CTL); 1099 uint32_t cfg = CEMAC_READ(ETH_CFG); 1100 1101 KASSERT(mutex_owned(sc->sc_mcast_lock)); 1102 1103 /* disable receiver temporarily */ 1104 CEMAC_WRITE(ETH_CTL, ctl & ~ETH_CTL_RE); 1105 1106 cfg &= ~(ETH_CFG_MTI | ETH_CFG_UNI | ETH_CFG_CAF | ETH_CFG_UNI); 1107 1108 if (sc->sc_if_flags & IFF_PROMISC) { 1109 cfg |= ETH_CFG_CAF; 1110 } else { 1111 cfg &= ~ETH_CFG_CAF; 1112 } 1113 1114 // ETH_CFG_BIG? 1115 1116 ETHER_LOCK(ec); 1117 ec->ec_flags &= ~ETHER_F_ALLMULTI; 1118 1119 ETHER_FIRST_MULTI(step, ec, enm); 1120 while (enm != NULL) { 1121 if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) { 1122 /* 1123 * We must listen to a range of multicast addresses. 1124 * For now, just accept all multicasts, rather than 1125 * trying to set only those filter bits needed to match 1126 * the range. (At this time, the only use of address 1127 * ranges is for IP multicast routing, for which the 1128 * range is big enough to require all bits set.) 1129 */ 1130 cfg |= ETH_CFG_MTI; 1131 hashes[0] = 0xffffffffUL; 1132 hashes[1] = 0xffffffffUL; 1133 nma = 0; 1134 ec->ec_flags |= ETHER_F_ALLMULTI; 1135 break; 1136 } 1137 1138 if (nma < 3) { 1139 /* We can program 3 perfect address filters for mcast */ 1140 memcpy(ias[nma], enm->enm_addrlo, ETHER_ADDR_LEN); 1141 } else { 1142 /* 1143 * XXX: Datasheet is not very clear here, I'm not sure 1144 * if I'm doing this right. --joff 1145 */ 1146 h = ether_crc32_le(enm->enm_addrlo, ETHER_ADDR_LEN); 1147 1148 /* Just want the 6 most-significant bits. */ 1149 h = h >> 26; 1150 #if 0 1151 hashes[h / 32] |= (1 << (h % 32)); 1152 #else 1153 hashes[0] = 0xffffffffUL; 1154 hashes[1] = 0xffffffffUL; 1155 #endif 1156 cfg |= ETH_CFG_MTI; 1157 } 1158 ETHER_NEXT_MULTI(step, enm); 1159 nma++; 1160 } 1161 ETHER_UNLOCK(ec); 1162 1163 // program... 1164 DPRINTFN(1,("%s: en0 %02x:%02x:%02x:%02x:%02x:%02x\n", __FUNCTION__, 1165 sc->sc_enaddr[0], sc->sc_enaddr[1], sc->sc_enaddr[2], 1166 sc->sc_enaddr[3], sc->sc_enaddr[4], sc->sc_enaddr[5])); 1167 CEMAC_GEM_WRITE(SA1L, (sc->sc_enaddr[3] << 24) 1168 | (sc->sc_enaddr[2] << 16) | (sc->sc_enaddr[1] << 8) 1169 | (sc->sc_enaddr[0])); 1170 CEMAC_GEM_WRITE(SA1H, (sc->sc_enaddr[5] << 8) 1171 | (sc->sc_enaddr[4])); 1172 if (nma > 0) { 1173 DPRINTFN(1,("%s: en1 %02x:%02x:%02x:%02x:%02x:%02x\n", 1174 __FUNCTION__, 1175 ias[0][0], ias[0][1], ias[0][2], 1176 ias[0][3], ias[0][4], ias[0][5])); 1177 CEMAC_WRITE(ETH_SA2L, (ias[0][3] << 24) 1178 | (ias[0][2] << 16) | (ias[0][1] << 8) 1179 | (ias[0][0])); 1180 CEMAC_WRITE(ETH_SA2H, (ias[0][4] << 8) 1181 | (ias[0][5])); 1182 } 1183 if (nma > 1) { 1184 DPRINTFN(1,("%s: en2 %02x:%02x:%02x:%02x:%02x:%02x\n", 1185 __FUNCTION__, 1186 ias[1][0], ias[1][1], ias[1][2], 1187 ias[1][3], ias[1][4], ias[1][5])); 1188 CEMAC_WRITE(ETH_SA3L, (ias[1][3] << 24) 1189 | (ias[1][2] << 16) | (ias[1][1] << 8) 1190 | (ias[1][0])); 1191 CEMAC_WRITE(ETH_SA3H, (ias[1][4] << 8) 1192 | (ias[1][5])); 1193 } 1194 if (nma > 2) { 1195 DPRINTFN(1,("%s: en3 %02x:%02x:%02x:%02x:%02x:%02x\n", 1196 __FUNCTION__, 1197 ias[2][0], ias[2][1], ias[2][2], 1198 ias[2][3], ias[2][4], ias[2][5])); 1199 CEMAC_WRITE(ETH_SA4L, (ias[2][3] << 24) 1200 | (ias[2][2] << 16) | (ias[2][1] << 8) 1201 | (ias[2][0])); 1202 CEMAC_WRITE(ETH_SA4H, (ias[2][4] << 8) 1203 | (ias[2][5])); 1204 } 1205 CEMAC_GEM_WRITE(HSH, hashes[0]); 1206 CEMAC_GEM_WRITE(HSL, hashes[1]); 1207 CEMAC_WRITE(ETH_CFG, cfg); 1208 CEMAC_WRITE(ETH_CTL, ctl | ETH_CTL_RE); 1209 } 1210