xref: /netbsd-src/external/gpl3/gcc/dist/gcc/combine.cc (revision 0a3071956a3a9fdebdbf7f338cf2d439b45fc728)
1 /* Optimize by combining instructions for GNU compiler.
2    Copyright (C) 1987-2022 Free Software Foundation, Inc.
3 
4 This file is part of GCC.
5 
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
10 
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
14 for more details.
15 
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3.  If not see
18 <http://www.gnu.org/licenses/>.  */
19 
20 /* This module is essentially the "combiner" phase of the U. of Arizona
21    Portable Optimizer, but redone to work on our list-structured
22    representation for RTL instead of their string representation.
23 
24    The LOG_LINKS of each insn identify the most recent assignment
25    to each REG used in the insn.  It is a list of previous insns,
26    each of which contains a SET for a REG that is used in this insn
27    and not used or set in between.  LOG_LINKs never cross basic blocks.
28    They were set up by the preceding pass (lifetime analysis).
29 
30    We try to combine each pair of insns joined by a logical link.
31    We also try to combine triplets of insns A, B and C when C has
32    a link back to B and B has a link back to A.  Likewise for a
33    small number of quadruplets of insns A, B, C and D for which
34    there's high likelihood of success.
35 
36    We check (with modified_between_p) to avoid combining in such a way
37    as to move a computation to a place where its value would be different.
38 
39    Combination is done by mathematically substituting the previous
40    insn(s) values for the regs they set into the expressions in
41    the later insns that refer to these regs.  If the result is a valid insn
42    for our target machine, according to the machine description,
43    we install it, delete the earlier insns, and update the data flow
44    information (LOG_LINKS and REG_NOTES) for what we did.
45 
46    There are a few exceptions where the dataflow information isn't
47    completely updated (however this is only a local issue since it is
48    regenerated before the next pass that uses it):
49 
50    - reg_live_length is not updated
51    - reg_n_refs is not adjusted in the rare case when a register is
52      no longer required in a computation
53    - there are extremely rare cases (see distribute_notes) when a
54      REG_DEAD note is lost
55    - a LOG_LINKS entry that refers to an insn with multiple SETs may be
56      removed because there is no way to know which register it was
57      linking
58 
59    To simplify substitution, we combine only when the earlier insn(s)
60    consist of only a single assignment.  To simplify updating afterward,
61    we never combine when a subroutine call appears in the middle.  */
62 
63 #include "config.h"
64 #include "system.h"
65 #include "coretypes.h"
66 #include "backend.h"
67 #include "target.h"
68 #include "rtl.h"
69 #include "tree.h"
70 #include "cfghooks.h"
71 #include "predict.h"
72 #include "df.h"
73 #include "memmodel.h"
74 #include "tm_p.h"
75 #include "optabs.h"
76 #include "regs.h"
77 #include "emit-rtl.h"
78 #include "recog.h"
79 #include "cgraph.h"
80 #include "stor-layout.h"
81 #include "cfgrtl.h"
82 #include "cfgcleanup.h"
83 /* Include expr.h after insn-config.h so we get HAVE_conditional_move.  */
84 #include "explow.h"
85 #include "insn-attr.h"
86 #include "rtlhooks-def.h"
87 #include "expr.h"
88 #include "tree-pass.h"
89 #include "valtrack.h"
90 #include "rtl-iter.h"
91 #include "print-rtl.h"
92 #include "function-abi.h"
93 #include "rtlanal.h"
94 
95 /* Number of attempts to combine instructions in this function.  */
96 
97 static int combine_attempts;
98 
99 /* Number of attempts that got as far as substitution in this function.  */
100 
101 static int combine_merges;
102 
103 /* Number of instructions combined with added SETs in this function.  */
104 
105 static int combine_extras;
106 
107 /* Number of instructions combined in this function.  */
108 
109 static int combine_successes;
110 
111 /* Totals over entire compilation.  */
112 
113 static int total_attempts, total_merges, total_extras, total_successes;
114 
115 /* combine_instructions may try to replace the right hand side of the
116    second instruction with the value of an associated REG_EQUAL note
117    before throwing it at try_combine.  That is problematic when there
118    is a REG_DEAD note for a register used in the old right hand side
119    and can cause distribute_notes to do wrong things.  This is the
120    second instruction if it has been so modified, null otherwise.  */
121 
122 static rtx_insn *i2mod;
123 
124 /* When I2MOD is nonnull, this is a copy of the old right hand side.  */
125 
126 static rtx i2mod_old_rhs;
127 
128 /* When I2MOD is nonnull, this is a copy of the new right hand side.  */
129 
130 static rtx i2mod_new_rhs;
131 
132 struct reg_stat_type {
133   /* Record last point of death of (hard or pseudo) register n.  */
134   rtx_insn			*last_death;
135 
136   /* Record last point of modification of (hard or pseudo) register n.  */
137   rtx_insn			*last_set;
138 
139   /* The next group of fields allows the recording of the last value assigned
140      to (hard or pseudo) register n.  We use this information to see if an
141      operation being processed is redundant given a prior operation performed
142      on the register.  For example, an `and' with a constant is redundant if
143      all the zero bits are already known to be turned off.
144 
145      We use an approach similar to that used by cse, but change it in the
146      following ways:
147 
148      (1) We do not want to reinitialize at each label.
149      (2) It is useful, but not critical, to know the actual value assigned
150 	 to a register.  Often just its form is helpful.
151 
152      Therefore, we maintain the following fields:
153 
154      last_set_value		the last value assigned
155      last_set_label		records the value of label_tick when the
156 				register was assigned
157      last_set_table_tick	records the value of label_tick when a
158 				value using the register is assigned
159      last_set_invalid		set to nonzero when it is not valid
160 				to use the value of this register in some
161 				register's value
162 
163      To understand the usage of these tables, it is important to understand
164      the distinction between the value in last_set_value being valid and
165      the register being validly contained in some other expression in the
166      table.
167 
168      (The next two parameters are out of date).
169 
170      reg_stat[i].last_set_value is valid if it is nonzero, and either
171      reg_n_sets[i] is 1 or reg_stat[i].last_set_label == label_tick.
172 
173      Register I may validly appear in any expression returned for the value
174      of another register if reg_n_sets[i] is 1.  It may also appear in the
175      value for register J if reg_stat[j].last_set_invalid is zero, or
176      reg_stat[i].last_set_label < reg_stat[j].last_set_label.
177 
178      If an expression is found in the table containing a register which may
179      not validly appear in an expression, the register is replaced by
180      something that won't match, (clobber (const_int 0)).  */
181 
182   /* Record last value assigned to (hard or pseudo) register n.  */
183 
184   rtx				last_set_value;
185 
186   /* Record the value of label_tick when an expression involving register n
187      is placed in last_set_value.  */
188 
189   int				last_set_table_tick;
190 
191   /* Record the value of label_tick when the value for register n is placed in
192      last_set_value.  */
193 
194   int				last_set_label;
195 
196   /* These fields are maintained in parallel with last_set_value and are
197      used to store the mode in which the register was last set, the bits
198      that were known to be zero when it was last set, and the number of
199      sign bits copies it was known to have when it was last set.  */
200 
201   unsigned HOST_WIDE_INT	last_set_nonzero_bits;
202   char				last_set_sign_bit_copies;
203   ENUM_BITFIELD(machine_mode)	last_set_mode : 8;
204 
205   /* Set nonzero if references to register n in expressions should not be
206      used.  last_set_invalid is set nonzero when this register is being
207      assigned to and last_set_table_tick == label_tick.  */
208 
209   char				last_set_invalid;
210 
211   /* Some registers that are set more than once and used in more than one
212      basic block are nevertheless always set in similar ways.  For example,
213      a QImode register may be loaded from memory in two places on a machine
214      where byte loads zero extend.
215 
216      We record in the following fields if a register has some leading bits
217      that are always equal to the sign bit, and what we know about the
218      nonzero bits of a register, specifically which bits are known to be
219      zero.
220 
221      If an entry is zero, it means that we don't know anything special.  */
222 
223   unsigned char			sign_bit_copies;
224 
225   unsigned HOST_WIDE_INT	nonzero_bits;
226 
227   /* Record the value of the label_tick when the last truncation
228      happened.  The field truncated_to_mode is only valid if
229      truncation_label == label_tick.  */
230 
231   int				truncation_label;
232 
233   /* Record the last truncation seen for this register.  If truncation
234      is not a nop to this mode we might be able to save an explicit
235      truncation if we know that value already contains a truncated
236      value.  */
237 
238   ENUM_BITFIELD(machine_mode)	truncated_to_mode : 8;
239 };
240 
241 
242 static vec<reg_stat_type> reg_stat;
243 
244 /* One plus the highest pseudo for which we track REG_N_SETS.
245    regstat_init_n_sets_and_refs allocates the array for REG_N_SETS just once,
246    but during combine_split_insns new pseudos can be created.  As we don't have
247    updated DF information in that case, it is hard to initialize the array
248    after growing.  The combiner only cares about REG_N_SETS (regno) == 1,
249    so instead of growing the arrays, just assume all newly created pseudos
250    during combine might be set multiple times.  */
251 
252 static unsigned int reg_n_sets_max;
253 
254 /* Record the luid of the last insn that invalidated memory
255    (anything that writes memory, and subroutine calls, but not pushes).  */
256 
257 static int mem_last_set;
258 
259 /* Record the luid of the last CALL_INSN
260    so we can tell whether a potential combination crosses any calls.  */
261 
262 static int last_call_luid;
263 
264 /* When `subst' is called, this is the insn that is being modified
265    (by combining in a previous insn).  The PATTERN of this insn
266    is still the old pattern partially modified and it should not be
267    looked at, but this may be used to examine the successors of the insn
268    to judge whether a simplification is valid.  */
269 
270 static rtx_insn *subst_insn;
271 
272 /* This is the lowest LUID that `subst' is currently dealing with.
273    get_last_value will not return a value if the register was set at or
274    after this LUID.  If not for this mechanism, we could get confused if
275    I2 or I1 in try_combine were an insn that used the old value of a register
276    to obtain a new value.  In that case, we might erroneously get the
277    new value of the register when we wanted the old one.  */
278 
279 static int subst_low_luid;
280 
281 /* This contains any hard registers that are used in newpat; reg_dead_at_p
282    must consider all these registers to be always live.  */
283 
284 static HARD_REG_SET newpat_used_regs;
285 
286 /* This is an insn to which a LOG_LINKS entry has been added.  If this
287    insn is the earlier than I2 or I3, combine should rescan starting at
288    that location.  */
289 
290 static rtx_insn *added_links_insn;
291 
292 /* And similarly, for notes.  */
293 
294 static rtx_insn *added_notes_insn;
295 
296 /* Basic block in which we are performing combines.  */
297 static basic_block this_basic_block;
298 static bool optimize_this_for_speed_p;
299 
300 
301 /* Length of the currently allocated uid_insn_cost array.  */
302 
303 static int max_uid_known;
304 
305 /* The following array records the insn_cost for every insn
306    in the instruction stream.  */
307 
308 static int *uid_insn_cost;
309 
310 /* The following array records the LOG_LINKS for every insn in the
311    instruction stream as struct insn_link pointers.  */
312 
313 struct insn_link {
314   rtx_insn *insn;
315   unsigned int regno;
316   struct insn_link *next;
317 };
318 
319 static struct insn_link **uid_log_links;
320 
321 static inline int
insn_uid_check(const_rtx insn)322 insn_uid_check (const_rtx insn)
323 {
324   int uid = INSN_UID (insn);
325   gcc_checking_assert (uid <= max_uid_known);
326   return uid;
327 }
328 
329 #define INSN_COST(INSN)		(uid_insn_cost[insn_uid_check (INSN)])
330 #define LOG_LINKS(INSN)		(uid_log_links[insn_uid_check (INSN)])
331 
332 #define FOR_EACH_LOG_LINK(L, INSN)				\
333   for ((L) = LOG_LINKS (INSN); (L); (L) = (L)->next)
334 
335 /* Links for LOG_LINKS are allocated from this obstack.  */
336 
337 static struct obstack insn_link_obstack;
338 
339 /* Allocate a link.  */
340 
341 static inline struct insn_link *
alloc_insn_link(rtx_insn * insn,unsigned int regno,struct insn_link * next)342 alloc_insn_link (rtx_insn *insn, unsigned int regno, struct insn_link *next)
343 {
344   struct insn_link *l
345     = (struct insn_link *) obstack_alloc (&insn_link_obstack,
346 					  sizeof (struct insn_link));
347   l->insn = insn;
348   l->regno = regno;
349   l->next = next;
350   return l;
351 }
352 
353 /* Incremented for each basic block.  */
354 
355 static int label_tick;
356 
357 /* Reset to label_tick for each extended basic block in scanning order.  */
358 
359 static int label_tick_ebb_start;
360 
361 /* Mode used to compute significance in reg_stat[].nonzero_bits.  It is the
362    largest integer mode that can fit in HOST_BITS_PER_WIDE_INT.  */
363 
364 static scalar_int_mode nonzero_bits_mode;
365 
366 /* Nonzero when reg_stat[].nonzero_bits and reg_stat[].sign_bit_copies can
367    be safely used.  It is zero while computing them and after combine has
368    completed.  This former test prevents propagating values based on
369    previously set values, which can be incorrect if a variable is modified
370    in a loop.  */
371 
372 static int nonzero_sign_valid;
373 
374 
375 /* Record one modification to rtl structure
376    to be undone by storing old_contents into *where.  */
377 
378 enum undo_kind { UNDO_RTX, UNDO_INT, UNDO_MODE, UNDO_LINKS };
379 
380 struct undo
381 {
382   struct undo *next;
383   enum undo_kind kind;
384   union { rtx r; int i; machine_mode m; struct insn_link *l; } old_contents;
385   union { rtx *r; int *i; int regno; struct insn_link **l; } where;
386 };
387 
388 /* Record a bunch of changes to be undone, up to MAX_UNDO of them.
389    num_undo says how many are currently recorded.
390 
391    other_insn is nonzero if we have modified some other insn in the process
392    of working on subst_insn.  It must be verified too.  */
393 
394 struct undobuf
395 {
396   struct undo *undos;
397   struct undo *frees;
398   rtx_insn *other_insn;
399 };
400 
401 static struct undobuf undobuf;
402 
403 /* Number of times the pseudo being substituted for
404    was found and replaced.  */
405 
406 static int n_occurrences;
407 
408 static rtx reg_nonzero_bits_for_combine (const_rtx, scalar_int_mode,
409 					 scalar_int_mode,
410 					 unsigned HOST_WIDE_INT *);
411 static rtx reg_num_sign_bit_copies_for_combine (const_rtx, scalar_int_mode,
412 						scalar_int_mode,
413 						unsigned int *);
414 static void do_SUBST (rtx *, rtx);
415 static void do_SUBST_INT (int *, int);
416 static void init_reg_last (void);
417 static void setup_incoming_promotions (rtx_insn *);
418 static void set_nonzero_bits_and_sign_copies (rtx, const_rtx, void *);
419 static int cant_combine_insn_p (rtx_insn *);
420 static int can_combine_p (rtx_insn *, rtx_insn *, rtx_insn *, rtx_insn *,
421 			  rtx_insn *, rtx_insn *, rtx *, rtx *);
422 static int combinable_i3pat (rtx_insn *, rtx *, rtx, rtx, rtx, int, int, rtx *);
423 static int contains_muldiv (rtx);
424 static rtx_insn *try_combine (rtx_insn *, rtx_insn *, rtx_insn *, rtx_insn *,
425 			      int *, rtx_insn *);
426 static void undo_all (void);
427 static void undo_commit (void);
428 static rtx *find_split_point (rtx *, rtx_insn *, bool);
429 static rtx subst (rtx, rtx, rtx, int, int, int);
430 static rtx combine_simplify_rtx (rtx, machine_mode, int, int);
431 static rtx simplify_if_then_else (rtx);
432 static rtx simplify_set (rtx);
433 static rtx simplify_logical (rtx);
434 static rtx expand_compound_operation (rtx);
435 static const_rtx expand_field_assignment (const_rtx);
436 static rtx make_extraction (machine_mode, rtx, HOST_WIDE_INT,
437 			    rtx, unsigned HOST_WIDE_INT, int, int, int);
438 static int get_pos_from_mask (unsigned HOST_WIDE_INT,
439 			      unsigned HOST_WIDE_INT *);
440 static rtx canon_reg_for_combine (rtx, rtx);
441 static rtx force_int_to_mode (rtx, scalar_int_mode, scalar_int_mode,
442 			      scalar_int_mode, unsigned HOST_WIDE_INT, int);
443 static rtx force_to_mode (rtx, machine_mode,
444 			  unsigned HOST_WIDE_INT, int);
445 static rtx if_then_else_cond (rtx, rtx *, rtx *);
446 static rtx known_cond (rtx, enum rtx_code, rtx, rtx);
447 static int rtx_equal_for_field_assignment_p (rtx, rtx, bool = false);
448 static rtx make_field_assignment (rtx);
449 static rtx apply_distributive_law (rtx);
450 static rtx distribute_and_simplify_rtx (rtx, int);
451 static rtx simplify_and_const_int_1 (scalar_int_mode, rtx,
452 				     unsigned HOST_WIDE_INT);
453 static rtx simplify_and_const_int (rtx, scalar_int_mode, rtx,
454 				   unsigned HOST_WIDE_INT);
455 static int merge_outer_ops (enum rtx_code *, HOST_WIDE_INT *, enum rtx_code,
456 			    HOST_WIDE_INT, machine_mode, int *);
457 static rtx simplify_shift_const_1 (enum rtx_code, machine_mode, rtx, int);
458 static rtx simplify_shift_const (rtx, enum rtx_code, machine_mode, rtx,
459 				 int);
460 static int recog_for_combine (rtx *, rtx_insn *, rtx *);
461 static rtx gen_lowpart_for_combine (machine_mode, rtx);
462 static enum rtx_code simplify_compare_const (enum rtx_code, machine_mode,
463 					     rtx, rtx *);
464 static enum rtx_code simplify_comparison (enum rtx_code, rtx *, rtx *);
465 static void update_table_tick (rtx);
466 static void record_value_for_reg (rtx, rtx_insn *, rtx);
467 static void check_promoted_subreg (rtx_insn *, rtx);
468 static void record_dead_and_set_regs_1 (rtx, const_rtx, void *);
469 static void record_dead_and_set_regs (rtx_insn *);
470 static int get_last_value_validate (rtx *, rtx_insn *, int, int);
471 static rtx get_last_value (const_rtx);
472 static void reg_dead_at_p_1 (rtx, const_rtx, void *);
473 static int reg_dead_at_p (rtx, rtx_insn *);
474 static void move_deaths (rtx, rtx, int, rtx_insn *, rtx *);
475 static int reg_bitfield_target_p (rtx, rtx);
476 static void distribute_notes (rtx, rtx_insn *, rtx_insn *, rtx_insn *, rtx, rtx, rtx);
477 static void distribute_links (struct insn_link *);
478 static void mark_used_regs_combine (rtx);
479 static void record_promoted_value (rtx_insn *, rtx);
480 static bool unmentioned_reg_p (rtx, rtx);
481 static void record_truncated_values (rtx *, void *);
482 static bool reg_truncated_to_mode (machine_mode, const_rtx);
483 static rtx gen_lowpart_or_truncate (machine_mode, rtx);
484 
485 
486 /* It is not safe to use ordinary gen_lowpart in combine.
487    See comments in gen_lowpart_for_combine.  */
488 #undef RTL_HOOKS_GEN_LOWPART
489 #define RTL_HOOKS_GEN_LOWPART              gen_lowpart_for_combine
490 
491 /* Our implementation of gen_lowpart never emits a new pseudo.  */
492 #undef RTL_HOOKS_GEN_LOWPART_NO_EMIT
493 #define RTL_HOOKS_GEN_LOWPART_NO_EMIT      gen_lowpart_for_combine
494 
495 #undef RTL_HOOKS_REG_NONZERO_REG_BITS
496 #define RTL_HOOKS_REG_NONZERO_REG_BITS     reg_nonzero_bits_for_combine
497 
498 #undef RTL_HOOKS_REG_NUM_SIGN_BIT_COPIES
499 #define RTL_HOOKS_REG_NUM_SIGN_BIT_COPIES  reg_num_sign_bit_copies_for_combine
500 
501 #undef RTL_HOOKS_REG_TRUNCATED_TO_MODE
502 #define RTL_HOOKS_REG_TRUNCATED_TO_MODE    reg_truncated_to_mode
503 
504 static const struct rtl_hooks combine_rtl_hooks = RTL_HOOKS_INITIALIZER;
505 
506 
507 /* Convenience wrapper for the canonicalize_comparison target hook.
508    Target hooks cannot use enum rtx_code.  */
509 static inline void
target_canonicalize_comparison(enum rtx_code * code,rtx * op0,rtx * op1,bool op0_preserve_value)510 target_canonicalize_comparison (enum rtx_code *code, rtx *op0, rtx *op1,
511 				bool op0_preserve_value)
512 {
513   int code_int = (int)*code;
514   targetm.canonicalize_comparison (&code_int, op0, op1, op0_preserve_value);
515   *code = (enum rtx_code)code_int;
516 }
517 
518 /* Try to split PATTERN found in INSN.  This returns NULL_RTX if
519    PATTERN cannot be split.  Otherwise, it returns an insn sequence.
520    This is a wrapper around split_insns which ensures that the
521    reg_stat vector is made larger if the splitter creates a new
522    register.  */
523 
524 static rtx_insn *
combine_split_insns(rtx pattern,rtx_insn * insn)525 combine_split_insns (rtx pattern, rtx_insn *insn)
526 {
527   rtx_insn *ret;
528   unsigned int nregs;
529 
530   ret = split_insns (pattern, insn);
531   nregs = max_reg_num ();
532   if (nregs > reg_stat.length ())
533     reg_stat.safe_grow_cleared (nregs, true);
534   return ret;
535 }
536 
537 /* This is used by find_single_use to locate an rtx in LOC that
538    contains exactly one use of DEST, which is typically a REG.
539    It returns a pointer to the innermost rtx expression
540    containing DEST.  Appearances of DEST that are being used to
541    totally replace it are not counted.  */
542 
543 static rtx *
find_single_use_1(rtx dest,rtx * loc)544 find_single_use_1 (rtx dest, rtx *loc)
545 {
546   rtx x = *loc;
547   enum rtx_code code = GET_CODE (x);
548   rtx *result = NULL;
549   rtx *this_result;
550   int i;
551   const char *fmt;
552 
553   switch (code)
554     {
555     case CONST:
556     case LABEL_REF:
557     case SYMBOL_REF:
558     CASE_CONST_ANY:
559     case CLOBBER:
560       return 0;
561 
562     case SET:
563       /* If the destination is anything other than PC, a REG or a SUBREG
564 	 of a REG that occupies all of the REG, the insn uses DEST if
565 	 it is mentioned in the destination or the source.  Otherwise, we
566 	 need just check the source.  */
567       if (GET_CODE (SET_DEST (x)) != PC
568 	  && !REG_P (SET_DEST (x))
569 	  && ! (GET_CODE (SET_DEST (x)) == SUBREG
570 		&& REG_P (SUBREG_REG (SET_DEST (x)))
571 		&& !read_modify_subreg_p (SET_DEST (x))))
572 	break;
573 
574       return find_single_use_1 (dest, &SET_SRC (x));
575 
576     case MEM:
577     case SUBREG:
578       return find_single_use_1 (dest, &XEXP (x, 0));
579 
580     default:
581       break;
582     }
583 
584   /* If it wasn't one of the common cases above, check each expression and
585      vector of this code.  Look for a unique usage of DEST.  */
586 
587   fmt = GET_RTX_FORMAT (code);
588   for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
589     {
590       if (fmt[i] == 'e')
591 	{
592 	  if (dest == XEXP (x, i)
593 	      || (REG_P (dest) && REG_P (XEXP (x, i))
594 		  && REGNO (dest) == REGNO (XEXP (x, i))))
595 	    this_result = loc;
596 	  else
597 	    this_result = find_single_use_1 (dest, &XEXP (x, i));
598 
599 	  if (result == NULL)
600 	    result = this_result;
601 	  else if (this_result)
602 	    /* Duplicate usage.  */
603 	    return NULL;
604 	}
605       else if (fmt[i] == 'E')
606 	{
607 	  int j;
608 
609 	  for (j = XVECLEN (x, i) - 1; j >= 0; j--)
610 	    {
611 	      if (XVECEXP (x, i, j) == dest
612 		  || (REG_P (dest)
613 		      && REG_P (XVECEXP (x, i, j))
614 		      && REGNO (XVECEXP (x, i, j)) == REGNO (dest)))
615 		this_result = loc;
616 	      else
617 		this_result = find_single_use_1 (dest, &XVECEXP (x, i, j));
618 
619 	      if (result == NULL)
620 		result = this_result;
621 	      else if (this_result)
622 		return NULL;
623 	    }
624 	}
625     }
626 
627   return result;
628 }
629 
630 
631 /* See if DEST, produced in INSN, is used only a single time in the
632    sequel.  If so, return a pointer to the innermost rtx expression in which
633    it is used.
634 
635    If PLOC is nonzero, *PLOC is set to the insn containing the single use.
636 
637    Otherwise, we find the single use by finding an insn that has a
638    LOG_LINKS pointing at INSN and has a REG_DEAD note for DEST.  If DEST is
639    only referenced once in that insn, we know that it must be the first
640    and last insn referencing DEST.  */
641 
642 static rtx *
find_single_use(rtx dest,rtx_insn * insn,rtx_insn ** ploc)643 find_single_use (rtx dest, rtx_insn *insn, rtx_insn **ploc)
644 {
645   basic_block bb;
646   rtx_insn *next;
647   rtx *result;
648   struct insn_link *link;
649 
650   if (!REG_P (dest))
651     return 0;
652 
653   bb = BLOCK_FOR_INSN (insn);
654   for (next = NEXT_INSN (insn);
655        next && BLOCK_FOR_INSN (next) == bb;
656        next = NEXT_INSN (next))
657     if (NONDEBUG_INSN_P (next) && dead_or_set_p (next, dest))
658       {
659 	FOR_EACH_LOG_LINK (link, next)
660 	  if (link->insn == insn && link->regno == REGNO (dest))
661 	    break;
662 
663 	if (link)
664 	  {
665 	    result = find_single_use_1 (dest, &PATTERN (next));
666 	    if (ploc)
667 	      *ploc = next;
668 	    return result;
669 	  }
670       }
671 
672   return 0;
673 }
674 
675 /* Substitute NEWVAL, an rtx expression, into INTO, a place in some
676    insn.  The substitution can be undone by undo_all.  If INTO is already
677    set to NEWVAL, do not record this change.  Because computing NEWVAL might
678    also call SUBST, we have to compute it before we put anything into
679    the undo table.  */
680 
681 static void
do_SUBST(rtx * into,rtx newval)682 do_SUBST (rtx *into, rtx newval)
683 {
684   struct undo *buf;
685   rtx oldval = *into;
686 
687   if (oldval == newval)
688     return;
689 
690   /* We'd like to catch as many invalid transformations here as
691      possible.  Unfortunately, there are way too many mode changes
692      that are perfectly valid, so we'd waste too much effort for
693      little gain doing the checks here.  Focus on catching invalid
694      transformations involving integer constants.  */
695   if (GET_MODE_CLASS (GET_MODE (oldval)) == MODE_INT
696       && CONST_INT_P (newval))
697     {
698       /* Sanity check that we're replacing oldval with a CONST_INT
699 	 that is a valid sign-extension for the original mode.  */
700       gcc_assert (INTVAL (newval)
701 		  == trunc_int_for_mode (INTVAL (newval), GET_MODE (oldval)));
702 
703       /* Replacing the operand of a SUBREG or a ZERO_EXTEND with a
704 	 CONST_INT is not valid, because after the replacement, the
705 	 original mode would be gone.  Unfortunately, we can't tell
706 	 when do_SUBST is called to replace the operand thereof, so we
707 	 perform this test on oldval instead, checking whether an
708 	 invalid replacement took place before we got here.  */
709       gcc_assert (!(GET_CODE (oldval) == SUBREG
710 		    && CONST_INT_P (SUBREG_REG (oldval))));
711       gcc_assert (!(GET_CODE (oldval) == ZERO_EXTEND
712 		    && CONST_INT_P (XEXP (oldval, 0))));
713     }
714 
715   if (undobuf.frees)
716     buf = undobuf.frees, undobuf.frees = buf->next;
717   else
718     buf = XNEW (struct undo);
719 
720   buf->kind = UNDO_RTX;
721   buf->where.r = into;
722   buf->old_contents.r = oldval;
723   *into = newval;
724 
725   buf->next = undobuf.undos, undobuf.undos = buf;
726 }
727 
728 #define SUBST(INTO, NEWVAL)	do_SUBST (&(INTO), (NEWVAL))
729 
730 /* Similar to SUBST, but NEWVAL is an int expression.  Note that substitution
731    for the value of a HOST_WIDE_INT value (including CONST_INT) is
732    not safe.  */
733 
734 static void
do_SUBST_INT(int * into,int newval)735 do_SUBST_INT (int *into, int newval)
736 {
737   struct undo *buf;
738   int oldval = *into;
739 
740   if (oldval == newval)
741     return;
742 
743   if (undobuf.frees)
744     buf = undobuf.frees, undobuf.frees = buf->next;
745   else
746     buf = XNEW (struct undo);
747 
748   buf->kind = UNDO_INT;
749   buf->where.i = into;
750   buf->old_contents.i = oldval;
751   *into = newval;
752 
753   buf->next = undobuf.undos, undobuf.undos = buf;
754 }
755 
756 #define SUBST_INT(INTO, NEWVAL)  do_SUBST_INT (&(INTO), (NEWVAL))
757 
758 /* Similar to SUBST, but just substitute the mode.  This is used when
759    changing the mode of a pseudo-register, so that any other
760    references to the entry in the regno_reg_rtx array will change as
761    well.  */
762 
763 static void
subst_mode(int regno,machine_mode newval)764 subst_mode (int regno, machine_mode newval)
765 {
766   struct undo *buf;
767   rtx reg = regno_reg_rtx[regno];
768   machine_mode oldval = GET_MODE (reg);
769 
770   if (oldval == newval)
771     return;
772 
773   if (undobuf.frees)
774     buf = undobuf.frees, undobuf.frees = buf->next;
775   else
776     buf = XNEW (struct undo);
777 
778   buf->kind = UNDO_MODE;
779   buf->where.regno = regno;
780   buf->old_contents.m = oldval;
781   adjust_reg_mode (reg, newval);
782 
783   buf->next = undobuf.undos, undobuf.undos = buf;
784 }
785 
786 /* Similar to SUBST, but NEWVAL is a LOG_LINKS expression.  */
787 
788 static void
do_SUBST_LINK(struct insn_link ** into,struct insn_link * newval)789 do_SUBST_LINK (struct insn_link **into, struct insn_link *newval)
790 {
791   struct undo *buf;
792   struct insn_link * oldval = *into;
793 
794   if (oldval == newval)
795     return;
796 
797   if (undobuf.frees)
798     buf = undobuf.frees, undobuf.frees = buf->next;
799   else
800     buf = XNEW (struct undo);
801 
802   buf->kind = UNDO_LINKS;
803   buf->where.l = into;
804   buf->old_contents.l = oldval;
805   *into = newval;
806 
807   buf->next = undobuf.undos, undobuf.undos = buf;
808 }
809 
810 #define SUBST_LINK(oldval, newval) do_SUBST_LINK (&oldval, newval)
811 
812 /* Subroutine of try_combine.  Determine whether the replacement patterns
813    NEWPAT, NEWI2PAT and NEWOTHERPAT are cheaper according to insn_cost
814    than the original sequence I0, I1, I2, I3 and undobuf.other_insn.  Note
815    that I0, I1 and/or NEWI2PAT may be NULL_RTX.  Similarly, NEWOTHERPAT and
816    undobuf.other_insn may also both be NULL_RTX.  Return false if the cost
817    of all the instructions can be estimated and the replacements are more
818    expensive than the original sequence.  */
819 
820 static bool
combine_validate_cost(rtx_insn * i0,rtx_insn * i1,rtx_insn * i2,rtx_insn * i3,rtx newpat,rtx newi2pat,rtx newotherpat)821 combine_validate_cost (rtx_insn *i0, rtx_insn *i1, rtx_insn *i2, rtx_insn *i3,
822 		       rtx newpat, rtx newi2pat, rtx newotherpat)
823 {
824   int i0_cost, i1_cost, i2_cost, i3_cost;
825   int new_i2_cost, new_i3_cost;
826   int old_cost, new_cost;
827 
828   /* Lookup the original insn_costs.  */
829   i2_cost = INSN_COST (i2);
830   i3_cost = INSN_COST (i3);
831 
832   if (i1)
833     {
834       i1_cost = INSN_COST (i1);
835       if (i0)
836 	{
837 	  i0_cost = INSN_COST (i0);
838 	  old_cost = (i0_cost > 0 && i1_cost > 0 && i2_cost > 0 && i3_cost > 0
839 		      ? i0_cost + i1_cost + i2_cost + i3_cost : 0);
840 	}
841       else
842 	{
843 	  old_cost = (i1_cost > 0 && i2_cost > 0 && i3_cost > 0
844 		      ? i1_cost + i2_cost + i3_cost : 0);
845 	  i0_cost = 0;
846 	}
847     }
848   else
849     {
850       old_cost = (i2_cost > 0 && i3_cost > 0) ? i2_cost + i3_cost : 0;
851       i1_cost = i0_cost = 0;
852     }
853 
854   /* If we have split a PARALLEL I2 to I1,I2, we have counted its cost twice;
855      correct that.  */
856   if (old_cost && i1 && INSN_UID (i1) == INSN_UID (i2))
857     old_cost -= i1_cost;
858 
859 
860   /* Calculate the replacement insn_costs.  */
861   rtx tmp = PATTERN (i3);
862   PATTERN (i3) = newpat;
863   int tmpi = INSN_CODE (i3);
864   INSN_CODE (i3) = -1;
865   new_i3_cost = insn_cost (i3, optimize_this_for_speed_p);
866   PATTERN (i3) = tmp;
867   INSN_CODE (i3) = tmpi;
868   if (newi2pat)
869     {
870       tmp = PATTERN (i2);
871       PATTERN (i2) = newi2pat;
872       tmpi = INSN_CODE (i2);
873       INSN_CODE (i2) = -1;
874       new_i2_cost = insn_cost (i2, optimize_this_for_speed_p);
875       PATTERN (i2) = tmp;
876       INSN_CODE (i2) = tmpi;
877       new_cost = (new_i2_cost > 0 && new_i3_cost > 0)
878 		 ? new_i2_cost + new_i3_cost : 0;
879     }
880   else
881     {
882       new_cost = new_i3_cost;
883       new_i2_cost = 0;
884     }
885 
886   if (undobuf.other_insn)
887     {
888       int old_other_cost, new_other_cost;
889 
890       old_other_cost = INSN_COST (undobuf.other_insn);
891       tmp = PATTERN (undobuf.other_insn);
892       PATTERN (undobuf.other_insn) = newotherpat;
893       tmpi = INSN_CODE (undobuf.other_insn);
894       INSN_CODE (undobuf.other_insn) = -1;
895       new_other_cost = insn_cost (undobuf.other_insn,
896 				  optimize_this_for_speed_p);
897       PATTERN (undobuf.other_insn) = tmp;
898       INSN_CODE (undobuf.other_insn) = tmpi;
899       if (old_other_cost > 0 && new_other_cost > 0)
900 	{
901 	  old_cost += old_other_cost;
902 	  new_cost += new_other_cost;
903 	}
904       else
905 	old_cost = 0;
906     }
907 
908   /* Disallow this combination if both new_cost and old_cost are greater than
909      zero, and new_cost is greater than old cost.  */
910   int reject = old_cost > 0 && new_cost > old_cost;
911 
912   if (dump_file)
913     {
914       fprintf (dump_file, "%s combination of insns ",
915 	       reject ? "rejecting" : "allowing");
916       if (i0)
917 	fprintf (dump_file, "%d, ", INSN_UID (i0));
918       if (i1 && INSN_UID (i1) != INSN_UID (i2))
919 	fprintf (dump_file, "%d, ", INSN_UID (i1));
920       fprintf (dump_file, "%d and %d\n", INSN_UID (i2), INSN_UID (i3));
921 
922       fprintf (dump_file, "original costs ");
923       if (i0)
924 	fprintf (dump_file, "%d + ", i0_cost);
925       if (i1 && INSN_UID (i1) != INSN_UID (i2))
926 	fprintf (dump_file, "%d + ", i1_cost);
927       fprintf (dump_file, "%d + %d = %d\n", i2_cost, i3_cost, old_cost);
928 
929       if (newi2pat)
930 	fprintf (dump_file, "replacement costs %d + %d = %d\n",
931 		 new_i2_cost, new_i3_cost, new_cost);
932       else
933 	fprintf (dump_file, "replacement cost %d\n", new_cost);
934     }
935 
936   if (reject)
937     return false;
938 
939   /* Update the uid_insn_cost array with the replacement costs.  */
940   INSN_COST (i2) = new_i2_cost;
941   INSN_COST (i3) = new_i3_cost;
942   if (i1)
943     {
944       INSN_COST (i1) = 0;
945       if (i0)
946 	INSN_COST (i0) = 0;
947     }
948 
949   return true;
950 }
951 
952 
953 /* Delete any insns that copy a register to itself.
954    Return true if the CFG was changed.  */
955 
956 static bool
delete_noop_moves(void)957 delete_noop_moves (void)
958 {
959   rtx_insn *insn, *next;
960   basic_block bb;
961 
962   bool edges_deleted = false;
963 
964   FOR_EACH_BB_FN (bb, cfun)
965     {
966       for (insn = BB_HEAD (bb); insn != NEXT_INSN (BB_END (bb)); insn = next)
967 	{
968 	  next = NEXT_INSN (insn);
969 	  if (INSN_P (insn) && noop_move_p (insn))
970 	    {
971 	      if (dump_file)
972 		fprintf (dump_file, "deleting noop move %d\n", INSN_UID (insn));
973 
974 	      edges_deleted |= delete_insn_and_edges (insn);
975 	    }
976 	}
977     }
978 
979   return edges_deleted;
980 }
981 
982 
983 /* Return false if we do not want to (or cannot) combine DEF.  */
984 static bool
can_combine_def_p(df_ref def)985 can_combine_def_p (df_ref def)
986 {
987   /* Do not consider if it is pre/post modification in MEM.  */
988   if (DF_REF_FLAGS (def) & DF_REF_PRE_POST_MODIFY)
989     return false;
990 
991   unsigned int regno = DF_REF_REGNO (def);
992 
993   /* Do not combine frame pointer adjustments.  */
994   if ((regno == FRAME_POINTER_REGNUM
995        && (!reload_completed || frame_pointer_needed))
996       || (!HARD_FRAME_POINTER_IS_FRAME_POINTER
997 	  && regno == HARD_FRAME_POINTER_REGNUM
998 	  && (!reload_completed || frame_pointer_needed))
999       || (FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
1000 	  && regno == ARG_POINTER_REGNUM && fixed_regs[regno]))
1001     return false;
1002 
1003   return true;
1004 }
1005 
1006 /* Return false if we do not want to (or cannot) combine USE.  */
1007 static bool
can_combine_use_p(df_ref use)1008 can_combine_use_p (df_ref use)
1009 {
1010   /* Do not consider the usage of the stack pointer by function call.  */
1011   if (DF_REF_FLAGS (use) & DF_REF_CALL_STACK_USAGE)
1012     return false;
1013 
1014   return true;
1015 }
1016 
1017 /* Fill in log links field for all insns.  */
1018 
1019 static void
create_log_links(void)1020 create_log_links (void)
1021 {
1022   basic_block bb;
1023   rtx_insn **next_use;
1024   rtx_insn *insn;
1025   df_ref def, use;
1026 
1027   next_use = XCNEWVEC (rtx_insn *, max_reg_num ());
1028 
1029   /* Pass through each block from the end, recording the uses of each
1030      register and establishing log links when def is encountered.
1031      Note that we do not clear next_use array in order to save time,
1032      so we have to test whether the use is in the same basic block as def.
1033 
1034      There are a few cases below when we do not consider the definition or
1035      usage -- these are taken from original flow.c did. Don't ask me why it is
1036      done this way; I don't know and if it works, I don't want to know.  */
1037 
1038   FOR_EACH_BB_FN (bb, cfun)
1039     {
1040       FOR_BB_INSNS_REVERSE (bb, insn)
1041         {
1042           if (!NONDEBUG_INSN_P (insn))
1043             continue;
1044 
1045 	  /* Log links are created only once.  */
1046 	  gcc_assert (!LOG_LINKS (insn));
1047 
1048 	  FOR_EACH_INSN_DEF (def, insn)
1049             {
1050               unsigned int regno = DF_REF_REGNO (def);
1051               rtx_insn *use_insn;
1052 
1053               if (!next_use[regno])
1054                 continue;
1055 
1056 	      if (!can_combine_def_p (def))
1057 		continue;
1058 
1059 	      use_insn = next_use[regno];
1060 	      next_use[regno] = NULL;
1061 
1062 	      if (BLOCK_FOR_INSN (use_insn) != bb)
1063 		continue;
1064 
1065 	      /* flow.c claimed:
1066 
1067 		 We don't build a LOG_LINK for hard registers contained
1068 		 in ASM_OPERANDs.  If these registers get replaced,
1069 		 we might wind up changing the semantics of the insn,
1070 		 even if reload can make what appear to be valid
1071 		 assignments later.  */
1072 	      if (regno < FIRST_PSEUDO_REGISTER
1073 		  && asm_noperands (PATTERN (use_insn)) >= 0)
1074 		continue;
1075 
1076 	      /* Don't add duplicate links between instructions.  */
1077 	      struct insn_link *links;
1078 	      FOR_EACH_LOG_LINK (links, use_insn)
1079 	        if (insn == links->insn && regno == links->regno)
1080 		  break;
1081 
1082 	      if (!links)
1083 		LOG_LINKS (use_insn)
1084 		  = alloc_insn_link (insn, regno, LOG_LINKS (use_insn));
1085             }
1086 
1087 	  FOR_EACH_INSN_USE (use, insn)
1088 	    if (can_combine_use_p (use))
1089 	      next_use[DF_REF_REGNO (use)] = insn;
1090         }
1091     }
1092 
1093   free (next_use);
1094 }
1095 
1096 /* Walk the LOG_LINKS of insn B to see if we find a reference to A.  Return
1097    true if we found a LOG_LINK that proves that A feeds B.  This only works
1098    if there are no instructions between A and B which could have a link
1099    depending on A, since in that case we would not record a link for B.  */
1100 
1101 static bool
insn_a_feeds_b(rtx_insn * a,rtx_insn * b)1102 insn_a_feeds_b (rtx_insn *a, rtx_insn *b)
1103 {
1104   struct insn_link *links;
1105   FOR_EACH_LOG_LINK (links, b)
1106     if (links->insn == a)
1107       return true;
1108   return false;
1109 }
1110 
1111 /* Main entry point for combiner.  F is the first insn of the function.
1112    NREGS is the first unused pseudo-reg number.
1113 
1114    Return nonzero if the CFG was changed (e.g. if the combiner has
1115    turned an indirect jump instruction into a direct jump).  */
1116 static int
combine_instructions(rtx_insn * f,unsigned int nregs)1117 combine_instructions (rtx_insn *f, unsigned int nregs)
1118 {
1119   rtx_insn *insn, *next;
1120   struct insn_link *links, *nextlinks;
1121   rtx_insn *first;
1122   basic_block last_bb;
1123 
1124   int new_direct_jump_p = 0;
1125 
1126   for (first = f; first && !NONDEBUG_INSN_P (first); )
1127     first = NEXT_INSN (first);
1128   if (!first)
1129     return 0;
1130 
1131   combine_attempts = 0;
1132   combine_merges = 0;
1133   combine_extras = 0;
1134   combine_successes = 0;
1135 
1136   rtl_hooks = combine_rtl_hooks;
1137 
1138   reg_stat.safe_grow_cleared (nregs, true);
1139 
1140   init_recog_no_volatile ();
1141 
1142   /* Allocate array for insn info.  */
1143   max_uid_known = get_max_uid ();
1144   uid_log_links = XCNEWVEC (struct insn_link *, max_uid_known + 1);
1145   uid_insn_cost = XCNEWVEC (int, max_uid_known + 1);
1146   gcc_obstack_init (&insn_link_obstack);
1147 
1148   nonzero_bits_mode = int_mode_for_size (HOST_BITS_PER_WIDE_INT, 0).require ();
1149 
1150   /* Don't use reg_stat[].nonzero_bits when computing it.  This can cause
1151      problems when, for example, we have j <<= 1 in a loop.  */
1152 
1153   nonzero_sign_valid = 0;
1154   label_tick = label_tick_ebb_start = 1;
1155 
1156   /* Scan all SETs and see if we can deduce anything about what
1157      bits are known to be zero for some registers and how many copies
1158      of the sign bit are known to exist for those registers.
1159 
1160      Also set any known values so that we can use it while searching
1161      for what bits are known to be set.  */
1162 
1163   setup_incoming_promotions (first);
1164   /* Allow the entry block and the first block to fall into the same EBB.
1165      Conceptually the incoming promotions are assigned to the entry block.  */
1166   last_bb = ENTRY_BLOCK_PTR_FOR_FN (cfun);
1167 
1168   create_log_links ();
1169   FOR_EACH_BB_FN (this_basic_block, cfun)
1170     {
1171       optimize_this_for_speed_p = optimize_bb_for_speed_p (this_basic_block);
1172       last_call_luid = 0;
1173       mem_last_set = -1;
1174 
1175       label_tick++;
1176       if (!single_pred_p (this_basic_block)
1177 	  || single_pred (this_basic_block) != last_bb)
1178 	label_tick_ebb_start = label_tick;
1179       last_bb = this_basic_block;
1180 
1181       FOR_BB_INSNS (this_basic_block, insn)
1182         if (INSN_P (insn) && BLOCK_FOR_INSN (insn))
1183 	  {
1184             rtx links;
1185 
1186             subst_low_luid = DF_INSN_LUID (insn);
1187             subst_insn = insn;
1188 
1189 	    note_stores (insn, set_nonzero_bits_and_sign_copies, insn);
1190 	    record_dead_and_set_regs (insn);
1191 
1192 	    if (AUTO_INC_DEC)
1193 	      for (links = REG_NOTES (insn); links; links = XEXP (links, 1))
1194 		if (REG_NOTE_KIND (links) == REG_INC)
1195 		  set_nonzero_bits_and_sign_copies (XEXP (links, 0), NULL_RTX,
1196 						    insn);
1197 
1198 	    /* Record the current insn_cost of this instruction.  */
1199 	    INSN_COST (insn) = insn_cost (insn, optimize_this_for_speed_p);
1200 	    if (dump_file)
1201 	      {
1202 		fprintf (dump_file, "insn_cost %d for ", INSN_COST (insn));
1203 		dump_insn_slim (dump_file, insn);
1204 	      }
1205 	  }
1206     }
1207 
1208   nonzero_sign_valid = 1;
1209 
1210   /* Now scan all the insns in forward order.  */
1211   label_tick = label_tick_ebb_start = 1;
1212   init_reg_last ();
1213   setup_incoming_promotions (first);
1214   last_bb = ENTRY_BLOCK_PTR_FOR_FN (cfun);
1215   int max_combine = param_max_combine_insns;
1216 
1217   FOR_EACH_BB_FN (this_basic_block, cfun)
1218     {
1219       rtx_insn *last_combined_insn = NULL;
1220 
1221       /* Ignore instruction combination in basic blocks that are going to
1222 	 be removed as unreachable anyway.  See PR82386.  */
1223       if (EDGE_COUNT (this_basic_block->preds) == 0)
1224 	continue;
1225 
1226       optimize_this_for_speed_p = optimize_bb_for_speed_p (this_basic_block);
1227       last_call_luid = 0;
1228       mem_last_set = -1;
1229 
1230       label_tick++;
1231       if (!single_pred_p (this_basic_block)
1232 	  || single_pred (this_basic_block) != last_bb)
1233 	label_tick_ebb_start = label_tick;
1234       last_bb = this_basic_block;
1235 
1236       rtl_profile_for_bb (this_basic_block);
1237       for (insn = BB_HEAD (this_basic_block);
1238 	   insn != NEXT_INSN (BB_END (this_basic_block));
1239 	   insn = next ? next : NEXT_INSN (insn))
1240 	{
1241 	  next = 0;
1242 	  if (!NONDEBUG_INSN_P (insn))
1243 	    continue;
1244 
1245 	  while (last_combined_insn
1246 		 && (!NONDEBUG_INSN_P (last_combined_insn)
1247 		     || last_combined_insn->deleted ()))
1248 	    last_combined_insn = PREV_INSN (last_combined_insn);
1249 	  if (last_combined_insn == NULL_RTX
1250 	      || BLOCK_FOR_INSN (last_combined_insn) != this_basic_block
1251 	      || DF_INSN_LUID (last_combined_insn) <= DF_INSN_LUID (insn))
1252 	    last_combined_insn = insn;
1253 
1254 	  /* See if we know about function return values before this
1255 	     insn based upon SUBREG flags.  */
1256 	  check_promoted_subreg (insn, PATTERN (insn));
1257 
1258 	  /* See if we can find hardregs and subreg of pseudos in
1259 	     narrower modes.  This could help turning TRUNCATEs
1260 	     into SUBREGs.  */
1261 	  note_uses (&PATTERN (insn), record_truncated_values, NULL);
1262 
1263 	  /* Try this insn with each insn it links back to.  */
1264 
1265 	  FOR_EACH_LOG_LINK (links, insn)
1266 	    if ((next = try_combine (insn, links->insn, NULL,
1267 				     NULL, &new_direct_jump_p,
1268 				     last_combined_insn)) != 0)
1269 	      {
1270 		statistics_counter_event (cfun, "two-insn combine", 1);
1271 		goto retry;
1272 	      }
1273 
1274 	  /* Try each sequence of three linked insns ending with this one.  */
1275 
1276 	  if (max_combine >= 3)
1277 	    FOR_EACH_LOG_LINK (links, insn)
1278 	      {
1279 		rtx_insn *link = links->insn;
1280 
1281 		/* If the linked insn has been replaced by a note, then there
1282 		   is no point in pursuing this chain any further.  */
1283 		if (NOTE_P (link))
1284 		  continue;
1285 
1286 		FOR_EACH_LOG_LINK (nextlinks, link)
1287 		  if ((next = try_combine (insn, link, nextlinks->insn,
1288 					   NULL, &new_direct_jump_p,
1289 					   last_combined_insn)) != 0)
1290 		    {
1291 		      statistics_counter_event (cfun, "three-insn combine", 1);
1292 		      goto retry;
1293 		    }
1294 	      }
1295 
1296 	  /* Try combining an insn with two different insns whose results it
1297 	     uses.  */
1298 	  if (max_combine >= 3)
1299 	    FOR_EACH_LOG_LINK (links, insn)
1300 	      for (nextlinks = links->next; nextlinks;
1301 		   nextlinks = nextlinks->next)
1302 		if ((next = try_combine (insn, links->insn,
1303 					 nextlinks->insn, NULL,
1304 					 &new_direct_jump_p,
1305 					 last_combined_insn)) != 0)
1306 
1307 		  {
1308 		    statistics_counter_event (cfun, "three-insn combine", 1);
1309 		    goto retry;
1310 		  }
1311 
1312 	  /* Try four-instruction combinations.  */
1313 	  if (max_combine >= 4)
1314 	    FOR_EACH_LOG_LINK (links, insn)
1315 	      {
1316 		struct insn_link *next1;
1317 		rtx_insn *link = links->insn;
1318 
1319 		/* If the linked insn has been replaced by a note, then there
1320 		   is no point in pursuing this chain any further.  */
1321 		if (NOTE_P (link))
1322 		  continue;
1323 
1324 		FOR_EACH_LOG_LINK (next1, link)
1325 		  {
1326 		    rtx_insn *link1 = next1->insn;
1327 		    if (NOTE_P (link1))
1328 		      continue;
1329 		    /* I0 -> I1 -> I2 -> I3.  */
1330 		    FOR_EACH_LOG_LINK (nextlinks, link1)
1331 		      if ((next = try_combine (insn, link, link1,
1332 					       nextlinks->insn,
1333 					       &new_direct_jump_p,
1334 					       last_combined_insn)) != 0)
1335 			{
1336 			  statistics_counter_event (cfun, "four-insn combine", 1);
1337 			  goto retry;
1338 			}
1339 		    /* I0, I1 -> I2, I2 -> I3.  */
1340 		    for (nextlinks = next1->next; nextlinks;
1341 			 nextlinks = nextlinks->next)
1342 		      if ((next = try_combine (insn, link, link1,
1343 					       nextlinks->insn,
1344 					       &new_direct_jump_p,
1345 					       last_combined_insn)) != 0)
1346 			{
1347 			  statistics_counter_event (cfun, "four-insn combine", 1);
1348 			  goto retry;
1349 			}
1350 		  }
1351 
1352 		for (next1 = links->next; next1; next1 = next1->next)
1353 		  {
1354 		    rtx_insn *link1 = next1->insn;
1355 		    if (NOTE_P (link1))
1356 		      continue;
1357 		    /* I0 -> I2; I1, I2 -> I3.  */
1358 		    FOR_EACH_LOG_LINK (nextlinks, link)
1359 		      if ((next = try_combine (insn, link, link1,
1360 					       nextlinks->insn,
1361 					       &new_direct_jump_p,
1362 					       last_combined_insn)) != 0)
1363 			{
1364 			  statistics_counter_event (cfun, "four-insn combine", 1);
1365 			  goto retry;
1366 			}
1367 		    /* I0 -> I1; I1, I2 -> I3.  */
1368 		    FOR_EACH_LOG_LINK (nextlinks, link1)
1369 		      if ((next = try_combine (insn, link, link1,
1370 					       nextlinks->insn,
1371 					       &new_direct_jump_p,
1372 					       last_combined_insn)) != 0)
1373 			{
1374 			  statistics_counter_event (cfun, "four-insn combine", 1);
1375 			  goto retry;
1376 			}
1377 		  }
1378 	      }
1379 
1380 	  /* Try this insn with each REG_EQUAL note it links back to.  */
1381 	  FOR_EACH_LOG_LINK (links, insn)
1382 	    {
1383 	      rtx set, note;
1384 	      rtx_insn *temp = links->insn;
1385 	      if ((set = single_set (temp)) != 0
1386 		  && (note = find_reg_equal_equiv_note (temp)) != 0
1387 		  && (note = XEXP (note, 0), GET_CODE (note)) != EXPR_LIST
1388 		  && ! side_effects_p (SET_SRC (set))
1389 		  /* Avoid using a register that may already been marked
1390 		     dead by an earlier instruction.  */
1391 		  && ! unmentioned_reg_p (note, SET_SRC (set))
1392 		  && (GET_MODE (note) == VOIDmode
1393 		      ? SCALAR_INT_MODE_P (GET_MODE (SET_DEST (set)))
1394 		      : (GET_MODE (SET_DEST (set)) == GET_MODE (note)
1395 			 && (GET_CODE (SET_DEST (set)) != ZERO_EXTRACT
1396 			     || (GET_MODE (XEXP (SET_DEST (set), 0))
1397 				 == GET_MODE (note))))))
1398 		{
1399 		  /* Temporarily replace the set's source with the
1400 		     contents of the REG_EQUAL note.  The insn will
1401 		     be deleted or recognized by try_combine.  */
1402 		  rtx orig_src = SET_SRC (set);
1403 		  rtx orig_dest = SET_DEST (set);
1404 		  if (GET_CODE (SET_DEST (set)) == ZERO_EXTRACT)
1405 		    SET_DEST (set) = XEXP (SET_DEST (set), 0);
1406 		  SET_SRC (set) = note;
1407 		  i2mod = temp;
1408 		  i2mod_old_rhs = copy_rtx (orig_src);
1409 		  i2mod_new_rhs = copy_rtx (note);
1410 		  next = try_combine (insn, i2mod, NULL, NULL,
1411 				      &new_direct_jump_p,
1412 				      last_combined_insn);
1413 		  i2mod = NULL;
1414 		  if (next)
1415 		    {
1416 		      statistics_counter_event (cfun, "insn-with-note combine", 1);
1417 		      goto retry;
1418 		    }
1419 		  SET_SRC (set) = orig_src;
1420 		  SET_DEST (set) = orig_dest;
1421 		}
1422 	    }
1423 
1424 	  if (!NOTE_P (insn))
1425 	    record_dead_and_set_regs (insn);
1426 
1427 retry:
1428 	  ;
1429 	}
1430     }
1431 
1432   default_rtl_profile ();
1433   clear_bb_flags ();
1434   new_direct_jump_p |= purge_all_dead_edges ();
1435   new_direct_jump_p |= delete_noop_moves ();
1436 
1437   /* Clean up.  */
1438   obstack_free (&insn_link_obstack, NULL);
1439   free (uid_log_links);
1440   free (uid_insn_cost);
1441   reg_stat.release ();
1442 
1443   {
1444     struct undo *undo, *next;
1445     for (undo = undobuf.frees; undo; undo = next)
1446       {
1447 	next = undo->next;
1448 	free (undo);
1449       }
1450     undobuf.frees = 0;
1451   }
1452 
1453   total_attempts += combine_attempts;
1454   total_merges += combine_merges;
1455   total_extras += combine_extras;
1456   total_successes += combine_successes;
1457 
1458   nonzero_sign_valid = 0;
1459   rtl_hooks = general_rtl_hooks;
1460 
1461   /* Make recognizer allow volatile MEMs again.  */
1462   init_recog ();
1463 
1464   return new_direct_jump_p;
1465 }
1466 
1467 /* Wipe the last_xxx fields of reg_stat in preparation for another pass.  */
1468 
1469 static void
init_reg_last(void)1470 init_reg_last (void)
1471 {
1472   unsigned int i;
1473   reg_stat_type *p;
1474 
1475   FOR_EACH_VEC_ELT (reg_stat, i, p)
1476     memset (p, 0, offsetof (reg_stat_type, sign_bit_copies));
1477 }
1478 
1479 /* Set up any promoted values for incoming argument registers.  */
1480 
1481 static void
setup_incoming_promotions(rtx_insn * first)1482 setup_incoming_promotions (rtx_insn *first)
1483 {
1484   tree arg;
1485   bool strictly_local = false;
1486 
1487   for (arg = DECL_ARGUMENTS (current_function_decl); arg;
1488        arg = DECL_CHAIN (arg))
1489     {
1490       rtx x, reg = DECL_INCOMING_RTL (arg);
1491       int uns1, uns3;
1492       machine_mode mode1, mode2, mode3, mode4;
1493 
1494       /* Only continue if the incoming argument is in a register.  */
1495       if (!REG_P (reg))
1496 	continue;
1497 
1498       /* Determine, if possible, whether all call sites of the current
1499          function lie within the current compilation unit.  (This does
1500 	 take into account the exporting of a function via taking its
1501 	 address, and so forth.)  */
1502       strictly_local
1503 	= cgraph_node::local_info_node (current_function_decl)->local;
1504 
1505       /* The mode and signedness of the argument before any promotions happen
1506          (equal to the mode of the pseudo holding it at that stage).  */
1507       mode1 = TYPE_MODE (TREE_TYPE (arg));
1508       uns1 = TYPE_UNSIGNED (TREE_TYPE (arg));
1509 
1510       /* The mode and signedness of the argument after any source language and
1511          TARGET_PROMOTE_PROTOTYPES-driven promotions.  */
1512       mode2 = TYPE_MODE (DECL_ARG_TYPE (arg));
1513       uns3 = TYPE_UNSIGNED (DECL_ARG_TYPE (arg));
1514 
1515       /* The mode and signedness of the argument as it is actually passed,
1516          see assign_parm_setup_reg in function.cc.  */
1517       mode3 = promote_function_mode (TREE_TYPE (arg), mode1, &uns3,
1518 				     TREE_TYPE (cfun->decl), 0);
1519 
1520       /* The mode of the register in which the argument is being passed.  */
1521       mode4 = GET_MODE (reg);
1522 
1523       /* Eliminate sign extensions in the callee when:
1524 	 (a) A mode promotion has occurred;  */
1525       if (mode1 == mode3)
1526 	continue;
1527       /* (b) The mode of the register is the same as the mode of
1528 	     the argument as it is passed; */
1529       if (mode3 != mode4)
1530 	continue;
1531       /* (c) There's no language level extension;  */
1532       if (mode1 == mode2)
1533 	;
1534       /* (c.1) All callers are from the current compilation unit.  If that's
1535 	 the case we don't have to rely on an ABI, we only have to know
1536 	 what we're generating right now, and we know that we will do the
1537 	 mode1 to mode2 promotion with the given sign.  */
1538       else if (!strictly_local)
1539 	continue;
1540       /* (c.2) The combination of the two promotions is useful.  This is
1541 	 true when the signs match, or if the first promotion is unsigned.
1542 	 In the later case, (sign_extend (zero_extend x)) is the same as
1543 	 (zero_extend (zero_extend x)), so make sure to force UNS3 true.  */
1544       else if (uns1)
1545 	uns3 = true;
1546       else if (uns3)
1547 	continue;
1548 
1549       /* Record that the value was promoted from mode1 to mode3,
1550 	 so that any sign extension at the head of the current
1551 	 function may be eliminated.  */
1552       x = gen_rtx_CLOBBER (mode1, const0_rtx);
1553       x = gen_rtx_fmt_e ((uns3 ? ZERO_EXTEND : SIGN_EXTEND), mode3, x);
1554       record_value_for_reg (reg, first, x);
1555     }
1556 }
1557 
1558 /* If MODE has a precision lower than PREC and SRC is a non-negative constant
1559    that would appear negative in MODE, sign-extend SRC for use in nonzero_bits
1560    because some machines (maybe most) will actually do the sign-extension and
1561    this is the conservative approach.
1562 
1563    ??? For 2.5, try to tighten up the MD files in this regard instead of this
1564    kludge.  */
1565 
1566 static rtx
sign_extend_short_imm(rtx src,machine_mode mode,unsigned int prec)1567 sign_extend_short_imm (rtx src, machine_mode mode, unsigned int prec)
1568 {
1569   scalar_int_mode int_mode;
1570   if (CONST_INT_P (src)
1571       && is_a <scalar_int_mode> (mode, &int_mode)
1572       && GET_MODE_PRECISION (int_mode) < prec
1573       && INTVAL (src) > 0
1574       && val_signbit_known_set_p (int_mode, INTVAL (src)))
1575     src = GEN_INT (INTVAL (src) | ~GET_MODE_MASK (int_mode));
1576 
1577   return src;
1578 }
1579 
1580 /* Update RSP for pseudo-register X from INSN's REG_EQUAL note (if one exists)
1581    and SET.  */
1582 
1583 static void
update_rsp_from_reg_equal(reg_stat_type * rsp,rtx_insn * insn,const_rtx set,rtx x)1584 update_rsp_from_reg_equal (reg_stat_type *rsp, rtx_insn *insn, const_rtx set,
1585 			   rtx x)
1586 {
1587   rtx reg_equal_note = insn ? find_reg_equal_equiv_note (insn) : NULL_RTX;
1588   unsigned HOST_WIDE_INT bits = 0;
1589   rtx reg_equal = NULL, src = SET_SRC (set);
1590   unsigned int num = 0;
1591 
1592   if (reg_equal_note)
1593     reg_equal = XEXP (reg_equal_note, 0);
1594 
1595   if (SHORT_IMMEDIATES_SIGN_EXTEND)
1596     {
1597       src = sign_extend_short_imm (src, GET_MODE (x), BITS_PER_WORD);
1598       if (reg_equal)
1599 	reg_equal = sign_extend_short_imm (reg_equal, GET_MODE (x), BITS_PER_WORD);
1600     }
1601 
1602   /* Don't call nonzero_bits if it cannot change anything.  */
1603   if (rsp->nonzero_bits != HOST_WIDE_INT_M1U)
1604     {
1605       machine_mode mode = GET_MODE (x);
1606       if (GET_MODE_CLASS (mode) == MODE_INT
1607 	  && HWI_COMPUTABLE_MODE_P (mode))
1608 	mode = nonzero_bits_mode;
1609       bits = nonzero_bits (src, mode);
1610       if (reg_equal && bits)
1611 	bits &= nonzero_bits (reg_equal, mode);
1612       rsp->nonzero_bits |= bits;
1613     }
1614 
1615   /* Don't call num_sign_bit_copies if it cannot change anything.  */
1616   if (rsp->sign_bit_copies != 1)
1617     {
1618       num = num_sign_bit_copies (SET_SRC (set), GET_MODE (x));
1619       if (reg_equal && maybe_ne (num, GET_MODE_PRECISION (GET_MODE (x))))
1620 	{
1621 	  unsigned int numeq = num_sign_bit_copies (reg_equal, GET_MODE (x));
1622 	  if (num == 0 || numeq > num)
1623 	    num = numeq;
1624 	}
1625       if (rsp->sign_bit_copies == 0 || num < rsp->sign_bit_copies)
1626 	rsp->sign_bit_copies = num;
1627     }
1628 }
1629 
1630 /* Called via note_stores.  If X is a pseudo that is narrower than
1631    HOST_BITS_PER_WIDE_INT and is being set, record what bits are known zero.
1632 
1633    If we are setting only a portion of X and we can't figure out what
1634    portion, assume all bits will be used since we don't know what will
1635    be happening.
1636 
1637    Similarly, set how many bits of X are known to be copies of the sign bit
1638    at all locations in the function.  This is the smallest number implied
1639    by any set of X.  */
1640 
1641 static void
set_nonzero_bits_and_sign_copies(rtx x,const_rtx set,void * data)1642 set_nonzero_bits_and_sign_copies (rtx x, const_rtx set, void *data)
1643 {
1644   rtx_insn *insn = (rtx_insn *) data;
1645   scalar_int_mode mode;
1646 
1647   if (REG_P (x)
1648       && REGNO (x) >= FIRST_PSEUDO_REGISTER
1649       /* If this register is undefined at the start of the file, we can't
1650 	 say what its contents were.  */
1651       && ! REGNO_REG_SET_P
1652 	   (DF_LR_IN (ENTRY_BLOCK_PTR_FOR_FN (cfun)->next_bb), REGNO (x))
1653       && is_a <scalar_int_mode> (GET_MODE (x), &mode)
1654       && HWI_COMPUTABLE_MODE_P (mode))
1655     {
1656       reg_stat_type *rsp = &reg_stat[REGNO (x)];
1657 
1658       if (set == 0 || GET_CODE (set) == CLOBBER)
1659 	{
1660 	  rsp->nonzero_bits = GET_MODE_MASK (mode);
1661 	  rsp->sign_bit_copies = 1;
1662 	  return;
1663 	}
1664 
1665       /* If this register is being initialized using itself, and the
1666 	 register is uninitialized in this basic block, and there are
1667 	 no LOG_LINKS which set the register, then part of the
1668 	 register is uninitialized.  In that case we can't assume
1669 	 anything about the number of nonzero bits.
1670 
1671 	 ??? We could do better if we checked this in
1672 	 reg_{nonzero_bits,num_sign_bit_copies}_for_combine.  Then we
1673 	 could avoid making assumptions about the insn which initially
1674 	 sets the register, while still using the information in other
1675 	 insns.  We would have to be careful to check every insn
1676 	 involved in the combination.  */
1677 
1678       if (insn
1679 	  && reg_referenced_p (x, PATTERN (insn))
1680 	  && !REGNO_REG_SET_P (DF_LR_IN (BLOCK_FOR_INSN (insn)),
1681 			       REGNO (x)))
1682 	{
1683 	  struct insn_link *link;
1684 
1685 	  FOR_EACH_LOG_LINK (link, insn)
1686 	    if (dead_or_set_p (link->insn, x))
1687 	      break;
1688 	  if (!link)
1689 	    {
1690 	      rsp->nonzero_bits = GET_MODE_MASK (mode);
1691 	      rsp->sign_bit_copies = 1;
1692 	      return;
1693 	    }
1694 	}
1695 
1696       /* If this is a complex assignment, see if we can convert it into a
1697 	 simple assignment.  */
1698       set = expand_field_assignment (set);
1699 
1700       /* If this is a simple assignment, or we have a paradoxical SUBREG,
1701 	 set what we know about X.  */
1702 
1703       if (SET_DEST (set) == x
1704 	  || (paradoxical_subreg_p (SET_DEST (set))
1705 	      && SUBREG_REG (SET_DEST (set)) == x))
1706 	update_rsp_from_reg_equal (rsp, insn, set, x);
1707       else
1708 	{
1709 	  rsp->nonzero_bits = GET_MODE_MASK (mode);
1710 	  rsp->sign_bit_copies = 1;
1711 	}
1712     }
1713 }
1714 
1715 /* See if INSN can be combined into I3.  PRED, PRED2, SUCC and SUCC2 are
1716    optionally insns that were previously combined into I3 or that will be
1717    combined into the merger of INSN and I3.  The order is PRED, PRED2,
1718    INSN, SUCC, SUCC2, I3.
1719 
1720    Return 0 if the combination is not allowed for any reason.
1721 
1722    If the combination is allowed, *PDEST will be set to the single
1723    destination of INSN and *PSRC to the single source, and this function
1724    will return 1.  */
1725 
1726 static int
can_combine_p(rtx_insn * insn,rtx_insn * i3,rtx_insn * pred ATTRIBUTE_UNUSED,rtx_insn * pred2 ATTRIBUTE_UNUSED,rtx_insn * succ,rtx_insn * succ2,rtx * pdest,rtx * psrc)1727 can_combine_p (rtx_insn *insn, rtx_insn *i3, rtx_insn *pred ATTRIBUTE_UNUSED,
1728 	       rtx_insn *pred2 ATTRIBUTE_UNUSED, rtx_insn *succ, rtx_insn *succ2,
1729 	       rtx *pdest, rtx *psrc)
1730 {
1731   int i;
1732   const_rtx set = 0;
1733   rtx src, dest;
1734   rtx_insn *p;
1735   rtx link;
1736   bool all_adjacent = true;
1737   int (*is_volatile_p) (const_rtx);
1738 
1739   if (succ)
1740     {
1741       if (succ2)
1742 	{
1743 	  if (next_active_insn (succ2) != i3)
1744 	    all_adjacent = false;
1745 	  if (next_active_insn (succ) != succ2)
1746 	    all_adjacent = false;
1747 	}
1748       else if (next_active_insn (succ) != i3)
1749 	all_adjacent = false;
1750       if (next_active_insn (insn) != succ)
1751 	all_adjacent = false;
1752     }
1753   else if (next_active_insn (insn) != i3)
1754     all_adjacent = false;
1755 
1756   /* Can combine only if previous insn is a SET of a REG or a SUBREG,
1757      or a PARALLEL consisting of such a SET and CLOBBERs.
1758 
1759      If INSN has CLOBBER parallel parts, ignore them for our processing.
1760      By definition, these happen during the execution of the insn.  When it
1761      is merged with another insn, all bets are off.  If they are, in fact,
1762      needed and aren't also supplied in I3, they may be added by
1763      recog_for_combine.  Otherwise, it won't match.
1764 
1765      We can also ignore a SET whose SET_DEST is mentioned in a REG_UNUSED
1766      note.
1767 
1768      Get the source and destination of INSN.  If more than one, can't
1769      combine.  */
1770 
1771   if (GET_CODE (PATTERN (insn)) == SET)
1772     set = PATTERN (insn);
1773   else if (GET_CODE (PATTERN (insn)) == PARALLEL
1774 	   && GET_CODE (XVECEXP (PATTERN (insn), 0, 0)) == SET)
1775     {
1776       for (i = 0; i < XVECLEN (PATTERN (insn), 0); i++)
1777 	{
1778 	  rtx elt = XVECEXP (PATTERN (insn), 0, i);
1779 
1780 	  switch (GET_CODE (elt))
1781 	    {
1782 	    /* This is important to combine floating point insns
1783 	       for the SH4 port.  */
1784 	    case USE:
1785 	      /* Combining an isolated USE doesn't make sense.
1786 		 We depend here on combinable_i3pat to reject them.  */
1787 	      /* The code below this loop only verifies that the inputs of
1788 		 the SET in INSN do not change.  We call reg_set_between_p
1789 		 to verify that the REG in the USE does not change between
1790 		 I3 and INSN.
1791 		 If the USE in INSN was for a pseudo register, the matching
1792 		 insn pattern will likely match any register; combining this
1793 		 with any other USE would only be safe if we knew that the
1794 		 used registers have identical values, or if there was
1795 		 something to tell them apart, e.g. different modes.  For
1796 		 now, we forgo such complicated tests and simply disallow
1797 		 combining of USES of pseudo registers with any other USE.  */
1798 	      if (REG_P (XEXP (elt, 0))
1799 		  && GET_CODE (PATTERN (i3)) == PARALLEL)
1800 		{
1801 		  rtx i3pat = PATTERN (i3);
1802 		  int i = XVECLEN (i3pat, 0) - 1;
1803 		  unsigned int regno = REGNO (XEXP (elt, 0));
1804 
1805 		  do
1806 		    {
1807 		      rtx i3elt = XVECEXP (i3pat, 0, i);
1808 
1809 		      if (GET_CODE (i3elt) == USE
1810 			  && REG_P (XEXP (i3elt, 0))
1811 			  && (REGNO (XEXP (i3elt, 0)) == regno
1812 			      ? reg_set_between_p (XEXP (elt, 0),
1813 						   PREV_INSN (insn), i3)
1814 			      : regno >= FIRST_PSEUDO_REGISTER))
1815 			return 0;
1816 		    }
1817 		  while (--i >= 0);
1818 		}
1819 	      break;
1820 
1821 	      /* We can ignore CLOBBERs.  */
1822 	    case CLOBBER:
1823 	      break;
1824 
1825 	    case SET:
1826 	      /* Ignore SETs whose result isn't used but not those that
1827 		 have side-effects.  */
1828 	      if (find_reg_note (insn, REG_UNUSED, SET_DEST (elt))
1829 		  && insn_nothrow_p (insn)
1830 		  && !side_effects_p (elt))
1831 		break;
1832 
1833 	      /* If we have already found a SET, this is a second one and
1834 		 so we cannot combine with this insn.  */
1835 	      if (set)
1836 		return 0;
1837 
1838 	      set = elt;
1839 	      break;
1840 
1841 	    default:
1842 	      /* Anything else means we can't combine.  */
1843 	      return 0;
1844 	    }
1845 	}
1846 
1847       if (set == 0
1848 	  /* If SET_SRC is an ASM_OPERANDS we can't throw away these CLOBBERs,
1849 	     so don't do anything with it.  */
1850 	  || GET_CODE (SET_SRC (set)) == ASM_OPERANDS)
1851 	return 0;
1852     }
1853   else
1854     return 0;
1855 
1856   if (set == 0)
1857     return 0;
1858 
1859   /* The simplification in expand_field_assignment may call back to
1860      get_last_value, so set safe guard here.  */
1861   subst_low_luid = DF_INSN_LUID (insn);
1862 
1863   set = expand_field_assignment (set);
1864   src = SET_SRC (set), dest = SET_DEST (set);
1865 
1866   /* Do not eliminate user-specified register if it is in an
1867      asm input because we may break the register asm usage defined
1868      in GCC manual if allow to do so.
1869      Be aware that this may cover more cases than we expect but this
1870      should be harmless.  */
1871   if (REG_P (dest) && REG_USERVAR_P (dest) && HARD_REGISTER_P (dest)
1872       && extract_asm_operands (PATTERN (i3)))
1873     return 0;
1874 
1875   /* Don't eliminate a store in the stack pointer.  */
1876   if (dest == stack_pointer_rtx
1877       /* Don't combine with an insn that sets a register to itself if it has
1878 	 a REG_EQUAL note.  This may be part of a LIBCALL sequence.  */
1879       || (rtx_equal_p (src, dest) && find_reg_note (insn, REG_EQUAL, NULL_RTX))
1880       /* Can't merge an ASM_OPERANDS.  */
1881       || GET_CODE (src) == ASM_OPERANDS
1882       /* Can't merge a function call.  */
1883       || GET_CODE (src) == CALL
1884       /* Don't eliminate a function call argument.  */
1885       || (CALL_P (i3)
1886 	  && (find_reg_fusage (i3, USE, dest)
1887 	      || (REG_P (dest)
1888 		  && REGNO (dest) < FIRST_PSEUDO_REGISTER
1889 		  && global_regs[REGNO (dest)])))
1890       /* Don't substitute into an incremented register.  */
1891       || FIND_REG_INC_NOTE (i3, dest)
1892       || (succ && FIND_REG_INC_NOTE (succ, dest))
1893       || (succ2 && FIND_REG_INC_NOTE (succ2, dest))
1894       /* Don't substitute into a non-local goto, this confuses CFG.  */
1895       || (JUMP_P (i3) && find_reg_note (i3, REG_NON_LOCAL_GOTO, NULL_RTX))
1896       /* Make sure that DEST is not used after INSN but before SUCC, or
1897 	 after SUCC and before SUCC2, or after SUCC2 but before I3.  */
1898       || (!all_adjacent
1899 	  && ((succ2
1900 	       && (reg_used_between_p (dest, succ2, i3)
1901 		   || reg_used_between_p (dest, succ, succ2)))
1902 	      || (!succ2 && succ && reg_used_between_p (dest, succ, i3))
1903 	      || (!succ2 && !succ && reg_used_between_p (dest, insn, i3))
1904 	      || (succ
1905 		  /* SUCC and SUCC2 can be split halves from a PARALLEL; in
1906 		     that case SUCC is not in the insn stream, so use SUCC2
1907 		     instead for this test.  */
1908 		  && reg_used_between_p (dest, insn,
1909 					 succ2
1910 					 && INSN_UID (succ) == INSN_UID (succ2)
1911 					 ? succ2 : succ))))
1912       /* Make sure that the value that is to be substituted for the register
1913 	 does not use any registers whose values alter in between.  However,
1914 	 If the insns are adjacent, a use can't cross a set even though we
1915 	 think it might (this can happen for a sequence of insns each setting
1916 	 the same destination; last_set of that register might point to
1917 	 a NOTE).  If INSN has a REG_EQUIV note, the register is always
1918 	 equivalent to the memory so the substitution is valid even if there
1919 	 are intervening stores.  Also, don't move a volatile asm or
1920 	 UNSPEC_VOLATILE across any other insns.  */
1921       || (! all_adjacent
1922 	  && (((!MEM_P (src)
1923 		|| ! find_reg_note (insn, REG_EQUIV, src))
1924 	       && modified_between_p (src, insn, i3))
1925 	      || (GET_CODE (src) == ASM_OPERANDS && MEM_VOLATILE_P (src))
1926 	      || GET_CODE (src) == UNSPEC_VOLATILE))
1927       /* Don't combine across a CALL_INSN, because that would possibly
1928 	 change whether the life span of some REGs crosses calls or not,
1929 	 and it is a pain to update that information.
1930 	 Exception: if source is a constant, moving it later can't hurt.
1931 	 Accept that as a special case.  */
1932       || (DF_INSN_LUID (insn) < last_call_luid && ! CONSTANT_P (src)))
1933     return 0;
1934 
1935   /* DEST must be a REG.  */
1936   if (REG_P (dest))
1937     {
1938       /* If register alignment is being enforced for multi-word items in all
1939 	 cases except for parameters, it is possible to have a register copy
1940 	 insn referencing a hard register that is not allowed to contain the
1941 	 mode being copied and which would not be valid as an operand of most
1942 	 insns.  Eliminate this problem by not combining with such an insn.
1943 
1944 	 Also, on some machines we don't want to extend the life of a hard
1945 	 register.  */
1946 
1947       if (REG_P (src)
1948 	  && ((REGNO (dest) < FIRST_PSEUDO_REGISTER
1949 	       && !targetm.hard_regno_mode_ok (REGNO (dest), GET_MODE (dest)))
1950 	      /* Don't extend the life of a hard register unless it is
1951 		 user variable (if we have few registers) or it can't
1952 		 fit into the desired register (meaning something special
1953 		 is going on).
1954 		 Also avoid substituting a return register into I3, because
1955 		 reload can't handle a conflict with constraints of other
1956 		 inputs.  */
1957 	      || (REGNO (src) < FIRST_PSEUDO_REGISTER
1958 		  && !targetm.hard_regno_mode_ok (REGNO (src),
1959 						  GET_MODE (src)))))
1960 	return 0;
1961     }
1962   else
1963     return 0;
1964 
1965 
1966   if (GET_CODE (PATTERN (i3)) == PARALLEL)
1967     for (i = XVECLEN (PATTERN (i3), 0) - 1; i >= 0; i--)
1968       if (GET_CODE (XVECEXP (PATTERN (i3), 0, i)) == CLOBBER)
1969 	{
1970 	  rtx reg = XEXP (XVECEXP (PATTERN (i3), 0, i), 0);
1971 
1972 	  /* If the clobber represents an earlyclobber operand, we must not
1973 	     substitute an expression containing the clobbered register.
1974 	     As we do not analyze the constraint strings here, we have to
1975 	     make the conservative assumption.  However, if the register is
1976 	     a fixed hard reg, the clobber cannot represent any operand;
1977 	     we leave it up to the machine description to either accept or
1978 	     reject use-and-clobber patterns.  */
1979 	  if (!REG_P (reg)
1980 	      || REGNO (reg) >= FIRST_PSEUDO_REGISTER
1981 	      || !fixed_regs[REGNO (reg)])
1982 	    if (reg_overlap_mentioned_p (reg, src))
1983 	      return 0;
1984 	}
1985 
1986   /* If INSN contains anything volatile, or is an `asm' (whether volatile
1987      or not), reject, unless nothing volatile comes between it and I3 */
1988 
1989   if (GET_CODE (src) == ASM_OPERANDS || volatile_refs_p (src))
1990     {
1991       /* Make sure neither succ nor succ2 contains a volatile reference.  */
1992       if (succ2 != 0 && volatile_refs_p (PATTERN (succ2)))
1993 	return 0;
1994       if (succ != 0 && volatile_refs_p (PATTERN (succ)))
1995 	return 0;
1996       /* We'll check insns between INSN and I3 below.  */
1997     }
1998 
1999   /* If INSN is an asm, and DEST is a hard register, reject, since it has
2000      to be an explicit register variable, and was chosen for a reason.  */
2001 
2002   if (GET_CODE (src) == ASM_OPERANDS
2003       && REG_P (dest) && REGNO (dest) < FIRST_PSEUDO_REGISTER)
2004     return 0;
2005 
2006   /* If INSN contains volatile references (specifically volatile MEMs),
2007      we cannot combine across any other volatile references.
2008      Even if INSN doesn't contain volatile references, any intervening
2009      volatile insn might affect machine state.  */
2010 
2011   is_volatile_p = volatile_refs_p (PATTERN (insn))
2012     ? volatile_refs_p
2013     : volatile_insn_p;
2014 
2015   for (p = NEXT_INSN (insn); p != i3; p = NEXT_INSN (p))
2016     if (INSN_P (p) && p != succ && p != succ2 && is_volatile_p (PATTERN (p)))
2017       return 0;
2018 
2019   /* If INSN contains an autoincrement or autodecrement, make sure that
2020      register is not used between there and I3, and not already used in
2021      I3 either.  Neither must it be used in PRED or SUCC, if they exist.
2022      Also insist that I3 not be a jump if using LRA; if it were one
2023      and the incremented register were spilled, we would lose.
2024      Reload handles this correctly.  */
2025 
2026   if (AUTO_INC_DEC)
2027     for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
2028       if (REG_NOTE_KIND (link) == REG_INC
2029 	  && ((JUMP_P (i3) && targetm.lra_p ())
2030 	      || reg_used_between_p (XEXP (link, 0), insn, i3)
2031 	      || (pred != NULL_RTX
2032 		  && reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (pred)))
2033 	      || (pred2 != NULL_RTX
2034 		  && reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (pred2)))
2035 	      || (succ != NULL_RTX
2036 		  && reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (succ)))
2037 	      || (succ2 != NULL_RTX
2038 		  && reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (succ2)))
2039 	      || reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (i3))))
2040 	return 0;
2041 
2042   /* If we get here, we have passed all the tests and the combination is
2043      to be allowed.  */
2044 
2045   *pdest = dest;
2046   *psrc = src;
2047 
2048   return 1;
2049 }
2050 
2051 /* LOC is the location within I3 that contains its pattern or the component
2052    of a PARALLEL of the pattern.  We validate that it is valid for combining.
2053 
2054    One problem is if I3 modifies its output, as opposed to replacing it
2055    entirely, we can't allow the output to contain I2DEST, I1DEST or I0DEST as
2056    doing so would produce an insn that is not equivalent to the original insns.
2057 
2058    Consider:
2059 
2060 	 (set (reg:DI 101) (reg:DI 100))
2061 	 (set (subreg:SI (reg:DI 101) 0) <foo>)
2062 
2063    This is NOT equivalent to:
2064 
2065 	 (parallel [(set (subreg:SI (reg:DI 100) 0) <foo>)
2066 		    (set (reg:DI 101) (reg:DI 100))])
2067 
2068    Not only does this modify 100 (in which case it might still be valid
2069    if 100 were dead in I2), it sets 101 to the ORIGINAL value of 100.
2070 
2071    We can also run into a problem if I2 sets a register that I1
2072    uses and I1 gets directly substituted into I3 (not via I2).  In that
2073    case, we would be getting the wrong value of I2DEST into I3, so we
2074    must reject the combination.  This case occurs when I2 and I1 both
2075    feed into I3, rather than when I1 feeds into I2, which feeds into I3.
2076    If I1_NOT_IN_SRC is nonzero, it means that finding I1 in the source
2077    of a SET must prevent combination from occurring.  The same situation
2078    can occur for I0, in which case I0_NOT_IN_SRC is set.
2079 
2080    Before doing the above check, we first try to expand a field assignment
2081    into a set of logical operations.
2082 
2083    If PI3_DEST_KILLED is nonzero, it is a pointer to a location in which
2084    we place a register that is both set and used within I3.  If more than one
2085    such register is detected, we fail.
2086 
2087    Return 1 if the combination is valid, zero otherwise.  */
2088 
2089 static int
combinable_i3pat(rtx_insn * i3,rtx * loc,rtx i2dest,rtx i1dest,rtx i0dest,int i1_not_in_src,int i0_not_in_src,rtx * pi3dest_killed)2090 combinable_i3pat (rtx_insn *i3, rtx *loc, rtx i2dest, rtx i1dest, rtx i0dest,
2091 		  int i1_not_in_src, int i0_not_in_src, rtx *pi3dest_killed)
2092 {
2093   rtx x = *loc;
2094 
2095   if (GET_CODE (x) == SET)
2096     {
2097       rtx set = x ;
2098       rtx dest = SET_DEST (set);
2099       rtx src = SET_SRC (set);
2100       rtx inner_dest = dest;
2101       rtx subdest;
2102 
2103       while (GET_CODE (inner_dest) == STRICT_LOW_PART
2104 	     || GET_CODE (inner_dest) == SUBREG
2105 	     || GET_CODE (inner_dest) == ZERO_EXTRACT)
2106 	inner_dest = XEXP (inner_dest, 0);
2107 
2108       /* Check for the case where I3 modifies its output, as discussed
2109 	 above.  We don't want to prevent pseudos from being combined
2110 	 into the address of a MEM, so only prevent the combination if
2111 	 i1 or i2 set the same MEM.  */
2112       if ((inner_dest != dest &&
2113 	   (!MEM_P (inner_dest)
2114 	    || rtx_equal_p (i2dest, inner_dest)
2115 	    || (i1dest && rtx_equal_p (i1dest, inner_dest))
2116 	    || (i0dest && rtx_equal_p (i0dest, inner_dest)))
2117 	   && (reg_overlap_mentioned_p (i2dest, inner_dest)
2118 	       || (i1dest && reg_overlap_mentioned_p (i1dest, inner_dest))
2119 	       || (i0dest && reg_overlap_mentioned_p (i0dest, inner_dest))))
2120 
2121 	  /* This is the same test done in can_combine_p except we can't test
2122 	     all_adjacent; we don't have to, since this instruction will stay
2123 	     in place, thus we are not considering increasing the lifetime of
2124 	     INNER_DEST.
2125 
2126 	     Also, if this insn sets a function argument, combining it with
2127 	     something that might need a spill could clobber a previous
2128 	     function argument; the all_adjacent test in can_combine_p also
2129 	     checks this; here, we do a more specific test for this case.  */
2130 
2131 	  || (REG_P (inner_dest)
2132 	      && REGNO (inner_dest) < FIRST_PSEUDO_REGISTER
2133 	      && !targetm.hard_regno_mode_ok (REGNO (inner_dest),
2134 					      GET_MODE (inner_dest)))
2135 	  || (i1_not_in_src && reg_overlap_mentioned_p (i1dest, src))
2136 	  || (i0_not_in_src && reg_overlap_mentioned_p (i0dest, src)))
2137 	return 0;
2138 
2139       /* If DEST is used in I3, it is being killed in this insn, so
2140 	 record that for later.  We have to consider paradoxical
2141 	 subregs here, since they kill the whole register, but we
2142 	 ignore partial subregs, STRICT_LOW_PART, etc.
2143 	 Never add REG_DEAD notes for the FRAME_POINTER_REGNUM or the
2144 	 STACK_POINTER_REGNUM, since these are always considered to be
2145 	 live.  Similarly for ARG_POINTER_REGNUM if it is fixed.  */
2146       subdest = dest;
2147       if (GET_CODE (subdest) == SUBREG && !partial_subreg_p (subdest))
2148 	subdest = SUBREG_REG (subdest);
2149       if (pi3dest_killed
2150 	  && REG_P (subdest)
2151 	  && reg_referenced_p (subdest, PATTERN (i3))
2152 	  && REGNO (subdest) != FRAME_POINTER_REGNUM
2153 	  && (HARD_FRAME_POINTER_IS_FRAME_POINTER
2154 	      || REGNO (subdest) != HARD_FRAME_POINTER_REGNUM)
2155 	  && (FRAME_POINTER_REGNUM == ARG_POINTER_REGNUM
2156 	      || (REGNO (subdest) != ARG_POINTER_REGNUM
2157 		  || ! fixed_regs [REGNO (subdest)]))
2158 	  && REGNO (subdest) != STACK_POINTER_REGNUM)
2159 	{
2160 	  if (*pi3dest_killed)
2161 	    return 0;
2162 
2163 	  *pi3dest_killed = subdest;
2164 	}
2165     }
2166 
2167   else if (GET_CODE (x) == PARALLEL)
2168     {
2169       int i;
2170 
2171       for (i = 0; i < XVECLEN (x, 0); i++)
2172 	if (! combinable_i3pat (i3, &XVECEXP (x, 0, i), i2dest, i1dest, i0dest,
2173 				i1_not_in_src, i0_not_in_src, pi3dest_killed))
2174 	  return 0;
2175     }
2176 
2177   return 1;
2178 }
2179 
2180 /* Return 1 if X is an arithmetic expression that contains a multiplication
2181    and division.  We don't count multiplications by powers of two here.  */
2182 
2183 static int
contains_muldiv(rtx x)2184 contains_muldiv (rtx x)
2185 {
2186   switch (GET_CODE (x))
2187     {
2188     case MOD:  case DIV:  case UMOD:  case UDIV:
2189       return 1;
2190 
2191     case MULT:
2192       return ! (CONST_INT_P (XEXP (x, 1))
2193 		&& pow2p_hwi (UINTVAL (XEXP (x, 1))));
2194     default:
2195       if (BINARY_P (x))
2196 	return contains_muldiv (XEXP (x, 0))
2197 	    || contains_muldiv (XEXP (x, 1));
2198 
2199       if (UNARY_P (x))
2200 	return contains_muldiv (XEXP (x, 0));
2201 
2202       return 0;
2203     }
2204 }
2205 
2206 /* Determine whether INSN can be used in a combination.  Return nonzero if
2207    not.  This is used in try_combine to detect early some cases where we
2208    can't perform combinations.  */
2209 
2210 static int
cant_combine_insn_p(rtx_insn * insn)2211 cant_combine_insn_p (rtx_insn *insn)
2212 {
2213   rtx set;
2214   rtx src, dest;
2215 
2216   /* If this isn't really an insn, we can't do anything.
2217      This can occur when flow deletes an insn that it has merged into an
2218      auto-increment address.  */
2219   if (!NONDEBUG_INSN_P (insn))
2220     return 1;
2221 
2222   /* Never combine loads and stores involving hard regs that are likely
2223      to be spilled.  The register allocator can usually handle such
2224      reg-reg moves by tying.  If we allow the combiner to make
2225      substitutions of likely-spilled regs, reload might die.
2226      As an exception, we allow combinations involving fixed regs; these are
2227      not available to the register allocator so there's no risk involved.  */
2228 
2229   set = single_set (insn);
2230   if (! set)
2231     return 0;
2232   src = SET_SRC (set);
2233   dest = SET_DEST (set);
2234   if (GET_CODE (src) == SUBREG)
2235     src = SUBREG_REG (src);
2236   if (GET_CODE (dest) == SUBREG)
2237     dest = SUBREG_REG (dest);
2238   if (REG_P (src) && REG_P (dest)
2239       && ((HARD_REGISTER_P (src)
2240 	   && ! TEST_HARD_REG_BIT (fixed_reg_set, REGNO (src))
2241 #ifdef LEAF_REGISTERS
2242 	   && ! LEAF_REGISTERS [REGNO (src)])
2243 #else
2244 	   )
2245 #endif
2246 	  || (HARD_REGISTER_P (dest)
2247 	      && ! TEST_HARD_REG_BIT (fixed_reg_set, REGNO (dest))
2248 	      && targetm.class_likely_spilled_p (REGNO_REG_CLASS (REGNO (dest))))))
2249     return 1;
2250 
2251   return 0;
2252 }
2253 
2254 struct likely_spilled_retval_info
2255 {
2256   unsigned regno, nregs;
2257   unsigned mask;
2258 };
2259 
2260 /* Called via note_stores by likely_spilled_retval_p.  Remove from info->mask
2261    hard registers that are known to be written to / clobbered in full.  */
2262 static void
likely_spilled_retval_1(rtx x,const_rtx set,void * data)2263 likely_spilled_retval_1 (rtx x, const_rtx set, void *data)
2264 {
2265   struct likely_spilled_retval_info *const info =
2266     (struct likely_spilled_retval_info *) data;
2267   unsigned regno, nregs;
2268   unsigned new_mask;
2269 
2270   if (!REG_P (XEXP (set, 0)))
2271     return;
2272   regno = REGNO (x);
2273   if (regno >= info->regno + info->nregs)
2274     return;
2275   nregs = REG_NREGS (x);
2276   if (regno + nregs <= info->regno)
2277     return;
2278   new_mask = (2U << (nregs - 1)) - 1;
2279   if (regno < info->regno)
2280     new_mask >>= info->regno - regno;
2281   else
2282     new_mask <<= regno - info->regno;
2283   info->mask &= ~new_mask;
2284 }
2285 
2286 /* Return nonzero iff part of the return value is live during INSN, and
2287    it is likely spilled.  This can happen when more than one insn is needed
2288    to copy the return value, e.g. when we consider to combine into the
2289    second copy insn for a complex value.  */
2290 
2291 static int
likely_spilled_retval_p(rtx_insn * insn)2292 likely_spilled_retval_p (rtx_insn *insn)
2293 {
2294   rtx_insn *use = BB_END (this_basic_block);
2295   rtx reg;
2296   rtx_insn *p;
2297   unsigned regno, nregs;
2298   /* We assume here that no machine mode needs more than
2299      32 hard registers when the value overlaps with a register
2300      for which TARGET_FUNCTION_VALUE_REGNO_P is true.  */
2301   unsigned mask;
2302   struct likely_spilled_retval_info info;
2303 
2304   if (!NONJUMP_INSN_P (use) || GET_CODE (PATTERN (use)) != USE || insn == use)
2305     return 0;
2306   reg = XEXP (PATTERN (use), 0);
2307   if (!REG_P (reg) || !targetm.calls.function_value_regno_p (REGNO (reg)))
2308     return 0;
2309   regno = REGNO (reg);
2310   nregs = REG_NREGS (reg);
2311   if (nregs == 1)
2312     return 0;
2313   mask = (2U << (nregs - 1)) - 1;
2314 
2315   /* Disregard parts of the return value that are set later.  */
2316   info.regno = regno;
2317   info.nregs = nregs;
2318   info.mask = mask;
2319   for (p = PREV_INSN (use); info.mask && p != insn; p = PREV_INSN (p))
2320     if (INSN_P (p))
2321       note_stores (p, likely_spilled_retval_1, &info);
2322   mask = info.mask;
2323 
2324   /* Check if any of the (probably) live return value registers is
2325      likely spilled.  */
2326   nregs --;
2327   do
2328     {
2329       if ((mask & 1 << nregs)
2330 	  && targetm.class_likely_spilled_p (REGNO_REG_CLASS (regno + nregs)))
2331 	return 1;
2332     } while (nregs--);
2333   return 0;
2334 }
2335 
2336 /* Adjust INSN after we made a change to its destination.
2337 
2338    Changing the destination can invalidate notes that say something about
2339    the results of the insn and a LOG_LINK pointing to the insn.  */
2340 
2341 static void
adjust_for_new_dest(rtx_insn * insn)2342 adjust_for_new_dest (rtx_insn *insn)
2343 {
2344   /* For notes, be conservative and simply remove them.  */
2345   remove_reg_equal_equiv_notes (insn, true);
2346 
2347   /* The new insn will have a destination that was previously the destination
2348      of an insn just above it.  Call distribute_links to make a LOG_LINK from
2349      the next use of that destination.  */
2350 
2351   rtx set = single_set (insn);
2352   gcc_assert (set);
2353 
2354   rtx reg = SET_DEST (set);
2355 
2356   while (GET_CODE (reg) == ZERO_EXTRACT
2357 	 || GET_CODE (reg) == STRICT_LOW_PART
2358 	 || GET_CODE (reg) == SUBREG)
2359     reg = XEXP (reg, 0);
2360   gcc_assert (REG_P (reg));
2361 
2362   distribute_links (alloc_insn_link (insn, REGNO (reg), NULL));
2363 
2364   df_insn_rescan (insn);
2365 }
2366 
2367 /* Return TRUE if combine can reuse reg X in mode MODE.
2368    ADDED_SETS is nonzero if the original set is still required.  */
2369 static bool
can_change_dest_mode(rtx x,int added_sets,machine_mode mode)2370 can_change_dest_mode (rtx x, int added_sets, machine_mode mode)
2371 {
2372   unsigned int regno;
2373 
2374   if (!REG_P (x))
2375     return false;
2376 
2377   /* Don't change between modes with different underlying register sizes,
2378      since this could lead to invalid subregs.  */
2379   if (maybe_ne (REGMODE_NATURAL_SIZE (mode),
2380 		REGMODE_NATURAL_SIZE (GET_MODE (x))))
2381     return false;
2382 
2383   regno = REGNO (x);
2384   /* Allow hard registers if the new mode is legal, and occupies no more
2385      registers than the old mode.  */
2386   if (regno < FIRST_PSEUDO_REGISTER)
2387     return (targetm.hard_regno_mode_ok (regno, mode)
2388 	    && REG_NREGS (x) >= hard_regno_nregs (regno, mode));
2389 
2390   /* Or a pseudo that is only used once.  */
2391   return (regno < reg_n_sets_max
2392 	  && REG_N_SETS (regno) == 1
2393 	  && !added_sets
2394 	  && !REG_USERVAR_P (x));
2395 }
2396 
2397 
2398 /* Check whether X, the destination of a set, refers to part of
2399    the register specified by REG.  */
2400 
2401 static bool
reg_subword_p(rtx x,rtx reg)2402 reg_subword_p (rtx x, rtx reg)
2403 {
2404   /* Check that reg is an integer mode register.  */
2405   if (!REG_P (reg) || GET_MODE_CLASS (GET_MODE (reg)) != MODE_INT)
2406     return false;
2407 
2408   if (GET_CODE (x) == STRICT_LOW_PART
2409       || GET_CODE (x) == ZERO_EXTRACT)
2410     x = XEXP (x, 0);
2411 
2412   return GET_CODE (x) == SUBREG
2413 	 && !paradoxical_subreg_p (x)
2414 	 && SUBREG_REG (x) == reg
2415 	 && GET_MODE_CLASS (GET_MODE (x)) == MODE_INT;
2416 }
2417 
2418 /* Return whether PAT is a PARALLEL of exactly N register SETs followed
2419    by an arbitrary number of CLOBBERs.  */
2420 static bool
is_parallel_of_n_reg_sets(rtx pat,int n)2421 is_parallel_of_n_reg_sets (rtx pat, int n)
2422 {
2423   if (GET_CODE (pat) != PARALLEL)
2424     return false;
2425 
2426   int len = XVECLEN (pat, 0);
2427   if (len < n)
2428     return false;
2429 
2430   int i;
2431   for (i = 0; i < n; i++)
2432     if (GET_CODE (XVECEXP (pat, 0, i)) != SET
2433 	|| !REG_P (SET_DEST (XVECEXP (pat, 0, i))))
2434       return false;
2435   for ( ; i < len; i++)
2436     switch (GET_CODE (XVECEXP (pat, 0, i)))
2437       {
2438       case CLOBBER:
2439 	if (XEXP (XVECEXP (pat, 0, i), 0) == const0_rtx)
2440 	  return false;
2441 	break;
2442       default:
2443 	return false;
2444       }
2445   return true;
2446 }
2447 
2448 /* Return whether INSN, a PARALLEL of N register SETs (and maybe some
2449    CLOBBERs), can be split into individual SETs in that order, without
2450    changing semantics.  */
2451 static bool
can_split_parallel_of_n_reg_sets(rtx_insn * insn,int n)2452 can_split_parallel_of_n_reg_sets (rtx_insn *insn, int n)
2453 {
2454   if (!insn_nothrow_p (insn))
2455     return false;
2456 
2457   rtx pat = PATTERN (insn);
2458 
2459   int i, j;
2460   for (i = 0; i < n; i++)
2461     {
2462       if (side_effects_p (SET_SRC (XVECEXP (pat, 0, i))))
2463 	return false;
2464 
2465       rtx reg = SET_DEST (XVECEXP (pat, 0, i));
2466 
2467       for (j = i + 1; j < n; j++)
2468 	if (reg_referenced_p (reg, XVECEXP (pat, 0, j)))
2469 	  return false;
2470     }
2471 
2472   return true;
2473 }
2474 
2475 /* Return whether X is just a single_set, with the source
2476    a general_operand.  */
2477 static bool
is_just_move(rtx_insn * x)2478 is_just_move (rtx_insn *x)
2479 {
2480   rtx set = single_set (x);
2481   if (!set)
2482     return false;
2483 
2484   return general_operand (SET_SRC (set), VOIDmode);
2485 }
2486 
2487 /* Callback function to count autoincs.  */
2488 
2489 static int
count_auto_inc(rtx,rtx,rtx,rtx,rtx,void * arg)2490 count_auto_inc (rtx, rtx, rtx, rtx, rtx, void *arg)
2491 {
2492   (*((int *) arg))++;
2493 
2494   return 0;
2495 }
2496 
2497 /* Try to combine the insns I0, I1 and I2 into I3.
2498    Here I0, I1 and I2 appear earlier than I3.
2499    I0 and I1 can be zero; then we combine just I2 into I3, or I1 and I2 into
2500    I3.
2501 
2502    If we are combining more than two insns and the resulting insn is not
2503    recognized, try splitting it into two insns.  If that happens, I2 and I3
2504    are retained and I1/I0 are pseudo-deleted by turning them into a NOTE.
2505    Otherwise, I0, I1 and I2 are pseudo-deleted.
2506 
2507    Return 0 if the combination does not work.  Then nothing is changed.
2508    If we did the combination, return the insn at which combine should
2509    resume scanning.
2510 
2511    Set NEW_DIRECT_JUMP_P to a nonzero value if try_combine creates a
2512    new direct jump instruction.
2513 
2514    LAST_COMBINED_INSN is either I3, or some insn after I3 that has
2515    been I3 passed to an earlier try_combine within the same basic
2516    block.  */
2517 
2518 static rtx_insn *
try_combine(rtx_insn * i3,rtx_insn * i2,rtx_insn * i1,rtx_insn * i0,int * new_direct_jump_p,rtx_insn * last_combined_insn)2519 try_combine (rtx_insn *i3, rtx_insn *i2, rtx_insn *i1, rtx_insn *i0,
2520 	     int *new_direct_jump_p, rtx_insn *last_combined_insn)
2521 {
2522   /* New patterns for I3 and I2, respectively.  */
2523   rtx newpat, newi2pat = 0;
2524   rtvec newpat_vec_with_clobbers = 0;
2525   int substed_i2 = 0, substed_i1 = 0, substed_i0 = 0;
2526   /* Indicates need to preserve SET in I0, I1 or I2 in I3 if it is not
2527      dead.  */
2528   int added_sets_0, added_sets_1, added_sets_2;
2529   /* Total number of SETs to put into I3.  */
2530   int total_sets;
2531   /* Nonzero if I2's or I1's body now appears in I3.  */
2532   int i2_is_used = 0, i1_is_used = 0;
2533   /* INSN_CODEs for new I3, new I2, and user of condition code.  */
2534   int insn_code_number, i2_code_number = 0, other_code_number = 0;
2535   /* Contains I3 if the destination of I3 is used in its source, which means
2536      that the old life of I3 is being killed.  If that usage is placed into
2537      I2 and not in I3, a REG_DEAD note must be made.  */
2538   rtx i3dest_killed = 0;
2539   /* SET_DEST and SET_SRC of I2, I1 and I0.  */
2540   rtx i2dest = 0, i2src = 0, i1dest = 0, i1src = 0, i0dest = 0, i0src = 0;
2541   /* Copy of SET_SRC of I1 and I0, if needed.  */
2542   rtx i1src_copy = 0, i0src_copy = 0, i0src_copy2 = 0;
2543   /* Set if I2DEST was reused as a scratch register.  */
2544   bool i2scratch = false;
2545   /* The PATTERNs of I0, I1, and I2, or a copy of them in certain cases.  */
2546   rtx i0pat = 0, i1pat = 0, i2pat = 0;
2547   /* Indicates if I2DEST or I1DEST is in I2SRC or I1_SRC.  */
2548   int i2dest_in_i2src = 0, i1dest_in_i1src = 0, i2dest_in_i1src = 0;
2549   int i0dest_in_i0src = 0, i1dest_in_i0src = 0, i2dest_in_i0src = 0;
2550   int i2dest_killed = 0, i1dest_killed = 0, i0dest_killed = 0;
2551   int i1_feeds_i2_n = 0, i0_feeds_i2_n = 0, i0_feeds_i1_n = 0;
2552   /* Notes that must be added to REG_NOTES in I3 and I2.  */
2553   rtx new_i3_notes, new_i2_notes;
2554   /* Notes that we substituted I3 into I2 instead of the normal case.  */
2555   int i3_subst_into_i2 = 0;
2556   /* Notes that I1, I2 or I3 is a MULT operation.  */
2557   int have_mult = 0;
2558   int swap_i2i3 = 0;
2559   int split_i2i3 = 0;
2560   int changed_i3_dest = 0;
2561   bool i2_was_move = false, i3_was_move = false;
2562   int n_auto_inc = 0;
2563 
2564   int maxreg;
2565   rtx_insn *temp_insn;
2566   rtx temp_expr;
2567   struct insn_link *link;
2568   rtx other_pat = 0;
2569   rtx new_other_notes;
2570   int i;
2571   scalar_int_mode dest_mode, temp_mode;
2572   bool has_non_call_exception = false;
2573 
2574   /* Immediately return if any of I0,I1,I2 are the same insn (I3 can
2575      never be).  */
2576   if (i1 == i2 || i0 == i2 || (i0 && i0 == i1))
2577     return 0;
2578 
2579   /* Only try four-insn combinations when there's high likelihood of
2580      success.  Look for simple insns, such as loads of constants or
2581      binary operations involving a constant.  */
2582   if (i0)
2583     {
2584       int i;
2585       int ngood = 0;
2586       int nshift = 0;
2587       rtx set0, set3;
2588 
2589       if (!flag_expensive_optimizations)
2590 	return 0;
2591 
2592       for (i = 0; i < 4; i++)
2593 	{
2594 	  rtx_insn *insn = i == 0 ? i0 : i == 1 ? i1 : i == 2 ? i2 : i3;
2595 	  rtx set = single_set (insn);
2596 	  rtx src;
2597 	  if (!set)
2598 	    continue;
2599 	  src = SET_SRC (set);
2600 	  if (CONSTANT_P (src))
2601 	    {
2602 	      ngood += 2;
2603 	      break;
2604 	    }
2605 	  else if (BINARY_P (src) && CONSTANT_P (XEXP (src, 1)))
2606 	    ngood++;
2607 	  else if (GET_CODE (src) == ASHIFT || GET_CODE (src) == ASHIFTRT
2608 		   || GET_CODE (src) == LSHIFTRT)
2609 	    nshift++;
2610 	}
2611 
2612       /* If I0 loads a memory and I3 sets the same memory, then I1 and I2
2613 	 are likely manipulating its value.  Ideally we'll be able to combine
2614 	 all four insns into a bitfield insertion of some kind.
2615 
2616 	 Note the source in I0 might be inside a sign/zero extension and the
2617 	 memory modes in I0 and I3 might be different.  So extract the address
2618 	 from the destination of I3 and search for it in the source of I0.
2619 
2620 	 In the event that there's a match but the source/dest do not actually
2621 	 refer to the same memory, the worst that happens is we try some
2622 	 combinations that we wouldn't have otherwise.  */
2623       if ((set0 = single_set (i0))
2624 	  /* Ensure the source of SET0 is a MEM, possibly buried inside
2625 	     an extension.  */
2626 	  && (GET_CODE (SET_SRC (set0)) == MEM
2627 	      || ((GET_CODE (SET_SRC (set0)) == ZERO_EXTEND
2628 		   || GET_CODE (SET_SRC (set0)) == SIGN_EXTEND)
2629 		  && GET_CODE (XEXP (SET_SRC (set0), 0)) == MEM))
2630 	  && (set3 = single_set (i3))
2631 	  /* Ensure the destination of SET3 is a MEM.  */
2632 	  && GET_CODE (SET_DEST (set3)) == MEM
2633 	  /* Would it be better to extract the base address for the MEM
2634 	     in SET3 and look for that?  I don't have cases where it matters
2635 	     but I could envision such cases.  */
2636 	  && rtx_referenced_p (XEXP (SET_DEST (set3), 0), SET_SRC (set0)))
2637 	ngood += 2;
2638 
2639       if (ngood < 2 && nshift < 2)
2640 	return 0;
2641     }
2642 
2643   /* Exit early if one of the insns involved can't be used for
2644      combinations.  */
2645   if (CALL_P (i2)
2646       || (i1 && CALL_P (i1))
2647       || (i0 && CALL_P (i0))
2648       || cant_combine_insn_p (i3)
2649       || cant_combine_insn_p (i2)
2650       || (i1 && cant_combine_insn_p (i1))
2651       || (i0 && cant_combine_insn_p (i0))
2652       || likely_spilled_retval_p (i3))
2653     return 0;
2654 
2655   combine_attempts++;
2656   undobuf.other_insn = 0;
2657 
2658   /* Reset the hard register usage information.  */
2659   CLEAR_HARD_REG_SET (newpat_used_regs);
2660 
2661   if (dump_file && (dump_flags & TDF_DETAILS))
2662     {
2663       if (i0)
2664 	fprintf (dump_file, "\nTrying %d, %d, %d -> %d:\n",
2665 		 INSN_UID (i0), INSN_UID (i1), INSN_UID (i2), INSN_UID (i3));
2666       else if (i1)
2667 	fprintf (dump_file, "\nTrying %d, %d -> %d:\n",
2668 		 INSN_UID (i1), INSN_UID (i2), INSN_UID (i3));
2669       else
2670 	fprintf (dump_file, "\nTrying %d -> %d:\n",
2671 		 INSN_UID (i2), INSN_UID (i3));
2672 
2673       if (i0)
2674 	dump_insn_slim (dump_file, i0);
2675       if (i1)
2676 	dump_insn_slim (dump_file, i1);
2677       dump_insn_slim (dump_file, i2);
2678       dump_insn_slim (dump_file, i3);
2679     }
2680 
2681   /* If multiple insns feed into one of I2 or I3, they can be in any
2682      order.  To simplify the code below, reorder them in sequence.  */
2683   if (i0 && DF_INSN_LUID (i0) > DF_INSN_LUID (i2))
2684     std::swap (i0, i2);
2685   if (i0 && DF_INSN_LUID (i0) > DF_INSN_LUID (i1))
2686     std::swap (i0, i1);
2687   if (i1 && DF_INSN_LUID (i1) > DF_INSN_LUID (i2))
2688     std::swap (i1, i2);
2689 
2690   added_links_insn = 0;
2691   added_notes_insn = 0;
2692 
2693   /* First check for one important special case that the code below will
2694      not handle.  Namely, the case where I1 is zero, I2 is a PARALLEL
2695      and I3 is a SET whose SET_SRC is a SET_DEST in I2.  In that case,
2696      we may be able to replace that destination with the destination of I3.
2697      This occurs in the common code where we compute both a quotient and
2698      remainder into a structure, in which case we want to do the computation
2699      directly into the structure to avoid register-register copies.
2700 
2701      Note that this case handles both multiple sets in I2 and also cases
2702      where I2 has a number of CLOBBERs inside the PARALLEL.
2703 
2704      We make very conservative checks below and only try to handle the
2705      most common cases of this.  For example, we only handle the case
2706      where I2 and I3 are adjacent to avoid making difficult register
2707      usage tests.  */
2708 
2709   if (i1 == 0 && NONJUMP_INSN_P (i3) && GET_CODE (PATTERN (i3)) == SET
2710       && REG_P (SET_SRC (PATTERN (i3)))
2711       && REGNO (SET_SRC (PATTERN (i3))) >= FIRST_PSEUDO_REGISTER
2712       && find_reg_note (i3, REG_DEAD, SET_SRC (PATTERN (i3)))
2713       && GET_CODE (PATTERN (i2)) == PARALLEL
2714       && ! side_effects_p (SET_DEST (PATTERN (i3)))
2715       /* If the dest of I3 is a ZERO_EXTRACT or STRICT_LOW_PART, the code
2716 	 below would need to check what is inside (and reg_overlap_mentioned_p
2717 	 doesn't support those codes anyway).  Don't allow those destinations;
2718 	 the resulting insn isn't likely to be recognized anyway.  */
2719       && GET_CODE (SET_DEST (PATTERN (i3))) != ZERO_EXTRACT
2720       && GET_CODE (SET_DEST (PATTERN (i3))) != STRICT_LOW_PART
2721       && ! reg_overlap_mentioned_p (SET_SRC (PATTERN (i3)),
2722 				    SET_DEST (PATTERN (i3)))
2723       && next_active_insn (i2) == i3)
2724     {
2725       rtx p2 = PATTERN (i2);
2726 
2727       /* Make sure that the destination of I3,
2728 	 which we are going to substitute into one output of I2,
2729 	 is not used within another output of I2.  We must avoid making this:
2730 	 (parallel [(set (mem (reg 69)) ...)
2731 		    (set (reg 69) ...)])
2732 	 which is not well-defined as to order of actions.
2733 	 (Besides, reload can't handle output reloads for this.)
2734 
2735 	 The problem can also happen if the dest of I3 is a memory ref,
2736 	 if another dest in I2 is an indirect memory ref.
2737 
2738 	 Neither can this PARALLEL be an asm.  We do not allow combining
2739 	 that usually (see can_combine_p), so do not here either.  */
2740       bool ok = true;
2741       for (i = 0; ok && i < XVECLEN (p2, 0); i++)
2742 	{
2743 	  if ((GET_CODE (XVECEXP (p2, 0, i)) == SET
2744 	       || GET_CODE (XVECEXP (p2, 0, i)) == CLOBBER)
2745 	      && reg_overlap_mentioned_p (SET_DEST (PATTERN (i3)),
2746 					  SET_DEST (XVECEXP (p2, 0, i))))
2747 	    ok = false;
2748 	  else if (GET_CODE (XVECEXP (p2, 0, i)) == SET
2749 		   && GET_CODE (SET_SRC (XVECEXP (p2, 0, i))) == ASM_OPERANDS)
2750 	    ok = false;
2751 	}
2752 
2753       if (ok)
2754 	for (i = 0; i < XVECLEN (p2, 0); i++)
2755 	  if (GET_CODE (XVECEXP (p2, 0, i)) == SET
2756 	      && SET_DEST (XVECEXP (p2, 0, i)) == SET_SRC (PATTERN (i3)))
2757 	    {
2758 	      combine_merges++;
2759 
2760 	      subst_insn = i3;
2761 	      subst_low_luid = DF_INSN_LUID (i2);
2762 
2763 	      added_sets_2 = added_sets_1 = added_sets_0 = 0;
2764 	      i2src = SET_SRC (XVECEXP (p2, 0, i));
2765 	      i2dest = SET_DEST (XVECEXP (p2, 0, i));
2766 	      i2dest_killed = dead_or_set_p (i2, i2dest);
2767 
2768 	      /* Replace the dest in I2 with our dest and make the resulting
2769 		 insn the new pattern for I3.  Then skip to where we validate
2770 		 the pattern.  Everything was set up above.  */
2771 	      SUBST (SET_DEST (XVECEXP (p2, 0, i)), SET_DEST (PATTERN (i3)));
2772 	      newpat = p2;
2773 	      i3_subst_into_i2 = 1;
2774 	      goto validate_replacement;
2775 	    }
2776     }
2777 
2778   /* If I2 is setting a pseudo to a constant and I3 is setting some
2779      sub-part of it to another constant, merge them by making a new
2780      constant.  */
2781   if (i1 == 0
2782       && (temp_expr = single_set (i2)) != 0
2783       && is_a <scalar_int_mode> (GET_MODE (SET_DEST (temp_expr)), &temp_mode)
2784       && CONST_SCALAR_INT_P (SET_SRC (temp_expr))
2785       && GET_CODE (PATTERN (i3)) == SET
2786       && CONST_SCALAR_INT_P (SET_SRC (PATTERN (i3)))
2787       && reg_subword_p (SET_DEST (PATTERN (i3)), SET_DEST (temp_expr)))
2788     {
2789       rtx dest = SET_DEST (PATTERN (i3));
2790       rtx temp_dest = SET_DEST (temp_expr);
2791       int offset = -1;
2792       int width = 0;
2793 
2794       if (GET_CODE (dest) == ZERO_EXTRACT)
2795 	{
2796 	  if (CONST_INT_P (XEXP (dest, 1))
2797 	      && CONST_INT_P (XEXP (dest, 2))
2798 	      && is_a <scalar_int_mode> (GET_MODE (XEXP (dest, 0)),
2799 					 &dest_mode))
2800 	    {
2801 	      width = INTVAL (XEXP (dest, 1));
2802 	      offset = INTVAL (XEXP (dest, 2));
2803 	      dest = XEXP (dest, 0);
2804 	      if (BITS_BIG_ENDIAN)
2805 		offset = GET_MODE_PRECISION (dest_mode) - width - offset;
2806 	    }
2807 	}
2808       else
2809 	{
2810 	  if (GET_CODE (dest) == STRICT_LOW_PART)
2811 	    dest = XEXP (dest, 0);
2812 	  if (is_a <scalar_int_mode> (GET_MODE (dest), &dest_mode))
2813 	    {
2814 	      width = GET_MODE_PRECISION (dest_mode);
2815 	      offset = 0;
2816 	    }
2817 	}
2818 
2819       if (offset >= 0)
2820 	{
2821 	  /* If this is the low part, we're done.  */
2822 	  if (subreg_lowpart_p (dest))
2823 	    ;
2824 	  /* Handle the case where inner is twice the size of outer.  */
2825 	  else if (GET_MODE_PRECISION (temp_mode)
2826 		   == 2 * GET_MODE_PRECISION (dest_mode))
2827 	    offset += GET_MODE_PRECISION (dest_mode);
2828 	  /* Otherwise give up for now.  */
2829 	  else
2830 	    offset = -1;
2831 	}
2832 
2833       if (offset >= 0)
2834 	{
2835 	  rtx inner = SET_SRC (PATTERN (i3));
2836 	  rtx outer = SET_SRC (temp_expr);
2837 
2838 	  wide_int o = wi::insert (rtx_mode_t (outer, temp_mode),
2839 				   rtx_mode_t (inner, dest_mode),
2840 				   offset, width);
2841 
2842 	  combine_merges++;
2843 	  subst_insn = i3;
2844 	  subst_low_luid = DF_INSN_LUID (i2);
2845 	  added_sets_2 = added_sets_1 = added_sets_0 = 0;
2846 	  i2dest = temp_dest;
2847 	  i2dest_killed = dead_or_set_p (i2, i2dest);
2848 
2849 	  /* Replace the source in I2 with the new constant and make the
2850 	     resulting insn the new pattern for I3.  Then skip to where we
2851 	     validate the pattern.  Everything was set up above.  */
2852 	  SUBST (SET_SRC (temp_expr),
2853 		 immed_wide_int_const (o, temp_mode));
2854 
2855 	  newpat = PATTERN (i2);
2856 
2857           /* The dest of I3 has been replaced with the dest of I2.  */
2858           changed_i3_dest = 1;
2859 	  goto validate_replacement;
2860 	}
2861     }
2862 
2863   /* If we have no I1 and I2 looks like:
2864 	(parallel [(set (reg:CC X) (compare:CC OP (const_int 0)))
2865 		   (set Y OP)])
2866      make up a dummy I1 that is
2867 	(set Y OP)
2868      and change I2 to be
2869 	(set (reg:CC X) (compare:CC Y (const_int 0)))
2870 
2871      (We can ignore any trailing CLOBBERs.)
2872 
2873      This undoes a previous combination and allows us to match a branch-and-
2874      decrement insn.  */
2875 
2876   if (i1 == 0
2877       && is_parallel_of_n_reg_sets (PATTERN (i2), 2)
2878       && (GET_MODE_CLASS (GET_MODE (SET_DEST (XVECEXP (PATTERN (i2), 0, 0))))
2879 	  == MODE_CC)
2880       && GET_CODE (SET_SRC (XVECEXP (PATTERN (i2), 0, 0))) == COMPARE
2881       && XEXP (SET_SRC (XVECEXP (PATTERN (i2), 0, 0)), 1) == const0_rtx
2882       && rtx_equal_p (XEXP (SET_SRC (XVECEXP (PATTERN (i2), 0, 0)), 0),
2883 		      SET_SRC (XVECEXP (PATTERN (i2), 0, 1)))
2884       && !reg_used_between_p (SET_DEST (XVECEXP (PATTERN (i2), 0, 0)), i2, i3)
2885       && !reg_used_between_p (SET_DEST (XVECEXP (PATTERN (i2), 0, 1)), i2, i3))
2886     {
2887       /* We make I1 with the same INSN_UID as I2.  This gives it
2888 	 the same DF_INSN_LUID for value tracking.  Our fake I1 will
2889 	 never appear in the insn stream so giving it the same INSN_UID
2890 	 as I2 will not cause a problem.  */
2891 
2892       i1 = gen_rtx_INSN (VOIDmode, NULL, i2, BLOCK_FOR_INSN (i2),
2893 			 XVECEXP (PATTERN (i2), 0, 1), INSN_LOCATION (i2),
2894 			 -1, NULL_RTX);
2895       INSN_UID (i1) = INSN_UID (i2);
2896 
2897       SUBST (PATTERN (i2), XVECEXP (PATTERN (i2), 0, 0));
2898       SUBST (XEXP (SET_SRC (PATTERN (i2)), 0),
2899 	     SET_DEST (PATTERN (i1)));
2900       unsigned int regno = REGNO (SET_DEST (PATTERN (i1)));
2901       SUBST_LINK (LOG_LINKS (i2),
2902 		  alloc_insn_link (i1, regno, LOG_LINKS (i2)));
2903     }
2904 
2905   /* If I2 is a PARALLEL of two SETs of REGs (and perhaps some CLOBBERs),
2906      make those two SETs separate I1 and I2 insns, and make an I0 that is
2907      the original I1.  */
2908   if (i0 == 0
2909       && is_parallel_of_n_reg_sets (PATTERN (i2), 2)
2910       && can_split_parallel_of_n_reg_sets (i2, 2)
2911       && !reg_used_between_p (SET_DEST (XVECEXP (PATTERN (i2), 0, 0)), i2, i3)
2912       && !reg_used_between_p (SET_DEST (XVECEXP (PATTERN (i2), 0, 1)), i2, i3)
2913       && !reg_set_between_p  (SET_DEST (XVECEXP (PATTERN (i2), 0, 0)), i2, i3)
2914       && !reg_set_between_p  (SET_DEST (XVECEXP (PATTERN (i2), 0, 1)), i2, i3))
2915     {
2916       /* If there is no I1, there is no I0 either.  */
2917       i0 = i1;
2918 
2919       /* We make I1 with the same INSN_UID as I2.  This gives it
2920 	 the same DF_INSN_LUID for value tracking.  Our fake I1 will
2921 	 never appear in the insn stream so giving it the same INSN_UID
2922 	 as I2 will not cause a problem.  */
2923 
2924       i1 = gen_rtx_INSN (VOIDmode, NULL, i2, BLOCK_FOR_INSN (i2),
2925 			 XVECEXP (PATTERN (i2), 0, 0), INSN_LOCATION (i2),
2926 			 -1, NULL_RTX);
2927       INSN_UID (i1) = INSN_UID (i2);
2928 
2929       SUBST (PATTERN (i2), XVECEXP (PATTERN (i2), 0, 1));
2930     }
2931 
2932   /* Verify that I2 and maybe I1 and I0 can be combined into I3.  */
2933   if (!can_combine_p (i2, i3, i0, i1, NULL, NULL, &i2dest, &i2src))
2934     {
2935       if (dump_file && (dump_flags & TDF_DETAILS))
2936 	fprintf (dump_file, "Can't combine i2 into i3\n");
2937       undo_all ();
2938       return 0;
2939     }
2940   if (i1 && !can_combine_p (i1, i3, i0, NULL, i2, NULL, &i1dest, &i1src))
2941     {
2942       if (dump_file && (dump_flags & TDF_DETAILS))
2943 	fprintf (dump_file, "Can't combine i1 into i3\n");
2944       undo_all ();
2945       return 0;
2946     }
2947   if (i0 && !can_combine_p (i0, i3, NULL, NULL, i1, i2, &i0dest, &i0src))
2948     {
2949       if (dump_file && (dump_flags & TDF_DETAILS))
2950 	fprintf (dump_file, "Can't combine i0 into i3\n");
2951       undo_all ();
2952       return 0;
2953     }
2954 
2955   /* With non-call exceptions we can end up trying to combine multiple
2956      insns with possible EH side effects.  Make sure we can combine
2957      that to a single insn which means there must be at most one insn
2958      in the combination with an EH side effect.  */
2959   if (cfun->can_throw_non_call_exceptions)
2960     {
2961       if (find_reg_note (i3, REG_EH_REGION, NULL_RTX)
2962 	  || find_reg_note (i2, REG_EH_REGION, NULL_RTX)
2963 	  || (i1 && find_reg_note (i1, REG_EH_REGION, NULL_RTX))
2964 	  || (i0 && find_reg_note (i0, REG_EH_REGION, NULL_RTX)))
2965 	{
2966 	  has_non_call_exception = true;
2967 	  if (insn_could_throw_p (i3)
2968 	      + insn_could_throw_p (i2)
2969 	      + (i1 ? insn_could_throw_p (i1) : 0)
2970 	      + (i0 ? insn_could_throw_p (i0) : 0) > 1)
2971 	    {
2972 	      if (dump_file && (dump_flags & TDF_DETAILS))
2973 		fprintf (dump_file, "Can't combine multiple insns with EH "
2974 			 "side-effects\n");
2975 	      undo_all ();
2976 	      return 0;
2977 	    }
2978 	}
2979     }
2980 
2981   /* Record whether i2 and i3 are trivial moves.  */
2982   i2_was_move = is_just_move (i2);
2983   i3_was_move = is_just_move (i3);
2984 
2985   /* Record whether I2DEST is used in I2SRC and similarly for the other
2986      cases.  Knowing this will help in register status updating below.  */
2987   i2dest_in_i2src = reg_overlap_mentioned_p (i2dest, i2src);
2988   i1dest_in_i1src = i1 && reg_overlap_mentioned_p (i1dest, i1src);
2989   i2dest_in_i1src = i1 && reg_overlap_mentioned_p (i2dest, i1src);
2990   i0dest_in_i0src = i0 && reg_overlap_mentioned_p (i0dest, i0src);
2991   i1dest_in_i0src = i0 && reg_overlap_mentioned_p (i1dest, i0src);
2992   i2dest_in_i0src = i0 && reg_overlap_mentioned_p (i2dest, i0src);
2993   i2dest_killed = dead_or_set_p (i2, i2dest);
2994   i1dest_killed = i1 && dead_or_set_p (i1, i1dest);
2995   i0dest_killed = i0 && dead_or_set_p (i0, i0dest);
2996 
2997   /* For the earlier insns, determine which of the subsequent ones they
2998      feed.  */
2999   i1_feeds_i2_n = i1 && insn_a_feeds_b (i1, i2);
3000   i0_feeds_i1_n = i0 && insn_a_feeds_b (i0, i1);
3001   i0_feeds_i2_n = (i0 && (!i0_feeds_i1_n ? insn_a_feeds_b (i0, i2)
3002 			  : (!reg_overlap_mentioned_p (i1dest, i0dest)
3003 			     && reg_overlap_mentioned_p (i0dest, i2src))));
3004 
3005   /* Ensure that I3's pattern can be the destination of combines.  */
3006   if (! combinable_i3pat (i3, &PATTERN (i3), i2dest, i1dest, i0dest,
3007 			  i1 && i2dest_in_i1src && !i1_feeds_i2_n,
3008 			  i0 && ((i2dest_in_i0src && !i0_feeds_i2_n)
3009 				 || (i1dest_in_i0src && !i0_feeds_i1_n)),
3010 			  &i3dest_killed))
3011     {
3012       undo_all ();
3013       return 0;
3014     }
3015 
3016   /* See if any of the insns is a MULT operation.  Unless one is, we will
3017      reject a combination that is, since it must be slower.  Be conservative
3018      here.  */
3019   if (GET_CODE (i2src) == MULT
3020       || (i1 != 0 && GET_CODE (i1src) == MULT)
3021       || (i0 != 0 && GET_CODE (i0src) == MULT)
3022       || (GET_CODE (PATTERN (i3)) == SET
3023 	  && GET_CODE (SET_SRC (PATTERN (i3))) == MULT))
3024     have_mult = 1;
3025 
3026   /* If I3 has an inc, then give up if I1 or I2 uses the reg that is inc'd.
3027      We used to do this EXCEPT in one case: I3 has a post-inc in an
3028      output operand.  However, that exception can give rise to insns like
3029 	mov r3,(r3)+
3030      which is a famous insn on the PDP-11 where the value of r3 used as the
3031      source was model-dependent.  Avoid this sort of thing.  */
3032 
3033 #if 0
3034   if (!(GET_CODE (PATTERN (i3)) == SET
3035 	&& REG_P (SET_SRC (PATTERN (i3)))
3036 	&& MEM_P (SET_DEST (PATTERN (i3)))
3037 	&& (GET_CODE (XEXP (SET_DEST (PATTERN (i3)), 0)) == POST_INC
3038 	    || GET_CODE (XEXP (SET_DEST (PATTERN (i3)), 0)) == POST_DEC)))
3039     /* It's not the exception.  */
3040 #endif
3041     if (AUTO_INC_DEC)
3042       {
3043 	rtx link;
3044 	for (link = REG_NOTES (i3); link; link = XEXP (link, 1))
3045 	  if (REG_NOTE_KIND (link) == REG_INC
3046 	      && (reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (i2))
3047 		  || (i1 != 0
3048 		      && reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (i1)))))
3049 	    {
3050 	      undo_all ();
3051 	      return 0;
3052 	    }
3053       }
3054 
3055   /* See if the SETs in I1 or I2 need to be kept around in the merged
3056      instruction: whenever the value set there is still needed past I3.
3057      For the SET in I2, this is easy: we see if I2DEST dies or is set in I3.
3058 
3059      For the SET in I1, we have two cases: if I1 and I2 independently feed
3060      into I3, the set in I1 needs to be kept around unless I1DEST dies
3061      or is set in I3.  Otherwise (if I1 feeds I2 which feeds I3), the set
3062      in I1 needs to be kept around unless I1DEST dies or is set in either
3063      I2 or I3.  The same considerations apply to I0.  */
3064 
3065   added_sets_2 = !dead_or_set_p (i3, i2dest);
3066 
3067   if (i1)
3068     added_sets_1 = !(dead_or_set_p (i3, i1dest)
3069 		     || (i1_feeds_i2_n && dead_or_set_p (i2, i1dest)));
3070   else
3071     added_sets_1 = 0;
3072 
3073   if (i0)
3074     added_sets_0 =  !(dead_or_set_p (i3, i0dest)
3075 		      || (i0_feeds_i1_n && dead_or_set_p (i1, i0dest))
3076 		      || ((i0_feeds_i2_n || (i0_feeds_i1_n && i1_feeds_i2_n))
3077 			  && dead_or_set_p (i2, i0dest)));
3078   else
3079     added_sets_0 = 0;
3080 
3081   /* We are about to copy insns for the case where they need to be kept
3082      around.  Check that they can be copied in the merged instruction.  */
3083 
3084   if (targetm.cannot_copy_insn_p
3085       && ((added_sets_2 && targetm.cannot_copy_insn_p (i2))
3086 	  || (i1 && added_sets_1 && targetm.cannot_copy_insn_p (i1))
3087 	  || (i0 && added_sets_0 && targetm.cannot_copy_insn_p (i0))))
3088     {
3089       undo_all ();
3090       return 0;
3091     }
3092 
3093   /* We cannot safely duplicate volatile references in any case.  */
3094 
3095   if ((added_sets_2 && volatile_refs_p (PATTERN (i2)))
3096       || (added_sets_1 && volatile_refs_p (PATTERN (i1)))
3097       || (added_sets_0 && volatile_refs_p (PATTERN (i0))))
3098     {
3099       undo_all ();
3100       return 0;
3101     }
3102 
3103   /* Count how many auto_inc expressions there were in the original insns;
3104      we need to have the same number in the resulting patterns.  */
3105 
3106   if (i0)
3107     for_each_inc_dec (PATTERN (i0), count_auto_inc, &n_auto_inc);
3108   if (i1)
3109     for_each_inc_dec (PATTERN (i1), count_auto_inc, &n_auto_inc);
3110   for_each_inc_dec (PATTERN (i2), count_auto_inc, &n_auto_inc);
3111   for_each_inc_dec (PATTERN (i3), count_auto_inc, &n_auto_inc);
3112 
3113   /* If the set in I2 needs to be kept around, we must make a copy of
3114      PATTERN (I2), so that when we substitute I1SRC for I1DEST in
3115      PATTERN (I2), we are only substituting for the original I1DEST, not into
3116      an already-substituted copy.  This also prevents making self-referential
3117      rtx.  If I2 is a PARALLEL, we just need the piece that assigns I2SRC to
3118      I2DEST.  */
3119 
3120   if (added_sets_2)
3121     {
3122       if (GET_CODE (PATTERN (i2)) == PARALLEL)
3123 	i2pat = gen_rtx_SET (i2dest, copy_rtx (i2src));
3124       else
3125 	i2pat = copy_rtx (PATTERN (i2));
3126     }
3127 
3128   if (added_sets_1)
3129     {
3130       if (GET_CODE (PATTERN (i1)) == PARALLEL)
3131 	i1pat = gen_rtx_SET (i1dest, copy_rtx (i1src));
3132       else
3133 	i1pat = copy_rtx (PATTERN (i1));
3134     }
3135 
3136   if (added_sets_0)
3137     {
3138       if (GET_CODE (PATTERN (i0)) == PARALLEL)
3139 	i0pat = gen_rtx_SET (i0dest, copy_rtx (i0src));
3140       else
3141 	i0pat = copy_rtx (PATTERN (i0));
3142     }
3143 
3144   combine_merges++;
3145 
3146   /* Substitute in the latest insn for the regs set by the earlier ones.  */
3147 
3148   maxreg = max_reg_num ();
3149 
3150   subst_insn = i3;
3151 
3152   /* Many machines have insns that can both perform an
3153      arithmetic operation and set the condition code.  These operations will
3154      be represented as a PARALLEL with the first element of the vector
3155      being a COMPARE of an arithmetic operation with the constant zero.
3156      The second element of the vector will set some pseudo to the result
3157      of the same arithmetic operation.  If we simplify the COMPARE, we won't
3158      match such a pattern and so will generate an extra insn.   Here we test
3159      for this case, where both the comparison and the operation result are
3160      needed, and make the PARALLEL by just replacing I2DEST in I3SRC with
3161      I2SRC.  Later we will make the PARALLEL that contains I2.  */
3162 
3163   if (i1 == 0 && added_sets_2 && GET_CODE (PATTERN (i3)) == SET
3164       && GET_CODE (SET_SRC (PATTERN (i3))) == COMPARE
3165       && CONST_INT_P (XEXP (SET_SRC (PATTERN (i3)), 1))
3166       && rtx_equal_p (XEXP (SET_SRC (PATTERN (i3)), 0), i2dest))
3167     {
3168       rtx newpat_dest;
3169       rtx *cc_use_loc = NULL;
3170       rtx_insn *cc_use_insn = NULL;
3171       rtx op0 = i2src, op1 = XEXP (SET_SRC (PATTERN (i3)), 1);
3172       machine_mode compare_mode, orig_compare_mode;
3173       enum rtx_code compare_code = UNKNOWN, orig_compare_code = UNKNOWN;
3174       scalar_int_mode mode;
3175 
3176       newpat = PATTERN (i3);
3177       newpat_dest = SET_DEST (newpat);
3178       compare_mode = orig_compare_mode = GET_MODE (newpat_dest);
3179 
3180       if (undobuf.other_insn == 0
3181 	  && (cc_use_loc = find_single_use (SET_DEST (newpat), i3,
3182 					    &cc_use_insn)))
3183 	{
3184 	  compare_code = orig_compare_code = GET_CODE (*cc_use_loc);
3185 	  if (is_a <scalar_int_mode> (GET_MODE (i2dest), &mode))
3186 	    compare_code = simplify_compare_const (compare_code, mode,
3187 						   op0, &op1);
3188 	  target_canonicalize_comparison (&compare_code, &op0, &op1, 1);
3189 	}
3190 
3191       /* Do the rest only if op1 is const0_rtx, which may be the
3192 	 result of simplification.  */
3193       if (op1 == const0_rtx)
3194 	{
3195 	  /* If a single use of the CC is found, prepare to modify it
3196 	     when SELECT_CC_MODE returns a new CC-class mode, or when
3197 	     the above simplify_compare_const() returned a new comparison
3198 	     operator.  undobuf.other_insn is assigned the CC use insn
3199 	     when modifying it.  */
3200 	  if (cc_use_loc)
3201 	    {
3202 #ifdef SELECT_CC_MODE
3203 	      machine_mode new_mode
3204 		= SELECT_CC_MODE (compare_code, op0, op1);
3205 	      if (new_mode != orig_compare_mode
3206 		  && can_change_dest_mode (SET_DEST (newpat),
3207 					   added_sets_2, new_mode))
3208 		{
3209 		  unsigned int regno = REGNO (newpat_dest);
3210 		  compare_mode = new_mode;
3211 		  if (regno < FIRST_PSEUDO_REGISTER)
3212 		    newpat_dest = gen_rtx_REG (compare_mode, regno);
3213 		  else
3214 		    {
3215 		      subst_mode (regno, compare_mode);
3216 		      newpat_dest = regno_reg_rtx[regno];
3217 		    }
3218 		}
3219 #endif
3220 	      /* Cases for modifying the CC-using comparison.  */
3221 	      if (compare_code != orig_compare_code
3222 		  /* ??? Do we need to verify the zero rtx?  */
3223 		  && XEXP (*cc_use_loc, 1) == const0_rtx)
3224 		{
3225 		  /* Replace cc_use_loc with entire new RTX.  */
3226 		  SUBST (*cc_use_loc,
3227 			 gen_rtx_fmt_ee (compare_code, GET_MODE (*cc_use_loc),
3228 					 newpat_dest, const0_rtx));
3229 		  undobuf.other_insn = cc_use_insn;
3230 		}
3231 	      else if (compare_mode != orig_compare_mode)
3232 		{
3233 		  /* Just replace the CC reg with a new mode.  */
3234 		  SUBST (XEXP (*cc_use_loc, 0), newpat_dest);
3235 		  undobuf.other_insn = cc_use_insn;
3236 		}
3237 	    }
3238 
3239 	  /* Now we modify the current newpat:
3240 	     First, SET_DEST(newpat) is updated if the CC mode has been
3241 	     altered. For targets without SELECT_CC_MODE, this should be
3242 	     optimized away.  */
3243 	  if (compare_mode != orig_compare_mode)
3244 	    SUBST (SET_DEST (newpat), newpat_dest);
3245 	  /* This is always done to propagate i2src into newpat.  */
3246 	  SUBST (SET_SRC (newpat),
3247 		 gen_rtx_COMPARE (compare_mode, op0, op1));
3248 	  /* Create new version of i2pat if needed; the below PARALLEL
3249 	     creation needs this to work correctly.  */
3250 	  if (! rtx_equal_p (i2src, op0))
3251 	    i2pat = gen_rtx_SET (i2dest, op0);
3252 	  i2_is_used = 1;
3253 	}
3254     }
3255 
3256   if (i2_is_used == 0)
3257     {
3258       /* It is possible that the source of I2 or I1 may be performing
3259 	 an unneeded operation, such as a ZERO_EXTEND of something
3260 	 that is known to have the high part zero.  Handle that case
3261 	 by letting subst look at the inner insns.
3262 
3263 	 Another way to do this would be to have a function that tries
3264 	 to simplify a single insn instead of merging two or more
3265 	 insns.  We don't do this because of the potential of infinite
3266 	 loops and because of the potential extra memory required.
3267 	 However, doing it the way we are is a bit of a kludge and
3268 	 doesn't catch all cases.
3269 
3270 	 But only do this if -fexpensive-optimizations since it slows
3271 	 things down and doesn't usually win.
3272 
3273 	 This is not done in the COMPARE case above because the
3274 	 unmodified I2PAT is used in the PARALLEL and so a pattern
3275 	 with a modified I2SRC would not match.  */
3276 
3277       if (flag_expensive_optimizations)
3278 	{
3279 	  /* Pass pc_rtx so no substitutions are done, just
3280 	     simplifications.  */
3281 	  if (i1)
3282 	    {
3283 	      subst_low_luid = DF_INSN_LUID (i1);
3284 	      i1src = subst (i1src, pc_rtx, pc_rtx, 0, 0, 0);
3285 	    }
3286 
3287 	  subst_low_luid = DF_INSN_LUID (i2);
3288 	  i2src = subst (i2src, pc_rtx, pc_rtx, 0, 0, 0);
3289 	}
3290 
3291       n_occurrences = 0;		/* `subst' counts here */
3292       subst_low_luid = DF_INSN_LUID (i2);
3293 
3294       /* If I1 feeds into I2 and I1DEST is in I1SRC, we need to make a unique
3295 	 copy of I2SRC each time we substitute it, in order to avoid creating
3296 	 self-referential RTL when we will be substituting I1SRC for I1DEST
3297 	 later.  Likewise if I0 feeds into I2, either directly or indirectly
3298 	 through I1, and I0DEST is in I0SRC.  */
3299       newpat = subst (PATTERN (i3), i2dest, i2src, 0, 0,
3300 		      (i1_feeds_i2_n && i1dest_in_i1src)
3301 		      || ((i0_feeds_i2_n || (i0_feeds_i1_n && i1_feeds_i2_n))
3302 			  && i0dest_in_i0src));
3303       substed_i2 = 1;
3304 
3305       /* Record whether I2's body now appears within I3's body.  */
3306       i2_is_used = n_occurrences;
3307     }
3308 
3309   /* If we already got a failure, don't try to do more.  Otherwise, try to
3310      substitute I1 if we have it.  */
3311 
3312   if (i1 && GET_CODE (newpat) != CLOBBER)
3313     {
3314       /* Before we can do this substitution, we must redo the test done
3315 	 above (see detailed comments there) that ensures I1DEST isn't
3316 	 mentioned in any SETs in NEWPAT that are field assignments.  */
3317       if (!combinable_i3pat (NULL, &newpat, i1dest, NULL_RTX, NULL_RTX,
3318 			     0, 0, 0))
3319 	{
3320 	  undo_all ();
3321 	  return 0;
3322 	}
3323 
3324       n_occurrences = 0;
3325       subst_low_luid = DF_INSN_LUID (i1);
3326 
3327       /* If the following substitution will modify I1SRC, make a copy of it
3328 	 for the case where it is substituted for I1DEST in I2PAT later.  */
3329       if (added_sets_2 && i1_feeds_i2_n)
3330 	i1src_copy = copy_rtx (i1src);
3331 
3332       /* If I0 feeds into I1 and I0DEST is in I0SRC, we need to make a unique
3333 	 copy of I1SRC each time we substitute it, in order to avoid creating
3334 	 self-referential RTL when we will be substituting I0SRC for I0DEST
3335 	 later.  */
3336       newpat = subst (newpat, i1dest, i1src, 0, 0,
3337 		      i0_feeds_i1_n && i0dest_in_i0src);
3338       substed_i1 = 1;
3339 
3340       /* Record whether I1's body now appears within I3's body.  */
3341       i1_is_used = n_occurrences;
3342     }
3343 
3344   /* Likewise for I0 if we have it.  */
3345 
3346   if (i0 && GET_CODE (newpat) != CLOBBER)
3347     {
3348       if (!combinable_i3pat (NULL, &newpat, i0dest, NULL_RTX, NULL_RTX,
3349 			     0, 0, 0))
3350 	{
3351 	  undo_all ();
3352 	  return 0;
3353 	}
3354 
3355       /* If the following substitution will modify I0SRC, make a copy of it
3356 	 for the case where it is substituted for I0DEST in I1PAT later.  */
3357       if (added_sets_1 && i0_feeds_i1_n)
3358 	i0src_copy = copy_rtx (i0src);
3359       /* And a copy for I0DEST in I2PAT substitution.  */
3360       if (added_sets_2 && ((i0_feeds_i1_n && i1_feeds_i2_n)
3361 			   || (i0_feeds_i2_n)))
3362 	i0src_copy2 = copy_rtx (i0src);
3363 
3364       n_occurrences = 0;
3365       subst_low_luid = DF_INSN_LUID (i0);
3366       newpat = subst (newpat, i0dest, i0src, 0, 0, 0);
3367       substed_i0 = 1;
3368     }
3369 
3370   if (n_auto_inc)
3371     {
3372       int new_n_auto_inc = 0;
3373       for_each_inc_dec (newpat, count_auto_inc, &new_n_auto_inc);
3374 
3375       if (n_auto_inc != new_n_auto_inc)
3376 	{
3377 	  if (dump_file && (dump_flags & TDF_DETAILS))
3378 	    fprintf (dump_file, "Number of auto_inc expressions changed\n");
3379 	  undo_all ();
3380 	  return 0;
3381 	}
3382     }
3383 
3384   /* Fail if an autoincrement side-effect has been duplicated.  Be careful
3385      to count all the ways that I2SRC and I1SRC can be used.  */
3386   if ((FIND_REG_INC_NOTE (i2, NULL_RTX) != 0
3387        && i2_is_used + added_sets_2 > 1)
3388       || (i1 != 0 && FIND_REG_INC_NOTE (i1, NULL_RTX) != 0
3389 	  && (i1_is_used + added_sets_1 + (added_sets_2 && i1_feeds_i2_n)
3390 	      > 1))
3391       || (i0 != 0 && FIND_REG_INC_NOTE (i0, NULL_RTX) != 0
3392 	  && (n_occurrences + added_sets_0
3393 	      + (added_sets_1 && i0_feeds_i1_n)
3394 	      + (added_sets_2 && i0_feeds_i2_n)
3395 	      > 1))
3396       /* Fail if we tried to make a new register.  */
3397       || max_reg_num () != maxreg
3398       /* Fail if we couldn't do something and have a CLOBBER.  */
3399       || GET_CODE (newpat) == CLOBBER
3400       /* Fail if this new pattern is a MULT and we didn't have one before
3401 	 at the outer level.  */
3402       || (GET_CODE (newpat) == SET && GET_CODE (SET_SRC (newpat)) == MULT
3403 	  && ! have_mult))
3404     {
3405       undo_all ();
3406       return 0;
3407     }
3408 
3409   /* If the actions of the earlier insns must be kept
3410      in addition to substituting them into the latest one,
3411      we must make a new PARALLEL for the latest insn
3412      to hold additional the SETs.  */
3413 
3414   if (added_sets_0 || added_sets_1 || added_sets_2)
3415     {
3416       int extra_sets = added_sets_0 + added_sets_1 + added_sets_2;
3417       combine_extras++;
3418 
3419       if (GET_CODE (newpat) == PARALLEL)
3420 	{
3421 	  rtvec old = XVEC (newpat, 0);
3422 	  total_sets = XVECLEN (newpat, 0) + extra_sets;
3423 	  newpat = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (total_sets));
3424 	  memcpy (XVEC (newpat, 0)->elem, &old->elem[0],
3425 		  sizeof (old->elem[0]) * old->num_elem);
3426 	}
3427       else
3428 	{
3429 	  rtx old = newpat;
3430 	  total_sets = 1 + extra_sets;
3431 	  newpat = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (total_sets));
3432 	  XVECEXP (newpat, 0, 0) = old;
3433 	}
3434 
3435       if (added_sets_0)
3436 	XVECEXP (newpat, 0, --total_sets) = i0pat;
3437 
3438       if (added_sets_1)
3439 	{
3440 	  rtx t = i1pat;
3441 	  if (i0_feeds_i1_n)
3442 	    t = subst (t, i0dest, i0src_copy ? i0src_copy : i0src, 0, 0, 0);
3443 
3444 	  XVECEXP (newpat, 0, --total_sets) = t;
3445 	}
3446       if (added_sets_2)
3447 	{
3448 	  rtx t = i2pat;
3449 	  if (i1_feeds_i2_n)
3450 	    t = subst (t, i1dest, i1src_copy ? i1src_copy : i1src, 0, 0,
3451 		       i0_feeds_i1_n && i0dest_in_i0src);
3452 	  if ((i0_feeds_i1_n && i1_feeds_i2_n) || i0_feeds_i2_n)
3453 	    t = subst (t, i0dest, i0src_copy2 ? i0src_copy2 : i0src, 0, 0, 0);
3454 
3455 	  XVECEXP (newpat, 0, --total_sets) = t;
3456 	}
3457     }
3458 
3459  validate_replacement:
3460 
3461   /* Note which hard regs this insn has as inputs.  */
3462   mark_used_regs_combine (newpat);
3463 
3464   /* If recog_for_combine fails, it strips existing clobbers.  If we'll
3465      consider splitting this pattern, we might need these clobbers.  */
3466   if (i1 && GET_CODE (newpat) == PARALLEL
3467       && GET_CODE (XVECEXP (newpat, 0, XVECLEN (newpat, 0) - 1)) == CLOBBER)
3468     {
3469       int len = XVECLEN (newpat, 0);
3470 
3471       newpat_vec_with_clobbers = rtvec_alloc (len);
3472       for (i = 0; i < len; i++)
3473 	RTVEC_ELT (newpat_vec_with_clobbers, i) = XVECEXP (newpat, 0, i);
3474     }
3475 
3476   /* We have recognized nothing yet.  */
3477   insn_code_number = -1;
3478 
3479   /* See if this is a PARALLEL of two SETs where one SET's destination is
3480      a register that is unused and this isn't marked as an instruction that
3481      might trap in an EH region.  In that case, we just need the other SET.
3482      We prefer this over the PARALLEL.
3483 
3484      This can occur when simplifying a divmod insn.  We *must* test for this
3485      case here because the code below that splits two independent SETs doesn't
3486      handle this case correctly when it updates the register status.
3487 
3488      It's pointless doing this if we originally had two sets, one from
3489      i3, and one from i2.  Combining then splitting the parallel results
3490      in the original i2 again plus an invalid insn (which we delete).
3491      The net effect is only to move instructions around, which makes
3492      debug info less accurate.
3493 
3494      If the remaining SET came from I2 its destination should not be used
3495      between I2 and I3.  See PR82024.  */
3496 
3497   if (!(added_sets_2 && i1 == 0)
3498       && is_parallel_of_n_reg_sets (newpat, 2)
3499       && asm_noperands (newpat) < 0)
3500     {
3501       rtx set0 = XVECEXP (newpat, 0, 0);
3502       rtx set1 = XVECEXP (newpat, 0, 1);
3503       rtx oldpat = newpat;
3504 
3505       if (((REG_P (SET_DEST (set1))
3506 	    && find_reg_note (i3, REG_UNUSED, SET_DEST (set1)))
3507 	   || (GET_CODE (SET_DEST (set1)) == SUBREG
3508 	       && find_reg_note (i3, REG_UNUSED, SUBREG_REG (SET_DEST (set1)))))
3509 	  && insn_nothrow_p (i3)
3510 	  && !side_effects_p (SET_SRC (set1)))
3511 	{
3512 	  newpat = set0;
3513 	  insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
3514 	}
3515 
3516       else if (((REG_P (SET_DEST (set0))
3517 		 && find_reg_note (i3, REG_UNUSED, SET_DEST (set0)))
3518 		|| (GET_CODE (SET_DEST (set0)) == SUBREG
3519 		    && find_reg_note (i3, REG_UNUSED,
3520 				      SUBREG_REG (SET_DEST (set0)))))
3521 	       && insn_nothrow_p (i3)
3522 	       && !side_effects_p (SET_SRC (set0)))
3523 	{
3524 	  rtx dest = SET_DEST (set1);
3525 	  if (GET_CODE (dest) == SUBREG)
3526 	    dest = SUBREG_REG (dest);
3527 	  if (!reg_used_between_p (dest, i2, i3))
3528 	    {
3529 	      newpat = set1;
3530 	      insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
3531 
3532 	      if (insn_code_number >= 0)
3533 		changed_i3_dest = 1;
3534 	    }
3535 	}
3536 
3537       if (insn_code_number < 0)
3538 	newpat = oldpat;
3539     }
3540 
3541   /* Is the result of combination a valid instruction?  */
3542   if (insn_code_number < 0)
3543     insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
3544 
3545   /* If we were combining three insns and the result is a simple SET
3546      with no ASM_OPERANDS that wasn't recognized, try to split it into two
3547      insns.  There are two ways to do this.  It can be split using a
3548      machine-specific method (like when you have an addition of a large
3549      constant) or by combine in the function find_split_point.  */
3550 
3551   if (i1 && insn_code_number < 0 && GET_CODE (newpat) == SET
3552       && asm_noperands (newpat) < 0)
3553     {
3554       rtx parallel, *split;
3555       rtx_insn *m_split_insn;
3556 
3557       /* See if the MD file can split NEWPAT.  If it can't, see if letting it
3558 	 use I2DEST as a scratch register will help.  In the latter case,
3559 	 convert I2DEST to the mode of the source of NEWPAT if we can.  */
3560 
3561       m_split_insn = combine_split_insns (newpat, i3);
3562 
3563       /* We can only use I2DEST as a scratch reg if it doesn't overlap any
3564 	 inputs of NEWPAT.  */
3565 
3566       /* ??? If I2DEST is not safe, and I1DEST exists, then it would be
3567 	 possible to try that as a scratch reg.  This would require adding
3568 	 more code to make it work though.  */
3569 
3570       if (m_split_insn == 0 && ! reg_overlap_mentioned_p (i2dest, newpat))
3571 	{
3572 	  machine_mode new_mode = GET_MODE (SET_DEST (newpat));
3573 
3574 	  /* ??? Reusing i2dest without resetting the reg_stat entry for it
3575 	     (temporarily, until we are committed to this instruction
3576 	     combination) does not work: for example, any call to nonzero_bits
3577 	     on the register (from a splitter in the MD file, for example)
3578 	     will get the old information, which is invalid.
3579 
3580 	     Since nowadays we can create registers during combine just fine,
3581 	     we should just create a new one here, not reuse i2dest.  */
3582 
3583 	  /* First try to split using the original register as a
3584 	     scratch register.  */
3585 	  parallel = gen_rtx_PARALLEL (VOIDmode,
3586 				       gen_rtvec (2, newpat,
3587 						  gen_rtx_CLOBBER (VOIDmode,
3588 								   i2dest)));
3589 	  m_split_insn = combine_split_insns (parallel, i3);
3590 
3591 	  /* If that didn't work, try changing the mode of I2DEST if
3592 	     we can.  */
3593 	  if (m_split_insn == 0
3594 	      && new_mode != GET_MODE (i2dest)
3595 	      && new_mode != VOIDmode
3596 	      && can_change_dest_mode (i2dest, added_sets_2, new_mode))
3597 	    {
3598 	      machine_mode old_mode = GET_MODE (i2dest);
3599 	      rtx ni2dest;
3600 
3601 	      if (REGNO (i2dest) < FIRST_PSEUDO_REGISTER)
3602 		ni2dest = gen_rtx_REG (new_mode, REGNO (i2dest));
3603 	      else
3604 		{
3605 		  subst_mode (REGNO (i2dest), new_mode);
3606 		  ni2dest = regno_reg_rtx[REGNO (i2dest)];
3607 		}
3608 
3609 	      parallel = (gen_rtx_PARALLEL
3610 			  (VOIDmode,
3611 			   gen_rtvec (2, newpat,
3612 				      gen_rtx_CLOBBER (VOIDmode,
3613 						       ni2dest))));
3614 	      m_split_insn = combine_split_insns (parallel, i3);
3615 
3616 	      if (m_split_insn == 0
3617 		  && REGNO (i2dest) >= FIRST_PSEUDO_REGISTER)
3618 		{
3619 		  struct undo *buf;
3620 
3621 		  adjust_reg_mode (regno_reg_rtx[REGNO (i2dest)], old_mode);
3622 		  buf = undobuf.undos;
3623 		  undobuf.undos = buf->next;
3624 		  buf->next = undobuf.frees;
3625 		  undobuf.frees = buf;
3626 		}
3627 	    }
3628 
3629 	  i2scratch = m_split_insn != 0;
3630 	}
3631 
3632       /* If recog_for_combine has discarded clobbers, try to use them
3633 	 again for the split.  */
3634       if (m_split_insn == 0 && newpat_vec_with_clobbers)
3635 	{
3636 	  parallel = gen_rtx_PARALLEL (VOIDmode, newpat_vec_with_clobbers);
3637 	  m_split_insn = combine_split_insns (parallel, i3);
3638 	}
3639 
3640       if (m_split_insn && NEXT_INSN (m_split_insn) == NULL_RTX)
3641 	{
3642 	  rtx m_split_pat = PATTERN (m_split_insn);
3643 	  insn_code_number = recog_for_combine (&m_split_pat, i3, &new_i3_notes);
3644 	  if (insn_code_number >= 0)
3645 	    newpat = m_split_pat;
3646 	}
3647       else if (m_split_insn && NEXT_INSN (NEXT_INSN (m_split_insn)) == NULL_RTX
3648 	       && (next_nonnote_nondebug_insn (i2) == i3
3649 		   || !modified_between_p (PATTERN (m_split_insn), i2, i3)))
3650 	{
3651 	  rtx i2set, i3set;
3652 	  rtx newi3pat = PATTERN (NEXT_INSN (m_split_insn));
3653 	  newi2pat = PATTERN (m_split_insn);
3654 
3655 	  i3set = single_set (NEXT_INSN (m_split_insn));
3656 	  i2set = single_set (m_split_insn);
3657 
3658 	  i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
3659 
3660 	  /* If I2 or I3 has multiple SETs, we won't know how to track
3661 	     register status, so don't use these insns.  If I2's destination
3662 	     is used between I2 and I3, we also can't use these insns.  */
3663 
3664 	  if (i2_code_number >= 0 && i2set && i3set
3665 	      && (next_nonnote_nondebug_insn (i2) == i3
3666 		  || ! reg_used_between_p (SET_DEST (i2set), i2, i3)))
3667 	    insn_code_number = recog_for_combine (&newi3pat, i3,
3668 						  &new_i3_notes);
3669 	  if (insn_code_number >= 0)
3670 	    newpat = newi3pat;
3671 
3672 	  /* It is possible that both insns now set the destination of I3.
3673 	     If so, we must show an extra use of it.  */
3674 
3675 	  if (insn_code_number >= 0)
3676 	    {
3677 	      rtx new_i3_dest = SET_DEST (i3set);
3678 	      rtx new_i2_dest = SET_DEST (i2set);
3679 
3680 	      while (GET_CODE (new_i3_dest) == ZERO_EXTRACT
3681 		     || GET_CODE (new_i3_dest) == STRICT_LOW_PART
3682 		     || GET_CODE (new_i3_dest) == SUBREG)
3683 		new_i3_dest = XEXP (new_i3_dest, 0);
3684 
3685 	      while (GET_CODE (new_i2_dest) == ZERO_EXTRACT
3686 		     || GET_CODE (new_i2_dest) == STRICT_LOW_PART
3687 		     || GET_CODE (new_i2_dest) == SUBREG)
3688 		new_i2_dest = XEXP (new_i2_dest, 0);
3689 
3690 	      if (REG_P (new_i3_dest)
3691 		  && REG_P (new_i2_dest)
3692 		  && REGNO (new_i3_dest) == REGNO (new_i2_dest)
3693 		  && REGNO (new_i2_dest) < reg_n_sets_max)
3694 		INC_REG_N_SETS (REGNO (new_i2_dest), 1);
3695 	    }
3696 	}
3697 
3698       /* If we can split it and use I2DEST, go ahead and see if that
3699 	 helps things be recognized.  Verify that none of the registers
3700 	 are set between I2 and I3.  */
3701       if (insn_code_number < 0
3702           && (split = find_split_point (&newpat, i3, false)) != 0
3703 	  /* We need I2DEST in the proper mode.  If it is a hard register
3704 	     or the only use of a pseudo, we can change its mode.
3705 	     Make sure we don't change a hard register to have a mode that
3706 	     isn't valid for it, or change the number of registers.  */
3707 	  && (GET_MODE (*split) == GET_MODE (i2dest)
3708 	      || GET_MODE (*split) == VOIDmode
3709 	      || can_change_dest_mode (i2dest, added_sets_2,
3710 				       GET_MODE (*split)))
3711 	  && (next_nonnote_nondebug_insn (i2) == i3
3712 	      || !modified_between_p (*split, i2, i3))
3713 	  /* We can't overwrite I2DEST if its value is still used by
3714 	     NEWPAT.  */
3715 	  && ! reg_referenced_p (i2dest, newpat)
3716 	  /* We should not split a possibly trapping part when we
3717 	     care about non-call EH and have REG_EH_REGION notes
3718 	     to distribute.  */
3719 	  && ! (cfun->can_throw_non_call_exceptions
3720 		&& has_non_call_exception
3721 		&& may_trap_p (*split)))
3722 	{
3723 	  rtx newdest = i2dest;
3724 	  enum rtx_code split_code = GET_CODE (*split);
3725 	  machine_mode split_mode = GET_MODE (*split);
3726 	  bool subst_done = false;
3727 	  newi2pat = NULL_RTX;
3728 
3729 	  i2scratch = true;
3730 
3731 	  /* *SPLIT may be part of I2SRC, so make sure we have the
3732 	     original expression around for later debug processing.
3733 	     We should not need I2SRC any more in other cases.  */
3734 	  if (MAY_HAVE_DEBUG_BIND_INSNS)
3735 	    i2src = copy_rtx (i2src);
3736 	  else
3737 	    i2src = NULL;
3738 
3739 	  /* Get NEWDEST as a register in the proper mode.  We have already
3740 	     validated that we can do this.  */
3741 	  if (GET_MODE (i2dest) != split_mode && split_mode != VOIDmode)
3742 	    {
3743 	      if (REGNO (i2dest) < FIRST_PSEUDO_REGISTER)
3744 		newdest = gen_rtx_REG (split_mode, REGNO (i2dest));
3745 	      else
3746 		{
3747 		  subst_mode (REGNO (i2dest), split_mode);
3748 		  newdest = regno_reg_rtx[REGNO (i2dest)];
3749 		}
3750 	    }
3751 
3752 	  /* If *SPLIT is a (mult FOO (const_int pow2)), convert it to
3753 	     an ASHIFT.  This can occur if it was inside a PLUS and hence
3754 	     appeared to be a memory address.  This is a kludge.  */
3755 	  if (split_code == MULT
3756 	      && CONST_INT_P (XEXP (*split, 1))
3757 	      && INTVAL (XEXP (*split, 1)) > 0
3758 	      && (i = exact_log2 (UINTVAL (XEXP (*split, 1)))) >= 0)
3759 	    {
3760 	      rtx i_rtx = gen_int_shift_amount (split_mode, i);
3761 	      SUBST (*split, gen_rtx_ASHIFT (split_mode,
3762 					     XEXP (*split, 0), i_rtx));
3763 	      /* Update split_code because we may not have a multiply
3764 		 anymore.  */
3765 	      split_code = GET_CODE (*split);
3766 	    }
3767 
3768 	  /* Similarly for (plus (mult FOO (const_int pow2))).  */
3769 	  if (split_code == PLUS
3770 	      && GET_CODE (XEXP (*split, 0)) == MULT
3771 	      && CONST_INT_P (XEXP (XEXP (*split, 0), 1))
3772 	      && INTVAL (XEXP (XEXP (*split, 0), 1)) > 0
3773 	      && (i = exact_log2 (UINTVAL (XEXP (XEXP (*split, 0), 1)))) >= 0)
3774 	    {
3775 	      rtx nsplit = XEXP (*split, 0);
3776 	      rtx i_rtx = gen_int_shift_amount (GET_MODE (nsplit), i);
3777 	      SUBST (XEXP (*split, 0), gen_rtx_ASHIFT (GET_MODE (nsplit),
3778 						       XEXP (nsplit, 0),
3779 						       i_rtx));
3780 	      /* Update split_code because we may not have a multiply
3781 		 anymore.  */
3782 	      split_code = GET_CODE (*split);
3783 	    }
3784 
3785 #ifdef INSN_SCHEDULING
3786 	  /* If *SPLIT is a paradoxical SUBREG, when we split it, it should
3787 	     be written as a ZERO_EXTEND.  */
3788 	  if (split_code == SUBREG && MEM_P (SUBREG_REG (*split)))
3789 	    {
3790 	      /* Or as a SIGN_EXTEND if LOAD_EXTEND_OP says that that's
3791 		 what it really is.  */
3792 	      if (load_extend_op (GET_MODE (SUBREG_REG (*split)))
3793 		  == SIGN_EXTEND)
3794 		SUBST (*split, gen_rtx_SIGN_EXTEND (split_mode,
3795 						    SUBREG_REG (*split)));
3796 	      else
3797 		SUBST (*split, gen_rtx_ZERO_EXTEND (split_mode,
3798 						    SUBREG_REG (*split)));
3799 	    }
3800 #endif
3801 
3802 	  /* Attempt to split binary operators using arithmetic identities.  */
3803 	  if (BINARY_P (SET_SRC (newpat))
3804 	      && split_mode == GET_MODE (SET_SRC (newpat))
3805 	      && ! side_effects_p (SET_SRC (newpat)))
3806 	    {
3807 	      rtx setsrc = SET_SRC (newpat);
3808 	      machine_mode mode = GET_MODE (setsrc);
3809 	      enum rtx_code code = GET_CODE (setsrc);
3810 	      rtx src_op0 = XEXP (setsrc, 0);
3811 	      rtx src_op1 = XEXP (setsrc, 1);
3812 
3813 	      /* Split "X = Y op Y" as "Z = Y; X = Z op Z".  */
3814 	      if (rtx_equal_p (src_op0, src_op1))
3815 		{
3816 		  newi2pat = gen_rtx_SET (newdest, src_op0);
3817 		  SUBST (XEXP (setsrc, 0), newdest);
3818 		  SUBST (XEXP (setsrc, 1), newdest);
3819 		  subst_done = true;
3820 		}
3821 	      /* Split "((P op Q) op R) op S" where op is PLUS or MULT.  */
3822 	      else if ((code == PLUS || code == MULT)
3823 		       && GET_CODE (src_op0) == code
3824 		       && GET_CODE (XEXP (src_op0, 0)) == code
3825 		       && (INTEGRAL_MODE_P (mode)
3826 			   || (FLOAT_MODE_P (mode)
3827 			       && flag_unsafe_math_optimizations)))
3828 		{
3829 		  rtx p = XEXP (XEXP (src_op0, 0), 0);
3830 		  rtx q = XEXP (XEXP (src_op0, 0), 1);
3831 		  rtx r = XEXP (src_op0, 1);
3832 		  rtx s = src_op1;
3833 
3834 		  /* Split both "((X op Y) op X) op Y" and
3835 		     "((X op Y) op Y) op X" as "T op T" where T is
3836 		     "X op Y".  */
3837 		  if ((rtx_equal_p (p,r) && rtx_equal_p (q,s))
3838 		       || (rtx_equal_p (p,s) && rtx_equal_p (q,r)))
3839 		    {
3840 		      newi2pat = gen_rtx_SET (newdest, XEXP (src_op0, 0));
3841 		      SUBST (XEXP (setsrc, 0), newdest);
3842 		      SUBST (XEXP (setsrc, 1), newdest);
3843 		      subst_done = true;
3844 		    }
3845 		  /* Split "((X op X) op Y) op Y)" as "T op T" where
3846 		     T is "X op Y".  */
3847 		  else if (rtx_equal_p (p,q) && rtx_equal_p (r,s))
3848 		    {
3849 		      rtx tmp = simplify_gen_binary (code, mode, p, r);
3850 		      newi2pat = gen_rtx_SET (newdest, tmp);
3851 		      SUBST (XEXP (setsrc, 0), newdest);
3852 		      SUBST (XEXP (setsrc, 1), newdest);
3853 		      subst_done = true;
3854 		    }
3855 		}
3856 	    }
3857 
3858 	  if (!subst_done)
3859 	    {
3860 	      newi2pat = gen_rtx_SET (newdest, *split);
3861 	      SUBST (*split, newdest);
3862 	    }
3863 
3864 	  i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
3865 
3866 	  /* recog_for_combine might have added CLOBBERs to newi2pat.
3867 	     Make sure NEWPAT does not depend on the clobbered regs.  */
3868 	  if (GET_CODE (newi2pat) == PARALLEL)
3869 	    for (i = XVECLEN (newi2pat, 0) - 1; i >= 0; i--)
3870 	      if (GET_CODE (XVECEXP (newi2pat, 0, i)) == CLOBBER)
3871 		{
3872 		  rtx reg = XEXP (XVECEXP (newi2pat, 0, i), 0);
3873 		  if (reg_overlap_mentioned_p (reg, newpat))
3874 		    {
3875 		      undo_all ();
3876 		      return 0;
3877 		    }
3878 		}
3879 
3880 	  /* If the split point was a MULT and we didn't have one before,
3881 	     don't use one now.  */
3882 	  if (i2_code_number >= 0 && ! (split_code == MULT && ! have_mult))
3883 	    insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
3884 	}
3885     }
3886 
3887   /* Check for a case where we loaded from memory in a narrow mode and
3888      then sign extended it, but we need both registers.  In that case,
3889      we have a PARALLEL with both loads from the same memory location.
3890      We can split this into a load from memory followed by a register-register
3891      copy.  This saves at least one insn, more if register allocation can
3892      eliminate the copy.
3893 
3894      We cannot do this if the destination of the first assignment is a
3895      condition code register.  We eliminate this case by making sure
3896      the SET_DEST and SET_SRC have the same mode.
3897 
3898      We cannot do this if the destination of the second assignment is
3899      a register that we have already assumed is zero-extended.  Similarly
3900      for a SUBREG of such a register.  */
3901 
3902   else if (i1 && insn_code_number < 0 && asm_noperands (newpat) < 0
3903 	   && GET_CODE (newpat) == PARALLEL
3904 	   && XVECLEN (newpat, 0) == 2
3905 	   && GET_CODE (XVECEXP (newpat, 0, 0)) == SET
3906 	   && GET_CODE (SET_SRC (XVECEXP (newpat, 0, 0))) == SIGN_EXTEND
3907 	   && (GET_MODE (SET_DEST (XVECEXP (newpat, 0, 0)))
3908 	       == GET_MODE (SET_SRC (XVECEXP (newpat, 0, 0))))
3909 	   && GET_CODE (XVECEXP (newpat, 0, 1)) == SET
3910 	   && rtx_equal_p (SET_SRC (XVECEXP (newpat, 0, 1)),
3911 			   XEXP (SET_SRC (XVECEXP (newpat, 0, 0)), 0))
3912 	   && !modified_between_p (SET_SRC (XVECEXP (newpat, 0, 1)), i2, i3)
3913 	   && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != ZERO_EXTRACT
3914 	   && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != STRICT_LOW_PART
3915 	   && ! (temp_expr = SET_DEST (XVECEXP (newpat, 0, 1)),
3916 		 (REG_P (temp_expr)
3917 		  && reg_stat[REGNO (temp_expr)].nonzero_bits != 0
3918 		  && known_lt (GET_MODE_PRECISION (GET_MODE (temp_expr)),
3919 			       BITS_PER_WORD)
3920 		  && known_lt (GET_MODE_PRECISION (GET_MODE (temp_expr)),
3921 			       HOST_BITS_PER_INT)
3922 		  && (reg_stat[REGNO (temp_expr)].nonzero_bits
3923 		      != GET_MODE_MASK (word_mode))))
3924 	   && ! (GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) == SUBREG
3925 		 && (temp_expr = SUBREG_REG (SET_DEST (XVECEXP (newpat, 0, 1))),
3926 		     (REG_P (temp_expr)
3927 		      && reg_stat[REGNO (temp_expr)].nonzero_bits != 0
3928 		      && known_lt (GET_MODE_PRECISION (GET_MODE (temp_expr)),
3929 				   BITS_PER_WORD)
3930 		      && known_lt (GET_MODE_PRECISION (GET_MODE (temp_expr)),
3931 				   HOST_BITS_PER_INT)
3932 		      && (reg_stat[REGNO (temp_expr)].nonzero_bits
3933 			  != GET_MODE_MASK (word_mode)))))
3934 	   && ! reg_overlap_mentioned_p (SET_DEST (XVECEXP (newpat, 0, 1)),
3935 					 SET_SRC (XVECEXP (newpat, 0, 1)))
3936 	   && ! find_reg_note (i3, REG_UNUSED,
3937 			       SET_DEST (XVECEXP (newpat, 0, 0))))
3938     {
3939       rtx ni2dest;
3940 
3941       newi2pat = XVECEXP (newpat, 0, 0);
3942       ni2dest = SET_DEST (XVECEXP (newpat, 0, 0));
3943       newpat = XVECEXP (newpat, 0, 1);
3944       SUBST (SET_SRC (newpat),
3945 	     gen_lowpart (GET_MODE (SET_SRC (newpat)), ni2dest));
3946       i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
3947 
3948       if (i2_code_number >= 0)
3949 	insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
3950 
3951       if (insn_code_number >= 0)
3952 	swap_i2i3 = 1;
3953     }
3954 
3955   /* Similarly, check for a case where we have a PARALLEL of two independent
3956      SETs but we started with three insns.  In this case, we can do the sets
3957      as two separate insns.  This case occurs when some SET allows two
3958      other insns to combine, but the destination of that SET is still live.
3959 
3960      Also do this if we started with two insns and (at least) one of the
3961      resulting sets is a noop; this noop will be deleted later.
3962 
3963      Also do this if we started with two insns neither of which was a simple
3964      move.  */
3965 
3966   else if (insn_code_number < 0 && asm_noperands (newpat) < 0
3967 	   && GET_CODE (newpat) == PARALLEL
3968 	   && XVECLEN (newpat, 0) == 2
3969 	   && GET_CODE (XVECEXP (newpat, 0, 0)) == SET
3970 	   && GET_CODE (XVECEXP (newpat, 0, 1)) == SET
3971 	   && (i1
3972 	       || set_noop_p (XVECEXP (newpat, 0, 0))
3973 	       || set_noop_p (XVECEXP (newpat, 0, 1))
3974 	       || (!i2_was_move && !i3_was_move))
3975 	   && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 0))) != ZERO_EXTRACT
3976 	   && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 0))) != STRICT_LOW_PART
3977 	   && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != ZERO_EXTRACT
3978 	   && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != STRICT_LOW_PART
3979 	   && ! reg_referenced_p (SET_DEST (XVECEXP (newpat, 0, 1)),
3980 				  XVECEXP (newpat, 0, 0))
3981 	   && ! reg_referenced_p (SET_DEST (XVECEXP (newpat, 0, 0)),
3982 				  XVECEXP (newpat, 0, 1))
3983 	   && ! (contains_muldiv (SET_SRC (XVECEXP (newpat, 0, 0)))
3984 		 && contains_muldiv (SET_SRC (XVECEXP (newpat, 0, 1)))))
3985     {
3986       rtx set0 = XVECEXP (newpat, 0, 0);
3987       rtx set1 = XVECEXP (newpat, 0, 1);
3988 
3989       /* Normally, it doesn't matter which of the two is done first, but
3990 	 one which uses any regs/memory set in between i2 and i3 can't
3991 	 be first.  The PARALLEL might also have been pre-existing in i3,
3992 	 so we need to make sure that we won't wrongly hoist a SET to i2
3993 	 that would conflict with a death note present in there, or would
3994 	 have its dest modified between i2 and i3.  */
3995       if (!modified_between_p (SET_SRC (set1), i2, i3)
3996 	  && !(REG_P (SET_DEST (set1))
3997 	       && find_reg_note (i2, REG_DEAD, SET_DEST (set1)))
3998 	  && !(GET_CODE (SET_DEST (set1)) == SUBREG
3999 	       && find_reg_note (i2, REG_DEAD,
4000 				 SUBREG_REG (SET_DEST (set1))))
4001 	  && !modified_between_p (SET_DEST (set1), i2, i3)
4002 	  /* If I3 is a jump, ensure that set0 is a jump so that
4003 	     we do not create invalid RTL.  */
4004 	  && (!JUMP_P (i3) || SET_DEST (set0) == pc_rtx)
4005 	 )
4006 	{
4007 	  newi2pat = set1;
4008 	  newpat = set0;
4009 	}
4010       else if (!modified_between_p (SET_SRC (set0), i2, i3)
4011 	       && !(REG_P (SET_DEST (set0))
4012 		    && find_reg_note (i2, REG_DEAD, SET_DEST (set0)))
4013 	       && !(GET_CODE (SET_DEST (set0)) == SUBREG
4014 		    && find_reg_note (i2, REG_DEAD,
4015 				      SUBREG_REG (SET_DEST (set0))))
4016 	       && !modified_between_p (SET_DEST (set0), i2, i3)
4017 	       /* If I3 is a jump, ensure that set1 is a jump so that
4018 		  we do not create invalid RTL.  */
4019 	       && (!JUMP_P (i3) || SET_DEST (set1) == pc_rtx)
4020 	      )
4021 	{
4022 	  newi2pat = set0;
4023 	  newpat = set1;
4024 	}
4025       else
4026 	{
4027 	  undo_all ();
4028 	  return 0;
4029 	}
4030 
4031       i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
4032 
4033       if (i2_code_number >= 0)
4034 	{
4035 	  /* recog_for_combine might have added CLOBBERs to newi2pat.
4036 	     Make sure NEWPAT does not depend on the clobbered regs.  */
4037 	  if (GET_CODE (newi2pat) == PARALLEL)
4038 	    {
4039 	      for (i = XVECLEN (newi2pat, 0) - 1; i >= 0; i--)
4040 		if (GET_CODE (XVECEXP (newi2pat, 0, i)) == CLOBBER)
4041 		  {
4042 		    rtx reg = XEXP (XVECEXP (newi2pat, 0, i), 0);
4043 		    if (reg_overlap_mentioned_p (reg, newpat))
4044 		      {
4045 			undo_all ();
4046 			return 0;
4047 		      }
4048 		  }
4049 	    }
4050 
4051 	  insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
4052 
4053 	  /* Likewise, recog_for_combine might have added clobbers to NEWPAT.
4054 	     Checking that the SET0's SET_DEST and SET1's SET_DEST aren't
4055 	     mentioned/clobbered, ensures NEWI2PAT's SET_DEST is live.  */
4056 	  if (insn_code_number >= 0 && GET_CODE (newpat) == PARALLEL)
4057 	    {
4058 	      for (i = XVECLEN (newpat, 0) - 1; i >= 0; i--)
4059 		if (GET_CODE (XVECEXP (newpat, 0, i)) == CLOBBER)
4060 		  {
4061 		    rtx reg = XEXP (XVECEXP (newpat, 0, i), 0);
4062 		    if (reg_overlap_mentioned_p (reg, SET_DEST (set0))
4063 			|| reg_overlap_mentioned_p (reg, SET_DEST (set1)))
4064 		      {
4065 			undo_all ();
4066 			return 0;
4067 		      }
4068 		  }
4069 	    }
4070 
4071 	  if (insn_code_number >= 0)
4072 	    split_i2i3 = 1;
4073 	}
4074     }
4075 
4076   /* If it still isn't recognized, fail and change things back the way they
4077      were.  */
4078   if ((insn_code_number < 0
4079        /* Is the result a reasonable ASM_OPERANDS?  */
4080        && (! check_asm_operands (newpat) || added_sets_1 || added_sets_2)))
4081     {
4082       undo_all ();
4083       return 0;
4084     }
4085 
4086   /* If we had to change another insn, make sure it is valid also.  */
4087   if (undobuf.other_insn)
4088     {
4089       CLEAR_HARD_REG_SET (newpat_used_regs);
4090 
4091       other_pat = PATTERN (undobuf.other_insn);
4092       other_code_number = recog_for_combine (&other_pat, undobuf.other_insn,
4093 					     &new_other_notes);
4094 
4095       if (other_code_number < 0 && ! check_asm_operands (other_pat))
4096 	{
4097 	  undo_all ();
4098 	  return 0;
4099 	}
4100     }
4101 
4102   /* Only allow this combination if insn_cost reports that the
4103      replacement instructions are cheaper than the originals.  */
4104   if (!combine_validate_cost (i0, i1, i2, i3, newpat, newi2pat, other_pat))
4105     {
4106       undo_all ();
4107       return 0;
4108     }
4109 
4110   if (MAY_HAVE_DEBUG_BIND_INSNS)
4111     {
4112       struct undo *undo;
4113 
4114       for (undo = undobuf.undos; undo; undo = undo->next)
4115 	if (undo->kind == UNDO_MODE)
4116 	  {
4117 	    rtx reg = regno_reg_rtx[undo->where.regno];
4118 	    machine_mode new_mode = GET_MODE (reg);
4119 	    machine_mode old_mode = undo->old_contents.m;
4120 
4121 	    /* Temporarily revert mode back.  */
4122 	    adjust_reg_mode (reg, old_mode);
4123 
4124 	    if (reg == i2dest && i2scratch)
4125 	      {
4126 		/* If we used i2dest as a scratch register with a
4127 		   different mode, substitute it for the original
4128 		   i2src while its original mode is temporarily
4129 		   restored, and then clear i2scratch so that we don't
4130 		   do it again later.  */
4131 		propagate_for_debug (i2, last_combined_insn, reg, i2src,
4132 				     this_basic_block);
4133 		i2scratch = false;
4134 		/* Put back the new mode.  */
4135 		adjust_reg_mode (reg, new_mode);
4136 	      }
4137 	    else
4138 	      {
4139 		rtx tempreg = gen_raw_REG (old_mode, REGNO (reg));
4140 		rtx_insn *first, *last;
4141 
4142 		if (reg == i2dest)
4143 		  {
4144 		    first = i2;
4145 		    last = last_combined_insn;
4146 		  }
4147 		else
4148 		  {
4149 		    first = i3;
4150 		    last = undobuf.other_insn;
4151 		    gcc_assert (last);
4152 		    if (DF_INSN_LUID (last)
4153 			< DF_INSN_LUID (last_combined_insn))
4154 		      last = last_combined_insn;
4155 		  }
4156 
4157 		/* We're dealing with a reg that changed mode but not
4158 		   meaning, so we want to turn it into a subreg for
4159 		   the new mode.  However, because of REG sharing and
4160 		   because its mode had already changed, we have to do
4161 		   it in two steps.  First, replace any debug uses of
4162 		   reg, with its original mode temporarily restored,
4163 		   with this copy we have created; then, replace the
4164 		   copy with the SUBREG of the original shared reg,
4165 		   once again changed to the new mode.  */
4166 		propagate_for_debug (first, last, reg, tempreg,
4167 				     this_basic_block);
4168 		adjust_reg_mode (reg, new_mode);
4169 		propagate_for_debug (first, last, tempreg,
4170 				     lowpart_subreg (old_mode, reg, new_mode),
4171 				     this_basic_block);
4172 	      }
4173 	  }
4174     }
4175 
4176   /* If we will be able to accept this, we have made a
4177      change to the destination of I3.  This requires us to
4178      do a few adjustments.  */
4179 
4180   if (changed_i3_dest)
4181     {
4182       PATTERN (i3) = newpat;
4183       adjust_for_new_dest (i3);
4184     }
4185 
4186   /* We now know that we can do this combination.  Merge the insns and
4187      update the status of registers and LOG_LINKS.  */
4188 
4189   if (undobuf.other_insn)
4190     {
4191       rtx note, next;
4192 
4193       PATTERN (undobuf.other_insn) = other_pat;
4194 
4195       /* If any of the notes in OTHER_INSN were REG_DEAD or REG_UNUSED,
4196 	 ensure that they are still valid.  Then add any non-duplicate
4197 	 notes added by recog_for_combine.  */
4198       for (note = REG_NOTES (undobuf.other_insn); note; note = next)
4199 	{
4200 	  next = XEXP (note, 1);
4201 
4202 	  if ((REG_NOTE_KIND (note) == REG_DEAD
4203 	       && !reg_referenced_p (XEXP (note, 0),
4204 				     PATTERN (undobuf.other_insn)))
4205 	      ||(REG_NOTE_KIND (note) == REG_UNUSED
4206 		 && !reg_set_p (XEXP (note, 0),
4207 				PATTERN (undobuf.other_insn)))
4208 	      /* Simply drop equal note since it may be no longer valid
4209 		 for other_insn.  It may be possible to record that CC
4210 		 register is changed and only discard those notes, but
4211 		 in practice it's unnecessary complication and doesn't
4212 		 give any meaningful improvement.
4213 
4214 		 See PR78559.  */
4215 	      || REG_NOTE_KIND (note) == REG_EQUAL
4216 	      || REG_NOTE_KIND (note) == REG_EQUIV)
4217 	    remove_note (undobuf.other_insn, note);
4218 	}
4219 
4220       distribute_notes  (new_other_notes, undobuf.other_insn,
4221 			undobuf.other_insn, NULL, NULL_RTX, NULL_RTX,
4222 			NULL_RTX);
4223     }
4224 
4225   if (swap_i2i3)
4226     {
4227       /* I3 now uses what used to be its destination and which is now
4228 	 I2's destination.  This requires us to do a few adjustments.  */
4229       PATTERN (i3) = newpat;
4230       adjust_for_new_dest (i3);
4231     }
4232 
4233   if (swap_i2i3 || split_i2i3)
4234     {
4235       /* We might need a LOG_LINK from I3 to I2.  But then we used to
4236 	 have one, so we still will.
4237 
4238 	 However, some later insn might be using I2's dest and have
4239 	 a LOG_LINK pointing at I3.  We should change it to point at
4240 	 I2 instead.  */
4241 
4242       /* newi2pat is usually a SET here; however, recog_for_combine might
4243 	 have added some clobbers.  */
4244       rtx x = newi2pat;
4245       if (GET_CODE (x) == PARALLEL)
4246 	x = XVECEXP (newi2pat, 0, 0);
4247 
4248       if (REG_P (SET_DEST (x))
4249 	  || (GET_CODE (SET_DEST (x)) == SUBREG
4250 	      && REG_P (SUBREG_REG (SET_DEST (x)))))
4251 	{
4252 	  unsigned int regno = reg_or_subregno (SET_DEST (x));
4253 
4254 	  bool done = false;
4255 	  for (rtx_insn *insn = NEXT_INSN (i3);
4256 	       !done
4257 	       && insn
4258 	       && INSN_P (insn)
4259 	       && BLOCK_FOR_INSN (insn) == this_basic_block;
4260 	       insn = NEXT_INSN (insn))
4261 	    {
4262 	      if (DEBUG_INSN_P (insn))
4263 		continue;
4264 	      struct insn_link *link;
4265 	      FOR_EACH_LOG_LINK (link, insn)
4266 		if (link->insn == i3 && link->regno == regno)
4267 		  {
4268 		    link->insn = i2;
4269 		    done = true;
4270 		    break;
4271 		  }
4272 	    }
4273 	}
4274     }
4275 
4276   {
4277     rtx i3notes, i2notes, i1notes = 0, i0notes = 0;
4278     struct insn_link *i3links, *i2links, *i1links = 0, *i0links = 0;
4279     rtx midnotes = 0;
4280     int from_luid;
4281     /* Compute which registers we expect to eliminate.  newi2pat may be setting
4282        either i3dest or i2dest, so we must check it.  */
4283     rtx elim_i2 = ((newi2pat && reg_set_p (i2dest, newi2pat))
4284 		   || i2dest_in_i2src || i2dest_in_i1src || i2dest_in_i0src
4285 		   || !i2dest_killed
4286 		   ? 0 : i2dest);
4287     /* For i1, we need to compute both local elimination and global
4288        elimination information with respect to newi2pat because i1dest
4289        may be the same as i3dest, in which case newi2pat may be setting
4290        i1dest.  Global information is used when distributing REG_DEAD
4291        note for i2 and i3, in which case it does matter if newi2pat sets
4292        i1dest or not.
4293 
4294        Local information is used when distributing REG_DEAD note for i1,
4295        in which case it doesn't matter if newi2pat sets i1dest or not.
4296        See PR62151, if we have four insns combination:
4297 	   i0: r0 <- i0src
4298 	   i1: r1 <- i1src (using r0)
4299 		     REG_DEAD (r0)
4300 	   i2: r0 <- i2src (using r1)
4301 	   i3: r3 <- i3src (using r0)
4302 	   ix: using r0
4303        From i1's point of view, r0 is eliminated, no matter if it is set
4304        by newi2pat or not.  In other words, REG_DEAD info for r0 in i1
4305        should be discarded.
4306 
4307        Note local information only affects cases in forms like "I1->I2->I3",
4308        "I0->I1->I2->I3" or "I0&I1->I2, I2->I3".  For other cases like
4309        "I0->I1, I1&I2->I3" or "I1&I2->I3", newi2pat won't set i1dest or
4310        i0dest anyway.  */
4311     rtx local_elim_i1 = (i1 == 0 || i1dest_in_i1src || i1dest_in_i0src
4312 			 || !i1dest_killed
4313 			 ? 0 : i1dest);
4314     rtx elim_i1 = (local_elim_i1 == 0
4315 		   || (newi2pat && reg_set_p (i1dest, newi2pat))
4316 		   ? 0 : i1dest);
4317     /* Same case as i1.  */
4318     rtx local_elim_i0 = (i0 == 0 || i0dest_in_i0src || !i0dest_killed
4319 			 ? 0 : i0dest);
4320     rtx elim_i0 = (local_elim_i0 == 0
4321 		   || (newi2pat && reg_set_p (i0dest, newi2pat))
4322 		   ? 0 : i0dest);
4323 
4324     /* Get the old REG_NOTES and LOG_LINKS from all our insns and
4325        clear them.  */
4326     i3notes = REG_NOTES (i3), i3links = LOG_LINKS (i3);
4327     i2notes = REG_NOTES (i2), i2links = LOG_LINKS (i2);
4328     if (i1)
4329       i1notes = REG_NOTES (i1), i1links = LOG_LINKS (i1);
4330     if (i0)
4331       i0notes = REG_NOTES (i0), i0links = LOG_LINKS (i0);
4332 
4333     /* Ensure that we do not have something that should not be shared but
4334        occurs multiple times in the new insns.  Check this by first
4335        resetting all the `used' flags and then copying anything is shared.  */
4336 
4337     reset_used_flags (i3notes);
4338     reset_used_flags (i2notes);
4339     reset_used_flags (i1notes);
4340     reset_used_flags (i0notes);
4341     reset_used_flags (newpat);
4342     reset_used_flags (newi2pat);
4343     if (undobuf.other_insn)
4344       reset_used_flags (PATTERN (undobuf.other_insn));
4345 
4346     i3notes = copy_rtx_if_shared (i3notes);
4347     i2notes = copy_rtx_if_shared (i2notes);
4348     i1notes = copy_rtx_if_shared (i1notes);
4349     i0notes = copy_rtx_if_shared (i0notes);
4350     newpat = copy_rtx_if_shared (newpat);
4351     newi2pat = copy_rtx_if_shared (newi2pat);
4352     if (undobuf.other_insn)
4353       reset_used_flags (PATTERN (undobuf.other_insn));
4354 
4355     INSN_CODE (i3) = insn_code_number;
4356     PATTERN (i3) = newpat;
4357 
4358     if (CALL_P (i3) && CALL_INSN_FUNCTION_USAGE (i3))
4359       {
4360 	for (rtx link = CALL_INSN_FUNCTION_USAGE (i3); link;
4361 	     link = XEXP (link, 1))
4362 	  {
4363 	    if (substed_i2)
4364 	      {
4365 		/* I2SRC must still be meaningful at this point.  Some
4366 		   splitting operations can invalidate I2SRC, but those
4367 		   operations do not apply to calls.  */
4368 		gcc_assert (i2src);
4369 		XEXP (link, 0) = simplify_replace_rtx (XEXP (link, 0),
4370 						       i2dest, i2src);
4371 	      }
4372 	    if (substed_i1)
4373 	      XEXP (link, 0) = simplify_replace_rtx (XEXP (link, 0),
4374 						     i1dest, i1src);
4375 	    if (substed_i0)
4376 	      XEXP (link, 0) = simplify_replace_rtx (XEXP (link, 0),
4377 						     i0dest, i0src);
4378 	  }
4379       }
4380 
4381     if (undobuf.other_insn)
4382       INSN_CODE (undobuf.other_insn) = other_code_number;
4383 
4384     /* We had one special case above where I2 had more than one set and
4385        we replaced a destination of one of those sets with the destination
4386        of I3.  In that case, we have to update LOG_LINKS of insns later
4387        in this basic block.  Note that this (expensive) case is rare.
4388 
4389        Also, in this case, we must pretend that all REG_NOTEs for I2
4390        actually came from I3, so that REG_UNUSED notes from I2 will be
4391        properly handled.  */
4392 
4393     if (i3_subst_into_i2)
4394       {
4395 	for (i = 0; i < XVECLEN (PATTERN (i2), 0); i++)
4396 	  if ((GET_CODE (XVECEXP (PATTERN (i2), 0, i)) == SET
4397 	       || GET_CODE (XVECEXP (PATTERN (i2), 0, i)) == CLOBBER)
4398 	      && REG_P (SET_DEST (XVECEXP (PATTERN (i2), 0, i)))
4399 	      && SET_DEST (XVECEXP (PATTERN (i2), 0, i)) != i2dest
4400 	      && ! find_reg_note (i2, REG_UNUSED,
4401 				  SET_DEST (XVECEXP (PATTERN (i2), 0, i))))
4402 	    for (temp_insn = NEXT_INSN (i2);
4403 		 temp_insn
4404 		 && (this_basic_block->next_bb == EXIT_BLOCK_PTR_FOR_FN (cfun)
4405 		     || BB_HEAD (this_basic_block) != temp_insn);
4406 		 temp_insn = NEXT_INSN (temp_insn))
4407 	      if (temp_insn != i3 && NONDEBUG_INSN_P (temp_insn))
4408 		FOR_EACH_LOG_LINK (link, temp_insn)
4409 		  if (link->insn == i2)
4410 		    link->insn = i3;
4411 
4412 	if (i3notes)
4413 	  {
4414 	    rtx link = i3notes;
4415 	    while (XEXP (link, 1))
4416 	      link = XEXP (link, 1);
4417 	    XEXP (link, 1) = i2notes;
4418 	  }
4419 	else
4420 	  i3notes = i2notes;
4421 	i2notes = 0;
4422       }
4423 
4424     LOG_LINKS (i3) = NULL;
4425     REG_NOTES (i3) = 0;
4426     LOG_LINKS (i2) = NULL;
4427     REG_NOTES (i2) = 0;
4428 
4429     if (newi2pat)
4430       {
4431 	if (MAY_HAVE_DEBUG_BIND_INSNS && i2scratch)
4432 	  propagate_for_debug (i2, last_combined_insn, i2dest, i2src,
4433 			       this_basic_block);
4434 	INSN_CODE (i2) = i2_code_number;
4435 	PATTERN (i2) = newi2pat;
4436       }
4437     else
4438       {
4439 	if (MAY_HAVE_DEBUG_BIND_INSNS && i2src)
4440 	  propagate_for_debug (i2, last_combined_insn, i2dest, i2src,
4441 			       this_basic_block);
4442 	SET_INSN_DELETED (i2);
4443       }
4444 
4445     if (i1)
4446       {
4447 	LOG_LINKS (i1) = NULL;
4448 	REG_NOTES (i1) = 0;
4449 	if (MAY_HAVE_DEBUG_BIND_INSNS)
4450 	  propagate_for_debug (i1, last_combined_insn, i1dest, i1src,
4451 			       this_basic_block);
4452 	SET_INSN_DELETED (i1);
4453       }
4454 
4455     if (i0)
4456       {
4457 	LOG_LINKS (i0) = NULL;
4458 	REG_NOTES (i0) = 0;
4459 	if (MAY_HAVE_DEBUG_BIND_INSNS)
4460 	  propagate_for_debug (i0, last_combined_insn, i0dest, i0src,
4461 			       this_basic_block);
4462 	SET_INSN_DELETED (i0);
4463       }
4464 
4465     /* Get death notes for everything that is now used in either I3 or
4466        I2 and used to die in a previous insn.  If we built two new
4467        patterns, move from I1 to I2 then I2 to I3 so that we get the
4468        proper movement on registers that I2 modifies.  */
4469 
4470     if (i0)
4471       from_luid = DF_INSN_LUID (i0);
4472     else if (i1)
4473       from_luid = DF_INSN_LUID (i1);
4474     else
4475       from_luid = DF_INSN_LUID (i2);
4476     if (newi2pat)
4477       move_deaths (newi2pat, NULL_RTX, from_luid, i2, &midnotes);
4478     move_deaths (newpat, newi2pat, from_luid, i3, &midnotes);
4479 
4480     /* Distribute all the LOG_LINKS and REG_NOTES from I1, I2, and I3.  */
4481     if (i3notes)
4482       distribute_notes (i3notes, i3, i3, newi2pat ? i2 : NULL,
4483 			elim_i2, elim_i1, elim_i0);
4484     if (i2notes)
4485       distribute_notes (i2notes, i2, i3, newi2pat ? i2 : NULL,
4486 			elim_i2, elim_i1, elim_i0);
4487     if (i1notes)
4488       distribute_notes (i1notes, i1, i3, newi2pat ? i2 : NULL,
4489 			elim_i2, local_elim_i1, local_elim_i0);
4490     if (i0notes)
4491       distribute_notes (i0notes, i0, i3, newi2pat ? i2 : NULL,
4492 			elim_i2, elim_i1, local_elim_i0);
4493     if (midnotes)
4494       distribute_notes (midnotes, NULL, i3, newi2pat ? i2 : NULL,
4495 			elim_i2, elim_i1, elim_i0);
4496 
4497     /* Distribute any notes added to I2 or I3 by recog_for_combine.  We
4498        know these are REG_UNUSED and want them to go to the desired insn,
4499        so we always pass it as i3.  */
4500 
4501     if (newi2pat && new_i2_notes)
4502       distribute_notes (new_i2_notes, i2, i2, NULL, NULL_RTX, NULL_RTX,
4503 			NULL_RTX);
4504 
4505     if (new_i3_notes)
4506       distribute_notes (new_i3_notes, i3, i3, NULL, NULL_RTX, NULL_RTX,
4507 			NULL_RTX);
4508 
4509     /* If I3DEST was used in I3SRC, it really died in I3.  We may need to
4510        put a REG_DEAD note for it somewhere.  If NEWI2PAT exists and sets
4511        I3DEST, the death must be somewhere before I2, not I3.  If we passed I3
4512        in that case, it might delete I2.  Similarly for I2 and I1.
4513        Show an additional death due to the REG_DEAD note we make here.  If
4514        we discard it in distribute_notes, we will decrement it again.  */
4515 
4516     if (i3dest_killed)
4517       {
4518 	rtx new_note = alloc_reg_note (REG_DEAD, i3dest_killed, NULL_RTX);
4519 	if (newi2pat && reg_set_p (i3dest_killed, newi2pat))
4520 	  distribute_notes (new_note, NULL, i2, NULL, elim_i2,
4521 			    elim_i1, elim_i0);
4522 	else
4523 	  distribute_notes (new_note, NULL, i3, newi2pat ? i2 : NULL,
4524 			    elim_i2, elim_i1, elim_i0);
4525       }
4526 
4527     if (i2dest_in_i2src)
4528       {
4529 	rtx new_note = alloc_reg_note (REG_DEAD, i2dest, NULL_RTX);
4530 	if (newi2pat && reg_set_p (i2dest, newi2pat))
4531 	  distribute_notes (new_note,  NULL, i2, NULL, NULL_RTX,
4532 			    NULL_RTX, NULL_RTX);
4533 	else
4534 	  distribute_notes (new_note, NULL, i3, newi2pat ? i2 : NULL,
4535 			    NULL_RTX, NULL_RTX, NULL_RTX);
4536       }
4537 
4538     if (i1dest_in_i1src)
4539       {
4540 	rtx new_note = alloc_reg_note (REG_DEAD, i1dest, NULL_RTX);
4541 	if (newi2pat && reg_set_p (i1dest, newi2pat))
4542 	  distribute_notes (new_note, NULL, i2, NULL, NULL_RTX,
4543 			    NULL_RTX, NULL_RTX);
4544 	else
4545 	  distribute_notes (new_note, NULL, i3, newi2pat ? i2 : NULL,
4546 			    NULL_RTX, NULL_RTX, NULL_RTX);
4547       }
4548 
4549     if (i0dest_in_i0src)
4550       {
4551 	rtx new_note = alloc_reg_note (REG_DEAD, i0dest, NULL_RTX);
4552 	if (newi2pat && reg_set_p (i0dest, newi2pat))
4553 	  distribute_notes (new_note, NULL, i2, NULL, NULL_RTX,
4554 			    NULL_RTX, NULL_RTX);
4555 	else
4556 	  distribute_notes (new_note, NULL, i3, newi2pat ? i2 : NULL,
4557 			    NULL_RTX, NULL_RTX, NULL_RTX);
4558       }
4559 
4560     distribute_links (i3links);
4561     distribute_links (i2links);
4562     distribute_links (i1links);
4563     distribute_links (i0links);
4564 
4565     if (REG_P (i2dest))
4566       {
4567 	struct insn_link *link;
4568 	rtx_insn *i2_insn = 0;
4569 	rtx i2_val = 0, set;
4570 
4571 	/* The insn that used to set this register doesn't exist, and
4572 	   this life of the register may not exist either.  See if one of
4573 	   I3's links points to an insn that sets I2DEST.  If it does,
4574 	   that is now the last known value for I2DEST. If we don't update
4575 	   this and I2 set the register to a value that depended on its old
4576 	   contents, we will get confused.  If this insn is used, thing
4577 	   will be set correctly in combine_instructions.  */
4578 	FOR_EACH_LOG_LINK (link, i3)
4579 	  if ((set = single_set (link->insn)) != 0
4580 	      && rtx_equal_p (i2dest, SET_DEST (set)))
4581 	    i2_insn = link->insn, i2_val = SET_SRC (set);
4582 
4583 	record_value_for_reg (i2dest, i2_insn, i2_val);
4584 
4585 	/* If the reg formerly set in I2 died only once and that was in I3,
4586 	   zero its use count so it won't make `reload' do any work.  */
4587 	if (! added_sets_2
4588 	    && (newi2pat == 0 || ! reg_mentioned_p (i2dest, newi2pat))
4589 	    && ! i2dest_in_i2src
4590 	    && REGNO (i2dest) < reg_n_sets_max)
4591 	  INC_REG_N_SETS (REGNO (i2dest), -1);
4592       }
4593 
4594     if (i1 && REG_P (i1dest))
4595       {
4596 	struct insn_link *link;
4597 	rtx_insn *i1_insn = 0;
4598 	rtx i1_val = 0, set;
4599 
4600 	FOR_EACH_LOG_LINK (link, i3)
4601 	  if ((set = single_set (link->insn)) != 0
4602 	      && rtx_equal_p (i1dest, SET_DEST (set)))
4603 	    i1_insn = link->insn, i1_val = SET_SRC (set);
4604 
4605 	record_value_for_reg (i1dest, i1_insn, i1_val);
4606 
4607 	if (! added_sets_1
4608 	    && ! i1dest_in_i1src
4609 	    && REGNO (i1dest) < reg_n_sets_max)
4610 	  INC_REG_N_SETS (REGNO (i1dest), -1);
4611       }
4612 
4613     if (i0 && REG_P (i0dest))
4614       {
4615 	struct insn_link *link;
4616 	rtx_insn *i0_insn = 0;
4617 	rtx i0_val = 0, set;
4618 
4619 	FOR_EACH_LOG_LINK (link, i3)
4620 	  if ((set = single_set (link->insn)) != 0
4621 	      && rtx_equal_p (i0dest, SET_DEST (set)))
4622 	    i0_insn = link->insn, i0_val = SET_SRC (set);
4623 
4624 	record_value_for_reg (i0dest, i0_insn, i0_val);
4625 
4626 	if (! added_sets_0
4627 	    && ! i0dest_in_i0src
4628 	    && REGNO (i0dest) < reg_n_sets_max)
4629 	  INC_REG_N_SETS (REGNO (i0dest), -1);
4630       }
4631 
4632     /* Update reg_stat[].nonzero_bits et al for any changes that may have
4633        been made to this insn.  The order is important, because newi2pat
4634        can affect nonzero_bits of newpat.  */
4635     if (newi2pat)
4636       note_pattern_stores (newi2pat, set_nonzero_bits_and_sign_copies, NULL);
4637     note_pattern_stores (newpat, set_nonzero_bits_and_sign_copies, NULL);
4638   }
4639 
4640   if (undobuf.other_insn != NULL_RTX)
4641     {
4642       if (dump_file)
4643 	{
4644 	  fprintf (dump_file, "modifying other_insn ");
4645 	  dump_insn_slim (dump_file, undobuf.other_insn);
4646 	}
4647       df_insn_rescan (undobuf.other_insn);
4648     }
4649 
4650   if (i0 && !(NOTE_P (i0) && (NOTE_KIND (i0) == NOTE_INSN_DELETED)))
4651     {
4652       if (dump_file)
4653 	{
4654 	  fprintf (dump_file, "modifying insn i0 ");
4655 	  dump_insn_slim (dump_file, i0);
4656 	}
4657       df_insn_rescan (i0);
4658     }
4659 
4660   if (i1 && !(NOTE_P (i1) && (NOTE_KIND (i1) == NOTE_INSN_DELETED)))
4661     {
4662       if (dump_file)
4663 	{
4664 	  fprintf (dump_file, "modifying insn i1 ");
4665 	  dump_insn_slim (dump_file, i1);
4666 	}
4667       df_insn_rescan (i1);
4668     }
4669 
4670   if (i2 && !(NOTE_P (i2) && (NOTE_KIND (i2) == NOTE_INSN_DELETED)))
4671     {
4672       if (dump_file)
4673 	{
4674 	  fprintf (dump_file, "modifying insn i2 ");
4675 	  dump_insn_slim (dump_file, i2);
4676 	}
4677       df_insn_rescan (i2);
4678     }
4679 
4680   if (i3 && !(NOTE_P (i3) && (NOTE_KIND (i3) == NOTE_INSN_DELETED)))
4681     {
4682       if (dump_file)
4683 	{
4684 	  fprintf (dump_file, "modifying insn i3 ");
4685 	  dump_insn_slim (dump_file, i3);
4686 	}
4687       df_insn_rescan (i3);
4688     }
4689 
4690   /* Set new_direct_jump_p if a new return or simple jump instruction
4691      has been created.  Adjust the CFG accordingly.  */
4692   if (returnjump_p (i3) || any_uncondjump_p (i3))
4693     {
4694       *new_direct_jump_p = 1;
4695       mark_jump_label (PATTERN (i3), i3, 0);
4696       update_cfg_for_uncondjump (i3);
4697     }
4698 
4699   if (undobuf.other_insn != NULL_RTX
4700       && (returnjump_p (undobuf.other_insn)
4701 	  || any_uncondjump_p (undobuf.other_insn)))
4702     {
4703       *new_direct_jump_p = 1;
4704       update_cfg_for_uncondjump (undobuf.other_insn);
4705     }
4706 
4707   if (GET_CODE (PATTERN (i3)) == TRAP_IF
4708       && XEXP (PATTERN (i3), 0) == const1_rtx)
4709     {
4710       basic_block bb = BLOCK_FOR_INSN (i3);
4711       gcc_assert (bb);
4712       remove_edge (split_block (bb, i3));
4713       emit_barrier_after_bb (bb);
4714       *new_direct_jump_p = 1;
4715     }
4716 
4717   if (undobuf.other_insn
4718       && GET_CODE (PATTERN (undobuf.other_insn)) == TRAP_IF
4719       && XEXP (PATTERN (undobuf.other_insn), 0) == const1_rtx)
4720     {
4721       basic_block bb = BLOCK_FOR_INSN (undobuf.other_insn);
4722       gcc_assert (bb);
4723       remove_edge (split_block (bb, undobuf.other_insn));
4724       emit_barrier_after_bb (bb);
4725       *new_direct_jump_p = 1;
4726     }
4727 
4728   /* A noop might also need cleaning up of CFG, if it comes from the
4729      simplification of a jump.  */
4730   if (JUMP_P (i3)
4731       && GET_CODE (newpat) == SET
4732       && SET_SRC (newpat) == pc_rtx
4733       && SET_DEST (newpat) == pc_rtx)
4734     {
4735       *new_direct_jump_p = 1;
4736       update_cfg_for_uncondjump (i3);
4737     }
4738 
4739   if (undobuf.other_insn != NULL_RTX
4740       && JUMP_P (undobuf.other_insn)
4741       && GET_CODE (PATTERN (undobuf.other_insn)) == SET
4742       && SET_SRC (PATTERN (undobuf.other_insn)) == pc_rtx
4743       && SET_DEST (PATTERN (undobuf.other_insn)) == pc_rtx)
4744     {
4745       *new_direct_jump_p = 1;
4746       update_cfg_for_uncondjump (undobuf.other_insn);
4747     }
4748 
4749   combine_successes++;
4750   undo_commit ();
4751 
4752   rtx_insn *ret = newi2pat ? i2 : i3;
4753   if (added_links_insn && DF_INSN_LUID (added_links_insn) < DF_INSN_LUID (ret))
4754     ret = added_links_insn;
4755   if (added_notes_insn && DF_INSN_LUID (added_notes_insn) < DF_INSN_LUID (ret))
4756     ret = added_notes_insn;
4757 
4758   return ret;
4759 }
4760 
4761 /* Get a marker for undoing to the current state.  */
4762 
4763 static void *
get_undo_marker(void)4764 get_undo_marker (void)
4765 {
4766   return undobuf.undos;
4767 }
4768 
4769 /* Undo the modifications up to the marker.  */
4770 
4771 static void
undo_to_marker(void * marker)4772 undo_to_marker (void *marker)
4773 {
4774   struct undo *undo, *next;
4775 
4776   for (undo = undobuf.undos; undo != marker; undo = next)
4777     {
4778       gcc_assert (undo);
4779 
4780       next = undo->next;
4781       switch (undo->kind)
4782 	{
4783 	case UNDO_RTX:
4784 	  *undo->where.r = undo->old_contents.r;
4785 	  break;
4786 	case UNDO_INT:
4787 	  *undo->where.i = undo->old_contents.i;
4788 	  break;
4789 	case UNDO_MODE:
4790 	  adjust_reg_mode (regno_reg_rtx[undo->where.regno],
4791 			   undo->old_contents.m);
4792 	  break;
4793 	case UNDO_LINKS:
4794 	  *undo->where.l = undo->old_contents.l;
4795 	  break;
4796 	default:
4797 	  gcc_unreachable ();
4798 	}
4799 
4800       undo->next = undobuf.frees;
4801       undobuf.frees = undo;
4802     }
4803 
4804   undobuf.undos = (struct undo *) marker;
4805 }
4806 
4807 /* Undo all the modifications recorded in undobuf.  */
4808 
4809 static void
undo_all(void)4810 undo_all (void)
4811 {
4812   undo_to_marker (0);
4813 }
4814 
4815 /* We've committed to accepting the changes we made.  Move all
4816    of the undos to the free list.  */
4817 
4818 static void
undo_commit(void)4819 undo_commit (void)
4820 {
4821   struct undo *undo, *next;
4822 
4823   for (undo = undobuf.undos; undo; undo = next)
4824     {
4825       next = undo->next;
4826       undo->next = undobuf.frees;
4827       undobuf.frees = undo;
4828     }
4829   undobuf.undos = 0;
4830 }
4831 
4832 /* Find the innermost point within the rtx at LOC, possibly LOC itself,
4833    where we have an arithmetic expression and return that point.  LOC will
4834    be inside INSN.
4835 
4836    try_combine will call this function to see if an insn can be split into
4837    two insns.  */
4838 
4839 static rtx *
find_split_point(rtx * loc,rtx_insn * insn,bool set_src)4840 find_split_point (rtx *loc, rtx_insn *insn, bool set_src)
4841 {
4842   rtx x = *loc;
4843   enum rtx_code code = GET_CODE (x);
4844   rtx *split;
4845   unsigned HOST_WIDE_INT len = 0;
4846   HOST_WIDE_INT pos = 0;
4847   int unsignedp = 0;
4848   rtx inner = NULL_RTX;
4849   scalar_int_mode mode, inner_mode;
4850 
4851   /* First special-case some codes.  */
4852   switch (code)
4853     {
4854     case SUBREG:
4855 #ifdef INSN_SCHEDULING
4856       /* If we are making a paradoxical SUBREG invalid, it becomes a split
4857 	 point.  */
4858       if (MEM_P (SUBREG_REG (x)))
4859 	return loc;
4860 #endif
4861       return find_split_point (&SUBREG_REG (x), insn, false);
4862 
4863     case MEM:
4864       /* If we have (mem (const ..)) or (mem (symbol_ref ...)), split it
4865 	 using LO_SUM and HIGH.  */
4866       if (HAVE_lo_sum && (GET_CODE (XEXP (x, 0)) == CONST
4867 			  || GET_CODE (XEXP (x, 0)) == SYMBOL_REF))
4868 	{
4869 	  machine_mode address_mode = get_address_mode (x);
4870 
4871 	  SUBST (XEXP (x, 0),
4872 		 gen_rtx_LO_SUM (address_mode,
4873 				 gen_rtx_HIGH (address_mode, XEXP (x, 0)),
4874 				 XEXP (x, 0)));
4875 	  return &XEXP (XEXP (x, 0), 0);
4876 	}
4877 
4878       /* If we have a PLUS whose second operand is a constant and the
4879 	 address is not valid, perhaps we can split it up using
4880 	 the machine-specific way to split large constants.  We use
4881 	 the first pseudo-reg (one of the virtual regs) as a placeholder;
4882 	 it will not remain in the result.  */
4883       if (GET_CODE (XEXP (x, 0)) == PLUS
4884 	  && CONST_INT_P (XEXP (XEXP (x, 0), 1))
4885 	  && ! memory_address_addr_space_p (GET_MODE (x), XEXP (x, 0),
4886 					    MEM_ADDR_SPACE (x)))
4887 	{
4888 	  rtx reg = regno_reg_rtx[FIRST_PSEUDO_REGISTER];
4889 	  rtx_insn *seq = combine_split_insns (gen_rtx_SET (reg, XEXP (x, 0)),
4890 					       subst_insn);
4891 
4892 	  /* This should have produced two insns, each of which sets our
4893 	     placeholder.  If the source of the second is a valid address,
4894 	     we can put both sources together and make a split point
4895 	     in the middle.  */
4896 
4897 	  if (seq
4898 	      && NEXT_INSN (seq) != NULL_RTX
4899 	      && NEXT_INSN (NEXT_INSN (seq)) == NULL_RTX
4900 	      && NONJUMP_INSN_P (seq)
4901 	      && GET_CODE (PATTERN (seq)) == SET
4902 	      && SET_DEST (PATTERN (seq)) == reg
4903 	      && ! reg_mentioned_p (reg,
4904 				    SET_SRC (PATTERN (seq)))
4905 	      && NONJUMP_INSN_P (NEXT_INSN (seq))
4906 	      && GET_CODE (PATTERN (NEXT_INSN (seq))) == SET
4907 	      && SET_DEST (PATTERN (NEXT_INSN (seq))) == reg
4908 	      && memory_address_addr_space_p
4909 		   (GET_MODE (x), SET_SRC (PATTERN (NEXT_INSN (seq))),
4910 		    MEM_ADDR_SPACE (x)))
4911 	    {
4912 	      rtx src1 = SET_SRC (PATTERN (seq));
4913 	      rtx src2 = SET_SRC (PATTERN (NEXT_INSN (seq)));
4914 
4915 	      /* Replace the placeholder in SRC2 with SRC1.  If we can
4916 		 find where in SRC2 it was placed, that can become our
4917 		 split point and we can replace this address with SRC2.
4918 		 Just try two obvious places.  */
4919 
4920 	      src2 = replace_rtx (src2, reg, src1);
4921 	      split = 0;
4922 	      if (XEXP (src2, 0) == src1)
4923 		split = &XEXP (src2, 0);
4924 	      else if (GET_RTX_FORMAT (GET_CODE (XEXP (src2, 0)))[0] == 'e'
4925 		       && XEXP (XEXP (src2, 0), 0) == src1)
4926 		split = &XEXP (XEXP (src2, 0), 0);
4927 
4928 	      if (split)
4929 		{
4930 		  SUBST (XEXP (x, 0), src2);
4931 		  return split;
4932 		}
4933 	    }
4934 
4935 	  /* If that didn't work and we have a nested plus, like:
4936 	     ((REG1 * CONST1) + REG2) + CONST2 and (REG1 + REG2) + CONST2
4937 	     is valid address, try to split (REG1 * CONST1).  */
4938 	  if (GET_CODE (XEXP (XEXP (x, 0), 0)) == PLUS
4939 	      && !OBJECT_P (XEXP (XEXP (XEXP (x, 0), 0), 0))
4940 	      && OBJECT_P (XEXP (XEXP (XEXP (x, 0), 0), 1))
4941 	      && ! (GET_CODE (XEXP (XEXP (XEXP (x, 0), 0), 0)) == SUBREG
4942 		    && OBJECT_P (SUBREG_REG (XEXP (XEXP (XEXP (x, 0),
4943 							 0), 0)))))
4944 	    {
4945 	      rtx tem = XEXP (XEXP (XEXP (x, 0), 0), 0);
4946 	      XEXP (XEXP (XEXP (x, 0), 0), 0) = reg;
4947 	      if (memory_address_addr_space_p (GET_MODE (x), XEXP (x, 0),
4948 					       MEM_ADDR_SPACE (x)))
4949 		{
4950 		  XEXP (XEXP (XEXP (x, 0), 0), 0) = tem;
4951 		  return &XEXP (XEXP (XEXP (x, 0), 0), 0);
4952 		}
4953 	      XEXP (XEXP (XEXP (x, 0), 0), 0) = tem;
4954 	    }
4955 	  else if (GET_CODE (XEXP (XEXP (x, 0), 0)) == PLUS
4956 		   && OBJECT_P (XEXP (XEXP (XEXP (x, 0), 0), 0))
4957 		   && !OBJECT_P (XEXP (XEXP (XEXP (x, 0), 0), 1))
4958 		   && ! (GET_CODE (XEXP (XEXP (XEXP (x, 0), 0), 1)) == SUBREG
4959 			 && OBJECT_P (SUBREG_REG (XEXP (XEXP (XEXP (x, 0),
4960 							      0), 1)))))
4961 	    {
4962 	      rtx tem = XEXP (XEXP (XEXP (x, 0), 0), 1);
4963 	      XEXP (XEXP (XEXP (x, 0), 0), 1) = reg;
4964 	      if (memory_address_addr_space_p (GET_MODE (x), XEXP (x, 0),
4965 					       MEM_ADDR_SPACE (x)))
4966 		{
4967 		  XEXP (XEXP (XEXP (x, 0), 0), 1) = tem;
4968 		  return &XEXP (XEXP (XEXP (x, 0), 0), 1);
4969 		}
4970 	      XEXP (XEXP (XEXP (x, 0), 0), 1) = tem;
4971 	    }
4972 
4973 	  /* If that didn't work, perhaps the first operand is complex and
4974 	     needs to be computed separately, so make a split point there.
4975 	     This will occur on machines that just support REG + CONST
4976 	     and have a constant moved through some previous computation.  */
4977 	  if (!OBJECT_P (XEXP (XEXP (x, 0), 0))
4978 	      && ! (GET_CODE (XEXP (XEXP (x, 0), 0)) == SUBREG
4979 		    && OBJECT_P (SUBREG_REG (XEXP (XEXP (x, 0), 0)))))
4980 	    return &XEXP (XEXP (x, 0), 0);
4981 	}
4982 
4983       /* If we have a PLUS whose first operand is complex, try computing it
4984          separately by making a split there.  */
4985       if (GET_CODE (XEXP (x, 0)) == PLUS
4986           && ! memory_address_addr_space_p (GET_MODE (x), XEXP (x, 0),
4987 					    MEM_ADDR_SPACE (x))
4988           && ! OBJECT_P (XEXP (XEXP (x, 0), 0))
4989           && ! (GET_CODE (XEXP (XEXP (x, 0), 0)) == SUBREG
4990                 && OBJECT_P (SUBREG_REG (XEXP (XEXP (x, 0), 0)))))
4991         return &XEXP (XEXP (x, 0), 0);
4992       break;
4993 
4994     case SET:
4995       /* See if we can split SET_SRC as it stands.  */
4996       split = find_split_point (&SET_SRC (x), insn, true);
4997       if (split && split != &SET_SRC (x))
4998 	return split;
4999 
5000       /* See if we can split SET_DEST as it stands.  */
5001       split = find_split_point (&SET_DEST (x), insn, false);
5002       if (split && split != &SET_DEST (x))
5003 	return split;
5004 
5005       /* See if this is a bitfield assignment with everything constant.  If
5006 	 so, this is an IOR of an AND, so split it into that.  */
5007       if (GET_CODE (SET_DEST (x)) == ZERO_EXTRACT
5008 	  && is_a <scalar_int_mode> (GET_MODE (XEXP (SET_DEST (x), 0)),
5009 				     &inner_mode)
5010 	  && HWI_COMPUTABLE_MODE_P (inner_mode)
5011 	  && CONST_INT_P (XEXP (SET_DEST (x), 1))
5012 	  && CONST_INT_P (XEXP (SET_DEST (x), 2))
5013 	  && CONST_INT_P (SET_SRC (x))
5014 	  && ((INTVAL (XEXP (SET_DEST (x), 1))
5015 	       + INTVAL (XEXP (SET_DEST (x), 2)))
5016 	      <= GET_MODE_PRECISION (inner_mode))
5017 	  && ! side_effects_p (XEXP (SET_DEST (x), 0)))
5018 	{
5019 	  HOST_WIDE_INT pos = INTVAL (XEXP (SET_DEST (x), 2));
5020 	  unsigned HOST_WIDE_INT len = INTVAL (XEXP (SET_DEST (x), 1));
5021 	  rtx dest = XEXP (SET_DEST (x), 0);
5022 	  unsigned HOST_WIDE_INT mask = (HOST_WIDE_INT_1U << len) - 1;
5023 	  unsigned HOST_WIDE_INT src = INTVAL (SET_SRC (x)) & mask;
5024 	  rtx or_mask;
5025 
5026 	  if (BITS_BIG_ENDIAN)
5027 	    pos = GET_MODE_PRECISION (inner_mode) - len - pos;
5028 
5029 	  or_mask = gen_int_mode (src << pos, inner_mode);
5030 	  if (src == mask)
5031 	    SUBST (SET_SRC (x),
5032 		   simplify_gen_binary (IOR, inner_mode, dest, or_mask));
5033 	  else
5034 	    {
5035 	      rtx negmask = gen_int_mode (~(mask << pos), inner_mode);
5036 	      SUBST (SET_SRC (x),
5037 		     simplify_gen_binary (IOR, inner_mode,
5038 					  simplify_gen_binary (AND, inner_mode,
5039 							       dest, negmask),
5040 					  or_mask));
5041 	    }
5042 
5043 	  SUBST (SET_DEST (x), dest);
5044 
5045 	  split = find_split_point (&SET_SRC (x), insn, true);
5046 	  if (split && split != &SET_SRC (x))
5047 	    return split;
5048 	}
5049 
5050       /* Otherwise, see if this is an operation that we can split into two.
5051 	 If so, try to split that.  */
5052       code = GET_CODE (SET_SRC (x));
5053 
5054       switch (code)
5055 	{
5056 	case AND:
5057 	  /* If we are AND'ing with a large constant that is only a single
5058 	     bit and the result is only being used in a context where we
5059 	     need to know if it is zero or nonzero, replace it with a bit
5060 	     extraction.  This will avoid the large constant, which might
5061 	     have taken more than one insn to make.  If the constant were
5062 	     not a valid argument to the AND but took only one insn to make,
5063 	     this is no worse, but if it took more than one insn, it will
5064 	     be better.  */
5065 
5066 	  if (CONST_INT_P (XEXP (SET_SRC (x), 1))
5067 	      && REG_P (XEXP (SET_SRC (x), 0))
5068 	      && (pos = exact_log2 (UINTVAL (XEXP (SET_SRC (x), 1)))) >= 7
5069 	      && REG_P (SET_DEST (x))
5070 	      && (split = find_single_use (SET_DEST (x), insn, NULL)) != 0
5071 	      && (GET_CODE (*split) == EQ || GET_CODE (*split) == NE)
5072 	      && XEXP (*split, 0) == SET_DEST (x)
5073 	      && XEXP (*split, 1) == const0_rtx)
5074 	    {
5075 	      rtx extraction = make_extraction (GET_MODE (SET_DEST (x)),
5076 						XEXP (SET_SRC (x), 0),
5077 						pos, NULL_RTX, 1, 1, 0, 0);
5078 	      if (extraction != 0)
5079 		{
5080 		  SUBST (SET_SRC (x), extraction);
5081 		  return find_split_point (loc, insn, false);
5082 		}
5083 	    }
5084 	  break;
5085 
5086 	case NE:
5087 	  /* If STORE_FLAG_VALUE is -1, this is (NE X 0) and only one bit of X
5088 	     is known to be on, this can be converted into a NEG of a shift.  */
5089 	  if (STORE_FLAG_VALUE == -1 && XEXP (SET_SRC (x), 1) == const0_rtx
5090 	      && GET_MODE (SET_SRC (x)) == GET_MODE (XEXP (SET_SRC (x), 0))
5091 	      && ((pos = exact_log2 (nonzero_bits (XEXP (SET_SRC (x), 0),
5092 						   GET_MODE (XEXP (SET_SRC (x),
5093 							     0))))) >= 1))
5094 	    {
5095 	      machine_mode mode = GET_MODE (XEXP (SET_SRC (x), 0));
5096 	      rtx pos_rtx = gen_int_shift_amount (mode, pos);
5097 	      SUBST (SET_SRC (x),
5098 		     gen_rtx_NEG (mode,
5099 				  gen_rtx_LSHIFTRT (mode,
5100 						    XEXP (SET_SRC (x), 0),
5101 						    pos_rtx)));
5102 
5103 	      split = find_split_point (&SET_SRC (x), insn, true);
5104 	      if (split && split != &SET_SRC (x))
5105 		return split;
5106 	    }
5107 	  break;
5108 
5109 	case SIGN_EXTEND:
5110 	  inner = XEXP (SET_SRC (x), 0);
5111 
5112 	  /* We can't optimize if either mode is a partial integer
5113 	     mode as we don't know how many bits are significant
5114 	     in those modes.  */
5115 	  if (!is_int_mode (GET_MODE (inner), &inner_mode)
5116 	      || GET_MODE_CLASS (GET_MODE (SET_SRC (x))) == MODE_PARTIAL_INT)
5117 	    break;
5118 
5119 	  pos = 0;
5120 	  len = GET_MODE_PRECISION (inner_mode);
5121 	  unsignedp = 0;
5122 	  break;
5123 
5124 	case SIGN_EXTRACT:
5125 	case ZERO_EXTRACT:
5126 	  if (is_a <scalar_int_mode> (GET_MODE (XEXP (SET_SRC (x), 0)),
5127 				      &inner_mode)
5128 	      && CONST_INT_P (XEXP (SET_SRC (x), 1))
5129 	      && CONST_INT_P (XEXP (SET_SRC (x), 2)))
5130 	    {
5131 	      inner = XEXP (SET_SRC (x), 0);
5132 	      len = INTVAL (XEXP (SET_SRC (x), 1));
5133 	      pos = INTVAL (XEXP (SET_SRC (x), 2));
5134 
5135 	      if (BITS_BIG_ENDIAN)
5136 		pos = GET_MODE_PRECISION (inner_mode) - len - pos;
5137 	      unsignedp = (code == ZERO_EXTRACT);
5138 	    }
5139 	  break;
5140 
5141 	default:
5142 	  break;
5143 	}
5144 
5145       if (len
5146 	  && known_subrange_p (pos, len,
5147 			       0, GET_MODE_PRECISION (GET_MODE (inner)))
5148 	  && is_a <scalar_int_mode> (GET_MODE (SET_SRC (x)), &mode))
5149 	{
5150 	  /* For unsigned, we have a choice of a shift followed by an
5151 	     AND or two shifts.  Use two shifts for field sizes where the
5152 	     constant might be too large.  We assume here that we can
5153 	     always at least get 8-bit constants in an AND insn, which is
5154 	     true for every current RISC.  */
5155 
5156 	  if (unsignedp && len <= 8)
5157 	    {
5158 	      unsigned HOST_WIDE_INT mask
5159 		= (HOST_WIDE_INT_1U << len) - 1;
5160 	      rtx pos_rtx = gen_int_shift_amount (mode, pos);
5161 	      SUBST (SET_SRC (x),
5162 		     gen_rtx_AND (mode,
5163 				  gen_rtx_LSHIFTRT
5164 				  (mode, gen_lowpart (mode, inner), pos_rtx),
5165 				  gen_int_mode (mask, mode)));
5166 
5167 	      split = find_split_point (&SET_SRC (x), insn, true);
5168 	      if (split && split != &SET_SRC (x))
5169 		return split;
5170 	    }
5171 	  else
5172 	    {
5173 	      int left_bits = GET_MODE_PRECISION (mode) - len - pos;
5174 	      int right_bits = GET_MODE_PRECISION (mode) - len;
5175 	      SUBST (SET_SRC (x),
5176 		     gen_rtx_fmt_ee
5177 		     (unsignedp ? LSHIFTRT : ASHIFTRT, mode,
5178 		      gen_rtx_ASHIFT (mode,
5179 				      gen_lowpart (mode, inner),
5180 				      gen_int_shift_amount (mode, left_bits)),
5181 		      gen_int_shift_amount (mode, right_bits)));
5182 
5183 	      split = find_split_point (&SET_SRC (x), insn, true);
5184 	      if (split && split != &SET_SRC (x))
5185 		return split;
5186 	    }
5187 	}
5188 
5189       /* See if this is a simple operation with a constant as the second
5190 	 operand.  It might be that this constant is out of range and hence
5191 	 could be used as a split point.  */
5192       if (BINARY_P (SET_SRC (x))
5193 	  && CONSTANT_P (XEXP (SET_SRC (x), 1))
5194 	  && (OBJECT_P (XEXP (SET_SRC (x), 0))
5195 	      || (GET_CODE (XEXP (SET_SRC (x), 0)) == SUBREG
5196 		  && OBJECT_P (SUBREG_REG (XEXP (SET_SRC (x), 0))))))
5197 	return &XEXP (SET_SRC (x), 1);
5198 
5199       /* Finally, see if this is a simple operation with its first operand
5200 	 not in a register.  The operation might require this operand in a
5201 	 register, so return it as a split point.  We can always do this
5202 	 because if the first operand were another operation, we would have
5203 	 already found it as a split point.  */
5204       if ((BINARY_P (SET_SRC (x)) || UNARY_P (SET_SRC (x)))
5205 	  && ! register_operand (XEXP (SET_SRC (x), 0), VOIDmode))
5206 	return &XEXP (SET_SRC (x), 0);
5207 
5208       return 0;
5209 
5210     case AND:
5211     case IOR:
5212       /* We write NOR as (and (not A) (not B)), but if we don't have a NOR,
5213 	 it is better to write this as (not (ior A B)) so we can split it.
5214 	 Similarly for IOR.  */
5215       if (GET_CODE (XEXP (x, 0)) == NOT && GET_CODE (XEXP (x, 1)) == NOT)
5216 	{
5217 	  SUBST (*loc,
5218 		 gen_rtx_NOT (GET_MODE (x),
5219 			      gen_rtx_fmt_ee (code == IOR ? AND : IOR,
5220 					      GET_MODE (x),
5221 					      XEXP (XEXP (x, 0), 0),
5222 					      XEXP (XEXP (x, 1), 0))));
5223 	  return find_split_point (loc, insn, set_src);
5224 	}
5225 
5226       /* Many RISC machines have a large set of logical insns.  If the
5227 	 second operand is a NOT, put it first so we will try to split the
5228 	 other operand first.  */
5229       if (GET_CODE (XEXP (x, 1)) == NOT)
5230 	{
5231 	  rtx tem = XEXP (x, 0);
5232 	  SUBST (XEXP (x, 0), XEXP (x, 1));
5233 	  SUBST (XEXP (x, 1), tem);
5234 	}
5235       break;
5236 
5237     case PLUS:
5238     case MINUS:
5239       /* Canonicalization can produce (minus A (mult B C)), where C is a
5240 	 constant.  It may be better to try splitting (plus (mult B -C) A)
5241 	 instead if this isn't a multiply by a power of two.  */
5242       if (set_src && code == MINUS && GET_CODE (XEXP (x, 1)) == MULT
5243 	  && GET_CODE (XEXP (XEXP (x, 1), 1)) == CONST_INT
5244 	  && !pow2p_hwi (INTVAL (XEXP (XEXP (x, 1), 1))))
5245 	{
5246 	  machine_mode mode = GET_MODE (x);
5247 	  unsigned HOST_WIDE_INT this_int = INTVAL (XEXP (XEXP (x, 1), 1));
5248 	  HOST_WIDE_INT other_int = trunc_int_for_mode (-this_int, mode);
5249 	  SUBST (*loc, gen_rtx_PLUS (mode,
5250 				     gen_rtx_MULT (mode,
5251 						   XEXP (XEXP (x, 1), 0),
5252 						   gen_int_mode (other_int,
5253 								 mode)),
5254 				     XEXP (x, 0)));
5255 	  return find_split_point (loc, insn, set_src);
5256 	}
5257 
5258       /* Split at a multiply-accumulate instruction.  However if this is
5259          the SET_SRC, we likely do not have such an instruction and it's
5260          worthless to try this split.  */
5261       if (!set_src
5262 	  && (GET_CODE (XEXP (x, 0)) == MULT
5263 	      || (GET_CODE (XEXP (x, 0)) == ASHIFT
5264 		  && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT)))
5265         return loc;
5266 
5267     default:
5268       break;
5269     }
5270 
5271   /* Otherwise, select our actions depending on our rtx class.  */
5272   switch (GET_RTX_CLASS (code))
5273     {
5274     case RTX_BITFIELD_OPS:		/* This is ZERO_EXTRACT and SIGN_EXTRACT.  */
5275     case RTX_TERNARY:
5276       split = find_split_point (&XEXP (x, 2), insn, false);
5277       if (split)
5278 	return split;
5279       /* fall through */
5280     case RTX_BIN_ARITH:
5281     case RTX_COMM_ARITH:
5282     case RTX_COMPARE:
5283     case RTX_COMM_COMPARE:
5284       split = find_split_point (&XEXP (x, 1), insn, false);
5285       if (split)
5286 	return split;
5287       /* fall through */
5288     case RTX_UNARY:
5289       /* Some machines have (and (shift ...) ...) insns.  If X is not
5290 	 an AND, but XEXP (X, 0) is, use it as our split point.  */
5291       if (GET_CODE (x) != AND && GET_CODE (XEXP (x, 0)) == AND)
5292 	return &XEXP (x, 0);
5293 
5294       split = find_split_point (&XEXP (x, 0), insn, false);
5295       if (split)
5296 	return split;
5297       return loc;
5298 
5299     default:
5300       /* Otherwise, we don't have a split point.  */
5301       return 0;
5302     }
5303 }
5304 
5305 /* Throughout X, replace FROM with TO, and return the result.
5306    The result is TO if X is FROM;
5307    otherwise the result is X, but its contents may have been modified.
5308    If they were modified, a record was made in undobuf so that
5309    undo_all will (among other things) return X to its original state.
5310 
5311    If the number of changes necessary is too much to record to undo,
5312    the excess changes are not made, so the result is invalid.
5313    The changes already made can still be undone.
5314    undobuf.num_undo is incremented for such changes, so by testing that
5315    the caller can tell whether the result is valid.
5316 
5317    `n_occurrences' is incremented each time FROM is replaced.
5318 
5319    IN_DEST is nonzero if we are processing the SET_DEST of a SET.
5320 
5321    IN_COND is nonzero if we are at the top level of a condition.
5322 
5323    UNIQUE_COPY is nonzero if each substitution must be unique.  We do this
5324    by copying if `n_occurrences' is nonzero.  */
5325 
5326 static rtx
subst(rtx x,rtx from,rtx to,int in_dest,int in_cond,int unique_copy)5327 subst (rtx x, rtx from, rtx to, int in_dest, int in_cond, int unique_copy)
5328 {
5329   enum rtx_code code = GET_CODE (x);
5330   machine_mode op0_mode = VOIDmode;
5331   const char *fmt;
5332   int len, i;
5333   rtx new_rtx;
5334 
5335 /* Two expressions are equal if they are identical copies of a shared
5336    RTX or if they are both registers with the same register number
5337    and mode.  */
5338 
5339 #define COMBINE_RTX_EQUAL_P(X,Y)			\
5340   ((X) == (Y)						\
5341    || (REG_P (X) && REG_P (Y)	\
5342        && REGNO (X) == REGNO (Y) && GET_MODE (X) == GET_MODE (Y)))
5343 
5344   /* Do not substitute into clobbers of regs -- this will never result in
5345      valid RTL.  */
5346   if (GET_CODE (x) == CLOBBER && REG_P (XEXP (x, 0)))
5347     return x;
5348 
5349   if (! in_dest && COMBINE_RTX_EQUAL_P (x, from))
5350     {
5351       n_occurrences++;
5352       return (unique_copy && n_occurrences > 1 ? copy_rtx (to) : to);
5353     }
5354 
5355   /* If X and FROM are the same register but different modes, they
5356      will not have been seen as equal above.  However, the log links code
5357      will make a LOG_LINKS entry for that case.  If we do nothing, we
5358      will try to rerecognize our original insn and, when it succeeds,
5359      we will delete the feeding insn, which is incorrect.
5360 
5361      So force this insn not to match in this (rare) case.  */
5362   if (! in_dest && code == REG && REG_P (from)
5363       && reg_overlap_mentioned_p (x, from))
5364     return gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
5365 
5366   /* If this is an object, we are done unless it is a MEM or LO_SUM, both
5367      of which may contain things that can be combined.  */
5368   if (code != MEM && code != LO_SUM && OBJECT_P (x))
5369     return x;
5370 
5371   /* It is possible to have a subexpression appear twice in the insn.
5372      Suppose that FROM is a register that appears within TO.
5373      Then, after that subexpression has been scanned once by `subst',
5374      the second time it is scanned, TO may be found.  If we were
5375      to scan TO here, we would find FROM within it and create a
5376      self-referent rtl structure which is completely wrong.  */
5377   if (COMBINE_RTX_EQUAL_P (x, to))
5378     return to;
5379 
5380   /* Parallel asm_operands need special attention because all of the
5381      inputs are shared across the arms.  Furthermore, unsharing the
5382      rtl results in recognition failures.  Failure to handle this case
5383      specially can result in circular rtl.
5384 
5385      Solve this by doing a normal pass across the first entry of the
5386      parallel, and only processing the SET_DESTs of the subsequent
5387      entries.  Ug.  */
5388 
5389   if (code == PARALLEL
5390       && GET_CODE (XVECEXP (x, 0, 0)) == SET
5391       && GET_CODE (SET_SRC (XVECEXP (x, 0, 0))) == ASM_OPERANDS)
5392     {
5393       new_rtx = subst (XVECEXP (x, 0, 0), from, to, 0, 0, unique_copy);
5394 
5395       /* If this substitution failed, this whole thing fails.  */
5396       if (GET_CODE (new_rtx) == CLOBBER
5397 	  && XEXP (new_rtx, 0) == const0_rtx)
5398 	return new_rtx;
5399 
5400       SUBST (XVECEXP (x, 0, 0), new_rtx);
5401 
5402       for (i = XVECLEN (x, 0) - 1; i >= 1; i--)
5403 	{
5404 	  rtx dest = SET_DEST (XVECEXP (x, 0, i));
5405 
5406 	  if (!REG_P (dest) && GET_CODE (dest) != PC)
5407 	    {
5408 	      new_rtx = subst (dest, from, to, 0, 0, unique_copy);
5409 
5410 	      /* If this substitution failed, this whole thing fails.  */
5411 	      if (GET_CODE (new_rtx) == CLOBBER
5412 		  && XEXP (new_rtx, 0) == const0_rtx)
5413 		return new_rtx;
5414 
5415 	      SUBST (SET_DEST (XVECEXP (x, 0, i)), new_rtx);
5416 	    }
5417 	}
5418     }
5419   else
5420     {
5421       len = GET_RTX_LENGTH (code);
5422       fmt = GET_RTX_FORMAT (code);
5423 
5424       /* We don't need to process a SET_DEST that is a register or PC, so
5425 	 set up to skip this common case.  All other cases where we want
5426 	 to suppress replacing something inside a SET_SRC are handled via
5427 	 the IN_DEST operand.  */
5428       if (code == SET
5429 	  && (REG_P (SET_DEST (x))
5430 	      || GET_CODE (SET_DEST (x)) == PC))
5431 	fmt = "ie";
5432 
5433       /* Trying to simplify the operands of a widening MULT is not likely
5434 	 to create RTL matching a machine insn.  */
5435       if (code == MULT
5436 	  && (GET_CODE (XEXP (x, 0)) == ZERO_EXTEND
5437 	      || GET_CODE (XEXP (x, 0)) == SIGN_EXTEND)
5438 	  && (GET_CODE (XEXP (x, 1)) == ZERO_EXTEND
5439 	      || GET_CODE (XEXP (x, 1)) == SIGN_EXTEND)
5440 	  && REG_P (XEXP (XEXP (x, 0), 0))
5441 	  && REG_P (XEXP (XEXP (x, 1), 0))
5442 	  && from == to)
5443 	return x;
5444 
5445 
5446       /* Get the mode of operand 0 in case X is now a SIGN_EXTEND of a
5447 	 constant.  */
5448       if (fmt[0] == 'e')
5449 	op0_mode = GET_MODE (XEXP (x, 0));
5450 
5451       for (i = 0; i < len; i++)
5452 	{
5453 	  if (fmt[i] == 'E')
5454 	    {
5455 	      int j;
5456 	      for (j = XVECLEN (x, i) - 1; j >= 0; j--)
5457 		{
5458 		  if (COMBINE_RTX_EQUAL_P (XVECEXP (x, i, j), from))
5459 		    {
5460 		      new_rtx = (unique_copy && n_occurrences
5461 			     ? copy_rtx (to) : to);
5462 		      n_occurrences++;
5463 		    }
5464 		  else
5465 		    {
5466 		      new_rtx = subst (XVECEXP (x, i, j), from, to, 0, 0,
5467 				       unique_copy);
5468 
5469 		      /* If this substitution failed, this whole thing
5470 			 fails.  */
5471 		      if (GET_CODE (new_rtx) == CLOBBER
5472 			  && XEXP (new_rtx, 0) == const0_rtx)
5473 			return new_rtx;
5474 		    }
5475 
5476 		  SUBST (XVECEXP (x, i, j), new_rtx);
5477 		}
5478 	    }
5479 	  else if (fmt[i] == 'e')
5480 	    {
5481 	      /* If this is a register being set, ignore it.  */
5482 	      new_rtx = XEXP (x, i);
5483 	      if (in_dest
5484 		  && i == 0
5485 		  && (((code == SUBREG || code == ZERO_EXTRACT)
5486 		       && REG_P (new_rtx))
5487 		      || code == STRICT_LOW_PART))
5488 		;
5489 
5490 	      else if (COMBINE_RTX_EQUAL_P (XEXP (x, i), from))
5491 		{
5492 		  /* In general, don't install a subreg involving two
5493 		     modes not tieable.  It can worsen register
5494 		     allocation, and can even make invalid reload
5495 		     insns, since the reg inside may need to be copied
5496 		     from in the outside mode, and that may be invalid
5497 		     if it is an fp reg copied in integer mode.
5498 
5499 		     We allow an exception to this: It is valid if
5500 		     it is inside another SUBREG and the mode of that
5501 		     SUBREG and the mode of the inside of TO is
5502 		     tieable.  */
5503 
5504 		  if (GET_CODE (to) == SUBREG
5505 		      && !targetm.modes_tieable_p (GET_MODE (to),
5506 						   GET_MODE (SUBREG_REG (to)))
5507 		      && ! (code == SUBREG
5508 			    && (targetm.modes_tieable_p
5509 				(GET_MODE (x), GET_MODE (SUBREG_REG (to))))))
5510 		    return gen_rtx_CLOBBER (VOIDmode, const0_rtx);
5511 
5512 		  if (code == SUBREG
5513 		      && REG_P (to)
5514 		      && REGNO (to) < FIRST_PSEUDO_REGISTER
5515 		      && simplify_subreg_regno (REGNO (to), GET_MODE (to),
5516 						SUBREG_BYTE (x),
5517 						GET_MODE (x)) < 0)
5518 		    return gen_rtx_CLOBBER (VOIDmode, const0_rtx);
5519 
5520 		  new_rtx = (unique_copy && n_occurrences ? copy_rtx (to) : to);
5521 		  n_occurrences++;
5522 		}
5523 	      else
5524 		/* If we are in a SET_DEST, suppress most cases unless we
5525 		   have gone inside a MEM, in which case we want to
5526 		   simplify the address.  We assume here that things that
5527 		   are actually part of the destination have their inner
5528 		   parts in the first expression.  This is true for SUBREG,
5529 		   STRICT_LOW_PART, and ZERO_EXTRACT, which are the only
5530 		   things aside from REG and MEM that should appear in a
5531 		   SET_DEST.  */
5532 		new_rtx = subst (XEXP (x, i), from, to,
5533 			     (((in_dest
5534 				&& (code == SUBREG || code == STRICT_LOW_PART
5535 				    || code == ZERO_EXTRACT))
5536 			       || code == SET)
5537 			      && i == 0),
5538 				 code == IF_THEN_ELSE && i == 0,
5539 				 unique_copy);
5540 
5541 	      /* If we found that we will have to reject this combination,
5542 		 indicate that by returning the CLOBBER ourselves, rather than
5543 		 an expression containing it.  This will speed things up as
5544 		 well as prevent accidents where two CLOBBERs are considered
5545 		 to be equal, thus producing an incorrect simplification.  */
5546 
5547 	      if (GET_CODE (new_rtx) == CLOBBER && XEXP (new_rtx, 0) == const0_rtx)
5548 		return new_rtx;
5549 
5550 	      if (GET_CODE (x) == SUBREG && CONST_SCALAR_INT_P (new_rtx))
5551 		{
5552 		  machine_mode mode = GET_MODE (x);
5553 
5554 		  x = simplify_subreg (GET_MODE (x), new_rtx,
5555 				       GET_MODE (SUBREG_REG (x)),
5556 				       SUBREG_BYTE (x));
5557 		  if (! x)
5558 		    x = gen_rtx_CLOBBER (mode, const0_rtx);
5559 		}
5560 	      else if (CONST_SCALAR_INT_P (new_rtx)
5561 		       && (GET_CODE (x) == ZERO_EXTEND
5562 			   || GET_CODE (x) == SIGN_EXTEND
5563 			   || GET_CODE (x) == FLOAT
5564 			   || GET_CODE (x) == UNSIGNED_FLOAT))
5565 		{
5566 		  x = simplify_unary_operation (GET_CODE (x), GET_MODE (x),
5567 						new_rtx,
5568 						GET_MODE (XEXP (x, 0)));
5569 		  if (!x)
5570 		    return gen_rtx_CLOBBER (VOIDmode, const0_rtx);
5571 		}
5572 	      /* CONST_INTs shouldn't be substituted into PRE_DEC, PRE_MODIFY
5573 		 etc. arguments, otherwise we can ICE before trying to recog
5574 		 it.  See PR104446.  */
5575 	      else if (CONST_SCALAR_INT_P (new_rtx)
5576 		       && GET_RTX_CLASS (GET_CODE (x)) == RTX_AUTOINC)
5577 		return gen_rtx_CLOBBER (VOIDmode, const0_rtx);
5578 	      else
5579 		SUBST (XEXP (x, i), new_rtx);
5580 	    }
5581 	}
5582     }
5583 
5584   /* Check if we are loading something from the constant pool via float
5585      extension; in this case we would undo compress_float_constant
5586      optimization and degenerate constant load to an immediate value.  */
5587   if (GET_CODE (x) == FLOAT_EXTEND
5588       && MEM_P (XEXP (x, 0))
5589       && MEM_READONLY_P (XEXP (x, 0)))
5590     {
5591       rtx tmp = avoid_constant_pool_reference (x);
5592       if (x != tmp)
5593         return x;
5594     }
5595 
5596   /* Try to simplify X.  If the simplification changed the code, it is likely
5597      that further simplification will help, so loop, but limit the number
5598      of repetitions that will be performed.  */
5599 
5600   for (i = 0; i < 4; i++)
5601     {
5602       /* If X is sufficiently simple, don't bother trying to do anything
5603 	 with it.  */
5604       if (code != CONST_INT && code != REG && code != CLOBBER)
5605 	x = combine_simplify_rtx (x, op0_mode, in_dest, in_cond);
5606 
5607       if (GET_CODE (x) == code)
5608 	break;
5609 
5610       code = GET_CODE (x);
5611 
5612       /* We no longer know the original mode of operand 0 since we
5613 	 have changed the form of X)  */
5614       op0_mode = VOIDmode;
5615     }
5616 
5617   return x;
5618 }
5619 
5620 /* If X is a commutative operation whose operands are not in the canonical
5621    order, use substitutions to swap them.  */
5622 
5623 static void
maybe_swap_commutative_operands(rtx x)5624 maybe_swap_commutative_operands (rtx x)
5625 {
5626   if (COMMUTATIVE_ARITH_P (x)
5627       && swap_commutative_operands_p (XEXP (x, 0), XEXP (x, 1)))
5628     {
5629       rtx temp = XEXP (x, 0);
5630       SUBST (XEXP (x, 0), XEXP (x, 1));
5631       SUBST (XEXP (x, 1), temp);
5632     }
5633 }
5634 
5635 /* Simplify X, a piece of RTL.  We just operate on the expression at the
5636    outer level; call `subst' to simplify recursively.  Return the new
5637    expression.
5638 
5639    OP0_MODE is the original mode of XEXP (x, 0).  IN_DEST is nonzero
5640    if we are inside a SET_DEST.  IN_COND is nonzero if we are at the top level
5641    of a condition.  */
5642 
5643 static rtx
combine_simplify_rtx(rtx x,machine_mode op0_mode,int in_dest,int in_cond)5644 combine_simplify_rtx (rtx x, machine_mode op0_mode, int in_dest,
5645 		      int in_cond)
5646 {
5647   enum rtx_code code = GET_CODE (x);
5648   machine_mode mode = GET_MODE (x);
5649   scalar_int_mode int_mode;
5650   rtx temp;
5651   int i;
5652 
5653   /* If this is a commutative operation, put a constant last and a complex
5654      expression first.  We don't need to do this for comparisons here.  */
5655   maybe_swap_commutative_operands (x);
5656 
5657   /* Try to fold this expression in case we have constants that weren't
5658      present before.  */
5659   temp = 0;
5660   switch (GET_RTX_CLASS (code))
5661     {
5662     case RTX_UNARY:
5663       if (op0_mode == VOIDmode)
5664 	op0_mode = GET_MODE (XEXP (x, 0));
5665       temp = simplify_unary_operation (code, mode, XEXP (x, 0), op0_mode);
5666       break;
5667     case RTX_COMPARE:
5668     case RTX_COMM_COMPARE:
5669       {
5670 	machine_mode cmp_mode = GET_MODE (XEXP (x, 0));
5671 	if (cmp_mode == VOIDmode)
5672 	  {
5673 	    cmp_mode = GET_MODE (XEXP (x, 1));
5674 	    if (cmp_mode == VOIDmode)
5675 	      cmp_mode = op0_mode;
5676 	  }
5677 	temp = simplify_relational_operation (code, mode, cmp_mode,
5678 					      XEXP (x, 0), XEXP (x, 1));
5679       }
5680       break;
5681     case RTX_COMM_ARITH:
5682     case RTX_BIN_ARITH:
5683       temp = simplify_binary_operation (code, mode, XEXP (x, 0), XEXP (x, 1));
5684       break;
5685     case RTX_BITFIELD_OPS:
5686     case RTX_TERNARY:
5687       temp = simplify_ternary_operation (code, mode, op0_mode, XEXP (x, 0),
5688 					 XEXP (x, 1), XEXP (x, 2));
5689       break;
5690     default:
5691       break;
5692     }
5693 
5694   if (temp)
5695     {
5696       x = temp;
5697       code = GET_CODE (temp);
5698       op0_mode = VOIDmode;
5699       mode = GET_MODE (temp);
5700     }
5701 
5702   /* If this is a simple operation applied to an IF_THEN_ELSE, try
5703      applying it to the arms of the IF_THEN_ELSE.  This often simplifies
5704      things.  Check for cases where both arms are testing the same
5705      condition.
5706 
5707      Don't do anything if all operands are very simple.  */
5708 
5709   if ((BINARY_P (x)
5710        && ((!OBJECT_P (XEXP (x, 0))
5711 	    && ! (GET_CODE (XEXP (x, 0)) == SUBREG
5712 		  && OBJECT_P (SUBREG_REG (XEXP (x, 0)))))
5713 	   || (!OBJECT_P (XEXP (x, 1))
5714 	       && ! (GET_CODE (XEXP (x, 1)) == SUBREG
5715 		     && OBJECT_P (SUBREG_REG (XEXP (x, 1)))))))
5716       || (UNARY_P (x)
5717 	  && (!OBJECT_P (XEXP (x, 0))
5718 	       && ! (GET_CODE (XEXP (x, 0)) == SUBREG
5719 		     && OBJECT_P (SUBREG_REG (XEXP (x, 0)))))))
5720     {
5721       rtx cond, true_rtx, false_rtx;
5722 
5723       cond = if_then_else_cond (x, &true_rtx, &false_rtx);
5724       if (cond != 0
5725 	  /* If everything is a comparison, what we have is highly unlikely
5726 	     to be simpler, so don't use it.  */
5727 	  && ! (COMPARISON_P (x)
5728 		&& (COMPARISON_P (true_rtx) || COMPARISON_P (false_rtx)))
5729 	  /* Similarly, if we end up with one of the expressions the same
5730 	     as the original, it is certainly not simpler.  */
5731 	  && ! rtx_equal_p (x, true_rtx)
5732 	  && ! rtx_equal_p (x, false_rtx))
5733 	{
5734 	  rtx cop1 = const0_rtx;
5735 	  enum rtx_code cond_code = simplify_comparison (NE, &cond, &cop1);
5736 
5737 	  if (cond_code == NE && COMPARISON_P (cond))
5738 	    return x;
5739 
5740 	  /* Simplify the alternative arms; this may collapse the true and
5741 	     false arms to store-flag values.  Be careful to use copy_rtx
5742 	     here since true_rtx or false_rtx might share RTL with x as a
5743 	     result of the if_then_else_cond call above.  */
5744 	  true_rtx = subst (copy_rtx (true_rtx), pc_rtx, pc_rtx, 0, 0, 0);
5745 	  false_rtx = subst (copy_rtx (false_rtx), pc_rtx, pc_rtx, 0, 0, 0);
5746 
5747 	  /* If true_rtx and false_rtx are not general_operands, an if_then_else
5748 	     is unlikely to be simpler.  */
5749 	  if (general_operand (true_rtx, VOIDmode)
5750 	      && general_operand (false_rtx, VOIDmode))
5751 	    {
5752 	      enum rtx_code reversed;
5753 
5754 	      /* Restarting if we generate a store-flag expression will cause
5755 		 us to loop.  Just drop through in this case.  */
5756 
5757 	      /* If the result values are STORE_FLAG_VALUE and zero, we can
5758 		 just make the comparison operation.  */
5759 	      if (true_rtx == const_true_rtx && false_rtx == const0_rtx)
5760 		x = simplify_gen_relational (cond_code, mode, VOIDmode,
5761 					     cond, cop1);
5762 	      else if (true_rtx == const0_rtx && false_rtx == const_true_rtx
5763 		       && ((reversed = reversed_comparison_code_parts
5764 					(cond_code, cond, cop1, NULL))
5765 			   != UNKNOWN))
5766 		x = simplify_gen_relational (reversed, mode, VOIDmode,
5767 					     cond, cop1);
5768 
5769 	      /* Likewise, we can make the negate of a comparison operation
5770 		 if the result values are - STORE_FLAG_VALUE and zero.  */
5771 	      else if (CONST_INT_P (true_rtx)
5772 		       && INTVAL (true_rtx) == - STORE_FLAG_VALUE
5773 		       && false_rtx == const0_rtx)
5774 		x = simplify_gen_unary (NEG, mode,
5775 					simplify_gen_relational (cond_code,
5776 								 mode, VOIDmode,
5777 								 cond, cop1),
5778 					mode);
5779 	      else if (CONST_INT_P (false_rtx)
5780 		       && INTVAL (false_rtx) == - STORE_FLAG_VALUE
5781 		       && true_rtx == const0_rtx
5782 		       && ((reversed = reversed_comparison_code_parts
5783 					(cond_code, cond, cop1, NULL))
5784 			   != UNKNOWN))
5785 		x = simplify_gen_unary (NEG, mode,
5786 					simplify_gen_relational (reversed,
5787 								 mode, VOIDmode,
5788 								 cond, cop1),
5789 					mode);
5790 
5791 	      code = GET_CODE (x);
5792 	      op0_mode = VOIDmode;
5793 	    }
5794 	}
5795     }
5796 
5797   /* First see if we can apply the inverse distributive law.  */
5798   if (code == PLUS || code == MINUS
5799       || code == AND || code == IOR || code == XOR)
5800     {
5801       x = apply_distributive_law (x);
5802       code = GET_CODE (x);
5803       op0_mode = VOIDmode;
5804     }
5805 
5806   /* If CODE is an associative operation not otherwise handled, see if we
5807      can associate some operands.  This can win if they are constants or
5808      if they are logically related (i.e. (a & b) & a).  */
5809   if ((code == PLUS || code == MINUS || code == MULT || code == DIV
5810        || code == AND || code == IOR || code == XOR
5811        || code == SMAX || code == SMIN || code == UMAX || code == UMIN)
5812       && ((INTEGRAL_MODE_P (mode) && code != DIV)
5813 	  || (flag_associative_math && FLOAT_MODE_P (mode))))
5814     {
5815       if (GET_CODE (XEXP (x, 0)) == code)
5816 	{
5817 	  rtx other = XEXP (XEXP (x, 0), 0);
5818 	  rtx inner_op0 = XEXP (XEXP (x, 0), 1);
5819 	  rtx inner_op1 = XEXP (x, 1);
5820 	  rtx inner;
5821 
5822 	  /* Make sure we pass the constant operand if any as the second
5823 	     one if this is a commutative operation.  */
5824 	  if (CONSTANT_P (inner_op0) && COMMUTATIVE_ARITH_P (x))
5825 	    std::swap (inner_op0, inner_op1);
5826 	  inner = simplify_binary_operation (code == MINUS ? PLUS
5827 					     : code == DIV ? MULT
5828 					     : code,
5829 					     mode, inner_op0, inner_op1);
5830 
5831 	  /* For commutative operations, try the other pair if that one
5832 	     didn't simplify.  */
5833 	  if (inner == 0 && COMMUTATIVE_ARITH_P (x))
5834 	    {
5835 	      other = XEXP (XEXP (x, 0), 1);
5836 	      inner = simplify_binary_operation (code, mode,
5837 						 XEXP (XEXP (x, 0), 0),
5838 						 XEXP (x, 1));
5839 	    }
5840 
5841 	  if (inner)
5842 	    return simplify_gen_binary (code, mode, other, inner);
5843 	}
5844     }
5845 
5846   /* A little bit of algebraic simplification here.  */
5847   switch (code)
5848     {
5849     case MEM:
5850       /* Ensure that our address has any ASHIFTs converted to MULT in case
5851 	 address-recognizing predicates are called later.  */
5852       temp = make_compound_operation (XEXP (x, 0), MEM);
5853       SUBST (XEXP (x, 0), temp);
5854       break;
5855 
5856     case SUBREG:
5857       if (op0_mode == VOIDmode)
5858 	op0_mode = GET_MODE (SUBREG_REG (x));
5859 
5860       /* See if this can be moved to simplify_subreg.  */
5861       if (CONSTANT_P (SUBREG_REG (x))
5862 	  && known_eq (subreg_lowpart_offset (mode, op0_mode), SUBREG_BYTE (x))
5863 	     /* Don't call gen_lowpart if the inner mode
5864 		is VOIDmode and we cannot simplify it, as SUBREG without
5865 		inner mode is invalid.  */
5866 	  && (GET_MODE (SUBREG_REG (x)) != VOIDmode
5867 	      || gen_lowpart_common (mode, SUBREG_REG (x))))
5868 	return gen_lowpart (mode, SUBREG_REG (x));
5869 
5870       if (GET_MODE_CLASS (GET_MODE (SUBREG_REG (x))) == MODE_CC)
5871 	break;
5872       {
5873 	rtx temp;
5874 	temp = simplify_subreg (mode, SUBREG_REG (x), op0_mode,
5875 				SUBREG_BYTE (x));
5876 	if (temp)
5877 	  return temp;
5878 
5879 	/* If op is known to have all lower bits zero, the result is zero.  */
5880 	scalar_int_mode int_mode, int_op0_mode;
5881 	if (!in_dest
5882 	    && is_a <scalar_int_mode> (mode, &int_mode)
5883 	    && is_a <scalar_int_mode> (op0_mode, &int_op0_mode)
5884 	    && (GET_MODE_PRECISION (int_mode)
5885 		< GET_MODE_PRECISION (int_op0_mode))
5886 	    && known_eq (subreg_lowpart_offset (int_mode, int_op0_mode),
5887 			 SUBREG_BYTE (x))
5888 	    && HWI_COMPUTABLE_MODE_P (int_op0_mode)
5889 	    && ((nonzero_bits (SUBREG_REG (x), int_op0_mode)
5890 		 & GET_MODE_MASK (int_mode)) == 0)
5891 	    && !side_effects_p (SUBREG_REG (x)))
5892 	  return CONST0_RTX (int_mode);
5893       }
5894 
5895       /* Don't change the mode of the MEM if that would change the meaning
5896 	 of the address.  */
5897       if (MEM_P (SUBREG_REG (x))
5898 	  && (MEM_VOLATILE_P (SUBREG_REG (x))
5899 	      || mode_dependent_address_p (XEXP (SUBREG_REG (x), 0),
5900 					   MEM_ADDR_SPACE (SUBREG_REG (x)))))
5901 	return gen_rtx_CLOBBER (mode, const0_rtx);
5902 
5903       /* Note that we cannot do any narrowing for non-constants since
5904 	 we might have been counting on using the fact that some bits were
5905 	 zero.  We now do this in the SET.  */
5906 
5907       break;
5908 
5909     case NEG:
5910       temp = expand_compound_operation (XEXP (x, 0));
5911 
5912       /* For C equal to the width of MODE minus 1, (neg (ashiftrt X C)) can be
5913 	 replaced by (lshiftrt X C).  This will convert
5914 	 (neg (sign_extract X 1 Y)) to (zero_extract X 1 Y).  */
5915 
5916       if (GET_CODE (temp) == ASHIFTRT
5917 	  && CONST_INT_P (XEXP (temp, 1))
5918 	  && INTVAL (XEXP (temp, 1)) == GET_MODE_UNIT_PRECISION (mode) - 1)
5919 	return simplify_shift_const (NULL_RTX, LSHIFTRT, mode, XEXP (temp, 0),
5920 				     INTVAL (XEXP (temp, 1)));
5921 
5922       /* If X has only a single bit that might be nonzero, say, bit I, convert
5923 	 (neg X) to (ashiftrt (ashift X C-I) C-I) where C is the bitsize of
5924 	 MODE minus 1.  This will convert (neg (zero_extract X 1 Y)) to
5925 	 (sign_extract X 1 Y).  But only do this if TEMP isn't a register
5926 	 or a SUBREG of one since we'd be making the expression more
5927 	 complex if it was just a register.  */
5928 
5929       if (!REG_P (temp)
5930 	  && ! (GET_CODE (temp) == SUBREG
5931 		&& REG_P (SUBREG_REG (temp)))
5932 	  && is_a <scalar_int_mode> (mode, &int_mode)
5933 	  && (i = exact_log2 (nonzero_bits (temp, int_mode))) >= 0)
5934 	{
5935 	  rtx temp1 = simplify_shift_const
5936 	    (NULL_RTX, ASHIFTRT, int_mode,
5937 	     simplify_shift_const (NULL_RTX, ASHIFT, int_mode, temp,
5938 				   GET_MODE_PRECISION (int_mode) - 1 - i),
5939 	     GET_MODE_PRECISION (int_mode) - 1 - i);
5940 
5941 	  /* If all we did was surround TEMP with the two shifts, we
5942 	     haven't improved anything, so don't use it.  Otherwise,
5943 	     we are better off with TEMP1.  */
5944 	  if (GET_CODE (temp1) != ASHIFTRT
5945 	      || GET_CODE (XEXP (temp1, 0)) != ASHIFT
5946 	      || XEXP (XEXP (temp1, 0), 0) != temp)
5947 	    return temp1;
5948 	}
5949       break;
5950 
5951     case TRUNCATE:
5952       /* We can't handle truncation to a partial integer mode here
5953 	 because we don't know the real bitsize of the partial
5954 	 integer mode.  */
5955       if (GET_MODE_CLASS (mode) == MODE_PARTIAL_INT)
5956 	break;
5957 
5958       if (HWI_COMPUTABLE_MODE_P (mode))
5959 	SUBST (XEXP (x, 0),
5960 	       force_to_mode (XEXP (x, 0), GET_MODE (XEXP (x, 0)),
5961 			      GET_MODE_MASK (mode), 0));
5962 
5963       /* We can truncate a constant value and return it.  */
5964       {
5965 	poly_int64 c;
5966 	if (poly_int_rtx_p (XEXP (x, 0), &c))
5967 	  return gen_int_mode (c, mode);
5968       }
5969 
5970       /* Similarly to what we do in simplify-rtx.cc, a truncate of a register
5971 	 whose value is a comparison can be replaced with a subreg if
5972 	 STORE_FLAG_VALUE permits.  */
5973       if (HWI_COMPUTABLE_MODE_P (mode)
5974 	  && (STORE_FLAG_VALUE & ~GET_MODE_MASK (mode)) == 0
5975 	  && (temp = get_last_value (XEXP (x, 0)))
5976 	  && COMPARISON_P (temp)
5977 	  && TRULY_NOOP_TRUNCATION_MODES_P (mode, GET_MODE (XEXP (x, 0))))
5978 	return gen_lowpart (mode, XEXP (x, 0));
5979       break;
5980 
5981     case CONST:
5982       /* (const (const X)) can become (const X).  Do it this way rather than
5983 	 returning the inner CONST since CONST can be shared with a
5984 	 REG_EQUAL note.  */
5985       if (GET_CODE (XEXP (x, 0)) == CONST)
5986 	SUBST (XEXP (x, 0), XEXP (XEXP (x, 0), 0));
5987       break;
5988 
5989     case LO_SUM:
5990       /* Convert (lo_sum (high FOO) FOO) to FOO.  This is necessary so we
5991 	 can add in an offset.  find_split_point will split this address up
5992 	 again if it doesn't match.  */
5993       if (HAVE_lo_sum && GET_CODE (XEXP (x, 0)) == HIGH
5994 	  && rtx_equal_p (XEXP (XEXP (x, 0), 0), XEXP (x, 1)))
5995 	return XEXP (x, 1);
5996       break;
5997 
5998     case PLUS:
5999       /* (plus (xor (and <foo> (const_int pow2 - 1)) <c>) <-c>)
6000 	 when c is (const_int (pow2 + 1) / 2) is a sign extension of a
6001 	 bit-field and can be replaced by either a sign_extend or a
6002 	 sign_extract.  The `and' may be a zero_extend and the two
6003 	 <c>, -<c> constants may be reversed.  */
6004       if (GET_CODE (XEXP (x, 0)) == XOR
6005 	  && is_a <scalar_int_mode> (mode, &int_mode)
6006 	  && CONST_INT_P (XEXP (x, 1))
6007 	  && CONST_INT_P (XEXP (XEXP (x, 0), 1))
6008 	  && INTVAL (XEXP (x, 1)) == -INTVAL (XEXP (XEXP (x, 0), 1))
6009 	  && ((i = exact_log2 (UINTVAL (XEXP (XEXP (x, 0), 1)))) >= 0
6010 	      || (i = exact_log2 (UINTVAL (XEXP (x, 1)))) >= 0)
6011 	  && HWI_COMPUTABLE_MODE_P (int_mode)
6012 	  && ((GET_CODE (XEXP (XEXP (x, 0), 0)) == AND
6013 	       && CONST_INT_P (XEXP (XEXP (XEXP (x, 0), 0), 1))
6014 	       && (UINTVAL (XEXP (XEXP (XEXP (x, 0), 0), 1))
6015 		   == (HOST_WIDE_INT_1U << (i + 1)) - 1))
6016 	      || (GET_CODE (XEXP (XEXP (x, 0), 0)) == ZERO_EXTEND
6017 		  && known_eq ((GET_MODE_PRECISION
6018 				(GET_MODE (XEXP (XEXP (XEXP (x, 0), 0), 0)))),
6019 			       (unsigned int) i + 1))))
6020 	return simplify_shift_const
6021 	  (NULL_RTX, ASHIFTRT, int_mode,
6022 	   simplify_shift_const (NULL_RTX, ASHIFT, int_mode,
6023 				 XEXP (XEXP (XEXP (x, 0), 0), 0),
6024 				 GET_MODE_PRECISION (int_mode) - (i + 1)),
6025 	   GET_MODE_PRECISION (int_mode) - (i + 1));
6026 
6027       /* If only the low-order bit of X is possibly nonzero, (plus x -1)
6028 	 can become (ashiftrt (ashift (xor x 1) C) C) where C is
6029 	 the bitsize of the mode - 1.  This allows simplification of
6030 	 "a = (b & 8) == 0;"  */
6031       if (XEXP (x, 1) == constm1_rtx
6032 	  && !REG_P (XEXP (x, 0))
6033 	  && ! (GET_CODE (XEXP (x, 0)) == SUBREG
6034 		&& REG_P (SUBREG_REG (XEXP (x, 0))))
6035 	  && is_a <scalar_int_mode> (mode, &int_mode)
6036 	  && nonzero_bits (XEXP (x, 0), int_mode) == 1)
6037 	return simplify_shift_const
6038 	  (NULL_RTX, ASHIFTRT, int_mode,
6039 	   simplify_shift_const (NULL_RTX, ASHIFT, int_mode,
6040 				 gen_rtx_XOR (int_mode, XEXP (x, 0),
6041 					      const1_rtx),
6042 				 GET_MODE_PRECISION (int_mode) - 1),
6043 	   GET_MODE_PRECISION (int_mode) - 1);
6044 
6045       /* If we are adding two things that have no bits in common, convert
6046 	 the addition into an IOR.  This will often be further simplified,
6047 	 for example in cases like ((a & 1) + (a & 2)), which can
6048 	 become a & 3.  */
6049 
6050       if (HWI_COMPUTABLE_MODE_P (mode)
6051 	  && (nonzero_bits (XEXP (x, 0), mode)
6052 	      & nonzero_bits (XEXP (x, 1), mode)) == 0)
6053 	{
6054 	  /* Try to simplify the expression further.  */
6055 	  rtx tor = simplify_gen_binary (IOR, mode, XEXP (x, 0), XEXP (x, 1));
6056 	  temp = combine_simplify_rtx (tor, VOIDmode, in_dest, 0);
6057 
6058 	  /* If we could, great.  If not, do not go ahead with the IOR
6059 	     replacement, since PLUS appears in many special purpose
6060 	     address arithmetic instructions.  */
6061 	  if (GET_CODE (temp) != CLOBBER
6062 	      && (GET_CODE (temp) != IOR
6063 		  || ((XEXP (temp, 0) != XEXP (x, 0)
6064 		       || XEXP (temp, 1) != XEXP (x, 1))
6065 		      && (XEXP (temp, 0) != XEXP (x, 1)
6066 			  || XEXP (temp, 1) != XEXP (x, 0)))))
6067 	    return temp;
6068 	}
6069 
6070       /* Canonicalize x + x into x << 1.  */
6071       if (GET_MODE_CLASS (mode) == MODE_INT
6072 	  && rtx_equal_p (XEXP (x, 0), XEXP (x, 1))
6073 	  && !side_effects_p (XEXP (x, 0)))
6074 	return simplify_gen_binary (ASHIFT, mode, XEXP (x, 0), const1_rtx);
6075 
6076       break;
6077 
6078     case MINUS:
6079       /* (minus <foo> (and <foo> (const_int -pow2))) becomes
6080 	 (and <foo> (const_int pow2-1))  */
6081       if (is_a <scalar_int_mode> (mode, &int_mode)
6082 	  && GET_CODE (XEXP (x, 1)) == AND
6083 	  && CONST_INT_P (XEXP (XEXP (x, 1), 1))
6084 	  && pow2p_hwi (-UINTVAL (XEXP (XEXP (x, 1), 1)))
6085 	  && rtx_equal_p (XEXP (XEXP (x, 1), 0), XEXP (x, 0)))
6086 	return simplify_and_const_int (NULL_RTX, int_mode, XEXP (x, 0),
6087 				       -INTVAL (XEXP (XEXP (x, 1), 1)) - 1);
6088       break;
6089 
6090     case MULT:
6091       /* If we have (mult (plus A B) C), apply the distributive law and then
6092 	 the inverse distributive law to see if things simplify.  This
6093 	 occurs mostly in addresses, often when unrolling loops.  */
6094 
6095       if (GET_CODE (XEXP (x, 0)) == PLUS)
6096 	{
6097 	  rtx result = distribute_and_simplify_rtx (x, 0);
6098 	  if (result)
6099 	    return result;
6100 	}
6101 
6102       /* Try simplify a*(b/c) as (a*b)/c.  */
6103       if (FLOAT_MODE_P (mode) && flag_associative_math
6104 	  && GET_CODE (XEXP (x, 0)) == DIV)
6105 	{
6106 	  rtx tem = simplify_binary_operation (MULT, mode,
6107 					       XEXP (XEXP (x, 0), 0),
6108 					       XEXP (x, 1));
6109 	  if (tem)
6110 	    return simplify_gen_binary (DIV, mode, tem, XEXP (XEXP (x, 0), 1));
6111 	}
6112       break;
6113 
6114     case UDIV:
6115       /* If this is a divide by a power of two, treat it as a shift if
6116 	 its first operand is a shift.  */
6117       if (is_a <scalar_int_mode> (mode, &int_mode)
6118 	  && CONST_INT_P (XEXP (x, 1))
6119 	  && (i = exact_log2 (UINTVAL (XEXP (x, 1)))) >= 0
6120 	  && (GET_CODE (XEXP (x, 0)) == ASHIFT
6121 	      || GET_CODE (XEXP (x, 0)) == LSHIFTRT
6122 	      || GET_CODE (XEXP (x, 0)) == ASHIFTRT
6123 	      || GET_CODE (XEXP (x, 0)) == ROTATE
6124 	      || GET_CODE (XEXP (x, 0)) == ROTATERT))
6125 	return simplify_shift_const (NULL_RTX, LSHIFTRT, int_mode,
6126 				     XEXP (x, 0), i);
6127       break;
6128 
6129     case EQ:  case NE:
6130     case GT:  case GTU:  case GE:  case GEU:
6131     case LT:  case LTU:  case LE:  case LEU:
6132     case UNEQ:  case LTGT:
6133     case UNGT:  case UNGE:
6134     case UNLT:  case UNLE:
6135     case UNORDERED: case ORDERED:
6136       /* If the first operand is a condition code, we can't do anything
6137 	 with it.  */
6138       if (GET_CODE (XEXP (x, 0)) == COMPARE
6139 	  || GET_MODE_CLASS (GET_MODE (XEXP (x, 0))) != MODE_CC)
6140 	{
6141 	  rtx op0 = XEXP (x, 0);
6142 	  rtx op1 = XEXP (x, 1);
6143 	  enum rtx_code new_code;
6144 
6145 	  if (GET_CODE (op0) == COMPARE)
6146 	    op1 = XEXP (op0, 1), op0 = XEXP (op0, 0);
6147 
6148 	  /* Simplify our comparison, if possible.  */
6149 	  new_code = simplify_comparison (code, &op0, &op1);
6150 
6151 	  /* If STORE_FLAG_VALUE is 1, we can convert (ne x 0) to simply X
6152 	     if only the low-order bit is possibly nonzero in X (such as when
6153 	     X is a ZERO_EXTRACT of one bit).  Similarly, we can convert EQ to
6154 	     (xor X 1) or (minus 1 X); we use the former.  Finally, if X is
6155 	     known to be either 0 or -1, NE becomes a NEG and EQ becomes
6156 	     (plus X 1).
6157 
6158 	     Remove any ZERO_EXTRACT we made when thinking this was a
6159 	     comparison.  It may now be simpler to use, e.g., an AND.  If a
6160 	     ZERO_EXTRACT is indeed appropriate, it will be placed back by
6161 	     the call to make_compound_operation in the SET case.
6162 
6163 	     Don't apply these optimizations if the caller would
6164 	     prefer a comparison rather than a value.
6165 	     E.g., for the condition in an IF_THEN_ELSE most targets need
6166 	     an explicit comparison.  */
6167 
6168 	  if (in_cond)
6169 	    ;
6170 
6171 	  else if (STORE_FLAG_VALUE == 1
6172 		   && new_code == NE
6173 		   && is_int_mode (mode, &int_mode)
6174 		   && op1 == const0_rtx
6175 		   && int_mode == GET_MODE (op0)
6176 		   && nonzero_bits (op0, int_mode) == 1)
6177 	    return gen_lowpart (int_mode,
6178 				expand_compound_operation (op0));
6179 
6180 	  else if (STORE_FLAG_VALUE == 1
6181 		   && new_code == NE
6182 		   && is_int_mode (mode, &int_mode)
6183 		   && op1 == const0_rtx
6184 		   && int_mode == GET_MODE (op0)
6185 		   && (num_sign_bit_copies (op0, int_mode)
6186 		       == GET_MODE_PRECISION (int_mode)))
6187 	    {
6188 	      op0 = expand_compound_operation (op0);
6189 	      return simplify_gen_unary (NEG, int_mode,
6190 					 gen_lowpart (int_mode, op0),
6191 					 int_mode);
6192 	    }
6193 
6194 	  else if (STORE_FLAG_VALUE == 1
6195 		   && new_code == EQ
6196 		   && is_int_mode (mode, &int_mode)
6197 		   && op1 == const0_rtx
6198 		   && int_mode == GET_MODE (op0)
6199 		   && nonzero_bits (op0, int_mode) == 1)
6200 	    {
6201 	      op0 = expand_compound_operation (op0);
6202 	      return simplify_gen_binary (XOR, int_mode,
6203 					  gen_lowpart (int_mode, op0),
6204 					  const1_rtx);
6205 	    }
6206 
6207 	  else if (STORE_FLAG_VALUE == 1
6208 		   && new_code == EQ
6209 		   && is_int_mode (mode, &int_mode)
6210 		   && op1 == const0_rtx
6211 		   && int_mode == GET_MODE (op0)
6212 		   && (num_sign_bit_copies (op0, int_mode)
6213 		       == GET_MODE_PRECISION (int_mode)))
6214 	    {
6215 	      op0 = expand_compound_operation (op0);
6216 	      return plus_constant (int_mode, gen_lowpart (int_mode, op0), 1);
6217 	    }
6218 
6219 	  /* If STORE_FLAG_VALUE is -1, we have cases similar to
6220 	     those above.  */
6221 	  if (in_cond)
6222 	    ;
6223 
6224 	  else if (STORE_FLAG_VALUE == -1
6225 		   && new_code == NE
6226 		   && is_int_mode (mode, &int_mode)
6227 		   && op1 == const0_rtx
6228 		   && int_mode == GET_MODE (op0)
6229 		   && (num_sign_bit_copies (op0, int_mode)
6230 		       == GET_MODE_PRECISION (int_mode)))
6231 	    return gen_lowpart (int_mode, expand_compound_operation (op0));
6232 
6233 	  else if (STORE_FLAG_VALUE == -1
6234 		   && new_code == NE
6235 		   && is_int_mode (mode, &int_mode)
6236 		   && op1 == const0_rtx
6237 		   && int_mode == GET_MODE (op0)
6238 		   && nonzero_bits (op0, int_mode) == 1)
6239 	    {
6240 	      op0 = expand_compound_operation (op0);
6241 	      return simplify_gen_unary (NEG, int_mode,
6242 					 gen_lowpart (int_mode, op0),
6243 					 int_mode);
6244 	    }
6245 
6246 	  else if (STORE_FLAG_VALUE == -1
6247 		   && new_code == EQ
6248 		   && is_int_mode (mode, &int_mode)
6249 		   && op1 == const0_rtx
6250 		   && int_mode == GET_MODE (op0)
6251 		   && (num_sign_bit_copies (op0, int_mode)
6252 		       == GET_MODE_PRECISION (int_mode)))
6253 	    {
6254 	      op0 = expand_compound_operation (op0);
6255 	      return simplify_gen_unary (NOT, int_mode,
6256 					 gen_lowpart (int_mode, op0),
6257 					 int_mode);
6258 	    }
6259 
6260 	  /* If X is 0/1, (eq X 0) is X-1.  */
6261 	  else if (STORE_FLAG_VALUE == -1
6262 		   && new_code == EQ
6263 		   && is_int_mode (mode, &int_mode)
6264 		   && op1 == const0_rtx
6265 		   && int_mode == GET_MODE (op0)
6266 		   && nonzero_bits (op0, int_mode) == 1)
6267 	    {
6268 	      op0 = expand_compound_operation (op0);
6269 	      return plus_constant (int_mode, gen_lowpart (int_mode, op0), -1);
6270 	    }
6271 
6272 	  /* If STORE_FLAG_VALUE says to just test the sign bit and X has just
6273 	     one bit that might be nonzero, we can convert (ne x 0) to
6274 	     (ashift x c) where C puts the bit in the sign bit.  Remove any
6275 	     AND with STORE_FLAG_VALUE when we are done, since we are only
6276 	     going to test the sign bit.  */
6277 	  if (new_code == NE
6278 	      && is_int_mode (mode, &int_mode)
6279 	      && HWI_COMPUTABLE_MODE_P (int_mode)
6280 	      && val_signbit_p (int_mode, STORE_FLAG_VALUE)
6281 	      && op1 == const0_rtx
6282 	      && int_mode == GET_MODE (op0)
6283 	      && (i = exact_log2 (nonzero_bits (op0, int_mode))) >= 0)
6284 	    {
6285 	      x = simplify_shift_const (NULL_RTX, ASHIFT, int_mode,
6286 					expand_compound_operation (op0),
6287 					GET_MODE_PRECISION (int_mode) - 1 - i);
6288 	      if (GET_CODE (x) == AND && XEXP (x, 1) == const_true_rtx)
6289 		return XEXP (x, 0);
6290 	      else
6291 		return x;
6292 	    }
6293 
6294 	  /* If the code changed, return a whole new comparison.
6295 	     We also need to avoid using SUBST in cases where
6296 	     simplify_comparison has widened a comparison with a CONST_INT,
6297 	     since in that case the wider CONST_INT may fail the sanity
6298 	     checks in do_SUBST.  */
6299 	  if (new_code != code
6300 	      || (CONST_INT_P (op1)
6301 		  && GET_MODE (op0) != GET_MODE (XEXP (x, 0))
6302 		  && GET_MODE (op0) != GET_MODE (XEXP (x, 1))))
6303 	    return gen_rtx_fmt_ee (new_code, mode, op0, op1);
6304 
6305 	  /* Otherwise, keep this operation, but maybe change its operands.
6306 	     This also converts (ne (compare FOO BAR) 0) to (ne FOO BAR).  */
6307 	  SUBST (XEXP (x, 0), op0);
6308 	  SUBST (XEXP (x, 1), op1);
6309 	}
6310       break;
6311 
6312     case IF_THEN_ELSE:
6313       return simplify_if_then_else (x);
6314 
6315     case ZERO_EXTRACT:
6316     case SIGN_EXTRACT:
6317     case ZERO_EXTEND:
6318     case SIGN_EXTEND:
6319       /* If we are processing SET_DEST, we are done.  */
6320       if (in_dest)
6321 	return x;
6322 
6323       return expand_compound_operation (x);
6324 
6325     case SET:
6326       return simplify_set (x);
6327 
6328     case AND:
6329     case IOR:
6330       return simplify_logical (x);
6331 
6332     case ASHIFT:
6333     case LSHIFTRT:
6334     case ASHIFTRT:
6335     case ROTATE:
6336     case ROTATERT:
6337       /* If this is a shift by a constant amount, simplify it.  */
6338       if (CONST_INT_P (XEXP (x, 1)))
6339 	return simplify_shift_const (x, code, mode, XEXP (x, 0),
6340 				     INTVAL (XEXP (x, 1)));
6341 
6342       else if (SHIFT_COUNT_TRUNCATED && !REG_P (XEXP (x, 1)))
6343 	SUBST (XEXP (x, 1),
6344 	       force_to_mode (XEXP (x, 1), GET_MODE (XEXP (x, 1)),
6345 			      (HOST_WIDE_INT_1U
6346 			       << exact_log2 (GET_MODE_UNIT_BITSIZE
6347 					      (GET_MODE (x))))
6348 			      - 1,
6349 			      0));
6350       break;
6351     case VEC_SELECT:
6352       {
6353 	rtx trueop0 = XEXP (x, 0);
6354 	mode = GET_MODE (trueop0);
6355 	rtx trueop1 = XEXP (x, 1);
6356 	/* If we select a low-part subreg, return that.  */
6357 	if (vec_series_lowpart_p (GET_MODE (x), mode, trueop1))
6358 	  {
6359 	    rtx new_rtx = lowpart_subreg (GET_MODE (x), trueop0, mode);
6360 	    if (new_rtx != NULL_RTX)
6361 	      return new_rtx;
6362 	  }
6363       }
6364 
6365     default:
6366       break;
6367     }
6368 
6369   return x;
6370 }
6371 
6372 /* Simplify X, an IF_THEN_ELSE expression.  Return the new expression.  */
6373 
6374 static rtx
simplify_if_then_else(rtx x)6375 simplify_if_then_else (rtx x)
6376 {
6377   machine_mode mode = GET_MODE (x);
6378   rtx cond = XEXP (x, 0);
6379   rtx true_rtx = XEXP (x, 1);
6380   rtx false_rtx = XEXP (x, 2);
6381   enum rtx_code true_code = GET_CODE (cond);
6382   int comparison_p = COMPARISON_P (cond);
6383   rtx temp;
6384   int i;
6385   enum rtx_code false_code;
6386   rtx reversed;
6387   scalar_int_mode int_mode, inner_mode;
6388 
6389   /* Simplify storing of the truth value.  */
6390   if (comparison_p && true_rtx == const_true_rtx && false_rtx == const0_rtx)
6391     return simplify_gen_relational (true_code, mode, VOIDmode,
6392 				    XEXP (cond, 0), XEXP (cond, 1));
6393 
6394   /* Also when the truth value has to be reversed.  */
6395   if (comparison_p
6396       && true_rtx == const0_rtx && false_rtx == const_true_rtx
6397       && (reversed = reversed_comparison (cond, mode)))
6398     return reversed;
6399 
6400   /* Sometimes we can simplify the arm of an IF_THEN_ELSE if a register used
6401      in it is being compared against certain values.  Get the true and false
6402      comparisons and see if that says anything about the value of each arm.  */
6403 
6404   if (comparison_p
6405       && ((false_code = reversed_comparison_code (cond, NULL))
6406 	  != UNKNOWN)
6407       && REG_P (XEXP (cond, 0)))
6408     {
6409       HOST_WIDE_INT nzb;
6410       rtx from = XEXP (cond, 0);
6411       rtx true_val = XEXP (cond, 1);
6412       rtx false_val = true_val;
6413       int swapped = 0;
6414 
6415       /* If FALSE_CODE is EQ, swap the codes and arms.  */
6416 
6417       if (false_code == EQ)
6418 	{
6419 	  swapped = 1, true_code = EQ, false_code = NE;
6420 	  std::swap (true_rtx, false_rtx);
6421 	}
6422 
6423       scalar_int_mode from_mode;
6424       if (is_a <scalar_int_mode> (GET_MODE (from), &from_mode))
6425 	{
6426 	  /* If we are comparing against zero and the expression being
6427 	     tested has only a single bit that might be nonzero, that is
6428 	     its value when it is not equal to zero.  Similarly if it is
6429 	     known to be -1 or 0.  */
6430 	  if (true_code == EQ
6431 	      && true_val == const0_rtx
6432 	      && pow2p_hwi (nzb = nonzero_bits (from, from_mode)))
6433 	    {
6434 	      false_code = EQ;
6435 	      false_val = gen_int_mode (nzb, from_mode);
6436 	    }
6437 	  else if (true_code == EQ
6438 		   && true_val == const0_rtx
6439 		   && (num_sign_bit_copies (from, from_mode)
6440 		       == GET_MODE_PRECISION (from_mode)))
6441 	    {
6442 	      false_code = EQ;
6443 	      false_val = constm1_rtx;
6444 	    }
6445 	}
6446 
6447       /* Now simplify an arm if we know the value of the register in the
6448 	 branch and it is used in the arm.  Be careful due to the potential
6449 	 of locally-shared RTL.  */
6450 
6451       if (reg_mentioned_p (from, true_rtx))
6452 	true_rtx = subst (known_cond (copy_rtx (true_rtx), true_code,
6453 				      from, true_val),
6454 			  pc_rtx, pc_rtx, 0, 0, 0);
6455       if (reg_mentioned_p (from, false_rtx))
6456 	false_rtx = subst (known_cond (copy_rtx (false_rtx), false_code,
6457 				       from, false_val),
6458 			   pc_rtx, pc_rtx, 0, 0, 0);
6459 
6460       SUBST (XEXP (x, 1), swapped ? false_rtx : true_rtx);
6461       SUBST (XEXP (x, 2), swapped ? true_rtx : false_rtx);
6462 
6463       true_rtx = XEXP (x, 1);
6464       false_rtx = XEXP (x, 2);
6465       true_code = GET_CODE (cond);
6466     }
6467 
6468   /* If we have (if_then_else FOO (pc) (label_ref BAR)) and FOO can be
6469      reversed, do so to avoid needing two sets of patterns for
6470      subtract-and-branch insns.  Similarly if we have a constant in the true
6471      arm, the false arm is the same as the first operand of the comparison, or
6472      the false arm is more complicated than the true arm.  */
6473 
6474   if (comparison_p
6475       && reversed_comparison_code (cond, NULL) != UNKNOWN
6476       && (true_rtx == pc_rtx
6477 	  || (CONSTANT_P (true_rtx)
6478 	      && !CONST_INT_P (false_rtx) && false_rtx != pc_rtx)
6479 	  || true_rtx == const0_rtx
6480 	  || (OBJECT_P (true_rtx) && !OBJECT_P (false_rtx))
6481 	  || (GET_CODE (true_rtx) == SUBREG && OBJECT_P (SUBREG_REG (true_rtx))
6482 	      && !OBJECT_P (false_rtx))
6483 	  || reg_mentioned_p (true_rtx, false_rtx)
6484 	  || rtx_equal_p (false_rtx, XEXP (cond, 0))))
6485     {
6486       SUBST (XEXP (x, 0), reversed_comparison (cond, GET_MODE (cond)));
6487       SUBST (XEXP (x, 1), false_rtx);
6488       SUBST (XEXP (x, 2), true_rtx);
6489 
6490       std::swap (true_rtx, false_rtx);
6491       cond = XEXP (x, 0);
6492 
6493       /* It is possible that the conditional has been simplified out.  */
6494       true_code = GET_CODE (cond);
6495       comparison_p = COMPARISON_P (cond);
6496     }
6497 
6498   /* If the two arms are identical, we don't need the comparison.  */
6499 
6500   if (rtx_equal_p (true_rtx, false_rtx) && ! side_effects_p (cond))
6501     return true_rtx;
6502 
6503   /* Convert a == b ? b : a to "a".  */
6504   if (true_code == EQ && ! side_effects_p (cond)
6505       && !HONOR_NANS (mode)
6506       && rtx_equal_p (XEXP (cond, 0), false_rtx)
6507       && rtx_equal_p (XEXP (cond, 1), true_rtx))
6508     return false_rtx;
6509   else if (true_code == NE && ! side_effects_p (cond)
6510 	   && !HONOR_NANS (mode)
6511 	   && rtx_equal_p (XEXP (cond, 0), true_rtx)
6512 	   && rtx_equal_p (XEXP (cond, 1), false_rtx))
6513     return true_rtx;
6514 
6515   /* Look for cases where we have (abs x) or (neg (abs X)).  */
6516 
6517   if (GET_MODE_CLASS (mode) == MODE_INT
6518       && comparison_p
6519       && XEXP (cond, 1) == const0_rtx
6520       && GET_CODE (false_rtx) == NEG
6521       && rtx_equal_p (true_rtx, XEXP (false_rtx, 0))
6522       && rtx_equal_p (true_rtx, XEXP (cond, 0))
6523       && ! side_effects_p (true_rtx))
6524     switch (true_code)
6525       {
6526       case GT:
6527       case GE:
6528 	return simplify_gen_unary (ABS, mode, true_rtx, mode);
6529       case LT:
6530       case LE:
6531 	return
6532 	  simplify_gen_unary (NEG, mode,
6533 			      simplify_gen_unary (ABS, mode, true_rtx, mode),
6534 			      mode);
6535       default:
6536 	break;
6537       }
6538 
6539   /* Look for MIN or MAX.  */
6540 
6541   if ((! FLOAT_MODE_P (mode)
6542        || (flag_unsafe_math_optimizations
6543 	   && !HONOR_NANS (mode)
6544 	   && !HONOR_SIGNED_ZEROS (mode)))
6545       && comparison_p
6546       && rtx_equal_p (XEXP (cond, 0), true_rtx)
6547       && rtx_equal_p (XEXP (cond, 1), false_rtx)
6548       && ! side_effects_p (cond))
6549     switch (true_code)
6550       {
6551       case GE:
6552       case GT:
6553 	return simplify_gen_binary (SMAX, mode, true_rtx, false_rtx);
6554       case LE:
6555       case LT:
6556 	return simplify_gen_binary (SMIN, mode, true_rtx, false_rtx);
6557       case GEU:
6558       case GTU:
6559 	return simplify_gen_binary (UMAX, mode, true_rtx, false_rtx);
6560       case LEU:
6561       case LTU:
6562 	return simplify_gen_binary (UMIN, mode, true_rtx, false_rtx);
6563       default:
6564 	break;
6565       }
6566 
6567   /* If we have (if_then_else COND (OP Z C1) Z) and OP is an identity when its
6568      second operand is zero, this can be done as (OP Z (mult COND C2)) where
6569      C2 = C1 * STORE_FLAG_VALUE. Similarly if OP has an outer ZERO_EXTEND or
6570      SIGN_EXTEND as long as Z is already extended (so we don't destroy it).
6571      We can do this kind of thing in some cases when STORE_FLAG_VALUE is
6572      neither 1 or -1, but it isn't worth checking for.  */
6573 
6574   if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
6575       && comparison_p
6576       && is_int_mode (mode, &int_mode)
6577       && ! side_effects_p (x))
6578     {
6579       rtx t = make_compound_operation (true_rtx, SET);
6580       rtx f = make_compound_operation (false_rtx, SET);
6581       rtx cond_op0 = XEXP (cond, 0);
6582       rtx cond_op1 = XEXP (cond, 1);
6583       enum rtx_code op = UNKNOWN, extend_op = UNKNOWN;
6584       scalar_int_mode m = int_mode;
6585       rtx z = 0, c1 = NULL_RTX;
6586 
6587       if ((GET_CODE (t) == PLUS || GET_CODE (t) == MINUS
6588 	   || GET_CODE (t) == IOR || GET_CODE (t) == XOR
6589 	   || GET_CODE (t) == ASHIFT
6590 	   || GET_CODE (t) == LSHIFTRT || GET_CODE (t) == ASHIFTRT)
6591 	  && rtx_equal_p (XEXP (t, 0), f))
6592 	c1 = XEXP (t, 1), op = GET_CODE (t), z = f;
6593 
6594       /* If an identity-zero op is commutative, check whether there
6595 	 would be a match if we swapped the operands.  */
6596       else if ((GET_CODE (t) == PLUS || GET_CODE (t) == IOR
6597 		|| GET_CODE (t) == XOR)
6598 	       && rtx_equal_p (XEXP (t, 1), f))
6599 	c1 = XEXP (t, 0), op = GET_CODE (t), z = f;
6600       else if (GET_CODE (t) == SIGN_EXTEND
6601 	       && is_a <scalar_int_mode> (GET_MODE (XEXP (t, 0)), &inner_mode)
6602 	       && (GET_CODE (XEXP (t, 0)) == PLUS
6603 		   || GET_CODE (XEXP (t, 0)) == MINUS
6604 		   || GET_CODE (XEXP (t, 0)) == IOR
6605 		   || GET_CODE (XEXP (t, 0)) == XOR
6606 		   || GET_CODE (XEXP (t, 0)) == ASHIFT
6607 		   || GET_CODE (XEXP (t, 0)) == LSHIFTRT
6608 		   || GET_CODE (XEXP (t, 0)) == ASHIFTRT)
6609 	       && GET_CODE (XEXP (XEXP (t, 0), 0)) == SUBREG
6610 	       && subreg_lowpart_p (XEXP (XEXP (t, 0), 0))
6611 	       && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 0)), f)
6612 	       && (num_sign_bit_copies (f, GET_MODE (f))
6613 		   > (unsigned int)
6614 		     (GET_MODE_PRECISION (int_mode)
6615 		      - GET_MODE_PRECISION (inner_mode))))
6616 	{
6617 	  c1 = XEXP (XEXP (t, 0), 1); z = f; op = GET_CODE (XEXP (t, 0));
6618 	  extend_op = SIGN_EXTEND;
6619 	  m = inner_mode;
6620 	}
6621       else if (GET_CODE (t) == SIGN_EXTEND
6622 	       && is_a <scalar_int_mode> (GET_MODE (XEXP (t, 0)), &inner_mode)
6623 	       && (GET_CODE (XEXP (t, 0)) == PLUS
6624 		   || GET_CODE (XEXP (t, 0)) == IOR
6625 		   || GET_CODE (XEXP (t, 0)) == XOR)
6626 	       && GET_CODE (XEXP (XEXP (t, 0), 1)) == SUBREG
6627 	       && subreg_lowpart_p (XEXP (XEXP (t, 0), 1))
6628 	       && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 1)), f)
6629 	       && (num_sign_bit_copies (f, GET_MODE (f))
6630 		   > (unsigned int)
6631 		     (GET_MODE_PRECISION (int_mode)
6632 		      - GET_MODE_PRECISION (inner_mode))))
6633 	{
6634 	  c1 = XEXP (XEXP (t, 0), 0); z = f; op = GET_CODE (XEXP (t, 0));
6635 	  extend_op = SIGN_EXTEND;
6636 	  m = inner_mode;
6637 	}
6638       else if (GET_CODE (t) == ZERO_EXTEND
6639 	       && is_a <scalar_int_mode> (GET_MODE (XEXP (t, 0)), &inner_mode)
6640 	       && (GET_CODE (XEXP (t, 0)) == PLUS
6641 		   || GET_CODE (XEXP (t, 0)) == MINUS
6642 		   || GET_CODE (XEXP (t, 0)) == IOR
6643 		   || GET_CODE (XEXP (t, 0)) == XOR
6644 		   || GET_CODE (XEXP (t, 0)) == ASHIFT
6645 		   || GET_CODE (XEXP (t, 0)) == LSHIFTRT
6646 		   || GET_CODE (XEXP (t, 0)) == ASHIFTRT)
6647 	       && GET_CODE (XEXP (XEXP (t, 0), 0)) == SUBREG
6648 	       && HWI_COMPUTABLE_MODE_P (int_mode)
6649 	       && subreg_lowpart_p (XEXP (XEXP (t, 0), 0))
6650 	       && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 0)), f)
6651 	       && ((nonzero_bits (f, GET_MODE (f))
6652 		    & ~GET_MODE_MASK (inner_mode))
6653 		   == 0))
6654 	{
6655 	  c1 = XEXP (XEXP (t, 0), 1); z = f; op = GET_CODE (XEXP (t, 0));
6656 	  extend_op = ZERO_EXTEND;
6657 	  m = inner_mode;
6658 	}
6659       else if (GET_CODE (t) == ZERO_EXTEND
6660 	       && is_a <scalar_int_mode> (GET_MODE (XEXP (t, 0)), &inner_mode)
6661 	       && (GET_CODE (XEXP (t, 0)) == PLUS
6662 		   || GET_CODE (XEXP (t, 0)) == IOR
6663 		   || GET_CODE (XEXP (t, 0)) == XOR)
6664 	       && GET_CODE (XEXP (XEXP (t, 0), 1)) == SUBREG
6665 	       && HWI_COMPUTABLE_MODE_P (int_mode)
6666 	       && subreg_lowpart_p (XEXP (XEXP (t, 0), 1))
6667 	       && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 1)), f)
6668 	       && ((nonzero_bits (f, GET_MODE (f))
6669 		    & ~GET_MODE_MASK (inner_mode))
6670 		   == 0))
6671 	{
6672 	  c1 = XEXP (XEXP (t, 0), 0); z = f; op = GET_CODE (XEXP (t, 0));
6673 	  extend_op = ZERO_EXTEND;
6674 	  m = inner_mode;
6675 	}
6676 
6677       if (z)
6678 	{
6679 	  machine_mode cm = m;
6680 	  if ((op == ASHIFT || op == LSHIFTRT || op == ASHIFTRT)
6681 	      && GET_MODE (c1) != VOIDmode)
6682 	    cm = GET_MODE (c1);
6683 	  temp = subst (simplify_gen_relational (true_code, cm, VOIDmode,
6684 						 cond_op0, cond_op1),
6685 			pc_rtx, pc_rtx, 0, 0, 0);
6686 	  temp = simplify_gen_binary (MULT, cm, temp,
6687 				      simplify_gen_binary (MULT, cm, c1,
6688 							   const_true_rtx));
6689 	  temp = subst (temp, pc_rtx, pc_rtx, 0, 0, 0);
6690 	  temp = simplify_gen_binary (op, m, gen_lowpart (m, z), temp);
6691 
6692 	  if (extend_op != UNKNOWN)
6693 	    temp = simplify_gen_unary (extend_op, int_mode, temp, m);
6694 
6695 	  return temp;
6696 	}
6697     }
6698 
6699   /* If we have (if_then_else (ne A 0) C1 0) and either A is known to be 0 or
6700      1 and C1 is a single bit or A is known to be 0 or -1 and C1 is the
6701      negation of a single bit, we can convert this operation to a shift.  We
6702      can actually do this more generally, but it doesn't seem worth it.  */
6703 
6704   if (true_code == NE
6705       && is_a <scalar_int_mode> (mode, &int_mode)
6706       && XEXP (cond, 1) == const0_rtx
6707       && false_rtx == const0_rtx
6708       && CONST_INT_P (true_rtx)
6709       && ((nonzero_bits (XEXP (cond, 0), int_mode) == 1
6710 	   && (i = exact_log2 (UINTVAL (true_rtx))) >= 0)
6711 	  || ((num_sign_bit_copies (XEXP (cond, 0), int_mode)
6712 	       == GET_MODE_PRECISION (int_mode))
6713 	      && (i = exact_log2 (-UINTVAL (true_rtx))) >= 0)))
6714     return
6715       simplify_shift_const (NULL_RTX, ASHIFT, int_mode,
6716 			    gen_lowpart (int_mode, XEXP (cond, 0)), i);
6717 
6718   /* (IF_THEN_ELSE (NE A 0) C1 0) is A or a zero-extend of A if the only
6719      non-zero bit in A is C1.  */
6720   if (true_code == NE && XEXP (cond, 1) == const0_rtx
6721       && false_rtx == const0_rtx && CONST_INT_P (true_rtx)
6722       && is_a <scalar_int_mode> (mode, &int_mode)
6723       && is_a <scalar_int_mode> (GET_MODE (XEXP (cond, 0)), &inner_mode)
6724       && (UINTVAL (true_rtx) & GET_MODE_MASK (int_mode))
6725 	  == nonzero_bits (XEXP (cond, 0), inner_mode)
6726       && (i = exact_log2 (UINTVAL (true_rtx) & GET_MODE_MASK (int_mode))) >= 0)
6727     {
6728       rtx val = XEXP (cond, 0);
6729       if (inner_mode == int_mode)
6730         return val;
6731       else if (GET_MODE_PRECISION (inner_mode) < GET_MODE_PRECISION (int_mode))
6732         return simplify_gen_unary (ZERO_EXTEND, int_mode, val, inner_mode);
6733     }
6734 
6735   return x;
6736 }
6737 
6738 /* Simplify X, a SET expression.  Return the new expression.  */
6739 
6740 static rtx
simplify_set(rtx x)6741 simplify_set (rtx x)
6742 {
6743   rtx src = SET_SRC (x);
6744   rtx dest = SET_DEST (x);
6745   machine_mode mode
6746     = GET_MODE (src) != VOIDmode ? GET_MODE (src) : GET_MODE (dest);
6747   rtx_insn *other_insn;
6748   rtx *cc_use;
6749   scalar_int_mode int_mode;
6750 
6751   /* (set (pc) (return)) gets written as (return).  */
6752   if (GET_CODE (dest) == PC && ANY_RETURN_P (src))
6753     return src;
6754 
6755   /* Now that we know for sure which bits of SRC we are using, see if we can
6756      simplify the expression for the object knowing that we only need the
6757      low-order bits.  */
6758 
6759   if (GET_MODE_CLASS (mode) == MODE_INT && HWI_COMPUTABLE_MODE_P (mode))
6760     {
6761       src = force_to_mode (src, mode, HOST_WIDE_INT_M1U, 0);
6762       SUBST (SET_SRC (x), src);
6763     }
6764 
6765   /* If the source is a COMPARE, look for the use of the comparison result
6766      and try to simplify it unless we already have used undobuf.other_insn.  */
6767   if ((GET_MODE_CLASS (mode) == MODE_CC || GET_CODE (src) == COMPARE)
6768       && (cc_use = find_single_use (dest, subst_insn, &other_insn)) != 0
6769       && (undobuf.other_insn == 0 || other_insn == undobuf.other_insn)
6770       && COMPARISON_P (*cc_use)
6771       && rtx_equal_p (XEXP (*cc_use, 0), dest))
6772     {
6773       enum rtx_code old_code = GET_CODE (*cc_use);
6774       enum rtx_code new_code;
6775       rtx op0, op1, tmp;
6776       int other_changed = 0;
6777       rtx inner_compare = NULL_RTX;
6778       machine_mode compare_mode = GET_MODE (dest);
6779 
6780       if (GET_CODE (src) == COMPARE)
6781 	{
6782 	  op0 = XEXP (src, 0), op1 = XEXP (src, 1);
6783 	  if (GET_CODE (op0) == COMPARE && op1 == const0_rtx)
6784 	    {
6785 	      inner_compare = op0;
6786 	      op0 = XEXP (inner_compare, 0), op1 = XEXP (inner_compare, 1);
6787 	    }
6788 	}
6789       else
6790 	op0 = src, op1 = CONST0_RTX (GET_MODE (src));
6791 
6792       tmp = simplify_relational_operation (old_code, compare_mode, VOIDmode,
6793 					   op0, op1);
6794       if (!tmp)
6795 	new_code = old_code;
6796       else if (!CONSTANT_P (tmp))
6797 	{
6798 	  new_code = GET_CODE (tmp);
6799 	  op0 = XEXP (tmp, 0);
6800 	  op1 = XEXP (tmp, 1);
6801 	}
6802       else
6803 	{
6804 	  rtx pat = PATTERN (other_insn);
6805 	  undobuf.other_insn = other_insn;
6806 	  SUBST (*cc_use, tmp);
6807 
6808 	  /* Attempt to simplify CC user.  */
6809 	  if (GET_CODE (pat) == SET)
6810 	    {
6811 	      rtx new_rtx = simplify_rtx (SET_SRC (pat));
6812 	      if (new_rtx != NULL_RTX)
6813 		SUBST (SET_SRC (pat), new_rtx);
6814 	    }
6815 
6816 	  /* Convert X into a no-op move.  */
6817 	  SUBST (SET_DEST (x), pc_rtx);
6818 	  SUBST (SET_SRC (x), pc_rtx);
6819 	  return x;
6820 	}
6821 
6822       /* Simplify our comparison, if possible.  */
6823       new_code = simplify_comparison (new_code, &op0, &op1);
6824 
6825 #ifdef SELECT_CC_MODE
6826       /* If this machine has CC modes other than CCmode, check to see if we
6827 	 need to use a different CC mode here.  */
6828       if (GET_MODE_CLASS (GET_MODE (op0)) == MODE_CC)
6829 	compare_mode = GET_MODE (op0);
6830       else if (inner_compare
6831 	       && GET_MODE_CLASS (GET_MODE (inner_compare)) == MODE_CC
6832 	       && new_code == old_code
6833 	       && op0 == XEXP (inner_compare, 0)
6834 	       && op1 == XEXP (inner_compare, 1))
6835 	compare_mode = GET_MODE (inner_compare);
6836       else
6837 	compare_mode = SELECT_CC_MODE (new_code, op0, op1);
6838 
6839       /* If the mode changed, we have to change SET_DEST, the mode in the
6840 	 compare, and the mode in the place SET_DEST is used.  If SET_DEST is
6841 	 a hard register, just build new versions with the proper mode.  If it
6842 	 is a pseudo, we lose unless it is only time we set the pseudo, in
6843 	 which case we can safely change its mode.  */
6844       if (compare_mode != GET_MODE (dest))
6845 	{
6846 	  if (can_change_dest_mode (dest, 0, compare_mode))
6847 	    {
6848 	      unsigned int regno = REGNO (dest);
6849 	      rtx new_dest;
6850 
6851 	      if (regno < FIRST_PSEUDO_REGISTER)
6852 		new_dest = gen_rtx_REG (compare_mode, regno);
6853 	      else
6854 		{
6855 		  subst_mode (regno, compare_mode);
6856 		  new_dest = regno_reg_rtx[regno];
6857 		}
6858 
6859 	      SUBST (SET_DEST (x), new_dest);
6860 	      SUBST (XEXP (*cc_use, 0), new_dest);
6861 	      other_changed = 1;
6862 
6863 	      dest = new_dest;
6864 	    }
6865 	}
6866 #endif  /* SELECT_CC_MODE */
6867 
6868       /* If the code changed, we have to build a new comparison in
6869 	 undobuf.other_insn.  */
6870       if (new_code != old_code)
6871 	{
6872 	  int other_changed_previously = other_changed;
6873 	  unsigned HOST_WIDE_INT mask;
6874 	  rtx old_cc_use = *cc_use;
6875 
6876 	  SUBST (*cc_use, gen_rtx_fmt_ee (new_code, GET_MODE (*cc_use),
6877 					  dest, const0_rtx));
6878 	  other_changed = 1;
6879 
6880 	  /* If the only change we made was to change an EQ into an NE or
6881 	     vice versa, OP0 has only one bit that might be nonzero, and OP1
6882 	     is zero, check if changing the user of the condition code will
6883 	     produce a valid insn.  If it won't, we can keep the original code
6884 	     in that insn by surrounding our operation with an XOR.  */
6885 
6886 	  if (((old_code == NE && new_code == EQ)
6887 	       || (old_code == EQ && new_code == NE))
6888 	      && ! other_changed_previously && op1 == const0_rtx
6889 	      && HWI_COMPUTABLE_MODE_P (GET_MODE (op0))
6890 	      && pow2p_hwi (mask = nonzero_bits (op0, GET_MODE (op0))))
6891 	    {
6892 	      rtx pat = PATTERN (other_insn), note = 0;
6893 
6894 	      if ((recog_for_combine (&pat, other_insn, &note) < 0
6895 		   && ! check_asm_operands (pat)))
6896 		{
6897 		  *cc_use = old_cc_use;
6898 		  other_changed = 0;
6899 
6900 		  op0 = simplify_gen_binary (XOR, GET_MODE (op0), op0,
6901 					     gen_int_mode (mask,
6902 							   GET_MODE (op0)));
6903 		}
6904 	    }
6905 	}
6906 
6907       if (other_changed)
6908 	undobuf.other_insn = other_insn;
6909 
6910       /* Don't generate a compare of a CC with 0, just use that CC.  */
6911       if (GET_MODE (op0) == compare_mode && op1 == const0_rtx)
6912 	{
6913 	  SUBST (SET_SRC (x), op0);
6914 	  src = SET_SRC (x);
6915 	}
6916       /* Otherwise, if we didn't previously have the same COMPARE we
6917 	 want, create it from scratch.  */
6918       else if (GET_CODE (src) != COMPARE || GET_MODE (src) != compare_mode
6919 	       || XEXP (src, 0) != op0 || XEXP (src, 1) != op1)
6920 	{
6921 	  SUBST (SET_SRC (x), gen_rtx_COMPARE (compare_mode, op0, op1));
6922 	  src = SET_SRC (x);
6923 	}
6924     }
6925   else
6926     {
6927       /* Get SET_SRC in a form where we have placed back any
6928 	 compound expressions.  Then do the checks below.  */
6929       src = make_compound_operation (src, SET);
6930       SUBST (SET_SRC (x), src);
6931     }
6932 
6933   /* If we have (set x (subreg:m1 (op:m2 ...) 0)) with OP being some operation,
6934      and X being a REG or (subreg (reg)), we may be able to convert this to
6935      (set (subreg:m2 x) (op)).
6936 
6937      We can always do this if M1 is narrower than M2 because that means that
6938      we only care about the low bits of the result.
6939 
6940      However, on machines without WORD_REGISTER_OPERATIONS defined, we cannot
6941      perform a narrower operation than requested since the high-order bits will
6942      be undefined.  On machine where it is defined, this transformation is safe
6943      as long as M1 and M2 have the same number of words.  */
6944 
6945   if (GET_CODE (src) == SUBREG && subreg_lowpart_p (src)
6946       && !OBJECT_P (SUBREG_REG (src))
6947       && (known_equal_after_align_up
6948 	  (GET_MODE_SIZE (GET_MODE (src)),
6949 	   GET_MODE_SIZE (GET_MODE (SUBREG_REG (src))),
6950 	   UNITS_PER_WORD))
6951       && (WORD_REGISTER_OPERATIONS || !paradoxical_subreg_p (src))
6952       && ! (REG_P (dest) && REGNO (dest) < FIRST_PSEUDO_REGISTER
6953 	    && !REG_CAN_CHANGE_MODE_P (REGNO (dest),
6954 				       GET_MODE (SUBREG_REG (src)),
6955 				       GET_MODE (src)))
6956       && (REG_P (dest)
6957 	  || (GET_CODE (dest) == SUBREG
6958 	      && REG_P (SUBREG_REG (dest)))))
6959     {
6960       SUBST (SET_DEST (x),
6961 	     gen_lowpart (GET_MODE (SUBREG_REG (src)),
6962 				      dest));
6963       SUBST (SET_SRC (x), SUBREG_REG (src));
6964 
6965       src = SET_SRC (x), dest = SET_DEST (x);
6966     }
6967 
6968   /* If we have (set FOO (subreg:M (mem:N BAR) 0)) with M wider than N, this
6969      would require a paradoxical subreg.  Replace the subreg with a
6970      zero_extend to avoid the reload that would otherwise be required.
6971      Don't do this unless we have a scalar integer mode, otherwise the
6972      transformation is incorrect.  */
6973 
6974   enum rtx_code extend_op;
6975   if (paradoxical_subreg_p (src)
6976       && MEM_P (SUBREG_REG (src))
6977       && SCALAR_INT_MODE_P (GET_MODE (src))
6978       && (extend_op = load_extend_op (GET_MODE (SUBREG_REG (src)))) != UNKNOWN)
6979     {
6980       SUBST (SET_SRC (x),
6981 	     gen_rtx_fmt_e (extend_op, GET_MODE (src), SUBREG_REG (src)));
6982 
6983       src = SET_SRC (x);
6984     }
6985 
6986   /* If we don't have a conditional move, SET_SRC is an IF_THEN_ELSE, and we
6987      are comparing an item known to be 0 or -1 against 0, use a logical
6988      operation instead. Check for one of the arms being an IOR of the other
6989      arm with some value.  We compute three terms to be IOR'ed together.  In
6990      practice, at most two will be nonzero.  Then we do the IOR's.  */
6991 
6992   if (GET_CODE (dest) != PC
6993       && GET_CODE (src) == IF_THEN_ELSE
6994       && is_int_mode (GET_MODE (src), &int_mode)
6995       && (GET_CODE (XEXP (src, 0)) == EQ || GET_CODE (XEXP (src, 0)) == NE)
6996       && XEXP (XEXP (src, 0), 1) == const0_rtx
6997       && int_mode == GET_MODE (XEXP (XEXP (src, 0), 0))
6998       && (!HAVE_conditional_move
6999 	  || ! can_conditionally_move_p (int_mode))
7000       && (num_sign_bit_copies (XEXP (XEXP (src, 0), 0), int_mode)
7001 	  == GET_MODE_PRECISION (int_mode))
7002       && ! side_effects_p (src))
7003     {
7004       rtx true_rtx = (GET_CODE (XEXP (src, 0)) == NE
7005 		      ? XEXP (src, 1) : XEXP (src, 2));
7006       rtx false_rtx = (GET_CODE (XEXP (src, 0)) == NE
7007 		   ? XEXP (src, 2) : XEXP (src, 1));
7008       rtx term1 = const0_rtx, term2, term3;
7009 
7010       if (GET_CODE (true_rtx) == IOR
7011 	  && rtx_equal_p (XEXP (true_rtx, 0), false_rtx))
7012 	term1 = false_rtx, true_rtx = XEXP (true_rtx, 1), false_rtx = const0_rtx;
7013       else if (GET_CODE (true_rtx) == IOR
7014 	       && rtx_equal_p (XEXP (true_rtx, 1), false_rtx))
7015 	term1 = false_rtx, true_rtx = XEXP (true_rtx, 0), false_rtx = const0_rtx;
7016       else if (GET_CODE (false_rtx) == IOR
7017 	       && rtx_equal_p (XEXP (false_rtx, 0), true_rtx))
7018 	term1 = true_rtx, false_rtx = XEXP (false_rtx, 1), true_rtx = const0_rtx;
7019       else if (GET_CODE (false_rtx) == IOR
7020 	       && rtx_equal_p (XEXP (false_rtx, 1), true_rtx))
7021 	term1 = true_rtx, false_rtx = XEXP (false_rtx, 0), true_rtx = const0_rtx;
7022 
7023       term2 = simplify_gen_binary (AND, int_mode,
7024 				   XEXP (XEXP (src, 0), 0), true_rtx);
7025       term3 = simplify_gen_binary (AND, int_mode,
7026 				   simplify_gen_unary (NOT, int_mode,
7027 						       XEXP (XEXP (src, 0), 0),
7028 						       int_mode),
7029 				   false_rtx);
7030 
7031       SUBST (SET_SRC (x),
7032 	     simplify_gen_binary (IOR, int_mode,
7033 				  simplify_gen_binary (IOR, int_mode,
7034 						       term1, term2),
7035 				  term3));
7036 
7037       src = SET_SRC (x);
7038     }
7039 
7040   /* If either SRC or DEST is a CLOBBER of (const_int 0), make this
7041      whole thing fail.  */
7042   if (GET_CODE (src) == CLOBBER && XEXP (src, 0) == const0_rtx)
7043     return src;
7044   else if (GET_CODE (dest) == CLOBBER && XEXP (dest, 0) == const0_rtx)
7045     return dest;
7046   else
7047     /* Convert this into a field assignment operation, if possible.  */
7048     return make_field_assignment (x);
7049 }
7050 
7051 /* Simplify, X, and AND, IOR, or XOR operation, and return the simplified
7052    result.  */
7053 
7054 static rtx
simplify_logical(rtx x)7055 simplify_logical (rtx x)
7056 {
7057   rtx op0 = XEXP (x, 0);
7058   rtx op1 = XEXP (x, 1);
7059   scalar_int_mode mode;
7060 
7061   switch (GET_CODE (x))
7062     {
7063     case AND:
7064       /* We can call simplify_and_const_int only if we don't lose
7065 	 any (sign) bits when converting INTVAL (op1) to
7066 	 "unsigned HOST_WIDE_INT".  */
7067       if (is_a <scalar_int_mode> (GET_MODE (x), &mode)
7068 	  && CONST_INT_P (op1)
7069 	  && (HWI_COMPUTABLE_MODE_P (mode)
7070 	      || INTVAL (op1) > 0))
7071 	{
7072 	  x = simplify_and_const_int (x, mode, op0, INTVAL (op1));
7073 	  if (GET_CODE (x) != AND)
7074 	    return x;
7075 
7076 	  op0 = XEXP (x, 0);
7077 	  op1 = XEXP (x, 1);
7078 	}
7079 
7080       /* If we have any of (and (ior A B) C) or (and (xor A B) C),
7081 	 apply the distributive law and then the inverse distributive
7082 	 law to see if things simplify.  */
7083       if (GET_CODE (op0) == IOR || GET_CODE (op0) == XOR)
7084 	{
7085 	  rtx result = distribute_and_simplify_rtx (x, 0);
7086 	  if (result)
7087 	    return result;
7088 	}
7089       if (GET_CODE (op1) == IOR || GET_CODE (op1) == XOR)
7090 	{
7091 	  rtx result = distribute_and_simplify_rtx (x, 1);
7092 	  if (result)
7093 	    return result;
7094 	}
7095       break;
7096 
7097     case IOR:
7098       /* If we have (ior (and A B) C), apply the distributive law and then
7099 	 the inverse distributive law to see if things simplify.  */
7100 
7101       if (GET_CODE (op0) == AND)
7102 	{
7103 	  rtx result = distribute_and_simplify_rtx (x, 0);
7104 	  if (result)
7105 	    return result;
7106 	}
7107 
7108       if (GET_CODE (op1) == AND)
7109 	{
7110 	  rtx result = distribute_and_simplify_rtx (x, 1);
7111 	  if (result)
7112 	    return result;
7113 	}
7114       break;
7115 
7116     default:
7117       gcc_unreachable ();
7118     }
7119 
7120   return x;
7121 }
7122 
7123 /* We consider ZERO_EXTRACT, SIGN_EXTRACT, and SIGN_EXTEND as "compound
7124    operations" because they can be replaced with two more basic operations.
7125    ZERO_EXTEND is also considered "compound" because it can be replaced with
7126    an AND operation, which is simpler, though only one operation.
7127 
7128    The function expand_compound_operation is called with an rtx expression
7129    and will convert it to the appropriate shifts and AND operations,
7130    simplifying at each stage.
7131 
7132    The function make_compound_operation is called to convert an expression
7133    consisting of shifts and ANDs into the equivalent compound expression.
7134    It is the inverse of this function, loosely speaking.  */
7135 
7136 static rtx
expand_compound_operation(rtx x)7137 expand_compound_operation (rtx x)
7138 {
7139   unsigned HOST_WIDE_INT pos = 0, len;
7140   int unsignedp = 0;
7141   unsigned int modewidth;
7142   rtx tem;
7143   scalar_int_mode inner_mode;
7144 
7145   switch (GET_CODE (x))
7146     {
7147     case ZERO_EXTEND:
7148       unsignedp = 1;
7149       /* FALLTHRU */
7150     case SIGN_EXTEND:
7151       /* We can't necessarily use a const_int for a multiword mode;
7152 	 it depends on implicitly extending the value.
7153 	 Since we don't know the right way to extend it,
7154 	 we can't tell whether the implicit way is right.
7155 
7156 	 Even for a mode that is no wider than a const_int,
7157 	 we can't win, because we need to sign extend one of its bits through
7158 	 the rest of it, and we don't know which bit.  */
7159       if (CONST_INT_P (XEXP (x, 0)))
7160 	return x;
7161 
7162       /* Reject modes that aren't scalar integers because turning vector
7163 	 or complex modes into shifts causes problems.  */
7164       if (!is_a <scalar_int_mode> (GET_MODE (XEXP (x, 0)), &inner_mode))
7165 	return x;
7166 
7167       /* Return if (subreg:MODE FROM 0) is not a safe replacement for
7168 	 (zero_extend:MODE FROM) or (sign_extend:MODE FROM).  It is for any MEM
7169 	 because (SUBREG (MEM...)) is guaranteed to cause the MEM to be
7170 	 reloaded. If not for that, MEM's would very rarely be safe.
7171 
7172 	 Reject modes bigger than a word, because we might not be able
7173 	 to reference a two-register group starting with an arbitrary register
7174 	 (and currently gen_lowpart might crash for a SUBREG).  */
7175 
7176       if (GET_MODE_SIZE (inner_mode) > UNITS_PER_WORD)
7177 	return x;
7178 
7179       len = GET_MODE_PRECISION (inner_mode);
7180       /* If the inner object has VOIDmode (the only way this can happen
7181 	 is if it is an ASM_OPERANDS), we can't do anything since we don't
7182 	 know how much masking to do.  */
7183       if (len == 0)
7184 	return x;
7185 
7186       break;
7187 
7188     case ZERO_EXTRACT:
7189       unsignedp = 1;
7190 
7191       /* fall through */
7192 
7193     case SIGN_EXTRACT:
7194       /* If the operand is a CLOBBER, just return it.  */
7195       if (GET_CODE (XEXP (x, 0)) == CLOBBER)
7196 	return XEXP (x, 0);
7197 
7198       if (!CONST_INT_P (XEXP (x, 1))
7199 	  || !CONST_INT_P (XEXP (x, 2)))
7200 	return x;
7201 
7202       /* Reject modes that aren't scalar integers because turning vector
7203 	 or complex modes into shifts causes problems.  */
7204       if (!is_a <scalar_int_mode> (GET_MODE (XEXP (x, 0)), &inner_mode))
7205 	return x;
7206 
7207       len = INTVAL (XEXP (x, 1));
7208       pos = INTVAL (XEXP (x, 2));
7209 
7210       /* This should stay within the object being extracted, fail otherwise.  */
7211       if (len + pos > GET_MODE_PRECISION (inner_mode))
7212 	return x;
7213 
7214       if (BITS_BIG_ENDIAN)
7215 	pos = GET_MODE_PRECISION (inner_mode) - len - pos;
7216 
7217       break;
7218 
7219     default:
7220       return x;
7221     }
7222 
7223   /* We've rejected non-scalar operations by now.  */
7224   scalar_int_mode mode = as_a <scalar_int_mode> (GET_MODE (x));
7225 
7226   /* Convert sign extension to zero extension, if we know that the high
7227      bit is not set, as this is easier to optimize.  It will be converted
7228      back to cheaper alternative in make_extraction.  */
7229   if (GET_CODE (x) == SIGN_EXTEND
7230       && HWI_COMPUTABLE_MODE_P (mode)
7231       && ((nonzero_bits (XEXP (x, 0), inner_mode)
7232 	   & ~(((unsigned HOST_WIDE_INT) GET_MODE_MASK (inner_mode)) >> 1))
7233 	  == 0))
7234     {
7235       rtx temp = gen_rtx_ZERO_EXTEND (mode, XEXP (x, 0));
7236       rtx temp2 = expand_compound_operation (temp);
7237 
7238       /* Make sure this is a profitable operation.  */
7239       if (set_src_cost (x, mode, optimize_this_for_speed_p)
7240           > set_src_cost (temp2, mode, optimize_this_for_speed_p))
7241        return temp2;
7242       else if (set_src_cost (x, mode, optimize_this_for_speed_p)
7243                > set_src_cost (temp, mode, optimize_this_for_speed_p))
7244        return temp;
7245       else
7246        return x;
7247     }
7248 
7249   /* We can optimize some special cases of ZERO_EXTEND.  */
7250   if (GET_CODE (x) == ZERO_EXTEND)
7251     {
7252       /* (zero_extend:DI (truncate:SI foo:DI)) is just foo:DI if we
7253 	 know that the last value didn't have any inappropriate bits
7254 	 set.  */
7255       if (GET_CODE (XEXP (x, 0)) == TRUNCATE
7256 	  && GET_MODE (XEXP (XEXP (x, 0), 0)) == mode
7257 	  && HWI_COMPUTABLE_MODE_P (mode)
7258 	  && (nonzero_bits (XEXP (XEXP (x, 0), 0), mode)
7259 	      & ~GET_MODE_MASK (inner_mode)) == 0)
7260 	return XEXP (XEXP (x, 0), 0);
7261 
7262       /* Likewise for (zero_extend:DI (subreg:SI foo:DI 0)).  */
7263       if (GET_CODE (XEXP (x, 0)) == SUBREG
7264 	  && GET_MODE (SUBREG_REG (XEXP (x, 0))) == mode
7265 	  && subreg_lowpart_p (XEXP (x, 0))
7266 	  && HWI_COMPUTABLE_MODE_P (mode)
7267 	  && (nonzero_bits (SUBREG_REG (XEXP (x, 0)), mode)
7268 	      & ~GET_MODE_MASK (inner_mode)) == 0)
7269 	return SUBREG_REG (XEXP (x, 0));
7270 
7271       /* (zero_extend:DI (truncate:SI foo:DI)) is just foo:DI when foo
7272 	 is a comparison and STORE_FLAG_VALUE permits.  This is like
7273 	 the first case, but it works even when MODE is larger
7274 	 than HOST_WIDE_INT.  */
7275       if (GET_CODE (XEXP (x, 0)) == TRUNCATE
7276 	  && GET_MODE (XEXP (XEXP (x, 0), 0)) == mode
7277 	  && COMPARISON_P (XEXP (XEXP (x, 0), 0))
7278 	  && GET_MODE_PRECISION (inner_mode) <= HOST_BITS_PER_WIDE_INT
7279 	  && (STORE_FLAG_VALUE & ~GET_MODE_MASK (inner_mode)) == 0)
7280 	return XEXP (XEXP (x, 0), 0);
7281 
7282       /* Likewise for (zero_extend:DI (subreg:SI foo:DI 0)).  */
7283       if (GET_CODE (XEXP (x, 0)) == SUBREG
7284 	  && GET_MODE (SUBREG_REG (XEXP (x, 0))) == mode
7285 	  && subreg_lowpart_p (XEXP (x, 0))
7286 	  && COMPARISON_P (SUBREG_REG (XEXP (x, 0)))
7287 	  && GET_MODE_PRECISION (inner_mode) <= HOST_BITS_PER_WIDE_INT
7288 	  && (STORE_FLAG_VALUE & ~GET_MODE_MASK (inner_mode)) == 0)
7289 	return SUBREG_REG (XEXP (x, 0));
7290 
7291     }
7292 
7293   /* If we reach here, we want to return a pair of shifts.  The inner
7294      shift is a left shift of BITSIZE - POS - LEN bits.  The outer
7295      shift is a right shift of BITSIZE - LEN bits.  It is arithmetic or
7296      logical depending on the value of UNSIGNEDP.
7297 
7298      If this was a ZERO_EXTEND or ZERO_EXTRACT, this pair of shifts will be
7299      converted into an AND of a shift.
7300 
7301      We must check for the case where the left shift would have a negative
7302      count.  This can happen in a case like (x >> 31) & 255 on machines
7303      that can't shift by a constant.  On those machines, we would first
7304      combine the shift with the AND to produce a variable-position
7305      extraction.  Then the constant of 31 would be substituted in
7306      to produce such a position.  */
7307 
7308   modewidth = GET_MODE_PRECISION (mode);
7309   if (modewidth >= pos + len)
7310     {
7311       tem = gen_lowpart (mode, XEXP (x, 0));
7312       if (!tem || GET_CODE (tem) == CLOBBER)
7313 	return x;
7314       tem = simplify_shift_const (NULL_RTX, ASHIFT, mode,
7315 				  tem, modewidth - pos - len);
7316       tem = simplify_shift_const (NULL_RTX, unsignedp ? LSHIFTRT : ASHIFTRT,
7317 				  mode, tem, modewidth - len);
7318     }
7319   else if (unsignedp && len < HOST_BITS_PER_WIDE_INT)
7320     {
7321       tem = simplify_shift_const (NULL_RTX, LSHIFTRT, inner_mode,
7322 				  XEXP (x, 0), pos);
7323       tem = gen_lowpart (mode, tem);
7324       if (!tem || GET_CODE (tem) == CLOBBER)
7325 	return x;
7326       tem = simplify_and_const_int (NULL_RTX, mode, tem,
7327 				    (HOST_WIDE_INT_1U << len) - 1);
7328     }
7329   else
7330     /* Any other cases we can't handle.  */
7331     return x;
7332 
7333   /* If we couldn't do this for some reason, return the original
7334      expression.  */
7335   if (GET_CODE (tem) == CLOBBER)
7336     return x;
7337 
7338   return tem;
7339 }
7340 
7341 /* X is a SET which contains an assignment of one object into
7342    a part of another (such as a bit-field assignment, STRICT_LOW_PART,
7343    or certain SUBREGS). If possible, convert it into a series of
7344    logical operations.
7345 
7346    We half-heartedly support variable positions, but do not at all
7347    support variable lengths.  */
7348 
7349 static const_rtx
expand_field_assignment(const_rtx x)7350 expand_field_assignment (const_rtx x)
7351 {
7352   rtx inner;
7353   rtx pos;			/* Always counts from low bit.  */
7354   int len, inner_len;
7355   rtx mask, cleared, masked;
7356   scalar_int_mode compute_mode;
7357 
7358   /* Loop until we find something we can't simplify.  */
7359   while (1)
7360     {
7361       if (GET_CODE (SET_DEST (x)) == STRICT_LOW_PART
7362 	  && GET_CODE (XEXP (SET_DEST (x), 0)) == SUBREG)
7363 	{
7364 	  rtx x0 = XEXP (SET_DEST (x), 0);
7365 	  if (!GET_MODE_PRECISION (GET_MODE (x0)).is_constant (&len))
7366 	    break;
7367 	  inner = SUBREG_REG (XEXP (SET_DEST (x), 0));
7368 	  pos = gen_int_mode (subreg_lsb (XEXP (SET_DEST (x), 0)),
7369 			      MAX_MODE_INT);
7370 	}
7371       else if (GET_CODE (SET_DEST (x)) == ZERO_EXTRACT
7372 	       && CONST_INT_P (XEXP (SET_DEST (x), 1)))
7373 	{
7374 	  inner = XEXP (SET_DEST (x), 0);
7375 	  if (!GET_MODE_PRECISION (GET_MODE (inner)).is_constant (&inner_len))
7376 	    break;
7377 
7378 	  len = INTVAL (XEXP (SET_DEST (x), 1));
7379 	  pos = XEXP (SET_DEST (x), 2);
7380 
7381 	  /* A constant position should stay within the width of INNER.  */
7382 	  if (CONST_INT_P (pos) && INTVAL (pos) + len > inner_len)
7383 	    break;
7384 
7385 	  if (BITS_BIG_ENDIAN)
7386 	    {
7387 	      if (CONST_INT_P (pos))
7388 		pos = GEN_INT (inner_len - len - INTVAL (pos));
7389 	      else if (GET_CODE (pos) == MINUS
7390 		       && CONST_INT_P (XEXP (pos, 1))
7391 		       && INTVAL (XEXP (pos, 1)) == inner_len - len)
7392 		/* If position is ADJUST - X, new position is X.  */
7393 		pos = XEXP (pos, 0);
7394 	      else
7395 		pos = simplify_gen_binary (MINUS, GET_MODE (pos),
7396 					   gen_int_mode (inner_len - len,
7397 							 GET_MODE (pos)),
7398 					   pos);
7399 	    }
7400 	}
7401 
7402       /* If the destination is a subreg that overwrites the whole of the inner
7403 	 register, we can move the subreg to the source.  */
7404       else if (GET_CODE (SET_DEST (x)) == SUBREG
7405 	       /* We need SUBREGs to compute nonzero_bits properly.  */
7406 	       && nonzero_sign_valid
7407 	       && !read_modify_subreg_p (SET_DEST (x)))
7408 	{
7409 	  x = gen_rtx_SET (SUBREG_REG (SET_DEST (x)),
7410 			   gen_lowpart
7411 			   (GET_MODE (SUBREG_REG (SET_DEST (x))),
7412 			    SET_SRC (x)));
7413 	  continue;
7414 	}
7415       else
7416 	break;
7417 
7418       while (GET_CODE (inner) == SUBREG && subreg_lowpart_p (inner))
7419 	inner = SUBREG_REG (inner);
7420 
7421       /* Don't attempt bitwise arithmetic on non scalar integer modes.  */
7422       if (!is_a <scalar_int_mode> (GET_MODE (inner), &compute_mode))
7423 	{
7424 	  /* Don't do anything for vector or complex integral types.  */
7425 	  if (! FLOAT_MODE_P (GET_MODE (inner)))
7426 	    break;
7427 
7428 	  /* Try to find an integral mode to pun with.  */
7429 	  if (!int_mode_for_size (GET_MODE_BITSIZE (GET_MODE (inner)), 0)
7430 	      .exists (&compute_mode))
7431 	    break;
7432 
7433 	  inner = gen_lowpart (compute_mode, inner);
7434 	}
7435 
7436       /* Compute a mask of LEN bits, if we can do this on the host machine.  */
7437       if (len >= HOST_BITS_PER_WIDE_INT)
7438 	break;
7439 
7440       /* Don't try to compute in too wide unsupported modes.  */
7441       if (!targetm.scalar_mode_supported_p (compute_mode))
7442 	break;
7443 
7444       /* Now compute the equivalent expression.  Make a copy of INNER
7445 	 for the SET_DEST in case it is a MEM into which we will substitute;
7446 	 we don't want shared RTL in that case.  */
7447       mask = gen_int_mode ((HOST_WIDE_INT_1U << len) - 1,
7448 			   compute_mode);
7449       cleared = simplify_gen_binary (AND, compute_mode,
7450 				     simplify_gen_unary (NOT, compute_mode,
7451 				       simplify_gen_binary (ASHIFT,
7452 							    compute_mode,
7453 							    mask, pos),
7454 				       compute_mode),
7455 				     inner);
7456       masked = simplify_gen_binary (ASHIFT, compute_mode,
7457 				    simplify_gen_binary (
7458 				      AND, compute_mode,
7459 				      gen_lowpart (compute_mode, SET_SRC (x)),
7460 				      mask),
7461 				    pos);
7462 
7463       x = gen_rtx_SET (copy_rtx (inner),
7464 		       simplify_gen_binary (IOR, compute_mode,
7465 					    cleared, masked));
7466     }
7467 
7468   return x;
7469 }
7470 
7471 /* Return an RTX for a reference to LEN bits of INNER.  If POS_RTX is nonzero,
7472    it is an RTX that represents the (variable) starting position; otherwise,
7473    POS is the (constant) starting bit position.  Both are counted from the LSB.
7474 
7475    UNSIGNEDP is nonzero for an unsigned reference and zero for a signed one.
7476 
7477    IN_DEST is nonzero if this is a reference in the destination of a SET.
7478    This is used when a ZERO_ or SIGN_EXTRACT isn't needed.  If nonzero,
7479    a STRICT_LOW_PART will be used, if zero, ZERO_EXTEND or SIGN_EXTEND will
7480    be used.
7481 
7482    IN_COMPARE is nonzero if we are in a COMPARE.  This means that a
7483    ZERO_EXTRACT should be built even for bits starting at bit 0.
7484 
7485    MODE is the desired mode of the result (if IN_DEST == 0).
7486 
7487    The result is an RTX for the extraction or NULL_RTX if the target
7488    can't handle it.  */
7489 
7490 static rtx
make_extraction(machine_mode mode,rtx inner,HOST_WIDE_INT pos,rtx pos_rtx,unsigned HOST_WIDE_INT len,int unsignedp,int in_dest,int in_compare)7491 make_extraction (machine_mode mode, rtx inner, HOST_WIDE_INT pos,
7492 		 rtx pos_rtx, unsigned HOST_WIDE_INT len, int unsignedp,
7493 		 int in_dest, int in_compare)
7494 {
7495   /* This mode describes the size of the storage area
7496      to fetch the overall value from.  Within that, we
7497      ignore the POS lowest bits, etc.  */
7498   machine_mode is_mode = GET_MODE (inner);
7499   machine_mode inner_mode;
7500   scalar_int_mode wanted_inner_mode;
7501   scalar_int_mode wanted_inner_reg_mode = word_mode;
7502   scalar_int_mode pos_mode = word_mode;
7503   machine_mode extraction_mode = word_mode;
7504   rtx new_rtx = 0;
7505   rtx orig_pos_rtx = pos_rtx;
7506   HOST_WIDE_INT orig_pos;
7507 
7508   if (pos_rtx && CONST_INT_P (pos_rtx))
7509     pos = INTVAL (pos_rtx), pos_rtx = 0;
7510 
7511   if (GET_CODE (inner) == SUBREG
7512       && subreg_lowpart_p (inner)
7513       && (paradoxical_subreg_p (inner)
7514 	  /* If trying or potentionally trying to extract
7515 	     bits outside of is_mode, don't look through
7516 	     non-paradoxical SUBREGs.  See PR82192.  */
7517 	  || (pos_rtx == NULL_RTX
7518 	      && known_le (pos + len, GET_MODE_PRECISION (is_mode)))))
7519     {
7520       /* If going from (subreg:SI (mem:QI ...)) to (mem:QI ...),
7521 	 consider just the QI as the memory to extract from.
7522 	 The subreg adds or removes high bits; its mode is
7523 	 irrelevant to the meaning of this extraction,
7524 	 since POS and LEN count from the lsb.  */
7525       if (MEM_P (SUBREG_REG (inner)))
7526 	is_mode = GET_MODE (SUBREG_REG (inner));
7527       inner = SUBREG_REG (inner);
7528     }
7529   else if (GET_CODE (inner) == ASHIFT
7530 	   && CONST_INT_P (XEXP (inner, 1))
7531 	   && pos_rtx == 0 && pos == 0
7532 	   && len > UINTVAL (XEXP (inner, 1)))
7533     {
7534       /* We're extracting the least significant bits of an rtx
7535 	 (ashift X (const_int C)), where LEN > C.  Extract the
7536 	 least significant (LEN - C) bits of X, giving an rtx
7537 	 whose mode is MODE, then shift it left C times.  */
7538       new_rtx = make_extraction (mode, XEXP (inner, 0),
7539 			     0, 0, len - INTVAL (XEXP (inner, 1)),
7540 			     unsignedp, in_dest, in_compare);
7541       if (new_rtx != 0)
7542 	return gen_rtx_ASHIFT (mode, new_rtx, XEXP (inner, 1));
7543     }
7544   else if (GET_CODE (inner) == MULT
7545 	   && CONST_INT_P (XEXP (inner, 1))
7546 	   && pos_rtx == 0 && pos == 0)
7547     {
7548       /* We're extracting the least significant bits of an rtx
7549 	 (mult X (const_int 2^C)), where LEN > C.  Extract the
7550 	 least significant (LEN - C) bits of X, giving an rtx
7551 	 whose mode is MODE, then multiply it by 2^C.  */
7552       const HOST_WIDE_INT shift_amt = exact_log2 (INTVAL (XEXP (inner, 1)));
7553       if (IN_RANGE (shift_amt, 1, len - 1))
7554 	{
7555 	  new_rtx = make_extraction (mode, XEXP (inner, 0),
7556 				     0, 0, len - shift_amt,
7557 				     unsignedp, in_dest, in_compare);
7558 	  if (new_rtx)
7559 	    return gen_rtx_MULT (mode, new_rtx, XEXP (inner, 1));
7560 	}
7561     }
7562   else if (GET_CODE (inner) == TRUNCATE
7563 	   /* If trying or potentionally trying to extract
7564 	      bits outside of is_mode, don't look through
7565 	      TRUNCATE.  See PR82192.  */
7566 	   && pos_rtx == NULL_RTX
7567 	   && known_le (pos + len, GET_MODE_PRECISION (is_mode)))
7568     inner = XEXP (inner, 0);
7569 
7570   inner_mode = GET_MODE (inner);
7571 
7572   /* See if this can be done without an extraction.  We never can if the
7573      width of the field is not the same as that of some integer mode. For
7574      registers, we can only avoid the extraction if the position is at the
7575      low-order bit and this is either not in the destination or we have the
7576      appropriate STRICT_LOW_PART operation available.
7577 
7578      For MEM, we can avoid an extract if the field starts on an appropriate
7579      boundary and we can change the mode of the memory reference.  */
7580 
7581   scalar_int_mode tmode;
7582   if (int_mode_for_size (len, 1).exists (&tmode)
7583       && ((pos_rtx == 0 && (pos % BITS_PER_WORD) == 0
7584 	   && !MEM_P (inner)
7585 	   && (pos == 0 || REG_P (inner))
7586 	   && (inner_mode == tmode
7587 	       || !REG_P (inner)
7588 	       || TRULY_NOOP_TRUNCATION_MODES_P (tmode, inner_mode)
7589 	       || reg_truncated_to_mode (tmode, inner))
7590 	   && (! in_dest
7591 	       || (REG_P (inner)
7592 		   && have_insn_for (STRICT_LOW_PART, tmode))))
7593 	  || (MEM_P (inner) && pos_rtx == 0
7594 	      && (pos
7595 		  % (STRICT_ALIGNMENT ? GET_MODE_ALIGNMENT (tmode)
7596 		     : BITS_PER_UNIT)) == 0
7597 	      /* We can't do this if we are widening INNER_MODE (it
7598 		 may not be aligned, for one thing).  */
7599 	      && !paradoxical_subreg_p (tmode, inner_mode)
7600 	      && known_le (pos + len, GET_MODE_PRECISION (is_mode))
7601 	      && (inner_mode == tmode
7602 		  || (! mode_dependent_address_p (XEXP (inner, 0),
7603 						  MEM_ADDR_SPACE (inner))
7604 		      && ! MEM_VOLATILE_P (inner))))))
7605     {
7606       /* If INNER is a MEM, make a new MEM that encompasses just the desired
7607 	 field.  If the original and current mode are the same, we need not
7608 	 adjust the offset.  Otherwise, we do if bytes big endian.
7609 
7610 	 If INNER is not a MEM, get a piece consisting of just the field
7611 	 of interest (in this case POS % BITS_PER_WORD must be 0).  */
7612 
7613       if (MEM_P (inner))
7614 	{
7615 	  poly_int64 offset;
7616 
7617 	  /* POS counts from lsb, but make OFFSET count in memory order.  */
7618 	  if (BYTES_BIG_ENDIAN)
7619 	    offset = bits_to_bytes_round_down (GET_MODE_PRECISION (is_mode)
7620 					       - len - pos);
7621 	  else
7622 	    offset = pos / BITS_PER_UNIT;
7623 
7624 	  new_rtx = adjust_address_nv (inner, tmode, offset);
7625 	}
7626       else if (REG_P (inner))
7627 	{
7628 	  if (tmode != inner_mode)
7629 	    {
7630 	      /* We can't call gen_lowpart in a DEST since we
7631 		 always want a SUBREG (see below) and it would sometimes
7632 		 return a new hard register.  */
7633 	      if (pos || in_dest)
7634 		{
7635 		  poly_uint64 offset
7636 		    = subreg_offset_from_lsb (tmode, inner_mode, pos);
7637 
7638 		  /* Avoid creating invalid subregs, for example when
7639 		     simplifying (x>>32)&255.  */
7640 		  if (!validate_subreg (tmode, inner_mode, inner, offset))
7641 		    return NULL_RTX;
7642 
7643 		  new_rtx = gen_rtx_SUBREG (tmode, inner, offset);
7644 		}
7645 	      else
7646 		new_rtx = gen_lowpart (tmode, inner);
7647 	    }
7648 	  else
7649 	    new_rtx = inner;
7650 	}
7651       else
7652 	new_rtx = force_to_mode (inner, tmode,
7653 				 len >= HOST_BITS_PER_WIDE_INT
7654 				 ? HOST_WIDE_INT_M1U
7655 				 : (HOST_WIDE_INT_1U << len) - 1, 0);
7656 
7657       /* If this extraction is going into the destination of a SET,
7658 	 make a STRICT_LOW_PART unless we made a MEM.  */
7659 
7660       if (in_dest)
7661 	return (MEM_P (new_rtx) ? new_rtx
7662 		: (GET_CODE (new_rtx) != SUBREG
7663 		   ? gen_rtx_CLOBBER (tmode, const0_rtx)
7664 		   : gen_rtx_STRICT_LOW_PART (VOIDmode, new_rtx)));
7665 
7666       if (mode == tmode)
7667 	return new_rtx;
7668 
7669       if (CONST_SCALAR_INT_P (new_rtx))
7670 	return simplify_unary_operation (unsignedp ? ZERO_EXTEND : SIGN_EXTEND,
7671 					 mode, new_rtx, tmode);
7672 
7673       /* If we know that no extraneous bits are set, and that the high
7674 	 bit is not set, convert the extraction to the cheaper of
7675 	 sign and zero extension, that are equivalent in these cases.  */
7676       if (flag_expensive_optimizations
7677 	  && (HWI_COMPUTABLE_MODE_P (tmode)
7678 	      && ((nonzero_bits (new_rtx, tmode)
7679 		   & ~(((unsigned HOST_WIDE_INT)GET_MODE_MASK (tmode)) >> 1))
7680 		  == 0)))
7681 	{
7682 	  rtx temp = gen_rtx_ZERO_EXTEND (mode, new_rtx);
7683 	  rtx temp1 = gen_rtx_SIGN_EXTEND (mode, new_rtx);
7684 
7685 	  /* Prefer ZERO_EXTENSION, since it gives more information to
7686 	     backends.  */
7687 	  if (set_src_cost (temp, mode, optimize_this_for_speed_p)
7688 	      <= set_src_cost (temp1, mode, optimize_this_for_speed_p))
7689 	    return temp;
7690 	  return temp1;
7691 	}
7692 
7693       /* Otherwise, sign- or zero-extend unless we already are in the
7694 	 proper mode.  */
7695 
7696       return (gen_rtx_fmt_e (unsignedp ? ZERO_EXTEND : SIGN_EXTEND,
7697 			     mode, new_rtx));
7698     }
7699 
7700   /* Unless this is a COMPARE or we have a funny memory reference,
7701      don't do anything with zero-extending field extracts starting at
7702      the low-order bit since they are simple AND operations.  */
7703   if (pos_rtx == 0 && pos == 0 && ! in_dest
7704       && ! in_compare && unsignedp)
7705     return 0;
7706 
7707   /* Unless INNER is not MEM, reject this if we would be spanning bytes or
7708      if the position is not a constant and the length is not 1.  In all
7709      other cases, we would only be going outside our object in cases when
7710      an original shift would have been undefined.  */
7711   if (MEM_P (inner)
7712       && ((pos_rtx == 0 && maybe_gt (pos + len, GET_MODE_PRECISION (is_mode)))
7713 	  || (pos_rtx != 0 && len != 1)))
7714     return 0;
7715 
7716   enum extraction_pattern pattern = (in_dest ? EP_insv
7717 				     : unsignedp ? EP_extzv : EP_extv);
7718 
7719   /* If INNER is not from memory, we want it to have the mode of a register
7720      extraction pattern's structure operand, or word_mode if there is no
7721      such pattern.  The same applies to extraction_mode and pos_mode
7722      and their respective operands.
7723 
7724      For memory, assume that the desired extraction_mode and pos_mode
7725      are the same as for a register operation, since at present we don't
7726      have named patterns for aligned memory structures.  */
7727   class extraction_insn insn;
7728   unsigned int inner_size;
7729   if (GET_MODE_BITSIZE (inner_mode).is_constant (&inner_size)
7730       && get_best_reg_extraction_insn (&insn, pattern, inner_size, mode))
7731     {
7732       wanted_inner_reg_mode = insn.struct_mode.require ();
7733       pos_mode = insn.pos_mode;
7734       extraction_mode = insn.field_mode;
7735     }
7736 
7737   /* Never narrow an object, since that might not be safe.  */
7738 
7739   if (mode != VOIDmode
7740       && partial_subreg_p (extraction_mode, mode))
7741     extraction_mode = mode;
7742 
7743   /* Punt if len is too large for extraction_mode.  */
7744   if (maybe_gt (len, GET_MODE_PRECISION (extraction_mode)))
7745     return NULL_RTX;
7746 
7747   if (!MEM_P (inner))
7748     wanted_inner_mode = wanted_inner_reg_mode;
7749   else
7750     {
7751       /* Be careful not to go beyond the extracted object and maintain the
7752 	 natural alignment of the memory.  */
7753       wanted_inner_mode = smallest_int_mode_for_size (len);
7754       while (pos % GET_MODE_BITSIZE (wanted_inner_mode) + len
7755 	     > GET_MODE_BITSIZE (wanted_inner_mode))
7756 	wanted_inner_mode = GET_MODE_WIDER_MODE (wanted_inner_mode).require ();
7757     }
7758 
7759   orig_pos = pos;
7760 
7761   if (BITS_BIG_ENDIAN)
7762     {
7763       /* POS is passed as if BITS_BIG_ENDIAN == 0, so we need to convert it to
7764 	 BITS_BIG_ENDIAN style.  If position is constant, compute new
7765 	 position.  Otherwise, build subtraction.
7766 	 Note that POS is relative to the mode of the original argument.
7767 	 If it's a MEM we need to recompute POS relative to that.
7768 	 However, if we're extracting from (or inserting into) a register,
7769 	 we want to recompute POS relative to wanted_inner_mode.  */
7770       int width;
7771       if (!MEM_P (inner))
7772 	width = GET_MODE_BITSIZE (wanted_inner_mode);
7773       else if (!GET_MODE_BITSIZE (is_mode).is_constant (&width))
7774 	return NULL_RTX;
7775 
7776       if (pos_rtx == 0)
7777 	pos = width - len - pos;
7778       else
7779 	pos_rtx
7780 	  = gen_rtx_MINUS (GET_MODE (pos_rtx),
7781 			   gen_int_mode (width - len, GET_MODE (pos_rtx)),
7782 			   pos_rtx);
7783       /* POS may be less than 0 now, but we check for that below.
7784 	 Note that it can only be less than 0 if !MEM_P (inner).  */
7785     }
7786 
7787   /* If INNER has a wider mode, and this is a constant extraction, try to
7788      make it smaller and adjust the byte to point to the byte containing
7789      the value.  */
7790   if (wanted_inner_mode != VOIDmode
7791       && inner_mode != wanted_inner_mode
7792       && ! pos_rtx
7793       && partial_subreg_p (wanted_inner_mode, is_mode)
7794       && MEM_P (inner)
7795       && ! mode_dependent_address_p (XEXP (inner, 0), MEM_ADDR_SPACE (inner))
7796       && ! MEM_VOLATILE_P (inner))
7797     {
7798       poly_int64 offset = 0;
7799 
7800       /* The computations below will be correct if the machine is big
7801 	 endian in both bits and bytes or little endian in bits and bytes.
7802 	 If it is mixed, we must adjust.  */
7803 
7804       /* If bytes are big endian and we had a paradoxical SUBREG, we must
7805 	 adjust OFFSET to compensate.  */
7806       if (BYTES_BIG_ENDIAN
7807 	  && paradoxical_subreg_p (is_mode, inner_mode))
7808 	offset -= GET_MODE_SIZE (is_mode) - GET_MODE_SIZE (inner_mode);
7809 
7810       /* We can now move to the desired byte.  */
7811       offset += (pos / GET_MODE_BITSIZE (wanted_inner_mode))
7812 		* GET_MODE_SIZE (wanted_inner_mode);
7813       pos %= GET_MODE_BITSIZE (wanted_inner_mode);
7814 
7815       if (BYTES_BIG_ENDIAN != BITS_BIG_ENDIAN
7816 	  && is_mode != wanted_inner_mode)
7817 	offset = (GET_MODE_SIZE (is_mode)
7818 		  - GET_MODE_SIZE (wanted_inner_mode) - offset);
7819 
7820       inner = adjust_address_nv (inner, wanted_inner_mode, offset);
7821     }
7822 
7823   /* If INNER is not memory, get it into the proper mode.  If we are changing
7824      its mode, POS must be a constant and smaller than the size of the new
7825      mode.  */
7826   else if (!MEM_P (inner))
7827     {
7828       /* On the LHS, don't create paradoxical subregs implicitely truncating
7829 	 the register unless TARGET_TRULY_NOOP_TRUNCATION.  */
7830       if (in_dest
7831 	  && !TRULY_NOOP_TRUNCATION_MODES_P (GET_MODE (inner),
7832 					     wanted_inner_mode))
7833 	return NULL_RTX;
7834 
7835       if (GET_MODE (inner) != wanted_inner_mode
7836 	  && (pos_rtx != 0
7837 	      || orig_pos + len > GET_MODE_BITSIZE (wanted_inner_mode)))
7838 	return NULL_RTX;
7839 
7840       if (orig_pos < 0)
7841 	return NULL_RTX;
7842 
7843       inner = force_to_mode (inner, wanted_inner_mode,
7844 			     pos_rtx
7845 			     || len + orig_pos >= HOST_BITS_PER_WIDE_INT
7846 			     ? HOST_WIDE_INT_M1U
7847 			     : (((HOST_WIDE_INT_1U << len) - 1)
7848 				<< orig_pos),
7849 			     0);
7850     }
7851 
7852   /* Adjust mode of POS_RTX, if needed.  If we want a wider mode, we
7853      have to zero extend.  Otherwise, we can just use a SUBREG.
7854 
7855      We dealt with constant rtxes earlier, so pos_rtx cannot
7856      have VOIDmode at this point.  */
7857   if (pos_rtx != 0
7858       && (GET_MODE_SIZE (pos_mode)
7859 	  > GET_MODE_SIZE (as_a <scalar_int_mode> (GET_MODE (pos_rtx)))))
7860     {
7861       rtx temp = simplify_gen_unary (ZERO_EXTEND, pos_mode, pos_rtx,
7862 				     GET_MODE (pos_rtx));
7863 
7864       /* If we know that no extraneous bits are set, and that the high
7865 	 bit is not set, convert extraction to cheaper one - either
7866 	 SIGN_EXTENSION or ZERO_EXTENSION, that are equivalent in these
7867 	 cases.  */
7868       if (flag_expensive_optimizations
7869 	  && (HWI_COMPUTABLE_MODE_P (GET_MODE (pos_rtx))
7870 	      && ((nonzero_bits (pos_rtx, GET_MODE (pos_rtx))
7871 		   & ~(((unsigned HOST_WIDE_INT)
7872 			GET_MODE_MASK (GET_MODE (pos_rtx)))
7873 		       >> 1))
7874 		  == 0)))
7875 	{
7876 	  rtx temp1 = simplify_gen_unary (SIGN_EXTEND, pos_mode, pos_rtx,
7877 					  GET_MODE (pos_rtx));
7878 
7879 	  /* Prefer ZERO_EXTENSION, since it gives more information to
7880 	     backends.  */
7881 	  if (set_src_cost (temp1, pos_mode, optimize_this_for_speed_p)
7882 	      < set_src_cost (temp, pos_mode, optimize_this_for_speed_p))
7883 	    temp = temp1;
7884 	}
7885       pos_rtx = temp;
7886     }
7887 
7888   /* Make POS_RTX unless we already have it and it is correct.  If we don't
7889      have a POS_RTX but we do have an ORIG_POS_RTX, the latter must
7890      be a CONST_INT.  */
7891   if (pos_rtx == 0 && orig_pos_rtx != 0 && INTVAL (orig_pos_rtx) == pos)
7892     pos_rtx = orig_pos_rtx;
7893 
7894   else if (pos_rtx == 0)
7895     pos_rtx = GEN_INT (pos);
7896 
7897   /* Make the required operation.  See if we can use existing rtx.  */
7898   new_rtx = gen_rtx_fmt_eee (unsignedp ? ZERO_EXTRACT : SIGN_EXTRACT,
7899 			 extraction_mode, inner, GEN_INT (len), pos_rtx);
7900   if (! in_dest)
7901     new_rtx = gen_lowpart (mode, new_rtx);
7902 
7903   return new_rtx;
7904 }
7905 
7906 /* See if X (of mode MODE) contains an ASHIFT of COUNT or more bits that
7907    can be commuted with any other operations in X.  Return X without
7908    that shift if so.  */
7909 
7910 static rtx
extract_left_shift(scalar_int_mode mode,rtx x,int count)7911 extract_left_shift (scalar_int_mode mode, rtx x, int count)
7912 {
7913   enum rtx_code code = GET_CODE (x);
7914   rtx tem;
7915 
7916   switch (code)
7917     {
7918     case ASHIFT:
7919       /* This is the shift itself.  If it is wide enough, we will return
7920 	 either the value being shifted if the shift count is equal to
7921 	 COUNT or a shift for the difference.  */
7922       if (CONST_INT_P (XEXP (x, 1))
7923 	  && INTVAL (XEXP (x, 1)) >= count)
7924 	return simplify_shift_const (NULL_RTX, ASHIFT, mode, XEXP (x, 0),
7925 				     INTVAL (XEXP (x, 1)) - count);
7926       break;
7927 
7928     case NEG:  case NOT:
7929       if ((tem = extract_left_shift (mode, XEXP (x, 0), count)) != 0)
7930 	return simplify_gen_unary (code, mode, tem, mode);
7931 
7932       break;
7933 
7934     case PLUS:  case IOR:  case XOR:  case AND:
7935       /* If we can safely shift this constant and we find the inner shift,
7936 	 make a new operation.  */
7937       if (CONST_INT_P (XEXP (x, 1))
7938 	  && (UINTVAL (XEXP (x, 1))
7939 	      & (((HOST_WIDE_INT_1U << count)) - 1)) == 0
7940 	  && (tem = extract_left_shift (mode, XEXP (x, 0), count)) != 0)
7941 	{
7942 	  HOST_WIDE_INT val = INTVAL (XEXP (x, 1)) >> count;
7943 	  return simplify_gen_binary (code, mode, tem,
7944 				      gen_int_mode (val, mode));
7945 	}
7946       break;
7947 
7948     default:
7949       break;
7950     }
7951 
7952   return 0;
7953 }
7954 
7955 /* Subroutine of make_compound_operation.  *X_PTR is the rtx at the current
7956    level of the expression and MODE is its mode.  IN_CODE is as for
7957    make_compound_operation.  *NEXT_CODE_PTR is the value of IN_CODE
7958    that should be used when recursing on operands of *X_PTR.
7959 
7960    There are two possible actions:
7961 
7962    - Return null.  This tells the caller to recurse on *X_PTR with IN_CODE
7963      equal to *NEXT_CODE_PTR, after which *X_PTR holds the final value.
7964 
7965    - Return a new rtx, which the caller returns directly.  */
7966 
7967 static rtx
make_compound_operation_int(scalar_int_mode mode,rtx * x_ptr,enum rtx_code in_code,enum rtx_code * next_code_ptr)7968 make_compound_operation_int (scalar_int_mode mode, rtx *x_ptr,
7969 			     enum rtx_code in_code,
7970 			     enum rtx_code *next_code_ptr)
7971 {
7972   rtx x = *x_ptr;
7973   enum rtx_code next_code = *next_code_ptr;
7974   enum rtx_code code = GET_CODE (x);
7975   int mode_width = GET_MODE_PRECISION (mode);
7976   rtx rhs, lhs;
7977   rtx new_rtx = 0;
7978   int i;
7979   rtx tem;
7980   scalar_int_mode inner_mode;
7981   bool equality_comparison = false;
7982 
7983   if (in_code == EQ)
7984     {
7985       equality_comparison = true;
7986       in_code = COMPARE;
7987     }
7988 
7989   /* Process depending on the code of this operation.  If NEW is set
7990      nonzero, it will be returned.  */
7991 
7992   switch (code)
7993     {
7994     case ASHIFT:
7995       /* Convert shifts by constants into multiplications if inside
7996 	 an address.  */
7997       if (in_code == MEM && CONST_INT_P (XEXP (x, 1))
7998 	  && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT
7999 	  && INTVAL (XEXP (x, 1)) >= 0)
8000 	{
8001 	  HOST_WIDE_INT count = INTVAL (XEXP (x, 1));
8002 	  HOST_WIDE_INT multval = HOST_WIDE_INT_1 << count;
8003 
8004 	  new_rtx = make_compound_operation (XEXP (x, 0), next_code);
8005 	  if (GET_CODE (new_rtx) == NEG)
8006 	    {
8007 	      new_rtx = XEXP (new_rtx, 0);
8008 	      multval = -multval;
8009 	    }
8010 	  multval = trunc_int_for_mode (multval, mode);
8011 	  new_rtx = gen_rtx_MULT (mode, new_rtx, gen_int_mode (multval, mode));
8012 	}
8013       break;
8014 
8015     case PLUS:
8016       lhs = XEXP (x, 0);
8017       rhs = XEXP (x, 1);
8018       lhs = make_compound_operation (lhs, next_code);
8019       rhs = make_compound_operation (rhs, next_code);
8020       if (GET_CODE (lhs) == MULT && GET_CODE (XEXP (lhs, 0)) == NEG)
8021 	{
8022 	  tem = simplify_gen_binary (MULT, mode, XEXP (XEXP (lhs, 0), 0),
8023 				     XEXP (lhs, 1));
8024 	  new_rtx = simplify_gen_binary (MINUS, mode, rhs, tem);
8025 	}
8026       else if (GET_CODE (lhs) == MULT
8027 	       && (CONST_INT_P (XEXP (lhs, 1)) && INTVAL (XEXP (lhs, 1)) < 0))
8028 	{
8029 	  tem = simplify_gen_binary (MULT, mode, XEXP (lhs, 0),
8030 				     simplify_gen_unary (NEG, mode,
8031 							 XEXP (lhs, 1),
8032 							 mode));
8033 	  new_rtx = simplify_gen_binary (MINUS, mode, rhs, tem);
8034 	}
8035       else
8036 	{
8037 	  SUBST (XEXP (x, 0), lhs);
8038 	  SUBST (XEXP (x, 1), rhs);
8039 	}
8040       maybe_swap_commutative_operands (x);
8041       return x;
8042 
8043     case MINUS:
8044       lhs = XEXP (x, 0);
8045       rhs = XEXP (x, 1);
8046       lhs = make_compound_operation (lhs, next_code);
8047       rhs = make_compound_operation (rhs, next_code);
8048       if (GET_CODE (rhs) == MULT && GET_CODE (XEXP (rhs, 0)) == NEG)
8049 	{
8050 	  tem = simplify_gen_binary (MULT, mode, XEXP (XEXP (rhs, 0), 0),
8051 				     XEXP (rhs, 1));
8052 	  return simplify_gen_binary (PLUS, mode, tem, lhs);
8053 	}
8054       else if (GET_CODE (rhs) == MULT
8055 	       && (CONST_INT_P (XEXP (rhs, 1)) && INTVAL (XEXP (rhs, 1)) < 0))
8056 	{
8057 	  tem = simplify_gen_binary (MULT, mode, XEXP (rhs, 0),
8058 				     simplify_gen_unary (NEG, mode,
8059 							 XEXP (rhs, 1),
8060 							 mode));
8061 	  return simplify_gen_binary (PLUS, mode, tem, lhs);
8062 	}
8063       else
8064 	{
8065 	  SUBST (XEXP (x, 0), lhs);
8066 	  SUBST (XEXP (x, 1), rhs);
8067 	  return x;
8068 	}
8069 
8070     case AND:
8071       /* If the second operand is not a constant, we can't do anything
8072 	 with it.  */
8073       if (!CONST_INT_P (XEXP (x, 1)))
8074 	break;
8075 
8076       /* If the constant is a power of two minus one and the first operand
8077 	 is a logical right shift, make an extraction.  */
8078       if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
8079 	  && (i = exact_log2 (UINTVAL (XEXP (x, 1)) + 1)) >= 0)
8080 	{
8081 	  new_rtx = make_compound_operation (XEXP (XEXP (x, 0), 0), next_code);
8082 	  new_rtx = make_extraction (mode, new_rtx, 0, XEXP (XEXP (x, 0), 1),
8083 				     i, 1, 0, in_code == COMPARE);
8084 	}
8085 
8086       /* Same as previous, but for (subreg (lshiftrt ...)) in first op.  */
8087       else if (GET_CODE (XEXP (x, 0)) == SUBREG
8088 	       && subreg_lowpart_p (XEXP (x, 0))
8089 	       && is_a <scalar_int_mode> (GET_MODE (SUBREG_REG (XEXP (x, 0))),
8090 					  &inner_mode)
8091 	       && GET_CODE (SUBREG_REG (XEXP (x, 0))) == LSHIFTRT
8092 	       && (i = exact_log2 (UINTVAL (XEXP (x, 1)) + 1)) >= 0)
8093 	{
8094 	  rtx inner_x0 = SUBREG_REG (XEXP (x, 0));
8095 	  new_rtx = make_compound_operation (XEXP (inner_x0, 0), next_code);
8096 	  new_rtx = make_extraction (inner_mode, new_rtx, 0,
8097 				     XEXP (inner_x0, 1),
8098 				     i, 1, 0, in_code == COMPARE);
8099 
8100 	  /* If we narrowed the mode when dropping the subreg, then we lose.  */
8101 	  if (GET_MODE_SIZE (inner_mode) < GET_MODE_SIZE (mode))
8102 	    new_rtx = NULL;
8103 
8104 	  /* If that didn't give anything, see if the AND simplifies on
8105 	     its own.  */
8106 	  if (!new_rtx && i >= 0)
8107 	    {
8108 	      new_rtx = make_compound_operation (XEXP (x, 0), next_code);
8109 	      new_rtx = make_extraction (mode, new_rtx, 0, NULL_RTX, i, 1,
8110 					 0, in_code == COMPARE);
8111 	    }
8112 	}
8113       /* Same as previous, but for (xor/ior (lshiftrt...) (lshiftrt...)).  */
8114       else if ((GET_CODE (XEXP (x, 0)) == XOR
8115 		|| GET_CODE (XEXP (x, 0)) == IOR)
8116 	       && GET_CODE (XEXP (XEXP (x, 0), 0)) == LSHIFTRT
8117 	       && GET_CODE (XEXP (XEXP (x, 0), 1)) == LSHIFTRT
8118 	       && (i = exact_log2 (UINTVAL (XEXP (x, 1)) + 1)) >= 0)
8119 	{
8120 	  /* Apply the distributive law, and then try to make extractions.  */
8121 	  new_rtx = gen_rtx_fmt_ee (GET_CODE (XEXP (x, 0)), mode,
8122 				    gen_rtx_AND (mode, XEXP (XEXP (x, 0), 0),
8123 						 XEXP (x, 1)),
8124 				    gen_rtx_AND (mode, XEXP (XEXP (x, 0), 1),
8125 						 XEXP (x, 1)));
8126 	  new_rtx = make_compound_operation (new_rtx, in_code);
8127 	}
8128 
8129       /* If we are have (and (rotate X C) M) and C is larger than the number
8130 	 of bits in M, this is an extraction.  */
8131 
8132       else if (GET_CODE (XEXP (x, 0)) == ROTATE
8133 	       && CONST_INT_P (XEXP (XEXP (x, 0), 1))
8134 	       && (i = exact_log2 (UINTVAL (XEXP (x, 1)) + 1)) >= 0
8135 	       && i <= INTVAL (XEXP (XEXP (x, 0), 1)))
8136 	{
8137 	  new_rtx = make_compound_operation (XEXP (XEXP (x, 0), 0), next_code);
8138 	  new_rtx = make_extraction (mode, new_rtx,
8139 				     (GET_MODE_PRECISION (mode)
8140 				      - INTVAL (XEXP (XEXP (x, 0), 1))),
8141 				     NULL_RTX, i, 1, 0, in_code == COMPARE);
8142 	}
8143 
8144       /* On machines without logical shifts, if the operand of the AND is
8145 	 a logical shift and our mask turns off all the propagated sign
8146 	 bits, we can replace the logical shift with an arithmetic shift.  */
8147       else if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
8148 	       && !have_insn_for (LSHIFTRT, mode)
8149 	       && have_insn_for (ASHIFTRT, mode)
8150 	       && CONST_INT_P (XEXP (XEXP (x, 0), 1))
8151 	       && INTVAL (XEXP (XEXP (x, 0), 1)) >= 0
8152 	       && INTVAL (XEXP (XEXP (x, 0), 1)) < HOST_BITS_PER_WIDE_INT
8153 	       && mode_width <= HOST_BITS_PER_WIDE_INT)
8154 	{
8155 	  unsigned HOST_WIDE_INT mask = GET_MODE_MASK (mode);
8156 
8157 	  mask >>= INTVAL (XEXP (XEXP (x, 0), 1));
8158 	  if ((INTVAL (XEXP (x, 1)) & ~mask) == 0)
8159 	    SUBST (XEXP (x, 0),
8160 		   gen_rtx_ASHIFTRT (mode,
8161 				     make_compound_operation (XEXP (XEXP (x,
8162 									  0),
8163 								    0),
8164 							      next_code),
8165 				     XEXP (XEXP (x, 0), 1)));
8166 	}
8167 
8168       /* If the constant is one less than a power of two, this might be
8169 	 representable by an extraction even if no shift is present.
8170 	 If it doesn't end up being a ZERO_EXTEND, we will ignore it unless
8171 	 we are in a COMPARE.  */
8172       else if ((i = exact_log2 (UINTVAL (XEXP (x, 1)) + 1)) >= 0)
8173 	new_rtx = make_extraction (mode,
8174 				   make_compound_operation (XEXP (x, 0),
8175 							    next_code),
8176 				   0, NULL_RTX, i, 1, 0, in_code == COMPARE);
8177 
8178       /* If we are in a comparison and this is an AND with a power of two,
8179 	 convert this into the appropriate bit extract.  */
8180       else if (in_code == COMPARE
8181 	       && (i = exact_log2 (UINTVAL (XEXP (x, 1)))) >= 0
8182 	       && (equality_comparison || i < GET_MODE_PRECISION (mode) - 1))
8183 	new_rtx = make_extraction (mode,
8184 				   make_compound_operation (XEXP (x, 0),
8185 							    next_code),
8186 				   i, NULL_RTX, 1, 1, 0, 1);
8187 
8188       /* If the one operand is a paradoxical subreg of a register or memory and
8189 	 the constant (limited to the smaller mode) has only zero bits where
8190 	 the sub expression has known zero bits, this can be expressed as
8191 	 a zero_extend.  */
8192       else if (GET_CODE (XEXP (x, 0)) == SUBREG)
8193 	{
8194 	  rtx sub;
8195 
8196 	  sub = XEXP (XEXP (x, 0), 0);
8197 	  machine_mode sub_mode = GET_MODE (sub);
8198 	  int sub_width;
8199 	  if ((REG_P (sub) || MEM_P (sub))
8200 	      && GET_MODE_PRECISION (sub_mode).is_constant (&sub_width)
8201 	      && sub_width < mode_width)
8202 	    {
8203 	      unsigned HOST_WIDE_INT mode_mask = GET_MODE_MASK (sub_mode);
8204 	      unsigned HOST_WIDE_INT mask;
8205 
8206 	      /* original AND constant with all the known zero bits set */
8207 	      mask = UINTVAL (XEXP (x, 1)) | (~nonzero_bits (sub, sub_mode));
8208 	      if ((mask & mode_mask) == mode_mask)
8209 		{
8210 		  new_rtx = make_compound_operation (sub, next_code);
8211 		  new_rtx = make_extraction (mode, new_rtx, 0, 0, sub_width,
8212 					     1, 0, in_code == COMPARE);
8213 		}
8214 	    }
8215 	}
8216 
8217       break;
8218 
8219     case LSHIFTRT:
8220       /* If the sign bit is known to be zero, replace this with an
8221 	 arithmetic shift.  */
8222       if (have_insn_for (ASHIFTRT, mode)
8223 	  && ! have_insn_for (LSHIFTRT, mode)
8224 	  && mode_width <= HOST_BITS_PER_WIDE_INT
8225 	  && (nonzero_bits (XEXP (x, 0), mode) & (1 << (mode_width - 1))) == 0)
8226 	{
8227 	  new_rtx = gen_rtx_ASHIFTRT (mode,
8228 				      make_compound_operation (XEXP (x, 0),
8229 							       next_code),
8230 				      XEXP (x, 1));
8231 	  break;
8232 	}
8233 
8234       /* fall through */
8235 
8236     case ASHIFTRT:
8237       lhs = XEXP (x, 0);
8238       rhs = XEXP (x, 1);
8239 
8240       /* If we have (ashiftrt (ashift foo C1) C2) with C2 >= C1,
8241 	 this is a SIGN_EXTRACT.  */
8242       if (CONST_INT_P (rhs)
8243 	  && GET_CODE (lhs) == ASHIFT
8244 	  && CONST_INT_P (XEXP (lhs, 1))
8245 	  && INTVAL (rhs) >= INTVAL (XEXP (lhs, 1))
8246 	  && INTVAL (XEXP (lhs, 1)) >= 0
8247 	  && INTVAL (rhs) < mode_width)
8248 	{
8249 	  new_rtx = make_compound_operation (XEXP (lhs, 0), next_code);
8250 	  new_rtx = make_extraction (mode, new_rtx,
8251 				     INTVAL (rhs) - INTVAL (XEXP (lhs, 1)),
8252 				     NULL_RTX, mode_width - INTVAL (rhs),
8253 				     code == LSHIFTRT, 0, in_code == COMPARE);
8254 	  break;
8255 	}
8256 
8257       /* See if we have operations between an ASHIFTRT and an ASHIFT.
8258 	 If so, try to merge the shifts into a SIGN_EXTEND.  We could
8259 	 also do this for some cases of SIGN_EXTRACT, but it doesn't
8260 	 seem worth the effort; the case checked for occurs on Alpha.  */
8261 
8262       if (!OBJECT_P (lhs)
8263 	  && ! (GET_CODE (lhs) == SUBREG
8264 		&& (OBJECT_P (SUBREG_REG (lhs))))
8265 	  && CONST_INT_P (rhs)
8266 	  && INTVAL (rhs) >= 0
8267 	  && INTVAL (rhs) < HOST_BITS_PER_WIDE_INT
8268 	  && INTVAL (rhs) < mode_width
8269 	  && (new_rtx = extract_left_shift (mode, lhs, INTVAL (rhs))) != 0)
8270 	new_rtx = make_extraction (mode, make_compound_operation (new_rtx,
8271 								  next_code),
8272 				   0, NULL_RTX, mode_width - INTVAL (rhs),
8273 				   code == LSHIFTRT, 0, in_code == COMPARE);
8274 
8275       break;
8276 
8277     case SUBREG:
8278       /* Call ourselves recursively on the inner expression.  If we are
8279 	 narrowing the object and it has a different RTL code from
8280 	 what it originally did, do this SUBREG as a force_to_mode.  */
8281       {
8282 	rtx inner = SUBREG_REG (x), simplified;
8283 	enum rtx_code subreg_code = in_code;
8284 
8285 	/* If the SUBREG is masking of a logical right shift,
8286 	   make an extraction.  */
8287 	if (GET_CODE (inner) == LSHIFTRT
8288 	    && is_a <scalar_int_mode> (GET_MODE (inner), &inner_mode)
8289 	    && GET_MODE_SIZE (mode) < GET_MODE_SIZE (inner_mode)
8290 	    && CONST_INT_P (XEXP (inner, 1))
8291 	    && UINTVAL (XEXP (inner, 1)) < GET_MODE_PRECISION (inner_mode)
8292 	    && subreg_lowpart_p (x))
8293 	  {
8294 	    new_rtx = make_compound_operation (XEXP (inner, 0), next_code);
8295 	    int width = GET_MODE_PRECISION (inner_mode)
8296 			- INTVAL (XEXP (inner, 1));
8297 	    if (width > mode_width)
8298 	      width = mode_width;
8299 	    new_rtx = make_extraction (mode, new_rtx, 0, XEXP (inner, 1),
8300 				       width, 1, 0, in_code == COMPARE);
8301 	    break;
8302 	  }
8303 
8304 	/* If in_code is COMPARE, it isn't always safe to pass it through
8305 	   to the recursive make_compound_operation call.  */
8306 	if (subreg_code == COMPARE
8307 	    && (!subreg_lowpart_p (x)
8308 		|| GET_CODE (inner) == SUBREG
8309 		/* (subreg:SI (and:DI (reg:DI) (const_int 0x800000000)) 0)
8310 		   is (const_int 0), rather than
8311 		   (subreg:SI (lshiftrt:DI (reg:DI) (const_int 35)) 0).
8312 		   Similarly (subreg:QI (and:SI (reg:SI) (const_int 0x80)) 0)
8313 		   for non-equality comparisons against 0 is not equivalent
8314 		   to (subreg:QI (lshiftrt:SI (reg:SI) (const_int 7)) 0).  */
8315 		|| (GET_CODE (inner) == AND
8316 		    && CONST_INT_P (XEXP (inner, 1))
8317 		    && partial_subreg_p (x)
8318 		    && exact_log2 (UINTVAL (XEXP (inner, 1)))
8319 		       >= GET_MODE_BITSIZE (mode) - 1)))
8320 	  subreg_code = SET;
8321 
8322 	tem = make_compound_operation (inner, subreg_code);
8323 
8324 	simplified
8325 	  = simplify_subreg (mode, tem, GET_MODE (inner), SUBREG_BYTE (x));
8326 	if (simplified)
8327 	  tem = simplified;
8328 
8329 	if (GET_CODE (tem) != GET_CODE (inner)
8330 	    && partial_subreg_p (x)
8331 	    && subreg_lowpart_p (x))
8332 	  {
8333 	    rtx newer
8334 	      = force_to_mode (tem, mode, HOST_WIDE_INT_M1U, 0);
8335 
8336 	    /* If we have something other than a SUBREG, we might have
8337 	       done an expansion, so rerun ourselves.  */
8338 	    if (GET_CODE (newer) != SUBREG)
8339 	      newer = make_compound_operation (newer, in_code);
8340 
8341 	    /* force_to_mode can expand compounds.  If it just re-expanded
8342 	       the compound, use gen_lowpart to convert to the desired
8343 	       mode.  */
8344 	    if (rtx_equal_p (newer, x)
8345 		/* Likewise if it re-expanded the compound only partially.
8346 		   This happens for SUBREG of ZERO_EXTRACT if they extract
8347 		   the same number of bits.  */
8348 		|| (GET_CODE (newer) == SUBREG
8349 		    && (GET_CODE (SUBREG_REG (newer)) == LSHIFTRT
8350 			|| GET_CODE (SUBREG_REG (newer)) == ASHIFTRT)
8351 		    && GET_CODE (inner) == AND
8352 		    && rtx_equal_p (SUBREG_REG (newer), XEXP (inner, 0))))
8353 	      return gen_lowpart (GET_MODE (x), tem);
8354 
8355 	    return newer;
8356 	  }
8357 
8358 	if (simplified)
8359 	  return tem;
8360       }
8361       break;
8362 
8363     default:
8364       break;
8365     }
8366 
8367   if (new_rtx)
8368     *x_ptr = gen_lowpart (mode, new_rtx);
8369   *next_code_ptr = next_code;
8370   return NULL_RTX;
8371 }
8372 
8373 /* Look at the expression rooted at X.  Look for expressions
8374    equivalent to ZERO_EXTRACT, SIGN_EXTRACT, ZERO_EXTEND, SIGN_EXTEND.
8375    Form these expressions.
8376 
8377    Return the new rtx, usually just X.
8378 
8379    Also, for machines like the VAX that don't have logical shift insns,
8380    try to convert logical to arithmetic shift operations in cases where
8381    they are equivalent.  This undoes the canonicalizations to logical
8382    shifts done elsewhere.
8383 
8384    We try, as much as possible, to re-use rtl expressions to save memory.
8385 
8386    IN_CODE says what kind of expression we are processing.  Normally, it is
8387    SET.  In a memory address it is MEM.  When processing the arguments of
8388    a comparison or a COMPARE against zero, it is COMPARE, or EQ if more
8389    precisely it is an equality comparison against zero.  */
8390 
8391 rtx
make_compound_operation(rtx x,enum rtx_code in_code)8392 make_compound_operation (rtx x, enum rtx_code in_code)
8393 {
8394   enum rtx_code code = GET_CODE (x);
8395   const char *fmt;
8396   int i, j;
8397   enum rtx_code next_code;
8398   rtx new_rtx, tem;
8399 
8400   /* Select the code to be used in recursive calls.  Once we are inside an
8401      address, we stay there.  If we have a comparison, set to COMPARE,
8402      but once inside, go back to our default of SET.  */
8403 
8404   next_code = (code == MEM ? MEM
8405 	       : ((code == COMPARE || COMPARISON_P (x))
8406 		  && XEXP (x, 1) == const0_rtx) ? COMPARE
8407 	       : in_code == COMPARE || in_code == EQ ? SET : in_code);
8408 
8409   scalar_int_mode mode;
8410   if (is_a <scalar_int_mode> (GET_MODE (x), &mode))
8411     {
8412       rtx new_rtx = make_compound_operation_int (mode, &x, in_code,
8413 						 &next_code);
8414       if (new_rtx)
8415 	return new_rtx;
8416       code = GET_CODE (x);
8417     }
8418 
8419   /* Now recursively process each operand of this operation.  We need to
8420      handle ZERO_EXTEND specially so that we don't lose track of the
8421      inner mode.  */
8422   if (code == ZERO_EXTEND)
8423     {
8424       new_rtx = make_compound_operation (XEXP (x, 0), next_code);
8425       tem = simplify_const_unary_operation (ZERO_EXTEND, GET_MODE (x),
8426 					    new_rtx, GET_MODE (XEXP (x, 0)));
8427       if (tem)
8428 	return tem;
8429       SUBST (XEXP (x, 0), new_rtx);
8430       return x;
8431     }
8432 
8433   fmt = GET_RTX_FORMAT (code);
8434   for (i = 0; i < GET_RTX_LENGTH (code); i++)
8435     if (fmt[i] == 'e')
8436       {
8437 	new_rtx = make_compound_operation (XEXP (x, i), next_code);
8438 	SUBST (XEXP (x, i), new_rtx);
8439       }
8440     else if (fmt[i] == 'E')
8441       for (j = 0; j < XVECLEN (x, i); j++)
8442 	{
8443 	  new_rtx = make_compound_operation (XVECEXP (x, i, j), next_code);
8444 	  SUBST (XVECEXP (x, i, j), new_rtx);
8445 	}
8446 
8447   maybe_swap_commutative_operands (x);
8448   return x;
8449 }
8450 
8451 /* Given M see if it is a value that would select a field of bits
8452    within an item, but not the entire word.  Return -1 if not.
8453    Otherwise, return the starting position of the field, where 0 is the
8454    low-order bit.
8455 
8456    *PLEN is set to the length of the field.  */
8457 
8458 static int
get_pos_from_mask(unsigned HOST_WIDE_INT m,unsigned HOST_WIDE_INT * plen)8459 get_pos_from_mask (unsigned HOST_WIDE_INT m, unsigned HOST_WIDE_INT *plen)
8460 {
8461   /* Get the bit number of the first 1 bit from the right, -1 if none.  */
8462   int pos = m ? ctz_hwi (m) : -1;
8463   int len = 0;
8464 
8465   if (pos >= 0)
8466     /* Now shift off the low-order zero bits and see if we have a
8467        power of two minus 1.  */
8468     len = exact_log2 ((m >> pos) + 1);
8469 
8470   if (len <= 0)
8471     pos = -1;
8472 
8473   *plen = len;
8474   return pos;
8475 }
8476 
8477 /* If X refers to a register that equals REG in value, replace these
8478    references with REG.  */
8479 static rtx
canon_reg_for_combine(rtx x,rtx reg)8480 canon_reg_for_combine (rtx x, rtx reg)
8481 {
8482   rtx op0, op1, op2;
8483   const char *fmt;
8484   int i;
8485   bool copied;
8486 
8487   enum rtx_code code = GET_CODE (x);
8488   switch (GET_RTX_CLASS (code))
8489     {
8490     case RTX_UNARY:
8491       op0 = canon_reg_for_combine (XEXP (x, 0), reg);
8492       if (op0 != XEXP (x, 0))
8493 	return simplify_gen_unary (GET_CODE (x), GET_MODE (x), op0,
8494 				   GET_MODE (reg));
8495       break;
8496 
8497     case RTX_BIN_ARITH:
8498     case RTX_COMM_ARITH:
8499       op0 = canon_reg_for_combine (XEXP (x, 0), reg);
8500       op1 = canon_reg_for_combine (XEXP (x, 1), reg);
8501       if (op0 != XEXP (x, 0) || op1 != XEXP (x, 1))
8502 	return simplify_gen_binary (GET_CODE (x), GET_MODE (x), op0, op1);
8503       break;
8504 
8505     case RTX_COMPARE:
8506     case RTX_COMM_COMPARE:
8507       op0 = canon_reg_for_combine (XEXP (x, 0), reg);
8508       op1 = canon_reg_for_combine (XEXP (x, 1), reg);
8509       if (op0 != XEXP (x, 0) || op1 != XEXP (x, 1))
8510 	return simplify_gen_relational (GET_CODE (x), GET_MODE (x),
8511 					GET_MODE (op0), op0, op1);
8512       break;
8513 
8514     case RTX_TERNARY:
8515     case RTX_BITFIELD_OPS:
8516       op0 = canon_reg_for_combine (XEXP (x, 0), reg);
8517       op1 = canon_reg_for_combine (XEXP (x, 1), reg);
8518       op2 = canon_reg_for_combine (XEXP (x, 2), reg);
8519       if (op0 != XEXP (x, 0) || op1 != XEXP (x, 1) || op2 != XEXP (x, 2))
8520 	return simplify_gen_ternary (GET_CODE (x), GET_MODE (x),
8521 				     GET_MODE (op0), op0, op1, op2);
8522       /* FALLTHRU */
8523 
8524     case RTX_OBJ:
8525       if (REG_P (x))
8526 	{
8527 	  if (rtx_equal_p (get_last_value (reg), x)
8528 	      || rtx_equal_p (reg, get_last_value (x)))
8529 	    return reg;
8530 	  else
8531 	    break;
8532 	}
8533 
8534       /* fall through */
8535 
8536     default:
8537       fmt = GET_RTX_FORMAT (code);
8538       copied = false;
8539       for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
8540 	if (fmt[i] == 'e')
8541 	  {
8542 	    rtx op = canon_reg_for_combine (XEXP (x, i), reg);
8543 	    if (op != XEXP (x, i))
8544 	      {
8545 		if (!copied)
8546 		  {
8547 		    copied = true;
8548 		    x = copy_rtx (x);
8549 		  }
8550 		XEXP (x, i) = op;
8551 	      }
8552 	  }
8553 	else if (fmt[i] == 'E')
8554 	  {
8555 	    int j;
8556 	    for (j = 0; j < XVECLEN (x, i); j++)
8557 	      {
8558 		rtx op = canon_reg_for_combine (XVECEXP (x, i, j), reg);
8559 		if (op != XVECEXP (x, i, j))
8560 		  {
8561 		    if (!copied)
8562 		      {
8563 			copied = true;
8564 			x = copy_rtx (x);
8565 		      }
8566 		    XVECEXP (x, i, j) = op;
8567 		  }
8568 	      }
8569 	  }
8570 
8571       break;
8572     }
8573 
8574   return x;
8575 }
8576 
8577 /* Return X converted to MODE.  If the value is already truncated to
8578    MODE we can just return a subreg even though in the general case we
8579    would need an explicit truncation.  */
8580 
8581 static rtx
gen_lowpart_or_truncate(machine_mode mode,rtx x)8582 gen_lowpart_or_truncate (machine_mode mode, rtx x)
8583 {
8584   if (!CONST_INT_P (x)
8585       && partial_subreg_p (mode, GET_MODE (x))
8586       && !TRULY_NOOP_TRUNCATION_MODES_P (mode, GET_MODE (x))
8587       && !(REG_P (x) && reg_truncated_to_mode (mode, x)))
8588     {
8589       /* Bit-cast X into an integer mode.  */
8590       if (!SCALAR_INT_MODE_P (GET_MODE (x)))
8591 	x = gen_lowpart (int_mode_for_mode (GET_MODE (x)).require (), x);
8592       x = simplify_gen_unary (TRUNCATE, int_mode_for_mode (mode).require (),
8593 			      x, GET_MODE (x));
8594     }
8595 
8596   return gen_lowpart (mode, x);
8597 }
8598 
8599 /* See if X can be simplified knowing that we will only refer to it in
8600    MODE and will only refer to those bits that are nonzero in MASK.
8601    If other bits are being computed or if masking operations are done
8602    that select a superset of the bits in MASK, they can sometimes be
8603    ignored.
8604 
8605    Return a possibly simplified expression, but always convert X to
8606    MODE.  If X is a CONST_INT, AND the CONST_INT with MASK.
8607 
8608    If JUST_SELECT is nonzero, don't optimize by noticing that bits in MASK
8609    are all off in X.  This is used when X will be complemented, by either
8610    NOT, NEG, or XOR.  */
8611 
8612 static rtx
force_to_mode(rtx x,machine_mode mode,unsigned HOST_WIDE_INT mask,int just_select)8613 force_to_mode (rtx x, machine_mode mode, unsigned HOST_WIDE_INT mask,
8614 	       int just_select)
8615 {
8616   enum rtx_code code = GET_CODE (x);
8617   int next_select = just_select || code == XOR || code == NOT || code == NEG;
8618   machine_mode op_mode;
8619   unsigned HOST_WIDE_INT nonzero;
8620 
8621   /* If this is a CALL or ASM_OPERANDS, don't do anything.  Some of the
8622      code below will do the wrong thing since the mode of such an
8623      expression is VOIDmode.
8624 
8625      Also do nothing if X is a CLOBBER; this can happen if X was
8626      the return value from a call to gen_lowpart.  */
8627   if (code == CALL || code == ASM_OPERANDS || code == CLOBBER)
8628     return x;
8629 
8630   /* We want to perform the operation in its present mode unless we know
8631      that the operation is valid in MODE, in which case we do the operation
8632      in MODE.  */
8633   op_mode = ((GET_MODE_CLASS (mode) == GET_MODE_CLASS (GET_MODE (x))
8634 	      && have_insn_for (code, mode))
8635 	     ? mode : GET_MODE (x));
8636 
8637   /* It is not valid to do a right-shift in a narrower mode
8638      than the one it came in with.  */
8639   if ((code == LSHIFTRT || code == ASHIFTRT)
8640       && partial_subreg_p (mode, GET_MODE (x)))
8641     op_mode = GET_MODE (x);
8642 
8643   /* Truncate MASK to fit OP_MODE.  */
8644   if (op_mode)
8645     mask &= GET_MODE_MASK (op_mode);
8646 
8647   /* Determine what bits of X are guaranteed to be (non)zero.  */
8648   nonzero = nonzero_bits (x, mode);
8649 
8650   /* If none of the bits in X are needed, return a zero.  */
8651   if (!just_select && (nonzero & mask) == 0 && !side_effects_p (x))
8652     x = const0_rtx;
8653 
8654   /* If X is a CONST_INT, return a new one.  Do this here since the
8655      test below will fail.  */
8656   if (CONST_INT_P (x))
8657     {
8658       if (SCALAR_INT_MODE_P (mode))
8659 	return gen_int_mode (INTVAL (x) & mask, mode);
8660       else
8661 	{
8662 	  x = GEN_INT (INTVAL (x) & mask);
8663 	  return gen_lowpart_common (mode, x);
8664 	}
8665     }
8666 
8667   /* If X is narrower than MODE and we want all the bits in X's mode, just
8668      get X in the proper mode.  */
8669   if (paradoxical_subreg_p (mode, GET_MODE (x))
8670       && (GET_MODE_MASK (GET_MODE (x)) & ~mask) == 0)
8671     return gen_lowpart (mode, x);
8672 
8673   /* We can ignore the effect of a SUBREG if it narrows the mode or
8674      if the constant masks to zero all the bits the mode doesn't have.  */
8675   if (GET_CODE (x) == SUBREG
8676       && subreg_lowpart_p (x)
8677       && (partial_subreg_p (x)
8678 	  || (mask
8679 	      & GET_MODE_MASK (GET_MODE (x))
8680 	      & ~GET_MODE_MASK (GET_MODE (SUBREG_REG (x)))) == 0))
8681     return force_to_mode (SUBREG_REG (x), mode, mask, next_select);
8682 
8683   scalar_int_mode int_mode, xmode;
8684   if (is_a <scalar_int_mode> (mode, &int_mode)
8685       && is_a <scalar_int_mode> (GET_MODE (x), &xmode))
8686     /* OP_MODE is either MODE or XMODE, so it must be a scalar
8687        integer too.  */
8688     return force_int_to_mode (x, int_mode, xmode,
8689 			      as_a <scalar_int_mode> (op_mode),
8690 			      mask, just_select);
8691 
8692   return gen_lowpart_or_truncate (mode, x);
8693 }
8694 
8695 /* Subroutine of force_to_mode that handles cases in which both X and
8696    the result are scalar integers.  MODE is the mode of the result,
8697    XMODE is the mode of X, and OP_MODE says which of MODE or XMODE
8698    is preferred for simplified versions of X.  The other arguments
8699    are as for force_to_mode.  */
8700 
8701 static rtx
force_int_to_mode(rtx x,scalar_int_mode mode,scalar_int_mode xmode,scalar_int_mode op_mode,unsigned HOST_WIDE_INT mask,int just_select)8702 force_int_to_mode (rtx x, scalar_int_mode mode, scalar_int_mode xmode,
8703 		   scalar_int_mode op_mode, unsigned HOST_WIDE_INT mask,
8704 		   int just_select)
8705 {
8706   enum rtx_code code = GET_CODE (x);
8707   int next_select = just_select || code == XOR || code == NOT || code == NEG;
8708   unsigned HOST_WIDE_INT fuller_mask;
8709   rtx op0, op1, temp;
8710   poly_int64 const_op0;
8711 
8712   /* When we have an arithmetic operation, or a shift whose count we
8713      do not know, we need to assume that all bits up to the highest-order
8714      bit in MASK will be needed.  This is how we form such a mask.  */
8715   if (mask & (HOST_WIDE_INT_1U << (HOST_BITS_PER_WIDE_INT - 1)))
8716     fuller_mask = HOST_WIDE_INT_M1U;
8717   else
8718     fuller_mask = ((HOST_WIDE_INT_1U << (floor_log2 (mask) + 1))
8719 		   - 1);
8720 
8721   switch (code)
8722     {
8723     case CLOBBER:
8724       /* If X is a (clobber (const_int)), return it since we know we are
8725 	 generating something that won't match.  */
8726       return x;
8727 
8728     case SIGN_EXTEND:
8729     case ZERO_EXTEND:
8730     case ZERO_EXTRACT:
8731     case SIGN_EXTRACT:
8732       x = expand_compound_operation (x);
8733       if (GET_CODE (x) != code)
8734 	return force_to_mode (x, mode, mask, next_select);
8735       break;
8736 
8737     case TRUNCATE:
8738       /* Similarly for a truncate.  */
8739       return force_to_mode (XEXP (x, 0), mode, mask, next_select);
8740 
8741     case AND:
8742       /* If this is an AND with a constant, convert it into an AND
8743 	 whose constant is the AND of that constant with MASK.  If it
8744 	 remains an AND of MASK, delete it since it is redundant.  */
8745 
8746       if (CONST_INT_P (XEXP (x, 1)))
8747 	{
8748 	  x = simplify_and_const_int (x, op_mode, XEXP (x, 0),
8749 				      mask & INTVAL (XEXP (x, 1)));
8750 	  xmode = op_mode;
8751 
8752 	  /* If X is still an AND, see if it is an AND with a mask that
8753 	     is just some low-order bits.  If so, and it is MASK, we don't
8754 	     need it.  */
8755 
8756 	  if (GET_CODE (x) == AND && CONST_INT_P (XEXP (x, 1))
8757 	      && (INTVAL (XEXP (x, 1)) & GET_MODE_MASK (xmode)) == mask)
8758 	    x = XEXP (x, 0);
8759 
8760 	  /* If it remains an AND, try making another AND with the bits
8761 	     in the mode mask that aren't in MASK turned on.  If the
8762 	     constant in the AND is wide enough, this might make a
8763 	     cheaper constant.  */
8764 
8765 	  if (GET_CODE (x) == AND && CONST_INT_P (XEXP (x, 1))
8766 	      && GET_MODE_MASK (xmode) != mask
8767 	      && HWI_COMPUTABLE_MODE_P (xmode))
8768 	    {
8769 	      unsigned HOST_WIDE_INT cval
8770 		= UINTVAL (XEXP (x, 1)) | (GET_MODE_MASK (xmode) & ~mask);
8771 	      rtx y;
8772 
8773 	      y = simplify_gen_binary (AND, xmode, XEXP (x, 0),
8774 				       gen_int_mode (cval, xmode));
8775 	      if (set_src_cost (y, xmode, optimize_this_for_speed_p)
8776 		  < set_src_cost (x, xmode, optimize_this_for_speed_p))
8777 		x = y;
8778 	    }
8779 
8780 	  break;
8781 	}
8782 
8783       goto binop;
8784 
8785     case PLUS:
8786       /* In (and (plus FOO C1) M), if M is a mask that just turns off
8787 	 low-order bits (as in an alignment operation) and FOO is already
8788 	 aligned to that boundary, mask C1 to that boundary as well.
8789 	 This may eliminate that PLUS and, later, the AND.  */
8790 
8791       {
8792 	unsigned int width = GET_MODE_PRECISION (mode);
8793 	unsigned HOST_WIDE_INT smask = mask;
8794 
8795 	/* If MODE is narrower than HOST_WIDE_INT and mask is a negative
8796 	   number, sign extend it.  */
8797 
8798 	if (width < HOST_BITS_PER_WIDE_INT
8799 	    && (smask & (HOST_WIDE_INT_1U << (width - 1))) != 0)
8800 	  smask |= HOST_WIDE_INT_M1U << width;
8801 
8802 	if (CONST_INT_P (XEXP (x, 1))
8803 	    && pow2p_hwi (- smask)
8804 	    && (nonzero_bits (XEXP (x, 0), mode) & ~smask) == 0
8805 	    && (INTVAL (XEXP (x, 1)) & ~smask) != 0)
8806 	  return force_to_mode (plus_constant (xmode, XEXP (x, 0),
8807 					       (INTVAL (XEXP (x, 1)) & smask)),
8808 				mode, smask, next_select);
8809       }
8810 
8811       /* fall through */
8812 
8813     case MULT:
8814       /* Substituting into the operands of a widening MULT is not likely to
8815 	 create RTL matching a machine insn.  */
8816       if (code == MULT
8817 	  && (GET_CODE (XEXP (x, 0)) == ZERO_EXTEND
8818 	      || GET_CODE (XEXP (x, 0)) == SIGN_EXTEND)
8819 	  && (GET_CODE (XEXP (x, 1)) == ZERO_EXTEND
8820 	      || GET_CODE (XEXP (x, 1)) == SIGN_EXTEND)
8821 	  && REG_P (XEXP (XEXP (x, 0), 0))
8822 	  && REG_P (XEXP (XEXP (x, 1), 0)))
8823 	return gen_lowpart_or_truncate (mode, x);
8824 
8825       /* For PLUS, MINUS and MULT, we need any bits less significant than the
8826 	 most significant bit in MASK since carries from those bits will
8827 	 affect the bits we are interested in.  */
8828       mask = fuller_mask;
8829       goto binop;
8830 
8831     case MINUS:
8832       /* If X is (minus C Y) where C's least set bit is larger than any bit
8833 	 in the mask, then we may replace with (neg Y).  */
8834       if (poly_int_rtx_p (XEXP (x, 0), &const_op0)
8835 	  && known_alignment (poly_uint64 (const_op0)) > mask)
8836 	{
8837 	  x = simplify_gen_unary (NEG, xmode, XEXP (x, 1), xmode);
8838 	  return force_to_mode (x, mode, mask, next_select);
8839 	}
8840 
8841       /* Similarly, if C contains every bit in the fuller_mask, then we may
8842 	 replace with (not Y).  */
8843       if (CONST_INT_P (XEXP (x, 0))
8844 	  && ((UINTVAL (XEXP (x, 0)) | fuller_mask) == UINTVAL (XEXP (x, 0))))
8845 	{
8846 	  x = simplify_gen_unary (NOT, xmode, XEXP (x, 1), xmode);
8847 	  return force_to_mode (x, mode, mask, next_select);
8848 	}
8849 
8850       mask = fuller_mask;
8851       goto binop;
8852 
8853     case IOR:
8854     case XOR:
8855       /* If X is (ior (lshiftrt FOO C1) C2), try to commute the IOR and
8856 	 LSHIFTRT so we end up with an (and (lshiftrt (ior ...) ...) ...)
8857 	 operation which may be a bitfield extraction.  Ensure that the
8858 	 constant we form is not wider than the mode of X.  */
8859 
8860       if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
8861 	  && CONST_INT_P (XEXP (XEXP (x, 0), 1))
8862 	  && INTVAL (XEXP (XEXP (x, 0), 1)) >= 0
8863 	  && INTVAL (XEXP (XEXP (x, 0), 1)) < HOST_BITS_PER_WIDE_INT
8864 	  && CONST_INT_P (XEXP (x, 1))
8865 	  && ((INTVAL (XEXP (XEXP (x, 0), 1))
8866 	       + floor_log2 (INTVAL (XEXP (x, 1))))
8867 	      < GET_MODE_PRECISION (xmode))
8868 	  && (UINTVAL (XEXP (x, 1))
8869 	      & ~nonzero_bits (XEXP (x, 0), xmode)) == 0)
8870 	{
8871 	  temp = gen_int_mode ((INTVAL (XEXP (x, 1)) & mask)
8872 			       << INTVAL (XEXP (XEXP (x, 0), 1)),
8873 			       xmode);
8874 	  temp = simplify_gen_binary (GET_CODE (x), xmode,
8875 				      XEXP (XEXP (x, 0), 0), temp);
8876 	  x = simplify_gen_binary (LSHIFTRT, xmode, temp,
8877 				   XEXP (XEXP (x, 0), 1));
8878 	  return force_to_mode (x, mode, mask, next_select);
8879 	}
8880 
8881     binop:
8882       /* For most binary operations, just propagate into the operation and
8883 	 change the mode if we have an operation of that mode.  */
8884 
8885       op0 = force_to_mode (XEXP (x, 0), mode, mask, next_select);
8886       op1 = force_to_mode (XEXP (x, 1), mode, mask, next_select);
8887 
8888       /* If we ended up truncating both operands, truncate the result of the
8889 	 operation instead.  */
8890       if (GET_CODE (op0) == TRUNCATE
8891 	  && GET_CODE (op1) == TRUNCATE)
8892 	{
8893 	  op0 = XEXP (op0, 0);
8894 	  op1 = XEXP (op1, 0);
8895 	}
8896 
8897       op0 = gen_lowpart_or_truncate (op_mode, op0);
8898       op1 = gen_lowpart_or_truncate (op_mode, op1);
8899 
8900       if (op_mode != xmode || op0 != XEXP (x, 0) || op1 != XEXP (x, 1))
8901 	{
8902 	  x = simplify_gen_binary (code, op_mode, op0, op1);
8903 	  xmode = op_mode;
8904 	}
8905       break;
8906 
8907     case ASHIFT:
8908       /* For left shifts, do the same, but just for the first operand.
8909 	 However, we cannot do anything with shifts where we cannot
8910 	 guarantee that the counts are smaller than the size of the mode
8911 	 because such a count will have a different meaning in a
8912 	 wider mode.  */
8913 
8914       if (! (CONST_INT_P (XEXP (x, 1))
8915 	     && INTVAL (XEXP (x, 1)) >= 0
8916 	     && INTVAL (XEXP (x, 1)) < GET_MODE_PRECISION (mode))
8917 	  && ! (GET_MODE (XEXP (x, 1)) != VOIDmode
8918 		&& (nonzero_bits (XEXP (x, 1), GET_MODE (XEXP (x, 1)))
8919 		    < (unsigned HOST_WIDE_INT) GET_MODE_PRECISION (mode))))
8920 	break;
8921 
8922       /* If the shift count is a constant and we can do arithmetic in
8923 	 the mode of the shift, refine which bits we need.  Otherwise, use the
8924 	 conservative form of the mask.  */
8925       if (CONST_INT_P (XEXP (x, 1))
8926 	  && INTVAL (XEXP (x, 1)) >= 0
8927 	  && INTVAL (XEXP (x, 1)) < GET_MODE_PRECISION (op_mode)
8928 	  && HWI_COMPUTABLE_MODE_P (op_mode))
8929 	mask >>= INTVAL (XEXP (x, 1));
8930       else
8931 	mask = fuller_mask;
8932 
8933       op0 = gen_lowpart_or_truncate (op_mode,
8934 				     force_to_mode (XEXP (x, 0), mode,
8935 						    mask, next_select));
8936 
8937       if (op_mode != xmode || op0 != XEXP (x, 0))
8938 	{
8939 	  x = simplify_gen_binary (code, op_mode, op0, XEXP (x, 1));
8940 	  xmode = op_mode;
8941 	}
8942       break;
8943 
8944     case LSHIFTRT:
8945       /* Here we can only do something if the shift count is a constant,
8946 	 this shift constant is valid for the host, and we can do arithmetic
8947 	 in OP_MODE.  */
8948 
8949       if (CONST_INT_P (XEXP (x, 1))
8950 	  && INTVAL (XEXP (x, 1)) >= 0
8951 	  && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT
8952 	  && HWI_COMPUTABLE_MODE_P (op_mode))
8953 	{
8954 	  rtx inner = XEXP (x, 0);
8955 	  unsigned HOST_WIDE_INT inner_mask;
8956 
8957 	  /* Select the mask of the bits we need for the shift operand.  */
8958 	  inner_mask = mask << INTVAL (XEXP (x, 1));
8959 
8960 	  /* We can only change the mode of the shift if we can do arithmetic
8961 	     in the mode of the shift and INNER_MASK is no wider than the
8962 	     width of X's mode.  */
8963 	  if ((inner_mask & ~GET_MODE_MASK (xmode)) != 0)
8964 	    op_mode = xmode;
8965 
8966 	  inner = force_to_mode (inner, op_mode, inner_mask, next_select);
8967 
8968 	  if (xmode != op_mode || inner != XEXP (x, 0))
8969 	    {
8970 	      x = simplify_gen_binary (LSHIFTRT, op_mode, inner, XEXP (x, 1));
8971 	      xmode = op_mode;
8972 	    }
8973 	}
8974 
8975       /* If we have (and (lshiftrt FOO C1) C2) where the combination of the
8976 	 shift and AND produces only copies of the sign bit (C2 is one less
8977 	 than a power of two), we can do this with just a shift.  */
8978 
8979       if (GET_CODE (x) == LSHIFTRT
8980 	  && CONST_INT_P (XEXP (x, 1))
8981 	  /* The shift puts one of the sign bit copies in the least significant
8982 	     bit.  */
8983 	  && ((INTVAL (XEXP (x, 1))
8984 	       + num_sign_bit_copies (XEXP (x, 0), GET_MODE (XEXP (x, 0))))
8985 	      >= GET_MODE_PRECISION (xmode))
8986 	  && pow2p_hwi (mask + 1)
8987 	  /* Number of bits left after the shift must be more than the mask
8988 	     needs.  */
8989 	  && ((INTVAL (XEXP (x, 1)) + exact_log2 (mask + 1))
8990 	      <= GET_MODE_PRECISION (xmode))
8991 	  /* Must be more sign bit copies than the mask needs.  */
8992 	  && ((int) num_sign_bit_copies (XEXP (x, 0), GET_MODE (XEXP (x, 0)))
8993 	      >= exact_log2 (mask + 1)))
8994 	{
8995 	  int nbits = GET_MODE_PRECISION (xmode) - exact_log2 (mask + 1);
8996 	  x = simplify_gen_binary (LSHIFTRT, xmode, XEXP (x, 0),
8997 				   gen_int_shift_amount (xmode, nbits));
8998 	}
8999       goto shiftrt;
9000 
9001     case ASHIFTRT:
9002       /* If we are just looking for the sign bit, we don't need this shift at
9003 	 all, even if it has a variable count.  */
9004       if (val_signbit_p (xmode, mask))
9005 	return force_to_mode (XEXP (x, 0), mode, mask, next_select);
9006 
9007       /* If this is a shift by a constant, get a mask that contains those bits
9008 	 that are not copies of the sign bit.  We then have two cases:  If
9009 	 MASK only includes those bits, this can be a logical shift, which may
9010 	 allow simplifications.  If MASK is a single-bit field not within
9011 	 those bits, we are requesting a copy of the sign bit and hence can
9012 	 shift the sign bit to the appropriate location.  */
9013 
9014       if (CONST_INT_P (XEXP (x, 1)) && INTVAL (XEXP (x, 1)) >= 0
9015 	  && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT)
9016 	{
9017 	  unsigned HOST_WIDE_INT nonzero;
9018 	  int i;
9019 
9020 	  /* If the considered data is wider than HOST_WIDE_INT, we can't
9021 	     represent a mask for all its bits in a single scalar.
9022 	     But we only care about the lower bits, so calculate these.  */
9023 
9024 	  if (GET_MODE_PRECISION (xmode) > HOST_BITS_PER_WIDE_INT)
9025 	    {
9026 	      nonzero = HOST_WIDE_INT_M1U;
9027 
9028 	      /* GET_MODE_PRECISION (GET_MODE (x)) - INTVAL (XEXP (x, 1))
9029 		 is the number of bits a full-width mask would have set.
9030 		 We need only shift if these are fewer than nonzero can
9031 		 hold.  If not, we must keep all bits set in nonzero.  */
9032 
9033 	      if (GET_MODE_PRECISION (xmode) - INTVAL (XEXP (x, 1))
9034 		  < HOST_BITS_PER_WIDE_INT)
9035 		nonzero >>= INTVAL (XEXP (x, 1))
9036 			    + HOST_BITS_PER_WIDE_INT
9037 			    - GET_MODE_PRECISION (xmode);
9038 	    }
9039 	  else
9040 	    {
9041 	      nonzero = GET_MODE_MASK (xmode);
9042 	      nonzero >>= INTVAL (XEXP (x, 1));
9043 	    }
9044 
9045 	  if ((mask & ~nonzero) == 0)
9046 	    {
9047 	      x = simplify_shift_const (NULL_RTX, LSHIFTRT, xmode,
9048 					XEXP (x, 0), INTVAL (XEXP (x, 1)));
9049 	      if (GET_CODE (x) != ASHIFTRT)
9050 		return force_to_mode (x, mode, mask, next_select);
9051 	    }
9052 
9053 	  else if ((i = exact_log2 (mask)) >= 0)
9054 	    {
9055 	      x = simplify_shift_const
9056 		  (NULL_RTX, LSHIFTRT, xmode, XEXP (x, 0),
9057 		   GET_MODE_PRECISION (xmode) - 1 - i);
9058 
9059 	      if (GET_CODE (x) != ASHIFTRT)
9060 		return force_to_mode (x, mode, mask, next_select);
9061 	    }
9062 	}
9063 
9064       /* If MASK is 1, convert this to an LSHIFTRT.  This can be done
9065 	 even if the shift count isn't a constant.  */
9066       if (mask == 1)
9067 	x = simplify_gen_binary (LSHIFTRT, xmode, XEXP (x, 0), XEXP (x, 1));
9068 
9069     shiftrt:
9070 
9071       /* If this is a zero- or sign-extension operation that just affects bits
9072 	 we don't care about, remove it.  Be sure the call above returned
9073 	 something that is still a shift.  */
9074 
9075       if ((GET_CODE (x) == LSHIFTRT || GET_CODE (x) == ASHIFTRT)
9076 	  && CONST_INT_P (XEXP (x, 1))
9077 	  && INTVAL (XEXP (x, 1)) >= 0
9078 	  && (INTVAL (XEXP (x, 1))
9079 	      <= GET_MODE_PRECISION (xmode) - (floor_log2 (mask) + 1))
9080 	  && GET_CODE (XEXP (x, 0)) == ASHIFT
9081 	  && XEXP (XEXP (x, 0), 1) == XEXP (x, 1))
9082 	return force_to_mode (XEXP (XEXP (x, 0), 0), mode, mask,
9083 			      next_select);
9084 
9085       break;
9086 
9087     case ROTATE:
9088     case ROTATERT:
9089       /* If the shift count is constant and we can do computations
9090 	 in the mode of X, compute where the bits we care about are.
9091 	 Otherwise, we can't do anything.  Don't change the mode of
9092 	 the shift or propagate MODE into the shift, though.  */
9093       if (CONST_INT_P (XEXP (x, 1))
9094 	  && INTVAL (XEXP (x, 1)) >= 0)
9095 	{
9096 	  temp = simplify_binary_operation (code == ROTATE ? ROTATERT : ROTATE,
9097 					    xmode, gen_int_mode (mask, xmode),
9098 					    XEXP (x, 1));
9099 	  if (temp && CONST_INT_P (temp))
9100 	    x = simplify_gen_binary (code, xmode,
9101 				     force_to_mode (XEXP (x, 0), xmode,
9102 						    INTVAL (temp), next_select),
9103 				     XEXP (x, 1));
9104 	}
9105       break;
9106 
9107     case NEG:
9108       /* If we just want the low-order bit, the NEG isn't needed since it
9109 	 won't change the low-order bit.  */
9110       if (mask == 1)
9111 	return force_to_mode (XEXP (x, 0), mode, mask, just_select);
9112 
9113       /* We need any bits less significant than the most significant bit in
9114 	 MASK since carries from those bits will affect the bits we are
9115 	 interested in.  */
9116       mask = fuller_mask;
9117       goto unop;
9118 
9119     case NOT:
9120       /* (not FOO) is (xor FOO CONST), so if FOO is an LSHIFTRT, we can do the
9121 	 same as the XOR case above.  Ensure that the constant we form is not
9122 	 wider than the mode of X.  */
9123 
9124       if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
9125 	  && CONST_INT_P (XEXP (XEXP (x, 0), 1))
9126 	  && INTVAL (XEXP (XEXP (x, 0), 1)) >= 0
9127 	  && (INTVAL (XEXP (XEXP (x, 0), 1)) + floor_log2 (mask)
9128 	      < GET_MODE_PRECISION (xmode))
9129 	  && INTVAL (XEXP (XEXP (x, 0), 1)) < HOST_BITS_PER_WIDE_INT)
9130 	{
9131 	  temp = gen_int_mode (mask << INTVAL (XEXP (XEXP (x, 0), 1)), xmode);
9132 	  temp = simplify_gen_binary (XOR, xmode, XEXP (XEXP (x, 0), 0), temp);
9133 	  x = simplify_gen_binary (LSHIFTRT, xmode,
9134 				   temp, XEXP (XEXP (x, 0), 1));
9135 
9136 	  return force_to_mode (x, mode, mask, next_select);
9137 	}
9138 
9139       /* (and (not FOO) CONST) is (not (or FOO (not CONST))), so we must
9140 	 use the full mask inside the NOT.  */
9141       mask = fuller_mask;
9142 
9143     unop:
9144       op0 = gen_lowpart_or_truncate (op_mode,
9145 				     force_to_mode (XEXP (x, 0), mode, mask,
9146 						    next_select));
9147       if (op_mode != xmode || op0 != XEXP (x, 0))
9148 	{
9149 	  x = simplify_gen_unary (code, op_mode, op0, op_mode);
9150 	  xmode = op_mode;
9151 	}
9152       break;
9153 
9154     case NE:
9155       /* (and (ne FOO 0) CONST) can be (and FOO CONST) if CONST is included
9156 	 in STORE_FLAG_VALUE and FOO has a single bit that might be nonzero,
9157 	 which is equal to STORE_FLAG_VALUE.  */
9158       if ((mask & ~STORE_FLAG_VALUE) == 0
9159 	  && XEXP (x, 1) == const0_rtx
9160 	  && GET_MODE (XEXP (x, 0)) == mode
9161 	  && pow2p_hwi (nonzero_bits (XEXP (x, 0), mode))
9162 	  && (nonzero_bits (XEXP (x, 0), mode)
9163 	      == (unsigned HOST_WIDE_INT) STORE_FLAG_VALUE))
9164 	return force_to_mode (XEXP (x, 0), mode, mask, next_select);
9165 
9166       break;
9167 
9168     case IF_THEN_ELSE:
9169       /* We have no way of knowing if the IF_THEN_ELSE can itself be
9170 	 written in a narrower mode.  We play it safe and do not do so.  */
9171 
9172       op0 = gen_lowpart_or_truncate (xmode,
9173 				     force_to_mode (XEXP (x, 1), mode,
9174 						    mask, next_select));
9175       op1 = gen_lowpart_or_truncate (xmode,
9176 				     force_to_mode (XEXP (x, 2), mode,
9177 						    mask, next_select));
9178       if (op0 != XEXP (x, 1) || op1 != XEXP (x, 2))
9179 	x = simplify_gen_ternary (IF_THEN_ELSE, xmode,
9180 				  GET_MODE (XEXP (x, 0)), XEXP (x, 0),
9181 				  op0, op1);
9182       break;
9183 
9184     default:
9185       break;
9186     }
9187 
9188   /* Ensure we return a value of the proper mode.  */
9189   return gen_lowpart_or_truncate (mode, x);
9190 }
9191 
9192 /* Return nonzero if X is an expression that has one of two values depending on
9193    whether some other value is zero or nonzero.  In that case, we return the
9194    value that is being tested, *PTRUE is set to the value if the rtx being
9195    returned has a nonzero value, and *PFALSE is set to the other alternative.
9196 
9197    If we return zero, we set *PTRUE and *PFALSE to X.  */
9198 
9199 static rtx
if_then_else_cond(rtx x,rtx * ptrue,rtx * pfalse)9200 if_then_else_cond (rtx x, rtx *ptrue, rtx *pfalse)
9201 {
9202   machine_mode mode = GET_MODE (x);
9203   enum rtx_code code = GET_CODE (x);
9204   rtx cond0, cond1, true0, true1, false0, false1;
9205   unsigned HOST_WIDE_INT nz;
9206   scalar_int_mode int_mode;
9207 
9208   /* If we are comparing a value against zero, we are done.  */
9209   if ((code == NE || code == EQ)
9210       && XEXP (x, 1) == const0_rtx)
9211     {
9212       *ptrue = (code == NE) ? const_true_rtx : const0_rtx;
9213       *pfalse = (code == NE) ? const0_rtx : const_true_rtx;
9214       return XEXP (x, 0);
9215     }
9216 
9217   /* If this is a unary operation whose operand has one of two values, apply
9218      our opcode to compute those values.  */
9219   else if (UNARY_P (x)
9220 	   && (cond0 = if_then_else_cond (XEXP (x, 0), &true0, &false0)) != 0)
9221     {
9222       *ptrue = simplify_gen_unary (code, mode, true0, GET_MODE (XEXP (x, 0)));
9223       *pfalse = simplify_gen_unary (code, mode, false0,
9224 				    GET_MODE (XEXP (x, 0)));
9225       return cond0;
9226     }
9227 
9228   /* If this is a COMPARE, do nothing, since the IF_THEN_ELSE we would
9229      make can't possibly match and would suppress other optimizations.  */
9230   else if (code == COMPARE)
9231     ;
9232 
9233   /* If this is a binary operation, see if either side has only one of two
9234      values.  If either one does or if both do and they are conditional on
9235      the same value, compute the new true and false values.  */
9236   else if (BINARY_P (x))
9237     {
9238       rtx op0 = XEXP (x, 0);
9239       rtx op1 = XEXP (x, 1);
9240       cond0 = if_then_else_cond (op0, &true0, &false0);
9241       cond1 = if_then_else_cond (op1, &true1, &false1);
9242 
9243       if ((cond0 != 0 && cond1 != 0 && !rtx_equal_p (cond0, cond1))
9244 	  && (REG_P (op0) || REG_P (op1)))
9245 	{
9246 	  /* Try to enable a simplification by undoing work done by
9247 	     if_then_else_cond if it converted a REG into something more
9248 	     complex.  */
9249 	  if (REG_P (op0))
9250 	    {
9251 	      cond0 = 0;
9252 	      true0 = false0 = op0;
9253 	    }
9254 	  else
9255 	    {
9256 	      cond1 = 0;
9257 	      true1 = false1 = op1;
9258 	    }
9259 	}
9260 
9261       if ((cond0 != 0 || cond1 != 0)
9262 	  && ! (cond0 != 0 && cond1 != 0 && !rtx_equal_p (cond0, cond1)))
9263 	{
9264 	  /* If if_then_else_cond returned zero, then true/false are the
9265 	     same rtl.  We must copy one of them to prevent invalid rtl
9266 	     sharing.  */
9267 	  if (cond0 == 0)
9268 	    true0 = copy_rtx (true0);
9269 	  else if (cond1 == 0)
9270 	    true1 = copy_rtx (true1);
9271 
9272 	  if (COMPARISON_P (x))
9273 	    {
9274 	      *ptrue = simplify_gen_relational (code, mode, VOIDmode,
9275 						true0, true1);
9276 	      *pfalse = simplify_gen_relational (code, mode, VOIDmode,
9277 						 false0, false1);
9278 	     }
9279 	  else
9280 	    {
9281 	      *ptrue = simplify_gen_binary (code, mode, true0, true1);
9282 	      *pfalse = simplify_gen_binary (code, mode, false0, false1);
9283 	    }
9284 
9285 	  return cond0 ? cond0 : cond1;
9286 	}
9287 
9288       /* See if we have PLUS, IOR, XOR, MINUS or UMAX, where one of the
9289 	 operands is zero when the other is nonzero, and vice-versa,
9290 	 and STORE_FLAG_VALUE is 1 or -1.  */
9291 
9292       if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
9293 	  && (code == PLUS || code == IOR || code == XOR || code == MINUS
9294 	      || code == UMAX)
9295 	  && GET_CODE (XEXP (x, 0)) == MULT && GET_CODE (XEXP (x, 1)) == MULT)
9296 	{
9297 	  rtx op0 = XEXP (XEXP (x, 0), 1);
9298 	  rtx op1 = XEXP (XEXP (x, 1), 1);
9299 
9300 	  cond0 = XEXP (XEXP (x, 0), 0);
9301 	  cond1 = XEXP (XEXP (x, 1), 0);
9302 
9303 	  if (COMPARISON_P (cond0)
9304 	      && COMPARISON_P (cond1)
9305 	      && SCALAR_INT_MODE_P (mode)
9306 	      && ((GET_CODE (cond0) == reversed_comparison_code (cond1, NULL)
9307 		   && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 0))
9308 		   && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 1)))
9309 		  || ((swap_condition (GET_CODE (cond0))
9310 		       == reversed_comparison_code (cond1, NULL))
9311 		      && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 1))
9312 		      && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 0))))
9313 	      && ! side_effects_p (x))
9314 	    {
9315 	      *ptrue = simplify_gen_binary (MULT, mode, op0, const_true_rtx);
9316 	      *pfalse = simplify_gen_binary (MULT, mode,
9317 					     (code == MINUS
9318 					      ? simplify_gen_unary (NEG, mode,
9319 								    op1, mode)
9320 					      : op1),
9321 					      const_true_rtx);
9322 	      return cond0;
9323 	    }
9324 	}
9325 
9326       /* Similarly for MULT, AND and UMIN, except that for these the result
9327 	 is always zero.  */
9328       if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
9329 	  && (code == MULT || code == AND || code == UMIN)
9330 	  && GET_CODE (XEXP (x, 0)) == MULT && GET_CODE (XEXP (x, 1)) == MULT)
9331 	{
9332 	  cond0 = XEXP (XEXP (x, 0), 0);
9333 	  cond1 = XEXP (XEXP (x, 1), 0);
9334 
9335 	  if (COMPARISON_P (cond0)
9336 	      && COMPARISON_P (cond1)
9337 	      && ((GET_CODE (cond0) == reversed_comparison_code (cond1, NULL)
9338 		   && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 0))
9339 		   && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 1)))
9340 		  || ((swap_condition (GET_CODE (cond0))
9341 		       == reversed_comparison_code (cond1, NULL))
9342 		      && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 1))
9343 		      && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 0))))
9344 	      && ! side_effects_p (x))
9345 	    {
9346 	      *ptrue = *pfalse = const0_rtx;
9347 	      return cond0;
9348 	    }
9349 	}
9350     }
9351 
9352   else if (code == IF_THEN_ELSE)
9353     {
9354       /* If we have IF_THEN_ELSE already, extract the condition and
9355 	 canonicalize it if it is NE or EQ.  */
9356       cond0 = XEXP (x, 0);
9357       *ptrue = XEXP (x, 1), *pfalse = XEXP (x, 2);
9358       if (GET_CODE (cond0) == NE && XEXP (cond0, 1) == const0_rtx)
9359 	return XEXP (cond0, 0);
9360       else if (GET_CODE (cond0) == EQ && XEXP (cond0, 1) == const0_rtx)
9361 	{
9362 	  *ptrue = XEXP (x, 2), *pfalse = XEXP (x, 1);
9363 	  return XEXP (cond0, 0);
9364 	}
9365       else
9366 	return cond0;
9367     }
9368 
9369   /* If X is a SUBREG, we can narrow both the true and false values
9370      if the inner expression, if there is a condition.  */
9371   else if (code == SUBREG
9372 	   && (cond0 = if_then_else_cond (SUBREG_REG (x), &true0,
9373 					  &false0)) != 0)
9374     {
9375       true0 = simplify_gen_subreg (mode, true0,
9376 				   GET_MODE (SUBREG_REG (x)), SUBREG_BYTE (x));
9377       false0 = simplify_gen_subreg (mode, false0,
9378 				    GET_MODE (SUBREG_REG (x)), SUBREG_BYTE (x));
9379       if (true0 && false0)
9380 	{
9381 	  *ptrue = true0;
9382 	  *pfalse = false0;
9383 	  return cond0;
9384 	}
9385     }
9386 
9387   /* If X is a constant, this isn't special and will cause confusions
9388      if we treat it as such.  Likewise if it is equivalent to a constant.  */
9389   else if (CONSTANT_P (x)
9390 	   || ((cond0 = get_last_value (x)) != 0 && CONSTANT_P (cond0)))
9391     ;
9392 
9393   /* If we're in BImode, canonicalize on 0 and STORE_FLAG_VALUE, as that
9394      will be least confusing to the rest of the compiler.  */
9395   else if (mode == BImode)
9396     {
9397       *ptrue = GEN_INT (STORE_FLAG_VALUE), *pfalse = const0_rtx;
9398       return x;
9399     }
9400 
9401   /* If X is known to be either 0 or -1, those are the true and
9402      false values when testing X.  */
9403   else if (x == constm1_rtx || x == const0_rtx
9404 	   || (is_a <scalar_int_mode> (mode, &int_mode)
9405 	       && (num_sign_bit_copies (x, int_mode)
9406 		   == GET_MODE_PRECISION (int_mode))))
9407     {
9408       *ptrue = constm1_rtx, *pfalse = const0_rtx;
9409       return x;
9410     }
9411 
9412   /* Likewise for 0 or a single bit.  */
9413   else if (HWI_COMPUTABLE_MODE_P (mode)
9414 	   && pow2p_hwi (nz = nonzero_bits (x, mode)))
9415     {
9416       *ptrue = gen_int_mode (nz, mode), *pfalse = const0_rtx;
9417       return x;
9418     }
9419 
9420   /* Otherwise fail; show no condition with true and false values the same.  */
9421   *ptrue = *pfalse = x;
9422   return 0;
9423 }
9424 
9425 /* Return the value of expression X given the fact that condition COND
9426    is known to be true when applied to REG as its first operand and VAL
9427    as its second.  X is known to not be shared and so can be modified in
9428    place.
9429 
9430    We only handle the simplest cases, and specifically those cases that
9431    arise with IF_THEN_ELSE expressions.  */
9432 
9433 static rtx
known_cond(rtx x,enum rtx_code cond,rtx reg,rtx val)9434 known_cond (rtx x, enum rtx_code cond, rtx reg, rtx val)
9435 {
9436   enum rtx_code code = GET_CODE (x);
9437   const char *fmt;
9438   int i, j;
9439 
9440   if (side_effects_p (x))
9441     return x;
9442 
9443   /* If either operand of the condition is a floating point value,
9444      then we have to avoid collapsing an EQ comparison.  */
9445   if (cond == EQ
9446       && rtx_equal_p (x, reg)
9447       && ! FLOAT_MODE_P (GET_MODE (x))
9448       && ! FLOAT_MODE_P (GET_MODE (val)))
9449     return val;
9450 
9451   if (cond == UNEQ && rtx_equal_p (x, reg))
9452     return val;
9453 
9454   /* If X is (abs REG) and we know something about REG's relationship
9455      with zero, we may be able to simplify this.  */
9456 
9457   if (code == ABS && rtx_equal_p (XEXP (x, 0), reg) && val == const0_rtx)
9458     switch (cond)
9459       {
9460       case GE:  case GT:  case EQ:
9461 	return XEXP (x, 0);
9462       case LT:  case LE:
9463 	return simplify_gen_unary (NEG, GET_MODE (XEXP (x, 0)),
9464 				   XEXP (x, 0),
9465 				   GET_MODE (XEXP (x, 0)));
9466       default:
9467 	break;
9468       }
9469 
9470   /* The only other cases we handle are MIN, MAX, and comparisons if the
9471      operands are the same as REG and VAL.  */
9472 
9473   else if (COMPARISON_P (x) || COMMUTATIVE_ARITH_P (x))
9474     {
9475       if (rtx_equal_p (XEXP (x, 0), val))
9476         {
9477 	  std::swap (val, reg);
9478 	  cond = swap_condition (cond);
9479         }
9480 
9481       if (rtx_equal_p (XEXP (x, 0), reg) && rtx_equal_p (XEXP (x, 1), val))
9482 	{
9483 	  if (COMPARISON_P (x))
9484 	    {
9485 	      if (comparison_dominates_p (cond, code))
9486 		return VECTOR_MODE_P (GET_MODE (x)) ? x : const_true_rtx;
9487 
9488 	      code = reversed_comparison_code (x, NULL);
9489 	      if (code != UNKNOWN
9490 		  && comparison_dominates_p (cond, code))
9491 		return CONST0_RTX (GET_MODE (x));
9492 	      else
9493 		return x;
9494 	    }
9495 	  else if (code == SMAX || code == SMIN
9496 		   || code == UMIN || code == UMAX)
9497 	    {
9498 	      int unsignedp = (code == UMIN || code == UMAX);
9499 
9500 	      /* Do not reverse the condition when it is NE or EQ.
9501 		 This is because we cannot conclude anything about
9502 		 the value of 'SMAX (x, y)' when x is not equal to y,
9503 		 but we can when x equals y.  */
9504 	      if ((code == SMAX || code == UMAX)
9505 		  && ! (cond == EQ || cond == NE))
9506 		cond = reverse_condition (cond);
9507 
9508 	      switch (cond)
9509 		{
9510 		case GE:   case GT:
9511 		  return unsignedp ? x : XEXP (x, 1);
9512 		case LE:   case LT:
9513 		  return unsignedp ? x : XEXP (x, 0);
9514 		case GEU:  case GTU:
9515 		  return unsignedp ? XEXP (x, 1) : x;
9516 		case LEU:  case LTU:
9517 		  return unsignedp ? XEXP (x, 0) : x;
9518 		default:
9519 		  break;
9520 		}
9521 	    }
9522 	}
9523     }
9524   else if (code == SUBREG)
9525     {
9526       machine_mode inner_mode = GET_MODE (SUBREG_REG (x));
9527       rtx new_rtx, r = known_cond (SUBREG_REG (x), cond, reg, val);
9528 
9529       if (SUBREG_REG (x) != r)
9530 	{
9531 	  /* We must simplify subreg here, before we lose track of the
9532 	     original inner_mode.  */
9533 	  new_rtx = simplify_subreg (GET_MODE (x), r,
9534 				     inner_mode, SUBREG_BYTE (x));
9535 	  if (new_rtx)
9536 	    return new_rtx;
9537 	  else
9538 	    SUBST (SUBREG_REG (x), r);
9539 	}
9540 
9541       return x;
9542     }
9543   /* We don't have to handle SIGN_EXTEND here, because even in the
9544      case of replacing something with a modeless CONST_INT, a
9545      CONST_INT is already (supposed to be) a valid sign extension for
9546      its narrower mode, which implies it's already properly
9547      sign-extended for the wider mode.  Now, for ZERO_EXTEND, the
9548      story is different.  */
9549   else if (code == ZERO_EXTEND)
9550     {
9551       machine_mode inner_mode = GET_MODE (XEXP (x, 0));
9552       rtx new_rtx, r = known_cond (XEXP (x, 0), cond, reg, val);
9553 
9554       if (XEXP (x, 0) != r)
9555 	{
9556 	  /* We must simplify the zero_extend here, before we lose
9557 	     track of the original inner_mode.  */
9558 	  new_rtx = simplify_unary_operation (ZERO_EXTEND, GET_MODE (x),
9559 					      r, inner_mode);
9560 	  if (new_rtx)
9561 	    return new_rtx;
9562 	  else
9563 	    SUBST (XEXP (x, 0), r);
9564 	}
9565 
9566       return x;
9567     }
9568 
9569   fmt = GET_RTX_FORMAT (code);
9570   for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
9571     {
9572       if (fmt[i] == 'e')
9573 	SUBST (XEXP (x, i), known_cond (XEXP (x, i), cond, reg, val));
9574       else if (fmt[i] == 'E')
9575 	for (j = XVECLEN (x, i) - 1; j >= 0; j--)
9576 	  SUBST (XVECEXP (x, i, j), known_cond (XVECEXP (x, i, j),
9577 						cond, reg, val));
9578     }
9579 
9580   return x;
9581 }
9582 
9583 /* See if X and Y are equal for the purposes of seeing if we can rewrite an
9584    assignment as a field assignment.  */
9585 
9586 static int
rtx_equal_for_field_assignment_p(rtx x,rtx y,bool widen_x)9587 rtx_equal_for_field_assignment_p (rtx x, rtx y, bool widen_x)
9588 {
9589   if (widen_x && GET_MODE (x) != GET_MODE (y))
9590     {
9591       if (paradoxical_subreg_p (GET_MODE (x), GET_MODE (y)))
9592 	return 0;
9593       if (BYTES_BIG_ENDIAN != WORDS_BIG_ENDIAN)
9594 	return 0;
9595       x = adjust_address_nv (x, GET_MODE (y),
9596 			     byte_lowpart_offset (GET_MODE (y),
9597 						  GET_MODE (x)));
9598     }
9599 
9600   if (x == y || rtx_equal_p (x, y))
9601     return 1;
9602 
9603   if (x == 0 || y == 0 || GET_MODE (x) != GET_MODE (y))
9604     return 0;
9605 
9606   /* Check for a paradoxical SUBREG of a MEM compared with the MEM.
9607      Note that all SUBREGs of MEM are paradoxical; otherwise they
9608      would have been rewritten.  */
9609   if (MEM_P (x) && GET_CODE (y) == SUBREG
9610       && MEM_P (SUBREG_REG (y))
9611       && rtx_equal_p (SUBREG_REG (y),
9612 		      gen_lowpart (GET_MODE (SUBREG_REG (y)), x)))
9613     return 1;
9614 
9615   if (MEM_P (y) && GET_CODE (x) == SUBREG
9616       && MEM_P (SUBREG_REG (x))
9617       && rtx_equal_p (SUBREG_REG (x),
9618 		      gen_lowpart (GET_MODE (SUBREG_REG (x)), y)))
9619     return 1;
9620 
9621   /* We used to see if get_last_value of X and Y were the same but that's
9622      not correct.  In one direction, we'll cause the assignment to have
9623      the wrong destination and in the case, we'll import a register into this
9624      insn that might have already have been dead.   So fail if none of the
9625      above cases are true.  */
9626   return 0;
9627 }
9628 
9629 /* See if X, a SET operation, can be rewritten as a bit-field assignment.
9630    Return that assignment if so.
9631 
9632    We only handle the most common cases.  */
9633 
9634 static rtx
make_field_assignment(rtx x)9635 make_field_assignment (rtx x)
9636 {
9637   rtx dest = SET_DEST (x);
9638   rtx src = SET_SRC (x);
9639   rtx assign;
9640   rtx rhs, lhs;
9641   HOST_WIDE_INT c1;
9642   HOST_WIDE_INT pos;
9643   unsigned HOST_WIDE_INT len;
9644   rtx other;
9645 
9646   /* All the rules in this function are specific to scalar integers.  */
9647   scalar_int_mode mode;
9648   if (!is_a <scalar_int_mode> (GET_MODE (dest), &mode))
9649     return x;
9650 
9651   /* If SRC was (and (not (ashift (const_int 1) POS)) DEST), this is
9652      a clear of a one-bit field.  We will have changed it to
9653      (and (rotate (const_int -2) POS) DEST), so check for that.  Also check
9654      for a SUBREG.  */
9655 
9656   if (GET_CODE (src) == AND && GET_CODE (XEXP (src, 0)) == ROTATE
9657       && CONST_INT_P (XEXP (XEXP (src, 0), 0))
9658       && INTVAL (XEXP (XEXP (src, 0), 0)) == -2
9659       && rtx_equal_for_field_assignment_p (dest, XEXP (src, 1)))
9660     {
9661       assign = make_extraction (VOIDmode, dest, 0, XEXP (XEXP (src, 0), 1),
9662 				1, 1, 1, 0);
9663       if (assign != 0)
9664 	return gen_rtx_SET (assign, const0_rtx);
9665       return x;
9666     }
9667 
9668   if (GET_CODE (src) == AND && GET_CODE (XEXP (src, 0)) == SUBREG
9669       && subreg_lowpart_p (XEXP (src, 0))
9670       && partial_subreg_p (XEXP (src, 0))
9671       && GET_CODE (SUBREG_REG (XEXP (src, 0))) == ROTATE
9672       && CONST_INT_P (XEXP (SUBREG_REG (XEXP (src, 0)), 0))
9673       && INTVAL (XEXP (SUBREG_REG (XEXP (src, 0)), 0)) == -2
9674       && rtx_equal_for_field_assignment_p (dest, XEXP (src, 1)))
9675     {
9676       assign = make_extraction (VOIDmode, dest, 0,
9677 				XEXP (SUBREG_REG (XEXP (src, 0)), 1),
9678 				1, 1, 1, 0);
9679       if (assign != 0)
9680 	return gen_rtx_SET (assign, const0_rtx);
9681       return x;
9682     }
9683 
9684   /* If SRC is (ior (ashift (const_int 1) POS) DEST), this is a set of a
9685      one-bit field.  */
9686   if (GET_CODE (src) == IOR && GET_CODE (XEXP (src, 0)) == ASHIFT
9687       && XEXP (XEXP (src, 0), 0) == const1_rtx
9688       && rtx_equal_for_field_assignment_p (dest, XEXP (src, 1)))
9689     {
9690       assign = make_extraction (VOIDmode, dest, 0, XEXP (XEXP (src, 0), 1),
9691 				1, 1, 1, 0);
9692       if (assign != 0)
9693 	return gen_rtx_SET (assign, const1_rtx);
9694       return x;
9695     }
9696 
9697   /* If DEST is already a field assignment, i.e. ZERO_EXTRACT, and the
9698      SRC is an AND with all bits of that field set, then we can discard
9699      the AND.  */
9700   if (GET_CODE (dest) == ZERO_EXTRACT
9701       && CONST_INT_P (XEXP (dest, 1))
9702       && GET_CODE (src) == AND
9703       && CONST_INT_P (XEXP (src, 1)))
9704     {
9705       HOST_WIDE_INT width = INTVAL (XEXP (dest, 1));
9706       unsigned HOST_WIDE_INT and_mask = INTVAL (XEXP (src, 1));
9707       unsigned HOST_WIDE_INT ze_mask;
9708 
9709       if (width >= HOST_BITS_PER_WIDE_INT)
9710 	ze_mask = -1;
9711       else
9712 	ze_mask = ((unsigned HOST_WIDE_INT)1 << width) - 1;
9713 
9714       /* Complete overlap.  We can remove the source AND.  */
9715       if ((and_mask & ze_mask) == ze_mask)
9716 	return gen_rtx_SET (dest, XEXP (src, 0));
9717 
9718       /* Partial overlap.  We can reduce the source AND.  */
9719       if ((and_mask & ze_mask) != and_mask)
9720 	{
9721 	  src = gen_rtx_AND (mode, XEXP (src, 0),
9722 			     gen_int_mode (and_mask & ze_mask, mode));
9723 	  return gen_rtx_SET (dest, src);
9724 	}
9725     }
9726 
9727   /* The other case we handle is assignments into a constant-position
9728      field.  They look like (ior/xor (and DEST C1) OTHER).  If C1 represents
9729      a mask that has all one bits except for a group of zero bits and
9730      OTHER is known to have zeros where C1 has ones, this is such an
9731      assignment.  Compute the position and length from C1.  Shift OTHER
9732      to the appropriate position, force it to the required mode, and
9733      make the extraction.  Check for the AND in both operands.  */
9734 
9735   /* One or more SUBREGs might obscure the constant-position field
9736      assignment.  The first one we are likely to encounter is an outer
9737      narrowing SUBREG, which we can just strip for the purposes of
9738      identifying the constant-field assignment.  */
9739   scalar_int_mode src_mode = mode;
9740   if (GET_CODE (src) == SUBREG
9741       && subreg_lowpart_p (src)
9742       && is_a <scalar_int_mode> (GET_MODE (SUBREG_REG (src)), &src_mode))
9743     src = SUBREG_REG (src);
9744 
9745   if (GET_CODE (src) != IOR && GET_CODE (src) != XOR)
9746     return x;
9747 
9748   rhs = expand_compound_operation (XEXP (src, 0));
9749   lhs = expand_compound_operation (XEXP (src, 1));
9750 
9751   if (GET_CODE (rhs) == AND
9752       && CONST_INT_P (XEXP (rhs, 1))
9753       && rtx_equal_for_field_assignment_p (XEXP (rhs, 0), dest))
9754     c1 = INTVAL (XEXP (rhs, 1)), other = lhs;
9755   /* The second SUBREG that might get in the way is a paradoxical
9756      SUBREG around the first operand of the AND.  We want to
9757      pretend the operand is as wide as the destination here.   We
9758      do this by adjusting the MEM to wider mode for the sole
9759      purpose of the call to rtx_equal_for_field_assignment_p.   Also
9760      note this trick only works for MEMs.  */
9761   else if (GET_CODE (rhs) == AND
9762 	   && paradoxical_subreg_p (XEXP (rhs, 0))
9763 	   && MEM_P (SUBREG_REG (XEXP (rhs, 0)))
9764 	   && CONST_INT_P (XEXP (rhs, 1))
9765 	   && rtx_equal_for_field_assignment_p (SUBREG_REG (XEXP (rhs, 0)),
9766 						dest, true))
9767     c1 = INTVAL (XEXP (rhs, 1)), other = lhs;
9768   else if (GET_CODE (lhs) == AND
9769 	   && CONST_INT_P (XEXP (lhs, 1))
9770 	   && rtx_equal_for_field_assignment_p (XEXP (lhs, 0), dest))
9771     c1 = INTVAL (XEXP (lhs, 1)), other = rhs;
9772   /* The second SUBREG that might get in the way is a paradoxical
9773      SUBREG around the first operand of the AND.  We want to
9774      pretend the operand is as wide as the destination here.   We
9775      do this by adjusting the MEM to wider mode for the sole
9776      purpose of the call to rtx_equal_for_field_assignment_p.   Also
9777      note this trick only works for MEMs.  */
9778   else if (GET_CODE (lhs) == AND
9779 	   && paradoxical_subreg_p (XEXP (lhs, 0))
9780 	   && MEM_P (SUBREG_REG (XEXP (lhs, 0)))
9781 	   && CONST_INT_P (XEXP (lhs, 1))
9782 	   && rtx_equal_for_field_assignment_p (SUBREG_REG (XEXP (lhs, 0)),
9783 						dest, true))
9784     c1 = INTVAL (XEXP (lhs, 1)), other = rhs;
9785   else
9786     return x;
9787 
9788   pos = get_pos_from_mask ((~c1) & GET_MODE_MASK (mode), &len);
9789   if (pos < 0
9790       || pos + len > GET_MODE_PRECISION (mode)
9791       || GET_MODE_PRECISION (mode) > HOST_BITS_PER_WIDE_INT
9792       || (c1 & nonzero_bits (other, mode)) != 0)
9793     return x;
9794 
9795   assign = make_extraction (VOIDmode, dest, pos, NULL_RTX, len, 1, 1, 0);
9796   if (assign == 0)
9797     return x;
9798 
9799   /* The mode to use for the source is the mode of the assignment, or of
9800      what is inside a possible STRICT_LOW_PART.  */
9801   machine_mode new_mode = (GET_CODE (assign) == STRICT_LOW_PART
9802 			   ? GET_MODE (XEXP (assign, 0)) : GET_MODE (assign));
9803 
9804   /* Shift OTHER right POS places and make it the source, restricting it
9805      to the proper length and mode.  */
9806 
9807   src = canon_reg_for_combine (simplify_shift_const (NULL_RTX, LSHIFTRT,
9808 						     src_mode, other, pos),
9809 			       dest);
9810   src = force_to_mode (src, new_mode,
9811 		       len >= HOST_BITS_PER_WIDE_INT
9812 		       ? HOST_WIDE_INT_M1U
9813 		       : (HOST_WIDE_INT_1U << len) - 1,
9814 		       0);
9815 
9816   /* If SRC is masked by an AND that does not make a difference in
9817      the value being stored, strip it.  */
9818   if (GET_CODE (assign) == ZERO_EXTRACT
9819       && CONST_INT_P (XEXP (assign, 1))
9820       && INTVAL (XEXP (assign, 1)) < HOST_BITS_PER_WIDE_INT
9821       && GET_CODE (src) == AND
9822       && CONST_INT_P (XEXP (src, 1))
9823       && UINTVAL (XEXP (src, 1))
9824 	 == (HOST_WIDE_INT_1U << INTVAL (XEXP (assign, 1))) - 1)
9825     src = XEXP (src, 0);
9826 
9827   return gen_rtx_SET (assign, src);
9828 }
9829 
9830 /* See if X is of the form (+ (* a c) (* b c)) and convert to (* (+ a b) c)
9831    if so.  */
9832 
9833 static rtx
apply_distributive_law(rtx x)9834 apply_distributive_law (rtx x)
9835 {
9836   enum rtx_code code = GET_CODE (x);
9837   enum rtx_code inner_code;
9838   rtx lhs, rhs, other;
9839   rtx tem;
9840 
9841   /* Distributivity is not true for floating point as it can change the
9842      value.  So we don't do it unless -funsafe-math-optimizations.  */
9843   if (FLOAT_MODE_P (GET_MODE (x))
9844       && ! flag_unsafe_math_optimizations)
9845     return x;
9846 
9847   /* The outer operation can only be one of the following:  */
9848   if (code != IOR && code != AND && code != XOR
9849       && code != PLUS && code != MINUS)
9850     return x;
9851 
9852   lhs = XEXP (x, 0);
9853   rhs = XEXP (x, 1);
9854 
9855   /* If either operand is a primitive we can't do anything, so get out
9856      fast.  */
9857   if (OBJECT_P (lhs) || OBJECT_P (rhs))
9858     return x;
9859 
9860   lhs = expand_compound_operation (lhs);
9861   rhs = expand_compound_operation (rhs);
9862   inner_code = GET_CODE (lhs);
9863   if (inner_code != GET_CODE (rhs))
9864     return x;
9865 
9866   /* See if the inner and outer operations distribute.  */
9867   switch (inner_code)
9868     {
9869     case LSHIFTRT:
9870     case ASHIFTRT:
9871     case AND:
9872     case IOR:
9873       /* These all distribute except over PLUS.  */
9874       if (code == PLUS || code == MINUS)
9875 	return x;
9876       break;
9877 
9878     case MULT:
9879       if (code != PLUS && code != MINUS)
9880 	return x;
9881       break;
9882 
9883     case ASHIFT:
9884       /* This is also a multiply, so it distributes over everything.  */
9885       break;
9886 
9887     /* This used to handle SUBREG, but this turned out to be counter-
9888        productive, since (subreg (op ...)) usually is not handled by
9889        insn patterns, and this "optimization" therefore transformed
9890        recognizable patterns into unrecognizable ones.  Therefore the
9891        SUBREG case was removed from here.
9892 
9893        It is possible that distributing SUBREG over arithmetic operations
9894        leads to an intermediate result than can then be optimized further,
9895        e.g. by moving the outer SUBREG to the other side of a SET as done
9896        in simplify_set.  This seems to have been the original intent of
9897        handling SUBREGs here.
9898 
9899        However, with current GCC this does not appear to actually happen,
9900        at least on major platforms.  If some case is found where removing
9901        the SUBREG case here prevents follow-on optimizations, distributing
9902        SUBREGs ought to be re-added at that place, e.g. in simplify_set.  */
9903 
9904     default:
9905       return x;
9906     }
9907 
9908   /* Set LHS and RHS to the inner operands (A and B in the example
9909      above) and set OTHER to the common operand (C in the example).
9910      There is only one way to do this unless the inner operation is
9911      commutative.  */
9912   if (COMMUTATIVE_ARITH_P (lhs)
9913       && rtx_equal_p (XEXP (lhs, 0), XEXP (rhs, 0)))
9914     other = XEXP (lhs, 0), lhs = XEXP (lhs, 1), rhs = XEXP (rhs, 1);
9915   else if (COMMUTATIVE_ARITH_P (lhs)
9916 	   && rtx_equal_p (XEXP (lhs, 0), XEXP (rhs, 1)))
9917     other = XEXP (lhs, 0), lhs = XEXP (lhs, 1), rhs = XEXP (rhs, 0);
9918   else if (COMMUTATIVE_ARITH_P (lhs)
9919 	   && rtx_equal_p (XEXP (lhs, 1), XEXP (rhs, 0)))
9920     other = XEXP (lhs, 1), lhs = XEXP (lhs, 0), rhs = XEXP (rhs, 1);
9921   else if (rtx_equal_p (XEXP (lhs, 1), XEXP (rhs, 1)))
9922     other = XEXP (lhs, 1), lhs = XEXP (lhs, 0), rhs = XEXP (rhs, 0);
9923   else
9924     return x;
9925 
9926   /* Form the new inner operation, seeing if it simplifies first.  */
9927   tem = simplify_gen_binary (code, GET_MODE (x), lhs, rhs);
9928 
9929   /* There is one exception to the general way of distributing:
9930      (a | c) ^ (b | c) -> (a ^ b) & ~c  */
9931   if (code == XOR && inner_code == IOR)
9932     {
9933       inner_code = AND;
9934       other = simplify_gen_unary (NOT, GET_MODE (x), other, GET_MODE (x));
9935     }
9936 
9937   /* We may be able to continuing distributing the result, so call
9938      ourselves recursively on the inner operation before forming the
9939      outer operation, which we return.  */
9940   return simplify_gen_binary (inner_code, GET_MODE (x),
9941 			      apply_distributive_law (tem), other);
9942 }
9943 
9944 /* See if X is of the form (* (+ A B) C), and if so convert to
9945    (+ (* A C) (* B C)) and try to simplify.
9946 
9947    Most of the time, this results in no change.  However, if some of
9948    the operands are the same or inverses of each other, simplifications
9949    will result.
9950 
9951    For example, (and (ior A B) (not B)) can occur as the result of
9952    expanding a bit field assignment.  When we apply the distributive
9953    law to this, we get (ior (and (A (not B))) (and (B (not B)))),
9954    which then simplifies to (and (A (not B))).
9955 
9956    Note that no checks happen on the validity of applying the inverse
9957    distributive law.  This is pointless since we can do it in the
9958    few places where this routine is called.
9959 
9960    N is the index of the term that is decomposed (the arithmetic operation,
9961    i.e. (+ A B) in the first example above).  !N is the index of the term that
9962    is distributed, i.e. of C in the first example above.  */
9963 static rtx
distribute_and_simplify_rtx(rtx x,int n)9964 distribute_and_simplify_rtx (rtx x, int n)
9965 {
9966   machine_mode mode;
9967   enum rtx_code outer_code, inner_code;
9968   rtx decomposed, distributed, inner_op0, inner_op1, new_op0, new_op1, tmp;
9969 
9970   /* Distributivity is not true for floating point as it can change the
9971      value.  So we don't do it unless -funsafe-math-optimizations.  */
9972   if (FLOAT_MODE_P (GET_MODE (x))
9973       && ! flag_unsafe_math_optimizations)
9974     return NULL_RTX;
9975 
9976   decomposed = XEXP (x, n);
9977   if (!ARITHMETIC_P (decomposed))
9978     return NULL_RTX;
9979 
9980   mode = GET_MODE (x);
9981   outer_code = GET_CODE (x);
9982   distributed = XEXP (x, !n);
9983 
9984   inner_code = GET_CODE (decomposed);
9985   inner_op0 = XEXP (decomposed, 0);
9986   inner_op1 = XEXP (decomposed, 1);
9987 
9988   /* Special case (and (xor B C) (not A)), which is equivalent to
9989      (xor (ior A B) (ior A C))  */
9990   if (outer_code == AND && inner_code == XOR && GET_CODE (distributed) == NOT)
9991     {
9992       distributed = XEXP (distributed, 0);
9993       outer_code = IOR;
9994     }
9995 
9996   if (n == 0)
9997     {
9998       /* Distribute the second term.  */
9999       new_op0 = simplify_gen_binary (outer_code, mode, inner_op0, distributed);
10000       new_op1 = simplify_gen_binary (outer_code, mode, inner_op1, distributed);
10001     }
10002   else
10003     {
10004       /* Distribute the first term.  */
10005       new_op0 = simplify_gen_binary (outer_code, mode, distributed, inner_op0);
10006       new_op1 = simplify_gen_binary (outer_code, mode, distributed, inner_op1);
10007     }
10008 
10009   tmp = apply_distributive_law (simplify_gen_binary (inner_code, mode,
10010 						     new_op0, new_op1));
10011   if (GET_CODE (tmp) != outer_code
10012       && (set_src_cost (tmp, mode, optimize_this_for_speed_p)
10013 	  < set_src_cost (x, mode, optimize_this_for_speed_p)))
10014     return tmp;
10015 
10016   return NULL_RTX;
10017 }
10018 
10019 /* Simplify a logical `and' of VAROP with the constant CONSTOP, to be done
10020    in MODE.  Return an equivalent form, if different from (and VAROP
10021    (const_int CONSTOP)).  Otherwise, return NULL_RTX.  */
10022 
10023 static rtx
simplify_and_const_int_1(scalar_int_mode mode,rtx varop,unsigned HOST_WIDE_INT constop)10024 simplify_and_const_int_1 (scalar_int_mode mode, rtx varop,
10025 			  unsigned HOST_WIDE_INT constop)
10026 {
10027   unsigned HOST_WIDE_INT nonzero;
10028   unsigned HOST_WIDE_INT orig_constop;
10029   rtx orig_varop;
10030   int i;
10031 
10032   orig_varop = varop;
10033   orig_constop = constop;
10034   if (GET_CODE (varop) == CLOBBER)
10035     return NULL_RTX;
10036 
10037   /* Simplify VAROP knowing that we will be only looking at some of the
10038      bits in it.
10039 
10040      Note by passing in CONSTOP, we guarantee that the bits not set in
10041      CONSTOP are not significant and will never be examined.  We must
10042      ensure that is the case by explicitly masking out those bits
10043      before returning.  */
10044   varop = force_to_mode (varop, mode, constop, 0);
10045 
10046   /* If VAROP is a CLOBBER, we will fail so return it.  */
10047   if (GET_CODE (varop) == CLOBBER)
10048     return varop;
10049 
10050   /* If VAROP is a CONST_INT, then we need to apply the mask in CONSTOP
10051      to VAROP and return the new constant.  */
10052   if (CONST_INT_P (varop))
10053     return gen_int_mode (INTVAL (varop) & constop, mode);
10054 
10055   /* See what bits may be nonzero in VAROP.  Unlike the general case of
10056      a call to nonzero_bits, here we don't care about bits outside
10057      MODE.  */
10058 
10059   nonzero = nonzero_bits (varop, mode) & GET_MODE_MASK (mode);
10060 
10061   /* Turn off all bits in the constant that are known to already be zero.
10062      Thus, if the AND isn't needed at all, we will have CONSTOP == NONZERO_BITS
10063      which is tested below.  */
10064 
10065   constop &= nonzero;
10066 
10067   /* If we don't have any bits left, return zero.  */
10068   if (constop == 0 && !side_effects_p (varop))
10069     return const0_rtx;
10070 
10071   /* If VAROP is a NEG of something known to be zero or 1 and CONSTOP is
10072      a power of two, we can replace this with an ASHIFT.  */
10073   if (GET_CODE (varop) == NEG && nonzero_bits (XEXP (varop, 0), mode) == 1
10074       && (i = exact_log2 (constop)) >= 0)
10075     return simplify_shift_const (NULL_RTX, ASHIFT, mode, XEXP (varop, 0), i);
10076 
10077   /* If VAROP is an IOR or XOR, apply the AND to both branches of the IOR
10078      or XOR, then try to apply the distributive law.  This may eliminate
10079      operations if either branch can be simplified because of the AND.
10080      It may also make some cases more complex, but those cases probably
10081      won't match a pattern either with or without this.  */
10082 
10083   if (GET_CODE (varop) == IOR || GET_CODE (varop) == XOR)
10084     {
10085       scalar_int_mode varop_mode = as_a <scalar_int_mode> (GET_MODE (varop));
10086       return
10087 	gen_lowpart
10088 	  (mode,
10089 	   apply_distributive_law
10090 	   (simplify_gen_binary (GET_CODE (varop), varop_mode,
10091 				 simplify_and_const_int (NULL_RTX, varop_mode,
10092 							 XEXP (varop, 0),
10093 							 constop),
10094 				 simplify_and_const_int (NULL_RTX, varop_mode,
10095 							 XEXP (varop, 1),
10096 							 constop))));
10097     }
10098 
10099   /* If VAROP is PLUS, and the constant is a mask of low bits, distribute
10100      the AND and see if one of the operands simplifies to zero.  If so, we
10101      may eliminate it.  */
10102 
10103   if (GET_CODE (varop) == PLUS
10104       && pow2p_hwi (constop + 1))
10105     {
10106       rtx o0, o1;
10107 
10108       o0 = simplify_and_const_int (NULL_RTX, mode, XEXP (varop, 0), constop);
10109       o1 = simplify_and_const_int (NULL_RTX, mode, XEXP (varop, 1), constop);
10110       if (o0 == const0_rtx)
10111 	return o1;
10112       if (o1 == const0_rtx)
10113 	return o0;
10114     }
10115 
10116   /* Make a SUBREG if necessary.  If we can't make it, fail.  */
10117   varop = gen_lowpart (mode, varop);
10118   if (varop == NULL_RTX || GET_CODE (varop) == CLOBBER)
10119     return NULL_RTX;
10120 
10121   /* If we are only masking insignificant bits, return VAROP.  */
10122   if (constop == nonzero)
10123     return varop;
10124 
10125   if (varop == orig_varop && constop == orig_constop)
10126     return NULL_RTX;
10127 
10128   /* Otherwise, return an AND.  */
10129   return simplify_gen_binary (AND, mode, varop, gen_int_mode (constop, mode));
10130 }
10131 
10132 
10133 /* We have X, a logical `and' of VAROP with the constant CONSTOP, to be done
10134    in MODE.
10135 
10136    Return an equivalent form, if different from X.  Otherwise, return X.  If
10137    X is zero, we are to always construct the equivalent form.  */
10138 
10139 static rtx
simplify_and_const_int(rtx x,scalar_int_mode mode,rtx varop,unsigned HOST_WIDE_INT constop)10140 simplify_and_const_int (rtx x, scalar_int_mode mode, rtx varop,
10141 			unsigned HOST_WIDE_INT constop)
10142 {
10143   rtx tem = simplify_and_const_int_1 (mode, varop, constop);
10144   if (tem)
10145     return tem;
10146 
10147   if (!x)
10148     x = simplify_gen_binary (AND, GET_MODE (varop), varop,
10149 			     gen_int_mode (constop, mode));
10150   if (GET_MODE (x) != mode)
10151     x = gen_lowpart (mode, x);
10152   return x;
10153 }
10154 
10155 /* Given a REG X of mode XMODE, compute which bits in X can be nonzero.
10156    We don't care about bits outside of those defined in MODE.
10157    We DO care about all the bits in MODE, even if XMODE is smaller than MODE.
10158 
10159    For most X this is simply GET_MODE_MASK (GET_MODE (MODE)), but if X is
10160    a shift, AND, or zero_extract, we can do better.  */
10161 
10162 static rtx
reg_nonzero_bits_for_combine(const_rtx x,scalar_int_mode xmode,scalar_int_mode mode,unsigned HOST_WIDE_INT * nonzero)10163 reg_nonzero_bits_for_combine (const_rtx x, scalar_int_mode xmode,
10164 			      scalar_int_mode mode,
10165 			      unsigned HOST_WIDE_INT *nonzero)
10166 {
10167   rtx tem;
10168   reg_stat_type *rsp;
10169 
10170   /* If X is a register whose nonzero bits value is current, use it.
10171      Otherwise, if X is a register whose value we can find, use that
10172      value.  Otherwise, use the previously-computed global nonzero bits
10173      for this register.  */
10174 
10175   rsp = &reg_stat[REGNO (x)];
10176   if (rsp->last_set_value != 0
10177       && (rsp->last_set_mode == mode
10178 	  || (REGNO (x) >= FIRST_PSEUDO_REGISTER
10179 	      && GET_MODE_CLASS (rsp->last_set_mode) == MODE_INT
10180 	      && GET_MODE_CLASS (mode) == MODE_INT))
10181       && ((rsp->last_set_label >= label_tick_ebb_start
10182 	   && rsp->last_set_label < label_tick)
10183 	  || (rsp->last_set_label == label_tick
10184               && DF_INSN_LUID (rsp->last_set) < subst_low_luid)
10185 	  || (REGNO (x) >= FIRST_PSEUDO_REGISTER
10186 	      && REGNO (x) < reg_n_sets_max
10187 	      && REG_N_SETS (REGNO (x)) == 1
10188 	      && !REGNO_REG_SET_P
10189 		  (DF_LR_IN (ENTRY_BLOCK_PTR_FOR_FN (cfun)->next_bb),
10190 		   REGNO (x)))))
10191     {
10192       /* Note that, even if the precision of last_set_mode is lower than that
10193 	 of mode, record_value_for_reg invoked nonzero_bits on the register
10194 	 with nonzero_bits_mode (because last_set_mode is necessarily integral
10195 	 and HWI_COMPUTABLE_MODE_P in this case) so bits in nonzero_bits_mode
10196 	 are all valid, hence in mode too since nonzero_bits_mode is defined
10197 	 to the largest HWI_COMPUTABLE_MODE_P mode.  */
10198       *nonzero &= rsp->last_set_nonzero_bits;
10199       return NULL;
10200     }
10201 
10202   tem = get_last_value (x);
10203   if (tem)
10204     {
10205       if (SHORT_IMMEDIATES_SIGN_EXTEND)
10206 	tem = sign_extend_short_imm (tem, xmode, GET_MODE_PRECISION (mode));
10207 
10208       return tem;
10209     }
10210 
10211   if (nonzero_sign_valid && rsp->nonzero_bits)
10212     {
10213       unsigned HOST_WIDE_INT mask = rsp->nonzero_bits;
10214 
10215       if (GET_MODE_PRECISION (xmode) < GET_MODE_PRECISION (mode))
10216 	/* We don't know anything about the upper bits.  */
10217 	mask |= GET_MODE_MASK (mode) ^ GET_MODE_MASK (xmode);
10218 
10219       *nonzero &= mask;
10220     }
10221 
10222   return NULL;
10223 }
10224 
10225 /* Given a reg X of mode XMODE, return the number of bits at the high-order
10226    end of X that are known to be equal to the sign bit.  X will be used
10227    in mode MODE; the returned value will always be between 1 and the
10228    number of bits in MODE.  */
10229 
10230 static rtx
reg_num_sign_bit_copies_for_combine(const_rtx x,scalar_int_mode xmode,scalar_int_mode mode,unsigned int * result)10231 reg_num_sign_bit_copies_for_combine (const_rtx x, scalar_int_mode xmode,
10232 				     scalar_int_mode mode,
10233 				     unsigned int *result)
10234 {
10235   rtx tem;
10236   reg_stat_type *rsp;
10237 
10238   rsp = &reg_stat[REGNO (x)];
10239   if (rsp->last_set_value != 0
10240       && rsp->last_set_mode == mode
10241       && ((rsp->last_set_label >= label_tick_ebb_start
10242 	   && rsp->last_set_label < label_tick)
10243 	  || (rsp->last_set_label == label_tick
10244               && DF_INSN_LUID (rsp->last_set) < subst_low_luid)
10245 	  || (REGNO (x) >= FIRST_PSEUDO_REGISTER
10246 	      && REGNO (x) < reg_n_sets_max
10247 	      && REG_N_SETS (REGNO (x)) == 1
10248 	      && !REGNO_REG_SET_P
10249 		  (DF_LR_IN (ENTRY_BLOCK_PTR_FOR_FN (cfun)->next_bb),
10250 		   REGNO (x)))))
10251     {
10252       *result = rsp->last_set_sign_bit_copies;
10253       return NULL;
10254     }
10255 
10256   tem = get_last_value (x);
10257   if (tem != 0)
10258     return tem;
10259 
10260   if (nonzero_sign_valid && rsp->sign_bit_copies != 0
10261       && GET_MODE_PRECISION (xmode) == GET_MODE_PRECISION (mode))
10262     *result = rsp->sign_bit_copies;
10263 
10264   return NULL;
10265 }
10266 
10267 /* Return the number of "extended" bits there are in X, when interpreted
10268    as a quantity in MODE whose signedness is indicated by UNSIGNEDP.  For
10269    unsigned quantities, this is the number of high-order zero bits.
10270    For signed quantities, this is the number of copies of the sign bit
10271    minus 1.  In both case, this function returns the number of "spare"
10272    bits.  For example, if two quantities for which this function returns
10273    at least 1 are added, the addition is known not to overflow.
10274 
10275    This function will always return 0 unless called during combine, which
10276    implies that it must be called from a define_split.  */
10277 
10278 unsigned int
extended_count(const_rtx x,machine_mode mode,int unsignedp)10279 extended_count (const_rtx x, machine_mode mode, int unsignedp)
10280 {
10281   if (nonzero_sign_valid == 0)
10282     return 0;
10283 
10284   scalar_int_mode int_mode;
10285   return (unsignedp
10286 	  ? (is_a <scalar_int_mode> (mode, &int_mode)
10287 	     && HWI_COMPUTABLE_MODE_P (int_mode)
10288 	     ? (unsigned int) (GET_MODE_PRECISION (int_mode) - 1
10289 			       - floor_log2 (nonzero_bits (x, int_mode)))
10290 	     : 0)
10291 	  : num_sign_bit_copies (x, mode) - 1);
10292 }
10293 
10294 /* This function is called from `simplify_shift_const' to merge two
10295    outer operations.  Specifically, we have already found that we need
10296    to perform operation *POP0 with constant *PCONST0 at the outermost
10297    position.  We would now like to also perform OP1 with constant CONST1
10298    (with *POP0 being done last).
10299 
10300    Return 1 if we can do the operation and update *POP0 and *PCONST0 with
10301    the resulting operation.  *PCOMP_P is set to 1 if we would need to
10302    complement the innermost operand, otherwise it is unchanged.
10303 
10304    MODE is the mode in which the operation will be done.  No bits outside
10305    the width of this mode matter.  It is assumed that the width of this mode
10306    is smaller than or equal to HOST_BITS_PER_WIDE_INT.
10307 
10308    If *POP0 or OP1 are UNKNOWN, it means no operation is required.  Only NEG, PLUS,
10309    IOR, XOR, and AND are supported.  We may set *POP0 to SET if the proper
10310    result is simply *PCONST0.
10311 
10312    If the resulting operation cannot be expressed as one operation, we
10313    return 0 and do not change *POP0, *PCONST0, and *PCOMP_P.  */
10314 
10315 static int
merge_outer_ops(enum rtx_code * pop0,HOST_WIDE_INT * pconst0,enum rtx_code op1,HOST_WIDE_INT const1,machine_mode mode,int * pcomp_p)10316 merge_outer_ops (enum rtx_code *pop0, HOST_WIDE_INT *pconst0, enum rtx_code op1, HOST_WIDE_INT const1, machine_mode mode, int *pcomp_p)
10317 {
10318   enum rtx_code op0 = *pop0;
10319   HOST_WIDE_INT const0 = *pconst0;
10320 
10321   const0 &= GET_MODE_MASK (mode);
10322   const1 &= GET_MODE_MASK (mode);
10323 
10324   /* If OP0 is an AND, clear unimportant bits in CONST1.  */
10325   if (op0 == AND)
10326     const1 &= const0;
10327 
10328   /* If OP0 or OP1 is UNKNOWN, this is easy.  Similarly if they are the same or
10329      if OP0 is SET.  */
10330 
10331   if (op1 == UNKNOWN || op0 == SET)
10332     return 1;
10333 
10334   else if (op0 == UNKNOWN)
10335     op0 = op1, const0 = const1;
10336 
10337   else if (op0 == op1)
10338     {
10339       switch (op0)
10340 	{
10341 	case AND:
10342 	  const0 &= const1;
10343 	  break;
10344 	case IOR:
10345 	  const0 |= const1;
10346 	  break;
10347 	case XOR:
10348 	  const0 ^= const1;
10349 	  break;
10350 	case PLUS:
10351 	  const0 += const1;
10352 	  break;
10353 	case NEG:
10354 	  op0 = UNKNOWN;
10355 	  break;
10356 	default:
10357 	  break;
10358 	}
10359     }
10360 
10361   /* Otherwise, if either is a PLUS or NEG, we can't do anything.  */
10362   else if (op0 == PLUS || op1 == PLUS || op0 == NEG || op1 == NEG)
10363     return 0;
10364 
10365   /* If the two constants aren't the same, we can't do anything.  The
10366      remaining six cases can all be done.  */
10367   else if (const0 != const1)
10368     return 0;
10369 
10370   else
10371     switch (op0)
10372       {
10373       case IOR:
10374 	if (op1 == AND)
10375 	  /* (a & b) | b == b */
10376 	  op0 = SET;
10377 	else /* op1 == XOR */
10378 	  /* (a ^ b) | b == a | b */
10379 	  {;}
10380 	break;
10381 
10382       case XOR:
10383 	if (op1 == AND)
10384 	  /* (a & b) ^ b == (~a) & b */
10385 	  op0 = AND, *pcomp_p = 1;
10386 	else /* op1 == IOR */
10387 	  /* (a | b) ^ b == a & ~b */
10388 	  op0 = AND, const0 = ~const0;
10389 	break;
10390 
10391       case AND:
10392 	if (op1 == IOR)
10393 	  /* (a | b) & b == b */
10394 	op0 = SET;
10395 	else /* op1 == XOR */
10396 	  /* (a ^ b) & b) == (~a) & b */
10397 	  *pcomp_p = 1;
10398 	break;
10399       default:
10400 	break;
10401       }
10402 
10403   /* Check for NO-OP cases.  */
10404   const0 &= GET_MODE_MASK (mode);
10405   if (const0 == 0
10406       && (op0 == IOR || op0 == XOR || op0 == PLUS))
10407     op0 = UNKNOWN;
10408   else if (const0 == 0 && op0 == AND)
10409     op0 = SET;
10410   else if ((unsigned HOST_WIDE_INT) const0 == GET_MODE_MASK (mode)
10411 	   && op0 == AND)
10412     op0 = UNKNOWN;
10413 
10414   *pop0 = op0;
10415 
10416   /* ??? Slightly redundant with the above mask, but not entirely.
10417      Moving this above means we'd have to sign-extend the mode mask
10418      for the final test.  */
10419   if (op0 != UNKNOWN && op0 != NEG)
10420     *pconst0 = trunc_int_for_mode (const0, mode);
10421 
10422   return 1;
10423 }
10424 
10425 /* A helper to simplify_shift_const_1 to determine the mode we can perform
10426    the shift in.  The original shift operation CODE is performed on OP in
10427    ORIG_MODE.  Return the wider mode MODE if we can perform the operation
10428    in that mode.  Return ORIG_MODE otherwise.  We can also assume that the
10429    result of the shift is subject to operation OUTER_CODE with operand
10430    OUTER_CONST.  */
10431 
10432 static scalar_int_mode
try_widen_shift_mode(enum rtx_code code,rtx op,int count,scalar_int_mode orig_mode,scalar_int_mode mode,enum rtx_code outer_code,HOST_WIDE_INT outer_const)10433 try_widen_shift_mode (enum rtx_code code, rtx op, int count,
10434 		      scalar_int_mode orig_mode, scalar_int_mode mode,
10435 		      enum rtx_code outer_code, HOST_WIDE_INT outer_const)
10436 {
10437   gcc_assert (GET_MODE_PRECISION (mode) > GET_MODE_PRECISION (orig_mode));
10438 
10439   /* In general we can't perform in wider mode for right shift and rotate.  */
10440   switch (code)
10441     {
10442     case ASHIFTRT:
10443       /* We can still widen if the bits brought in from the left are identical
10444 	 to the sign bit of ORIG_MODE.  */
10445       if (num_sign_bit_copies (op, mode)
10446 	  > (unsigned) (GET_MODE_PRECISION (mode)
10447 			- GET_MODE_PRECISION (orig_mode)))
10448 	return mode;
10449       return orig_mode;
10450 
10451     case LSHIFTRT:
10452       /* Similarly here but with zero bits.  */
10453       if (HWI_COMPUTABLE_MODE_P (mode)
10454 	  && (nonzero_bits (op, mode) & ~GET_MODE_MASK (orig_mode)) == 0)
10455 	return mode;
10456 
10457       /* We can also widen if the bits brought in will be masked off.  This
10458 	 operation is performed in ORIG_MODE.  */
10459       if (outer_code == AND)
10460 	{
10461 	  int care_bits = low_bitmask_len (orig_mode, outer_const);
10462 
10463 	  if (care_bits >= 0
10464 	      && GET_MODE_PRECISION (orig_mode) - care_bits >= count)
10465 	    return mode;
10466 	}
10467       /* fall through */
10468 
10469     case ROTATE:
10470       return orig_mode;
10471 
10472     case ROTATERT:
10473       gcc_unreachable ();
10474 
10475     default:
10476       return mode;
10477     }
10478 }
10479 
10480 /* Simplify a shift of VAROP by ORIG_COUNT bits.  CODE says what kind
10481    of shift.  The result of the shift is RESULT_MODE.  Return NULL_RTX
10482    if we cannot simplify it.  Otherwise, return a simplified value.
10483 
10484    The shift is normally computed in the widest mode we find in VAROP, as
10485    long as it isn't a different number of words than RESULT_MODE.  Exceptions
10486    are ASHIFTRT and ROTATE, which are always done in their original mode.  */
10487 
10488 static rtx
simplify_shift_const_1(enum rtx_code code,machine_mode result_mode,rtx varop,int orig_count)10489 simplify_shift_const_1 (enum rtx_code code, machine_mode result_mode,
10490 			rtx varop, int orig_count)
10491 {
10492   enum rtx_code orig_code = code;
10493   rtx orig_varop = varop;
10494   int count, log2;
10495   machine_mode mode = result_mode;
10496   machine_mode shift_mode;
10497   scalar_int_mode tmode, inner_mode, int_mode, int_varop_mode, int_result_mode;
10498   /* We form (outer_op (code varop count) (outer_const)).  */
10499   enum rtx_code outer_op = UNKNOWN;
10500   HOST_WIDE_INT outer_const = 0;
10501   int complement_p = 0;
10502   rtx new_rtx, x;
10503 
10504   /* Make sure and truncate the "natural" shift on the way in.  We don't
10505      want to do this inside the loop as it makes it more difficult to
10506      combine shifts.  */
10507   if (SHIFT_COUNT_TRUNCATED)
10508     orig_count &= GET_MODE_UNIT_BITSIZE (mode) - 1;
10509 
10510   /* If we were given an invalid count, don't do anything except exactly
10511      what was requested.  */
10512 
10513   if (orig_count < 0 || orig_count >= (int) GET_MODE_UNIT_PRECISION (mode))
10514     return NULL_RTX;
10515 
10516   count = orig_count;
10517 
10518   /* Unless one of the branches of the `if' in this loop does a `continue',
10519      we will `break' the loop after the `if'.  */
10520 
10521   while (count != 0)
10522     {
10523       /* If we have an operand of (clobber (const_int 0)), fail.  */
10524       if (GET_CODE (varop) == CLOBBER)
10525 	return NULL_RTX;
10526 
10527       /* Convert ROTATERT to ROTATE.  */
10528       if (code == ROTATERT)
10529 	{
10530 	  unsigned int bitsize = GET_MODE_UNIT_PRECISION (result_mode);
10531 	  code = ROTATE;
10532 	  count = bitsize - count;
10533 	}
10534 
10535       shift_mode = result_mode;
10536       if (shift_mode != mode)
10537 	{
10538 	  /* We only change the modes of scalar shifts.  */
10539 	  int_mode = as_a <scalar_int_mode> (mode);
10540 	  int_result_mode = as_a <scalar_int_mode> (result_mode);
10541 	  shift_mode = try_widen_shift_mode (code, varop, count,
10542 					     int_result_mode, int_mode,
10543 					     outer_op, outer_const);
10544 	}
10545 
10546       scalar_int_mode shift_unit_mode
10547 	= as_a <scalar_int_mode> (GET_MODE_INNER (shift_mode));
10548 
10549       /* Handle cases where the count is greater than the size of the mode
10550 	 minus 1.  For ASHIFT, use the size minus one as the count (this can
10551 	 occur when simplifying (lshiftrt (ashiftrt ..))).  For rotates,
10552 	 take the count modulo the size.  For other shifts, the result is
10553 	 zero.
10554 
10555 	 Since these shifts are being produced by the compiler by combining
10556 	 multiple operations, each of which are defined, we know what the
10557 	 result is supposed to be.  */
10558 
10559       if (count > (GET_MODE_PRECISION (shift_unit_mode) - 1))
10560 	{
10561 	  if (code == ASHIFTRT)
10562 	    count = GET_MODE_PRECISION (shift_unit_mode) - 1;
10563 	  else if (code == ROTATE || code == ROTATERT)
10564 	    count %= GET_MODE_PRECISION (shift_unit_mode);
10565 	  else
10566 	    {
10567 	      /* We can't simply return zero because there may be an
10568 		 outer op.  */
10569 	      varop = const0_rtx;
10570 	      count = 0;
10571 	      break;
10572 	    }
10573 	}
10574 
10575       /* If we discovered we had to complement VAROP, leave.  Making a NOT
10576 	 here would cause an infinite loop.  */
10577       if (complement_p)
10578 	break;
10579 
10580       if (shift_mode == shift_unit_mode)
10581 	{
10582 	  /* An arithmetic right shift of a quantity known to be -1 or 0
10583 	     is a no-op.  */
10584 	  if (code == ASHIFTRT
10585 	      && (num_sign_bit_copies (varop, shift_unit_mode)
10586 		  == GET_MODE_PRECISION (shift_unit_mode)))
10587 	    {
10588 	      count = 0;
10589 	      break;
10590 	    }
10591 
10592 	  /* If we are doing an arithmetic right shift and discarding all but
10593 	     the sign bit copies, this is equivalent to doing a shift by the
10594 	     bitsize minus one.  Convert it into that shift because it will
10595 	     often allow other simplifications.  */
10596 
10597 	  if (code == ASHIFTRT
10598 	      && (count + num_sign_bit_copies (varop, shift_unit_mode)
10599 		  >= GET_MODE_PRECISION (shift_unit_mode)))
10600 	    count = GET_MODE_PRECISION (shift_unit_mode) - 1;
10601 
10602 	  /* We simplify the tests below and elsewhere by converting
10603 	     ASHIFTRT to LSHIFTRT if we know the sign bit is clear.
10604 	     `make_compound_operation' will convert it to an ASHIFTRT for
10605 	     those machines (such as VAX) that don't have an LSHIFTRT.  */
10606 	  if (code == ASHIFTRT
10607 	      && HWI_COMPUTABLE_MODE_P (shift_unit_mode)
10608 	      && val_signbit_known_clear_p (shift_unit_mode,
10609 					    nonzero_bits (varop,
10610 							  shift_unit_mode)))
10611 	    code = LSHIFTRT;
10612 
10613 	  if (((code == LSHIFTRT
10614 		&& HWI_COMPUTABLE_MODE_P (shift_unit_mode)
10615 		&& !(nonzero_bits (varop, shift_unit_mode) >> count))
10616 	       || (code == ASHIFT
10617 		   && HWI_COMPUTABLE_MODE_P (shift_unit_mode)
10618 		   && !((nonzero_bits (varop, shift_unit_mode) << count)
10619 			& GET_MODE_MASK (shift_unit_mode))))
10620 	      && !side_effects_p (varop))
10621 	    varop = const0_rtx;
10622 	}
10623 
10624       switch (GET_CODE (varop))
10625 	{
10626 	case SIGN_EXTEND:
10627 	case ZERO_EXTEND:
10628 	case SIGN_EXTRACT:
10629 	case ZERO_EXTRACT:
10630 	  new_rtx = expand_compound_operation (varop);
10631 	  if (new_rtx != varop)
10632 	    {
10633 	      varop = new_rtx;
10634 	      continue;
10635 	    }
10636 	  break;
10637 
10638 	case MEM:
10639 	  /* The following rules apply only to scalars.  */
10640 	  if (shift_mode != shift_unit_mode)
10641 	    break;
10642 	  int_mode = as_a <scalar_int_mode> (mode);
10643 
10644 	  /* If we have (xshiftrt (mem ...) C) and C is MODE_WIDTH
10645 	     minus the width of a smaller mode, we can do this with a
10646 	     SIGN_EXTEND or ZERO_EXTEND from the narrower memory location.  */
10647 	  if ((code == ASHIFTRT || code == LSHIFTRT)
10648 	      && ! mode_dependent_address_p (XEXP (varop, 0),
10649 					     MEM_ADDR_SPACE (varop))
10650 	      && ! MEM_VOLATILE_P (varop)
10651 	      && (int_mode_for_size (GET_MODE_BITSIZE (int_mode) - count, 1)
10652 		  .exists (&tmode)))
10653 	    {
10654 	      new_rtx = adjust_address_nv (varop, tmode,
10655 					   BYTES_BIG_ENDIAN ? 0
10656 					   : count / BITS_PER_UNIT);
10657 
10658 	      varop = gen_rtx_fmt_e (code == ASHIFTRT ? SIGN_EXTEND
10659 				     : ZERO_EXTEND, int_mode, new_rtx);
10660 	      count = 0;
10661 	      continue;
10662 	    }
10663 	  break;
10664 
10665 	case SUBREG:
10666 	  /* The following rules apply only to scalars.  */
10667 	  if (shift_mode != shift_unit_mode)
10668 	    break;
10669 	  int_mode = as_a <scalar_int_mode> (mode);
10670 	  int_varop_mode = as_a <scalar_int_mode> (GET_MODE (varop));
10671 
10672 	  /* If VAROP is a SUBREG, strip it as long as the inner operand has
10673 	     the same number of words as what we've seen so far.  Then store
10674 	     the widest mode in MODE.  */
10675 	  if (subreg_lowpart_p (varop)
10676 	      && is_int_mode (GET_MODE (SUBREG_REG (varop)), &inner_mode)
10677 	      && GET_MODE_SIZE (inner_mode) > GET_MODE_SIZE (int_varop_mode)
10678 	      && (CEIL (GET_MODE_SIZE (inner_mode), UNITS_PER_WORD)
10679 		  == CEIL (GET_MODE_SIZE (int_mode), UNITS_PER_WORD))
10680 	      && GET_MODE_CLASS (int_varop_mode) == MODE_INT)
10681 	    {
10682 	      varop = SUBREG_REG (varop);
10683 	      if (GET_MODE_SIZE (inner_mode) > GET_MODE_SIZE (int_mode))
10684 		mode = inner_mode;
10685 	      continue;
10686 	    }
10687 	  break;
10688 
10689 	case MULT:
10690 	  /* Some machines use MULT instead of ASHIFT because MULT
10691 	     is cheaper.  But it is still better on those machines to
10692 	     merge two shifts into one.  */
10693 	  if (CONST_INT_P (XEXP (varop, 1))
10694 	      && (log2 = exact_log2 (UINTVAL (XEXP (varop, 1)))) >= 0)
10695 	    {
10696 	      rtx log2_rtx = gen_int_shift_amount (GET_MODE (varop), log2);
10697 	      varop = simplify_gen_binary (ASHIFT, GET_MODE (varop),
10698 					   XEXP (varop, 0), log2_rtx);
10699 	      continue;
10700 	    }
10701 	  break;
10702 
10703 	case UDIV:
10704 	  /* Similar, for when divides are cheaper.  */
10705 	  if (CONST_INT_P (XEXP (varop, 1))
10706 	      && (log2 = exact_log2 (UINTVAL (XEXP (varop, 1)))) >= 0)
10707 	    {
10708 	      rtx log2_rtx = gen_int_shift_amount (GET_MODE (varop), log2);
10709 	      varop = simplify_gen_binary (LSHIFTRT, GET_MODE (varop),
10710 					   XEXP (varop, 0), log2_rtx);
10711 	      continue;
10712 	    }
10713 	  break;
10714 
10715 	case ASHIFTRT:
10716 	  /* If we are extracting just the sign bit of an arithmetic
10717 	     right shift, that shift is not needed.  However, the sign
10718 	     bit of a wider mode may be different from what would be
10719 	     interpreted as the sign bit in a narrower mode, so, if
10720 	     the result is narrower, don't discard the shift.  */
10721 	  if (code == LSHIFTRT
10722 	      && count == (GET_MODE_UNIT_BITSIZE (result_mode) - 1)
10723 	      && (GET_MODE_UNIT_BITSIZE (result_mode)
10724 		  >= GET_MODE_UNIT_BITSIZE (GET_MODE (varop))))
10725 	    {
10726 	      varop = XEXP (varop, 0);
10727 	      continue;
10728 	    }
10729 
10730 	  /* fall through */
10731 
10732 	case LSHIFTRT:
10733 	case ASHIFT:
10734 	case ROTATE:
10735 	  /* The following rules apply only to scalars.  */
10736 	  if (shift_mode != shift_unit_mode)
10737 	    break;
10738 	  int_mode = as_a <scalar_int_mode> (mode);
10739 	  int_varop_mode = as_a <scalar_int_mode> (GET_MODE (varop));
10740 	  int_result_mode = as_a <scalar_int_mode> (result_mode);
10741 
10742 	  /* Here we have two nested shifts.  The result is usually the
10743 	     AND of a new shift with a mask.  We compute the result below.  */
10744 	  if (CONST_INT_P (XEXP (varop, 1))
10745 	      && INTVAL (XEXP (varop, 1)) >= 0
10746 	      && INTVAL (XEXP (varop, 1)) < GET_MODE_PRECISION (int_varop_mode)
10747 	      && HWI_COMPUTABLE_MODE_P (int_result_mode)
10748 	      && HWI_COMPUTABLE_MODE_P (int_mode))
10749 	    {
10750 	      enum rtx_code first_code = GET_CODE (varop);
10751 	      unsigned int first_count = INTVAL (XEXP (varop, 1));
10752 	      unsigned HOST_WIDE_INT mask;
10753 	      rtx mask_rtx;
10754 
10755 	      /* We have one common special case.  We can't do any merging if
10756 		 the inner code is an ASHIFTRT of a smaller mode.  However, if
10757 		 we have (ashift:M1 (subreg:M1 (ashiftrt:M2 FOO C1) 0) C2)
10758 		 with C2 == GET_MODE_BITSIZE (M1) - GET_MODE_BITSIZE (M2),
10759 		 we can convert it to
10760 		 (ashiftrt:M1 (ashift:M1 (and:M1 (subreg:M1 FOO 0) C3) C2) C1).
10761 		 This simplifies certain SIGN_EXTEND operations.  */
10762 	      if (code == ASHIFT && first_code == ASHIFTRT
10763 		  && count == (GET_MODE_PRECISION (int_result_mode)
10764 			       - GET_MODE_PRECISION (int_varop_mode)))
10765 		{
10766 		  /* C3 has the low-order C1 bits zero.  */
10767 
10768 		  mask = GET_MODE_MASK (int_mode)
10769 			 & ~((HOST_WIDE_INT_1U << first_count) - 1);
10770 
10771 		  varop = simplify_and_const_int (NULL_RTX, int_result_mode,
10772 						  XEXP (varop, 0), mask);
10773 		  varop = simplify_shift_const (NULL_RTX, ASHIFT,
10774 						int_result_mode, varop, count);
10775 		  count = first_count;
10776 		  code = ASHIFTRT;
10777 		  continue;
10778 		}
10779 
10780 	      /* If this was (ashiftrt (ashift foo C1) C2) and FOO has more
10781 		 than C1 high-order bits equal to the sign bit, we can convert
10782 		 this to either an ASHIFT or an ASHIFTRT depending on the
10783 		 two counts.
10784 
10785 		 We cannot do this if VAROP's mode is not SHIFT_UNIT_MODE.  */
10786 
10787 	      if (code == ASHIFTRT && first_code == ASHIFT
10788 		  && int_varop_mode == shift_unit_mode
10789 		  && (num_sign_bit_copies (XEXP (varop, 0), shift_unit_mode)
10790 		      > first_count))
10791 		{
10792 		  varop = XEXP (varop, 0);
10793 		  count -= first_count;
10794 		  if (count < 0)
10795 		    {
10796 		      count = -count;
10797 		      code = ASHIFT;
10798 		    }
10799 
10800 		  continue;
10801 		}
10802 
10803 	      /* There are some cases we can't do.  If CODE is ASHIFTRT,
10804 		 we can only do this if FIRST_CODE is also ASHIFTRT.
10805 
10806 		 We can't do the case when CODE is ROTATE and FIRST_CODE is
10807 		 ASHIFTRT.
10808 
10809 		 If the mode of this shift is not the mode of the outer shift,
10810 		 we can't do this if either shift is a right shift or ROTATE.
10811 
10812 		 Finally, we can't do any of these if the mode is too wide
10813 		 unless the codes are the same.
10814 
10815 		 Handle the case where the shift codes are the same
10816 		 first.  */
10817 
10818 	      if (code == first_code)
10819 		{
10820 		  if (int_varop_mode != int_result_mode
10821 		      && (code == ASHIFTRT || code == LSHIFTRT
10822 			  || code == ROTATE))
10823 		    break;
10824 
10825 		  count += first_count;
10826 		  varop = XEXP (varop, 0);
10827 		  continue;
10828 		}
10829 
10830 	      if (code == ASHIFTRT
10831 		  || (code == ROTATE && first_code == ASHIFTRT)
10832 		  || GET_MODE_PRECISION (int_mode) > HOST_BITS_PER_WIDE_INT
10833 		  || (int_varop_mode != int_result_mode
10834 		      && (first_code == ASHIFTRT || first_code == LSHIFTRT
10835 			  || first_code == ROTATE
10836 			  || code == ROTATE)))
10837 		break;
10838 
10839 	      /* To compute the mask to apply after the shift, shift the
10840 		 nonzero bits of the inner shift the same way the
10841 		 outer shift will.  */
10842 
10843 	      mask_rtx = gen_int_mode (nonzero_bits (varop, int_varop_mode),
10844 				       int_result_mode);
10845 	      rtx count_rtx = gen_int_shift_amount (int_result_mode, count);
10846 	      mask_rtx
10847 		= simplify_const_binary_operation (code, int_result_mode,
10848 						   mask_rtx, count_rtx);
10849 
10850 	      /* Give up if we can't compute an outer operation to use.  */
10851 	      if (mask_rtx == 0
10852 		  || !CONST_INT_P (mask_rtx)
10853 		  || ! merge_outer_ops (&outer_op, &outer_const, AND,
10854 					INTVAL (mask_rtx),
10855 					int_result_mode, &complement_p))
10856 		break;
10857 
10858 	      /* If the shifts are in the same direction, we add the
10859 		 counts.  Otherwise, we subtract them.  */
10860 	      if ((code == ASHIFTRT || code == LSHIFTRT)
10861 		  == (first_code == ASHIFTRT || first_code == LSHIFTRT))
10862 		count += first_count;
10863 	      else
10864 		count -= first_count;
10865 
10866 	      /* If COUNT is positive, the new shift is usually CODE,
10867 		 except for the two exceptions below, in which case it is
10868 		 FIRST_CODE.  If the count is negative, FIRST_CODE should
10869 		 always be used  */
10870 	      if (count > 0
10871 		  && ((first_code == ROTATE && code == ASHIFT)
10872 		      || (first_code == ASHIFTRT && code == LSHIFTRT)))
10873 		code = first_code;
10874 	      else if (count < 0)
10875 		code = first_code, count = -count;
10876 
10877 	      varop = XEXP (varop, 0);
10878 	      continue;
10879 	    }
10880 
10881 	  /* If we have (A << B << C) for any shift, we can convert this to
10882 	     (A << C << B).  This wins if A is a constant.  Only try this if
10883 	     B is not a constant.  */
10884 
10885 	  else if (GET_CODE (varop) == code
10886 		   && CONST_INT_P (XEXP (varop, 0))
10887 		   && !CONST_INT_P (XEXP (varop, 1)))
10888 	    {
10889 	      /* For ((unsigned) (cstULL >> count)) >> cst2 we have to make
10890 		 sure the result will be masked.  See PR70222.  */
10891 	      if (code == LSHIFTRT
10892 		  && int_mode != int_result_mode
10893 		  && !merge_outer_ops (&outer_op, &outer_const, AND,
10894 				       GET_MODE_MASK (int_result_mode)
10895 				       >> orig_count, int_result_mode,
10896 				       &complement_p))
10897 		break;
10898 	      /* For ((int) (cstLL >> count)) >> cst2 just give up.  Queuing
10899 		 up outer sign extension (often left and right shift) is
10900 		 hardly more efficient than the original.  See PR70429.
10901 		 Similarly punt for rotates with different modes.
10902 		 See PR97386.  */
10903 	      if ((code == ASHIFTRT || code == ROTATE)
10904 		  && int_mode != int_result_mode)
10905 		break;
10906 
10907 	      rtx count_rtx = gen_int_shift_amount (int_result_mode, count);
10908 	      rtx new_rtx = simplify_const_binary_operation (code, int_mode,
10909 							     XEXP (varop, 0),
10910 							     count_rtx);
10911 	      varop = gen_rtx_fmt_ee (code, int_mode, new_rtx, XEXP (varop, 1));
10912 	      count = 0;
10913 	      continue;
10914 	    }
10915 	  break;
10916 
10917 	case NOT:
10918 	  /* The following rules apply only to scalars.  */
10919 	  if (shift_mode != shift_unit_mode)
10920 	    break;
10921 
10922 	  /* Make this fit the case below.  */
10923 	  varop = gen_rtx_XOR (mode, XEXP (varop, 0), constm1_rtx);
10924 	  continue;
10925 
10926 	case IOR:
10927 	case AND:
10928 	case XOR:
10929 	  /* The following rules apply only to scalars.  */
10930 	  if (shift_mode != shift_unit_mode)
10931 	    break;
10932 	  int_varop_mode = as_a <scalar_int_mode> (GET_MODE (varop));
10933 	  int_result_mode = as_a <scalar_int_mode> (result_mode);
10934 
10935 	  /* If we have (xshiftrt (ior (plus X (const_int -1)) X) C)
10936 	     with C the size of VAROP - 1 and the shift is logical if
10937 	     STORE_FLAG_VALUE is 1 and arithmetic if STORE_FLAG_VALUE is -1,
10938 	     we have an (le X 0) operation.   If we have an arithmetic shift
10939 	     and STORE_FLAG_VALUE is 1 or we have a logical shift with
10940 	     STORE_FLAG_VALUE of -1, we have a (neg (le X 0)) operation.  */
10941 
10942 	  if (GET_CODE (varop) == IOR && GET_CODE (XEXP (varop, 0)) == PLUS
10943 	      && XEXP (XEXP (varop, 0), 1) == constm1_rtx
10944 	      && (STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
10945 	      && (code == LSHIFTRT || code == ASHIFTRT)
10946 	      && count == (GET_MODE_PRECISION (int_varop_mode) - 1)
10947 	      && rtx_equal_p (XEXP (XEXP (varop, 0), 0), XEXP (varop, 1)))
10948 	    {
10949 	      count = 0;
10950 	      varop = gen_rtx_LE (int_varop_mode, XEXP (varop, 1),
10951 				  const0_rtx);
10952 
10953 	      if (STORE_FLAG_VALUE == 1 ? code == ASHIFTRT : code == LSHIFTRT)
10954 		varop = gen_rtx_NEG (int_varop_mode, varop);
10955 
10956 	      continue;
10957 	    }
10958 
10959 	  /* If we have (shift (logical)), move the logical to the outside
10960 	     to allow it to possibly combine with another logical and the
10961 	     shift to combine with another shift.  This also canonicalizes to
10962 	     what a ZERO_EXTRACT looks like.  Also, some machines have
10963 	     (and (shift)) insns.  */
10964 
10965 	  if (CONST_INT_P (XEXP (varop, 1))
10966 	      /* We can't do this if we have (ashiftrt (xor))  and the
10967 		 constant has its sign bit set in shift_unit_mode with
10968 		 shift_unit_mode wider than result_mode.  */
10969 	      && !(code == ASHIFTRT && GET_CODE (varop) == XOR
10970 		   && int_result_mode != shift_unit_mode
10971 		   && trunc_int_for_mode (INTVAL (XEXP (varop, 1)),
10972 					  shift_unit_mode) < 0)
10973 	      && (new_rtx = simplify_const_binary_operation
10974 		  (code, int_result_mode,
10975 		   gen_int_mode (INTVAL (XEXP (varop, 1)), int_result_mode),
10976 		   gen_int_shift_amount (int_result_mode, count))) != 0
10977 	      && CONST_INT_P (new_rtx)
10978 	      && merge_outer_ops (&outer_op, &outer_const, GET_CODE (varop),
10979 				  INTVAL (new_rtx), int_result_mode,
10980 				  &complement_p))
10981 	    {
10982 	      varop = XEXP (varop, 0);
10983 	      continue;
10984 	    }
10985 
10986 	  /* If we can't do that, try to simplify the shift in each arm of the
10987 	     logical expression, make a new logical expression, and apply
10988 	     the inverse distributive law.  This also can't be done for
10989 	     (ashiftrt (xor)) where we've widened the shift and the constant
10990 	     changes the sign bit.  */
10991 	  if (CONST_INT_P (XEXP (varop, 1))
10992 	      && !(code == ASHIFTRT && GET_CODE (varop) == XOR
10993 		   && int_result_mode != shift_unit_mode
10994 		   && trunc_int_for_mode (INTVAL (XEXP (varop, 1)),
10995 					  shift_unit_mode) < 0))
10996 	    {
10997 	      rtx lhs = simplify_shift_const (NULL_RTX, code, shift_unit_mode,
10998 					      XEXP (varop, 0), count);
10999 	      rtx rhs = simplify_shift_const (NULL_RTX, code, shift_unit_mode,
11000 					      XEXP (varop, 1), count);
11001 
11002 	      varop = simplify_gen_binary (GET_CODE (varop), shift_unit_mode,
11003 					   lhs, rhs);
11004 	      varop = apply_distributive_law (varop);
11005 
11006 	      count = 0;
11007 	      continue;
11008 	    }
11009 	  break;
11010 
11011 	case EQ:
11012 	  /* The following rules apply only to scalars.  */
11013 	  if (shift_mode != shift_unit_mode)
11014 	    break;
11015 	  int_result_mode = as_a <scalar_int_mode> (result_mode);
11016 
11017 	  /* Convert (lshiftrt (eq FOO 0) C) to (xor FOO 1) if STORE_FLAG_VALUE
11018 	     says that the sign bit can be tested, FOO has mode MODE, C is
11019 	     GET_MODE_PRECISION (MODE) - 1, and FOO has only its low-order bit
11020 	     that may be nonzero.  */
11021 	  if (code == LSHIFTRT
11022 	      && XEXP (varop, 1) == const0_rtx
11023 	      && GET_MODE (XEXP (varop, 0)) == int_result_mode
11024 	      && count == (GET_MODE_PRECISION (int_result_mode) - 1)
11025 	      && HWI_COMPUTABLE_MODE_P (int_result_mode)
11026 	      && STORE_FLAG_VALUE == -1
11027 	      && nonzero_bits (XEXP (varop, 0), int_result_mode) == 1
11028 	      && merge_outer_ops (&outer_op, &outer_const, XOR, 1,
11029 				  int_result_mode, &complement_p))
11030 	    {
11031 	      varop = XEXP (varop, 0);
11032 	      count = 0;
11033 	      continue;
11034 	    }
11035 	  break;
11036 
11037 	case NEG:
11038 	  /* The following rules apply only to scalars.  */
11039 	  if (shift_mode != shift_unit_mode)
11040 	    break;
11041 	  int_result_mode = as_a <scalar_int_mode> (result_mode);
11042 
11043 	  /* (lshiftrt (neg A) C) where A is either 0 or 1 and C is one less
11044 	     than the number of bits in the mode is equivalent to A.  */
11045 	  if (code == LSHIFTRT
11046 	      && count == (GET_MODE_PRECISION (int_result_mode) - 1)
11047 	      && nonzero_bits (XEXP (varop, 0), int_result_mode) == 1)
11048 	    {
11049 	      varop = XEXP (varop, 0);
11050 	      count = 0;
11051 	      continue;
11052 	    }
11053 
11054 	  /* NEG commutes with ASHIFT since it is multiplication.  Move the
11055 	     NEG outside to allow shifts to combine.  */
11056 	  if (code == ASHIFT
11057 	      && merge_outer_ops (&outer_op, &outer_const, NEG, 0,
11058 				  int_result_mode, &complement_p))
11059 	    {
11060 	      varop = XEXP (varop, 0);
11061 	      continue;
11062 	    }
11063 	  break;
11064 
11065 	case PLUS:
11066 	  /* The following rules apply only to scalars.  */
11067 	  if (shift_mode != shift_unit_mode)
11068 	    break;
11069 	  int_result_mode = as_a <scalar_int_mode> (result_mode);
11070 
11071 	  /* (lshiftrt (plus A -1) C) where A is either 0 or 1 and C
11072 	     is one less than the number of bits in the mode is
11073 	     equivalent to (xor A 1).  */
11074 	  if (code == LSHIFTRT
11075 	      && count == (GET_MODE_PRECISION (int_result_mode) - 1)
11076 	      && XEXP (varop, 1) == constm1_rtx
11077 	      && nonzero_bits (XEXP (varop, 0), int_result_mode) == 1
11078 	      && merge_outer_ops (&outer_op, &outer_const, XOR, 1,
11079 				  int_result_mode, &complement_p))
11080 	    {
11081 	      count = 0;
11082 	      varop = XEXP (varop, 0);
11083 	      continue;
11084 	    }
11085 
11086 	  /* If we have (xshiftrt (plus FOO BAR) C), and the only bits
11087 	     that might be nonzero in BAR are those being shifted out and those
11088 	     bits are known zero in FOO, we can replace the PLUS with FOO.
11089 	     Similarly in the other operand order.  This code occurs when
11090 	     we are computing the size of a variable-size array.  */
11091 
11092 	  if ((code == ASHIFTRT || code == LSHIFTRT)
11093 	      && count < HOST_BITS_PER_WIDE_INT
11094 	      && nonzero_bits (XEXP (varop, 1), int_result_mode) >> count == 0
11095 	      && (nonzero_bits (XEXP (varop, 1), int_result_mode)
11096 		  & nonzero_bits (XEXP (varop, 0), int_result_mode)) == 0)
11097 	    {
11098 	      varop = XEXP (varop, 0);
11099 	      continue;
11100 	    }
11101 	  else if ((code == ASHIFTRT || code == LSHIFTRT)
11102 		   && count < HOST_BITS_PER_WIDE_INT
11103 		   && HWI_COMPUTABLE_MODE_P (int_result_mode)
11104 		   && (nonzero_bits (XEXP (varop, 0), int_result_mode)
11105 		       >> count) == 0
11106 		   && (nonzero_bits (XEXP (varop, 0), int_result_mode)
11107 		       & nonzero_bits (XEXP (varop, 1), int_result_mode)) == 0)
11108 	    {
11109 	      varop = XEXP (varop, 1);
11110 	      continue;
11111 	    }
11112 
11113 	  /* (ashift (plus foo C) N) is (plus (ashift foo N) C').  */
11114 	  if (code == ASHIFT
11115 	      && CONST_INT_P (XEXP (varop, 1))
11116 	      && (new_rtx = simplify_const_binary_operation
11117 		  (ASHIFT, int_result_mode,
11118 		   gen_int_mode (INTVAL (XEXP (varop, 1)), int_result_mode),
11119 		   gen_int_shift_amount (int_result_mode, count))) != 0
11120 	      && CONST_INT_P (new_rtx)
11121 	      && merge_outer_ops (&outer_op, &outer_const, PLUS,
11122 				  INTVAL (new_rtx), int_result_mode,
11123 				  &complement_p))
11124 	    {
11125 	      varop = XEXP (varop, 0);
11126 	      continue;
11127 	    }
11128 
11129 	  /* Check for 'PLUS signbit', which is the canonical form of 'XOR
11130 	     signbit', and attempt to change the PLUS to an XOR and move it to
11131 	     the outer operation as is done above in the AND/IOR/XOR case
11132 	     leg for shift(logical). See details in logical handling above
11133 	     for reasoning in doing so.  */
11134 	  if (code == LSHIFTRT
11135 	      && CONST_INT_P (XEXP (varop, 1))
11136 	      && mode_signbit_p (int_result_mode, XEXP (varop, 1))
11137 	      && (new_rtx = simplify_const_binary_operation
11138 		  (code, int_result_mode,
11139 		   gen_int_mode (INTVAL (XEXP (varop, 1)), int_result_mode),
11140 		   gen_int_shift_amount (int_result_mode, count))) != 0
11141 	      && CONST_INT_P (new_rtx)
11142 	      && merge_outer_ops (&outer_op, &outer_const, XOR,
11143 				  INTVAL (new_rtx), int_result_mode,
11144 				  &complement_p))
11145 	    {
11146 	      varop = XEXP (varop, 0);
11147 	      continue;
11148 	    }
11149 
11150 	  break;
11151 
11152 	case MINUS:
11153 	  /* The following rules apply only to scalars.  */
11154 	  if (shift_mode != shift_unit_mode)
11155 	    break;
11156 	  int_varop_mode = as_a <scalar_int_mode> (GET_MODE (varop));
11157 
11158 	  /* If we have (xshiftrt (minus (ashiftrt X C)) X) C)
11159 	     with C the size of VAROP - 1 and the shift is logical if
11160 	     STORE_FLAG_VALUE is 1 and arithmetic if STORE_FLAG_VALUE is -1,
11161 	     we have a (gt X 0) operation.  If the shift is arithmetic with
11162 	     STORE_FLAG_VALUE of 1 or logical with STORE_FLAG_VALUE == -1,
11163 	     we have a (neg (gt X 0)) operation.  */
11164 
11165 	  if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
11166 	      && GET_CODE (XEXP (varop, 0)) == ASHIFTRT
11167 	      && count == (GET_MODE_PRECISION (int_varop_mode) - 1)
11168 	      && (code == LSHIFTRT || code == ASHIFTRT)
11169 	      && CONST_INT_P (XEXP (XEXP (varop, 0), 1))
11170 	      && INTVAL (XEXP (XEXP (varop, 0), 1)) == count
11171 	      && rtx_equal_p (XEXP (XEXP (varop, 0), 0), XEXP (varop, 1)))
11172 	    {
11173 	      count = 0;
11174 	      varop = gen_rtx_GT (int_varop_mode, XEXP (varop, 1),
11175 				  const0_rtx);
11176 
11177 	      if (STORE_FLAG_VALUE == 1 ? code == ASHIFTRT : code == LSHIFTRT)
11178 		varop = gen_rtx_NEG (int_varop_mode, varop);
11179 
11180 	      continue;
11181 	    }
11182 	  break;
11183 
11184 	case TRUNCATE:
11185 	  /* Change (lshiftrt (truncate (lshiftrt))) to (truncate (lshiftrt))
11186 	     if the truncate does not affect the value.  */
11187 	  if (code == LSHIFTRT
11188 	      && GET_CODE (XEXP (varop, 0)) == LSHIFTRT
11189 	      && CONST_INT_P (XEXP (XEXP (varop, 0), 1))
11190 	      && (INTVAL (XEXP (XEXP (varop, 0), 1))
11191 		  >= (GET_MODE_UNIT_PRECISION (GET_MODE (XEXP (varop, 0)))
11192 		      - GET_MODE_UNIT_PRECISION (GET_MODE (varop)))))
11193 	    {
11194 	      rtx varop_inner = XEXP (varop, 0);
11195 	      int new_count = count + INTVAL (XEXP (varop_inner, 1));
11196 	      rtx new_count_rtx = gen_int_shift_amount (GET_MODE (varop_inner),
11197 							new_count);
11198 	      varop_inner = gen_rtx_LSHIFTRT (GET_MODE (varop_inner),
11199 					      XEXP (varop_inner, 0),
11200 					      new_count_rtx);
11201 	      varop = gen_rtx_TRUNCATE (GET_MODE (varop), varop_inner);
11202 	      count = 0;
11203 	      continue;
11204 	    }
11205 	  break;
11206 
11207 	default:
11208 	  break;
11209 	}
11210 
11211       break;
11212     }
11213 
11214   shift_mode = result_mode;
11215   if (shift_mode != mode)
11216     {
11217       /* We only change the modes of scalar shifts.  */
11218       int_mode = as_a <scalar_int_mode> (mode);
11219       int_result_mode = as_a <scalar_int_mode> (result_mode);
11220       shift_mode = try_widen_shift_mode (code, varop, count, int_result_mode,
11221 					 int_mode, outer_op, outer_const);
11222     }
11223 
11224   /* We have now finished analyzing the shift.  The result should be
11225      a shift of type CODE with SHIFT_MODE shifting VAROP COUNT places.  If
11226      OUTER_OP is non-UNKNOWN, it is an operation that needs to be applied
11227      to the result of the shift.  OUTER_CONST is the relevant constant,
11228      but we must turn off all bits turned off in the shift.  */
11229 
11230   if (outer_op == UNKNOWN
11231       && orig_code == code && orig_count == count
11232       && varop == orig_varop
11233       && shift_mode == GET_MODE (varop))
11234     return NULL_RTX;
11235 
11236   /* Make a SUBREG if necessary.  If we can't make it, fail.  */
11237   varop = gen_lowpart (shift_mode, varop);
11238   if (varop == NULL_RTX || GET_CODE (varop) == CLOBBER)
11239     return NULL_RTX;
11240 
11241   /* If we have an outer operation and we just made a shift, it is
11242      possible that we could have simplified the shift were it not
11243      for the outer operation.  So try to do the simplification
11244      recursively.  */
11245 
11246   if (outer_op != UNKNOWN)
11247     x = simplify_shift_const_1 (code, shift_mode, varop, count);
11248   else
11249     x = NULL_RTX;
11250 
11251   if (x == NULL_RTX)
11252     x = simplify_gen_binary (code, shift_mode, varop,
11253 			     gen_int_shift_amount (shift_mode, count));
11254 
11255   /* If we were doing an LSHIFTRT in a wider mode than it was originally,
11256      turn off all the bits that the shift would have turned off.  */
11257   if (orig_code == LSHIFTRT && result_mode != shift_mode)
11258     /* We only change the modes of scalar shifts.  */
11259     x = simplify_and_const_int (NULL_RTX, as_a <scalar_int_mode> (shift_mode),
11260 				x, GET_MODE_MASK (result_mode) >> orig_count);
11261 
11262   /* Do the remainder of the processing in RESULT_MODE.  */
11263   x = gen_lowpart_or_truncate (result_mode, x);
11264 
11265   /* If COMPLEMENT_P is set, we have to complement X before doing the outer
11266      operation.  */
11267   if (complement_p)
11268     x = simplify_gen_unary (NOT, result_mode, x, result_mode);
11269 
11270   if (outer_op != UNKNOWN)
11271     {
11272       int_result_mode = as_a <scalar_int_mode> (result_mode);
11273 
11274       if (GET_RTX_CLASS (outer_op) != RTX_UNARY
11275 	  && GET_MODE_PRECISION (int_result_mode) < HOST_BITS_PER_WIDE_INT)
11276 	outer_const = trunc_int_for_mode (outer_const, int_result_mode);
11277 
11278       if (outer_op == AND)
11279 	x = simplify_and_const_int (NULL_RTX, int_result_mode, x, outer_const);
11280       else if (outer_op == SET)
11281 	{
11282 	  /* This means that we have determined that the result is
11283 	     equivalent to a constant.  This should be rare.  */
11284 	  if (!side_effects_p (x))
11285 	    x = GEN_INT (outer_const);
11286 	}
11287       else if (GET_RTX_CLASS (outer_op) == RTX_UNARY)
11288 	x = simplify_gen_unary (outer_op, int_result_mode, x, int_result_mode);
11289       else
11290 	x = simplify_gen_binary (outer_op, int_result_mode, x,
11291 				 GEN_INT (outer_const));
11292     }
11293 
11294   return x;
11295 }
11296 
11297 /* Simplify a shift of VAROP by COUNT bits.  CODE says what kind of shift.
11298    The result of the shift is RESULT_MODE.  If we cannot simplify it,
11299    return X or, if it is NULL, synthesize the expression with
11300    simplify_gen_binary.  Otherwise, return a simplified value.
11301 
11302    The shift is normally computed in the widest mode we find in VAROP, as
11303    long as it isn't a different number of words than RESULT_MODE.  Exceptions
11304    are ASHIFTRT and ROTATE, which are always done in their original mode.  */
11305 
11306 static rtx
simplify_shift_const(rtx x,enum rtx_code code,machine_mode result_mode,rtx varop,int count)11307 simplify_shift_const (rtx x, enum rtx_code code, machine_mode result_mode,
11308 		      rtx varop, int count)
11309 {
11310   rtx tem = simplify_shift_const_1 (code, result_mode, varop, count);
11311   if (tem)
11312     return tem;
11313 
11314   if (!x)
11315     x = simplify_gen_binary (code, GET_MODE (varop), varop,
11316 			     gen_int_shift_amount (GET_MODE (varop), count));
11317   if (GET_MODE (x) != result_mode)
11318     x = gen_lowpart (result_mode, x);
11319   return x;
11320 }
11321 
11322 
11323 /* A subroutine of recog_for_combine.  See there for arguments and
11324    return value.  */
11325 
11326 static int
recog_for_combine_1(rtx * pnewpat,rtx_insn * insn,rtx * pnotes)11327 recog_for_combine_1 (rtx *pnewpat, rtx_insn *insn, rtx *pnotes)
11328 {
11329   rtx pat = *pnewpat;
11330   rtx pat_without_clobbers;
11331   int insn_code_number;
11332   int num_clobbers_to_add = 0;
11333   int i;
11334   rtx notes = NULL_RTX;
11335   rtx old_notes, old_pat;
11336   int old_icode;
11337 
11338   /* If PAT is a PARALLEL, check to see if it contains the CLOBBER
11339      we use to indicate that something didn't match.  If we find such a
11340      thing, force rejection.  */
11341   if (GET_CODE (pat) == PARALLEL)
11342     for (i = XVECLEN (pat, 0) - 1; i >= 0; i--)
11343       if (GET_CODE (XVECEXP (pat, 0, i)) == CLOBBER
11344 	  && XEXP (XVECEXP (pat, 0, i), 0) == const0_rtx)
11345 	return -1;
11346 
11347   old_pat = PATTERN (insn);
11348   old_notes = REG_NOTES (insn);
11349   PATTERN (insn) = pat;
11350   REG_NOTES (insn) = NULL_RTX;
11351 
11352   insn_code_number = recog (pat, insn, &num_clobbers_to_add);
11353   if (dump_file && (dump_flags & TDF_DETAILS))
11354     {
11355       if (insn_code_number < 0)
11356 	fputs ("Failed to match this instruction:\n", dump_file);
11357       else
11358 	fputs ("Successfully matched this instruction:\n", dump_file);
11359       print_rtl_single (dump_file, pat);
11360     }
11361 
11362   /* If it isn't, there is the possibility that we previously had an insn
11363      that clobbered some register as a side effect, but the combined
11364      insn doesn't need to do that.  So try once more without the clobbers
11365      unless this represents an ASM insn.  */
11366 
11367   if (insn_code_number < 0 && ! check_asm_operands (pat)
11368       && GET_CODE (pat) == PARALLEL)
11369     {
11370       int pos;
11371 
11372       for (pos = 0, i = 0; i < XVECLEN (pat, 0); i++)
11373 	if (GET_CODE (XVECEXP (pat, 0, i)) != CLOBBER)
11374 	  {
11375 	    if (i != pos)
11376 	      SUBST (XVECEXP (pat, 0, pos), XVECEXP (pat, 0, i));
11377 	    pos++;
11378 	  }
11379 
11380       SUBST_INT (XVECLEN (pat, 0), pos);
11381 
11382       if (pos == 1)
11383 	pat = XVECEXP (pat, 0, 0);
11384 
11385       PATTERN (insn) = pat;
11386       insn_code_number = recog (pat, insn, &num_clobbers_to_add);
11387       if (dump_file && (dump_flags & TDF_DETAILS))
11388 	{
11389 	  if (insn_code_number < 0)
11390 	    fputs ("Failed to match this instruction:\n", dump_file);
11391 	  else
11392 	    fputs ("Successfully matched this instruction:\n", dump_file);
11393 	  print_rtl_single (dump_file, pat);
11394 	}
11395     }
11396 
11397   pat_without_clobbers = pat;
11398 
11399   PATTERN (insn) = old_pat;
11400   REG_NOTES (insn) = old_notes;
11401 
11402   /* Recognize all noop sets, these will be killed by followup pass.  */
11403   if (insn_code_number < 0 && GET_CODE (pat) == SET && set_noop_p (pat))
11404     insn_code_number = NOOP_MOVE_INSN_CODE, num_clobbers_to_add = 0;
11405 
11406   /* If we had any clobbers to add, make a new pattern than contains
11407      them.  Then check to make sure that all of them are dead.  */
11408   if (num_clobbers_to_add)
11409     {
11410       rtx newpat = gen_rtx_PARALLEL (VOIDmode,
11411 				     rtvec_alloc (GET_CODE (pat) == PARALLEL
11412 						  ? (XVECLEN (pat, 0)
11413 						     + num_clobbers_to_add)
11414 						  : num_clobbers_to_add + 1));
11415 
11416       if (GET_CODE (pat) == PARALLEL)
11417 	for (i = 0; i < XVECLEN (pat, 0); i++)
11418 	  XVECEXP (newpat, 0, i) = XVECEXP (pat, 0, i);
11419       else
11420 	XVECEXP (newpat, 0, 0) = pat;
11421 
11422       add_clobbers (newpat, insn_code_number);
11423 
11424       for (i = XVECLEN (newpat, 0) - num_clobbers_to_add;
11425 	   i < XVECLEN (newpat, 0); i++)
11426 	{
11427 	  if (REG_P (XEXP (XVECEXP (newpat, 0, i), 0))
11428 	      && ! reg_dead_at_p (XEXP (XVECEXP (newpat, 0, i), 0), insn))
11429 	    return -1;
11430 	  if (GET_CODE (XEXP (XVECEXP (newpat, 0, i), 0)) != SCRATCH)
11431 	    {
11432 	      gcc_assert (REG_P (XEXP (XVECEXP (newpat, 0, i), 0)));
11433 	      notes = alloc_reg_note (REG_UNUSED,
11434 				      XEXP (XVECEXP (newpat, 0, i), 0), notes);
11435 	    }
11436 	}
11437       pat = newpat;
11438     }
11439 
11440   if (insn_code_number >= 0
11441       && insn_code_number != NOOP_MOVE_INSN_CODE)
11442     {
11443       old_pat = PATTERN (insn);
11444       old_notes = REG_NOTES (insn);
11445       old_icode = INSN_CODE (insn);
11446       PATTERN (insn) = pat;
11447       REG_NOTES (insn) = notes;
11448       INSN_CODE (insn) = insn_code_number;
11449 
11450       /* Allow targets to reject combined insn.  */
11451       if (!targetm.legitimate_combined_insn (insn))
11452 	{
11453 	  if (dump_file && (dump_flags & TDF_DETAILS))
11454 	    fputs ("Instruction not appropriate for target.",
11455 		   dump_file);
11456 
11457 	  /* Callers expect recog_for_combine to strip
11458 	     clobbers from the pattern on failure.  */
11459 	  pat = pat_without_clobbers;
11460 	  notes = NULL_RTX;
11461 
11462 	  insn_code_number = -1;
11463 	}
11464 
11465       PATTERN (insn) = old_pat;
11466       REG_NOTES (insn) = old_notes;
11467       INSN_CODE (insn) = old_icode;
11468     }
11469 
11470   *pnewpat = pat;
11471   *pnotes = notes;
11472 
11473   return insn_code_number;
11474 }
11475 
11476 /* Change every ZERO_EXTRACT and ZERO_EXTEND of a SUBREG that can be
11477    expressed as an AND and maybe an LSHIFTRT, to that formulation.
11478    Return whether anything was so changed.  */
11479 
11480 static bool
change_zero_ext(rtx pat)11481 change_zero_ext (rtx pat)
11482 {
11483   bool changed = false;
11484   rtx *src = &SET_SRC (pat);
11485 
11486   subrtx_ptr_iterator::array_type array;
11487   FOR_EACH_SUBRTX_PTR (iter, array, src, NONCONST)
11488     {
11489       rtx x = **iter;
11490       scalar_int_mode mode, inner_mode;
11491       if (!is_a <scalar_int_mode> (GET_MODE (x), &mode))
11492 	continue;
11493       int size;
11494 
11495       if (GET_CODE (x) == ZERO_EXTRACT
11496 	  && CONST_INT_P (XEXP (x, 1))
11497 	  && CONST_INT_P (XEXP (x, 2))
11498 	  && is_a <scalar_int_mode> (GET_MODE (XEXP (x, 0)), &inner_mode)
11499 	  && GET_MODE_PRECISION (inner_mode) <= GET_MODE_PRECISION (mode))
11500 	{
11501 	  size = INTVAL (XEXP (x, 1));
11502 
11503 	  int start = INTVAL (XEXP (x, 2));
11504 	  if (BITS_BIG_ENDIAN)
11505 	    start = GET_MODE_PRECISION (inner_mode) - size - start;
11506 
11507 	  if (start != 0)
11508 	    x = gen_rtx_LSHIFTRT (inner_mode, XEXP (x, 0),
11509 				  gen_int_shift_amount (inner_mode, start));
11510 	  else
11511 	    x = XEXP (x, 0);
11512 
11513 	  if (mode != inner_mode)
11514 	    {
11515 	      if (REG_P (x) && HARD_REGISTER_P (x)
11516 		  && !can_change_dest_mode (x, 0, mode))
11517 		continue;
11518 
11519 	      x = gen_lowpart_SUBREG (mode, x);
11520 	    }
11521 	}
11522       else if (GET_CODE (x) == ZERO_EXTEND
11523 	       && GET_CODE (XEXP (x, 0)) == SUBREG
11524 	       && SCALAR_INT_MODE_P (GET_MODE (SUBREG_REG (XEXP (x, 0))))
11525 	       && !paradoxical_subreg_p (XEXP (x, 0))
11526 	       && subreg_lowpart_p (XEXP (x, 0)))
11527 	{
11528 	  inner_mode = as_a <scalar_int_mode> (GET_MODE (XEXP (x, 0)));
11529 	  size = GET_MODE_PRECISION (inner_mode);
11530 	  x = SUBREG_REG (XEXP (x, 0));
11531 	  if (GET_MODE (x) != mode)
11532 	    {
11533 	      if (REG_P (x) && HARD_REGISTER_P (x)
11534 		  && !can_change_dest_mode (x, 0, mode))
11535 		continue;
11536 
11537 	      x = gen_lowpart_SUBREG (mode, x);
11538 	    }
11539 	}
11540       else if (GET_CODE (x) == ZERO_EXTEND
11541 	       && REG_P (XEXP (x, 0))
11542 	       && HARD_REGISTER_P (XEXP (x, 0))
11543 	       && can_change_dest_mode (XEXP (x, 0), 0, mode))
11544 	{
11545 	  inner_mode = as_a <scalar_int_mode> (GET_MODE (XEXP (x, 0)));
11546 	  size = GET_MODE_PRECISION (inner_mode);
11547 	  x = gen_rtx_REG (mode, REGNO (XEXP (x, 0)));
11548 	}
11549       else
11550 	continue;
11551 
11552       if (!(GET_CODE (x) == LSHIFTRT
11553 	    && CONST_INT_P (XEXP (x, 1))
11554 	    && size + INTVAL (XEXP (x, 1)) == GET_MODE_PRECISION (mode)))
11555 	{
11556 	  wide_int mask = wi::mask (size, false, GET_MODE_PRECISION (mode));
11557 	  x = gen_rtx_AND (mode, x, immed_wide_int_const (mask, mode));
11558 	}
11559 
11560       SUBST (**iter, x);
11561       changed = true;
11562     }
11563 
11564   if (changed)
11565     FOR_EACH_SUBRTX_PTR (iter, array, src, NONCONST)
11566       maybe_swap_commutative_operands (**iter);
11567 
11568   rtx *dst = &SET_DEST (pat);
11569   scalar_int_mode mode;
11570   if (GET_CODE (*dst) == ZERO_EXTRACT
11571       && REG_P (XEXP (*dst, 0))
11572       && is_a <scalar_int_mode> (GET_MODE (XEXP (*dst, 0)), &mode)
11573       && CONST_INT_P (XEXP (*dst, 1))
11574       && CONST_INT_P (XEXP (*dst, 2)))
11575     {
11576       rtx reg = XEXP (*dst, 0);
11577       int width = INTVAL (XEXP (*dst, 1));
11578       int offset = INTVAL (XEXP (*dst, 2));
11579       int reg_width = GET_MODE_PRECISION (mode);
11580       if (BITS_BIG_ENDIAN)
11581 	offset = reg_width - width - offset;
11582 
11583       rtx x, y, z, w;
11584       wide_int mask = wi::shifted_mask (offset, width, true, reg_width);
11585       wide_int mask2 = wi::shifted_mask (offset, width, false, reg_width);
11586       x = gen_rtx_AND (mode, reg, immed_wide_int_const (mask, mode));
11587       if (offset)
11588 	y = gen_rtx_ASHIFT (mode, SET_SRC (pat), GEN_INT (offset));
11589       else
11590 	y = SET_SRC (pat);
11591       z = gen_rtx_AND (mode, y, immed_wide_int_const (mask2, mode));
11592       w = gen_rtx_IOR (mode, x, z);
11593       SUBST (SET_DEST (pat), reg);
11594       SUBST (SET_SRC (pat), w);
11595 
11596       changed = true;
11597     }
11598 
11599   return changed;
11600 }
11601 
11602 /* Like recog, but we receive the address of a pointer to a new pattern.
11603    We try to match the rtx that the pointer points to.
11604    If that fails, we may try to modify or replace the pattern,
11605    storing the replacement into the same pointer object.
11606 
11607    Modifications include deletion or addition of CLOBBERs.  If the
11608    instruction will still not match, we change ZERO_EXTEND and ZERO_EXTRACT
11609    to the equivalent AND and perhaps LSHIFTRT patterns, and try with that
11610    (and undo if that fails).
11611 
11612    PNOTES is a pointer to a location where any REG_UNUSED notes added for
11613    the CLOBBERs are placed.
11614 
11615    The value is the final insn code from the pattern ultimately matched,
11616    or -1.  */
11617 
11618 static int
recog_for_combine(rtx * pnewpat,rtx_insn * insn,rtx * pnotes)11619 recog_for_combine (rtx *pnewpat, rtx_insn *insn, rtx *pnotes)
11620 {
11621   rtx pat = *pnewpat;
11622   int insn_code_number = recog_for_combine_1 (pnewpat, insn, pnotes);
11623   if (insn_code_number >= 0 || check_asm_operands (pat))
11624     return insn_code_number;
11625 
11626   void *marker = get_undo_marker ();
11627   bool changed = false;
11628 
11629   if (GET_CODE (pat) == SET)
11630     {
11631       /* For an unrecognized single set of a constant, try placing it in
11632 	 the constant pool, if this function already uses one.  */
11633       rtx src = SET_SRC (pat);
11634       if (CONSTANT_P (src)
11635 	  && !CONST_INT_P (src)
11636 	  && crtl->uses_const_pool)
11637 	{
11638 	  machine_mode mode = GET_MODE (src);
11639 	  if (mode == VOIDmode)
11640 	    mode = GET_MODE (SET_DEST (pat));
11641 	  src = force_const_mem (mode, src);
11642 	  if (src)
11643 	    {
11644 	      SUBST (SET_SRC (pat), src);
11645 	      changed = true;
11646 	    }
11647 	}
11648       else
11649 	changed = change_zero_ext (pat);
11650     }
11651   else if (GET_CODE (pat) == PARALLEL)
11652     {
11653       int i;
11654       for (i = 0; i < XVECLEN (pat, 0); i++)
11655 	{
11656 	  rtx set = XVECEXP (pat, 0, i);
11657 	  if (GET_CODE (set) == SET)
11658 	    changed |= change_zero_ext (set);
11659 	}
11660     }
11661 
11662   if (changed)
11663     {
11664       insn_code_number = recog_for_combine_1 (pnewpat, insn, pnotes);
11665 
11666       if (insn_code_number < 0)
11667 	undo_to_marker (marker);
11668     }
11669 
11670   return insn_code_number;
11671 }
11672 
11673 /* Like gen_lowpart_general but for use by combine.  In combine it
11674    is not possible to create any new pseudoregs.  However, it is
11675    safe to create invalid memory addresses, because combine will
11676    try to recognize them and all they will do is make the combine
11677    attempt fail.
11678 
11679    If for some reason this cannot do its job, an rtx
11680    (clobber (const_int 0)) is returned.
11681    An insn containing that will not be recognized.  */
11682 
11683 static rtx
gen_lowpart_for_combine(machine_mode omode,rtx x)11684 gen_lowpart_for_combine (machine_mode omode, rtx x)
11685 {
11686   machine_mode imode = GET_MODE (x);
11687   rtx result;
11688 
11689   if (omode == imode)
11690     return x;
11691 
11692   /* We can only support MODE being wider than a word if X is a
11693      constant integer or has a mode the same size.  */
11694   if (maybe_gt (GET_MODE_SIZE (omode), UNITS_PER_WORD)
11695       && ! (CONST_SCALAR_INT_P (x)
11696 	    || known_eq (GET_MODE_SIZE (imode), GET_MODE_SIZE (omode))))
11697     goto fail;
11698 
11699   /* X might be a paradoxical (subreg (mem)).  In that case, gen_lowpart
11700      won't know what to do.  So we will strip off the SUBREG here and
11701      process normally.  */
11702   if (GET_CODE (x) == SUBREG && MEM_P (SUBREG_REG (x)))
11703     {
11704       x = SUBREG_REG (x);
11705 
11706       /* For use in case we fall down into the address adjustments
11707 	 further below, we need to adjust the known mode and size of
11708 	 x; imode and isize, since we just adjusted x.  */
11709       imode = GET_MODE (x);
11710 
11711       if (imode == omode)
11712 	return x;
11713     }
11714 
11715   result = gen_lowpart_common (omode, x);
11716 
11717   if (result)
11718     return result;
11719 
11720   if (MEM_P (x))
11721     {
11722       /* Refuse to work on a volatile memory ref or one with a mode-dependent
11723 	 address.  */
11724       if (MEM_VOLATILE_P (x)
11725 	  || mode_dependent_address_p (XEXP (x, 0), MEM_ADDR_SPACE (x)))
11726 	goto fail;
11727 
11728       /* If we want to refer to something bigger than the original memref,
11729 	 generate a paradoxical subreg instead.  That will force a reload
11730 	 of the original memref X.  */
11731       if (paradoxical_subreg_p (omode, imode))
11732 	return gen_rtx_SUBREG (omode, x, 0);
11733 
11734       poly_int64 offset = byte_lowpart_offset (omode, imode);
11735       return adjust_address_nv (x, omode, offset);
11736     }
11737 
11738   /* If X is a comparison operator, rewrite it in a new mode.  This
11739      probably won't match, but may allow further simplifications.  */
11740   else if (COMPARISON_P (x)
11741 	   && SCALAR_INT_MODE_P (imode)
11742 	   && SCALAR_INT_MODE_P (omode))
11743     return gen_rtx_fmt_ee (GET_CODE (x), omode, XEXP (x, 0), XEXP (x, 1));
11744 
11745   /* If we couldn't simplify X any other way, just enclose it in a
11746      SUBREG.  Normally, this SUBREG won't match, but some patterns may
11747      include an explicit SUBREG or we may simplify it further in combine.  */
11748   else
11749     {
11750       rtx res;
11751 
11752       if (imode == VOIDmode)
11753 	{
11754 	  imode = int_mode_for_mode (omode).require ();
11755 	  x = gen_lowpart_common (imode, x);
11756 	  if (x == NULL)
11757 	    goto fail;
11758 	}
11759       res = lowpart_subreg (omode, x, imode);
11760       if (res)
11761 	return res;
11762     }
11763 
11764  fail:
11765   return gen_rtx_CLOBBER (omode, const0_rtx);
11766 }
11767 
11768 /* Try to simplify a comparison between OP0 and a constant OP1,
11769    where CODE is the comparison code that will be tested, into a
11770    (CODE OP0 const0_rtx) form.
11771 
11772    The result is a possibly different comparison code to use.
11773    *POP1 may be updated.  */
11774 
11775 static enum rtx_code
simplify_compare_const(enum rtx_code code,machine_mode mode,rtx op0,rtx * pop1)11776 simplify_compare_const (enum rtx_code code, machine_mode mode,
11777 			rtx op0, rtx *pop1)
11778 {
11779   scalar_int_mode int_mode;
11780   HOST_WIDE_INT const_op = INTVAL (*pop1);
11781 
11782   /* Get the constant we are comparing against and turn off all bits
11783      not on in our mode.  */
11784   if (mode != VOIDmode)
11785     const_op = trunc_int_for_mode (const_op, mode);
11786 
11787   /* If we are comparing against a constant power of two and the value
11788      being compared can only have that single bit nonzero (e.g., it was
11789      `and'ed with that bit), we can replace this with a comparison
11790      with zero.  */
11791   if (const_op
11792       && (code == EQ || code == NE || code == GEU || code == LTU
11793 	  /* This optimization is incorrect for signed >= INT_MIN or
11794 	     < INT_MIN, those are always true or always false.  */
11795 	  || ((code == GE || code == LT) && const_op > 0))
11796       && is_a <scalar_int_mode> (mode, &int_mode)
11797       && GET_MODE_PRECISION (int_mode) - 1 < HOST_BITS_PER_WIDE_INT
11798       && pow2p_hwi (const_op & GET_MODE_MASK (int_mode))
11799       && (nonzero_bits (op0, int_mode)
11800 	  == (unsigned HOST_WIDE_INT) (const_op & GET_MODE_MASK (int_mode))))
11801     {
11802       code = (code == EQ || code == GE || code == GEU ? NE : EQ);
11803       const_op = 0;
11804     }
11805 
11806   /* Similarly, if we are comparing a value known to be either -1 or
11807      0 with -1, change it to the opposite comparison against zero.  */
11808   if (const_op == -1
11809       && (code == EQ || code == NE || code == GT || code == LE
11810 	  || code == GEU || code == LTU)
11811       && is_a <scalar_int_mode> (mode, &int_mode)
11812       && num_sign_bit_copies (op0, int_mode) == GET_MODE_PRECISION (int_mode))
11813     {
11814       code = (code == EQ || code == LE || code == GEU ? NE : EQ);
11815       const_op = 0;
11816     }
11817 
11818   /* Do some canonicalizations based on the comparison code.  We prefer
11819      comparisons against zero and then prefer equality comparisons.
11820      If we can reduce the size of a constant, we will do that too.  */
11821   switch (code)
11822     {
11823     case LT:
11824       /* < C is equivalent to <= (C - 1) */
11825       if (const_op > 0)
11826 	{
11827 	  const_op -= 1;
11828 	  code = LE;
11829 	  /* ... fall through to LE case below.  */
11830 	  gcc_fallthrough ();
11831 	}
11832       else
11833 	break;
11834 
11835     case LE:
11836       /* <= C is equivalent to < (C + 1); we do this for C < 0  */
11837       if (const_op < 0)
11838 	{
11839 	  const_op += 1;
11840 	  code = LT;
11841 	}
11842 
11843       /* If we are doing a <= 0 comparison on a value known to have
11844 	 a zero sign bit, we can replace this with == 0.  */
11845       else if (const_op == 0
11846 	       && is_a <scalar_int_mode> (mode, &int_mode)
11847 	       && GET_MODE_PRECISION (int_mode) - 1 < HOST_BITS_PER_WIDE_INT
11848 	       && (nonzero_bits (op0, int_mode)
11849 		   & (HOST_WIDE_INT_1U << (GET_MODE_PRECISION (int_mode) - 1)))
11850 	       == 0)
11851 	code = EQ;
11852       break;
11853 
11854     case GE:
11855       /* >= C is equivalent to > (C - 1).  */
11856       if (const_op > 0)
11857 	{
11858 	  const_op -= 1;
11859 	  code = GT;
11860 	  /* ... fall through to GT below.  */
11861 	  gcc_fallthrough ();
11862 	}
11863       else
11864 	break;
11865 
11866     case GT:
11867       /* > C is equivalent to >= (C + 1); we do this for C < 0.  */
11868       if (const_op < 0)
11869 	{
11870 	  const_op += 1;
11871 	  code = GE;
11872 	}
11873 
11874       /* If we are doing a > 0 comparison on a value known to have
11875 	 a zero sign bit, we can replace this with != 0.  */
11876       else if (const_op == 0
11877 	       && is_a <scalar_int_mode> (mode, &int_mode)
11878 	       && GET_MODE_PRECISION (int_mode) - 1 < HOST_BITS_PER_WIDE_INT
11879 	       && (nonzero_bits (op0, int_mode)
11880 		   & (HOST_WIDE_INT_1U << (GET_MODE_PRECISION (int_mode) - 1)))
11881 	       == 0)
11882 	code = NE;
11883       break;
11884 
11885     case LTU:
11886       /* < C is equivalent to <= (C - 1).  */
11887       if (const_op > 0)
11888 	{
11889 	  const_op -= 1;
11890 	  code = LEU;
11891 	  /* ... fall through ...  */
11892 	  gcc_fallthrough ();
11893 	}
11894       /* (unsigned) < 0x80000000 is equivalent to >= 0.  */
11895       else if (is_a <scalar_int_mode> (mode, &int_mode)
11896 	       && GET_MODE_PRECISION (int_mode) - 1 < HOST_BITS_PER_WIDE_INT
11897 	       && ((unsigned HOST_WIDE_INT) const_op
11898 		   == HOST_WIDE_INT_1U << (GET_MODE_PRECISION (int_mode) - 1)))
11899 	{
11900 	  const_op = 0;
11901 	  code = GE;
11902 	  break;
11903 	}
11904       else
11905 	break;
11906 
11907     case LEU:
11908       /* unsigned <= 0 is equivalent to == 0 */
11909       if (const_op == 0)
11910 	code = EQ;
11911       /* (unsigned) <= 0x7fffffff is equivalent to >= 0.  */
11912       else if (is_a <scalar_int_mode> (mode, &int_mode)
11913 	       && GET_MODE_PRECISION (int_mode) - 1 < HOST_BITS_PER_WIDE_INT
11914 	       && ((unsigned HOST_WIDE_INT) const_op
11915 		   == ((HOST_WIDE_INT_1U
11916 			<< (GET_MODE_PRECISION (int_mode) - 1)) - 1)))
11917 	{
11918 	  const_op = 0;
11919 	  code = GE;
11920 	}
11921       break;
11922 
11923     case GEU:
11924       /* >= C is equivalent to > (C - 1).  */
11925       if (const_op > 1)
11926 	{
11927 	  const_op -= 1;
11928 	  code = GTU;
11929 	  /* ... fall through ...  */
11930 	  gcc_fallthrough ();
11931 	}
11932 
11933       /* (unsigned) >= 0x80000000 is equivalent to < 0.  */
11934       else if (is_a <scalar_int_mode> (mode, &int_mode)
11935 	       && GET_MODE_PRECISION (int_mode) - 1 < HOST_BITS_PER_WIDE_INT
11936 	       && ((unsigned HOST_WIDE_INT) const_op
11937 		   == HOST_WIDE_INT_1U << (GET_MODE_PRECISION (int_mode) - 1)))
11938 	{
11939 	  const_op = 0;
11940 	  code = LT;
11941 	  break;
11942 	}
11943       else
11944 	break;
11945 
11946     case GTU:
11947       /* unsigned > 0 is equivalent to != 0 */
11948       if (const_op == 0)
11949 	code = NE;
11950       /* (unsigned) > 0x7fffffff is equivalent to < 0.  */
11951       else if (is_a <scalar_int_mode> (mode, &int_mode)
11952 	       && GET_MODE_PRECISION (int_mode) - 1 < HOST_BITS_PER_WIDE_INT
11953 	       && ((unsigned HOST_WIDE_INT) const_op
11954 		   == (HOST_WIDE_INT_1U
11955 		       << (GET_MODE_PRECISION (int_mode) - 1)) - 1))
11956 	{
11957 	  const_op = 0;
11958 	  code = LT;
11959 	}
11960       break;
11961 
11962     default:
11963       break;
11964     }
11965 
11966   *pop1 = GEN_INT (const_op);
11967   return code;
11968 }
11969 
11970 /* Simplify a comparison between *POP0 and *POP1 where CODE is the
11971    comparison code that will be tested.
11972 
11973    The result is a possibly different comparison code to use.  *POP0 and
11974    *POP1 may be updated.
11975 
11976    It is possible that we might detect that a comparison is either always
11977    true or always false.  However, we do not perform general constant
11978    folding in combine, so this knowledge isn't useful.  Such tautologies
11979    should have been detected earlier.  Hence we ignore all such cases.  */
11980 
11981 static enum rtx_code
simplify_comparison(enum rtx_code code,rtx * pop0,rtx * pop1)11982 simplify_comparison (enum rtx_code code, rtx *pop0, rtx *pop1)
11983 {
11984   rtx op0 = *pop0;
11985   rtx op1 = *pop1;
11986   rtx tem, tem1;
11987   int i;
11988   scalar_int_mode mode, inner_mode, tmode;
11989   opt_scalar_int_mode tmode_iter;
11990 
11991   /* Try a few ways of applying the same transformation to both operands.  */
11992   while (1)
11993     {
11994       /* The test below this one won't handle SIGN_EXTENDs on these machines,
11995 	 so check specially.  */
11996       if (!WORD_REGISTER_OPERATIONS
11997 	  && code != GTU && code != GEU && code != LTU && code != LEU
11998 	  && GET_CODE (op0) == ASHIFTRT && GET_CODE (op1) == ASHIFTRT
11999 	  && GET_CODE (XEXP (op0, 0)) == ASHIFT
12000 	  && GET_CODE (XEXP (op1, 0)) == ASHIFT
12001 	  && GET_CODE (XEXP (XEXP (op0, 0), 0)) == SUBREG
12002 	  && GET_CODE (XEXP (XEXP (op1, 0), 0)) == SUBREG
12003 	  && is_a <scalar_int_mode> (GET_MODE (op0), &mode)
12004 	  && (is_a <scalar_int_mode>
12005 	      (GET_MODE (SUBREG_REG (XEXP (XEXP (op0, 0), 0))), &inner_mode))
12006 	  && inner_mode == GET_MODE (SUBREG_REG (XEXP (XEXP (op1, 0), 0)))
12007 	  && CONST_INT_P (XEXP (op0, 1))
12008 	  && XEXP (op0, 1) == XEXP (op1, 1)
12009 	  && XEXP (op0, 1) == XEXP (XEXP (op0, 0), 1)
12010 	  && XEXP (op0, 1) == XEXP (XEXP (op1, 0), 1)
12011 	  && (INTVAL (XEXP (op0, 1))
12012 	      == (GET_MODE_PRECISION (mode)
12013 		  - GET_MODE_PRECISION (inner_mode))))
12014 	{
12015 	  op0 = SUBREG_REG (XEXP (XEXP (op0, 0), 0));
12016 	  op1 = SUBREG_REG (XEXP (XEXP (op1, 0), 0));
12017 	}
12018 
12019       /* If both operands are the same constant shift, see if we can ignore the
12020 	 shift.  We can if the shift is a rotate or if the bits shifted out of
12021 	 this shift are known to be zero for both inputs and if the type of
12022 	 comparison is compatible with the shift.  */
12023       if (GET_CODE (op0) == GET_CODE (op1)
12024 	  && HWI_COMPUTABLE_MODE_P (GET_MODE (op0))
12025 	  && ((GET_CODE (op0) == ROTATE && (code == NE || code == EQ))
12026 	      || ((GET_CODE (op0) == LSHIFTRT || GET_CODE (op0) == ASHIFT)
12027 		  && (code != GT && code != LT && code != GE && code != LE))
12028 	      || (GET_CODE (op0) == ASHIFTRT
12029 		  && (code != GTU && code != LTU
12030 		      && code != GEU && code != LEU)))
12031 	  && CONST_INT_P (XEXP (op0, 1))
12032 	  && INTVAL (XEXP (op0, 1)) >= 0
12033 	  && INTVAL (XEXP (op0, 1)) < HOST_BITS_PER_WIDE_INT
12034 	  && XEXP (op0, 1) == XEXP (op1, 1))
12035 	{
12036 	  machine_mode mode = GET_MODE (op0);
12037 	  unsigned HOST_WIDE_INT mask = GET_MODE_MASK (mode);
12038 	  int shift_count = INTVAL (XEXP (op0, 1));
12039 
12040 	  if (GET_CODE (op0) == LSHIFTRT || GET_CODE (op0) == ASHIFTRT)
12041 	    mask &= (mask >> shift_count) << shift_count;
12042 	  else if (GET_CODE (op0) == ASHIFT)
12043 	    mask = (mask & (mask << shift_count)) >> shift_count;
12044 
12045 	  if ((nonzero_bits (XEXP (op0, 0), mode) & ~mask) == 0
12046 	      && (nonzero_bits (XEXP (op1, 0), mode) & ~mask) == 0)
12047 	    op0 = XEXP (op0, 0), op1 = XEXP (op1, 0);
12048 	  else
12049 	    break;
12050 	}
12051 
12052       /* If both operands are AND's of a paradoxical SUBREG by constant, the
12053 	 SUBREGs are of the same mode, and, in both cases, the AND would
12054 	 be redundant if the comparison was done in the narrower mode,
12055 	 do the comparison in the narrower mode (e.g., we are AND'ing with 1
12056 	 and the operand's possibly nonzero bits are 0xffffff01; in that case
12057 	 if we only care about QImode, we don't need the AND).  This case
12058 	 occurs if the output mode of an scc insn is not SImode and
12059 	 STORE_FLAG_VALUE == 1 (e.g., the 386).
12060 
12061 	 Similarly, check for a case where the AND's are ZERO_EXTEND
12062 	 operations from some narrower mode even though a SUBREG is not
12063 	 present.  */
12064 
12065       else if (GET_CODE (op0) == AND && GET_CODE (op1) == AND
12066 	       && CONST_INT_P (XEXP (op0, 1))
12067 	       && CONST_INT_P (XEXP (op1, 1)))
12068 	{
12069 	  rtx inner_op0 = XEXP (op0, 0);
12070 	  rtx inner_op1 = XEXP (op1, 0);
12071 	  HOST_WIDE_INT c0 = INTVAL (XEXP (op0, 1));
12072 	  HOST_WIDE_INT c1 = INTVAL (XEXP (op1, 1));
12073 	  int changed = 0;
12074 
12075 	  if (paradoxical_subreg_p (inner_op0)
12076 	      && GET_CODE (inner_op1) == SUBREG
12077 	      && HWI_COMPUTABLE_MODE_P (GET_MODE (SUBREG_REG (inner_op0)))
12078 	      && (GET_MODE (SUBREG_REG (inner_op0))
12079 		  == GET_MODE (SUBREG_REG (inner_op1)))
12080 	      && ((~c0) & nonzero_bits (SUBREG_REG (inner_op0),
12081 					GET_MODE (SUBREG_REG (inner_op0)))) == 0
12082 	      && ((~c1) & nonzero_bits (SUBREG_REG (inner_op1),
12083 					GET_MODE (SUBREG_REG (inner_op1)))) == 0)
12084 	    {
12085 	      op0 = SUBREG_REG (inner_op0);
12086 	      op1 = SUBREG_REG (inner_op1);
12087 
12088 	      /* The resulting comparison is always unsigned since we masked
12089 		 off the original sign bit.  */
12090 	      code = unsigned_condition (code);
12091 
12092 	      changed = 1;
12093 	    }
12094 
12095 	  else if (c0 == c1)
12096 	    FOR_EACH_MODE_UNTIL (tmode,
12097 				 as_a <scalar_int_mode> (GET_MODE (op0)))
12098 	      if ((unsigned HOST_WIDE_INT) c0 == GET_MODE_MASK (tmode))
12099 		{
12100 		  op0 = gen_lowpart_or_truncate (tmode, inner_op0);
12101 		  op1 = gen_lowpart_or_truncate (tmode, inner_op1);
12102 		  code = unsigned_condition (code);
12103 		  changed = 1;
12104 		  break;
12105 		}
12106 
12107 	  if (! changed)
12108 	    break;
12109 	}
12110 
12111       /* If both operands are NOT, we can strip off the outer operation
12112 	 and adjust the comparison code for swapped operands; similarly for
12113 	 NEG, except that this must be an equality comparison.  */
12114       else if ((GET_CODE (op0) == NOT && GET_CODE (op1) == NOT)
12115 	       || (GET_CODE (op0) == NEG && GET_CODE (op1) == NEG
12116 		   && (code == EQ || code == NE)))
12117 	op0 = XEXP (op0, 0), op1 = XEXP (op1, 0), code = swap_condition (code);
12118 
12119       else
12120 	break;
12121     }
12122 
12123   /* If the first operand is a constant, swap the operands and adjust the
12124      comparison code appropriately, but don't do this if the second operand
12125      is already a constant integer.  */
12126   if (swap_commutative_operands_p (op0, op1))
12127     {
12128       std::swap (op0, op1);
12129       code = swap_condition (code);
12130     }
12131 
12132   /* We now enter a loop during which we will try to simplify the comparison.
12133      For the most part, we only are concerned with comparisons with zero,
12134      but some things may really be comparisons with zero but not start
12135      out looking that way.  */
12136 
12137   while (CONST_INT_P (op1))
12138     {
12139       machine_mode raw_mode = GET_MODE (op0);
12140       scalar_int_mode int_mode;
12141       int equality_comparison_p;
12142       int sign_bit_comparison_p;
12143       int unsigned_comparison_p;
12144       HOST_WIDE_INT const_op;
12145 
12146       /* We only want to handle integral modes.  This catches VOIDmode,
12147 	 CCmode, and the floating-point modes.  An exception is that we
12148 	 can handle VOIDmode if OP0 is a COMPARE or a comparison
12149 	 operation.  */
12150 
12151       if (GET_MODE_CLASS (raw_mode) != MODE_INT
12152 	  && ! (raw_mode == VOIDmode
12153 		&& (GET_CODE (op0) == COMPARE || COMPARISON_P (op0))))
12154 	break;
12155 
12156       /* Try to simplify the compare to constant, possibly changing the
12157 	 comparison op, and/or changing op1 to zero.  */
12158       code = simplify_compare_const (code, raw_mode, op0, &op1);
12159       const_op = INTVAL (op1);
12160 
12161       /* Compute some predicates to simplify code below.  */
12162 
12163       equality_comparison_p = (code == EQ || code == NE);
12164       sign_bit_comparison_p = ((code == LT || code == GE) && const_op == 0);
12165       unsigned_comparison_p = (code == LTU || code == LEU || code == GTU
12166 			       || code == GEU);
12167 
12168       /* If this is a sign bit comparison and we can do arithmetic in
12169 	 MODE, say that we will only be needing the sign bit of OP0.  */
12170       if (sign_bit_comparison_p
12171 	  && is_a <scalar_int_mode> (raw_mode, &int_mode)
12172 	  && HWI_COMPUTABLE_MODE_P (int_mode))
12173 	op0 = force_to_mode (op0, int_mode,
12174 			     HOST_WIDE_INT_1U
12175 			     << (GET_MODE_PRECISION (int_mode) - 1),
12176 			     0);
12177 
12178       if (COMPARISON_P (op0))
12179 	{
12180 	  /* We can't do anything if OP0 is a condition code value, rather
12181 	     than an actual data value.  */
12182 	  if (const_op != 0
12183 	      || GET_MODE_CLASS (GET_MODE (XEXP (op0, 0))) == MODE_CC)
12184 	    break;
12185 
12186 	  /* Get the two operands being compared.  */
12187 	  if (GET_CODE (XEXP (op0, 0)) == COMPARE)
12188 	    tem = XEXP (XEXP (op0, 0), 0), tem1 = XEXP (XEXP (op0, 0), 1);
12189 	  else
12190 	    tem = XEXP (op0, 0), tem1 = XEXP (op0, 1);
12191 
12192 	  /* Check for the cases where we simply want the result of the
12193 	     earlier test or the opposite of that result.  */
12194 	  if (code == NE || code == EQ
12195 	      || (val_signbit_known_set_p (raw_mode, STORE_FLAG_VALUE)
12196 		  && (code == LT || code == GE)))
12197 	    {
12198 	      enum rtx_code new_code;
12199 	      if (code == LT || code == NE)
12200 		new_code = GET_CODE (op0);
12201 	      else
12202 		new_code = reversed_comparison_code (op0, NULL);
12203 
12204 	      if (new_code != UNKNOWN)
12205 		{
12206 		  code = new_code;
12207 		  op0 = tem;
12208 		  op1 = tem1;
12209 		  continue;
12210 		}
12211 	    }
12212 	  break;
12213 	}
12214 
12215       if (raw_mode == VOIDmode)
12216 	break;
12217       scalar_int_mode mode = as_a <scalar_int_mode> (raw_mode);
12218 
12219       /* Now try cases based on the opcode of OP0.  If none of the cases
12220 	 does a "continue", we exit this loop immediately after the
12221 	 switch.  */
12222 
12223       unsigned int mode_width = GET_MODE_PRECISION (mode);
12224       unsigned HOST_WIDE_INT mask = GET_MODE_MASK (mode);
12225       switch (GET_CODE (op0))
12226 	{
12227 	case ZERO_EXTRACT:
12228 	  /* If we are extracting a single bit from a variable position in
12229 	     a constant that has only a single bit set and are comparing it
12230 	     with zero, we can convert this into an equality comparison
12231 	     between the position and the location of the single bit.  */
12232 	  /* Except we can't if SHIFT_COUNT_TRUNCATED is set, since we might
12233 	     have already reduced the shift count modulo the word size.  */
12234 	  if (!SHIFT_COUNT_TRUNCATED
12235 	      && CONST_INT_P (XEXP (op0, 0))
12236 	      && XEXP (op0, 1) == const1_rtx
12237 	      && equality_comparison_p && const_op == 0
12238 	      && (i = exact_log2 (UINTVAL (XEXP (op0, 0)))) >= 0)
12239 	    {
12240 	      if (BITS_BIG_ENDIAN)
12241 		i = BITS_PER_WORD - 1 - i;
12242 
12243 	      op0 = XEXP (op0, 2);
12244 	      op1 = GEN_INT (i);
12245 	      const_op = i;
12246 
12247 	      /* Result is nonzero iff shift count is equal to I.  */
12248 	      code = reverse_condition (code);
12249 	      continue;
12250 	    }
12251 
12252 	  /* fall through */
12253 
12254 	case SIGN_EXTRACT:
12255 	  tem = expand_compound_operation (op0);
12256 	  if (tem != op0)
12257 	    {
12258 	      op0 = tem;
12259 	      continue;
12260 	    }
12261 	  break;
12262 
12263 	case NOT:
12264 	  /* If testing for equality, we can take the NOT of the constant.  */
12265 	  if (equality_comparison_p
12266 	      && (tem = simplify_unary_operation (NOT, mode, op1, mode)) != 0)
12267 	    {
12268 	      op0 = XEXP (op0, 0);
12269 	      op1 = tem;
12270 	      continue;
12271 	    }
12272 
12273 	  /* If just looking at the sign bit, reverse the sense of the
12274 	     comparison.  */
12275 	  if (sign_bit_comparison_p)
12276 	    {
12277 	      op0 = XEXP (op0, 0);
12278 	      code = (code == GE ? LT : GE);
12279 	      continue;
12280 	    }
12281 	  break;
12282 
12283 	case NEG:
12284 	  /* If testing for equality, we can take the NEG of the constant.  */
12285 	  if (equality_comparison_p
12286 	      && (tem = simplify_unary_operation (NEG, mode, op1, mode)) != 0)
12287 	    {
12288 	      op0 = XEXP (op0, 0);
12289 	      op1 = tem;
12290 	      continue;
12291 	    }
12292 
12293 	  /* The remaining cases only apply to comparisons with zero.  */
12294 	  if (const_op != 0)
12295 	    break;
12296 
12297 	  /* When X is ABS or is known positive,
12298 	     (neg X) is < 0 if and only if X != 0.  */
12299 
12300 	  if (sign_bit_comparison_p
12301 	      && (GET_CODE (XEXP (op0, 0)) == ABS
12302 		  || (mode_width <= HOST_BITS_PER_WIDE_INT
12303 		      && (nonzero_bits (XEXP (op0, 0), mode)
12304 			  & (HOST_WIDE_INT_1U << (mode_width - 1)))
12305 			 == 0)))
12306 	    {
12307 	      op0 = XEXP (op0, 0);
12308 	      code = (code == LT ? NE : EQ);
12309 	      continue;
12310 	    }
12311 
12312 	  /* If we have NEG of something whose two high-order bits are the
12313 	     same, we know that "(-a) < 0" is equivalent to "a > 0".  */
12314 	  if (num_sign_bit_copies (op0, mode) >= 2)
12315 	    {
12316 	      op0 = XEXP (op0, 0);
12317 	      code = swap_condition (code);
12318 	      continue;
12319 	    }
12320 	  break;
12321 
12322 	case ROTATE:
12323 	  /* If we are testing equality and our count is a constant, we
12324 	     can perform the inverse operation on our RHS.  */
12325 	  if (equality_comparison_p && CONST_INT_P (XEXP (op0, 1))
12326 	      && (tem = simplify_binary_operation (ROTATERT, mode,
12327 						   op1, XEXP (op0, 1))) != 0)
12328 	    {
12329 	      op0 = XEXP (op0, 0);
12330 	      op1 = tem;
12331 	      continue;
12332 	    }
12333 
12334 	  /* If we are doing a < 0 or >= 0 comparison, it means we are testing
12335 	     a particular bit.  Convert it to an AND of a constant of that
12336 	     bit.  This will be converted into a ZERO_EXTRACT.  */
12337 	  if (const_op == 0 && sign_bit_comparison_p
12338 	      && CONST_INT_P (XEXP (op0, 1))
12339 	      && mode_width <= HOST_BITS_PER_WIDE_INT
12340 	      && UINTVAL (XEXP (op0, 1)) < mode_width)
12341 	    {
12342 	      op0 = simplify_and_const_int (NULL_RTX, mode, XEXP (op0, 0),
12343 					    (HOST_WIDE_INT_1U
12344 					     << (mode_width - 1
12345 						 - INTVAL (XEXP (op0, 1)))));
12346 	      code = (code == LT ? NE : EQ);
12347 	      continue;
12348 	    }
12349 
12350 	  /* Fall through.  */
12351 
12352 	case ABS:
12353 	  /* ABS is ignorable inside an equality comparison with zero.  */
12354 	  if (const_op == 0 && equality_comparison_p)
12355 	    {
12356 	      op0 = XEXP (op0, 0);
12357 	      continue;
12358 	    }
12359 	  break;
12360 
12361 	case SIGN_EXTEND:
12362 	  /* Can simplify (compare (zero/sign_extend FOO) CONST) to
12363 	     (compare FOO CONST) if CONST fits in FOO's mode and we
12364 	     are either testing inequality or have an unsigned
12365 	     comparison with ZERO_EXTEND or a signed comparison with
12366 	     SIGN_EXTEND.  But don't do it if we don't have a compare
12367 	     insn of the given mode, since we'd have to revert it
12368 	     later on, and then we wouldn't know whether to sign- or
12369 	     zero-extend.  */
12370 	  if (is_int_mode (GET_MODE (XEXP (op0, 0)), &mode)
12371 	      && ! unsigned_comparison_p
12372 	      && HWI_COMPUTABLE_MODE_P (mode)
12373 	      && trunc_int_for_mode (const_op, mode) == const_op
12374 	      && have_insn_for (COMPARE, mode))
12375 	    {
12376 	      op0 = XEXP (op0, 0);
12377 	      continue;
12378 	    }
12379 	  break;
12380 
12381 	case SUBREG:
12382 	  /* Check for the case where we are comparing A - C1 with C2, that is
12383 
12384 	       (subreg:MODE (plus (A) (-C1))) op (C2)
12385 
12386 	     with C1 a constant, and try to lift the SUBREG, i.e. to do the
12387 	     comparison in the wider mode.  One of the following two conditions
12388 	     must be true in order for this to be valid:
12389 
12390 	       1. The mode extension results in the same bit pattern being added
12391 		  on both sides and the comparison is equality or unsigned.  As
12392 		  C2 has been truncated to fit in MODE, the pattern can only be
12393 		  all 0s or all 1s.
12394 
12395 	       2. The mode extension results in the sign bit being copied on
12396 		  each side.
12397 
12398 	     The difficulty here is that we have predicates for A but not for
12399 	     (A - C1) so we need to check that C1 is within proper bounds so
12400 	     as to perturbate A as little as possible.  */
12401 
12402 	  if (mode_width <= HOST_BITS_PER_WIDE_INT
12403 	      && subreg_lowpart_p (op0)
12404 	      && is_a <scalar_int_mode> (GET_MODE (SUBREG_REG (op0)),
12405 					 &inner_mode)
12406 	      && GET_MODE_PRECISION (inner_mode) > mode_width
12407 	      && GET_CODE (SUBREG_REG (op0)) == PLUS
12408 	      && CONST_INT_P (XEXP (SUBREG_REG (op0), 1)))
12409 	    {
12410 	      rtx a = XEXP (SUBREG_REG (op0), 0);
12411 	      HOST_WIDE_INT c1 = -INTVAL (XEXP (SUBREG_REG (op0), 1));
12412 
12413 	      if ((c1 > 0
12414 		   && (unsigned HOST_WIDE_INT) c1
12415 		       < HOST_WIDE_INT_1U << (mode_width - 1)
12416 		   && (equality_comparison_p || unsigned_comparison_p)
12417 		   /* (A - C1) zero-extends if it is positive and sign-extends
12418 		      if it is negative, C2 both zero- and sign-extends.  */
12419 		   && (((nonzero_bits (a, inner_mode)
12420 			 & ~GET_MODE_MASK (mode)) == 0
12421 			&& const_op >= 0)
12422 		       /* (A - C1) sign-extends if it is positive and 1-extends
12423 			  if it is negative, C2 both sign- and 1-extends.  */
12424 		       || (num_sign_bit_copies (a, inner_mode)
12425 			   > (unsigned int) (GET_MODE_PRECISION (inner_mode)
12426 					     - mode_width)
12427 			   && const_op < 0)))
12428 		  || ((unsigned HOST_WIDE_INT) c1
12429 		       < HOST_WIDE_INT_1U << (mode_width - 2)
12430 		      /* (A - C1) always sign-extends, like C2.  */
12431 		      && num_sign_bit_copies (a, inner_mode)
12432 			 > (unsigned int) (GET_MODE_PRECISION (inner_mode)
12433 					   - (mode_width - 1))))
12434 		{
12435 		  op0 = SUBREG_REG (op0);
12436 		  continue;
12437 		}
12438 	    }
12439 
12440 	  /* If the inner mode is narrower and we are extracting the low part,
12441 	     we can treat the SUBREG as if it were a ZERO_EXTEND.  */
12442 	  if (paradoxical_subreg_p (op0))
12443 	    ;
12444 	  else if (subreg_lowpart_p (op0)
12445 		   && GET_MODE_CLASS (mode) == MODE_INT
12446 		   && is_int_mode (GET_MODE (SUBREG_REG (op0)), &inner_mode)
12447 		   && (code == NE || code == EQ)
12448 		   && GET_MODE_PRECISION (inner_mode) <= HOST_BITS_PER_WIDE_INT
12449 		   && !paradoxical_subreg_p (op0)
12450 		   && (nonzero_bits (SUBREG_REG (op0), inner_mode)
12451 		       & ~GET_MODE_MASK (mode)) == 0)
12452 	    {
12453 	      /* Remove outer subregs that don't do anything.  */
12454 	      tem = gen_lowpart (inner_mode, op1);
12455 
12456 	      if ((nonzero_bits (tem, inner_mode)
12457 		   & ~GET_MODE_MASK (mode)) == 0)
12458 		{
12459 		  op0 = SUBREG_REG (op0);
12460 		  op1 = tem;
12461 		  continue;
12462 		}
12463 	      break;
12464 	    }
12465 	  else
12466 	    break;
12467 
12468 	  /* FALLTHROUGH */
12469 
12470 	case ZERO_EXTEND:
12471 	  if (is_int_mode (GET_MODE (XEXP (op0, 0)), &mode)
12472 	      && (unsigned_comparison_p || equality_comparison_p)
12473 	      && HWI_COMPUTABLE_MODE_P (mode)
12474 	      && (unsigned HOST_WIDE_INT) const_op <= GET_MODE_MASK (mode)
12475 	      && const_op >= 0
12476 	      && have_insn_for (COMPARE, mode))
12477 	    {
12478 	      op0 = XEXP (op0, 0);
12479 	      continue;
12480 	    }
12481 	  break;
12482 
12483 	case PLUS:
12484 	  /* (eq (plus X A) B) -> (eq X (minus B A)).  We can only do
12485 	     this for equality comparisons due to pathological cases involving
12486 	     overflows.  */
12487 	  if (equality_comparison_p
12488 	      && (tem = simplify_binary_operation (MINUS, mode,
12489 						   op1, XEXP (op0, 1))) != 0)
12490 	    {
12491 	      op0 = XEXP (op0, 0);
12492 	      op1 = tem;
12493 	      continue;
12494 	    }
12495 
12496 	  /* (plus (abs X) (const_int -1)) is < 0 if and only if X == 0.  */
12497 	  if (const_op == 0 && XEXP (op0, 1) == constm1_rtx
12498 	      && GET_CODE (XEXP (op0, 0)) == ABS && sign_bit_comparison_p)
12499 	    {
12500 	      op0 = XEXP (XEXP (op0, 0), 0);
12501 	      code = (code == LT ? EQ : NE);
12502 	      continue;
12503 	    }
12504 	  break;
12505 
12506 	case MINUS:
12507 	  /* We used to optimize signed comparisons against zero, but that
12508 	     was incorrect.  Unsigned comparisons against zero (GTU, LEU)
12509 	     arrive here as equality comparisons, or (GEU, LTU) are
12510 	     optimized away.  No need to special-case them.  */
12511 
12512 	  /* (eq (minus A B) C) -> (eq A (plus B C)) or
12513 	     (eq B (minus A C)), whichever simplifies.  We can only do
12514 	     this for equality comparisons due to pathological cases involving
12515 	     overflows.  */
12516 	  if (equality_comparison_p
12517 	      && (tem = simplify_binary_operation (PLUS, mode,
12518 						   XEXP (op0, 1), op1)) != 0)
12519 	    {
12520 	      op0 = XEXP (op0, 0);
12521 	      op1 = tem;
12522 	      continue;
12523 	    }
12524 
12525 	  if (equality_comparison_p
12526 	      && (tem = simplify_binary_operation (MINUS, mode,
12527 						   XEXP (op0, 0), op1)) != 0)
12528 	    {
12529 	      op0 = XEXP (op0, 1);
12530 	      op1 = tem;
12531 	      continue;
12532 	    }
12533 
12534 	  /* The sign bit of (minus (ashiftrt X C) X), where C is the number
12535 	     of bits in X minus 1, is one iff X > 0.  */
12536 	  if (sign_bit_comparison_p && GET_CODE (XEXP (op0, 0)) == ASHIFTRT
12537 	      && CONST_INT_P (XEXP (XEXP (op0, 0), 1))
12538 	      && UINTVAL (XEXP (XEXP (op0, 0), 1)) == mode_width - 1
12539 	      && rtx_equal_p (XEXP (XEXP (op0, 0), 0), XEXP (op0, 1)))
12540 	    {
12541 	      op0 = XEXP (op0, 1);
12542 	      code = (code == GE ? LE : GT);
12543 	      continue;
12544 	    }
12545 	  break;
12546 
12547 	case XOR:
12548 	  /* (eq (xor A B) C) -> (eq A (xor B C)).  This is a simplification
12549 	     if C is zero or B is a constant.  */
12550 	  if (equality_comparison_p
12551 	      && (tem = simplify_binary_operation (XOR, mode,
12552 						   XEXP (op0, 1), op1)) != 0)
12553 	    {
12554 	      op0 = XEXP (op0, 0);
12555 	      op1 = tem;
12556 	      continue;
12557 	    }
12558 	  break;
12559 
12560 
12561 	case IOR:
12562 	  /* The sign bit of (ior (plus X (const_int -1)) X) is nonzero
12563 	     iff X <= 0.  */
12564 	  if (sign_bit_comparison_p && GET_CODE (XEXP (op0, 0)) == PLUS
12565 	      && XEXP (XEXP (op0, 0), 1) == constm1_rtx
12566 	      && rtx_equal_p (XEXP (XEXP (op0, 0), 0), XEXP (op0, 1)))
12567 	    {
12568 	      op0 = XEXP (op0, 1);
12569 	      code = (code == GE ? GT : LE);
12570 	      continue;
12571 	    }
12572 	  break;
12573 
12574 	case AND:
12575 	  /* Convert (and (xshift 1 X) Y) to (and (lshiftrt Y X) 1).  This
12576 	     will be converted to a ZERO_EXTRACT later.  */
12577 	  if (const_op == 0 && equality_comparison_p
12578 	      && GET_CODE (XEXP (op0, 0)) == ASHIFT
12579 	      && XEXP (XEXP (op0, 0), 0) == const1_rtx)
12580 	    {
12581 	      op0 = gen_rtx_LSHIFTRT (mode, XEXP (op0, 1),
12582 				      XEXP (XEXP (op0, 0), 1));
12583 	      op0 = simplify_and_const_int (NULL_RTX, mode, op0, 1);
12584 	      continue;
12585 	    }
12586 
12587 	  /* If we are comparing (and (lshiftrt X C1) C2) for equality with
12588 	     zero and X is a comparison and C1 and C2 describe only bits set
12589 	     in STORE_FLAG_VALUE, we can compare with X.  */
12590 	  if (const_op == 0 && equality_comparison_p
12591 	      && mode_width <= HOST_BITS_PER_WIDE_INT
12592 	      && CONST_INT_P (XEXP (op0, 1))
12593 	      && GET_CODE (XEXP (op0, 0)) == LSHIFTRT
12594 	      && CONST_INT_P (XEXP (XEXP (op0, 0), 1))
12595 	      && INTVAL (XEXP (XEXP (op0, 0), 1)) >= 0
12596 	      && INTVAL (XEXP (XEXP (op0, 0), 1)) < HOST_BITS_PER_WIDE_INT)
12597 	    {
12598 	      mask = ((INTVAL (XEXP (op0, 1)) & GET_MODE_MASK (mode))
12599 		      << INTVAL (XEXP (XEXP (op0, 0), 1)));
12600 	      if ((~STORE_FLAG_VALUE & mask) == 0
12601 		  && (COMPARISON_P (XEXP (XEXP (op0, 0), 0))
12602 		      || ((tem = get_last_value (XEXP (XEXP (op0, 0), 0))) != 0
12603 			  && COMPARISON_P (tem))))
12604 		{
12605 		  op0 = XEXP (XEXP (op0, 0), 0);
12606 		  continue;
12607 		}
12608 	    }
12609 
12610 	  /* If we are doing an equality comparison of an AND of a bit equal
12611 	     to the sign bit, replace this with a LT or GE comparison of
12612 	     the underlying value.  */
12613 	  if (equality_comparison_p
12614 	      && const_op == 0
12615 	      && CONST_INT_P (XEXP (op0, 1))
12616 	      && mode_width <= HOST_BITS_PER_WIDE_INT
12617 	      && ((INTVAL (XEXP (op0, 1)) & GET_MODE_MASK (mode))
12618 		  == HOST_WIDE_INT_1U << (mode_width - 1)))
12619 	    {
12620 	      op0 = XEXP (op0, 0);
12621 	      code = (code == EQ ? GE : LT);
12622 	      continue;
12623 	    }
12624 
12625 	  /* If this AND operation is really a ZERO_EXTEND from a narrower
12626 	     mode, the constant fits within that mode, and this is either an
12627 	     equality or unsigned comparison, try to do this comparison in
12628 	     the narrower mode.
12629 
12630 	     Note that in:
12631 
12632 	     (ne:DI (and:DI (reg:DI 4) (const_int 0xffffffff)) (const_int 0))
12633 	     -> (ne:DI (reg:SI 4) (const_int 0))
12634 
12635 	     unless TARGET_TRULY_NOOP_TRUNCATION allows it or the register is
12636 	     known to hold a value of the required mode the
12637 	     transformation is invalid.  */
12638 	  if ((equality_comparison_p || unsigned_comparison_p)
12639 	      && CONST_INT_P (XEXP (op0, 1))
12640 	      && (i = exact_log2 ((UINTVAL (XEXP (op0, 1))
12641 				   & GET_MODE_MASK (mode))
12642 				  + 1)) >= 0
12643 	      && const_op >> i == 0
12644 	      && int_mode_for_size (i, 1).exists (&tmode))
12645 	    {
12646 	      op0 = gen_lowpart_or_truncate (tmode, XEXP (op0, 0));
12647 	      continue;
12648 	    }
12649 
12650 	  /* If this is (and:M1 (subreg:M1 X:M2 0) (const_int C1)) where C1
12651 	     fits in both M1 and M2 and the SUBREG is either paradoxical
12652 	     or represents the low part, permute the SUBREG and the AND
12653 	     and try again.  */
12654 	  if (GET_CODE (XEXP (op0, 0)) == SUBREG
12655 	      && CONST_INT_P (XEXP (op0, 1)))
12656 	    {
12657 	      unsigned HOST_WIDE_INT c1 = INTVAL (XEXP (op0, 1));
12658 	      /* Require an integral mode, to avoid creating something like
12659 		 (AND:SF ...).  */
12660 	      if ((is_a <scalar_int_mode>
12661 		   (GET_MODE (SUBREG_REG (XEXP (op0, 0))), &tmode))
12662 		  /* It is unsafe to commute the AND into the SUBREG if the
12663 		     SUBREG is paradoxical and WORD_REGISTER_OPERATIONS is
12664 		     not defined.  As originally written the upper bits
12665 		     have a defined value due to the AND operation.
12666 		     However, if we commute the AND inside the SUBREG then
12667 		     they no longer have defined values and the meaning of
12668 		     the code has been changed.
12669 		     Also C1 should not change value in the smaller mode,
12670 		     see PR67028 (a positive C1 can become negative in the
12671 		     smaller mode, so that the AND does no longer mask the
12672 		     upper bits).  */
12673 		  && ((WORD_REGISTER_OPERATIONS
12674 		       && mode_width > GET_MODE_PRECISION (tmode)
12675 		       && mode_width <= BITS_PER_WORD
12676 		       && trunc_int_for_mode (c1, tmode) == (HOST_WIDE_INT) c1)
12677 		      || (mode_width <= GET_MODE_PRECISION (tmode)
12678 			  && subreg_lowpart_p (XEXP (op0, 0))))
12679 		  && mode_width <= HOST_BITS_PER_WIDE_INT
12680 		  && HWI_COMPUTABLE_MODE_P (tmode)
12681 		  && (c1 & ~mask) == 0
12682 		  && (c1 & ~GET_MODE_MASK (tmode)) == 0
12683 		  && c1 != mask
12684 		  && c1 != GET_MODE_MASK (tmode))
12685 		{
12686 		  op0 = simplify_gen_binary (AND, tmode,
12687 					     SUBREG_REG (XEXP (op0, 0)),
12688 					     gen_int_mode (c1, tmode));
12689 		  op0 = gen_lowpart (mode, op0);
12690 		  continue;
12691 		}
12692 	    }
12693 
12694 	  /* Convert (ne (and (not X) 1) 0) to (eq (and X 1) 0).  */
12695 	  if (const_op == 0 && equality_comparison_p
12696 	      && XEXP (op0, 1) == const1_rtx
12697 	      && GET_CODE (XEXP (op0, 0)) == NOT)
12698 	    {
12699 	      op0 = simplify_and_const_int (NULL_RTX, mode,
12700 					    XEXP (XEXP (op0, 0), 0), 1);
12701 	      code = (code == NE ? EQ : NE);
12702 	      continue;
12703 	    }
12704 
12705 	  /* Convert (ne (and (lshiftrt (not X)) 1) 0) to
12706 	     (eq (and (lshiftrt X) 1) 0).
12707 	     Also handle the case where (not X) is expressed using xor.  */
12708 	  if (const_op == 0 && equality_comparison_p
12709 	      && XEXP (op0, 1) == const1_rtx
12710 	      && GET_CODE (XEXP (op0, 0)) == LSHIFTRT)
12711 	    {
12712 	      rtx shift_op = XEXP (XEXP (op0, 0), 0);
12713 	      rtx shift_count = XEXP (XEXP (op0, 0), 1);
12714 
12715 	      if (GET_CODE (shift_op) == NOT
12716 		  || (GET_CODE (shift_op) == XOR
12717 		      && CONST_INT_P (XEXP (shift_op, 1))
12718 		      && CONST_INT_P (shift_count)
12719 		      && HWI_COMPUTABLE_MODE_P (mode)
12720 		      && (UINTVAL (XEXP (shift_op, 1))
12721 			  == HOST_WIDE_INT_1U
12722 			       << INTVAL (shift_count))))
12723 		{
12724 		  op0
12725 		    = gen_rtx_LSHIFTRT (mode, XEXP (shift_op, 0), shift_count);
12726 		  op0 = simplify_and_const_int (NULL_RTX, mode, op0, 1);
12727 		  code = (code == NE ? EQ : NE);
12728 		  continue;
12729 		}
12730 	    }
12731 	  break;
12732 
12733 	case ASHIFT:
12734 	  /* If we have (compare (ashift FOO N) (const_int C)) and
12735 	     the high order N bits of FOO (N+1 if an inequality comparison)
12736 	     are known to be zero, we can do this by comparing FOO with C
12737 	     shifted right N bits so long as the low-order N bits of C are
12738 	     zero.  */
12739 	  if (CONST_INT_P (XEXP (op0, 1))
12740 	      && INTVAL (XEXP (op0, 1)) >= 0
12741 	      && ((INTVAL (XEXP (op0, 1)) + ! equality_comparison_p)
12742 		  < HOST_BITS_PER_WIDE_INT)
12743 	      && (((unsigned HOST_WIDE_INT) const_op
12744 		   & ((HOST_WIDE_INT_1U << INTVAL (XEXP (op0, 1)))
12745 		      - 1)) == 0)
12746 	      && mode_width <= HOST_BITS_PER_WIDE_INT
12747 	      && (nonzero_bits (XEXP (op0, 0), mode)
12748 		  & ~(mask >> (INTVAL (XEXP (op0, 1))
12749 			       + ! equality_comparison_p))) == 0)
12750 	    {
12751 	      /* We must perform a logical shift, not an arithmetic one,
12752 		 as we want the top N bits of C to be zero.  */
12753 	      unsigned HOST_WIDE_INT temp = const_op & GET_MODE_MASK (mode);
12754 
12755 	      temp >>= INTVAL (XEXP (op0, 1));
12756 	      op1 = gen_int_mode (temp, mode);
12757 	      op0 = XEXP (op0, 0);
12758 	      continue;
12759 	    }
12760 
12761 	  /* If we are doing a sign bit comparison, it means we are testing
12762 	     a particular bit.  Convert it to the appropriate AND.  */
12763 	  if (sign_bit_comparison_p && CONST_INT_P (XEXP (op0, 1))
12764 	      && mode_width <= HOST_BITS_PER_WIDE_INT)
12765 	    {
12766 	      op0 = simplify_and_const_int (NULL_RTX, mode, XEXP (op0, 0),
12767 					    (HOST_WIDE_INT_1U
12768 					     << (mode_width - 1
12769 						 - INTVAL (XEXP (op0, 1)))));
12770 	      code = (code == LT ? NE : EQ);
12771 	      continue;
12772 	    }
12773 
12774 	  /* If this an equality comparison with zero and we are shifting
12775 	     the low bit to the sign bit, we can convert this to an AND of the
12776 	     low-order bit.  */
12777 	  if (const_op == 0 && equality_comparison_p
12778 	      && CONST_INT_P (XEXP (op0, 1))
12779 	      && UINTVAL (XEXP (op0, 1)) == mode_width - 1)
12780 	    {
12781 	      op0 = simplify_and_const_int (NULL_RTX, mode, XEXP (op0, 0), 1);
12782 	      continue;
12783 	    }
12784 	  break;
12785 
12786 	case ASHIFTRT:
12787 	  /* If this is an equality comparison with zero, we can do this
12788 	     as a logical shift, which might be much simpler.  */
12789 	  if (equality_comparison_p && const_op == 0
12790 	      && CONST_INT_P (XEXP (op0, 1)))
12791 	    {
12792 	      op0 = simplify_shift_const (NULL_RTX, LSHIFTRT, mode,
12793 					  XEXP (op0, 0),
12794 					  INTVAL (XEXP (op0, 1)));
12795 	      continue;
12796 	    }
12797 
12798 	  /* If OP0 is a sign extension and CODE is not an unsigned comparison,
12799 	     do the comparison in a narrower mode.  */
12800 	  if (! unsigned_comparison_p
12801 	      && CONST_INT_P (XEXP (op0, 1))
12802 	      && GET_CODE (XEXP (op0, 0)) == ASHIFT
12803 	      && XEXP (op0, 1) == XEXP (XEXP (op0, 0), 1)
12804 	      && (int_mode_for_size (mode_width - INTVAL (XEXP (op0, 1)), 1)
12805 		  .exists (&tmode))
12806 	      && (((unsigned HOST_WIDE_INT) const_op
12807 		   + (GET_MODE_MASK (tmode) >> 1) + 1)
12808 		  <= GET_MODE_MASK (tmode)))
12809 	    {
12810 	      op0 = gen_lowpart (tmode, XEXP (XEXP (op0, 0), 0));
12811 	      continue;
12812 	    }
12813 
12814 	  /* Likewise if OP0 is a PLUS of a sign extension with a
12815 	     constant, which is usually represented with the PLUS
12816 	     between the shifts.  */
12817 	  if (! unsigned_comparison_p
12818 	      && CONST_INT_P (XEXP (op0, 1))
12819 	      && GET_CODE (XEXP (op0, 0)) == PLUS
12820 	      && CONST_INT_P (XEXP (XEXP (op0, 0), 1))
12821 	      && GET_CODE (XEXP (XEXP (op0, 0), 0)) == ASHIFT
12822 	      && XEXP (op0, 1) == XEXP (XEXP (XEXP (op0, 0), 0), 1)
12823 	      && (int_mode_for_size (mode_width - INTVAL (XEXP (op0, 1)), 1)
12824 		  .exists (&tmode))
12825 	      && (((unsigned HOST_WIDE_INT) const_op
12826 		   + (GET_MODE_MASK (tmode) >> 1) + 1)
12827 		  <= GET_MODE_MASK (tmode)))
12828 	    {
12829 	      rtx inner = XEXP (XEXP (XEXP (op0, 0), 0), 0);
12830 	      rtx add_const = XEXP (XEXP (op0, 0), 1);
12831 	      rtx new_const = simplify_gen_binary (ASHIFTRT, mode,
12832 						   add_const, XEXP (op0, 1));
12833 
12834 	      op0 = simplify_gen_binary (PLUS, tmode,
12835 					 gen_lowpart (tmode, inner),
12836 					 new_const);
12837 	      continue;
12838 	    }
12839 
12840 	  /* FALLTHROUGH */
12841 	case LSHIFTRT:
12842 	  /* If we have (compare (xshiftrt FOO N) (const_int C)) and
12843 	     the low order N bits of FOO are known to be zero, we can do this
12844 	     by comparing FOO with C shifted left N bits so long as no
12845 	     overflow occurs.  Even if the low order N bits of FOO aren't known
12846 	     to be zero, if the comparison is >= or < we can use the same
12847 	     optimization and for > or <= by setting all the low
12848 	     order N bits in the comparison constant.  */
12849 	  if (CONST_INT_P (XEXP (op0, 1))
12850 	      && INTVAL (XEXP (op0, 1)) > 0
12851 	      && INTVAL (XEXP (op0, 1)) < HOST_BITS_PER_WIDE_INT
12852 	      && mode_width <= HOST_BITS_PER_WIDE_INT
12853 	      && (((unsigned HOST_WIDE_INT) const_op
12854 		   + (GET_CODE (op0) != LSHIFTRT
12855 		      ? ((GET_MODE_MASK (mode) >> INTVAL (XEXP (op0, 1)) >> 1)
12856 			 + 1)
12857 		      : 0))
12858 		  <= GET_MODE_MASK (mode) >> INTVAL (XEXP (op0, 1))))
12859 	    {
12860 	      unsigned HOST_WIDE_INT low_bits
12861 		= (nonzero_bits (XEXP (op0, 0), mode)
12862 		   & ((HOST_WIDE_INT_1U
12863 		       << INTVAL (XEXP (op0, 1))) - 1));
12864 	      if (low_bits == 0 || !equality_comparison_p)
12865 		{
12866 		  /* If the shift was logical, then we must make the condition
12867 		     unsigned.  */
12868 		  if (GET_CODE (op0) == LSHIFTRT)
12869 		    code = unsigned_condition (code);
12870 
12871 		  const_op = (unsigned HOST_WIDE_INT) const_op
12872 			      << INTVAL (XEXP (op0, 1));
12873 		  if (low_bits != 0
12874 		      && (code == GT || code == GTU
12875 			  || code == LE || code == LEU))
12876 		    const_op
12877 		      |= ((HOST_WIDE_INT_1 << INTVAL (XEXP (op0, 1))) - 1);
12878 		  op1 = GEN_INT (const_op);
12879 		  op0 = XEXP (op0, 0);
12880 		  continue;
12881 		}
12882 	    }
12883 
12884 	  /* If we are using this shift to extract just the sign bit, we
12885 	     can replace this with an LT or GE comparison.  */
12886 	  if (const_op == 0
12887 	      && (equality_comparison_p || sign_bit_comparison_p)
12888 	      && CONST_INT_P (XEXP (op0, 1))
12889 	      && UINTVAL (XEXP (op0, 1)) == mode_width - 1)
12890 	    {
12891 	      op0 = XEXP (op0, 0);
12892 	      code = (code == NE || code == GT ? LT : GE);
12893 	      continue;
12894 	    }
12895 	  break;
12896 
12897 	default:
12898 	  break;
12899 	}
12900 
12901       break;
12902     }
12903 
12904   /* Now make any compound operations involved in this comparison.  Then,
12905      check for an outmost SUBREG on OP0 that is not doing anything or is
12906      paradoxical.  The latter transformation must only be performed when
12907      it is known that the "extra" bits will be the same in op0 and op1 or
12908      that they don't matter.  There are three cases to consider:
12909 
12910      1. SUBREG_REG (op0) is a register.  In this case the bits are don't
12911      care bits and we can assume they have any convenient value.  So
12912      making the transformation is safe.
12913 
12914      2. SUBREG_REG (op0) is a memory and LOAD_EXTEND_OP is UNKNOWN.
12915      In this case the upper bits of op0 are undefined.  We should not make
12916      the simplification in that case as we do not know the contents of
12917      those bits.
12918 
12919      3. SUBREG_REG (op0) is a memory and LOAD_EXTEND_OP is not UNKNOWN.
12920      In that case we know those bits are zeros or ones.  We must also be
12921      sure that they are the same as the upper bits of op1.
12922 
12923      We can never remove a SUBREG for a non-equality comparison because
12924      the sign bit is in a different place in the underlying object.  */
12925 
12926   rtx_code op0_mco_code = SET;
12927   if (op1 == const0_rtx)
12928     op0_mco_code = code == NE || code == EQ ? EQ : COMPARE;
12929 
12930   op0 = make_compound_operation (op0, op0_mco_code);
12931   op1 = make_compound_operation (op1, SET);
12932 
12933   if (GET_CODE (op0) == SUBREG && subreg_lowpart_p (op0)
12934       && is_int_mode (GET_MODE (op0), &mode)
12935       && is_int_mode (GET_MODE (SUBREG_REG (op0)), &inner_mode)
12936       && (code == NE || code == EQ))
12937     {
12938       if (paradoxical_subreg_p (op0))
12939 	{
12940 	  /* For paradoxical subregs, allow case 1 as above.  Case 3 isn't
12941 	     implemented.  */
12942 	  if (REG_P (SUBREG_REG (op0)))
12943 	    {
12944 	      op0 = SUBREG_REG (op0);
12945 	      op1 = gen_lowpart (inner_mode, op1);
12946 	    }
12947 	}
12948       else if (GET_MODE_PRECISION (inner_mode) <= HOST_BITS_PER_WIDE_INT
12949 	       && (nonzero_bits (SUBREG_REG (op0), inner_mode)
12950 		   & ~GET_MODE_MASK (mode)) == 0)
12951 	{
12952 	  tem = gen_lowpart (inner_mode, op1);
12953 
12954 	  if ((nonzero_bits (tem, inner_mode) & ~GET_MODE_MASK (mode)) == 0)
12955 	    op0 = SUBREG_REG (op0), op1 = tem;
12956 	}
12957     }
12958 
12959   /* We now do the opposite procedure: Some machines don't have compare
12960      insns in all modes.  If OP0's mode is an integer mode smaller than a
12961      word and we can't do a compare in that mode, see if there is a larger
12962      mode for which we can do the compare.  There are a number of cases in
12963      which we can use the wider mode.  */
12964 
12965   if (is_int_mode (GET_MODE (op0), &mode)
12966       && GET_MODE_SIZE (mode) < UNITS_PER_WORD
12967       && ! have_insn_for (COMPARE, mode))
12968     FOR_EACH_WIDER_MODE (tmode_iter, mode)
12969       {
12970 	tmode = tmode_iter.require ();
12971 	if (!HWI_COMPUTABLE_MODE_P (tmode))
12972 	  break;
12973 	if (have_insn_for (COMPARE, tmode))
12974 	  {
12975 	    int zero_extended;
12976 
12977 	    /* If this is a test for negative, we can make an explicit
12978 	       test of the sign bit.  Test this first so we can use
12979 	       a paradoxical subreg to extend OP0.  */
12980 
12981 	    if (op1 == const0_rtx && (code == LT || code == GE)
12982 		&& HWI_COMPUTABLE_MODE_P (mode))
12983 	      {
12984 		unsigned HOST_WIDE_INT sign
12985 		  = HOST_WIDE_INT_1U << (GET_MODE_BITSIZE (mode) - 1);
12986 		op0 = simplify_gen_binary (AND, tmode,
12987 					   gen_lowpart (tmode, op0),
12988 					   gen_int_mode (sign, tmode));
12989 		code = (code == LT) ? NE : EQ;
12990 		break;
12991 	      }
12992 
12993 	    /* If the only nonzero bits in OP0 and OP1 are those in the
12994 	       narrower mode and this is an equality or unsigned comparison,
12995 	       we can use the wider mode.  Similarly for sign-extended
12996 	       values, in which case it is true for all comparisons.  */
12997 	    zero_extended = ((code == EQ || code == NE
12998 			      || code == GEU || code == GTU
12999 			      || code == LEU || code == LTU)
13000 			     && (nonzero_bits (op0, tmode)
13001 				 & ~GET_MODE_MASK (mode)) == 0
13002 			     && ((CONST_INT_P (op1)
13003 				  || (nonzero_bits (op1, tmode)
13004 				      & ~GET_MODE_MASK (mode)) == 0)));
13005 
13006 	    if (zero_extended
13007 		|| ((num_sign_bit_copies (op0, tmode)
13008 		     > (unsigned int) (GET_MODE_PRECISION (tmode)
13009 				       - GET_MODE_PRECISION (mode)))
13010 		    && (num_sign_bit_copies (op1, tmode)
13011 			> (unsigned int) (GET_MODE_PRECISION (tmode)
13012 					  - GET_MODE_PRECISION (mode)))))
13013 	      {
13014 		/* If OP0 is an AND and we don't have an AND in MODE either,
13015 		   make a new AND in the proper mode.  */
13016 		if (GET_CODE (op0) == AND
13017 		    && !have_insn_for (AND, mode))
13018 		  op0 = simplify_gen_binary (AND, tmode,
13019 					     gen_lowpart (tmode,
13020 							  XEXP (op0, 0)),
13021 					     gen_lowpart (tmode,
13022 							  XEXP (op0, 1)));
13023 		else
13024 		  {
13025 		    if (zero_extended)
13026 		      {
13027 			op0 = simplify_gen_unary (ZERO_EXTEND, tmode,
13028 						  op0, mode);
13029 			op1 = simplify_gen_unary (ZERO_EXTEND, tmode,
13030 						  op1, mode);
13031 		      }
13032 		    else
13033 		      {
13034 			op0 = simplify_gen_unary (SIGN_EXTEND, tmode,
13035 						  op0, mode);
13036 			op1 = simplify_gen_unary (SIGN_EXTEND, tmode,
13037 						  op1, mode);
13038 		      }
13039 		    break;
13040 		  }
13041 	      }
13042 	  }
13043       }
13044 
13045   /* We may have changed the comparison operands.  Re-canonicalize.  */
13046   if (swap_commutative_operands_p (op0, op1))
13047     {
13048       std::swap (op0, op1);
13049       code = swap_condition (code);
13050     }
13051 
13052   /* If this machine only supports a subset of valid comparisons, see if we
13053      can convert an unsupported one into a supported one.  */
13054   target_canonicalize_comparison (&code, &op0, &op1, 0);
13055 
13056   *pop0 = op0;
13057   *pop1 = op1;
13058 
13059   return code;
13060 }
13061 
13062 /* Utility function for record_value_for_reg.  Count number of
13063    rtxs in X.  */
13064 static int
count_rtxs(rtx x)13065 count_rtxs (rtx x)
13066 {
13067   enum rtx_code code = GET_CODE (x);
13068   const char *fmt;
13069   int i, j, ret = 1;
13070 
13071   if (GET_RTX_CLASS (code) == RTX_BIN_ARITH
13072       || GET_RTX_CLASS (code) == RTX_COMM_ARITH)
13073     {
13074       rtx x0 = XEXP (x, 0);
13075       rtx x1 = XEXP (x, 1);
13076 
13077       if (x0 == x1)
13078 	return 1 + 2 * count_rtxs (x0);
13079 
13080       if ((GET_RTX_CLASS (GET_CODE (x1)) == RTX_BIN_ARITH
13081 	   || GET_RTX_CLASS (GET_CODE (x1)) == RTX_COMM_ARITH)
13082 	  && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
13083 	return 2 + 2 * count_rtxs (x0)
13084 	       + count_rtxs (x == XEXP (x1, 0)
13085 			     ? XEXP (x1, 1) : XEXP (x1, 0));
13086 
13087       if ((GET_RTX_CLASS (GET_CODE (x0)) == RTX_BIN_ARITH
13088 	   || GET_RTX_CLASS (GET_CODE (x0)) == RTX_COMM_ARITH)
13089 	  && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
13090 	return 2 + 2 * count_rtxs (x1)
13091 	       + count_rtxs (x == XEXP (x0, 0)
13092 			     ? XEXP (x0, 1) : XEXP (x0, 0));
13093     }
13094 
13095   fmt = GET_RTX_FORMAT (code);
13096   for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
13097     if (fmt[i] == 'e')
13098       ret += count_rtxs (XEXP (x, i));
13099     else if (fmt[i] == 'E')
13100       for (j = 0; j < XVECLEN (x, i); j++)
13101 	ret += count_rtxs (XVECEXP (x, i, j));
13102 
13103   return ret;
13104 }
13105 
13106 /* Utility function for following routine.  Called when X is part of a value
13107    being stored into last_set_value.  Sets last_set_table_tick
13108    for each register mentioned.  Similar to mention_regs in cse.cc  */
13109 
13110 static void
update_table_tick(rtx x)13111 update_table_tick (rtx x)
13112 {
13113   enum rtx_code code = GET_CODE (x);
13114   const char *fmt = GET_RTX_FORMAT (code);
13115   int i, j;
13116 
13117   if (code == REG)
13118     {
13119       unsigned int regno = REGNO (x);
13120       unsigned int endregno = END_REGNO (x);
13121       unsigned int r;
13122 
13123       for (r = regno; r < endregno; r++)
13124 	{
13125 	  reg_stat_type *rsp = &reg_stat[r];
13126 	  rsp->last_set_table_tick = label_tick;
13127 	}
13128 
13129       return;
13130     }
13131 
13132   for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
13133     if (fmt[i] == 'e')
13134       {
13135 	/* Check for identical subexpressions.  If x contains
13136 	   identical subexpression we only have to traverse one of
13137 	   them.  */
13138 	if (i == 0 && ARITHMETIC_P (x))
13139 	  {
13140 	    /* Note that at this point x1 has already been
13141 	       processed.  */
13142 	    rtx x0 = XEXP (x, 0);
13143 	    rtx x1 = XEXP (x, 1);
13144 
13145 	    /* If x0 and x1 are identical then there is no need to
13146 	       process x0.  */
13147 	    if (x0 == x1)
13148 	      break;
13149 
13150 	    /* If x0 is identical to a subexpression of x1 then while
13151 	       processing x1, x0 has already been processed.  Thus we
13152 	       are done with x.  */
13153 	    if (ARITHMETIC_P (x1)
13154 		&& (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
13155 	      break;
13156 
13157 	    /* If x1 is identical to a subexpression of x0 then we
13158 	       still have to process the rest of x0.  */
13159 	    if (ARITHMETIC_P (x0)
13160 		&& (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
13161 	      {
13162 		update_table_tick (XEXP (x0, x1 == XEXP (x0, 0) ? 1 : 0));
13163 		break;
13164 	      }
13165 	  }
13166 
13167 	update_table_tick (XEXP (x, i));
13168       }
13169     else if (fmt[i] == 'E')
13170       for (j = 0; j < XVECLEN (x, i); j++)
13171 	update_table_tick (XVECEXP (x, i, j));
13172 }
13173 
13174 /* Record that REG is set to VALUE in insn INSN.  If VALUE is zero, we
13175    are saying that the register is clobbered and we no longer know its
13176    value.  If INSN is zero, don't update reg_stat[].last_set; this is
13177    only permitted with VALUE also zero and is used to invalidate the
13178    register.  */
13179 
13180 static void
record_value_for_reg(rtx reg,rtx_insn * insn,rtx value)13181 record_value_for_reg (rtx reg, rtx_insn *insn, rtx value)
13182 {
13183   unsigned int regno = REGNO (reg);
13184   unsigned int endregno = END_REGNO (reg);
13185   unsigned int i;
13186   reg_stat_type *rsp;
13187 
13188   /* If VALUE contains REG and we have a previous value for REG, substitute
13189      the previous value.  */
13190   if (value && insn && reg_overlap_mentioned_p (reg, value))
13191     {
13192       rtx tem;
13193 
13194       /* Set things up so get_last_value is allowed to see anything set up to
13195 	 our insn.  */
13196       subst_low_luid = DF_INSN_LUID (insn);
13197       tem = get_last_value (reg);
13198 
13199       /* If TEM is simply a binary operation with two CLOBBERs as operands,
13200 	 it isn't going to be useful and will take a lot of time to process,
13201 	 so just use the CLOBBER.  */
13202 
13203       if (tem)
13204 	{
13205 	  if (ARITHMETIC_P (tem)
13206 	      && GET_CODE (XEXP (tem, 0)) == CLOBBER
13207 	      && GET_CODE (XEXP (tem, 1)) == CLOBBER)
13208 	    tem = XEXP (tem, 0);
13209 	  else if (count_occurrences (value, reg, 1) >= 2)
13210 	    {
13211 	      /* If there are two or more occurrences of REG in VALUE,
13212 		 prevent the value from growing too much.  */
13213 	      if (count_rtxs (tem) > param_max_last_value_rtl)
13214 		tem = gen_rtx_CLOBBER (GET_MODE (tem), const0_rtx);
13215 	    }
13216 
13217 	  value = replace_rtx (copy_rtx (value), reg, tem);
13218 	}
13219     }
13220 
13221   /* For each register modified, show we don't know its value, that
13222      we don't know about its bitwise content, that its value has been
13223      updated, and that we don't know the location of the death of the
13224      register.  */
13225   for (i = regno; i < endregno; i++)
13226     {
13227       rsp = &reg_stat[i];
13228 
13229       if (insn)
13230 	rsp->last_set = insn;
13231 
13232       rsp->last_set_value = 0;
13233       rsp->last_set_mode = VOIDmode;
13234       rsp->last_set_nonzero_bits = 0;
13235       rsp->last_set_sign_bit_copies = 0;
13236       rsp->last_death = 0;
13237       rsp->truncated_to_mode = VOIDmode;
13238     }
13239 
13240   /* Mark registers that are being referenced in this value.  */
13241   if (value)
13242     update_table_tick (value);
13243 
13244   /* Now update the status of each register being set.
13245      If someone is using this register in this block, set this register
13246      to invalid since we will get confused between the two lives in this
13247      basic block.  This makes using this register always invalid.  In cse, we
13248      scan the table to invalidate all entries using this register, but this
13249      is too much work for us.  */
13250 
13251   for (i = regno; i < endregno; i++)
13252     {
13253       rsp = &reg_stat[i];
13254       rsp->last_set_label = label_tick;
13255       if (!insn
13256 	  || (value && rsp->last_set_table_tick >= label_tick_ebb_start))
13257 	rsp->last_set_invalid = 1;
13258       else
13259 	rsp->last_set_invalid = 0;
13260     }
13261 
13262   /* The value being assigned might refer to X (like in "x++;").  In that
13263      case, we must replace it with (clobber (const_int 0)) to prevent
13264      infinite loops.  */
13265   rsp = &reg_stat[regno];
13266   if (value && !get_last_value_validate (&value, insn, label_tick, 0))
13267     {
13268       value = copy_rtx (value);
13269       if (!get_last_value_validate (&value, insn, label_tick, 1))
13270 	value = 0;
13271     }
13272 
13273   /* For the main register being modified, update the value, the mode, the
13274      nonzero bits, and the number of sign bit copies.  */
13275 
13276   rsp->last_set_value = value;
13277 
13278   if (value)
13279     {
13280       machine_mode mode = GET_MODE (reg);
13281       subst_low_luid = DF_INSN_LUID (insn);
13282       rsp->last_set_mode = mode;
13283       if (GET_MODE_CLASS (mode) == MODE_INT
13284 	  && HWI_COMPUTABLE_MODE_P (mode))
13285 	mode = nonzero_bits_mode;
13286       rsp->last_set_nonzero_bits = nonzero_bits (value, mode);
13287       rsp->last_set_sign_bit_copies
13288 	= num_sign_bit_copies (value, GET_MODE (reg));
13289     }
13290 }
13291 
13292 /* Called via note_stores from record_dead_and_set_regs to handle one
13293    SET or CLOBBER in an insn.  DATA is the instruction in which the
13294    set is occurring.  */
13295 
13296 static void
record_dead_and_set_regs_1(rtx dest,const_rtx setter,void * data)13297 record_dead_and_set_regs_1 (rtx dest, const_rtx setter, void *data)
13298 {
13299   rtx_insn *record_dead_insn = (rtx_insn *) data;
13300 
13301   if (GET_CODE (dest) == SUBREG)
13302     dest = SUBREG_REG (dest);
13303 
13304   if (!record_dead_insn)
13305     {
13306       if (REG_P (dest))
13307 	record_value_for_reg (dest, NULL, NULL_RTX);
13308       return;
13309     }
13310 
13311   if (REG_P (dest))
13312     {
13313       /* If we are setting the whole register, we know its value.  Otherwise
13314 	 show that we don't know the value.  We can handle a SUBREG if it's
13315 	 the low part, but we must be careful with paradoxical SUBREGs on
13316 	 RISC architectures because we cannot strip e.g. an extension around
13317 	 a load and record the naked load since the RTL middle-end considers
13318 	 that the upper bits are defined according to LOAD_EXTEND_OP.  */
13319       if (GET_CODE (setter) == SET && dest == SET_DEST (setter))
13320 	record_value_for_reg (dest, record_dead_insn, SET_SRC (setter));
13321       else if (GET_CODE (setter) == SET
13322 	       && GET_CODE (SET_DEST (setter)) == SUBREG
13323 	       && SUBREG_REG (SET_DEST (setter)) == dest
13324 	       && known_le (GET_MODE_PRECISION (GET_MODE (dest)),
13325 			    BITS_PER_WORD)
13326 	       && subreg_lowpart_p (SET_DEST (setter)))
13327 	record_value_for_reg (dest, record_dead_insn,
13328 			      WORD_REGISTER_OPERATIONS
13329 			      && word_register_operation_p (SET_SRC (setter))
13330 			      && paradoxical_subreg_p (SET_DEST (setter))
13331 			      ? SET_SRC (setter)
13332 			      : gen_lowpart (GET_MODE (dest),
13333 					     SET_SRC (setter)));
13334       else
13335 	record_value_for_reg (dest, record_dead_insn, NULL_RTX);
13336     }
13337   else if (MEM_P (dest)
13338 	   /* Ignore pushes, they clobber nothing.  */
13339 	   && ! push_operand (dest, GET_MODE (dest)))
13340     mem_last_set = DF_INSN_LUID (record_dead_insn);
13341 }
13342 
13343 /* Update the records of when each REG was most recently set or killed
13344    for the things done by INSN.  This is the last thing done in processing
13345    INSN in the combiner loop.
13346 
13347    We update reg_stat[], in particular fields last_set, last_set_value,
13348    last_set_mode, last_set_nonzero_bits, last_set_sign_bit_copies,
13349    last_death, and also the similar information mem_last_set (which insn
13350    most recently modified memory) and last_call_luid (which insn was the
13351    most recent subroutine call).  */
13352 
13353 static void
record_dead_and_set_regs(rtx_insn * insn)13354 record_dead_and_set_regs (rtx_insn *insn)
13355 {
13356   rtx link;
13357   unsigned int i;
13358 
13359   for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
13360     {
13361       if (REG_NOTE_KIND (link) == REG_DEAD
13362 	  && REG_P (XEXP (link, 0)))
13363 	{
13364 	  unsigned int regno = REGNO (XEXP (link, 0));
13365 	  unsigned int endregno = END_REGNO (XEXP (link, 0));
13366 
13367 	  for (i = regno; i < endregno; i++)
13368 	    {
13369 	      reg_stat_type *rsp;
13370 
13371 	      rsp = &reg_stat[i];
13372 	      rsp->last_death = insn;
13373 	    }
13374 	}
13375       else if (REG_NOTE_KIND (link) == REG_INC)
13376 	record_value_for_reg (XEXP (link, 0), insn, NULL_RTX);
13377     }
13378 
13379   if (CALL_P (insn))
13380     {
13381       HARD_REG_SET callee_clobbers
13382 	= insn_callee_abi (insn).full_and_partial_reg_clobbers ();
13383       hard_reg_set_iterator hrsi;
13384       EXECUTE_IF_SET_IN_HARD_REG_SET (callee_clobbers, 0, i, hrsi)
13385 	{
13386 	  reg_stat_type *rsp;
13387 
13388 	  /* ??? We could try to preserve some information from the last
13389 	     set of register I if the call doesn't actually clobber
13390 	     (reg:last_set_mode I), which might be true for ABIs with
13391 	     partial clobbers.  However, it would be difficult to
13392 	     update last_set_nonzero_bits and last_sign_bit_copies
13393 	     to account for the part of I that actually was clobbered.
13394 	     It wouldn't help much anyway, since we rarely see this
13395 	     situation before RA.  */
13396 	  rsp = &reg_stat[i];
13397 	  rsp->last_set_invalid = 1;
13398 	  rsp->last_set = insn;
13399 	  rsp->last_set_value = 0;
13400 	  rsp->last_set_mode = VOIDmode;
13401 	  rsp->last_set_nonzero_bits = 0;
13402 	  rsp->last_set_sign_bit_copies = 0;
13403 	  rsp->last_death = 0;
13404 	  rsp->truncated_to_mode = VOIDmode;
13405 	}
13406 
13407       last_call_luid = mem_last_set = DF_INSN_LUID (insn);
13408 
13409       /* We can't combine into a call pattern.  Remember, though, that
13410 	 the return value register is set at this LUID.  We could
13411 	 still replace a register with the return value from the
13412 	 wrong subroutine call!  */
13413       note_stores (insn, record_dead_and_set_regs_1, NULL_RTX);
13414     }
13415   else
13416     note_stores (insn, record_dead_and_set_regs_1, insn);
13417 }
13418 
13419 /* If a SUBREG has the promoted bit set, it is in fact a property of the
13420    register present in the SUBREG, so for each such SUBREG go back and
13421    adjust nonzero and sign bit information of the registers that are
13422    known to have some zero/sign bits set.
13423 
13424    This is needed because when combine blows the SUBREGs away, the
13425    information on zero/sign bits is lost and further combines can be
13426    missed because of that.  */
13427 
13428 static void
record_promoted_value(rtx_insn * insn,rtx subreg)13429 record_promoted_value (rtx_insn *insn, rtx subreg)
13430 {
13431   struct insn_link *links;
13432   rtx set;
13433   unsigned int regno = REGNO (SUBREG_REG (subreg));
13434   machine_mode mode = GET_MODE (subreg);
13435 
13436   if (!HWI_COMPUTABLE_MODE_P (mode))
13437     return;
13438 
13439   for (links = LOG_LINKS (insn); links;)
13440     {
13441       reg_stat_type *rsp;
13442 
13443       insn = links->insn;
13444       set = single_set (insn);
13445 
13446       if (! set || !REG_P (SET_DEST (set))
13447 	  || REGNO (SET_DEST (set)) != regno
13448 	  || GET_MODE (SET_DEST (set)) != GET_MODE (SUBREG_REG (subreg)))
13449 	{
13450 	  links = links->next;
13451 	  continue;
13452 	}
13453 
13454       rsp = &reg_stat[regno];
13455       if (rsp->last_set == insn)
13456 	{
13457 	  if (SUBREG_PROMOTED_UNSIGNED_P (subreg))
13458 	    rsp->last_set_nonzero_bits &= GET_MODE_MASK (mode);
13459 	}
13460 
13461       if (REG_P (SET_SRC (set)))
13462 	{
13463 	  regno = REGNO (SET_SRC (set));
13464 	  links = LOG_LINKS (insn);
13465 	}
13466       else
13467 	break;
13468     }
13469 }
13470 
13471 /* Check if X, a register, is known to contain a value already
13472    truncated to MODE.  In this case we can use a subreg to refer to
13473    the truncated value even though in the generic case we would need
13474    an explicit truncation.  */
13475 
13476 static bool
reg_truncated_to_mode(machine_mode mode,const_rtx x)13477 reg_truncated_to_mode (machine_mode mode, const_rtx x)
13478 {
13479   reg_stat_type *rsp = &reg_stat[REGNO (x)];
13480   machine_mode truncated = rsp->truncated_to_mode;
13481 
13482   if (truncated == 0
13483       || rsp->truncation_label < label_tick_ebb_start)
13484     return false;
13485   if (!partial_subreg_p (mode, truncated))
13486     return true;
13487   if (TRULY_NOOP_TRUNCATION_MODES_P (mode, truncated))
13488     return true;
13489   return false;
13490 }
13491 
13492 /* If X is a hard reg or a subreg record the mode that the register is
13493    accessed in.  For non-TARGET_TRULY_NOOP_TRUNCATION targets we might be
13494    able to turn a truncate into a subreg using this information.  Return true
13495    if traversing X is complete.  */
13496 
13497 static bool
record_truncated_value(rtx x)13498 record_truncated_value (rtx x)
13499 {
13500   machine_mode truncated_mode;
13501   reg_stat_type *rsp;
13502 
13503   if (GET_CODE (x) == SUBREG && REG_P (SUBREG_REG (x)))
13504     {
13505       machine_mode original_mode = GET_MODE (SUBREG_REG (x));
13506       truncated_mode = GET_MODE (x);
13507 
13508       if (!partial_subreg_p (truncated_mode, original_mode))
13509 	return true;
13510 
13511       truncated_mode = GET_MODE (x);
13512       if (TRULY_NOOP_TRUNCATION_MODES_P (truncated_mode, original_mode))
13513 	return true;
13514 
13515       x = SUBREG_REG (x);
13516     }
13517   /* ??? For hard-regs we now record everything.  We might be able to
13518      optimize this using last_set_mode.  */
13519   else if (REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER)
13520     truncated_mode = GET_MODE (x);
13521   else
13522     return false;
13523 
13524   rsp = &reg_stat[REGNO (x)];
13525   if (rsp->truncated_to_mode == 0
13526       || rsp->truncation_label < label_tick_ebb_start
13527       || partial_subreg_p (truncated_mode, rsp->truncated_to_mode))
13528     {
13529       rsp->truncated_to_mode = truncated_mode;
13530       rsp->truncation_label = label_tick;
13531     }
13532 
13533   return true;
13534 }
13535 
13536 /* Callback for note_uses.  Find hardregs and subregs of pseudos and
13537    the modes they are used in.  This can help truning TRUNCATEs into
13538    SUBREGs.  */
13539 
13540 static void
record_truncated_values(rtx * loc,void * data ATTRIBUTE_UNUSED)13541 record_truncated_values (rtx *loc, void *data ATTRIBUTE_UNUSED)
13542 {
13543   subrtx_var_iterator::array_type array;
13544   FOR_EACH_SUBRTX_VAR (iter, array, *loc, NONCONST)
13545     if (record_truncated_value (*iter))
13546       iter.skip_subrtxes ();
13547 }
13548 
13549 /* Scan X for promoted SUBREGs.  For each one found,
13550    note what it implies to the registers used in it.  */
13551 
13552 static void
check_promoted_subreg(rtx_insn * insn,rtx x)13553 check_promoted_subreg (rtx_insn *insn, rtx x)
13554 {
13555   if (GET_CODE (x) == SUBREG
13556       && SUBREG_PROMOTED_VAR_P (x)
13557       && REG_P (SUBREG_REG (x)))
13558     record_promoted_value (insn, x);
13559   else
13560     {
13561       const char *format = GET_RTX_FORMAT (GET_CODE (x));
13562       int i, j;
13563 
13564       for (i = 0; i < GET_RTX_LENGTH (GET_CODE (x)); i++)
13565 	switch (format[i])
13566 	  {
13567 	  case 'e':
13568 	    check_promoted_subreg (insn, XEXP (x, i));
13569 	    break;
13570 	  case 'V':
13571 	  case 'E':
13572 	    if (XVEC (x, i) != 0)
13573 	      for (j = 0; j < XVECLEN (x, i); j++)
13574 		check_promoted_subreg (insn, XVECEXP (x, i, j));
13575 	    break;
13576 	  }
13577     }
13578 }
13579 
13580 /* Verify that all the registers and memory references mentioned in *LOC are
13581    still valid.  *LOC was part of a value set in INSN when label_tick was
13582    equal to TICK.  Return 0 if some are not.  If REPLACE is nonzero, replace
13583    the invalid references with (clobber (const_int 0)) and return 1.  This
13584    replacement is useful because we often can get useful information about
13585    the form of a value (e.g., if it was produced by a shift that always
13586    produces -1 or 0) even though we don't know exactly what registers it
13587    was produced from.  */
13588 
13589 static int
get_last_value_validate(rtx * loc,rtx_insn * insn,int tick,int replace)13590 get_last_value_validate (rtx *loc, rtx_insn *insn, int tick, int replace)
13591 {
13592   rtx x = *loc;
13593   const char *fmt = GET_RTX_FORMAT (GET_CODE (x));
13594   int len = GET_RTX_LENGTH (GET_CODE (x));
13595   int i, j;
13596 
13597   if (REG_P (x))
13598     {
13599       unsigned int regno = REGNO (x);
13600       unsigned int endregno = END_REGNO (x);
13601       unsigned int j;
13602 
13603       for (j = regno; j < endregno; j++)
13604 	{
13605 	  reg_stat_type *rsp = &reg_stat[j];
13606 	  if (rsp->last_set_invalid
13607 	      /* If this is a pseudo-register that was only set once and not
13608 		 live at the beginning of the function, it is always valid.  */
13609 	      || (! (regno >= FIRST_PSEUDO_REGISTER
13610 		     && regno < reg_n_sets_max
13611 		     && REG_N_SETS (regno) == 1
13612 		     && (!REGNO_REG_SET_P
13613 			 (DF_LR_IN (ENTRY_BLOCK_PTR_FOR_FN (cfun)->next_bb),
13614 			  regno)))
13615 		  && rsp->last_set_label > tick))
13616 	  {
13617 	    if (replace)
13618 	      *loc = gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
13619 	    return replace;
13620 	  }
13621 	}
13622 
13623       return 1;
13624     }
13625   /* If this is a memory reference, make sure that there were no stores after
13626      it that might have clobbered the value.  We don't have alias info, so we
13627      assume any store invalidates it.  Moreover, we only have local UIDs, so
13628      we also assume that there were stores in the intervening basic blocks.  */
13629   else if (MEM_P (x) && !MEM_READONLY_P (x)
13630 	   && (tick != label_tick || DF_INSN_LUID (insn) <= mem_last_set))
13631     {
13632       if (replace)
13633 	*loc = gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
13634       return replace;
13635     }
13636 
13637   for (i = 0; i < len; i++)
13638     {
13639       if (fmt[i] == 'e')
13640 	{
13641 	  /* Check for identical subexpressions.  If x contains
13642 	     identical subexpression we only have to traverse one of
13643 	     them.  */
13644 	  if (i == 1 && ARITHMETIC_P (x))
13645 	    {
13646 	      /* Note that at this point x0 has already been checked
13647 		 and found valid.  */
13648 	      rtx x0 = XEXP (x, 0);
13649 	      rtx x1 = XEXP (x, 1);
13650 
13651 	      /* If x0 and x1 are identical then x is also valid.  */
13652 	      if (x0 == x1)
13653 		return 1;
13654 
13655 	      /* If x1 is identical to a subexpression of x0 then
13656 		 while checking x0, x1 has already been checked.  Thus
13657 		 it is valid and so as x.  */
13658 	      if (ARITHMETIC_P (x0)
13659 		  && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
13660 		return 1;
13661 
13662 	      /* If x0 is identical to a subexpression of x1 then x is
13663 		 valid iff the rest of x1 is valid.  */
13664 	      if (ARITHMETIC_P (x1)
13665 		  && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
13666 		return
13667 		  get_last_value_validate (&XEXP (x1,
13668 						  x0 == XEXP (x1, 0) ? 1 : 0),
13669 					   insn, tick, replace);
13670 	    }
13671 
13672 	  if (get_last_value_validate (&XEXP (x, i), insn, tick,
13673 				       replace) == 0)
13674 	    return 0;
13675 	}
13676       else if (fmt[i] == 'E')
13677 	for (j = 0; j < XVECLEN (x, i); j++)
13678 	  if (get_last_value_validate (&XVECEXP (x, i, j),
13679 				       insn, tick, replace) == 0)
13680 	    return 0;
13681     }
13682 
13683   /* If we haven't found a reason for it to be invalid, it is valid.  */
13684   return 1;
13685 }
13686 
13687 /* Get the last value assigned to X, if known.  Some registers
13688    in the value may be replaced with (clobber (const_int 0)) if their value
13689    is known longer known reliably.  */
13690 
13691 static rtx
get_last_value(const_rtx x)13692 get_last_value (const_rtx x)
13693 {
13694   unsigned int regno;
13695   rtx value;
13696   reg_stat_type *rsp;
13697 
13698   /* If this is a non-paradoxical SUBREG, get the value of its operand and
13699      then convert it to the desired mode.  If this is a paradoxical SUBREG,
13700      we cannot predict what values the "extra" bits might have.  */
13701   if (GET_CODE (x) == SUBREG
13702       && subreg_lowpart_p (x)
13703       && !paradoxical_subreg_p (x)
13704       && (value = get_last_value (SUBREG_REG (x))) != 0)
13705     return gen_lowpart (GET_MODE (x), value);
13706 
13707   if (!REG_P (x))
13708     return 0;
13709 
13710   regno = REGNO (x);
13711   rsp = &reg_stat[regno];
13712   value = rsp->last_set_value;
13713 
13714   /* If we don't have a value, or if it isn't for this basic block and
13715      it's either a hard register, set more than once, or it's a live
13716      at the beginning of the function, return 0.
13717 
13718      Because if it's not live at the beginning of the function then the reg
13719      is always set before being used (is never used without being set).
13720      And, if it's set only once, and it's always set before use, then all
13721      uses must have the same last value, even if it's not from this basic
13722      block.  */
13723 
13724   if (value == 0
13725       || (rsp->last_set_label < label_tick_ebb_start
13726 	  && (regno < FIRST_PSEUDO_REGISTER
13727 	      || regno >= reg_n_sets_max
13728 	      || REG_N_SETS (regno) != 1
13729 	      || REGNO_REG_SET_P
13730 		 (DF_LR_IN (ENTRY_BLOCK_PTR_FOR_FN (cfun)->next_bb), regno))))
13731     return 0;
13732 
13733   /* If the value was set in a later insn than the ones we are processing,
13734      we can't use it even if the register was only set once.  */
13735   if (rsp->last_set_label == label_tick
13736       && DF_INSN_LUID (rsp->last_set) >= subst_low_luid)
13737     return 0;
13738 
13739   /* If fewer bits were set than what we are asked for now, we cannot use
13740      the value.  */
13741   if (maybe_lt (GET_MODE_PRECISION (rsp->last_set_mode),
13742 		GET_MODE_PRECISION (GET_MODE (x))))
13743     return 0;
13744 
13745   /* If the value has all its registers valid, return it.  */
13746   if (get_last_value_validate (&value, rsp->last_set, rsp->last_set_label, 0))
13747     return value;
13748 
13749   /* Otherwise, make a copy and replace any invalid register with
13750      (clobber (const_int 0)).  If that fails for some reason, return 0.  */
13751 
13752   value = copy_rtx (value);
13753   if (get_last_value_validate (&value, rsp->last_set, rsp->last_set_label, 1))
13754     return value;
13755 
13756   return 0;
13757 }
13758 
13759 /* Define three variables used for communication between the following
13760    routines.  */
13761 
13762 static unsigned int reg_dead_regno, reg_dead_endregno;
13763 static int reg_dead_flag;
13764 rtx reg_dead_reg;
13765 
13766 /* Function called via note_stores from reg_dead_at_p.
13767 
13768    If DEST is within [reg_dead_regno, reg_dead_endregno), set
13769    reg_dead_flag to 1 if X is a CLOBBER and to -1 it is a SET.  */
13770 
13771 static void
reg_dead_at_p_1(rtx dest,const_rtx x,void * data ATTRIBUTE_UNUSED)13772 reg_dead_at_p_1 (rtx dest, const_rtx x, void *data ATTRIBUTE_UNUSED)
13773 {
13774   unsigned int regno, endregno;
13775 
13776   if (!REG_P (dest))
13777     return;
13778 
13779   regno = REGNO (dest);
13780   endregno = END_REGNO (dest);
13781   if (reg_dead_endregno > regno && reg_dead_regno < endregno)
13782     reg_dead_flag = (GET_CODE (x) == CLOBBER) ? 1 : -1;
13783 }
13784 
13785 /* Return nonzero if REG is known to be dead at INSN.
13786 
13787    We scan backwards from INSN.  If we hit a REG_DEAD note or a CLOBBER
13788    referencing REG, it is dead.  If we hit a SET referencing REG, it is
13789    live.  Otherwise, see if it is live or dead at the start of the basic
13790    block we are in.  Hard regs marked as being live in NEWPAT_USED_REGS
13791    must be assumed to be always live.  */
13792 
13793 static int
reg_dead_at_p(rtx reg,rtx_insn * insn)13794 reg_dead_at_p (rtx reg, rtx_insn *insn)
13795 {
13796   basic_block block;
13797   unsigned int i;
13798 
13799   /* Set variables for reg_dead_at_p_1.  */
13800   reg_dead_regno = REGNO (reg);
13801   reg_dead_endregno = END_REGNO (reg);
13802   reg_dead_reg = reg;
13803 
13804   reg_dead_flag = 0;
13805 
13806   /* Check that reg isn't mentioned in NEWPAT_USED_REGS.  For fixed registers
13807      we allow the machine description to decide whether use-and-clobber
13808      patterns are OK.  */
13809   if (reg_dead_regno < FIRST_PSEUDO_REGISTER)
13810     {
13811       for (i = reg_dead_regno; i < reg_dead_endregno; i++)
13812 	if (!fixed_regs[i] && TEST_HARD_REG_BIT (newpat_used_regs, i))
13813 	  return 0;
13814     }
13815 
13816   /* Scan backwards until we find a REG_DEAD note, SET, CLOBBER, or
13817      beginning of basic block.  */
13818   block = BLOCK_FOR_INSN (insn);
13819   for (;;)
13820     {
13821       if (INSN_P (insn))
13822         {
13823 	  if (find_regno_note (insn, REG_UNUSED, reg_dead_regno))
13824 	    return 1;
13825 
13826 	  note_stores (insn, reg_dead_at_p_1, NULL);
13827 	  if (reg_dead_flag)
13828 	    return reg_dead_flag == 1 ? 1 : 0;
13829 
13830 	  if (find_regno_note (insn, REG_DEAD, reg_dead_regno))
13831 	    return 1;
13832         }
13833 
13834       if (insn == BB_HEAD (block))
13835 	break;
13836 
13837       insn = PREV_INSN (insn);
13838     }
13839 
13840   /* Look at live-in sets for the basic block that we were in.  */
13841   for (i = reg_dead_regno; i < reg_dead_endregno; i++)
13842     if (REGNO_REG_SET_P (df_get_live_in (block), i))
13843       return 0;
13844 
13845   return 1;
13846 }
13847 
13848 /* Note hard registers in X that are used.  */
13849 
13850 static void
mark_used_regs_combine(rtx x)13851 mark_used_regs_combine (rtx x)
13852 {
13853   RTX_CODE code = GET_CODE (x);
13854   unsigned int regno;
13855   int i;
13856 
13857   switch (code)
13858     {
13859     case LABEL_REF:
13860     case SYMBOL_REF:
13861     case CONST:
13862     CASE_CONST_ANY:
13863     case PC:
13864     case ADDR_VEC:
13865     case ADDR_DIFF_VEC:
13866     case ASM_INPUT:
13867       return;
13868 
13869     case CLOBBER:
13870       /* If we are clobbering a MEM, mark any hard registers inside the
13871 	 address as used.  */
13872       if (MEM_P (XEXP (x, 0)))
13873 	mark_used_regs_combine (XEXP (XEXP (x, 0), 0));
13874       return;
13875 
13876     case REG:
13877       regno = REGNO (x);
13878       /* A hard reg in a wide mode may really be multiple registers.
13879 	 If so, mark all of them just like the first.  */
13880       if (regno < FIRST_PSEUDO_REGISTER)
13881 	{
13882 	  /* None of this applies to the stack, frame or arg pointers.  */
13883 	  if (regno == STACK_POINTER_REGNUM
13884 	      || (!HARD_FRAME_POINTER_IS_FRAME_POINTER
13885 		  && regno == HARD_FRAME_POINTER_REGNUM)
13886 	      || (FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
13887 		  && regno == ARG_POINTER_REGNUM && fixed_regs[regno])
13888 	      || regno == FRAME_POINTER_REGNUM)
13889 	    return;
13890 
13891 	  add_to_hard_reg_set (&newpat_used_regs, GET_MODE (x), regno);
13892 	}
13893       return;
13894 
13895     case SET:
13896       {
13897 	/* If setting a MEM, or a SUBREG of a MEM, then note any hard regs in
13898 	   the address.  */
13899 	rtx testreg = SET_DEST (x);
13900 
13901 	while (GET_CODE (testreg) == SUBREG
13902 	       || GET_CODE (testreg) == ZERO_EXTRACT
13903 	       || GET_CODE (testreg) == STRICT_LOW_PART)
13904 	  testreg = XEXP (testreg, 0);
13905 
13906 	if (MEM_P (testreg))
13907 	  mark_used_regs_combine (XEXP (testreg, 0));
13908 
13909 	mark_used_regs_combine (SET_SRC (x));
13910       }
13911       return;
13912 
13913     default:
13914       break;
13915     }
13916 
13917   /* Recursively scan the operands of this expression.  */
13918 
13919   {
13920     const char *fmt = GET_RTX_FORMAT (code);
13921 
13922     for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
13923       {
13924 	if (fmt[i] == 'e')
13925 	  mark_used_regs_combine (XEXP (x, i));
13926 	else if (fmt[i] == 'E')
13927 	  {
13928 	    int j;
13929 
13930 	    for (j = 0; j < XVECLEN (x, i); j++)
13931 	      mark_used_regs_combine (XVECEXP (x, i, j));
13932 	  }
13933       }
13934   }
13935 }
13936 
13937 /* Remove register number REGNO from the dead registers list of INSN.
13938 
13939    Return the note used to record the death, if there was one.  */
13940 
13941 rtx
remove_death(unsigned int regno,rtx_insn * insn)13942 remove_death (unsigned int regno, rtx_insn *insn)
13943 {
13944   rtx note = find_regno_note (insn, REG_DEAD, regno);
13945 
13946   if (note)
13947     remove_note (insn, note);
13948 
13949   return note;
13950 }
13951 
13952 /* For each register (hardware or pseudo) used within expression X, if its
13953    death is in an instruction with luid between FROM_LUID (inclusive) and
13954    TO_INSN (exclusive), put a REG_DEAD note for that register in the
13955    list headed by PNOTES.
13956 
13957    That said, don't move registers killed by maybe_kill_insn.
13958 
13959    This is done when X is being merged by combination into TO_INSN.  These
13960    notes will then be distributed as needed.  */
13961 
13962 static void
move_deaths(rtx x,rtx maybe_kill_insn,int from_luid,rtx_insn * to_insn,rtx * pnotes)13963 move_deaths (rtx x, rtx maybe_kill_insn, int from_luid, rtx_insn *to_insn,
13964 	     rtx *pnotes)
13965 {
13966   const char *fmt;
13967   int len, i;
13968   enum rtx_code code = GET_CODE (x);
13969 
13970   if (code == REG)
13971     {
13972       unsigned int regno = REGNO (x);
13973       rtx_insn *where_dead = reg_stat[regno].last_death;
13974 
13975       /* If we do not know where the register died, it may still die between
13976 	 FROM_LUID and TO_INSN.  If so, find it.  This is PR83304.  */
13977       if (!where_dead || DF_INSN_LUID (where_dead) >= DF_INSN_LUID (to_insn))
13978 	{
13979 	  rtx_insn *insn = prev_real_nondebug_insn (to_insn);
13980 	  while (insn
13981 		 && BLOCK_FOR_INSN (insn) == BLOCK_FOR_INSN (to_insn)
13982 		 && DF_INSN_LUID (insn) >= from_luid)
13983 	    {
13984 	      if (dead_or_set_regno_p (insn, regno))
13985 		{
13986 		  if (find_regno_note (insn, REG_DEAD, regno))
13987 		    where_dead = insn;
13988 		  break;
13989 		}
13990 
13991 	      insn = prev_real_nondebug_insn (insn);
13992 	    }
13993 	}
13994 
13995       /* Don't move the register if it gets killed in between from and to.  */
13996       if (maybe_kill_insn && reg_set_p (x, maybe_kill_insn)
13997 	  && ! reg_referenced_p (x, maybe_kill_insn))
13998 	return;
13999 
14000       if (where_dead
14001 	  && BLOCK_FOR_INSN (where_dead) == BLOCK_FOR_INSN (to_insn)
14002 	  && DF_INSN_LUID (where_dead) >= from_luid
14003 	  && DF_INSN_LUID (where_dead) < DF_INSN_LUID (to_insn))
14004 	{
14005 	  rtx note = remove_death (regno, where_dead);
14006 
14007 	  /* It is possible for the call above to return 0.  This can occur
14008 	     when last_death points to I2 or I1 that we combined with.
14009 	     In that case make a new note.
14010 
14011 	     We must also check for the case where X is a hard register
14012 	     and NOTE is a death note for a range of hard registers
14013 	     including X.  In that case, we must put REG_DEAD notes for
14014 	     the remaining registers in place of NOTE.  */
14015 
14016 	  if (note != 0 && regno < FIRST_PSEUDO_REGISTER
14017 	      && partial_subreg_p (GET_MODE (x), GET_MODE (XEXP (note, 0))))
14018 	    {
14019 	      unsigned int deadregno = REGNO (XEXP (note, 0));
14020 	      unsigned int deadend = END_REGNO (XEXP (note, 0));
14021 	      unsigned int ourend = END_REGNO (x);
14022 	      unsigned int i;
14023 
14024 	      for (i = deadregno; i < deadend; i++)
14025 		if (i < regno || i >= ourend)
14026 		  add_reg_note (where_dead, REG_DEAD, regno_reg_rtx[i]);
14027 	    }
14028 
14029 	  /* If we didn't find any note, or if we found a REG_DEAD note that
14030 	     covers only part of the given reg, and we have a multi-reg hard
14031 	     register, then to be safe we must check for REG_DEAD notes
14032 	     for each register other than the first.  They could have
14033 	     their own REG_DEAD notes lying around.  */
14034 	  else if ((note == 0
14035 		    || (note != 0
14036 			&& partial_subreg_p (GET_MODE (XEXP (note, 0)),
14037 					     GET_MODE (x))))
14038 		   && regno < FIRST_PSEUDO_REGISTER
14039 		   && REG_NREGS (x) > 1)
14040 	    {
14041 	      unsigned int ourend = END_REGNO (x);
14042 	      unsigned int i, offset;
14043 	      rtx oldnotes = 0;
14044 
14045 	      if (note)
14046 		offset = hard_regno_nregs (regno, GET_MODE (XEXP (note, 0)));
14047 	      else
14048 		offset = 1;
14049 
14050 	      for (i = regno + offset; i < ourend; i++)
14051 		move_deaths (regno_reg_rtx[i],
14052 			     maybe_kill_insn, from_luid, to_insn, &oldnotes);
14053 	    }
14054 
14055 	  if (note != 0 && GET_MODE (XEXP (note, 0)) == GET_MODE (x))
14056 	    {
14057 	      XEXP (note, 1) = *pnotes;
14058 	      *pnotes = note;
14059 	    }
14060 	  else
14061 	    *pnotes = alloc_reg_note (REG_DEAD, x, *pnotes);
14062 	}
14063 
14064       return;
14065     }
14066 
14067   else if (GET_CODE (x) == SET)
14068     {
14069       rtx dest = SET_DEST (x);
14070 
14071       move_deaths (SET_SRC (x), maybe_kill_insn, from_luid, to_insn, pnotes);
14072 
14073       /* In the case of a ZERO_EXTRACT, a STRICT_LOW_PART, or a SUBREG
14074 	 that accesses one word of a multi-word item, some
14075 	 piece of everything register in the expression is used by
14076 	 this insn, so remove any old death.  */
14077       /* ??? So why do we test for equality of the sizes?  */
14078 
14079       if (GET_CODE (dest) == ZERO_EXTRACT
14080 	  || GET_CODE (dest) == STRICT_LOW_PART
14081 	  || (GET_CODE (dest) == SUBREG
14082 	      && !read_modify_subreg_p (dest)))
14083 	{
14084 	  move_deaths (dest, maybe_kill_insn, from_luid, to_insn, pnotes);
14085 	  return;
14086 	}
14087 
14088       /* If this is some other SUBREG, we know it replaces the entire
14089 	 value, so use that as the destination.  */
14090       if (GET_CODE (dest) == SUBREG)
14091 	dest = SUBREG_REG (dest);
14092 
14093       /* If this is a MEM, adjust deaths of anything used in the address.
14094 	 For a REG (the only other possibility), the entire value is
14095 	 being replaced so the old value is not used in this insn.  */
14096 
14097       if (MEM_P (dest))
14098 	move_deaths (XEXP (dest, 0), maybe_kill_insn, from_luid,
14099 		     to_insn, pnotes);
14100       return;
14101     }
14102 
14103   else if (GET_CODE (x) == CLOBBER)
14104     return;
14105 
14106   len = GET_RTX_LENGTH (code);
14107   fmt = GET_RTX_FORMAT (code);
14108 
14109   for (i = 0; i < len; i++)
14110     {
14111       if (fmt[i] == 'E')
14112 	{
14113 	  int j;
14114 	  for (j = XVECLEN (x, i) - 1; j >= 0; j--)
14115 	    move_deaths (XVECEXP (x, i, j), maybe_kill_insn, from_luid,
14116 			 to_insn, pnotes);
14117 	}
14118       else if (fmt[i] == 'e')
14119 	move_deaths (XEXP (x, i), maybe_kill_insn, from_luid, to_insn, pnotes);
14120     }
14121 }
14122 
14123 /* Return 1 if X is the target of a bit-field assignment in BODY, the
14124    pattern of an insn.  X must be a REG.  */
14125 
14126 static int
reg_bitfield_target_p(rtx x,rtx body)14127 reg_bitfield_target_p (rtx x, rtx body)
14128 {
14129   int i;
14130 
14131   if (GET_CODE (body) == SET)
14132     {
14133       rtx dest = SET_DEST (body);
14134       rtx target;
14135       unsigned int regno, tregno, endregno, endtregno;
14136 
14137       if (GET_CODE (dest) == ZERO_EXTRACT)
14138 	target = XEXP (dest, 0);
14139       else if (GET_CODE (dest) == STRICT_LOW_PART)
14140 	target = SUBREG_REG (XEXP (dest, 0));
14141       else
14142 	return 0;
14143 
14144       if (GET_CODE (target) == SUBREG)
14145 	target = SUBREG_REG (target);
14146 
14147       if (!REG_P (target))
14148 	return 0;
14149 
14150       tregno = REGNO (target), regno = REGNO (x);
14151       if (tregno >= FIRST_PSEUDO_REGISTER || regno >= FIRST_PSEUDO_REGISTER)
14152 	return target == x;
14153 
14154       endtregno = end_hard_regno (GET_MODE (target), tregno);
14155       endregno = end_hard_regno (GET_MODE (x), regno);
14156 
14157       return endregno > tregno && regno < endtregno;
14158     }
14159 
14160   else if (GET_CODE (body) == PARALLEL)
14161     for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
14162       if (reg_bitfield_target_p (x, XVECEXP (body, 0, i)))
14163 	return 1;
14164 
14165   return 0;
14166 }
14167 
14168 /* Given a chain of REG_NOTES originally from FROM_INSN, try to place them
14169    as appropriate.  I3 and I2 are the insns resulting from the combination
14170    insns including FROM (I2 may be zero).
14171 
14172    ELIM_I2 and ELIM_I1 are either zero or registers that we know will
14173    not need REG_DEAD notes because they are being substituted for.  This
14174    saves searching in the most common cases.
14175 
14176    Each note in the list is either ignored or placed on some insns, depending
14177    on the type of note.  */
14178 
14179 static void
distribute_notes(rtx notes,rtx_insn * from_insn,rtx_insn * i3,rtx_insn * i2,rtx elim_i2,rtx elim_i1,rtx elim_i0)14180 distribute_notes (rtx notes, rtx_insn *from_insn, rtx_insn *i3, rtx_insn *i2,
14181 		  rtx elim_i2, rtx elim_i1, rtx elim_i0)
14182 {
14183   rtx note, next_note;
14184   rtx tem_note;
14185   rtx_insn *tem_insn;
14186 
14187   for (note = notes; note; note = next_note)
14188     {
14189       rtx_insn *place = 0, *place2 = 0;
14190 
14191       next_note = XEXP (note, 1);
14192       switch (REG_NOTE_KIND (note))
14193 	{
14194 	case REG_BR_PROB:
14195 	case REG_BR_PRED:
14196 	  /* Doesn't matter much where we put this, as long as it's somewhere.
14197 	     It is preferable to keep these notes on branches, which is most
14198 	     likely to be i3.  */
14199 	  place = i3;
14200 	  break;
14201 
14202 	case REG_NON_LOCAL_GOTO:
14203 	  if (JUMP_P (i3))
14204 	    place = i3;
14205 	  else
14206 	    {
14207 	      gcc_assert (i2 && JUMP_P (i2));
14208 	      place = i2;
14209 	    }
14210 	  break;
14211 
14212 	case REG_EH_REGION:
14213 	  {
14214 	    /* The landing pad handling needs to be kept in sync with the
14215 	       prerequisite checking in try_combine.  */
14216 	    int lp_nr = INTVAL (XEXP (note, 0));
14217 	    /* A REG_EH_REGION note transfering control can only ever come
14218 	       from i3.  */
14219 	    if (lp_nr > 0)
14220 	      gcc_assert (from_insn == i3);
14221 	    /* We are making sure there is a single effective REG_EH_REGION
14222 	       note and it's valid to put it on i3.  */
14223 	    if (!insn_could_throw_p (from_insn))
14224 	      /* Throw away stra notes on insns that can never throw.  */
14225 	      ;
14226 	    else
14227 	      {
14228 		if (CALL_P (i3))
14229 		  place = i3;
14230 		else
14231 		  {
14232 		    gcc_assert (cfun->can_throw_non_call_exceptions);
14233 		    /* If i3 can still trap preserve the note, otherwise we've
14234 		       combined things such that we can now prove that the
14235 		       instructions can't trap.  Drop the note in this case.  */
14236 		    if (may_trap_p (i3))
14237 		      place = i3;
14238 		  }
14239 	      }
14240 	    break;
14241 	  }
14242 
14243 	case REG_ARGS_SIZE:
14244 	  /* ??? How to distribute between i3-i1.  Assume i3 contains the
14245 	     entire adjustment.  Assert i3 contains at least some adjust.  */
14246 	  if (!noop_move_p (i3))
14247 	    {
14248 	      poly_int64 old_size, args_size = get_args_size (note);
14249 	      /* fixup_args_size_notes looks at REG_NORETURN note,
14250 		 so ensure the note is placed there first.  */
14251 	      if (CALL_P (i3))
14252 		{
14253 		  rtx *np;
14254 		  for (np = &next_note; *np; np = &XEXP (*np, 1))
14255 		    if (REG_NOTE_KIND (*np) == REG_NORETURN)
14256 		      {
14257 			rtx n = *np;
14258 			*np = XEXP (n, 1);
14259 			XEXP (n, 1) = REG_NOTES (i3);
14260 			REG_NOTES (i3) = n;
14261 			break;
14262 		      }
14263 		}
14264 	      old_size = fixup_args_size_notes (PREV_INSN (i3), i3, args_size);
14265 	      /* emit_call_1 adds for !ACCUMULATE_OUTGOING_ARGS
14266 		 REG_ARGS_SIZE note to all noreturn calls, allow that here.  */
14267 	      gcc_assert (maybe_ne (old_size, args_size)
14268 			  || (CALL_P (i3)
14269 			      && !ACCUMULATE_OUTGOING_ARGS
14270 			      && find_reg_note (i3, REG_NORETURN, NULL_RTX)));
14271 	    }
14272 	  break;
14273 
14274 	case REG_NORETURN:
14275 	case REG_SETJMP:
14276 	case REG_TM:
14277 	case REG_CALL_DECL:
14278 	case REG_UNTYPED_CALL:
14279 	case REG_CALL_NOCF_CHECK:
14280 	  /* These notes must remain with the call.  It should not be
14281 	     possible for both I2 and I3 to be a call.  */
14282 	  if (CALL_P (i3))
14283 	    place = i3;
14284 	  else
14285 	    {
14286 	      gcc_assert (i2 && CALL_P (i2));
14287 	      place = i2;
14288 	    }
14289 	  break;
14290 
14291 	case REG_UNUSED:
14292 	  /* Any clobbers for i3 may still exist, and so we must process
14293 	     REG_UNUSED notes from that insn.
14294 
14295 	     Any clobbers from i2 or i1 can only exist if they were added by
14296 	     recog_for_combine.  In that case, recog_for_combine created the
14297 	     necessary REG_UNUSED notes.  Trying to keep any original
14298 	     REG_UNUSED notes from these insns can cause incorrect output
14299 	     if it is for the same register as the original i3 dest.
14300 	     In that case, we will notice that the register is set in i3,
14301 	     and then add a REG_UNUSED note for the destination of i3, which
14302 	     is wrong.  However, it is possible to have REG_UNUSED notes from
14303 	     i2 or i1 for register which were both used and clobbered, so
14304 	     we keep notes from i2 or i1 if they will turn into REG_DEAD
14305 	     notes.  */
14306 
14307 	  /* If this register is set or clobbered between FROM_INSN and I3,
14308 	     we should not create a note for it.  */
14309 	  if (reg_set_between_p (XEXP (note, 0), from_insn, i3))
14310 	    break;
14311 
14312 	  /* If this register is set or clobbered in I3, put the note there
14313 	     unless there is one already.  */
14314 	  if (reg_set_p (XEXP (note, 0), PATTERN (i3)))
14315 	    {
14316 	      if (from_insn != i3)
14317 		break;
14318 
14319 	      if (! (REG_P (XEXP (note, 0))
14320 		     ? find_regno_note (i3, REG_UNUSED, REGNO (XEXP (note, 0)))
14321 		     : find_reg_note (i3, REG_UNUSED, XEXP (note, 0))))
14322 		place = i3;
14323 	    }
14324 	  /* Otherwise, if this register is used by I3, then this register
14325 	     now dies here, so we must put a REG_DEAD note here unless there
14326 	     is one already.  */
14327 	  else if (reg_referenced_p (XEXP (note, 0), PATTERN (i3))
14328 		   && ! (REG_P (XEXP (note, 0))
14329 			 ? find_regno_note (i3, REG_DEAD,
14330 					    REGNO (XEXP (note, 0)))
14331 			 : find_reg_note (i3, REG_DEAD, XEXP (note, 0))))
14332 	    {
14333 	      PUT_REG_NOTE_KIND (note, REG_DEAD);
14334 	      place = i3;
14335 	    }
14336 
14337 	  /* A SET or CLOBBER of the REG_UNUSED reg has been removed,
14338 	     but we can't tell which at this point.  We must reset any
14339 	     expectations we had about the value that was previously
14340 	     stored in the reg.  ??? Ideally, we'd adjust REG_N_SETS
14341 	     and, if appropriate, restore its previous value, but we
14342 	     don't have enough information for that at this point.  */
14343 	  else
14344 	    {
14345 	      record_value_for_reg (XEXP (note, 0), NULL, NULL_RTX);
14346 
14347 	      /* Otherwise, if this register is now referenced in i2
14348 		 then the register used to be modified in one of the
14349 		 original insns.  If it was i3 (say, in an unused
14350 		 parallel), it's now completely gone, so the note can
14351 		 be discarded.  But if it was modified in i2, i1 or i0
14352 		 and we still reference it in i2, then we're
14353 		 referencing the previous value, and since the
14354 		 register was modified and REG_UNUSED, we know that
14355 		 the previous value is now dead.  So, if we only
14356 		 reference the register in i2, we change the note to
14357 		 REG_DEAD, to reflect the previous value.  However, if
14358 		 we're also setting or clobbering the register as
14359 		 scratch, we know (because the register was not
14360 		 referenced in i3) that it's unused, just as it was
14361 		 unused before, and we place the note in i2.  */
14362 	      if (from_insn != i3 && i2 && INSN_P (i2)
14363 		  && reg_referenced_p (XEXP (note, 0), PATTERN (i2)))
14364 		{
14365 		  if (!reg_set_p (XEXP (note, 0), PATTERN (i2)))
14366 		    PUT_REG_NOTE_KIND (note, REG_DEAD);
14367 		  if (! (REG_P (XEXP (note, 0))
14368 			 ? find_regno_note (i2, REG_NOTE_KIND (note),
14369 					    REGNO (XEXP (note, 0)))
14370 			 : find_reg_note (i2, REG_NOTE_KIND (note),
14371 					  XEXP (note, 0))))
14372 		    place = i2;
14373 		}
14374 	    }
14375 
14376 	  break;
14377 
14378 	case REG_EQUAL:
14379 	case REG_EQUIV:
14380 	case REG_NOALIAS:
14381 	  /* These notes say something about results of an insn.  We can
14382 	     only support them if they used to be on I3 in which case they
14383 	     remain on I3.  Otherwise they are ignored.
14384 
14385 	     If the note refers to an expression that is not a constant, we
14386 	     must also ignore the note since we cannot tell whether the
14387 	     equivalence is still true.  It might be possible to do
14388 	     slightly better than this (we only have a problem if I2DEST
14389 	     or I1DEST is present in the expression), but it doesn't
14390 	     seem worth the trouble.  */
14391 
14392 	  if (from_insn == i3
14393 	      && (XEXP (note, 0) == 0 || CONSTANT_P (XEXP (note, 0))))
14394 	    place = i3;
14395 	  break;
14396 
14397 	case REG_INC:
14398 	  /* These notes say something about how a register is used.  They must
14399 	     be present on any use of the register in I2 or I3.  */
14400 	  if (reg_mentioned_p (XEXP (note, 0), PATTERN (i3)))
14401 	    place = i3;
14402 
14403 	  if (i2 && reg_mentioned_p (XEXP (note, 0), PATTERN (i2)))
14404 	    {
14405 	      if (place)
14406 		place2 = i2;
14407 	      else
14408 		place = i2;
14409 	    }
14410 	  break;
14411 
14412 	case REG_LABEL_TARGET:
14413 	case REG_LABEL_OPERAND:
14414 	  /* This can show up in several ways -- either directly in the
14415 	     pattern, or hidden off in the constant pool with (or without?)
14416 	     a REG_EQUAL note.  */
14417 	  /* ??? Ignore the without-reg_equal-note problem for now.  */
14418 	  if (reg_mentioned_p (XEXP (note, 0), PATTERN (i3))
14419 	      || ((tem_note = find_reg_note (i3, REG_EQUAL, NULL_RTX))
14420 		  && GET_CODE (XEXP (tem_note, 0)) == LABEL_REF
14421 		  && label_ref_label (XEXP (tem_note, 0)) == XEXP (note, 0)))
14422 	    place = i3;
14423 
14424 	  if (i2
14425 	      && (reg_mentioned_p (XEXP (note, 0), PATTERN (i2))
14426 		  || ((tem_note = find_reg_note (i2, REG_EQUAL, NULL_RTX))
14427 		      && GET_CODE (XEXP (tem_note, 0)) == LABEL_REF
14428 		      && label_ref_label (XEXP (tem_note, 0)) == XEXP (note, 0))))
14429 	    {
14430 	      if (place)
14431 		place2 = i2;
14432 	      else
14433 		place = i2;
14434 	    }
14435 
14436 	  /* For REG_LABEL_TARGET on a JUMP_P, we prefer to put the note
14437 	     as a JUMP_LABEL or decrement LABEL_NUSES if it's already
14438 	     there.  */
14439 	  if (place && JUMP_P (place)
14440 	      && REG_NOTE_KIND (note) == REG_LABEL_TARGET
14441 	      && (JUMP_LABEL (place) == NULL
14442 		  || JUMP_LABEL (place) == XEXP (note, 0)))
14443 	    {
14444 	      rtx label = JUMP_LABEL (place);
14445 
14446 	      if (!label)
14447 		JUMP_LABEL (place) = XEXP (note, 0);
14448 	      else if (LABEL_P (label))
14449 		LABEL_NUSES (label)--;
14450 	    }
14451 
14452 	  if (place2 && JUMP_P (place2)
14453 	      && REG_NOTE_KIND (note) == REG_LABEL_TARGET
14454 	      && (JUMP_LABEL (place2) == NULL
14455 		  || JUMP_LABEL (place2) == XEXP (note, 0)))
14456 	    {
14457 	      rtx label = JUMP_LABEL (place2);
14458 
14459 	      if (!label)
14460 		JUMP_LABEL (place2) = XEXP (note, 0);
14461 	      else if (LABEL_P (label))
14462 		LABEL_NUSES (label)--;
14463 	      place2 = 0;
14464 	    }
14465 	  break;
14466 
14467 	case REG_NONNEG:
14468 	  /* This note says something about the value of a register prior
14469 	     to the execution of an insn.  It is too much trouble to see
14470 	     if the note is still correct in all situations.  It is better
14471 	     to simply delete it.  */
14472 	  break;
14473 
14474 	case REG_DEAD:
14475 	  /* If we replaced the right hand side of FROM_INSN with a
14476 	     REG_EQUAL note, the original use of the dying register
14477 	     will not have been combined into I3 and I2.  In such cases,
14478 	     FROM_INSN is guaranteed to be the first of the combined
14479 	     instructions, so we simply need to search back before
14480 	     FROM_INSN for the previous use or set of this register,
14481 	     then alter the notes there appropriately.
14482 
14483 	     If the register is used as an input in I3, it dies there.
14484 	     Similarly for I2, if it is nonzero and adjacent to I3.
14485 
14486 	     If the register is not used as an input in either I3 or I2
14487 	     and it is not one of the registers we were supposed to eliminate,
14488 	     there are two possibilities.  We might have a non-adjacent I2
14489 	     or we might have somehow eliminated an additional register
14490 	     from a computation.  For example, we might have had A & B where
14491 	     we discover that B will always be zero.  In this case we will
14492 	     eliminate the reference to A.
14493 
14494 	     In both cases, we must search to see if we can find a previous
14495 	     use of A and put the death note there.  */
14496 
14497 	  if (from_insn
14498 	      && from_insn == i2mod
14499 	      && !reg_overlap_mentioned_p (XEXP (note, 0), i2mod_new_rhs))
14500 	    tem_insn = from_insn;
14501 	  else
14502 	    {
14503 	      if (from_insn
14504 		  && CALL_P (from_insn)
14505 		  && find_reg_fusage (from_insn, USE, XEXP (note, 0)))
14506 		place = from_insn;
14507 	      else if (i2 && reg_set_p (XEXP (note, 0), PATTERN (i2)))
14508 		{
14509 		  /* If the new I2 sets the same register that is marked
14510 		     dead in the note, we do not in general know where to
14511 		     put the note.  One important case we _can_ handle is
14512 		     when the note comes from I3.  */
14513 		  if (from_insn == i3)
14514 		    place = i3;
14515 		  else
14516 		    break;
14517 		}
14518 	      else if (reg_referenced_p (XEXP (note, 0), PATTERN (i3)))
14519 		place = i3;
14520 	      else if (i2 != 0 && next_nonnote_nondebug_insn (i2) == i3
14521 		       && reg_referenced_p (XEXP (note, 0), PATTERN (i2)))
14522 		place = i2;
14523 	      else if ((rtx_equal_p (XEXP (note, 0), elim_i2)
14524 			&& !(i2mod
14525 			     && reg_overlap_mentioned_p (XEXP (note, 0),
14526 							 i2mod_old_rhs)))
14527 		       || rtx_equal_p (XEXP (note, 0), elim_i1)
14528 		       || rtx_equal_p (XEXP (note, 0), elim_i0))
14529 		break;
14530 	      tem_insn = i3;
14531 	    }
14532 
14533 	  if (place == 0)
14534 	    {
14535 	      basic_block bb = this_basic_block;
14536 
14537 	      for (tem_insn = PREV_INSN (tem_insn); place == 0; tem_insn = PREV_INSN (tem_insn))
14538 		{
14539 		  if (!NONDEBUG_INSN_P (tem_insn))
14540 		    {
14541 		      if (tem_insn == BB_HEAD (bb))
14542 			break;
14543 		      continue;
14544 		    }
14545 
14546 		  /* If the register is being set at TEM_INSN, see if that is all
14547 		     TEM_INSN is doing.  If so, delete TEM_INSN.  Otherwise, make this
14548 		     into a REG_UNUSED note instead. Don't delete sets to
14549 		     global register vars.  */
14550 		  if ((REGNO (XEXP (note, 0)) >= FIRST_PSEUDO_REGISTER
14551 		       || !global_regs[REGNO (XEXP (note, 0))])
14552 		      && reg_set_p (XEXP (note, 0), PATTERN (tem_insn)))
14553 		    {
14554 		      rtx set = single_set (tem_insn);
14555 		      rtx inner_dest = 0;
14556 
14557 		      if (set != 0)
14558 			for (inner_dest = SET_DEST (set);
14559 			     (GET_CODE (inner_dest) == STRICT_LOW_PART
14560 			      || GET_CODE (inner_dest) == SUBREG
14561 			      || GET_CODE (inner_dest) == ZERO_EXTRACT);
14562 			     inner_dest = XEXP (inner_dest, 0))
14563 			  ;
14564 
14565 		      /* Verify that it was the set, and not a clobber that
14566 			 modified the register.
14567 
14568 			 If we cannot delete the setter due to side
14569 			 effects, mark the user with an UNUSED note instead
14570 			 of deleting it.  */
14571 
14572 		      if (set != 0 && ! side_effects_p (SET_SRC (set))
14573 			  && rtx_equal_p (XEXP (note, 0), inner_dest))
14574 			{
14575 			  /* Move the notes and links of TEM_INSN elsewhere.
14576 			     This might delete other dead insns recursively.
14577 			     First set the pattern to something that won't use
14578 			     any register.  */
14579 			  rtx old_notes = REG_NOTES (tem_insn);
14580 
14581 			  PATTERN (tem_insn) = pc_rtx;
14582 			  REG_NOTES (tem_insn) = NULL;
14583 
14584 			  distribute_notes (old_notes, tem_insn, tem_insn, NULL,
14585 					    NULL_RTX, NULL_RTX, NULL_RTX);
14586 			  distribute_links (LOG_LINKS (tem_insn));
14587 
14588 			  unsigned int regno = REGNO (XEXP (note, 0));
14589 			  reg_stat_type *rsp = &reg_stat[regno];
14590 			  if (rsp->last_set == tem_insn)
14591 			    record_value_for_reg (XEXP (note, 0), NULL, NULL_RTX);
14592 
14593 			  SET_INSN_DELETED (tem_insn);
14594 			  if (tem_insn == i2)
14595 			    i2 = NULL;
14596 			}
14597 		      else
14598 			{
14599 			  PUT_REG_NOTE_KIND (note, REG_UNUSED);
14600 
14601 			  /*  If there isn't already a REG_UNUSED note, put one
14602 			      here.  Do not place a REG_DEAD note, even if
14603 			      the register is also used here; that would not
14604 			      match the algorithm used in lifetime analysis
14605 			      and can cause the consistency check in the
14606 			      scheduler to fail.  */
14607 			  if (! find_regno_note (tem_insn, REG_UNUSED,
14608 						 REGNO (XEXP (note, 0))))
14609 			    place = tem_insn;
14610 			  break;
14611 			}
14612 		    }
14613 		  else if (reg_referenced_p (XEXP (note, 0), PATTERN (tem_insn))
14614 			   || (CALL_P (tem_insn)
14615 			       && find_reg_fusage (tem_insn, USE, XEXP (note, 0))))
14616 		    {
14617 		      place = tem_insn;
14618 
14619 		      /* If we are doing a 3->2 combination, and we have a
14620 			 register which formerly died in i3 and was not used
14621 			 by i2, which now no longer dies in i3 and is used in
14622 			 i2 but does not die in i2, and place is between i2
14623 			 and i3, then we may need to move a link from place to
14624 			 i2.  */
14625 		      if (i2 && DF_INSN_LUID (place) > DF_INSN_LUID (i2)
14626 			  && from_insn
14627 			  && DF_INSN_LUID (from_insn) > DF_INSN_LUID (i2)
14628 			  && reg_referenced_p (XEXP (note, 0), PATTERN (i2)))
14629 			{
14630 			  struct insn_link *links = LOG_LINKS (place);
14631 			  LOG_LINKS (place) = NULL;
14632 			  distribute_links (links);
14633 			}
14634 		      break;
14635 		    }
14636 
14637 		  if (tem_insn == BB_HEAD (bb))
14638 		    break;
14639 		}
14640 
14641 	    }
14642 
14643 	  /* If the register is set or already dead at PLACE, we needn't do
14644 	     anything with this note if it is still a REG_DEAD note.
14645 	     We check here if it is set at all, not if is it totally replaced,
14646 	     which is what `dead_or_set_p' checks, so also check for it being
14647 	     set partially.  */
14648 
14649 	  if (place && REG_NOTE_KIND (note) == REG_DEAD)
14650 	    {
14651 	      unsigned int regno = REGNO (XEXP (note, 0));
14652 	      reg_stat_type *rsp = &reg_stat[regno];
14653 
14654 	      if (dead_or_set_p (place, XEXP (note, 0))
14655 		  || reg_bitfield_target_p (XEXP (note, 0), PATTERN (place)))
14656 		{
14657 		  /* Unless the register previously died in PLACE, clear
14658 		     last_death.  [I no longer understand why this is
14659 		     being done.] */
14660 		  if (rsp->last_death != place)
14661 		    rsp->last_death = 0;
14662 		  place = 0;
14663 		}
14664 	      else
14665 		rsp->last_death = place;
14666 
14667 	      /* If this is a death note for a hard reg that is occupying
14668 		 multiple registers, ensure that we are still using all
14669 		 parts of the object.  If we find a piece of the object
14670 		 that is unused, we must arrange for an appropriate REG_DEAD
14671 		 note to be added for it.  However, we can't just emit a USE
14672 		 and tag the note to it, since the register might actually
14673 		 be dead; so we recourse, and the recursive call then finds
14674 		 the previous insn that used this register.  */
14675 
14676 	      if (place && REG_NREGS (XEXP (note, 0)) > 1)
14677 		{
14678 		  unsigned int endregno = END_REGNO (XEXP (note, 0));
14679 		  bool all_used = true;
14680 		  unsigned int i;
14681 
14682 		  for (i = regno; i < endregno; i++)
14683 		    if ((! refers_to_regno_p (i, PATTERN (place))
14684 			 && ! find_regno_fusage (place, USE, i))
14685 			|| dead_or_set_regno_p (place, i))
14686 		      {
14687 			all_used = false;
14688 			break;
14689 		      }
14690 
14691 		  if (! all_used)
14692 		    {
14693 		      /* Put only REG_DEAD notes for pieces that are
14694 			 not already dead or set.  */
14695 
14696 		      for (i = regno; i < endregno;
14697 			   i += hard_regno_nregs (i, reg_raw_mode[i]))
14698 			{
14699 			  rtx piece = regno_reg_rtx[i];
14700 			  basic_block bb = this_basic_block;
14701 
14702 			  if (! dead_or_set_p (place, piece)
14703 			      && ! reg_bitfield_target_p (piece,
14704 							  PATTERN (place)))
14705 			    {
14706 			      rtx new_note = alloc_reg_note (REG_DEAD, piece,
14707 							     NULL_RTX);
14708 
14709 			      distribute_notes (new_note, place, place,
14710 						NULL, NULL_RTX, NULL_RTX,
14711 						NULL_RTX);
14712 			    }
14713 			  else if (! refers_to_regno_p (i, PATTERN (place))
14714 				   && ! find_regno_fusage (place, USE, i))
14715 			    for (tem_insn = PREV_INSN (place); ;
14716 				 tem_insn = PREV_INSN (tem_insn))
14717 			      {
14718 				if (!NONDEBUG_INSN_P (tem_insn))
14719 				  {
14720 				    if (tem_insn == BB_HEAD (bb))
14721 			 	      break;
14722 				    continue;
14723 				  }
14724 				if (dead_or_set_p (tem_insn, piece)
14725 				    || reg_bitfield_target_p (piece,
14726 							      PATTERN (tem_insn)))
14727 				  {
14728 				    add_reg_note (tem_insn, REG_UNUSED, piece);
14729 				    break;
14730 				  }
14731 			      }
14732 			}
14733 
14734 		      place = 0;
14735 		    }
14736 		}
14737 	    }
14738 	  break;
14739 
14740 	default:
14741 	  /* Any other notes should not be present at this point in the
14742 	     compilation.  */
14743 	  gcc_unreachable ();
14744 	}
14745 
14746       if (place)
14747 	{
14748 	  XEXP (note, 1) = REG_NOTES (place);
14749 	  REG_NOTES (place) = note;
14750 
14751 	  /* Set added_notes_insn to the earliest insn we added a note to.  */
14752 	  if (added_notes_insn == 0
14753 	      || DF_INSN_LUID (added_notes_insn) > DF_INSN_LUID (place))
14754 	    added_notes_insn = place;
14755 	}
14756 
14757       if (place2)
14758 	{
14759 	  add_shallow_copy_of_reg_note (place2, note);
14760 
14761 	  /* Set added_notes_insn to the earliest insn we added a note to.  */
14762 	  if (added_notes_insn == 0
14763 	      || DF_INSN_LUID (added_notes_insn) > DF_INSN_LUID (place2))
14764 	    added_notes_insn = place2;
14765 	}
14766     }
14767 }
14768 
14769 /* Similarly to above, distribute the LOG_LINKS that used to be present on
14770    I3, I2, and I1 to new locations.  This is also called to add a link
14771    pointing at I3 when I3's destination is changed.  */
14772 
14773 static void
distribute_links(struct insn_link * links)14774 distribute_links (struct insn_link *links)
14775 {
14776   struct insn_link *link, *next_link;
14777 
14778   for (link = links; link; link = next_link)
14779     {
14780       rtx_insn *place = 0;
14781       rtx_insn *insn;
14782       rtx set, reg;
14783 
14784       next_link = link->next;
14785 
14786       /* If the insn that this link points to is a NOTE, ignore it.  */
14787       if (NOTE_P (link->insn))
14788 	continue;
14789 
14790       set = 0;
14791       rtx pat = PATTERN (link->insn);
14792       if (GET_CODE (pat) == SET)
14793 	set = pat;
14794       else if (GET_CODE (pat) == PARALLEL)
14795 	{
14796 	  int i;
14797 	  for (i = 0; i < XVECLEN (pat, 0); i++)
14798 	    {
14799 	      set = XVECEXP (pat, 0, i);
14800 	      if (GET_CODE (set) != SET)
14801 		continue;
14802 
14803 	      reg = SET_DEST (set);
14804 	      while (GET_CODE (reg) == ZERO_EXTRACT
14805 		     || GET_CODE (reg) == STRICT_LOW_PART
14806 		     || GET_CODE (reg) == SUBREG)
14807 		reg = XEXP (reg, 0);
14808 
14809 	      if (!REG_P (reg))
14810 		continue;
14811 
14812 	      if (REGNO (reg) == link->regno)
14813 		break;
14814 	    }
14815 	  if (i == XVECLEN (pat, 0))
14816 	    continue;
14817 	}
14818       else
14819 	continue;
14820 
14821       reg = SET_DEST (set);
14822 
14823       while (GET_CODE (reg) == ZERO_EXTRACT
14824 	     || GET_CODE (reg) == STRICT_LOW_PART
14825 	     || GET_CODE (reg) == SUBREG)
14826 	reg = XEXP (reg, 0);
14827 
14828       if (reg == pc_rtx)
14829 	continue;
14830 
14831       /* A LOG_LINK is defined as being placed on the first insn that uses
14832 	 a register and points to the insn that sets the register.  Start
14833 	 searching at the next insn after the target of the link and stop
14834 	 when we reach a set of the register or the end of the basic block.
14835 
14836 	 Note that this correctly handles the link that used to point from
14837 	 I3 to I2.  Also note that not much searching is typically done here
14838 	 since most links don't point very far away.  */
14839 
14840       for (insn = NEXT_INSN (link->insn);
14841 	   (insn && (this_basic_block->next_bb == EXIT_BLOCK_PTR_FOR_FN (cfun)
14842 		     || BB_HEAD (this_basic_block->next_bb) != insn));
14843 	   insn = NEXT_INSN (insn))
14844 	if (DEBUG_INSN_P (insn))
14845 	  continue;
14846 	else if (INSN_P (insn) && reg_overlap_mentioned_p (reg, PATTERN (insn)))
14847 	  {
14848 	    if (reg_referenced_p (reg, PATTERN (insn)))
14849 	      place = insn;
14850 	    break;
14851 	  }
14852 	else if (CALL_P (insn)
14853 		 && find_reg_fusage (insn, USE, reg))
14854 	  {
14855 	    place = insn;
14856 	    break;
14857 	  }
14858 	else if (INSN_P (insn) && reg_set_p (reg, insn))
14859 	  break;
14860 
14861       /* If we found a place to put the link, place it there unless there
14862 	 is already a link to the same insn as LINK at that point.  */
14863 
14864       if (place)
14865 	{
14866 	  struct insn_link *link2;
14867 
14868 	  FOR_EACH_LOG_LINK (link2, place)
14869 	    if (link2->insn == link->insn && link2->regno == link->regno)
14870 	      break;
14871 
14872 	  if (link2 == NULL)
14873 	    {
14874 	      link->next = LOG_LINKS (place);
14875 	      LOG_LINKS (place) = link;
14876 
14877 	      /* Set added_links_insn to the earliest insn we added a
14878 		 link to.  */
14879 	      if (added_links_insn == 0
14880 		  || DF_INSN_LUID (added_links_insn) > DF_INSN_LUID (place))
14881 		added_links_insn = place;
14882 	    }
14883 	}
14884     }
14885 }
14886 
14887 /* Check for any register or memory mentioned in EQUIV that is not
14888    mentioned in EXPR.  This is used to restrict EQUIV to "specializations"
14889    of EXPR where some registers may have been replaced by constants.  */
14890 
14891 static bool
unmentioned_reg_p(rtx equiv,rtx expr)14892 unmentioned_reg_p (rtx equiv, rtx expr)
14893 {
14894   subrtx_iterator::array_type array;
14895   FOR_EACH_SUBRTX (iter, array, equiv, NONCONST)
14896     {
14897       const_rtx x = *iter;
14898       if ((REG_P (x) || MEM_P (x))
14899 	  && !reg_mentioned_p (x, expr))
14900 	return true;
14901     }
14902   return false;
14903 }
14904 
14905 DEBUG_FUNCTION void
dump_combine_stats(FILE * file)14906 dump_combine_stats (FILE *file)
14907 {
14908   fprintf
14909     (file,
14910      ";; Combiner statistics: %d attempts, %d substitutions (%d requiring new space),\n;; %d successes.\n\n",
14911      combine_attempts, combine_merges, combine_extras, combine_successes);
14912 }
14913 
14914 void
dump_combine_total_stats(FILE * file)14915 dump_combine_total_stats (FILE *file)
14916 {
14917   fprintf
14918     (file,
14919      "\n;; Combiner totals: %d attempts, %d substitutions (%d requiring new space),\n;; %d successes.\n",
14920      total_attempts, total_merges, total_extras, total_successes);
14921 }
14922 
14923 /* Make pseudo-to-pseudo copies after every hard-reg-to-pseudo-copy, because
14924    the reg-to-reg copy can usefully combine with later instructions, but we
14925    do not want to combine the hard reg into later instructions, for that
14926    restricts register allocation.  */
14927 static void
make_more_copies(void)14928 make_more_copies (void)
14929 {
14930   basic_block bb;
14931 
14932   FOR_EACH_BB_FN (bb, cfun)
14933     {
14934       rtx_insn *insn;
14935 
14936       FOR_BB_INSNS (bb, insn)
14937         {
14938           if (!NONDEBUG_INSN_P (insn))
14939             continue;
14940 
14941 	  rtx set = single_set (insn);
14942 	  if (!set)
14943 	    continue;
14944 
14945 	  rtx dest = SET_DEST (set);
14946 	  if (!(REG_P (dest) && !HARD_REGISTER_P (dest)))
14947 	      continue;
14948 
14949 	  rtx src = SET_SRC (set);
14950 	  if (!(REG_P (src) && HARD_REGISTER_P (src)))
14951 	    continue;
14952 	  if (TEST_HARD_REG_BIT (fixed_reg_set, REGNO (src)))
14953 	    continue;
14954 
14955 	  rtx new_reg = gen_reg_rtx (GET_MODE (dest));
14956 	  rtx_insn *new_insn = gen_move_insn (new_reg, src);
14957 	  SET_SRC (set) = new_reg;
14958 	  emit_insn_before (new_insn, insn);
14959 	  df_insn_rescan (insn);
14960 	}
14961     }
14962 }
14963 
14964 /* Try combining insns through substitution.  */
14965 static unsigned int
rest_of_handle_combine(void)14966 rest_of_handle_combine (void)
14967 {
14968   make_more_copies ();
14969 
14970   df_set_flags (DF_LR_RUN_DCE + DF_DEFER_INSN_RESCAN);
14971   df_note_add_problem ();
14972   df_analyze ();
14973 
14974   regstat_init_n_sets_and_refs ();
14975   reg_n_sets_max = max_reg_num ();
14976 
14977   int rebuild_jump_labels_after_combine
14978     = combine_instructions (get_insns (), max_reg_num ());
14979 
14980   /* Combining insns may have turned an indirect jump into a
14981      direct jump.  Rebuild the JUMP_LABEL fields of jumping
14982      instructions.  */
14983   if (rebuild_jump_labels_after_combine)
14984     {
14985       if (dom_info_available_p (CDI_DOMINATORS))
14986 	free_dominance_info (CDI_DOMINATORS);
14987       timevar_push (TV_JUMP);
14988       rebuild_jump_labels (get_insns ());
14989       cleanup_cfg (0);
14990       timevar_pop (TV_JUMP);
14991     }
14992 
14993   regstat_free_n_sets_and_refs ();
14994   return 0;
14995 }
14996 
14997 namespace {
14998 
14999 const pass_data pass_data_combine =
15000 {
15001   RTL_PASS, /* type */
15002   "combine", /* name */
15003   OPTGROUP_NONE, /* optinfo_flags */
15004   TV_COMBINE, /* tv_id */
15005   PROP_cfglayout, /* properties_required */
15006   0, /* properties_provided */
15007   0, /* properties_destroyed */
15008   0, /* todo_flags_start */
15009   TODO_df_finish, /* todo_flags_finish */
15010 };
15011 
15012 class pass_combine : public rtl_opt_pass
15013 {
15014 public:
pass_combine(gcc::context * ctxt)15015   pass_combine (gcc::context *ctxt)
15016     : rtl_opt_pass (pass_data_combine, ctxt)
15017   {}
15018 
15019   /* opt_pass methods: */
gate(function *)15020   virtual bool gate (function *) { return (optimize > 0); }
execute(function *)15021   virtual unsigned int execute (function *)
15022     {
15023       return rest_of_handle_combine ();
15024     }
15025 
15026 }; // class pass_combine
15027 
15028 } // anon namespace
15029 
15030 rtl_opt_pass *
make_pass_combine(gcc::context * ctxt)15031 make_pass_combine (gcc::context *ctxt)
15032 {
15033   return new pass_combine (ctxt);
15034 }
15035