xref: /netbsd-src/sys/external/bsd/drm2/dist/drm/i915/gvt/cmd_parser.c (revision 41ec02673d281bbb3d38e6c78504ce6e30c228c1)
1 /*	$NetBSD: cmd_parser.c,v 1.2 2021/12/18 23:45:31 riastradh Exp $	*/
2 
3 /*
4  * Copyright(c) 2011-2016 Intel Corporation. All rights reserved.
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a
7  * copy of this software and associated documentation files (the "Software"),
8  * to deal in the Software without restriction, including without limitation
9  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
10  * and/or sell copies of the Software, and to permit persons to whom the
11  * Software is furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice (including the next
14  * paragraph) shall be included in all copies or substantial portions of the
15  * Software.
16  *
17  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
18  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
19  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
20  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
21  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
22  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
23  * SOFTWARE.
24  *
25  * Authors:
26  *    Ke Yu
27  *    Kevin Tian <kevin.tian@intel.com>
28  *    Zhiyuan Lv <zhiyuan.lv@intel.com>
29  *
30  * Contributors:
31  *    Min He <min.he@intel.com>
32  *    Ping Gao <ping.a.gao@intel.com>
33  *    Tina Zhang <tina.zhang@intel.com>
34  *    Yulei Zhang <yulei.zhang@intel.com>
35  *    Zhi Wang <zhi.a.wang@intel.com>
36  *
37  */
38 
39 #include <sys/cdefs.h>
40 __KERNEL_RCSID(0, "$NetBSD: cmd_parser.c,v 1.2 2021/12/18 23:45:31 riastradh Exp $");
41 
42 #include <linux/slab.h>
43 
44 #include "i915_drv.h"
45 #include "gt/intel_ring.h"
46 #include "gvt.h"
47 #include "i915_pvinfo.h"
48 #include "trace.h"
49 
50 #define INVALID_OP    (~0U)
51 
52 #define OP_LEN_MI           9
53 #define OP_LEN_2D           10
54 #define OP_LEN_3D_MEDIA     16
55 #define OP_LEN_MFX_VC       16
56 #define OP_LEN_VEBOX	    16
57 
58 #define CMD_TYPE(cmd)	(((cmd) >> 29) & 7)
59 
60 struct sub_op_bits {
61 	int hi;
62 	int low;
63 };
64 struct decode_info {
65 	const char *name;
66 	int op_len;
67 	int nr_sub_op;
68 	const struct sub_op_bits *sub_op;
69 };
70 
71 #define   MAX_CMD_BUDGET			0x7fffffff
72 #define   MI_WAIT_FOR_PLANE_C_FLIP_PENDING      (1<<15)
73 #define   MI_WAIT_FOR_PLANE_B_FLIP_PENDING      (1<<9)
74 #define   MI_WAIT_FOR_PLANE_A_FLIP_PENDING      (1<<1)
75 
76 #define   MI_WAIT_FOR_SPRITE_C_FLIP_PENDING      (1<<20)
77 #define   MI_WAIT_FOR_SPRITE_B_FLIP_PENDING      (1<<10)
78 #define   MI_WAIT_FOR_SPRITE_A_FLIP_PENDING      (1<<2)
79 
80 /* Render Command Map */
81 
82 /* MI_* command Opcode (28:23) */
83 #define OP_MI_NOOP                          0x0
84 #define OP_MI_SET_PREDICATE                 0x1  /* HSW+ */
85 #define OP_MI_USER_INTERRUPT                0x2
86 #define OP_MI_WAIT_FOR_EVENT                0x3
87 #define OP_MI_FLUSH                         0x4
88 #define OP_MI_ARB_CHECK                     0x5
89 #define OP_MI_RS_CONTROL                    0x6  /* HSW+ */
90 #define OP_MI_REPORT_HEAD                   0x7
91 #define OP_MI_ARB_ON_OFF                    0x8
92 #define OP_MI_URB_ATOMIC_ALLOC              0x9  /* HSW+ */
93 #define OP_MI_BATCH_BUFFER_END              0xA
94 #define OP_MI_SUSPEND_FLUSH                 0xB
95 #define OP_MI_PREDICATE                     0xC  /* IVB+ */
96 #define OP_MI_TOPOLOGY_FILTER               0xD  /* IVB+ */
97 #define OP_MI_SET_APPID                     0xE  /* IVB+ */
98 #define OP_MI_RS_CONTEXT                    0xF  /* HSW+ */
99 #define OP_MI_LOAD_SCAN_LINES_INCL          0x12 /* HSW+ */
100 #define OP_MI_DISPLAY_FLIP                  0x14
101 #define OP_MI_SEMAPHORE_MBOX                0x16
102 #define OP_MI_SET_CONTEXT                   0x18
103 #define OP_MI_MATH                          0x1A
104 #define OP_MI_URB_CLEAR                     0x19
105 #define OP_MI_SEMAPHORE_SIGNAL		    0x1B  /* BDW+ */
106 #define OP_MI_SEMAPHORE_WAIT		    0x1C  /* BDW+ */
107 
108 #define OP_MI_STORE_DATA_IMM                0x20
109 #define OP_MI_STORE_DATA_INDEX              0x21
110 #define OP_MI_LOAD_REGISTER_IMM             0x22
111 #define OP_MI_UPDATE_GTT                    0x23
112 #define OP_MI_STORE_REGISTER_MEM            0x24
113 #define OP_MI_FLUSH_DW                      0x26
114 #define OP_MI_CLFLUSH                       0x27
115 #define OP_MI_REPORT_PERF_COUNT             0x28
116 #define OP_MI_LOAD_REGISTER_MEM             0x29  /* HSW+ */
117 #define OP_MI_LOAD_REGISTER_REG             0x2A  /* HSW+ */
118 #define OP_MI_RS_STORE_DATA_IMM             0x2B  /* HSW+ */
119 #define OP_MI_LOAD_URB_MEM                  0x2C  /* HSW+ */
120 #define OP_MI_STORE_URM_MEM                 0x2D  /* HSW+ */
121 #define OP_MI_2E			    0x2E  /* BDW+ */
122 #define OP_MI_2F			    0x2F  /* BDW+ */
123 #define OP_MI_BATCH_BUFFER_START            0x31
124 
125 /* Bit definition for dword 0 */
126 #define _CMDBIT_BB_START_IN_PPGTT	(1UL << 8)
127 
128 #define OP_MI_CONDITIONAL_BATCH_BUFFER_END  0x36
129 
130 #define BATCH_BUFFER_ADDR_MASK ((1UL << 32) - (1U << 2))
131 #define BATCH_BUFFER_ADDR_HIGH_MASK ((1UL << 16) - (1U))
132 #define BATCH_BUFFER_ADR_SPACE_BIT(x)	(((x) >> 8) & 1U)
133 #define BATCH_BUFFER_2ND_LEVEL_BIT(x)   ((x) >> 22 & 1U)
134 
135 /* 2D command: Opcode (28:22) */
136 #define OP_2D(x)    ((2<<7) | x)
137 
138 #define OP_XY_SETUP_BLT                             OP_2D(0x1)
139 #define OP_XY_SETUP_CLIP_BLT                        OP_2D(0x3)
140 #define OP_XY_SETUP_MONO_PATTERN_SL_BLT             OP_2D(0x11)
141 #define OP_XY_PIXEL_BLT                             OP_2D(0x24)
142 #define OP_XY_SCANLINES_BLT                         OP_2D(0x25)
143 #define OP_XY_TEXT_BLT                              OP_2D(0x26)
144 #define OP_XY_TEXT_IMMEDIATE_BLT                    OP_2D(0x31)
145 #define OP_XY_COLOR_BLT                             OP_2D(0x50)
146 #define OP_XY_PAT_BLT                               OP_2D(0x51)
147 #define OP_XY_MONO_PAT_BLT                          OP_2D(0x52)
148 #define OP_XY_SRC_COPY_BLT                          OP_2D(0x53)
149 #define OP_XY_MONO_SRC_COPY_BLT                     OP_2D(0x54)
150 #define OP_XY_FULL_BLT                              OP_2D(0x55)
151 #define OP_XY_FULL_MONO_SRC_BLT                     OP_2D(0x56)
152 #define OP_XY_FULL_MONO_PATTERN_BLT                 OP_2D(0x57)
153 #define OP_XY_FULL_MONO_PATTERN_MONO_SRC_BLT        OP_2D(0x58)
154 #define OP_XY_MONO_PAT_FIXED_BLT                    OP_2D(0x59)
155 #define OP_XY_MONO_SRC_COPY_IMMEDIATE_BLT           OP_2D(0x71)
156 #define OP_XY_PAT_BLT_IMMEDIATE                     OP_2D(0x72)
157 #define OP_XY_SRC_COPY_CHROMA_BLT                   OP_2D(0x73)
158 #define OP_XY_FULL_IMMEDIATE_PATTERN_BLT            OP_2D(0x74)
159 #define OP_XY_FULL_MONO_SRC_IMMEDIATE_PATTERN_BLT   OP_2D(0x75)
160 #define OP_XY_PAT_CHROMA_BLT                        OP_2D(0x76)
161 #define OP_XY_PAT_CHROMA_BLT_IMMEDIATE              OP_2D(0x77)
162 
163 /* 3D/Media Command: Pipeline Type(28:27) Opcode(26:24) Sub Opcode(23:16) */
164 #define OP_3D_MEDIA(sub_type, opcode, sub_opcode) \
165 	((3 << 13) | ((sub_type) << 11) | ((opcode) << 8) | (sub_opcode))
166 
167 #define OP_STATE_PREFETCH                       OP_3D_MEDIA(0x0, 0x0, 0x03)
168 
169 #define OP_STATE_BASE_ADDRESS                   OP_3D_MEDIA(0x0, 0x1, 0x01)
170 #define OP_STATE_SIP                            OP_3D_MEDIA(0x0, 0x1, 0x02)
171 #define OP_3D_MEDIA_0_1_4			OP_3D_MEDIA(0x0, 0x1, 0x04)
172 
173 #define OP_3DSTATE_VF_STATISTICS_GM45           OP_3D_MEDIA(0x1, 0x0, 0x0B)
174 
175 #define OP_PIPELINE_SELECT                      OP_3D_MEDIA(0x1, 0x1, 0x04)
176 
177 #define OP_MEDIA_VFE_STATE                      OP_3D_MEDIA(0x2, 0x0, 0x0)
178 #define OP_MEDIA_CURBE_LOAD                     OP_3D_MEDIA(0x2, 0x0, 0x1)
179 #define OP_MEDIA_INTERFACE_DESCRIPTOR_LOAD      OP_3D_MEDIA(0x2, 0x0, 0x2)
180 #define OP_MEDIA_GATEWAY_STATE                  OP_3D_MEDIA(0x2, 0x0, 0x3)
181 #define OP_MEDIA_STATE_FLUSH                    OP_3D_MEDIA(0x2, 0x0, 0x4)
182 #define OP_MEDIA_POOL_STATE                     OP_3D_MEDIA(0x2, 0x0, 0x5)
183 
184 #define OP_MEDIA_OBJECT                         OP_3D_MEDIA(0x2, 0x1, 0x0)
185 #define OP_MEDIA_OBJECT_PRT                     OP_3D_MEDIA(0x2, 0x1, 0x2)
186 #define OP_MEDIA_OBJECT_WALKER                  OP_3D_MEDIA(0x2, 0x1, 0x3)
187 #define OP_GPGPU_WALKER                         OP_3D_MEDIA(0x2, 0x1, 0x5)
188 
189 #define OP_3DSTATE_CLEAR_PARAMS                 OP_3D_MEDIA(0x3, 0x0, 0x04) /* IVB+ */
190 #define OP_3DSTATE_DEPTH_BUFFER                 OP_3D_MEDIA(0x3, 0x0, 0x05) /* IVB+ */
191 #define OP_3DSTATE_STENCIL_BUFFER               OP_3D_MEDIA(0x3, 0x0, 0x06) /* IVB+ */
192 #define OP_3DSTATE_HIER_DEPTH_BUFFER            OP_3D_MEDIA(0x3, 0x0, 0x07) /* IVB+ */
193 #define OP_3DSTATE_VERTEX_BUFFERS               OP_3D_MEDIA(0x3, 0x0, 0x08)
194 #define OP_3DSTATE_VERTEX_ELEMENTS              OP_3D_MEDIA(0x3, 0x0, 0x09)
195 #define OP_3DSTATE_INDEX_BUFFER                 OP_3D_MEDIA(0x3, 0x0, 0x0A)
196 #define OP_3DSTATE_VF_STATISTICS                OP_3D_MEDIA(0x3, 0x0, 0x0B)
197 #define OP_3DSTATE_VF                           OP_3D_MEDIA(0x3, 0x0, 0x0C)  /* HSW+ */
198 #define OP_3DSTATE_CC_STATE_POINTERS            OP_3D_MEDIA(0x3, 0x0, 0x0E)
199 #define OP_3DSTATE_SCISSOR_STATE_POINTERS       OP_3D_MEDIA(0x3, 0x0, 0x0F)
200 #define OP_3DSTATE_VS                           OP_3D_MEDIA(0x3, 0x0, 0x10)
201 #define OP_3DSTATE_GS                           OP_3D_MEDIA(0x3, 0x0, 0x11)
202 #define OP_3DSTATE_CLIP                         OP_3D_MEDIA(0x3, 0x0, 0x12)
203 #define OP_3DSTATE_SF                           OP_3D_MEDIA(0x3, 0x0, 0x13)
204 #define OP_3DSTATE_WM                           OP_3D_MEDIA(0x3, 0x0, 0x14)
205 #define OP_3DSTATE_CONSTANT_VS                  OP_3D_MEDIA(0x3, 0x0, 0x15)
206 #define OP_3DSTATE_CONSTANT_GS                  OP_3D_MEDIA(0x3, 0x0, 0x16)
207 #define OP_3DSTATE_CONSTANT_PS                  OP_3D_MEDIA(0x3, 0x0, 0x17)
208 #define OP_3DSTATE_SAMPLE_MASK                  OP_3D_MEDIA(0x3, 0x0, 0x18)
209 #define OP_3DSTATE_CONSTANT_HS                  OP_3D_MEDIA(0x3, 0x0, 0x19) /* IVB+ */
210 #define OP_3DSTATE_CONSTANT_DS                  OP_3D_MEDIA(0x3, 0x0, 0x1A) /* IVB+ */
211 #define OP_3DSTATE_HS                           OP_3D_MEDIA(0x3, 0x0, 0x1B) /* IVB+ */
212 #define OP_3DSTATE_TE                           OP_3D_MEDIA(0x3, 0x0, 0x1C) /* IVB+ */
213 #define OP_3DSTATE_DS                           OP_3D_MEDIA(0x3, 0x0, 0x1D) /* IVB+ */
214 #define OP_3DSTATE_STREAMOUT                    OP_3D_MEDIA(0x3, 0x0, 0x1E) /* IVB+ */
215 #define OP_3DSTATE_SBE                          OP_3D_MEDIA(0x3, 0x0, 0x1F) /* IVB+ */
216 #define OP_3DSTATE_PS                           OP_3D_MEDIA(0x3, 0x0, 0x20) /* IVB+ */
217 #define OP_3DSTATE_VIEWPORT_STATE_POINTERS_SF_CLIP OP_3D_MEDIA(0x3, 0x0, 0x21) /* IVB+ */
218 #define OP_3DSTATE_VIEWPORT_STATE_POINTERS_CC   OP_3D_MEDIA(0x3, 0x0, 0x23) /* IVB+ */
219 #define OP_3DSTATE_BLEND_STATE_POINTERS         OP_3D_MEDIA(0x3, 0x0, 0x24) /* IVB+ */
220 #define OP_3DSTATE_DEPTH_STENCIL_STATE_POINTERS OP_3D_MEDIA(0x3, 0x0, 0x25) /* IVB+ */
221 #define OP_3DSTATE_BINDING_TABLE_POINTERS_VS    OP_3D_MEDIA(0x3, 0x0, 0x26) /* IVB+ */
222 #define OP_3DSTATE_BINDING_TABLE_POINTERS_HS    OP_3D_MEDIA(0x3, 0x0, 0x27) /* IVB+ */
223 #define OP_3DSTATE_BINDING_TABLE_POINTERS_DS    OP_3D_MEDIA(0x3, 0x0, 0x28) /* IVB+ */
224 #define OP_3DSTATE_BINDING_TABLE_POINTERS_GS    OP_3D_MEDIA(0x3, 0x0, 0x29) /* IVB+ */
225 #define OP_3DSTATE_BINDING_TABLE_POINTERS_PS    OP_3D_MEDIA(0x3, 0x0, 0x2A) /* IVB+ */
226 #define OP_3DSTATE_SAMPLER_STATE_POINTERS_VS    OP_3D_MEDIA(0x3, 0x0, 0x2B) /* IVB+ */
227 #define OP_3DSTATE_SAMPLER_STATE_POINTERS_HS    OP_3D_MEDIA(0x3, 0x0, 0x2C) /* IVB+ */
228 #define OP_3DSTATE_SAMPLER_STATE_POINTERS_DS    OP_3D_MEDIA(0x3, 0x0, 0x2D) /* IVB+ */
229 #define OP_3DSTATE_SAMPLER_STATE_POINTERS_GS    OP_3D_MEDIA(0x3, 0x0, 0x2E) /* IVB+ */
230 #define OP_3DSTATE_SAMPLER_STATE_POINTERS_PS    OP_3D_MEDIA(0x3, 0x0, 0x2F) /* IVB+ */
231 #define OP_3DSTATE_URB_VS                       OP_3D_MEDIA(0x3, 0x0, 0x30) /* IVB+ */
232 #define OP_3DSTATE_URB_HS                       OP_3D_MEDIA(0x3, 0x0, 0x31) /* IVB+ */
233 #define OP_3DSTATE_URB_DS                       OP_3D_MEDIA(0x3, 0x0, 0x32) /* IVB+ */
234 #define OP_3DSTATE_URB_GS                       OP_3D_MEDIA(0x3, 0x0, 0x33) /* IVB+ */
235 #define OP_3DSTATE_GATHER_CONSTANT_VS           OP_3D_MEDIA(0x3, 0x0, 0x34) /* HSW+ */
236 #define OP_3DSTATE_GATHER_CONSTANT_GS           OP_3D_MEDIA(0x3, 0x0, 0x35) /* HSW+ */
237 #define OP_3DSTATE_GATHER_CONSTANT_HS           OP_3D_MEDIA(0x3, 0x0, 0x36) /* HSW+ */
238 #define OP_3DSTATE_GATHER_CONSTANT_DS           OP_3D_MEDIA(0x3, 0x0, 0x37) /* HSW+ */
239 #define OP_3DSTATE_GATHER_CONSTANT_PS           OP_3D_MEDIA(0x3, 0x0, 0x38) /* HSW+ */
240 #define OP_3DSTATE_DX9_CONSTANTF_VS             OP_3D_MEDIA(0x3, 0x0, 0x39) /* HSW+ */
241 #define OP_3DSTATE_DX9_CONSTANTF_PS             OP_3D_MEDIA(0x3, 0x0, 0x3A) /* HSW+ */
242 #define OP_3DSTATE_DX9_CONSTANTI_VS             OP_3D_MEDIA(0x3, 0x0, 0x3B) /* HSW+ */
243 #define OP_3DSTATE_DX9_CONSTANTI_PS             OP_3D_MEDIA(0x3, 0x0, 0x3C) /* HSW+ */
244 #define OP_3DSTATE_DX9_CONSTANTB_VS             OP_3D_MEDIA(0x3, 0x0, 0x3D) /* HSW+ */
245 #define OP_3DSTATE_DX9_CONSTANTB_PS             OP_3D_MEDIA(0x3, 0x0, 0x3E) /* HSW+ */
246 #define OP_3DSTATE_DX9_LOCAL_VALID_VS           OP_3D_MEDIA(0x3, 0x0, 0x3F) /* HSW+ */
247 #define OP_3DSTATE_DX9_LOCAL_VALID_PS           OP_3D_MEDIA(0x3, 0x0, 0x40) /* HSW+ */
248 #define OP_3DSTATE_DX9_GENERATE_ACTIVE_VS       OP_3D_MEDIA(0x3, 0x0, 0x41) /* HSW+ */
249 #define OP_3DSTATE_DX9_GENERATE_ACTIVE_PS       OP_3D_MEDIA(0x3, 0x0, 0x42) /* HSW+ */
250 #define OP_3DSTATE_BINDING_TABLE_EDIT_VS        OP_3D_MEDIA(0x3, 0x0, 0x43) /* HSW+ */
251 #define OP_3DSTATE_BINDING_TABLE_EDIT_GS        OP_3D_MEDIA(0x3, 0x0, 0x44) /* HSW+ */
252 #define OP_3DSTATE_BINDING_TABLE_EDIT_HS        OP_3D_MEDIA(0x3, 0x0, 0x45) /* HSW+ */
253 #define OP_3DSTATE_BINDING_TABLE_EDIT_DS        OP_3D_MEDIA(0x3, 0x0, 0x46) /* HSW+ */
254 #define OP_3DSTATE_BINDING_TABLE_EDIT_PS        OP_3D_MEDIA(0x3, 0x0, 0x47) /* HSW+ */
255 
256 #define OP_3DSTATE_VF_INSTANCING 		OP_3D_MEDIA(0x3, 0x0, 0x49) /* BDW+ */
257 #define OP_3DSTATE_VF_SGVS  			OP_3D_MEDIA(0x3, 0x0, 0x4A) /* BDW+ */
258 #define OP_3DSTATE_VF_TOPOLOGY   		OP_3D_MEDIA(0x3, 0x0, 0x4B) /* BDW+ */
259 #define OP_3DSTATE_WM_CHROMAKEY   		OP_3D_MEDIA(0x3, 0x0, 0x4C) /* BDW+ */
260 #define OP_3DSTATE_PS_BLEND   			OP_3D_MEDIA(0x3, 0x0, 0x4D) /* BDW+ */
261 #define OP_3DSTATE_WM_DEPTH_STENCIL   		OP_3D_MEDIA(0x3, 0x0, 0x4E) /* BDW+ */
262 #define OP_3DSTATE_PS_EXTRA   			OP_3D_MEDIA(0x3, 0x0, 0x4F) /* BDW+ */
263 #define OP_3DSTATE_RASTER   			OP_3D_MEDIA(0x3, 0x0, 0x50) /* BDW+ */
264 #define OP_3DSTATE_SBE_SWIZ   			OP_3D_MEDIA(0x3, 0x0, 0x51) /* BDW+ */
265 #define OP_3DSTATE_WM_HZ_OP   			OP_3D_MEDIA(0x3, 0x0, 0x52) /* BDW+ */
266 #define OP_3DSTATE_COMPONENT_PACKING		OP_3D_MEDIA(0x3, 0x0, 0x55) /* SKL+ */
267 
268 #define OP_3DSTATE_DRAWING_RECTANGLE            OP_3D_MEDIA(0x3, 0x1, 0x00)
269 #define OP_3DSTATE_SAMPLER_PALETTE_LOAD0        OP_3D_MEDIA(0x3, 0x1, 0x02)
270 #define OP_3DSTATE_CHROMA_KEY                   OP_3D_MEDIA(0x3, 0x1, 0x04)
271 #define OP_SNB_3DSTATE_DEPTH_BUFFER             OP_3D_MEDIA(0x3, 0x1, 0x05)
272 #define OP_3DSTATE_POLY_STIPPLE_OFFSET          OP_3D_MEDIA(0x3, 0x1, 0x06)
273 #define OP_3DSTATE_POLY_STIPPLE_PATTERN         OP_3D_MEDIA(0x3, 0x1, 0x07)
274 #define OP_3DSTATE_LINE_STIPPLE                 OP_3D_MEDIA(0x3, 0x1, 0x08)
275 #define OP_3DSTATE_AA_LINE_PARAMS               OP_3D_MEDIA(0x3, 0x1, 0x0A)
276 #define OP_3DSTATE_GS_SVB_INDEX                 OP_3D_MEDIA(0x3, 0x1, 0x0B)
277 #define OP_3DSTATE_SAMPLER_PALETTE_LOAD1        OP_3D_MEDIA(0x3, 0x1, 0x0C)
278 #define OP_3DSTATE_MULTISAMPLE_BDW		OP_3D_MEDIA(0x3, 0x0, 0x0D)
279 #define OP_SNB_3DSTATE_STENCIL_BUFFER           OP_3D_MEDIA(0x3, 0x1, 0x0E)
280 #define OP_SNB_3DSTATE_HIER_DEPTH_BUFFER        OP_3D_MEDIA(0x3, 0x1, 0x0F)
281 #define OP_SNB_3DSTATE_CLEAR_PARAMS             OP_3D_MEDIA(0x3, 0x1, 0x10)
282 #define OP_3DSTATE_MONOFILTER_SIZE              OP_3D_MEDIA(0x3, 0x1, 0x11)
283 #define OP_3DSTATE_PUSH_CONSTANT_ALLOC_VS       OP_3D_MEDIA(0x3, 0x1, 0x12) /* IVB+ */
284 #define OP_3DSTATE_PUSH_CONSTANT_ALLOC_HS       OP_3D_MEDIA(0x3, 0x1, 0x13) /* IVB+ */
285 #define OP_3DSTATE_PUSH_CONSTANT_ALLOC_DS       OP_3D_MEDIA(0x3, 0x1, 0x14) /* IVB+ */
286 #define OP_3DSTATE_PUSH_CONSTANT_ALLOC_GS       OP_3D_MEDIA(0x3, 0x1, 0x15) /* IVB+ */
287 #define OP_3DSTATE_PUSH_CONSTANT_ALLOC_PS       OP_3D_MEDIA(0x3, 0x1, 0x16) /* IVB+ */
288 #define OP_3DSTATE_SO_DECL_LIST                 OP_3D_MEDIA(0x3, 0x1, 0x17)
289 #define OP_3DSTATE_SO_BUFFER                    OP_3D_MEDIA(0x3, 0x1, 0x18)
290 #define OP_3DSTATE_BINDING_TABLE_POOL_ALLOC     OP_3D_MEDIA(0x3, 0x1, 0x19) /* HSW+ */
291 #define OP_3DSTATE_GATHER_POOL_ALLOC            OP_3D_MEDIA(0x3, 0x1, 0x1A) /* HSW+ */
292 #define OP_3DSTATE_DX9_CONSTANT_BUFFER_POOL_ALLOC OP_3D_MEDIA(0x3, 0x1, 0x1B) /* HSW+ */
293 #define OP_3DSTATE_SAMPLE_PATTERN               OP_3D_MEDIA(0x3, 0x1, 0x1C)
294 #define OP_PIPE_CONTROL                         OP_3D_MEDIA(0x3, 0x2, 0x00)
295 #define OP_3DPRIMITIVE                          OP_3D_MEDIA(0x3, 0x3, 0x00)
296 
297 /* VCCP Command Parser */
298 
299 /*
300  * Below MFX and VBE cmd definition is from vaapi intel driver project (BSD License)
301  * git://anongit.freedesktop.org/vaapi/intel-driver
302  * src/i965_defines.h
303  *
304  */
305 
306 #define OP_MFX(pipeline, op, sub_opa, sub_opb)     \
307 	(3 << 13 | \
308 	 (pipeline) << 11 | \
309 	 (op) << 8 | \
310 	 (sub_opa) << 5 | \
311 	 (sub_opb))
312 
313 #define OP_MFX_PIPE_MODE_SELECT                    OP_MFX(2, 0, 0, 0)  /* ALL */
314 #define OP_MFX_SURFACE_STATE                       OP_MFX(2, 0, 0, 1)  /* ALL */
315 #define OP_MFX_PIPE_BUF_ADDR_STATE                 OP_MFX(2, 0, 0, 2)  /* ALL */
316 #define OP_MFX_IND_OBJ_BASE_ADDR_STATE             OP_MFX(2, 0, 0, 3)  /* ALL */
317 #define OP_MFX_BSP_BUF_BASE_ADDR_STATE             OP_MFX(2, 0, 0, 4)  /* ALL */
318 #define OP_2_0_0_5                                 OP_MFX(2, 0, 0, 5)  /* ALL */
319 #define OP_MFX_STATE_POINTER                       OP_MFX(2, 0, 0, 6)  /* ALL */
320 #define OP_MFX_QM_STATE                            OP_MFX(2, 0, 0, 7)  /* IVB+ */
321 #define OP_MFX_FQM_STATE                           OP_MFX(2, 0, 0, 8)  /* IVB+ */
322 #define OP_MFX_PAK_INSERT_OBJECT                   OP_MFX(2, 0, 2, 8)  /* IVB+ */
323 #define OP_MFX_STITCH_OBJECT                       OP_MFX(2, 0, 2, 0xA)  /* IVB+ */
324 
325 #define OP_MFD_IT_OBJECT                           OP_MFX(2, 0, 1, 9) /* ALL */
326 
327 #define OP_MFX_WAIT                                OP_MFX(1, 0, 0, 0) /* IVB+ */
328 #define OP_MFX_AVC_IMG_STATE                       OP_MFX(2, 1, 0, 0) /* ALL */
329 #define OP_MFX_AVC_QM_STATE                        OP_MFX(2, 1, 0, 1) /* ALL */
330 #define OP_MFX_AVC_DIRECTMODE_STATE                OP_MFX(2, 1, 0, 2) /* ALL */
331 #define OP_MFX_AVC_SLICE_STATE                     OP_MFX(2, 1, 0, 3) /* ALL */
332 #define OP_MFX_AVC_REF_IDX_STATE                   OP_MFX(2, 1, 0, 4) /* ALL */
333 #define OP_MFX_AVC_WEIGHTOFFSET_STATE              OP_MFX(2, 1, 0, 5) /* ALL */
334 #define OP_MFD_AVC_PICID_STATE                     OP_MFX(2, 1, 1, 5) /* HSW+ */
335 #define OP_MFD_AVC_DPB_STATE			   OP_MFX(2, 1, 1, 6) /* IVB+ */
336 #define OP_MFD_AVC_SLICEADDR                       OP_MFX(2, 1, 1, 7) /* IVB+ */
337 #define OP_MFD_AVC_BSD_OBJECT                      OP_MFX(2, 1, 1, 8) /* ALL */
338 #define OP_MFC_AVC_PAK_OBJECT                      OP_MFX(2, 1, 2, 9) /* ALL */
339 
340 #define OP_MFX_VC1_PRED_PIPE_STATE                 OP_MFX(2, 2, 0, 1) /* ALL */
341 #define OP_MFX_VC1_DIRECTMODE_STATE                OP_MFX(2, 2, 0, 2) /* ALL */
342 #define OP_MFD_VC1_SHORT_PIC_STATE                 OP_MFX(2, 2, 1, 0) /* IVB+ */
343 #define OP_MFD_VC1_LONG_PIC_STATE                  OP_MFX(2, 2, 1, 1) /* IVB+ */
344 #define OP_MFD_VC1_BSD_OBJECT                      OP_MFX(2, 2, 1, 8) /* ALL */
345 
346 #define OP_MFX_MPEG2_PIC_STATE                     OP_MFX(2, 3, 0, 0) /* ALL */
347 #define OP_MFX_MPEG2_QM_STATE                      OP_MFX(2, 3, 0, 1) /* ALL */
348 #define OP_MFD_MPEG2_BSD_OBJECT                    OP_MFX(2, 3, 1, 8) /* ALL */
349 #define OP_MFC_MPEG2_SLICEGROUP_STATE              OP_MFX(2, 3, 2, 3) /* ALL */
350 #define OP_MFC_MPEG2_PAK_OBJECT                    OP_MFX(2, 3, 2, 9) /* ALL */
351 
352 #define OP_MFX_2_6_0_0                             OP_MFX(2, 6, 0, 0) /* IVB+ */
353 #define OP_MFX_2_6_0_8                             OP_MFX(2, 6, 0, 8) /* IVB+ */
354 #define OP_MFX_2_6_0_9                             OP_MFX(2, 6, 0, 9) /* IVB+ */
355 
356 #define OP_MFX_JPEG_PIC_STATE                      OP_MFX(2, 7, 0, 0)
357 #define OP_MFX_JPEG_HUFF_TABLE_STATE               OP_MFX(2, 7, 0, 2)
358 #define OP_MFD_JPEG_BSD_OBJECT                     OP_MFX(2, 7, 1, 8)
359 
360 #define OP_VEB(pipeline, op, sub_opa, sub_opb) \
361 	(3 << 13 | \
362 	 (pipeline) << 11 | \
363 	 (op) << 8 | \
364 	 (sub_opa) << 5 | \
365 	 (sub_opb))
366 
367 #define OP_VEB_SURFACE_STATE                       OP_VEB(2, 4, 0, 0)
368 #define OP_VEB_STATE                               OP_VEB(2, 4, 0, 2)
369 #define OP_VEB_DNDI_IECP_STATE                     OP_VEB(2, 4, 0, 3)
370 
371 struct parser_exec_state;
372 
373 typedef int (*parser_cmd_handler)(struct parser_exec_state *s);
374 
375 #define GVT_CMD_HASH_BITS   7
376 
377 /* which DWords need address fix */
378 #define ADDR_FIX_1(x1)			(1 << (x1))
379 #define ADDR_FIX_2(x1, x2)		(ADDR_FIX_1(x1) | ADDR_FIX_1(x2))
380 #define ADDR_FIX_3(x1, x2, x3)		(ADDR_FIX_1(x1) | ADDR_FIX_2(x2, x3))
381 #define ADDR_FIX_4(x1, x2, x3, x4)	(ADDR_FIX_1(x1) | ADDR_FIX_3(x2, x3, x4))
382 #define ADDR_FIX_5(x1, x2, x3, x4, x5)  (ADDR_FIX_1(x1) | ADDR_FIX_4(x2, x3, x4, x5))
383 
384 #define DWORD_FIELD(dword, end, start) \
385 	FIELD_GET(GENMASK(end, start), cmd_val(s, dword))
386 
387 #define OP_LENGTH_BIAS 2
388 #define CMD_LEN(value)  (value + OP_LENGTH_BIAS)
389 
gvt_check_valid_cmd_length(int len,int valid_len)390 static int gvt_check_valid_cmd_length(int len, int valid_len)
391 {
392 	if (valid_len != len) {
393 		gvt_err("len is not valid:  len=%u  valid_len=%u\n",
394 			len, valid_len);
395 		return -EFAULT;
396 	}
397 	return 0;
398 }
399 
400 struct cmd_info {
401 	const char *name;
402 	u32 opcode;
403 
404 #define F_LEN_MASK	3U
405 #define F_LEN_CONST  1U
406 #define F_LEN_VAR    0U
407 /* value is const although LEN maybe variable */
408 #define F_LEN_VAR_FIXED    (1<<1)
409 
410 /*
411  * command has its own ip advance logic
412  * e.g. MI_BATCH_START, MI_BATCH_END
413  */
414 #define F_IP_ADVANCE_CUSTOM (1<<2)
415 	u32 flag;
416 
417 #define R_RCS	BIT(RCS0)
418 #define R_VCS1  BIT(VCS0)
419 #define R_VCS2  BIT(VCS1)
420 #define R_VCS	(R_VCS1 | R_VCS2)
421 #define R_BCS	BIT(BCS0)
422 #define R_VECS	BIT(VECS0)
423 #define R_ALL (R_RCS | R_VCS | R_BCS | R_VECS)
424 	/* rings that support this cmd: BLT/RCS/VCS/VECS */
425 	u16 rings;
426 
427 	/* devices that support this cmd: SNB/IVB/HSW/... */
428 	u16 devices;
429 
430 	/* which DWords are address that need fix up.
431 	 * bit 0 means a 32-bit non address operand in command
432 	 * bit 1 means address operand, which could be 32-bit
433 	 * or 64-bit depending on different architectures.(
434 	 * defined by "gmadr_bytes_in_cmd" in intel_gvt.
435 	 * No matter the address length, each address only takes
436 	 * one bit in the bitmap.
437 	 */
438 	u16 addr_bitmap;
439 
440 	/* flag == F_LEN_CONST : command length
441 	 * flag == F_LEN_VAR : length bias bits
442 	 * Note: length is in DWord
443 	 */
444 	u32 len;
445 
446 	parser_cmd_handler handler;
447 
448 	/* valid length in DWord */
449 	u32 valid_len;
450 };
451 
452 struct cmd_entry {
453 	struct hlist_node hlist;
454 	const struct cmd_info *info;
455 };
456 
457 enum {
458 	RING_BUFFER_INSTRUCTION,
459 	BATCH_BUFFER_INSTRUCTION,
460 	BATCH_BUFFER_2ND_LEVEL,
461 };
462 
463 enum {
464 	GTT_BUFFER,
465 	PPGTT_BUFFER
466 };
467 
468 struct parser_exec_state {
469 	struct intel_vgpu *vgpu;
470 	int ring_id;
471 
472 	int buf_type;
473 
474 	/* batch buffer address type */
475 	int buf_addr_type;
476 
477 	/* graphics memory address of ring buffer start */
478 	unsigned long ring_start;
479 	unsigned long ring_size;
480 	unsigned long ring_head;
481 	unsigned long ring_tail;
482 
483 	/* instruction graphics memory address */
484 	unsigned long ip_gma;
485 
486 	/* mapped va of the instr_gma */
487 	void *ip_va;
488 	void *rb_va;
489 
490 	void *ret_bb_va;
491 	/* next instruction when return from  batch buffer to ring buffer */
492 	unsigned long ret_ip_gma_ring;
493 
494 	/* next instruction when return from 2nd batch buffer to batch buffer */
495 	unsigned long ret_ip_gma_bb;
496 
497 	/* batch buffer address type (GTT or PPGTT)
498 	 * used when ret from 2nd level batch buffer
499 	 */
500 	int saved_buf_addr_type;
501 	bool is_ctx_wa;
502 
503 	const struct cmd_info *info;
504 
505 	struct intel_vgpu_workload *workload;
506 };
507 
508 #define gmadr_dw_number(s)	\
509 	(s->vgpu->gvt->device_info.gmadr_bytes_in_cmd >> 2)
510 
511 static unsigned long bypass_scan_mask = 0;
512 
513 /* ring ALL, type = 0 */
514 static const struct sub_op_bits sub_op_mi[] = {
515 	{31, 29},
516 	{28, 23},
517 };
518 
519 static const struct decode_info decode_info_mi = {
520 	"MI",
521 	OP_LEN_MI,
522 	ARRAY_SIZE(sub_op_mi),
523 	sub_op_mi,
524 };
525 
526 /* ring RCS, command type 2 */
527 static const struct sub_op_bits sub_op_2d[] = {
528 	{31, 29},
529 	{28, 22},
530 };
531 
532 static const struct decode_info decode_info_2d = {
533 	"2D",
534 	OP_LEN_2D,
535 	ARRAY_SIZE(sub_op_2d),
536 	sub_op_2d,
537 };
538 
539 /* ring RCS, command type 3 */
540 static const struct sub_op_bits sub_op_3d_media[] = {
541 	{31, 29},
542 	{28, 27},
543 	{26, 24},
544 	{23, 16},
545 };
546 
547 static const struct decode_info decode_info_3d_media = {
548 	"3D_Media",
549 	OP_LEN_3D_MEDIA,
550 	ARRAY_SIZE(sub_op_3d_media),
551 	sub_op_3d_media,
552 };
553 
554 /* ring VCS, command type 3 */
555 static const struct sub_op_bits sub_op_mfx_vc[] = {
556 	{31, 29},
557 	{28, 27},
558 	{26, 24},
559 	{23, 21},
560 	{20, 16},
561 };
562 
563 static const struct decode_info decode_info_mfx_vc = {
564 	"MFX_VC",
565 	OP_LEN_MFX_VC,
566 	ARRAY_SIZE(sub_op_mfx_vc),
567 	sub_op_mfx_vc,
568 };
569 
570 /* ring VECS, command type 3 */
571 static const struct sub_op_bits sub_op_vebox[] = {
572 	{31, 29},
573 	{28, 27},
574 	{26, 24},
575 	{23, 21},
576 	{20, 16},
577 };
578 
579 static const struct decode_info decode_info_vebox = {
580 	"VEBOX",
581 	OP_LEN_VEBOX,
582 	ARRAY_SIZE(sub_op_vebox),
583 	sub_op_vebox,
584 };
585 
586 static const struct decode_info *ring_decode_info[I915_NUM_ENGINES][8] = {
587 	[RCS0] = {
588 		&decode_info_mi,
589 		NULL,
590 		NULL,
591 		&decode_info_3d_media,
592 		NULL,
593 		NULL,
594 		NULL,
595 		NULL,
596 	},
597 
598 	[VCS0] = {
599 		&decode_info_mi,
600 		NULL,
601 		NULL,
602 		&decode_info_mfx_vc,
603 		NULL,
604 		NULL,
605 		NULL,
606 		NULL,
607 	},
608 
609 	[BCS0] = {
610 		&decode_info_mi,
611 		NULL,
612 		&decode_info_2d,
613 		NULL,
614 		NULL,
615 		NULL,
616 		NULL,
617 		NULL,
618 	},
619 
620 	[VECS0] = {
621 		&decode_info_mi,
622 		NULL,
623 		NULL,
624 		&decode_info_vebox,
625 		NULL,
626 		NULL,
627 		NULL,
628 		NULL,
629 	},
630 
631 	[VCS1] = {
632 		&decode_info_mi,
633 		NULL,
634 		NULL,
635 		&decode_info_mfx_vc,
636 		NULL,
637 		NULL,
638 		NULL,
639 		NULL,
640 	},
641 };
642 
get_opcode(u32 cmd,int ring_id)643 static inline u32 get_opcode(u32 cmd, int ring_id)
644 {
645 	const struct decode_info *d_info;
646 
647 	d_info = ring_decode_info[ring_id][CMD_TYPE(cmd)];
648 	if (d_info == NULL)
649 		return INVALID_OP;
650 
651 	return cmd >> (32 - d_info->op_len);
652 }
653 
find_cmd_entry(struct intel_gvt * gvt,unsigned int opcode,int ring_id)654 static inline const struct cmd_info *find_cmd_entry(struct intel_gvt *gvt,
655 		unsigned int opcode, int ring_id)
656 {
657 	struct cmd_entry *e;
658 
659 	hash_for_each_possible(gvt->cmd_table, e, hlist, opcode) {
660 		if (opcode == e->info->opcode && e->info->rings & BIT(ring_id))
661 			return e->info;
662 	}
663 	return NULL;
664 }
665 
get_cmd_info(struct intel_gvt * gvt,u32 cmd,int ring_id)666 static inline const struct cmd_info *get_cmd_info(struct intel_gvt *gvt,
667 		u32 cmd, int ring_id)
668 {
669 	u32 opcode;
670 
671 	opcode = get_opcode(cmd, ring_id);
672 	if (opcode == INVALID_OP)
673 		return NULL;
674 
675 	return find_cmd_entry(gvt, opcode, ring_id);
676 }
677 
sub_op_val(u32 cmd,u32 hi,u32 low)678 static inline u32 sub_op_val(u32 cmd, u32 hi, u32 low)
679 {
680 	return (cmd >> low) & ((1U << (hi - low + 1)) - 1);
681 }
682 
print_opcode(u32 cmd,int ring_id)683 static inline void print_opcode(u32 cmd, int ring_id)
684 {
685 	const struct decode_info *d_info;
686 	int i;
687 
688 	d_info = ring_decode_info[ring_id][CMD_TYPE(cmd)];
689 	if (d_info == NULL)
690 		return;
691 
692 	gvt_dbg_cmd("opcode=0x%x %s sub_ops:",
693 			cmd >> (32 - d_info->op_len), d_info->name);
694 
695 	for (i = 0; i < d_info->nr_sub_op; i++)
696 		pr_err("0x%x ", sub_op_val(cmd, d_info->sub_op[i].hi,
697 					d_info->sub_op[i].low));
698 
699 	pr_err("\n");
700 }
701 
cmd_ptr(struct parser_exec_state * s,int index)702 static inline u32 *cmd_ptr(struct parser_exec_state *s, int index)
703 {
704 	return s->ip_va + (index << 2);
705 }
706 
cmd_val(struct parser_exec_state * s,int index)707 static inline u32 cmd_val(struct parser_exec_state *s, int index)
708 {
709 	return *cmd_ptr(s, index);
710 }
711 
parser_exec_state_dump(struct parser_exec_state * s)712 static void parser_exec_state_dump(struct parser_exec_state *s)
713 {
714 	int cnt = 0;
715 	int i;
716 
717 	gvt_dbg_cmd("  vgpu%d RING%d: ring_start(%08lx) ring_end(%08lx)"
718 			" ring_head(%08lx) ring_tail(%08lx)\n", s->vgpu->id,
719 			s->ring_id, s->ring_start, s->ring_start + s->ring_size,
720 			s->ring_head, s->ring_tail);
721 
722 	gvt_dbg_cmd("  %s %s ip_gma(%08lx) ",
723 			s->buf_type == RING_BUFFER_INSTRUCTION ?
724 			"RING_BUFFER" : "BATCH_BUFFER",
725 			s->buf_addr_type == GTT_BUFFER ?
726 			"GTT" : "PPGTT", s->ip_gma);
727 
728 	if (s->ip_va == NULL) {
729 		gvt_dbg_cmd(" ip_va(NULL)");
730 		return;
731 	}
732 
733 	gvt_dbg_cmd("  ip_va=%p: %08x %08x %08x %08x\n",
734 			s->ip_va, cmd_val(s, 0), cmd_val(s, 1),
735 			cmd_val(s, 2), cmd_val(s, 3));
736 
737 	print_opcode(cmd_val(s, 0), s->ring_id);
738 
739 	s->ip_va = (u32 *)((((u64)s->ip_va) >> 12) << 12);
740 
741 	while (cnt < 1024) {
742 		gvt_dbg_cmd("ip_va=%p: ", s->ip_va);
743 		for (i = 0; i < 8; i++)
744 			gvt_dbg_cmd("%08x ", cmd_val(s, i));
745 		gvt_dbg_cmd("\n");
746 
747 		s->ip_va += 8 * sizeof(u32);
748 		cnt += 8;
749 	}
750 }
751 
update_ip_va(struct parser_exec_state * s)752 static inline void update_ip_va(struct parser_exec_state *s)
753 {
754 	unsigned long len = 0;
755 
756 	if (WARN_ON(s->ring_head == s->ring_tail))
757 		return;
758 
759 	if (s->buf_type == RING_BUFFER_INSTRUCTION) {
760 		unsigned long ring_top = s->ring_start + s->ring_size;
761 
762 		if (s->ring_head > s->ring_tail) {
763 			if (s->ip_gma >= s->ring_head && s->ip_gma < ring_top)
764 				len = (s->ip_gma - s->ring_head);
765 			else if (s->ip_gma >= s->ring_start &&
766 					s->ip_gma <= s->ring_tail)
767 				len = (ring_top - s->ring_head) +
768 					(s->ip_gma - s->ring_start);
769 		} else
770 			len = (s->ip_gma - s->ring_head);
771 
772 		s->ip_va = s->rb_va + len;
773 	} else {/* shadow batch buffer */
774 		s->ip_va = s->ret_bb_va;
775 	}
776 }
777 
ip_gma_set(struct parser_exec_state * s,unsigned long ip_gma)778 static inline int ip_gma_set(struct parser_exec_state *s,
779 		unsigned long ip_gma)
780 {
781 	WARN_ON(!IS_ALIGNED(ip_gma, 4));
782 
783 	s->ip_gma = ip_gma;
784 	update_ip_va(s);
785 	return 0;
786 }
787 
ip_gma_advance(struct parser_exec_state * s,unsigned int dw_len)788 static inline int ip_gma_advance(struct parser_exec_state *s,
789 		unsigned int dw_len)
790 {
791 	s->ip_gma += (dw_len << 2);
792 
793 	if (s->buf_type == RING_BUFFER_INSTRUCTION) {
794 		if (s->ip_gma >= s->ring_start + s->ring_size)
795 			s->ip_gma -= s->ring_size;
796 		update_ip_va(s);
797 	} else {
798 		s->ip_va += (dw_len << 2);
799 	}
800 
801 	return 0;
802 }
803 
get_cmd_length(const struct cmd_info * info,u32 cmd)804 static inline int get_cmd_length(const struct cmd_info *info, u32 cmd)
805 {
806 	if ((info->flag & F_LEN_MASK) == F_LEN_CONST)
807 		return info->len;
808 	else
809 		return (cmd & ((1U << info->len) - 1)) + 2;
810 	return 0;
811 }
812 
cmd_length(struct parser_exec_state * s)813 static inline int cmd_length(struct parser_exec_state *s)
814 {
815 	return get_cmd_length(s->info, cmd_val(s, 0));
816 }
817 
818 /* do not remove this, some platform may need clflush here */
819 #define patch_value(s, addr, val) do { \
820 	*addr = val; \
821 } while (0)
822 
is_shadowed_mmio(unsigned int offset)823 static bool is_shadowed_mmio(unsigned int offset)
824 {
825 	bool ret = false;
826 
827 	if ((offset == 0x2168) || /*BB current head register UDW */
828 	    (offset == 0x2140) || /*BB current header register */
829 	    (offset == 0x211c) || /*second BB header register UDW */
830 	    (offset == 0x2114)) { /*second BB header register UDW */
831 		ret = true;
832 	}
833 	return ret;
834 }
835 
is_force_nonpriv_mmio(unsigned int offset)836 static inline bool is_force_nonpriv_mmio(unsigned int offset)
837 {
838 	return (offset >= 0x24d0 && offset < 0x2500);
839 }
840 
force_nonpriv_reg_handler(struct parser_exec_state * s,unsigned int offset,unsigned int index,char * cmd)841 static int force_nonpriv_reg_handler(struct parser_exec_state *s,
842 		unsigned int offset, unsigned int index, char *cmd)
843 {
844 	struct intel_gvt *gvt = s->vgpu->gvt;
845 	unsigned int data;
846 	u32 ring_base;
847 	u32 nopid;
848 	struct drm_i915_private *dev_priv = s->vgpu->gvt->dev_priv;
849 
850 	if (!strcmp(cmd, "lri"))
851 		data = cmd_val(s, index + 1);
852 	else {
853 		gvt_err("Unexpected forcenonpriv 0x%x write from cmd %s\n",
854 			offset, cmd);
855 		return -EINVAL;
856 	}
857 
858 	ring_base = dev_priv->engine[s->ring_id]->mmio_base;
859 	nopid = i915_mmio_reg_offset(RING_NOPID(ring_base));
860 
861 	if (!intel_gvt_in_force_nonpriv_whitelist(gvt, data) &&
862 			data != nopid) {
863 		gvt_err("Unexpected forcenonpriv 0x%x LRI write, value=0x%x\n",
864 			offset, data);
865 		patch_value(s, cmd_ptr(s, index), nopid);
866 		return 0;
867 	}
868 	return 0;
869 }
870 
is_mocs_mmio(unsigned int offset)871 static inline bool is_mocs_mmio(unsigned int offset)
872 {
873 	return ((offset >= 0xc800) && (offset <= 0xcff8)) ||
874 		((offset >= 0xb020) && (offset <= 0xb0a0));
875 }
876 
mocs_cmd_reg_handler(struct parser_exec_state * s,unsigned int offset,unsigned int index)877 static int mocs_cmd_reg_handler(struct parser_exec_state *s,
878 				unsigned int offset, unsigned int index)
879 {
880 	if (!is_mocs_mmio(offset))
881 		return -EINVAL;
882 	vgpu_vreg(s->vgpu, offset) = cmd_val(s, index + 1);
883 	return 0;
884 }
885 
cmd_reg_handler(struct parser_exec_state * s,unsigned int offset,unsigned int index,char * cmd)886 static int cmd_reg_handler(struct parser_exec_state *s,
887 	unsigned int offset, unsigned int index, char *cmd)
888 {
889 	struct intel_vgpu *vgpu = s->vgpu;
890 	struct intel_gvt *gvt = vgpu->gvt;
891 	u32 ctx_sr_ctl;
892 
893 	if (offset + 4 > gvt->device_info.mmio_size) {
894 		gvt_vgpu_err("%s access to (%x) outside of MMIO range\n",
895 				cmd, offset);
896 		return -EFAULT;
897 	}
898 
899 	if (!intel_gvt_mmio_is_cmd_access(gvt, offset)) {
900 		gvt_vgpu_err("%s access to non-render register (%x)\n",
901 				cmd, offset);
902 		return -EBADRQC;
903 	}
904 
905 	if (is_shadowed_mmio(offset)) {
906 		gvt_vgpu_err("found access of shadowed MMIO %x\n", offset);
907 		return 0;
908 	}
909 
910 	if (is_mocs_mmio(offset) &&
911 	    mocs_cmd_reg_handler(s, offset, index))
912 		return -EINVAL;
913 
914 	if (is_force_nonpriv_mmio(offset) &&
915 		force_nonpriv_reg_handler(s, offset, index, cmd))
916 		return -EPERM;
917 
918 	if (offset == i915_mmio_reg_offset(DERRMR) ||
919 		offset == i915_mmio_reg_offset(FORCEWAKE_MT)) {
920 		/* Writing to HW VGT_PVINFO_PAGE offset will be discarded */
921 		patch_value(s, cmd_ptr(s, index), VGT_PVINFO_PAGE);
922 	}
923 
924 	/* TODO
925 	 * In order to let workload with inhibit context to generate
926 	 * correct image data into memory, vregs values will be loaded to
927 	 * hw via LRIs in the workload with inhibit context. But as
928 	 * indirect context is loaded prior to LRIs in workload, we don't
929 	 * want reg values specified in indirect context overwritten by
930 	 * LRIs in workloads. So, when scanning an indirect context, we
931 	 * update reg values in it into vregs, so LRIs in workload with
932 	 * inhibit context will restore with correct values
933 	 */
934 	if (IS_GEN(gvt->dev_priv, 9) &&
935 			intel_gvt_mmio_is_in_ctx(gvt, offset) &&
936 			!strncmp(cmd, "lri", 3)) {
937 		intel_gvt_hypervisor_read_gpa(s->vgpu,
938 			s->workload->ring_context_gpa + 12, &ctx_sr_ctl, 4);
939 		/* check inhibit context */
940 		if (ctx_sr_ctl & 1) {
941 			u32 data = cmd_val(s, index + 1);
942 
943 			if (intel_gvt_mmio_has_mode_mask(s->vgpu->gvt, offset))
944 				intel_vgpu_mask_mmio_write(vgpu,
945 							offset, &data, 4);
946 			else
947 				vgpu_vreg(vgpu, offset) = data;
948 		}
949 	}
950 
951 	/* TODO: Update the global mask if this MMIO is a masked-MMIO */
952 	intel_gvt_mmio_set_cmd_accessed(gvt, offset);
953 	return 0;
954 }
955 
956 #define cmd_reg(s, i) \
957 	(cmd_val(s, i) & GENMASK(22, 2))
958 
959 #define cmd_reg_inhibit(s, i) \
960 	(cmd_val(s, i) & GENMASK(22, 18))
961 
962 #define cmd_gma(s, i) \
963 	(cmd_val(s, i) & GENMASK(31, 2))
964 
965 #define cmd_gma_hi(s, i) \
966 	(cmd_val(s, i) & GENMASK(15, 0))
967 
cmd_handler_lri(struct parser_exec_state * s)968 static int cmd_handler_lri(struct parser_exec_state *s)
969 {
970 	int i, ret = 0;
971 	int cmd_len = cmd_length(s);
972 	struct intel_gvt *gvt = s->vgpu->gvt;
973 	u32 valid_len = CMD_LEN(1);
974 
975 	/*
976 	 * Official intel docs are somewhat sloppy , check the definition of
977 	 * MI_LOAD_REGISTER_IMM.
978 	 */
979 	#define MAX_VALID_LEN 127
980 	if ((cmd_len < valid_len) || (cmd_len > MAX_VALID_LEN)) {
981 		gvt_err("len is not valid:  len=%u  valid_len=%u\n",
982 			cmd_len, valid_len);
983 		return -EFAULT;
984 	}
985 
986 	for (i = 1; i < cmd_len; i += 2) {
987 		if (IS_BROADWELL(gvt->dev_priv) && s->ring_id != RCS0) {
988 			if (s->ring_id == BCS0 &&
989 			    cmd_reg(s, i) == i915_mmio_reg_offset(DERRMR))
990 				ret |= 0;
991 			else
992 				ret |= cmd_reg_inhibit(s, i) ? -EBADRQC : 0;
993 		}
994 		if (ret)
995 			break;
996 		ret |= cmd_reg_handler(s, cmd_reg(s, i), i, "lri");
997 		if (ret)
998 			break;
999 	}
1000 	return ret;
1001 }
1002 
cmd_handler_lrr(struct parser_exec_state * s)1003 static int cmd_handler_lrr(struct parser_exec_state *s)
1004 {
1005 	int i, ret = 0;
1006 	int cmd_len = cmd_length(s);
1007 
1008 	for (i = 1; i < cmd_len; i += 2) {
1009 		if (IS_BROADWELL(s->vgpu->gvt->dev_priv))
1010 			ret |= ((cmd_reg_inhibit(s, i) ||
1011 					(cmd_reg_inhibit(s, i + 1)))) ?
1012 				-EBADRQC : 0;
1013 		if (ret)
1014 			break;
1015 		ret |= cmd_reg_handler(s, cmd_reg(s, i), i, "lrr-src");
1016 		if (ret)
1017 			break;
1018 		ret |= cmd_reg_handler(s, cmd_reg(s, i + 1), i, "lrr-dst");
1019 		if (ret)
1020 			break;
1021 	}
1022 	return ret;
1023 }
1024 
1025 static inline int cmd_address_audit(struct parser_exec_state *s,
1026 		unsigned long guest_gma, int op_size, bool index_mode);
1027 
cmd_handler_lrm(struct parser_exec_state * s)1028 static int cmd_handler_lrm(struct parser_exec_state *s)
1029 {
1030 	struct intel_gvt *gvt = s->vgpu->gvt;
1031 	int gmadr_bytes = gvt->device_info.gmadr_bytes_in_cmd;
1032 	unsigned long gma;
1033 	int i, ret = 0;
1034 	int cmd_len = cmd_length(s);
1035 
1036 	for (i = 1; i < cmd_len;) {
1037 		if (IS_BROADWELL(gvt->dev_priv))
1038 			ret |= (cmd_reg_inhibit(s, i)) ? -EBADRQC : 0;
1039 		if (ret)
1040 			break;
1041 		ret |= cmd_reg_handler(s, cmd_reg(s, i), i, "lrm");
1042 		if (ret)
1043 			break;
1044 		if (cmd_val(s, 0) & (1 << 22)) {
1045 			gma = cmd_gma(s, i + 1);
1046 			if (gmadr_bytes == 8)
1047 				gma |= (cmd_gma_hi(s, i + 2)) << 32;
1048 			ret |= cmd_address_audit(s, gma, sizeof(u32), false);
1049 			if (ret)
1050 				break;
1051 		}
1052 		i += gmadr_dw_number(s) + 1;
1053 	}
1054 	return ret;
1055 }
1056 
cmd_handler_srm(struct parser_exec_state * s)1057 static int cmd_handler_srm(struct parser_exec_state *s)
1058 {
1059 	int gmadr_bytes = s->vgpu->gvt->device_info.gmadr_bytes_in_cmd;
1060 	unsigned long gma;
1061 	int i, ret = 0;
1062 	int cmd_len = cmd_length(s);
1063 
1064 	for (i = 1; i < cmd_len;) {
1065 		ret |= cmd_reg_handler(s, cmd_reg(s, i), i, "srm");
1066 		if (ret)
1067 			break;
1068 		if (cmd_val(s, 0) & (1 << 22)) {
1069 			gma = cmd_gma(s, i + 1);
1070 			if (gmadr_bytes == 8)
1071 				gma |= (cmd_gma_hi(s, i + 2)) << 32;
1072 			ret |= cmd_address_audit(s, gma, sizeof(u32), false);
1073 			if (ret)
1074 				break;
1075 		}
1076 		i += gmadr_dw_number(s) + 1;
1077 	}
1078 	return ret;
1079 }
1080 
1081 struct cmd_interrupt_event {
1082 	int pipe_control_notify;
1083 	int mi_flush_dw;
1084 	int mi_user_interrupt;
1085 };
1086 
1087 static struct cmd_interrupt_event cmd_interrupt_events[] = {
1088 	[RCS0] = {
1089 		.pipe_control_notify = RCS_PIPE_CONTROL,
1090 		.mi_flush_dw = INTEL_GVT_EVENT_RESERVED,
1091 		.mi_user_interrupt = RCS_MI_USER_INTERRUPT,
1092 	},
1093 	[BCS0] = {
1094 		.pipe_control_notify = INTEL_GVT_EVENT_RESERVED,
1095 		.mi_flush_dw = BCS_MI_FLUSH_DW,
1096 		.mi_user_interrupt = BCS_MI_USER_INTERRUPT,
1097 	},
1098 	[VCS0] = {
1099 		.pipe_control_notify = INTEL_GVT_EVENT_RESERVED,
1100 		.mi_flush_dw = VCS_MI_FLUSH_DW,
1101 		.mi_user_interrupt = VCS_MI_USER_INTERRUPT,
1102 	},
1103 	[VCS1] = {
1104 		.pipe_control_notify = INTEL_GVT_EVENT_RESERVED,
1105 		.mi_flush_dw = VCS2_MI_FLUSH_DW,
1106 		.mi_user_interrupt = VCS2_MI_USER_INTERRUPT,
1107 	},
1108 	[VECS0] = {
1109 		.pipe_control_notify = INTEL_GVT_EVENT_RESERVED,
1110 		.mi_flush_dw = VECS_MI_FLUSH_DW,
1111 		.mi_user_interrupt = VECS_MI_USER_INTERRUPT,
1112 	},
1113 };
1114 
cmd_handler_pipe_control(struct parser_exec_state * s)1115 static int cmd_handler_pipe_control(struct parser_exec_state *s)
1116 {
1117 	int gmadr_bytes = s->vgpu->gvt->device_info.gmadr_bytes_in_cmd;
1118 	unsigned long gma;
1119 	bool index_mode = false;
1120 	unsigned int post_sync;
1121 	int ret = 0;
1122 	u32 hws_pga, val;
1123 
1124 	post_sync = (cmd_val(s, 1) & PIPE_CONTROL_POST_SYNC_OP_MASK) >> 14;
1125 
1126 	/* LRI post sync */
1127 	if (cmd_val(s, 1) & PIPE_CONTROL_MMIO_WRITE)
1128 		ret = cmd_reg_handler(s, cmd_reg(s, 2), 1, "pipe_ctrl");
1129 	/* post sync */
1130 	else if (post_sync) {
1131 		if (post_sync == 2)
1132 			ret = cmd_reg_handler(s, 0x2350, 1, "pipe_ctrl");
1133 		else if (post_sync == 3)
1134 			ret = cmd_reg_handler(s, 0x2358, 1, "pipe_ctrl");
1135 		else if (post_sync == 1) {
1136 			/* check ggtt*/
1137 			if ((cmd_val(s, 1) & PIPE_CONTROL_GLOBAL_GTT_IVB)) {
1138 				gma = cmd_val(s, 2) & GENMASK(31, 3);
1139 				if (gmadr_bytes == 8)
1140 					gma |= (cmd_gma_hi(s, 3)) << 32;
1141 				/* Store Data Index */
1142 				if (cmd_val(s, 1) & (1 << 21))
1143 					index_mode = true;
1144 				ret |= cmd_address_audit(s, gma, sizeof(u64),
1145 						index_mode);
1146 				if (ret)
1147 					return ret;
1148 				if (index_mode) {
1149 					hws_pga = s->vgpu->hws_pga[s->ring_id];
1150 					gma = hws_pga + gma;
1151 					patch_value(s, cmd_ptr(s, 2), gma);
1152 					val = cmd_val(s, 1) & (~(1 << 21));
1153 					patch_value(s, cmd_ptr(s, 1), val);
1154 				}
1155 			}
1156 		}
1157 	}
1158 
1159 	if (ret)
1160 		return ret;
1161 
1162 	if (cmd_val(s, 1) & PIPE_CONTROL_NOTIFY)
1163 		set_bit(cmd_interrupt_events[s->ring_id].pipe_control_notify,
1164 				s->workload->pending_events);
1165 	return 0;
1166 }
1167 
cmd_handler_mi_user_interrupt(struct parser_exec_state * s)1168 static int cmd_handler_mi_user_interrupt(struct parser_exec_state *s)
1169 {
1170 	set_bit(cmd_interrupt_events[s->ring_id].mi_user_interrupt,
1171 			s->workload->pending_events);
1172 	patch_value(s, cmd_ptr(s, 0), MI_NOOP);
1173 	return 0;
1174 }
1175 
cmd_advance_default(struct parser_exec_state * s)1176 static int cmd_advance_default(struct parser_exec_state *s)
1177 {
1178 	return ip_gma_advance(s, cmd_length(s));
1179 }
1180 
cmd_handler_mi_batch_buffer_end(struct parser_exec_state * s)1181 static int cmd_handler_mi_batch_buffer_end(struct parser_exec_state *s)
1182 {
1183 	int ret;
1184 
1185 	if (s->buf_type == BATCH_BUFFER_2ND_LEVEL) {
1186 		s->buf_type = BATCH_BUFFER_INSTRUCTION;
1187 		ret = ip_gma_set(s, s->ret_ip_gma_bb);
1188 		s->buf_addr_type = s->saved_buf_addr_type;
1189 	} else {
1190 		s->buf_type = RING_BUFFER_INSTRUCTION;
1191 		s->buf_addr_type = GTT_BUFFER;
1192 		if (s->ret_ip_gma_ring >= s->ring_start + s->ring_size)
1193 			s->ret_ip_gma_ring -= s->ring_size;
1194 		ret = ip_gma_set(s, s->ret_ip_gma_ring);
1195 	}
1196 	return ret;
1197 }
1198 
1199 struct mi_display_flip_command_info {
1200 	int pipe;
1201 	int plane;
1202 	int event;
1203 	i915_reg_t stride_reg;
1204 	i915_reg_t ctrl_reg;
1205 	i915_reg_t surf_reg;
1206 	u64 stride_val;
1207 	u64 tile_val;
1208 	u64 surf_val;
1209 	bool async_flip;
1210 };
1211 
1212 struct plane_code_mapping {
1213 	int pipe;
1214 	int plane;
1215 	int event;
1216 };
1217 
gen8_decode_mi_display_flip(struct parser_exec_state * s,struct mi_display_flip_command_info * info)1218 static int gen8_decode_mi_display_flip(struct parser_exec_state *s,
1219 		struct mi_display_flip_command_info *info)
1220 {
1221 	struct drm_i915_private *dev_priv = s->vgpu->gvt->dev_priv;
1222 	struct plane_code_mapping gen8_plane_code[] = {
1223 		[0] = {PIPE_A, PLANE_A, PRIMARY_A_FLIP_DONE},
1224 		[1] = {PIPE_B, PLANE_A, PRIMARY_B_FLIP_DONE},
1225 		[2] = {PIPE_A, PLANE_B, SPRITE_A_FLIP_DONE},
1226 		[3] = {PIPE_B, PLANE_B, SPRITE_B_FLIP_DONE},
1227 		[4] = {PIPE_C, PLANE_A, PRIMARY_C_FLIP_DONE},
1228 		[5] = {PIPE_C, PLANE_B, SPRITE_C_FLIP_DONE},
1229 	};
1230 	u32 dword0, dword1, dword2;
1231 	u32 v;
1232 
1233 	dword0 = cmd_val(s, 0);
1234 	dword1 = cmd_val(s, 1);
1235 	dword2 = cmd_val(s, 2);
1236 
1237 	v = (dword0 & GENMASK(21, 19)) >> 19;
1238 	if (WARN_ON(v >= ARRAY_SIZE(gen8_plane_code)))
1239 		return -EBADRQC;
1240 
1241 	info->pipe = gen8_plane_code[v].pipe;
1242 	info->plane = gen8_plane_code[v].plane;
1243 	info->event = gen8_plane_code[v].event;
1244 	info->stride_val = (dword1 & GENMASK(15, 6)) >> 6;
1245 	info->tile_val = (dword1 & 0x1);
1246 	info->surf_val = (dword2 & GENMASK(31, 12)) >> 12;
1247 	info->async_flip = ((dword2 & GENMASK(1, 0)) == 0x1);
1248 
1249 	if (info->plane == PLANE_A) {
1250 		info->ctrl_reg = DSPCNTR(info->pipe);
1251 		info->stride_reg = DSPSTRIDE(info->pipe);
1252 		info->surf_reg = DSPSURF(info->pipe);
1253 	} else if (info->plane == PLANE_B) {
1254 		info->ctrl_reg = SPRCTL(info->pipe);
1255 		info->stride_reg = SPRSTRIDE(info->pipe);
1256 		info->surf_reg = SPRSURF(info->pipe);
1257 	} else {
1258 		WARN_ON(1);
1259 		return -EBADRQC;
1260 	}
1261 	return 0;
1262 }
1263 
skl_decode_mi_display_flip(struct parser_exec_state * s,struct mi_display_flip_command_info * info)1264 static int skl_decode_mi_display_flip(struct parser_exec_state *s,
1265 		struct mi_display_flip_command_info *info)
1266 {
1267 	struct drm_i915_private *dev_priv = s->vgpu->gvt->dev_priv;
1268 	struct intel_vgpu *vgpu = s->vgpu;
1269 	u32 dword0 = cmd_val(s, 0);
1270 	u32 dword1 = cmd_val(s, 1);
1271 	u32 dword2 = cmd_val(s, 2);
1272 	u32 plane = (dword0 & GENMASK(12, 8)) >> 8;
1273 
1274 	info->plane = PRIMARY_PLANE;
1275 
1276 	switch (plane) {
1277 	case MI_DISPLAY_FLIP_SKL_PLANE_1_A:
1278 		info->pipe = PIPE_A;
1279 		info->event = PRIMARY_A_FLIP_DONE;
1280 		break;
1281 	case MI_DISPLAY_FLIP_SKL_PLANE_1_B:
1282 		info->pipe = PIPE_B;
1283 		info->event = PRIMARY_B_FLIP_DONE;
1284 		break;
1285 	case MI_DISPLAY_FLIP_SKL_PLANE_1_C:
1286 		info->pipe = PIPE_C;
1287 		info->event = PRIMARY_C_FLIP_DONE;
1288 		break;
1289 
1290 	case MI_DISPLAY_FLIP_SKL_PLANE_2_A:
1291 		info->pipe = PIPE_A;
1292 		info->event = SPRITE_A_FLIP_DONE;
1293 		info->plane = SPRITE_PLANE;
1294 		break;
1295 	case MI_DISPLAY_FLIP_SKL_PLANE_2_B:
1296 		info->pipe = PIPE_B;
1297 		info->event = SPRITE_B_FLIP_DONE;
1298 		info->plane = SPRITE_PLANE;
1299 		break;
1300 	case MI_DISPLAY_FLIP_SKL_PLANE_2_C:
1301 		info->pipe = PIPE_C;
1302 		info->event = SPRITE_C_FLIP_DONE;
1303 		info->plane = SPRITE_PLANE;
1304 		break;
1305 
1306 	default:
1307 		gvt_vgpu_err("unknown plane code %d\n", plane);
1308 		return -EBADRQC;
1309 	}
1310 
1311 	info->stride_val = (dword1 & GENMASK(15, 6)) >> 6;
1312 	info->tile_val = (dword1 & GENMASK(2, 0));
1313 	info->surf_val = (dword2 & GENMASK(31, 12)) >> 12;
1314 	info->async_flip = ((dword2 & GENMASK(1, 0)) == 0x1);
1315 
1316 	info->ctrl_reg = DSPCNTR(info->pipe);
1317 	info->stride_reg = DSPSTRIDE(info->pipe);
1318 	info->surf_reg = DSPSURF(info->pipe);
1319 
1320 	return 0;
1321 }
1322 
gen8_check_mi_display_flip(struct parser_exec_state * s,struct mi_display_flip_command_info * info)1323 static int gen8_check_mi_display_flip(struct parser_exec_state *s,
1324 		struct mi_display_flip_command_info *info)
1325 {
1326 	struct drm_i915_private *dev_priv = s->vgpu->gvt->dev_priv;
1327 	u32 stride, tile;
1328 
1329 	if (!info->async_flip)
1330 		return 0;
1331 
1332 	if (INTEL_GEN(dev_priv) >= 9) {
1333 		stride = vgpu_vreg_t(s->vgpu, info->stride_reg) & GENMASK(9, 0);
1334 		tile = (vgpu_vreg_t(s->vgpu, info->ctrl_reg) &
1335 				GENMASK(12, 10)) >> 10;
1336 	} else {
1337 		stride = (vgpu_vreg_t(s->vgpu, info->stride_reg) &
1338 				GENMASK(15, 6)) >> 6;
1339 		tile = (vgpu_vreg_t(s->vgpu, info->ctrl_reg) & (1 << 10)) >> 10;
1340 	}
1341 
1342 	if (stride != info->stride_val)
1343 		gvt_dbg_cmd("cannot change stride during async flip\n");
1344 
1345 	if (tile != info->tile_val)
1346 		gvt_dbg_cmd("cannot change tile during async flip\n");
1347 
1348 	return 0;
1349 }
1350 
gen8_update_plane_mmio_from_mi_display_flip(struct parser_exec_state * s,struct mi_display_flip_command_info * info)1351 static int gen8_update_plane_mmio_from_mi_display_flip(
1352 		struct parser_exec_state *s,
1353 		struct mi_display_flip_command_info *info)
1354 {
1355 	struct drm_i915_private *dev_priv = s->vgpu->gvt->dev_priv;
1356 	struct intel_vgpu *vgpu = s->vgpu;
1357 
1358 	set_mask_bits(&vgpu_vreg_t(vgpu, info->surf_reg), GENMASK(31, 12),
1359 		      info->surf_val << 12);
1360 	if (INTEL_GEN(dev_priv) >= 9) {
1361 		set_mask_bits(&vgpu_vreg_t(vgpu, info->stride_reg), GENMASK(9, 0),
1362 			      info->stride_val);
1363 		set_mask_bits(&vgpu_vreg_t(vgpu, info->ctrl_reg), GENMASK(12, 10),
1364 			      info->tile_val << 10);
1365 	} else {
1366 		set_mask_bits(&vgpu_vreg_t(vgpu, info->stride_reg), GENMASK(15, 6),
1367 			      info->stride_val << 6);
1368 		set_mask_bits(&vgpu_vreg_t(vgpu, info->ctrl_reg), GENMASK(10, 10),
1369 			      info->tile_val << 10);
1370 	}
1371 
1372 	if (info->plane == PLANE_PRIMARY)
1373 		vgpu_vreg_t(vgpu, PIPE_FLIPCOUNT_G4X(info->pipe))++;
1374 
1375 	if (info->async_flip)
1376 		intel_vgpu_trigger_virtual_event(vgpu, info->event);
1377 	else
1378 		set_bit(info->event, vgpu->irq.flip_done_event[info->pipe]);
1379 
1380 	return 0;
1381 }
1382 
decode_mi_display_flip(struct parser_exec_state * s,struct mi_display_flip_command_info * info)1383 static int decode_mi_display_flip(struct parser_exec_state *s,
1384 		struct mi_display_flip_command_info *info)
1385 {
1386 	struct drm_i915_private *dev_priv = s->vgpu->gvt->dev_priv;
1387 
1388 	if (IS_BROADWELL(dev_priv))
1389 		return gen8_decode_mi_display_flip(s, info);
1390 	if (INTEL_GEN(dev_priv) >= 9)
1391 		return skl_decode_mi_display_flip(s, info);
1392 
1393 	return -ENODEV;
1394 }
1395 
check_mi_display_flip(struct parser_exec_state * s,struct mi_display_flip_command_info * info)1396 static int check_mi_display_flip(struct parser_exec_state *s,
1397 		struct mi_display_flip_command_info *info)
1398 {
1399 	return gen8_check_mi_display_flip(s, info);
1400 }
1401 
update_plane_mmio_from_mi_display_flip(struct parser_exec_state * s,struct mi_display_flip_command_info * info)1402 static int update_plane_mmio_from_mi_display_flip(
1403 		struct parser_exec_state *s,
1404 		struct mi_display_flip_command_info *info)
1405 {
1406 	return gen8_update_plane_mmio_from_mi_display_flip(s, info);
1407 }
1408 
cmd_handler_mi_display_flip(struct parser_exec_state * s)1409 static int cmd_handler_mi_display_flip(struct parser_exec_state *s)
1410 {
1411 	struct mi_display_flip_command_info info;
1412 	struct intel_vgpu *vgpu = s->vgpu;
1413 	int ret;
1414 	int i;
1415 	int len = cmd_length(s);
1416 	u32 valid_len = CMD_LEN(1);
1417 
1418 	/* Flip Type == Stereo 3D Flip */
1419 	if (DWORD_FIELD(2, 1, 0) == 2)
1420 		valid_len++;
1421 	ret = gvt_check_valid_cmd_length(cmd_length(s),
1422 			valid_len);
1423 	if (ret)
1424 		return ret;
1425 
1426 	ret = decode_mi_display_flip(s, &info);
1427 	if (ret) {
1428 		gvt_vgpu_err("fail to decode MI display flip command\n");
1429 		return ret;
1430 	}
1431 
1432 	ret = check_mi_display_flip(s, &info);
1433 	if (ret) {
1434 		gvt_vgpu_err("invalid MI display flip command\n");
1435 		return ret;
1436 	}
1437 
1438 	ret = update_plane_mmio_from_mi_display_flip(s, &info);
1439 	if (ret) {
1440 		gvt_vgpu_err("fail to update plane mmio\n");
1441 		return ret;
1442 	}
1443 
1444 	for (i = 0; i < len; i++)
1445 		patch_value(s, cmd_ptr(s, i), MI_NOOP);
1446 	return 0;
1447 }
1448 
is_wait_for_flip_pending(u32 cmd)1449 static bool is_wait_for_flip_pending(u32 cmd)
1450 {
1451 	return cmd & (MI_WAIT_FOR_PLANE_A_FLIP_PENDING |
1452 			MI_WAIT_FOR_PLANE_B_FLIP_PENDING |
1453 			MI_WAIT_FOR_PLANE_C_FLIP_PENDING |
1454 			MI_WAIT_FOR_SPRITE_A_FLIP_PENDING |
1455 			MI_WAIT_FOR_SPRITE_B_FLIP_PENDING |
1456 			MI_WAIT_FOR_SPRITE_C_FLIP_PENDING);
1457 }
1458 
cmd_handler_mi_wait_for_event(struct parser_exec_state * s)1459 static int cmd_handler_mi_wait_for_event(struct parser_exec_state *s)
1460 {
1461 	u32 cmd = cmd_val(s, 0);
1462 
1463 	if (!is_wait_for_flip_pending(cmd))
1464 		return 0;
1465 
1466 	patch_value(s, cmd_ptr(s, 0), MI_NOOP);
1467 	return 0;
1468 }
1469 
get_gma_bb_from_cmd(struct parser_exec_state * s,int index)1470 static unsigned long get_gma_bb_from_cmd(struct parser_exec_state *s, int index)
1471 {
1472 	unsigned long addr;
1473 	unsigned long gma_high, gma_low;
1474 	struct intel_vgpu *vgpu = s->vgpu;
1475 	int gmadr_bytes = vgpu->gvt->device_info.gmadr_bytes_in_cmd;
1476 
1477 	if (WARN_ON(gmadr_bytes != 4 && gmadr_bytes != 8)) {
1478 		gvt_vgpu_err("invalid gma bytes %d\n", gmadr_bytes);
1479 		return INTEL_GVT_INVALID_ADDR;
1480 	}
1481 
1482 	gma_low = cmd_val(s, index) & BATCH_BUFFER_ADDR_MASK;
1483 	if (gmadr_bytes == 4) {
1484 		addr = gma_low;
1485 	} else {
1486 		gma_high = cmd_val(s, index + 1) & BATCH_BUFFER_ADDR_HIGH_MASK;
1487 		addr = (((unsigned long)gma_high) << 32) | gma_low;
1488 	}
1489 	return addr;
1490 }
1491 
cmd_address_audit(struct parser_exec_state * s,unsigned long guest_gma,int op_size,bool index_mode)1492 static inline int cmd_address_audit(struct parser_exec_state *s,
1493 		unsigned long guest_gma, int op_size, bool index_mode)
1494 {
1495 	struct intel_vgpu *vgpu = s->vgpu;
1496 	u32 max_surface_size = vgpu->gvt->device_info.max_surface_size;
1497 	int i;
1498 	int ret;
1499 
1500 	if (op_size > max_surface_size) {
1501 		gvt_vgpu_err("command address audit fail name %s\n",
1502 			s->info->name);
1503 		return -EFAULT;
1504 	}
1505 
1506 	if (index_mode)	{
1507 		if (guest_gma >= I915_GTT_PAGE_SIZE) {
1508 			ret = -EFAULT;
1509 			goto err;
1510 		}
1511 	} else if (!intel_gvt_ggtt_validate_range(vgpu, guest_gma, op_size)) {
1512 		ret = -EFAULT;
1513 		goto err;
1514 	}
1515 
1516 	return 0;
1517 
1518 err:
1519 	gvt_vgpu_err("cmd_parser: Malicious %s detected, addr=0x%lx, len=%d!\n",
1520 			s->info->name, guest_gma, op_size);
1521 
1522 	pr_err("cmd dump: ");
1523 	for (i = 0; i < cmd_length(s); i++) {
1524 		if (!(i % 4))
1525 			pr_err("\n%08x ", cmd_val(s, i));
1526 		else
1527 			pr_err("%08x ", cmd_val(s, i));
1528 	}
1529 	pr_err("\nvgpu%d: aperture 0x%llx - 0x%llx, hidden 0x%llx - 0x%llx\n",
1530 			vgpu->id,
1531 			vgpu_aperture_gmadr_base(vgpu),
1532 			vgpu_aperture_gmadr_end(vgpu),
1533 			vgpu_hidden_gmadr_base(vgpu),
1534 			vgpu_hidden_gmadr_end(vgpu));
1535 	return ret;
1536 }
1537 
cmd_handler_mi_store_data_imm(struct parser_exec_state * s)1538 static int cmd_handler_mi_store_data_imm(struct parser_exec_state *s)
1539 {
1540 	int gmadr_bytes = s->vgpu->gvt->device_info.gmadr_bytes_in_cmd;
1541 	int op_size = (cmd_length(s) - 3) * sizeof(u32);
1542 	int core_id = (cmd_val(s, 2) & (1 << 0)) ? 1 : 0;
1543 	unsigned long gma, gma_low, gma_high;
1544 	u32 valid_len = CMD_LEN(2);
1545 	int ret = 0;
1546 
1547 	/* check ppggt */
1548 	if (!(cmd_val(s, 0) & (1 << 22)))
1549 		return 0;
1550 
1551 	/* check if QWORD */
1552 	if (DWORD_FIELD(0, 21, 21))
1553 		valid_len++;
1554 	ret = gvt_check_valid_cmd_length(cmd_length(s),
1555 			valid_len);
1556 	if (ret)
1557 		return ret;
1558 
1559 	gma = cmd_val(s, 2) & GENMASK(31, 2);
1560 
1561 	if (gmadr_bytes == 8) {
1562 		gma_low = cmd_val(s, 1) & GENMASK(31, 2);
1563 		gma_high = cmd_val(s, 2) & GENMASK(15, 0);
1564 		gma = (gma_high << 32) | gma_low;
1565 		core_id = (cmd_val(s, 1) & (1 << 0)) ? 1 : 0;
1566 	}
1567 	ret = cmd_address_audit(s, gma + op_size * core_id, op_size, false);
1568 	return ret;
1569 }
1570 
unexpected_cmd(struct parser_exec_state * s)1571 static inline int unexpected_cmd(struct parser_exec_state *s)
1572 {
1573 	struct intel_vgpu *vgpu = s->vgpu;
1574 
1575 	gvt_vgpu_err("Unexpected %s in command buffer!\n", s->info->name);
1576 
1577 	return -EBADRQC;
1578 }
1579 
cmd_handler_mi_semaphore_wait(struct parser_exec_state * s)1580 static int cmd_handler_mi_semaphore_wait(struct parser_exec_state *s)
1581 {
1582 	return unexpected_cmd(s);
1583 }
1584 
cmd_handler_mi_report_perf_count(struct parser_exec_state * s)1585 static int cmd_handler_mi_report_perf_count(struct parser_exec_state *s)
1586 {
1587 	return unexpected_cmd(s);
1588 }
1589 
cmd_handler_mi_op_2e(struct parser_exec_state * s)1590 static int cmd_handler_mi_op_2e(struct parser_exec_state *s)
1591 {
1592 	return unexpected_cmd(s);
1593 }
1594 
cmd_handler_mi_op_2f(struct parser_exec_state * s)1595 static int cmd_handler_mi_op_2f(struct parser_exec_state *s)
1596 {
1597 	int gmadr_bytes = s->vgpu->gvt->device_info.gmadr_bytes_in_cmd;
1598 	int op_size = (1 << ((cmd_val(s, 0) & GENMASK(20, 19)) >> 19)) *
1599 			sizeof(u32);
1600 	unsigned long gma, gma_high;
1601 	u32 valid_len = CMD_LEN(1);
1602 	int ret = 0;
1603 
1604 	if (!(cmd_val(s, 0) & (1 << 22)))
1605 		return ret;
1606 
1607 	/* check inline data */
1608 	if (cmd_val(s, 0) & BIT(18))
1609 		valid_len = CMD_LEN(9);
1610 	ret = gvt_check_valid_cmd_length(cmd_length(s),
1611 			valid_len);
1612 	if (ret)
1613 		return ret;
1614 
1615 	gma = cmd_val(s, 1) & GENMASK(31, 2);
1616 	if (gmadr_bytes == 8) {
1617 		gma_high = cmd_val(s, 2) & GENMASK(15, 0);
1618 		gma = (gma_high << 32) | gma;
1619 	}
1620 	ret = cmd_address_audit(s, gma, op_size, false);
1621 	return ret;
1622 }
1623 
cmd_handler_mi_store_data_index(struct parser_exec_state * s)1624 static int cmd_handler_mi_store_data_index(struct parser_exec_state *s)
1625 {
1626 	return unexpected_cmd(s);
1627 }
1628 
cmd_handler_mi_clflush(struct parser_exec_state * s)1629 static int cmd_handler_mi_clflush(struct parser_exec_state *s)
1630 {
1631 	return unexpected_cmd(s);
1632 }
1633 
cmd_handler_mi_conditional_batch_buffer_end(struct parser_exec_state * s)1634 static int cmd_handler_mi_conditional_batch_buffer_end(
1635 		struct parser_exec_state *s)
1636 {
1637 	return unexpected_cmd(s);
1638 }
1639 
cmd_handler_mi_update_gtt(struct parser_exec_state * s)1640 static int cmd_handler_mi_update_gtt(struct parser_exec_state *s)
1641 {
1642 	return unexpected_cmd(s);
1643 }
1644 
cmd_handler_mi_flush_dw(struct parser_exec_state * s)1645 static int cmd_handler_mi_flush_dw(struct parser_exec_state *s)
1646 {
1647 	int gmadr_bytes = s->vgpu->gvt->device_info.gmadr_bytes_in_cmd;
1648 	unsigned long gma;
1649 	bool index_mode = false;
1650 	int ret = 0;
1651 	u32 hws_pga, val;
1652 	u32 valid_len = CMD_LEN(2);
1653 
1654 	ret = gvt_check_valid_cmd_length(cmd_length(s),
1655 			valid_len);
1656 	if (ret) {
1657 		/* Check again for Qword */
1658 		ret = gvt_check_valid_cmd_length(cmd_length(s),
1659 			++valid_len);
1660 		return ret;
1661 	}
1662 
1663 	/* Check post-sync and ppgtt bit */
1664 	if (((cmd_val(s, 0) >> 14) & 0x3) && (cmd_val(s, 1) & (1 << 2))) {
1665 		gma = cmd_val(s, 1) & GENMASK(31, 3);
1666 		if (gmadr_bytes == 8)
1667 			gma |= (cmd_val(s, 2) & GENMASK(15, 0)) << 32;
1668 		/* Store Data Index */
1669 		if (cmd_val(s, 0) & (1 << 21))
1670 			index_mode = true;
1671 		ret = cmd_address_audit(s, gma, sizeof(u64), index_mode);
1672 		if (ret)
1673 			return ret;
1674 		if (index_mode) {
1675 			hws_pga = s->vgpu->hws_pga[s->ring_id];
1676 			gma = hws_pga + gma;
1677 			patch_value(s, cmd_ptr(s, 1), gma);
1678 			val = cmd_val(s, 0) & (~(1 << 21));
1679 			patch_value(s, cmd_ptr(s, 0), val);
1680 		}
1681 	}
1682 	/* Check notify bit */
1683 	if ((cmd_val(s, 0) & (1 << 8)))
1684 		set_bit(cmd_interrupt_events[s->ring_id].mi_flush_dw,
1685 				s->workload->pending_events);
1686 	return ret;
1687 }
1688 
addr_type_update_snb(struct parser_exec_state * s)1689 static void addr_type_update_snb(struct parser_exec_state *s)
1690 {
1691 	if ((s->buf_type == RING_BUFFER_INSTRUCTION) &&
1692 			(BATCH_BUFFER_ADR_SPACE_BIT(cmd_val(s, 0)) == 1)) {
1693 		s->buf_addr_type = PPGTT_BUFFER;
1694 	}
1695 }
1696 
1697 
copy_gma_to_hva(struct intel_vgpu * vgpu,struct intel_vgpu_mm * mm,unsigned long gma,unsigned long end_gma,void * va)1698 static int copy_gma_to_hva(struct intel_vgpu *vgpu, struct intel_vgpu_mm *mm,
1699 		unsigned long gma, unsigned long end_gma, void *va)
1700 {
1701 	unsigned long copy_len, offset;
1702 	unsigned long len = 0;
1703 	unsigned long gpa;
1704 
1705 	while (gma != end_gma) {
1706 		gpa = intel_vgpu_gma_to_gpa(mm, gma);
1707 		if (gpa == INTEL_GVT_INVALID_ADDR) {
1708 			gvt_vgpu_err("invalid gma address: %lx\n", gma);
1709 			return -EFAULT;
1710 		}
1711 
1712 		offset = gma & (I915_GTT_PAGE_SIZE - 1);
1713 
1714 		copy_len = (end_gma - gma) >= (I915_GTT_PAGE_SIZE - offset) ?
1715 			I915_GTT_PAGE_SIZE - offset : end_gma - gma;
1716 
1717 		intel_gvt_hypervisor_read_gpa(vgpu, gpa, va + len, copy_len);
1718 
1719 		len += copy_len;
1720 		gma += copy_len;
1721 	}
1722 	return len;
1723 }
1724 
1725 
1726 /*
1727  * Check whether a batch buffer needs to be scanned. Currently
1728  * the only criteria is based on privilege.
1729  */
batch_buffer_needs_scan(struct parser_exec_state * s)1730 static int batch_buffer_needs_scan(struct parser_exec_state *s)
1731 {
1732 	/* Decide privilege based on address space */
1733 	if (cmd_val(s, 0) & (1 << 8) &&
1734 			!(s->vgpu->scan_nonprivbb & (1 << s->ring_id)))
1735 		return 0;
1736 	return 1;
1737 }
1738 
find_bb_size(struct parser_exec_state * s,unsigned long * bb_size,unsigned long * bb_end_cmd_offset)1739 static int find_bb_size(struct parser_exec_state *s,
1740 			unsigned long *bb_size,
1741 			unsigned long *bb_end_cmd_offset)
1742 {
1743 	unsigned long gma = 0;
1744 	const struct cmd_info *info;
1745 	u32 cmd_len = 0;
1746 	bool bb_end = false;
1747 	struct intel_vgpu *vgpu = s->vgpu;
1748 	u32 cmd;
1749 	struct intel_vgpu_mm *mm = (s->buf_addr_type == GTT_BUFFER) ?
1750 		s->vgpu->gtt.ggtt_mm : s->workload->shadow_mm;
1751 
1752 	*bb_size = 0;
1753 	*bb_end_cmd_offset = 0;
1754 
1755 	/* get the start gm address of the batch buffer */
1756 	gma = get_gma_bb_from_cmd(s, 1);
1757 	if (gma == INTEL_GVT_INVALID_ADDR)
1758 		return -EFAULT;
1759 
1760 	cmd = cmd_val(s, 0);
1761 	info = get_cmd_info(s->vgpu->gvt, cmd, s->ring_id);
1762 	if (info == NULL) {
1763 		gvt_vgpu_err("unknown cmd 0x%x, opcode=0x%x, addr_type=%s, ring %d, workload=%p\n",
1764 				cmd, get_opcode(cmd, s->ring_id),
1765 				(s->buf_addr_type == PPGTT_BUFFER) ?
1766 				"ppgtt" : "ggtt", s->ring_id, s->workload);
1767 		return -EBADRQC;
1768 	}
1769 	do {
1770 		if (copy_gma_to_hva(s->vgpu, mm,
1771 				gma, gma + 4, &cmd) < 0)
1772 			return -EFAULT;
1773 		info = get_cmd_info(s->vgpu->gvt, cmd, s->ring_id);
1774 		if (info == NULL) {
1775 			gvt_vgpu_err("unknown cmd 0x%x, opcode=0x%x, addr_type=%s, ring %d, workload=%p\n",
1776 				cmd, get_opcode(cmd, s->ring_id),
1777 				(s->buf_addr_type == PPGTT_BUFFER) ?
1778 				"ppgtt" : "ggtt", s->ring_id, s->workload);
1779 			return -EBADRQC;
1780 		}
1781 
1782 		if (info->opcode == OP_MI_BATCH_BUFFER_END) {
1783 			bb_end = true;
1784 		} else if (info->opcode == OP_MI_BATCH_BUFFER_START) {
1785 			if (BATCH_BUFFER_2ND_LEVEL_BIT(cmd) == 0)
1786 				/* chained batch buffer */
1787 				bb_end = true;
1788 		}
1789 
1790 		if (bb_end)
1791 			*bb_end_cmd_offset = *bb_size;
1792 
1793 		cmd_len = get_cmd_length(info, cmd) << 2;
1794 		*bb_size += cmd_len;
1795 		gma += cmd_len;
1796 	} while (!bb_end);
1797 
1798 	return 0;
1799 }
1800 
audit_bb_end(struct parser_exec_state * s,void * va)1801 static int audit_bb_end(struct parser_exec_state *s, void *va)
1802 {
1803 	struct intel_vgpu *vgpu = s->vgpu;
1804 	u32 cmd = *(u32 *)va;
1805 	const struct cmd_info *info;
1806 
1807 	info = get_cmd_info(s->vgpu->gvt, cmd, s->ring_id);
1808 	if (info == NULL) {
1809 		gvt_vgpu_err("unknown cmd 0x%x, opcode=0x%x, addr_type=%s, ring %d, workload=%p\n",
1810 			cmd, get_opcode(cmd, s->ring_id),
1811 			(s->buf_addr_type == PPGTT_BUFFER) ?
1812 			"ppgtt" : "ggtt", s->ring_id, s->workload);
1813 		return -EBADRQC;
1814 	}
1815 
1816 	if ((info->opcode == OP_MI_BATCH_BUFFER_END) ||
1817 	    ((info->opcode == OP_MI_BATCH_BUFFER_START) &&
1818 	     (BATCH_BUFFER_2ND_LEVEL_BIT(cmd) == 0)))
1819 		return 0;
1820 
1821 	return -EBADRQC;
1822 }
1823 
perform_bb_shadow(struct parser_exec_state * s)1824 static int perform_bb_shadow(struct parser_exec_state *s)
1825 {
1826 	struct intel_vgpu *vgpu = s->vgpu;
1827 	struct intel_vgpu_shadow_bb *bb;
1828 	unsigned long gma = 0;
1829 	unsigned long bb_size;
1830 	unsigned long bb_end_cmd_offset;
1831 	int ret = 0;
1832 	struct intel_vgpu_mm *mm = (s->buf_addr_type == GTT_BUFFER) ?
1833 		s->vgpu->gtt.ggtt_mm : s->workload->shadow_mm;
1834 	unsigned long start_offset = 0;
1835 
1836 	/* get the start gm address of the batch buffer */
1837 	gma = get_gma_bb_from_cmd(s, 1);
1838 	if (gma == INTEL_GVT_INVALID_ADDR)
1839 		return -EFAULT;
1840 
1841 	ret = find_bb_size(s, &bb_size, &bb_end_cmd_offset);
1842 	if (ret)
1843 		return ret;
1844 
1845 	bb = kzalloc(sizeof(*bb), GFP_KERNEL);
1846 	if (!bb)
1847 		return -ENOMEM;
1848 
1849 	bb->ppgtt = (s->buf_addr_type == GTT_BUFFER) ? false : true;
1850 
1851 	/* the start_offset stores the batch buffer's start gma's
1852 	 * offset relative to page boundary. so for non-privileged batch
1853 	 * buffer, the shadowed gem object holds exactly the same page
1854 	 * layout as original gem object. This is for the convience of
1855 	 * replacing the whole non-privilged batch buffer page to this
1856 	 * shadowed one in PPGTT at the same gma address. (this replacing
1857 	 * action is not implemented yet now, but may be necessary in
1858 	 * future).
1859 	 * for prileged batch buffer, we just change start gma address to
1860 	 * that of shadowed page.
1861 	 */
1862 	if (bb->ppgtt)
1863 		start_offset = gma & ~I915_GTT_PAGE_MASK;
1864 
1865 	bb->obj = i915_gem_object_create_shmem(s->vgpu->gvt->dev_priv,
1866 					       round_up(bb_size + start_offset,
1867 							PAGE_SIZE));
1868 	if (IS_ERR(bb->obj)) {
1869 		ret = PTR_ERR(bb->obj);
1870 		goto err_free_bb;
1871 	}
1872 
1873 	ret = i915_gem_object_prepare_write(bb->obj, &bb->clflush);
1874 	if (ret)
1875 		goto err_free_obj;
1876 
1877 	bb->va = i915_gem_object_pin_map(bb->obj, I915_MAP_WB);
1878 	if (IS_ERR(bb->va)) {
1879 		ret = PTR_ERR(bb->va);
1880 		goto err_finish_shmem_access;
1881 	}
1882 
1883 	if (bb->clflush & CLFLUSH_BEFORE) {
1884 		drm_clflush_virt_range(bb->va, bb->obj->base.size);
1885 		bb->clflush &= ~CLFLUSH_BEFORE;
1886 	}
1887 
1888 	ret = copy_gma_to_hva(s->vgpu, mm,
1889 			      gma, gma + bb_size,
1890 			      bb->va + start_offset);
1891 	if (ret < 0) {
1892 		gvt_vgpu_err("fail to copy guest ring buffer\n");
1893 		ret = -EFAULT;
1894 		goto err_unmap;
1895 	}
1896 
1897 	ret = audit_bb_end(s, bb->va + start_offset + bb_end_cmd_offset);
1898 	if (ret)
1899 		goto err_unmap;
1900 
1901 	INIT_LIST_HEAD(&bb->list);
1902 	list_add(&bb->list, &s->workload->shadow_bb);
1903 
1904 	bb->accessing = true;
1905 	bb->bb_start_cmd_va = s->ip_va;
1906 
1907 	if ((s->buf_type == BATCH_BUFFER_INSTRUCTION) && (!s->is_ctx_wa))
1908 		bb->bb_offset = s->ip_va - s->rb_va;
1909 	else
1910 		bb->bb_offset = 0;
1911 
1912 	/*
1913 	 * ip_va saves the virtual address of the shadow batch buffer, while
1914 	 * ip_gma saves the graphics address of the original batch buffer.
1915 	 * As the shadow batch buffer is just a copy from the originial one,
1916 	 * it should be right to use shadow batch buffer'va and original batch
1917 	 * buffer's gma in pair. After all, we don't want to pin the shadow
1918 	 * buffer here (too early).
1919 	 */
1920 	s->ip_va = bb->va + start_offset;
1921 	s->ip_gma = gma;
1922 	return 0;
1923 err_unmap:
1924 	i915_gem_object_unpin_map(bb->obj);
1925 err_finish_shmem_access:
1926 	i915_gem_object_finish_access(bb->obj);
1927 err_free_obj:
1928 	i915_gem_object_put(bb->obj);
1929 err_free_bb:
1930 	kfree(bb);
1931 	return ret;
1932 }
1933 
cmd_handler_mi_batch_buffer_start(struct parser_exec_state * s)1934 static int cmd_handler_mi_batch_buffer_start(struct parser_exec_state *s)
1935 {
1936 	bool second_level;
1937 	int ret = 0;
1938 	struct intel_vgpu *vgpu = s->vgpu;
1939 
1940 	if (s->buf_type == BATCH_BUFFER_2ND_LEVEL) {
1941 		gvt_vgpu_err("Found MI_BATCH_BUFFER_START in 2nd level BB\n");
1942 		return -EFAULT;
1943 	}
1944 
1945 	second_level = BATCH_BUFFER_2ND_LEVEL_BIT(cmd_val(s, 0)) == 1;
1946 	if (second_level && (s->buf_type != BATCH_BUFFER_INSTRUCTION)) {
1947 		gvt_vgpu_err("Jumping to 2nd level BB from RB is not allowed\n");
1948 		return -EFAULT;
1949 	}
1950 
1951 	s->saved_buf_addr_type = s->buf_addr_type;
1952 	addr_type_update_snb(s);
1953 	if (s->buf_type == RING_BUFFER_INSTRUCTION) {
1954 		s->ret_ip_gma_ring = s->ip_gma + cmd_length(s) * sizeof(u32);
1955 		s->buf_type = BATCH_BUFFER_INSTRUCTION;
1956 	} else if (second_level) {
1957 		s->buf_type = BATCH_BUFFER_2ND_LEVEL;
1958 		s->ret_ip_gma_bb = s->ip_gma + cmd_length(s) * sizeof(u32);
1959 		s->ret_bb_va = s->ip_va + cmd_length(s) * sizeof(u32);
1960 	}
1961 
1962 	if (batch_buffer_needs_scan(s)) {
1963 		ret = perform_bb_shadow(s);
1964 		if (ret < 0)
1965 			gvt_vgpu_err("invalid shadow batch buffer\n");
1966 	} else {
1967 		/* emulate a batch buffer end to do return right */
1968 		ret = cmd_handler_mi_batch_buffer_end(s);
1969 		if (ret < 0)
1970 			return ret;
1971 	}
1972 	return ret;
1973 }
1974 
1975 static int mi_noop_index;
1976 
1977 static const struct cmd_info cmd_info[] = {
1978 	{"MI_NOOP", OP_MI_NOOP, F_LEN_CONST, R_ALL, D_ALL, 0, 1, NULL},
1979 
1980 	{"MI_SET_PREDICATE", OP_MI_SET_PREDICATE, F_LEN_CONST, R_ALL, D_ALL,
1981 		0, 1, NULL},
1982 
1983 	{"MI_USER_INTERRUPT", OP_MI_USER_INTERRUPT, F_LEN_CONST, R_ALL, D_ALL,
1984 		0, 1, cmd_handler_mi_user_interrupt},
1985 
1986 	{"MI_WAIT_FOR_EVENT", OP_MI_WAIT_FOR_EVENT, F_LEN_CONST, R_RCS | R_BCS,
1987 		D_ALL, 0, 1, cmd_handler_mi_wait_for_event},
1988 
1989 	{"MI_FLUSH", OP_MI_FLUSH, F_LEN_CONST, R_ALL, D_ALL, 0, 1, NULL},
1990 
1991 	{"MI_ARB_CHECK", OP_MI_ARB_CHECK, F_LEN_CONST, R_ALL, D_ALL, 0, 1,
1992 		NULL},
1993 
1994 	{"MI_RS_CONTROL", OP_MI_RS_CONTROL, F_LEN_CONST, R_RCS, D_ALL, 0, 1,
1995 		NULL},
1996 
1997 	{"MI_REPORT_HEAD", OP_MI_REPORT_HEAD, F_LEN_CONST, R_ALL, D_ALL, 0, 1,
1998 		NULL},
1999 
2000 	{"MI_ARB_ON_OFF", OP_MI_ARB_ON_OFF, F_LEN_CONST, R_ALL, D_ALL, 0, 1,
2001 		NULL},
2002 
2003 	{"MI_URB_ATOMIC_ALLOC", OP_MI_URB_ATOMIC_ALLOC, F_LEN_CONST, R_RCS,
2004 		D_ALL, 0, 1, NULL},
2005 
2006 	{"MI_BATCH_BUFFER_END", OP_MI_BATCH_BUFFER_END,
2007 		F_IP_ADVANCE_CUSTOM | F_LEN_CONST, R_ALL, D_ALL, 0, 1,
2008 		cmd_handler_mi_batch_buffer_end},
2009 
2010 	{"MI_SUSPEND_FLUSH", OP_MI_SUSPEND_FLUSH, F_LEN_CONST, R_ALL, D_ALL,
2011 		0, 1, NULL},
2012 
2013 	{"MI_PREDICATE", OP_MI_PREDICATE, F_LEN_CONST, R_RCS, D_ALL, 0, 1,
2014 		NULL},
2015 
2016 	{"MI_TOPOLOGY_FILTER", OP_MI_TOPOLOGY_FILTER, F_LEN_CONST, R_ALL,
2017 		D_ALL, 0, 1, NULL},
2018 
2019 	{"MI_SET_APPID", OP_MI_SET_APPID, F_LEN_CONST, R_ALL, D_ALL, 0, 1,
2020 		NULL},
2021 
2022 	{"MI_RS_CONTEXT", OP_MI_RS_CONTEXT, F_LEN_CONST, R_RCS, D_ALL, 0, 1,
2023 		NULL},
2024 
2025 	{"MI_DISPLAY_FLIP", OP_MI_DISPLAY_FLIP, F_LEN_VAR,
2026 		R_RCS | R_BCS, D_ALL, 0, 8, cmd_handler_mi_display_flip},
2027 
2028 	{"MI_SEMAPHORE_MBOX", OP_MI_SEMAPHORE_MBOX, F_LEN_VAR | F_LEN_VAR_FIXED,
2029 		R_ALL, D_ALL, 0, 8, NULL, CMD_LEN(1)},
2030 
2031 	{"MI_MATH", OP_MI_MATH, F_LEN_VAR, R_ALL, D_ALL, 0, 8, NULL},
2032 
2033 	{"MI_URB_CLEAR", OP_MI_URB_CLEAR, F_LEN_VAR | F_LEN_VAR_FIXED, R_RCS,
2034 		D_ALL, 0, 8, NULL, CMD_LEN(0)},
2035 
2036 	{"MI_SEMAPHORE_SIGNAL", OP_MI_SEMAPHORE_SIGNAL,
2037 		F_LEN_VAR | F_LEN_VAR_FIXED, R_ALL, D_BDW_PLUS, 0, 8,
2038 		NULL, CMD_LEN(0)},
2039 
2040 	{"MI_SEMAPHORE_WAIT", OP_MI_SEMAPHORE_WAIT,
2041 		F_LEN_VAR | F_LEN_VAR_FIXED, R_ALL, D_BDW_PLUS, ADDR_FIX_1(2),
2042 		8, cmd_handler_mi_semaphore_wait, CMD_LEN(2)},
2043 
2044 	{"MI_STORE_DATA_IMM", OP_MI_STORE_DATA_IMM, F_LEN_VAR, R_ALL, D_BDW_PLUS,
2045 		ADDR_FIX_1(1), 10, cmd_handler_mi_store_data_imm},
2046 
2047 	{"MI_STORE_DATA_INDEX", OP_MI_STORE_DATA_INDEX, F_LEN_VAR, R_ALL, D_ALL,
2048 		0, 8, cmd_handler_mi_store_data_index},
2049 
2050 	{"MI_LOAD_REGISTER_IMM", OP_MI_LOAD_REGISTER_IMM, F_LEN_VAR, R_ALL,
2051 		D_ALL, 0, 8, cmd_handler_lri},
2052 
2053 	{"MI_UPDATE_GTT", OP_MI_UPDATE_GTT, F_LEN_VAR, R_ALL, D_BDW_PLUS, 0, 10,
2054 		cmd_handler_mi_update_gtt},
2055 
2056 	{"MI_STORE_REGISTER_MEM", OP_MI_STORE_REGISTER_MEM,
2057 		F_LEN_VAR | F_LEN_VAR_FIXED, R_ALL, D_ALL, ADDR_FIX_1(2), 8,
2058 		cmd_handler_srm, CMD_LEN(2)},
2059 
2060 	{"MI_FLUSH_DW", OP_MI_FLUSH_DW, F_LEN_VAR, R_ALL, D_ALL, 0, 6,
2061 		cmd_handler_mi_flush_dw},
2062 
2063 	{"MI_CLFLUSH", OP_MI_CLFLUSH, F_LEN_VAR, R_ALL, D_ALL, ADDR_FIX_1(1),
2064 		10, cmd_handler_mi_clflush},
2065 
2066 	{"MI_REPORT_PERF_COUNT", OP_MI_REPORT_PERF_COUNT,
2067 		F_LEN_VAR | F_LEN_VAR_FIXED, R_ALL, D_ALL, ADDR_FIX_1(1), 6,
2068 		cmd_handler_mi_report_perf_count, CMD_LEN(2)},
2069 
2070 	{"MI_LOAD_REGISTER_MEM", OP_MI_LOAD_REGISTER_MEM,
2071 		F_LEN_VAR | F_LEN_VAR_FIXED, R_ALL, D_ALL, ADDR_FIX_1(2), 8,
2072 		cmd_handler_lrm, CMD_LEN(2)},
2073 
2074 	{"MI_LOAD_REGISTER_REG", OP_MI_LOAD_REGISTER_REG,
2075 		F_LEN_VAR | F_LEN_VAR_FIXED, R_ALL, D_ALL, 0, 8,
2076 		cmd_handler_lrr, CMD_LEN(1)},
2077 
2078 	{"MI_RS_STORE_DATA_IMM", OP_MI_RS_STORE_DATA_IMM,
2079 		F_LEN_VAR | F_LEN_VAR_FIXED, R_RCS, D_ALL, 0,
2080 		8, NULL, CMD_LEN(2)},
2081 
2082 	{"MI_LOAD_URB_MEM", OP_MI_LOAD_URB_MEM, F_LEN_VAR | F_LEN_VAR_FIXED,
2083 		R_RCS, D_ALL, ADDR_FIX_1(2), 8, NULL, CMD_LEN(2)},
2084 
2085 	{"MI_STORE_URM_MEM", OP_MI_STORE_URM_MEM, F_LEN_VAR, R_RCS, D_ALL,
2086 		ADDR_FIX_1(2), 8, NULL},
2087 
2088 	{"MI_OP_2E", OP_MI_2E, F_LEN_VAR | F_LEN_VAR_FIXED, R_ALL, D_BDW_PLUS,
2089 		ADDR_FIX_2(1, 2), 8, cmd_handler_mi_op_2e, CMD_LEN(3)},
2090 
2091 	{"MI_OP_2F", OP_MI_2F, F_LEN_VAR, R_ALL, D_BDW_PLUS, ADDR_FIX_1(1),
2092 		8, cmd_handler_mi_op_2f},
2093 
2094 	{"MI_BATCH_BUFFER_START", OP_MI_BATCH_BUFFER_START,
2095 		F_IP_ADVANCE_CUSTOM, R_ALL, D_ALL, 0, 8,
2096 		cmd_handler_mi_batch_buffer_start},
2097 
2098 	{"MI_CONDITIONAL_BATCH_BUFFER_END", OP_MI_CONDITIONAL_BATCH_BUFFER_END,
2099 		F_LEN_VAR | F_LEN_VAR_FIXED, R_ALL, D_ALL, ADDR_FIX_1(2), 8,
2100 		cmd_handler_mi_conditional_batch_buffer_end, CMD_LEN(2)},
2101 
2102 	{"MI_LOAD_SCAN_LINES_INCL", OP_MI_LOAD_SCAN_LINES_INCL, F_LEN_CONST,
2103 		R_RCS | R_BCS, D_ALL, 0, 2, NULL},
2104 
2105 	{"XY_SETUP_BLT", OP_XY_SETUP_BLT, F_LEN_VAR, R_BCS, D_ALL,
2106 		ADDR_FIX_2(4, 7), 8, NULL},
2107 
2108 	{"XY_SETUP_CLIP_BLT", OP_XY_SETUP_CLIP_BLT, F_LEN_VAR, R_BCS, D_ALL,
2109 		0, 8, NULL},
2110 
2111 	{"XY_SETUP_MONO_PATTERN_SL_BLT", OP_XY_SETUP_MONO_PATTERN_SL_BLT,
2112 		F_LEN_VAR, R_BCS, D_ALL, ADDR_FIX_1(4), 8, NULL},
2113 
2114 	{"XY_PIXEL_BLT", OP_XY_PIXEL_BLT, F_LEN_VAR, R_BCS, D_ALL, 0, 8, NULL},
2115 
2116 	{"XY_SCANLINES_BLT", OP_XY_SCANLINES_BLT, F_LEN_VAR, R_BCS, D_ALL,
2117 		0, 8, NULL},
2118 
2119 	{"XY_TEXT_BLT", OP_XY_TEXT_BLT, F_LEN_VAR, R_BCS, D_ALL,
2120 		ADDR_FIX_1(3), 8, NULL},
2121 
2122 	{"XY_TEXT_IMMEDIATE_BLT", OP_XY_TEXT_IMMEDIATE_BLT, F_LEN_VAR, R_BCS,
2123 		D_ALL, 0, 8, NULL},
2124 
2125 	{"XY_COLOR_BLT", OP_XY_COLOR_BLT, F_LEN_VAR, R_BCS, D_ALL,
2126 		ADDR_FIX_1(4), 8, NULL},
2127 
2128 	{"XY_PAT_BLT", OP_XY_PAT_BLT, F_LEN_VAR, R_BCS, D_ALL,
2129 		ADDR_FIX_2(4, 5), 8, NULL},
2130 
2131 	{"XY_MONO_PAT_BLT", OP_XY_MONO_PAT_BLT, F_LEN_VAR, R_BCS, D_ALL,
2132 		ADDR_FIX_1(4), 8, NULL},
2133 
2134 	{"XY_SRC_COPY_BLT", OP_XY_SRC_COPY_BLT, F_LEN_VAR, R_BCS, D_ALL,
2135 		ADDR_FIX_2(4, 7), 8, NULL},
2136 
2137 	{"XY_MONO_SRC_COPY_BLT", OP_XY_MONO_SRC_COPY_BLT, F_LEN_VAR, R_BCS,
2138 		D_ALL, ADDR_FIX_2(4, 5), 8, NULL},
2139 
2140 	{"XY_FULL_BLT", OP_XY_FULL_BLT, F_LEN_VAR, R_BCS, D_ALL, 0, 8, NULL},
2141 
2142 	{"XY_FULL_MONO_SRC_BLT", OP_XY_FULL_MONO_SRC_BLT, F_LEN_VAR, R_BCS,
2143 		D_ALL, ADDR_FIX_3(4, 5, 8), 8, NULL},
2144 
2145 	{"XY_FULL_MONO_PATTERN_BLT", OP_XY_FULL_MONO_PATTERN_BLT, F_LEN_VAR,
2146 		R_BCS, D_ALL, ADDR_FIX_2(4, 7), 8, NULL},
2147 
2148 	{"XY_FULL_MONO_PATTERN_MONO_SRC_BLT",
2149 		OP_XY_FULL_MONO_PATTERN_MONO_SRC_BLT,
2150 		F_LEN_VAR, R_BCS, D_ALL, ADDR_FIX_2(4, 5), 8, NULL},
2151 
2152 	{"XY_MONO_PAT_FIXED_BLT", OP_XY_MONO_PAT_FIXED_BLT, F_LEN_VAR, R_BCS,
2153 		D_ALL, ADDR_FIX_1(4), 8, NULL},
2154 
2155 	{"XY_MONO_SRC_COPY_IMMEDIATE_BLT", OP_XY_MONO_SRC_COPY_IMMEDIATE_BLT,
2156 		F_LEN_VAR, R_BCS, D_ALL, ADDR_FIX_1(4), 8, NULL},
2157 
2158 	{"XY_PAT_BLT_IMMEDIATE", OP_XY_PAT_BLT_IMMEDIATE, F_LEN_VAR, R_BCS,
2159 		D_ALL, ADDR_FIX_1(4), 8, NULL},
2160 
2161 	{"XY_SRC_COPY_CHROMA_BLT", OP_XY_SRC_COPY_CHROMA_BLT, F_LEN_VAR, R_BCS,
2162 		D_ALL, ADDR_FIX_2(4, 7), 8, NULL},
2163 
2164 	{"XY_FULL_IMMEDIATE_PATTERN_BLT", OP_XY_FULL_IMMEDIATE_PATTERN_BLT,
2165 		F_LEN_VAR, R_BCS, D_ALL, ADDR_FIX_2(4, 7), 8, NULL},
2166 
2167 	{"XY_FULL_MONO_SRC_IMMEDIATE_PATTERN_BLT",
2168 		OP_XY_FULL_MONO_SRC_IMMEDIATE_PATTERN_BLT,
2169 		F_LEN_VAR, R_BCS, D_ALL, ADDR_FIX_2(4, 5), 8, NULL},
2170 
2171 	{"XY_PAT_CHROMA_BLT", OP_XY_PAT_CHROMA_BLT, F_LEN_VAR, R_BCS, D_ALL,
2172 		ADDR_FIX_2(4, 5), 8, NULL},
2173 
2174 	{"XY_PAT_CHROMA_BLT_IMMEDIATE", OP_XY_PAT_CHROMA_BLT_IMMEDIATE,
2175 		F_LEN_VAR, R_BCS, D_ALL, ADDR_FIX_1(4), 8, NULL},
2176 
2177 	{"3DSTATE_VIEWPORT_STATE_POINTERS_SF_CLIP",
2178 		OP_3DSTATE_VIEWPORT_STATE_POINTERS_SF_CLIP,
2179 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2180 
2181 	{"3DSTATE_VIEWPORT_STATE_POINTERS_CC",
2182 		OP_3DSTATE_VIEWPORT_STATE_POINTERS_CC,
2183 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2184 
2185 	{"3DSTATE_BLEND_STATE_POINTERS",
2186 		OP_3DSTATE_BLEND_STATE_POINTERS,
2187 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2188 
2189 	{"3DSTATE_DEPTH_STENCIL_STATE_POINTERS",
2190 		OP_3DSTATE_DEPTH_STENCIL_STATE_POINTERS,
2191 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2192 
2193 	{"3DSTATE_BINDING_TABLE_POINTERS_VS",
2194 		OP_3DSTATE_BINDING_TABLE_POINTERS_VS,
2195 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2196 
2197 	{"3DSTATE_BINDING_TABLE_POINTERS_HS",
2198 		OP_3DSTATE_BINDING_TABLE_POINTERS_HS,
2199 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2200 
2201 	{"3DSTATE_BINDING_TABLE_POINTERS_DS",
2202 		OP_3DSTATE_BINDING_TABLE_POINTERS_DS,
2203 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2204 
2205 	{"3DSTATE_BINDING_TABLE_POINTERS_GS",
2206 		OP_3DSTATE_BINDING_TABLE_POINTERS_GS,
2207 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2208 
2209 	{"3DSTATE_BINDING_TABLE_POINTERS_PS",
2210 		OP_3DSTATE_BINDING_TABLE_POINTERS_PS,
2211 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2212 
2213 	{"3DSTATE_SAMPLER_STATE_POINTERS_VS",
2214 		OP_3DSTATE_SAMPLER_STATE_POINTERS_VS,
2215 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2216 
2217 	{"3DSTATE_SAMPLER_STATE_POINTERS_HS",
2218 		OP_3DSTATE_SAMPLER_STATE_POINTERS_HS,
2219 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2220 
2221 	{"3DSTATE_SAMPLER_STATE_POINTERS_DS",
2222 		OP_3DSTATE_SAMPLER_STATE_POINTERS_DS,
2223 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2224 
2225 	{"3DSTATE_SAMPLER_STATE_POINTERS_GS",
2226 		OP_3DSTATE_SAMPLER_STATE_POINTERS_GS,
2227 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2228 
2229 	{"3DSTATE_SAMPLER_STATE_POINTERS_PS",
2230 		OP_3DSTATE_SAMPLER_STATE_POINTERS_PS,
2231 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2232 
2233 	{"3DSTATE_URB_VS", OP_3DSTATE_URB_VS, F_LEN_VAR, R_RCS, D_ALL,
2234 		0, 8, NULL},
2235 
2236 	{"3DSTATE_URB_HS", OP_3DSTATE_URB_HS, F_LEN_VAR, R_RCS, D_ALL,
2237 		0, 8, NULL},
2238 
2239 	{"3DSTATE_URB_DS", OP_3DSTATE_URB_DS, F_LEN_VAR, R_RCS, D_ALL,
2240 		0, 8, NULL},
2241 
2242 	{"3DSTATE_URB_GS", OP_3DSTATE_URB_GS, F_LEN_VAR, R_RCS, D_ALL,
2243 		0, 8, NULL},
2244 
2245 	{"3DSTATE_GATHER_CONSTANT_VS", OP_3DSTATE_GATHER_CONSTANT_VS,
2246 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2247 
2248 	{"3DSTATE_GATHER_CONSTANT_GS", OP_3DSTATE_GATHER_CONSTANT_GS,
2249 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2250 
2251 	{"3DSTATE_GATHER_CONSTANT_HS", OP_3DSTATE_GATHER_CONSTANT_HS,
2252 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2253 
2254 	{"3DSTATE_GATHER_CONSTANT_DS", OP_3DSTATE_GATHER_CONSTANT_DS,
2255 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2256 
2257 	{"3DSTATE_GATHER_CONSTANT_PS", OP_3DSTATE_GATHER_CONSTANT_PS,
2258 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2259 
2260 	{"3DSTATE_DX9_CONSTANTF_VS", OP_3DSTATE_DX9_CONSTANTF_VS,
2261 		F_LEN_VAR, R_RCS, D_ALL, 0, 11, NULL},
2262 
2263 	{"3DSTATE_DX9_CONSTANTF_PS", OP_3DSTATE_DX9_CONSTANTF_PS,
2264 		F_LEN_VAR, R_RCS, D_ALL, 0, 11, NULL},
2265 
2266 	{"3DSTATE_DX9_CONSTANTI_VS", OP_3DSTATE_DX9_CONSTANTI_VS,
2267 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2268 
2269 	{"3DSTATE_DX9_CONSTANTI_PS", OP_3DSTATE_DX9_CONSTANTI_PS,
2270 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2271 
2272 	{"3DSTATE_DX9_CONSTANTB_VS", OP_3DSTATE_DX9_CONSTANTB_VS,
2273 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2274 
2275 	{"3DSTATE_DX9_CONSTANTB_PS", OP_3DSTATE_DX9_CONSTANTB_PS,
2276 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2277 
2278 	{"3DSTATE_DX9_LOCAL_VALID_VS", OP_3DSTATE_DX9_LOCAL_VALID_VS,
2279 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2280 
2281 	{"3DSTATE_DX9_LOCAL_VALID_PS", OP_3DSTATE_DX9_LOCAL_VALID_PS,
2282 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2283 
2284 	{"3DSTATE_DX9_GENERATE_ACTIVE_VS", OP_3DSTATE_DX9_GENERATE_ACTIVE_VS,
2285 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2286 
2287 	{"3DSTATE_DX9_GENERATE_ACTIVE_PS", OP_3DSTATE_DX9_GENERATE_ACTIVE_PS,
2288 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2289 
2290 	{"3DSTATE_BINDING_TABLE_EDIT_VS", OP_3DSTATE_BINDING_TABLE_EDIT_VS,
2291 		F_LEN_VAR, R_RCS, D_ALL, 0, 9, NULL},
2292 
2293 	{"3DSTATE_BINDING_TABLE_EDIT_GS", OP_3DSTATE_BINDING_TABLE_EDIT_GS,
2294 		F_LEN_VAR, R_RCS, D_ALL, 0, 9, NULL},
2295 
2296 	{"3DSTATE_BINDING_TABLE_EDIT_HS", OP_3DSTATE_BINDING_TABLE_EDIT_HS,
2297 		F_LEN_VAR, R_RCS, D_ALL, 0, 9, NULL},
2298 
2299 	{"3DSTATE_BINDING_TABLE_EDIT_DS", OP_3DSTATE_BINDING_TABLE_EDIT_DS,
2300 		F_LEN_VAR, R_RCS, D_ALL, 0, 9, NULL},
2301 
2302 	{"3DSTATE_BINDING_TABLE_EDIT_PS", OP_3DSTATE_BINDING_TABLE_EDIT_PS,
2303 		F_LEN_VAR, R_RCS, D_ALL, 0, 9, NULL},
2304 
2305 	{"3DSTATE_VF_INSTANCING", OP_3DSTATE_VF_INSTANCING, F_LEN_VAR, R_RCS,
2306 		D_BDW_PLUS, 0, 8, NULL},
2307 
2308 	{"3DSTATE_VF_SGVS", OP_3DSTATE_VF_SGVS, F_LEN_VAR, R_RCS, D_BDW_PLUS, 0, 8,
2309 		NULL},
2310 
2311 	{"3DSTATE_VF_TOPOLOGY", OP_3DSTATE_VF_TOPOLOGY, F_LEN_VAR, R_RCS,
2312 		D_BDW_PLUS, 0, 8, NULL},
2313 
2314 	{"3DSTATE_WM_CHROMAKEY", OP_3DSTATE_WM_CHROMAKEY, F_LEN_VAR, R_RCS,
2315 		D_BDW_PLUS, 0, 8, NULL},
2316 
2317 	{"3DSTATE_PS_BLEND", OP_3DSTATE_PS_BLEND, F_LEN_VAR, R_RCS, D_BDW_PLUS, 0,
2318 		8, NULL},
2319 
2320 	{"3DSTATE_WM_DEPTH_STENCIL", OP_3DSTATE_WM_DEPTH_STENCIL, F_LEN_VAR,
2321 		R_RCS, D_BDW_PLUS, 0, 8, NULL},
2322 
2323 	{"3DSTATE_PS_EXTRA", OP_3DSTATE_PS_EXTRA, F_LEN_VAR, R_RCS, D_BDW_PLUS, 0,
2324 		8, NULL},
2325 
2326 	{"3DSTATE_RASTER", OP_3DSTATE_RASTER, F_LEN_VAR, R_RCS, D_BDW_PLUS, 0, 8,
2327 		NULL},
2328 
2329 	{"3DSTATE_SBE_SWIZ", OP_3DSTATE_SBE_SWIZ, F_LEN_VAR, R_RCS, D_BDW_PLUS, 0, 8,
2330 		NULL},
2331 
2332 	{"3DSTATE_WM_HZ_OP", OP_3DSTATE_WM_HZ_OP, F_LEN_VAR, R_RCS, D_BDW_PLUS, 0, 8,
2333 		NULL},
2334 
2335 	{"3DSTATE_VERTEX_BUFFERS", OP_3DSTATE_VERTEX_BUFFERS, F_LEN_VAR, R_RCS,
2336 		D_BDW_PLUS, 0, 8, NULL},
2337 
2338 	{"3DSTATE_VERTEX_ELEMENTS", OP_3DSTATE_VERTEX_ELEMENTS, F_LEN_VAR,
2339 		R_RCS, D_ALL, 0, 8, NULL},
2340 
2341 	{"3DSTATE_INDEX_BUFFER", OP_3DSTATE_INDEX_BUFFER, F_LEN_VAR, R_RCS,
2342 		D_BDW_PLUS, ADDR_FIX_1(2), 8, NULL},
2343 
2344 	{"3DSTATE_VF_STATISTICS", OP_3DSTATE_VF_STATISTICS, F_LEN_CONST,
2345 		R_RCS, D_ALL, 0, 1, NULL},
2346 
2347 	{"3DSTATE_VF", OP_3DSTATE_VF, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2348 
2349 	{"3DSTATE_CC_STATE_POINTERS", OP_3DSTATE_CC_STATE_POINTERS, F_LEN_VAR,
2350 		R_RCS, D_ALL, 0, 8, NULL},
2351 
2352 	{"3DSTATE_SCISSOR_STATE_POINTERS", OP_3DSTATE_SCISSOR_STATE_POINTERS,
2353 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2354 
2355 	{"3DSTATE_GS", OP_3DSTATE_GS, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2356 
2357 	{"3DSTATE_CLIP", OP_3DSTATE_CLIP, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2358 
2359 	{"3DSTATE_WM", OP_3DSTATE_WM, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2360 
2361 	{"3DSTATE_CONSTANT_GS", OP_3DSTATE_CONSTANT_GS, F_LEN_VAR, R_RCS,
2362 		D_BDW_PLUS, 0, 8, NULL},
2363 
2364 	{"3DSTATE_CONSTANT_PS", OP_3DSTATE_CONSTANT_PS, F_LEN_VAR, R_RCS,
2365 		D_BDW_PLUS, 0, 8, NULL},
2366 
2367 	{"3DSTATE_SAMPLE_MASK", OP_3DSTATE_SAMPLE_MASK, F_LEN_VAR, R_RCS,
2368 		D_ALL, 0, 8, NULL},
2369 
2370 	{"3DSTATE_CONSTANT_HS", OP_3DSTATE_CONSTANT_HS, F_LEN_VAR, R_RCS,
2371 		D_BDW_PLUS, 0, 8, NULL},
2372 
2373 	{"3DSTATE_CONSTANT_DS", OP_3DSTATE_CONSTANT_DS, F_LEN_VAR, R_RCS,
2374 		D_BDW_PLUS, 0, 8, NULL},
2375 
2376 	{"3DSTATE_HS", OP_3DSTATE_HS, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2377 
2378 	{"3DSTATE_TE", OP_3DSTATE_TE, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2379 
2380 	{"3DSTATE_DS", OP_3DSTATE_DS, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2381 
2382 	{"3DSTATE_STREAMOUT", OP_3DSTATE_STREAMOUT, F_LEN_VAR, R_RCS,
2383 		D_ALL, 0, 8, NULL},
2384 
2385 	{"3DSTATE_SBE", OP_3DSTATE_SBE, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2386 
2387 	{"3DSTATE_PS", OP_3DSTATE_PS, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2388 
2389 	{"3DSTATE_DRAWING_RECTANGLE", OP_3DSTATE_DRAWING_RECTANGLE, F_LEN_VAR,
2390 		R_RCS, D_ALL, 0, 8, NULL},
2391 
2392 	{"3DSTATE_SAMPLER_PALETTE_LOAD0", OP_3DSTATE_SAMPLER_PALETTE_LOAD0,
2393 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2394 
2395 	{"3DSTATE_CHROMA_KEY", OP_3DSTATE_CHROMA_KEY, F_LEN_VAR, R_RCS, D_ALL,
2396 		0, 8, NULL},
2397 
2398 	{"3DSTATE_DEPTH_BUFFER", OP_3DSTATE_DEPTH_BUFFER, F_LEN_VAR, R_RCS,
2399 		D_ALL, ADDR_FIX_1(2), 8, NULL},
2400 
2401 	{"3DSTATE_POLY_STIPPLE_OFFSET", OP_3DSTATE_POLY_STIPPLE_OFFSET,
2402 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2403 
2404 	{"3DSTATE_POLY_STIPPLE_PATTERN", OP_3DSTATE_POLY_STIPPLE_PATTERN,
2405 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2406 
2407 	{"3DSTATE_LINE_STIPPLE", OP_3DSTATE_LINE_STIPPLE, F_LEN_VAR, R_RCS,
2408 		D_ALL, 0, 8, NULL},
2409 
2410 	{"3DSTATE_AA_LINE_PARAMS", OP_3DSTATE_AA_LINE_PARAMS, F_LEN_VAR, R_RCS,
2411 		D_ALL, 0, 8, NULL},
2412 
2413 	{"3DSTATE_GS_SVB_INDEX", OP_3DSTATE_GS_SVB_INDEX, F_LEN_VAR, R_RCS,
2414 		D_ALL, 0, 8, NULL},
2415 
2416 	{"3DSTATE_SAMPLER_PALETTE_LOAD1", OP_3DSTATE_SAMPLER_PALETTE_LOAD1,
2417 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2418 
2419 	{"3DSTATE_MULTISAMPLE", OP_3DSTATE_MULTISAMPLE_BDW, F_LEN_VAR, R_RCS,
2420 		D_BDW_PLUS, 0, 8, NULL},
2421 
2422 	{"3DSTATE_STENCIL_BUFFER", OP_3DSTATE_STENCIL_BUFFER, F_LEN_VAR, R_RCS,
2423 		D_ALL, ADDR_FIX_1(2), 8, NULL},
2424 
2425 	{"3DSTATE_HIER_DEPTH_BUFFER", OP_3DSTATE_HIER_DEPTH_BUFFER, F_LEN_VAR,
2426 		R_RCS, D_ALL, ADDR_FIX_1(2), 8, NULL},
2427 
2428 	{"3DSTATE_CLEAR_PARAMS", OP_3DSTATE_CLEAR_PARAMS, F_LEN_VAR,
2429 		R_RCS, D_ALL, 0, 8, NULL},
2430 
2431 	{"3DSTATE_PUSH_CONSTANT_ALLOC_VS", OP_3DSTATE_PUSH_CONSTANT_ALLOC_VS,
2432 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2433 
2434 	{"3DSTATE_PUSH_CONSTANT_ALLOC_HS", OP_3DSTATE_PUSH_CONSTANT_ALLOC_HS,
2435 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2436 
2437 	{"3DSTATE_PUSH_CONSTANT_ALLOC_DS", OP_3DSTATE_PUSH_CONSTANT_ALLOC_DS,
2438 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2439 
2440 	{"3DSTATE_PUSH_CONSTANT_ALLOC_GS", OP_3DSTATE_PUSH_CONSTANT_ALLOC_GS,
2441 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2442 
2443 	{"3DSTATE_PUSH_CONSTANT_ALLOC_PS", OP_3DSTATE_PUSH_CONSTANT_ALLOC_PS,
2444 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2445 
2446 	{"3DSTATE_MONOFILTER_SIZE", OP_3DSTATE_MONOFILTER_SIZE, F_LEN_VAR,
2447 		R_RCS, D_ALL, 0, 8, NULL},
2448 
2449 	{"3DSTATE_SO_DECL_LIST", OP_3DSTATE_SO_DECL_LIST, F_LEN_VAR, R_RCS,
2450 		D_ALL, 0, 9, NULL},
2451 
2452 	{"3DSTATE_SO_BUFFER", OP_3DSTATE_SO_BUFFER, F_LEN_VAR, R_RCS, D_BDW_PLUS,
2453 		ADDR_FIX_2(2, 4), 8, NULL},
2454 
2455 	{"3DSTATE_BINDING_TABLE_POOL_ALLOC",
2456 		OP_3DSTATE_BINDING_TABLE_POOL_ALLOC,
2457 		F_LEN_VAR, R_RCS, D_BDW_PLUS, ADDR_FIX_1(1), 8, NULL},
2458 
2459 	{"3DSTATE_GATHER_POOL_ALLOC", OP_3DSTATE_GATHER_POOL_ALLOC,
2460 		F_LEN_VAR, R_RCS, D_BDW_PLUS, ADDR_FIX_1(1), 8, NULL},
2461 
2462 	{"3DSTATE_DX9_CONSTANT_BUFFER_POOL_ALLOC",
2463 		OP_3DSTATE_DX9_CONSTANT_BUFFER_POOL_ALLOC,
2464 		F_LEN_VAR, R_RCS, D_BDW_PLUS, ADDR_FIX_1(1), 8, NULL},
2465 
2466 	{"3DSTATE_SAMPLE_PATTERN", OP_3DSTATE_SAMPLE_PATTERN, F_LEN_VAR, R_RCS,
2467 		D_BDW_PLUS, 0, 8, NULL},
2468 
2469 	{"PIPE_CONTROL", OP_PIPE_CONTROL, F_LEN_VAR, R_RCS, D_ALL,
2470 		ADDR_FIX_1(2), 8, cmd_handler_pipe_control},
2471 
2472 	{"3DPRIMITIVE", OP_3DPRIMITIVE, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2473 
2474 	{"PIPELINE_SELECT", OP_PIPELINE_SELECT, F_LEN_CONST, R_RCS, D_ALL, 0,
2475 		1, NULL},
2476 
2477 	{"STATE_PREFETCH", OP_STATE_PREFETCH, F_LEN_VAR, R_RCS, D_ALL,
2478 		ADDR_FIX_1(1), 8, NULL},
2479 
2480 	{"STATE_SIP", OP_STATE_SIP, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2481 
2482 	{"STATE_BASE_ADDRESS", OP_STATE_BASE_ADDRESS, F_LEN_VAR, R_RCS, D_BDW_PLUS,
2483 		ADDR_FIX_5(1, 3, 4, 5, 6), 8, NULL},
2484 
2485 	{"OP_3D_MEDIA_0_1_4", OP_3D_MEDIA_0_1_4, F_LEN_VAR, R_RCS, D_ALL,
2486 		ADDR_FIX_1(1), 8, NULL},
2487 
2488 	{"3DSTATE_VS", OP_3DSTATE_VS, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2489 
2490 	{"3DSTATE_SF", OP_3DSTATE_SF, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2491 
2492 	{"3DSTATE_CONSTANT_VS", OP_3DSTATE_CONSTANT_VS, F_LEN_VAR, R_RCS, D_BDW_PLUS,
2493 		0, 8, NULL},
2494 
2495 	{"3DSTATE_COMPONENT_PACKING", OP_3DSTATE_COMPONENT_PACKING, F_LEN_VAR, R_RCS,
2496 		D_SKL_PLUS, 0, 8, NULL},
2497 
2498 	{"MEDIA_INTERFACE_DESCRIPTOR_LOAD", OP_MEDIA_INTERFACE_DESCRIPTOR_LOAD,
2499 		F_LEN_VAR, R_RCS, D_ALL, 0, 16, NULL},
2500 
2501 	{"MEDIA_GATEWAY_STATE", OP_MEDIA_GATEWAY_STATE, F_LEN_VAR, R_RCS, D_ALL,
2502 		0, 16, NULL},
2503 
2504 	{"MEDIA_STATE_FLUSH", OP_MEDIA_STATE_FLUSH, F_LEN_VAR, R_RCS, D_ALL,
2505 		0, 16, NULL},
2506 
2507 	{"MEDIA_POOL_STATE", OP_MEDIA_POOL_STATE, F_LEN_VAR, R_RCS, D_ALL,
2508 		0, 16, NULL},
2509 
2510 	{"MEDIA_OBJECT", OP_MEDIA_OBJECT, F_LEN_VAR, R_RCS, D_ALL, 0, 16, NULL},
2511 
2512 	{"MEDIA_CURBE_LOAD", OP_MEDIA_CURBE_LOAD, F_LEN_VAR, R_RCS, D_ALL,
2513 		0, 16, NULL},
2514 
2515 	{"MEDIA_OBJECT_PRT", OP_MEDIA_OBJECT_PRT, F_LEN_VAR, R_RCS, D_ALL,
2516 		0, 16, NULL},
2517 
2518 	{"MEDIA_OBJECT_WALKER", OP_MEDIA_OBJECT_WALKER, F_LEN_VAR, R_RCS, D_ALL,
2519 		0, 16, NULL},
2520 
2521 	{"GPGPU_WALKER", OP_GPGPU_WALKER, F_LEN_VAR, R_RCS, D_ALL,
2522 		0, 8, NULL},
2523 
2524 	{"MEDIA_VFE_STATE", OP_MEDIA_VFE_STATE, F_LEN_VAR, R_RCS, D_ALL, 0, 16,
2525 		NULL},
2526 
2527 	{"3DSTATE_VF_STATISTICS_GM45", OP_3DSTATE_VF_STATISTICS_GM45,
2528 		F_LEN_CONST, R_ALL, D_ALL, 0, 1, NULL},
2529 
2530 	{"MFX_PIPE_MODE_SELECT", OP_MFX_PIPE_MODE_SELECT, F_LEN_VAR,
2531 		R_VCS, D_ALL, 0, 12, NULL},
2532 
2533 	{"MFX_SURFACE_STATE", OP_MFX_SURFACE_STATE, F_LEN_VAR,
2534 		R_VCS, D_ALL, 0, 12, NULL},
2535 
2536 	{"MFX_PIPE_BUF_ADDR_STATE", OP_MFX_PIPE_BUF_ADDR_STATE, F_LEN_VAR,
2537 		R_VCS, D_BDW_PLUS, 0, 12, NULL},
2538 
2539 	{"MFX_IND_OBJ_BASE_ADDR_STATE", OP_MFX_IND_OBJ_BASE_ADDR_STATE,
2540 		F_LEN_VAR, R_VCS, D_BDW_PLUS, 0, 12, NULL},
2541 
2542 	{"MFX_BSP_BUF_BASE_ADDR_STATE", OP_MFX_BSP_BUF_BASE_ADDR_STATE,
2543 		F_LEN_VAR, R_VCS, D_BDW_PLUS, ADDR_FIX_3(1, 3, 5), 12, NULL},
2544 
2545 	{"OP_2_0_0_5", OP_2_0_0_5, F_LEN_VAR, R_VCS, D_BDW_PLUS, 0, 12, NULL},
2546 
2547 	{"MFX_STATE_POINTER", OP_MFX_STATE_POINTER, F_LEN_VAR,
2548 		R_VCS, D_ALL, 0, 12, NULL},
2549 
2550 	{"MFX_QM_STATE", OP_MFX_QM_STATE, F_LEN_VAR,
2551 		R_VCS, D_ALL, 0, 12, NULL},
2552 
2553 	{"MFX_FQM_STATE", OP_MFX_FQM_STATE, F_LEN_VAR,
2554 		R_VCS, D_ALL, 0, 12, NULL},
2555 
2556 	{"MFX_PAK_INSERT_OBJECT", OP_MFX_PAK_INSERT_OBJECT, F_LEN_VAR,
2557 		R_VCS, D_ALL, 0, 12, NULL},
2558 
2559 	{"MFX_STITCH_OBJECT", OP_MFX_STITCH_OBJECT, F_LEN_VAR,
2560 		R_VCS, D_ALL, 0, 12, NULL},
2561 
2562 	{"MFD_IT_OBJECT", OP_MFD_IT_OBJECT, F_LEN_VAR,
2563 		R_VCS, D_ALL, 0, 12, NULL},
2564 
2565 	{"MFX_WAIT", OP_MFX_WAIT, F_LEN_VAR,
2566 		R_VCS, D_ALL, 0, 6, NULL},
2567 
2568 	{"MFX_AVC_IMG_STATE", OP_MFX_AVC_IMG_STATE, F_LEN_VAR,
2569 		R_VCS, D_ALL, 0, 12, NULL},
2570 
2571 	{"MFX_AVC_QM_STATE", OP_MFX_AVC_QM_STATE, F_LEN_VAR,
2572 		R_VCS, D_ALL, 0, 12, NULL},
2573 
2574 	{"MFX_AVC_DIRECTMODE_STATE", OP_MFX_AVC_DIRECTMODE_STATE, F_LEN_VAR,
2575 		R_VCS, D_ALL, 0, 12, NULL},
2576 
2577 	{"MFX_AVC_SLICE_STATE", OP_MFX_AVC_SLICE_STATE, F_LEN_VAR,
2578 		R_VCS, D_ALL, 0, 12, NULL},
2579 
2580 	{"MFX_AVC_REF_IDX_STATE", OP_MFX_AVC_REF_IDX_STATE, F_LEN_VAR,
2581 		R_VCS, D_ALL, 0, 12, NULL},
2582 
2583 	{"MFX_AVC_WEIGHTOFFSET_STATE", OP_MFX_AVC_WEIGHTOFFSET_STATE, F_LEN_VAR,
2584 		R_VCS, D_ALL, 0, 12, NULL},
2585 
2586 	{"MFD_AVC_PICID_STATE", OP_MFD_AVC_PICID_STATE, F_LEN_VAR,
2587 		R_VCS, D_ALL, 0, 12, NULL},
2588 	{"MFD_AVC_DPB_STATE", OP_MFD_AVC_DPB_STATE, F_LEN_VAR,
2589 		R_VCS, D_ALL, 0, 12, NULL},
2590 
2591 	{"MFD_AVC_BSD_OBJECT", OP_MFD_AVC_BSD_OBJECT, F_LEN_VAR,
2592 		R_VCS, D_ALL, 0, 12, NULL},
2593 
2594 	{"MFD_AVC_SLICEADDR", OP_MFD_AVC_SLICEADDR, F_LEN_VAR,
2595 		R_VCS, D_ALL, ADDR_FIX_1(2), 12, NULL},
2596 
2597 	{"MFC_AVC_PAK_OBJECT", OP_MFC_AVC_PAK_OBJECT, F_LEN_VAR,
2598 		R_VCS, D_ALL, 0, 12, NULL},
2599 
2600 	{"MFX_VC1_PRED_PIPE_STATE", OP_MFX_VC1_PRED_PIPE_STATE, F_LEN_VAR,
2601 		R_VCS, D_ALL, 0, 12, NULL},
2602 
2603 	{"MFX_VC1_DIRECTMODE_STATE", OP_MFX_VC1_DIRECTMODE_STATE, F_LEN_VAR,
2604 		R_VCS, D_ALL, 0, 12, NULL},
2605 
2606 	{"MFD_VC1_SHORT_PIC_STATE", OP_MFD_VC1_SHORT_PIC_STATE, F_LEN_VAR,
2607 		R_VCS, D_ALL, 0, 12, NULL},
2608 
2609 	{"MFD_VC1_LONG_PIC_STATE", OP_MFD_VC1_LONG_PIC_STATE, F_LEN_VAR,
2610 		R_VCS, D_ALL, 0, 12, NULL},
2611 
2612 	{"MFD_VC1_BSD_OBJECT", OP_MFD_VC1_BSD_OBJECT, F_LEN_VAR,
2613 		R_VCS, D_ALL, 0, 12, NULL},
2614 
2615 	{"MFC_MPEG2_SLICEGROUP_STATE", OP_MFC_MPEG2_SLICEGROUP_STATE, F_LEN_VAR,
2616 		R_VCS, D_ALL, 0, 12, NULL},
2617 
2618 	{"MFC_MPEG2_PAK_OBJECT", OP_MFC_MPEG2_PAK_OBJECT, F_LEN_VAR,
2619 		R_VCS, D_ALL, 0, 12, NULL},
2620 
2621 	{"MFX_MPEG2_PIC_STATE", OP_MFX_MPEG2_PIC_STATE, F_LEN_VAR,
2622 		R_VCS, D_ALL, 0, 12, NULL},
2623 
2624 	{"MFX_MPEG2_QM_STATE", OP_MFX_MPEG2_QM_STATE, F_LEN_VAR,
2625 		R_VCS, D_ALL, 0, 12, NULL},
2626 
2627 	{"MFD_MPEG2_BSD_OBJECT", OP_MFD_MPEG2_BSD_OBJECT, F_LEN_VAR,
2628 		R_VCS, D_ALL, 0, 12, NULL},
2629 
2630 	{"MFX_2_6_0_0", OP_MFX_2_6_0_0, F_LEN_VAR, R_VCS, D_ALL,
2631 		0, 16, NULL},
2632 
2633 	{"MFX_2_6_0_9", OP_MFX_2_6_0_9, F_LEN_VAR, R_VCS, D_ALL, 0, 16, NULL},
2634 
2635 	{"MFX_2_6_0_8", OP_MFX_2_6_0_8, F_LEN_VAR, R_VCS, D_ALL, 0, 16, NULL},
2636 
2637 	{"MFX_JPEG_PIC_STATE", OP_MFX_JPEG_PIC_STATE, F_LEN_VAR,
2638 		R_VCS, D_ALL, 0, 12, NULL},
2639 
2640 	{"MFX_JPEG_HUFF_TABLE_STATE", OP_MFX_JPEG_HUFF_TABLE_STATE, F_LEN_VAR,
2641 		R_VCS, D_ALL, 0, 12, NULL},
2642 
2643 	{"MFD_JPEG_BSD_OBJECT", OP_MFD_JPEG_BSD_OBJECT, F_LEN_VAR,
2644 		R_VCS, D_ALL, 0, 12, NULL},
2645 
2646 	{"VEBOX_STATE", OP_VEB_STATE, F_LEN_VAR, R_VECS, D_ALL, 0, 12, NULL},
2647 
2648 	{"VEBOX_SURFACE_STATE", OP_VEB_SURFACE_STATE, F_LEN_VAR, R_VECS, D_ALL,
2649 		0, 12, NULL},
2650 
2651 	{"VEB_DI_IECP", OP_VEB_DNDI_IECP_STATE, F_LEN_VAR, R_VECS, D_BDW_PLUS,
2652 		0, 12, NULL},
2653 };
2654 
add_cmd_entry(struct intel_gvt * gvt,struct cmd_entry * e)2655 static void add_cmd_entry(struct intel_gvt *gvt, struct cmd_entry *e)
2656 {
2657 	hash_add(gvt->cmd_table, &e->hlist, e->info->opcode);
2658 }
2659 
2660 /* call the cmd handler, and advance ip */
cmd_parser_exec(struct parser_exec_state * s)2661 static int cmd_parser_exec(struct parser_exec_state *s)
2662 {
2663 	struct intel_vgpu *vgpu = s->vgpu;
2664 	const struct cmd_info *info;
2665 	u32 cmd;
2666 	int ret = 0;
2667 
2668 	cmd = cmd_val(s, 0);
2669 
2670 	/* fastpath for MI_NOOP */
2671 	if (cmd == MI_NOOP)
2672 		info = &cmd_info[mi_noop_index];
2673 	else
2674 		info = get_cmd_info(s->vgpu->gvt, cmd, s->ring_id);
2675 
2676 	if (info == NULL) {
2677 		gvt_vgpu_err("unknown cmd 0x%x, opcode=0x%x, addr_type=%s, ring %d, workload=%p\n",
2678 				cmd, get_opcode(cmd, s->ring_id),
2679 				(s->buf_addr_type == PPGTT_BUFFER) ?
2680 				"ppgtt" : "ggtt", s->ring_id, s->workload);
2681 		return -EBADRQC;
2682 	}
2683 
2684 	s->info = info;
2685 
2686 	trace_gvt_command(vgpu->id, s->ring_id, s->ip_gma, s->ip_va,
2687 			  cmd_length(s), s->buf_type, s->buf_addr_type,
2688 			  s->workload, info->name);
2689 
2690 	if ((info->flag & F_LEN_MASK) == F_LEN_VAR_FIXED) {
2691 		ret = gvt_check_valid_cmd_length(cmd_length(s),
2692 			info->valid_len);
2693 		if (ret)
2694 			return ret;
2695 	}
2696 
2697 	if (info->handler) {
2698 		ret = info->handler(s);
2699 		if (ret < 0) {
2700 			gvt_vgpu_err("%s handler error\n", info->name);
2701 			return ret;
2702 		}
2703 	}
2704 
2705 	if (!(info->flag & F_IP_ADVANCE_CUSTOM)) {
2706 		ret = cmd_advance_default(s);
2707 		if (ret) {
2708 			gvt_vgpu_err("%s IP advance error\n", info->name);
2709 			return ret;
2710 		}
2711 	}
2712 	return 0;
2713 }
2714 
gma_out_of_range(unsigned long gma,unsigned long gma_head,unsigned int gma_tail)2715 static inline bool gma_out_of_range(unsigned long gma,
2716 		unsigned long gma_head, unsigned int gma_tail)
2717 {
2718 	if (gma_tail >= gma_head)
2719 		return (gma < gma_head) || (gma > gma_tail);
2720 	else
2721 		return (gma > gma_tail) && (gma < gma_head);
2722 }
2723 
2724 /* Keep the consistent return type, e.g EBADRQC for unknown
2725  * cmd, EFAULT for invalid address, EPERM for nonpriv. later
2726  * works as the input of VM healthy status.
2727  */
command_scan(struct parser_exec_state * s,unsigned long rb_head,unsigned long rb_tail,unsigned long rb_start,unsigned long rb_len)2728 static int command_scan(struct parser_exec_state *s,
2729 		unsigned long rb_head, unsigned long rb_tail,
2730 		unsigned long rb_start, unsigned long rb_len)
2731 {
2732 
2733 	unsigned long gma_head, gma_tail, gma_bottom;
2734 	int ret = 0;
2735 	struct intel_vgpu *vgpu = s->vgpu;
2736 
2737 	gma_head = rb_start + rb_head;
2738 	gma_tail = rb_start + rb_tail;
2739 	gma_bottom = rb_start +  rb_len;
2740 
2741 	while (s->ip_gma != gma_tail) {
2742 		if (s->buf_type == RING_BUFFER_INSTRUCTION) {
2743 			if (!(s->ip_gma >= rb_start) ||
2744 				!(s->ip_gma < gma_bottom)) {
2745 				gvt_vgpu_err("ip_gma %lx out of ring scope."
2746 					"(base:0x%lx, bottom: 0x%lx)\n",
2747 					s->ip_gma, rb_start,
2748 					gma_bottom);
2749 				parser_exec_state_dump(s);
2750 				return -EFAULT;
2751 			}
2752 			if (gma_out_of_range(s->ip_gma, gma_head, gma_tail)) {
2753 				gvt_vgpu_err("ip_gma %lx out of range."
2754 					"base 0x%lx head 0x%lx tail 0x%lx\n",
2755 					s->ip_gma, rb_start,
2756 					rb_head, rb_tail);
2757 				parser_exec_state_dump(s);
2758 				break;
2759 			}
2760 		}
2761 		ret = cmd_parser_exec(s);
2762 		if (ret) {
2763 			gvt_vgpu_err("cmd parser error\n");
2764 			parser_exec_state_dump(s);
2765 			break;
2766 		}
2767 	}
2768 
2769 	return ret;
2770 }
2771 
scan_workload(struct intel_vgpu_workload * workload)2772 static int scan_workload(struct intel_vgpu_workload *workload)
2773 {
2774 	unsigned long gma_head, gma_tail, gma_bottom;
2775 	struct parser_exec_state s;
2776 	int ret = 0;
2777 
2778 	/* ring base is page aligned */
2779 	if (WARN_ON(!IS_ALIGNED(workload->rb_start, I915_GTT_PAGE_SIZE)))
2780 		return -EINVAL;
2781 
2782 	gma_head = workload->rb_start + workload->rb_head;
2783 	gma_tail = workload->rb_start + workload->rb_tail;
2784 	gma_bottom = workload->rb_start +  _RING_CTL_BUF_SIZE(workload->rb_ctl);
2785 
2786 	s.buf_type = RING_BUFFER_INSTRUCTION;
2787 	s.buf_addr_type = GTT_BUFFER;
2788 	s.vgpu = workload->vgpu;
2789 	s.ring_id = workload->ring_id;
2790 	s.ring_start = workload->rb_start;
2791 	s.ring_size = _RING_CTL_BUF_SIZE(workload->rb_ctl);
2792 	s.ring_head = gma_head;
2793 	s.ring_tail = gma_tail;
2794 	s.rb_va = workload->shadow_ring_buffer_va;
2795 	s.workload = workload;
2796 	s.is_ctx_wa = false;
2797 
2798 	if ((bypass_scan_mask & (1 << workload->ring_id)) ||
2799 		gma_head == gma_tail)
2800 		return 0;
2801 
2802 	ret = ip_gma_set(&s, gma_head);
2803 	if (ret)
2804 		goto out;
2805 
2806 	ret = command_scan(&s, workload->rb_head, workload->rb_tail,
2807 		workload->rb_start, _RING_CTL_BUF_SIZE(workload->rb_ctl));
2808 
2809 out:
2810 	return ret;
2811 }
2812 
scan_wa_ctx(struct intel_shadow_wa_ctx * wa_ctx)2813 static int scan_wa_ctx(struct intel_shadow_wa_ctx *wa_ctx)
2814 {
2815 
2816 	unsigned long gma_head, gma_tail, gma_bottom, ring_size, ring_tail;
2817 	struct parser_exec_state s;
2818 	int ret = 0;
2819 	struct intel_vgpu_workload *workload = container_of(wa_ctx,
2820 				struct intel_vgpu_workload,
2821 				wa_ctx);
2822 
2823 	/* ring base is page aligned */
2824 	if (WARN_ON(!IS_ALIGNED(wa_ctx->indirect_ctx.guest_gma,
2825 					I915_GTT_PAGE_SIZE)))
2826 		return -EINVAL;
2827 
2828 	ring_tail = wa_ctx->indirect_ctx.size + 3 * sizeof(u32);
2829 	ring_size = round_up(wa_ctx->indirect_ctx.size + CACHELINE_BYTES,
2830 			PAGE_SIZE);
2831 	gma_head = wa_ctx->indirect_ctx.guest_gma;
2832 	gma_tail = wa_ctx->indirect_ctx.guest_gma + ring_tail;
2833 	gma_bottom = wa_ctx->indirect_ctx.guest_gma + ring_size;
2834 
2835 	s.buf_type = RING_BUFFER_INSTRUCTION;
2836 	s.buf_addr_type = GTT_BUFFER;
2837 	s.vgpu = workload->vgpu;
2838 	s.ring_id = workload->ring_id;
2839 	s.ring_start = wa_ctx->indirect_ctx.guest_gma;
2840 	s.ring_size = ring_size;
2841 	s.ring_head = gma_head;
2842 	s.ring_tail = gma_tail;
2843 	s.rb_va = wa_ctx->indirect_ctx.shadow_va;
2844 	s.workload = workload;
2845 	s.is_ctx_wa = true;
2846 
2847 	ret = ip_gma_set(&s, gma_head);
2848 	if (ret)
2849 		goto out;
2850 
2851 	ret = command_scan(&s, 0, ring_tail,
2852 		wa_ctx->indirect_ctx.guest_gma, ring_size);
2853 out:
2854 	return ret;
2855 }
2856 
shadow_workload_ring_buffer(struct intel_vgpu_workload * workload)2857 static int shadow_workload_ring_buffer(struct intel_vgpu_workload *workload)
2858 {
2859 	struct intel_vgpu *vgpu = workload->vgpu;
2860 	struct intel_vgpu_submission *s = &vgpu->submission;
2861 	unsigned long gma_head, gma_tail, gma_top, guest_rb_size;
2862 	void *shadow_ring_buffer_va;
2863 	int ring_id = workload->ring_id;
2864 	int ret;
2865 
2866 	guest_rb_size = _RING_CTL_BUF_SIZE(workload->rb_ctl);
2867 
2868 	/* calculate workload ring buffer size */
2869 	workload->rb_len = (workload->rb_tail + guest_rb_size -
2870 			workload->rb_head) % guest_rb_size;
2871 
2872 	gma_head = workload->rb_start + workload->rb_head;
2873 	gma_tail = workload->rb_start + workload->rb_tail;
2874 	gma_top = workload->rb_start + guest_rb_size;
2875 
2876 	if (workload->rb_len > s->ring_scan_buffer_size[ring_id]) {
2877 		void *p;
2878 
2879 		/* realloc the new ring buffer if needed */
2880 		p = krealloc(s->ring_scan_buffer[ring_id], workload->rb_len,
2881 				GFP_KERNEL);
2882 		if (!p) {
2883 			gvt_vgpu_err("fail to re-alloc ring scan buffer\n");
2884 			return -ENOMEM;
2885 		}
2886 		s->ring_scan_buffer[ring_id] = p;
2887 		s->ring_scan_buffer_size[ring_id] = workload->rb_len;
2888 	}
2889 
2890 	shadow_ring_buffer_va = s->ring_scan_buffer[ring_id];
2891 
2892 	/* get shadow ring buffer va */
2893 	workload->shadow_ring_buffer_va = shadow_ring_buffer_va;
2894 
2895 	/* head > tail --> copy head <-> top */
2896 	if (gma_head > gma_tail) {
2897 		ret = copy_gma_to_hva(vgpu, vgpu->gtt.ggtt_mm,
2898 				      gma_head, gma_top, shadow_ring_buffer_va);
2899 		if (ret < 0) {
2900 			gvt_vgpu_err("fail to copy guest ring buffer\n");
2901 			return ret;
2902 		}
2903 		shadow_ring_buffer_va += ret;
2904 		gma_head = workload->rb_start;
2905 	}
2906 
2907 	/* copy head or start <-> tail */
2908 	ret = copy_gma_to_hva(vgpu, vgpu->gtt.ggtt_mm, gma_head, gma_tail,
2909 				shadow_ring_buffer_va);
2910 	if (ret < 0) {
2911 		gvt_vgpu_err("fail to copy guest ring buffer\n");
2912 		return ret;
2913 	}
2914 	return 0;
2915 }
2916 
intel_gvt_scan_and_shadow_ringbuffer(struct intel_vgpu_workload * workload)2917 int intel_gvt_scan_and_shadow_ringbuffer(struct intel_vgpu_workload *workload)
2918 {
2919 	int ret;
2920 	struct intel_vgpu *vgpu = workload->vgpu;
2921 
2922 	ret = shadow_workload_ring_buffer(workload);
2923 	if (ret) {
2924 		gvt_vgpu_err("fail to shadow workload ring_buffer\n");
2925 		return ret;
2926 	}
2927 
2928 	ret = scan_workload(workload);
2929 	if (ret) {
2930 		gvt_vgpu_err("scan workload error\n");
2931 		return ret;
2932 	}
2933 	return 0;
2934 }
2935 
shadow_indirect_ctx(struct intel_shadow_wa_ctx * wa_ctx)2936 static int shadow_indirect_ctx(struct intel_shadow_wa_ctx *wa_ctx)
2937 {
2938 	int ctx_size = wa_ctx->indirect_ctx.size;
2939 	unsigned long guest_gma = wa_ctx->indirect_ctx.guest_gma;
2940 	struct intel_vgpu_workload *workload = container_of(wa_ctx,
2941 					struct intel_vgpu_workload,
2942 					wa_ctx);
2943 	struct intel_vgpu *vgpu = workload->vgpu;
2944 	struct drm_i915_gem_object *obj;
2945 	int ret = 0;
2946 	void *map;
2947 
2948 	obj = i915_gem_object_create_shmem(workload->vgpu->gvt->dev_priv,
2949 					   roundup(ctx_size + CACHELINE_BYTES,
2950 						   PAGE_SIZE));
2951 	if (IS_ERR(obj))
2952 		return PTR_ERR(obj);
2953 
2954 	/* get the va of the shadow batch buffer */
2955 	map = i915_gem_object_pin_map(obj, I915_MAP_WB);
2956 	if (IS_ERR(map)) {
2957 		gvt_vgpu_err("failed to vmap shadow indirect ctx\n");
2958 		ret = PTR_ERR(map);
2959 		goto put_obj;
2960 	}
2961 
2962 	i915_gem_object_lock(obj);
2963 	ret = i915_gem_object_set_to_cpu_domain(obj, false);
2964 	i915_gem_object_unlock(obj);
2965 	if (ret) {
2966 		gvt_vgpu_err("failed to set shadow indirect ctx to CPU\n");
2967 		goto unmap_src;
2968 	}
2969 
2970 	ret = copy_gma_to_hva(workload->vgpu,
2971 				workload->vgpu->gtt.ggtt_mm,
2972 				guest_gma, guest_gma + ctx_size,
2973 				map);
2974 	if (ret < 0) {
2975 		gvt_vgpu_err("fail to copy guest indirect ctx\n");
2976 		goto unmap_src;
2977 	}
2978 
2979 	wa_ctx->indirect_ctx.obj = obj;
2980 	wa_ctx->indirect_ctx.shadow_va = map;
2981 	return 0;
2982 
2983 unmap_src:
2984 	i915_gem_object_unpin_map(obj);
2985 put_obj:
2986 	i915_gem_object_put(obj);
2987 	return ret;
2988 }
2989 
combine_wa_ctx(struct intel_shadow_wa_ctx * wa_ctx)2990 static int combine_wa_ctx(struct intel_shadow_wa_ctx *wa_ctx)
2991 {
2992 	u32 per_ctx_start[CACHELINE_DWORDS] = {0};
2993 	unsigned char *bb_start_sva;
2994 
2995 	if (!wa_ctx->per_ctx.valid)
2996 		return 0;
2997 
2998 	per_ctx_start[0] = 0x18800001;
2999 	per_ctx_start[1] = wa_ctx->per_ctx.guest_gma;
3000 
3001 	bb_start_sva = (unsigned char *)wa_ctx->indirect_ctx.shadow_va +
3002 				wa_ctx->indirect_ctx.size;
3003 
3004 	memcpy(bb_start_sva, per_ctx_start, CACHELINE_BYTES);
3005 
3006 	return 0;
3007 }
3008 
intel_gvt_scan_and_shadow_wa_ctx(struct intel_shadow_wa_ctx * wa_ctx)3009 int intel_gvt_scan_and_shadow_wa_ctx(struct intel_shadow_wa_ctx *wa_ctx)
3010 {
3011 	int ret;
3012 	struct intel_vgpu_workload *workload = container_of(wa_ctx,
3013 					struct intel_vgpu_workload,
3014 					wa_ctx);
3015 	struct intel_vgpu *vgpu = workload->vgpu;
3016 
3017 	if (wa_ctx->indirect_ctx.size == 0)
3018 		return 0;
3019 
3020 	ret = shadow_indirect_ctx(wa_ctx);
3021 	if (ret) {
3022 		gvt_vgpu_err("fail to shadow indirect ctx\n");
3023 		return ret;
3024 	}
3025 
3026 	combine_wa_ctx(wa_ctx);
3027 
3028 	ret = scan_wa_ctx(wa_ctx);
3029 	if (ret) {
3030 		gvt_vgpu_err("scan wa ctx error\n");
3031 		return ret;
3032 	}
3033 
3034 	return 0;
3035 }
3036 
find_cmd_entry_any_ring(struct intel_gvt * gvt,unsigned int opcode,unsigned long rings)3037 static const struct cmd_info *find_cmd_entry_any_ring(struct intel_gvt *gvt,
3038 		unsigned int opcode, unsigned long rings)
3039 {
3040 	const struct cmd_info *info = NULL;
3041 	unsigned int ring;
3042 
3043 	for_each_set_bit(ring, &rings, I915_NUM_ENGINES) {
3044 		info = find_cmd_entry(gvt, opcode, ring);
3045 		if (info)
3046 			break;
3047 	}
3048 	return info;
3049 }
3050 
init_cmd_table(struct intel_gvt * gvt)3051 static int init_cmd_table(struct intel_gvt *gvt)
3052 {
3053 	int i;
3054 	struct cmd_entry *e;
3055 	const struct cmd_info *info;
3056 	unsigned int gen_type;
3057 
3058 	gen_type = intel_gvt_get_device_type(gvt);
3059 
3060 	for (i = 0; i < ARRAY_SIZE(cmd_info); i++) {
3061 		if (!(cmd_info[i].devices & gen_type))
3062 			continue;
3063 
3064 		e = kzalloc(sizeof(*e), GFP_KERNEL);
3065 		if (!e)
3066 			return -ENOMEM;
3067 
3068 		e->info = &cmd_info[i];
3069 		info = find_cmd_entry_any_ring(gvt,
3070 				e->info->opcode, e->info->rings);
3071 		if (info) {
3072 			gvt_err("%s %s duplicated\n", e->info->name,
3073 					info->name);
3074 			kfree(e);
3075 			return -EEXIST;
3076 		}
3077 		if (cmd_info[i].opcode == OP_MI_NOOP)
3078 			mi_noop_index = i;
3079 
3080 		INIT_HLIST_NODE(&e->hlist);
3081 		add_cmd_entry(gvt, e);
3082 		gvt_dbg_cmd("add %-30s op %04x flag %x devs %02x rings %02x\n",
3083 				e->info->name, e->info->opcode, e->info->flag,
3084 				e->info->devices, e->info->rings);
3085 	}
3086 	return 0;
3087 }
3088 
clean_cmd_table(struct intel_gvt * gvt)3089 static void clean_cmd_table(struct intel_gvt *gvt)
3090 {
3091 	struct hlist_node *tmp;
3092 	struct cmd_entry *e;
3093 	int i;
3094 
3095 	hash_for_each_safe(gvt->cmd_table, i, tmp, e, hlist)
3096 		kfree(e);
3097 
3098 	hash_init(gvt->cmd_table);
3099 }
3100 
intel_gvt_clean_cmd_parser(struct intel_gvt * gvt)3101 void intel_gvt_clean_cmd_parser(struct intel_gvt *gvt)
3102 {
3103 	clean_cmd_table(gvt);
3104 }
3105 
intel_gvt_init_cmd_parser(struct intel_gvt * gvt)3106 int intel_gvt_init_cmd_parser(struct intel_gvt *gvt)
3107 {
3108 	int ret;
3109 
3110 	ret = init_cmd_table(gvt);
3111 	if (ret) {
3112 		intel_gvt_clean_cmd_parser(gvt);
3113 		return ret;
3114 	}
3115 	return 0;
3116 }
3117