xref: /llvm-project/llvm/test/CodeGen/X86/block-placement.ll (revision 2b63077cfa13095b3e64f79fe825cc85ca9da7be)
1; RUN: llc -mtriple=i686-linux -pre-RA-sched=source < %s | FileCheck %s
2; RUN: opt -disable-output -passes=debugify < %s
3
4declare void @error(i32 %i, i32 %a, i32 %b)
5
6define i32 @test_ifchains(i32 %i, ptr %a, i32 %b) {
7; Test a chain of ifs, where the block guarded by the if is error handling code
8; that is not expected to run.
9; CHECK-LABEL: test_ifchains:
10; CHECK: %entry
11; CHECK-NOT: .p2align
12; CHECK: %else1
13; CHECK-NOT: .p2align
14; CHECK: %else2
15; CHECK-NOT: .p2align
16; CHECK: %else3
17; CHECK-NOT: .p2align
18; CHECK: %else4
19; CHECK-NOT: .p2align
20; CHECK: %exit
21; CHECK: %then1
22; CHECK: %then2
23; CHECK: %then3
24; CHECK: %then4
25; CHECK: %then5
26
27entry:
28  %gep1 = getelementptr i32, ptr %a, i32 1
29  %val1 = load i32, ptr %gep1
30  %cond1 = icmp ugt i32 %val1, 1
31  br i1 %cond1, label %then1, label %else1, !prof !0
32
33then1:
34  call void @error(i32 %i, i32 1, i32 %b)
35  br label %else1
36
37else1:
38  %gep2 = getelementptr i32, ptr %a, i32 2
39  %val2 = load i32, ptr %gep2
40  %cond2 = icmp ugt i32 %val2, 2
41  br i1 %cond2, label %then2, label %else2, !prof !0
42
43then2:
44  call void @error(i32 %i, i32 1, i32 %b)
45  br label %else2
46
47else2:
48  %gep3 = getelementptr i32, ptr %a, i32 3
49  %val3 = load i32, ptr %gep3
50  %cond3 = icmp ugt i32 %val3, 3
51  br i1 %cond3, label %then3, label %else3, !prof !0
52
53then3:
54  call void @error(i32 %i, i32 1, i32 %b)
55  br label %else3
56
57else3:
58  %gep4 = getelementptr i32, ptr %a, i32 4
59  %val4 = load i32, ptr %gep4
60  %cond4 = icmp ugt i32 %val4, 4
61  br i1 %cond4, label %then4, label %else4, !prof !0
62
63then4:
64  call void @error(i32 %i, i32 1, i32 %b)
65  br label %else4
66
67else4:
68  %gep5 = getelementptr i32, ptr %a, i32 3
69  %val5 = load i32, ptr %gep5
70  %cond5 = icmp ugt i32 %val5, 3
71  br i1 %cond5, label %then5, label %exit, !prof !0
72
73then5:
74  call void @error(i32 %i, i32 1, i32 %b)
75  br label %exit
76
77exit:
78  ret i32 %b
79}
80
81define i32 @test_loop_cold_blocks(i32 %i, ptr %a) {
82; Check that we sink cold loop blocks after the hot loop body.
83; CHECK-LABEL: test_loop_cold_blocks:
84; CHECK: %entry
85; CHECK: .p2align
86; CHECK: %body1
87; CHECK: %body2
88; CHECK: %body3
89; CHECK-NOT: .p2align
90; CHECK: %unlikely1
91; CHECK-NOT: .p2align
92; CHECK: %unlikely2
93; CHECK: %exit
94
95entry:
96  br label %body1
97
98body1:
99  %iv = phi i32 [ 0, %entry ], [ %next, %body3 ]
100  %base = phi i32 [ 0, %entry ], [ %sum, %body3 ]
101  %unlikelycond1 = icmp slt i32 %base, 42
102  br i1 %unlikelycond1, label %unlikely1, label %body2, !prof !0
103
104unlikely1:
105  call void @error(i32 %i, i32 1, i32 %base)
106  br label %body2
107
108body2:
109  %unlikelycond2 = icmp sgt i32 %base, 21
110  br i1 %unlikelycond2, label %unlikely2, label %body3, !prof !0
111
112unlikely2:
113  call void @error(i32 %i, i32 2, i32 %base)
114  br label %body3
115
116body3:
117  %arrayidx = getelementptr inbounds i32, ptr %a, i32 %iv
118  %0 = load i32, ptr %arrayidx
119  %sum = add nsw i32 %0, %base
120  %next = add i32 %iv, 1
121  %exitcond = icmp eq i32 %next, %i
122  br i1 %exitcond, label %exit, label %body1
123
124exit:
125  ret i32 %sum
126}
127
128!0 = !{!"branch_weights", i32 1, i32 64}
129
130define i32 @test_loop_early_exits(i32 %i, ptr %a) {
131; Check that we sink early exit blocks out of loop bodies.
132; CHECK-LABEL: test_loop_early_exits:
133; CHECK: %entry
134; CHECK: %body1
135; CHECK: %body2
136; CHECK: %body3
137; CHECK: %body4
138; CHECK: %exit
139; CHECK: %bail1
140; CHECK: %bail2
141; CHECK: %bail3
142
143entry:
144  br label %body1
145
146body1:
147  %iv = phi i32 [ 0, %entry ], [ %next, %body4 ]
148  %base = phi i32 [ 0, %entry ], [ %sum, %body4 ]
149  %bailcond1 = icmp eq i32 %base, 42
150  br i1 %bailcond1, label %bail1, label %body2
151
152bail1:
153  ret i32 -1
154
155body2:
156  %bailcond2 = icmp eq i32 %base, 43
157  br i1 %bailcond2, label %bail2, label %body3
158
159bail2:
160  ret i32 -2
161
162body3:
163  %bailcond3 = icmp eq i32 %base, 44
164  br i1 %bailcond3, label %bail3, label %body4
165
166bail3:
167  ret i32 -3
168
169body4:
170  %arrayidx = getelementptr inbounds i32, ptr %a, i32 %iv
171  %0 = load i32, ptr %arrayidx
172  %sum = add nsw i32 %0, %base
173  %next = add i32 %iv, 1
174  %exitcond = icmp eq i32 %next, %i
175  br i1 %exitcond, label %exit, label %body1
176
177exit:
178  ret i32 %sum
179}
180
181; Tail duplication during layout can entirely remove body0 by duplicating it
182; into the entry block and into body1. This is a good thing but it isn't what
183; this test is looking for. So to make the blocks longer so they don't get
184; duplicated, we add some calls to dummy.
185declare void @dummy()
186
187define i32 @test_loop_rotate(i32 %i, ptr %a) {
188; Check that we rotate conditional exits from the loop to the bottom of the
189; loop, eliminating unconditional branches to the top.
190; CHECK-LABEL: test_loop_rotate:
191; CHECK: %entry
192; CHECK: %body0
193; CHECK: %body1
194; CHECK: %exit
195
196entry:
197  br label %body0
198
199body0:
200  %iv = phi i32 [ 0, %entry ], [ %next, %body1 ]
201  %base = phi i32 [ 0, %entry ], [ %sum, %body1 ]
202  %next = add i32 %iv, 1
203  %exitcond = icmp eq i32 %next, %i
204  call void @dummy()
205  call void @dummy()
206  br i1 %exitcond, label %exit, label %body1
207
208body1:
209  %arrayidx = getelementptr inbounds i32, ptr %a, i32 %iv
210  %0 = load i32, ptr %arrayidx
211  %sum = add nsw i32 %0, %base
212  %bailcond1 = icmp eq i32 %sum, 42
213  br label %body0
214
215exit:
216  ret i32 %base
217}
218
219define i32 @test_no_loop_rotate(i32 %i, ptr %a) {
220; Check that we don't try to rotate a loop which is already laid out with
221; fallthrough opportunities into the top and out of the bottom.
222; CHECK-LABEL: test_no_loop_rotate:
223; CHECK: %entry
224; CHECK: %body0
225; CHECK: %body1
226; CHECK: %exit
227
228entry:
229  br label %body0
230
231body0:
232  %iv = phi i32 [ 0, %entry ], [ %next, %body1 ]
233  %base = phi i32 [ 0, %entry ], [ %sum, %body1 ]
234  %arrayidx = getelementptr inbounds i32, ptr %a, i32 %iv
235  %0 = load i32, ptr %arrayidx
236  %sum = add nsw i32 %0, %base
237  %bailcond1 = icmp eq i32 %sum, 42
238  br i1 %bailcond1, label %exit, label %body1
239
240body1:
241  %next = add i32 %iv, 1
242  %exitcond = icmp eq i32 %next, %i
243  br i1 %exitcond, label %exit, label %body0
244
245exit:
246  ret i32 %base
247}
248
249define i32 @test_loop_align(i32 %i, ptr %a) {
250; Check that we provide basic loop body alignment with the block placement
251; pass.
252; CHECK-LABEL: test_loop_align:
253; CHECK: %entry
254; CHECK: .p2align [[ALIGN:[0-9]+]]
255; CHECK-NEXT: %body
256; CHECK: %exit
257
258entry:
259  br label %body
260
261body:
262  %iv = phi i32 [ 0, %entry ], [ %next, %body ]
263  %base = phi i32 [ 0, %entry ], [ %sum, %body ]
264  %arrayidx = getelementptr inbounds i32, ptr %a, i32 %iv
265  %0 = load i32, ptr %arrayidx
266  %sum = add nsw i32 %0, %base
267  %next = add i32 %iv, 1
268  %exitcond = icmp eq i32 %next, %i
269  br i1 %exitcond, label %exit, label %body
270
271exit:
272  ret i32 %sum
273}
274
275define i32 @test_nested_loop_align(i32 %i, ptr %a, ptr %b) {
276; Check that we provide nested loop body alignment.
277; CHECK-LABEL: test_nested_loop_align:
278; CHECK: %entry
279; CHECK: .p2align [[ALIGN]]
280; CHECK-NEXT: %loop.body.1
281; CHECK: .p2align [[ALIGN]]
282; CHECK-NEXT: %inner.loop.body
283; CHECK-NOT: .p2align
284; CHECK: %exit
285
286entry:
287  br label %loop.body.1
288
289loop.body.1:
290  %iv = phi i32 [ 0, %entry ], [ %next, %loop.body.2 ]
291  %arrayidx = getelementptr inbounds i32, ptr %a, i32 %iv
292  %bidx = load i32, ptr %arrayidx
293  br label %inner.loop.body
294
295inner.loop.body:
296  %inner.iv = phi i32 [ 0, %loop.body.1 ], [ %inner.next, %inner.loop.body ]
297  %base = phi i32 [ 0, %loop.body.1 ], [ %sum, %inner.loop.body ]
298  %scaled_idx = mul i32 %bidx, %iv
299  %inner.arrayidx = getelementptr inbounds i32, ptr %b, i32 %scaled_idx
300  %0 = load i32, ptr %inner.arrayidx
301  %sum = add nsw i32 %0, %base
302  %inner.next = add i32 %iv, 1
303  %inner.exitcond = icmp eq i32 %inner.next, %i
304  br i1 %inner.exitcond, label %loop.body.2, label %inner.loop.body
305
306loop.body.2:
307  %next = add i32 %iv, 1
308  %exitcond = icmp eq i32 %next, %i
309  br i1 %exitcond, label %exit, label %loop.body.1
310
311exit:
312  ret i32 %sum
313}
314
315define void @unnatural_cfg1(i1 %arg) {
316; Test that we can handle a loop with an inner unnatural loop at the end of
317; a function. This is a gross CFG reduced out of the single source GCC.
318; CHECK-LABEL: unnatural_cfg1
319; CHECK: %entry
320; CHECK: %loop.header
321; CHECK: %loop.body5
322
323entry:
324  br label %loop.header
325
326loop.header:
327  br label %loop.body1
328
329loop.body1:
330  br i1 %arg, label %loop.body3, label %loop.body2
331
332loop.body2:
333  %ptr = load ptr, ptr undef, align 4
334  br label %loop.body3
335
336loop.body3:
337  %myptr = phi ptr [ %ptr2, %loop.body5 ], [ %ptr, %loop.body2 ], [ undef, %loop.body1 ]
338  %bcmyptr = bitcast ptr %myptr to ptr
339  %val = load i32, ptr %bcmyptr, align 4
340  %comp = icmp eq i32 %val, 48
341  br i1 %comp, label %loop.body4, label %loop.body5
342
343loop.body4:
344  br i1 %arg, label %loop.header, label %loop.body5
345
346loop.body5:
347  %ptr2 = load ptr, ptr undef, align 4
348  br label %loop.body3
349}
350
351define void @unnatural_cfg2(ptr %p0, i32 %a0, i1 %arg) {
352; Test that we can handle a loop with a nested natural loop *and* an unnatural
353; loop. This was reduced from a crash on block placement when run over
354; single-source GCC.
355; CHECK-LABEL: unnatural_cfg2
356; CHECK: %entry
357; CHECK: %loop.header
358; CHECK: %loop.body1
359; CHECK: %loop.body2
360; CHECK: %loop.body4
361; CHECK: %loop.inner2.begin
362; CHECK: %loop.body3
363; CHECK: %loop.inner1.begin
364; CHECK: %bail
365
366entry:
367  br label %loop.header
368
369loop.header:
370  %comp0 = icmp eq ptr %p0, null
371  br i1 %comp0, label %bail, label %loop.body1
372
373loop.body1:
374  %val0 = load ptr, ptr undef, align 4
375  br i1 %arg, label %loop.body2, label %loop.inner1.begin
376
377loop.body2:
378  br i1 %arg, label %loop.body4, label %loop.body3
379
380loop.body3:
381  %ptr1 = getelementptr inbounds i32, ptr %val0, i32 0
382  %castptr1 = bitcast ptr %ptr1 to ptr
383  %val1 = load ptr, ptr %castptr1, align 4
384  br label %loop.inner1.begin
385
386loop.inner1.begin:
387  %valphi = phi ptr [ %val2, %loop.inner1.end ], [ %val1, %loop.body3 ], [ %val0, %loop.body1 ]
388  %castval = bitcast ptr %valphi to ptr
389  %comp1 = icmp eq i32 %a0, 48
390  br i1 %comp1, label %loop.inner1.end, label %loop.body4
391
392loop.inner1.end:
393  %ptr2 = getelementptr inbounds i32, ptr %valphi, i32 0
394  %castptr2 = bitcast ptr %ptr2 to ptr
395  %val2 = load ptr, ptr %castptr2, align 4
396  br label %loop.inner1.begin
397
398loop.body4.dead:
399  br label %loop.body4
400
401loop.body4:
402  %comp2 = icmp ult i32 %a0, 3
403  br i1 %comp2, label %loop.inner2.begin, label %loop.end
404
405loop.inner2.begin:
406  br i1 false, label %loop.end, label %loop.inner2.end
407
408loop.inner2.end:
409  %comp3 = icmp eq i32 %a0, 1769472
410  br i1 %comp3, label %loop.end, label %loop.inner2.begin
411
412loop.end:
413  br label %loop.header
414
415bail:
416  unreachable
417}
418
419define i32 @problematic_switch() {
420; This function's CFG caused overlow in the machine branch probability
421; calculation, triggering asserts. Make sure we don't crash on it.
422; CHECK: problematic_switch
423
424entry:
425  switch i32 undef, label %exit [
426    i32 879, label %bogus
427    i32 877, label %step
428    i32 876, label %step
429    i32 875, label %step
430    i32 874, label %step
431    i32 873, label %step
432    i32 872, label %step
433    i32 868, label %step
434    i32 867, label %step
435    i32 866, label %step
436    i32 861, label %step
437    i32 860, label %step
438    i32 856, label %step
439    i32 855, label %step
440    i32 854, label %step
441    i32 831, label %step
442    i32 830, label %step
443    i32 829, label %step
444    i32 828, label %step
445    i32 815, label %step
446    i32 814, label %step
447    i32 811, label %step
448    i32 806, label %step
449    i32 805, label %step
450    i32 804, label %step
451    i32 803, label %step
452    i32 802, label %step
453    i32 801, label %step
454    i32 800, label %step
455    i32 799, label %step
456    i32 798, label %step
457    i32 797, label %step
458    i32 796, label %step
459    i32 795, label %step
460  ]
461bogus:
462  unreachable
463step:
464  br label %exit
465exit:
466  %merge = phi i32 [ 3, %step ], [ 6, %entry ]
467  ret i32 %merge
468}
469
470define void @fpcmp_unanalyzable_branch(i1 %cond, double %a0, i1 %arg) {
471; This function's CFG contains an once-unanalyzable branch (une on floating
472; points). As now it becomes analyzable, we should get best layout in which each
473; edge in 'entry' -> 'entry.if.then_crit_edge' -> 'if.then' -> 'if.end' is
474; fall-through.
475; CHECK-LABEL: fpcmp_unanalyzable_branch:
476; CHECK:       # %bb.0: # %entry
477; CHECK:       # %bb.1: # %entry.if.then_crit_edge
478; CHECK:       .LBB10_5: # %if.then
479; CHECK:       .LBB10_6: # %if.end
480; CHECK:       # %bb.3: # %exit
481; CHECK:       jne .LBB10_4
482; CHECK-NEXT:  jnp .LBB10_6
483; CHECK:       jmp .LBB10_5
484
485entry:
486; Note that this branch must be strongly biased toward
487; 'entry.if.then_crit_edge' to ensure that we would try to form a chain for
488; 'entry' -> 'entry.if.then_crit_edge' -> 'if.then' -> 'if.end'.
489  br i1 %cond, label %entry.if.then_crit_edge, label %lor.lhs.false, !prof !1
490
491entry.if.then_crit_edge:
492  %.pre14 = load i8, ptr undef, align 1
493  br label %if.then
494
495lor.lhs.false:
496  br i1 %arg, label %if.end, label %exit
497
498exit:
499  %cmp.i = fcmp une double 0.000000e+00, %a0
500  br i1 %cmp.i, label %if.then, label %if.end, !prof !3
501
502if.then:
503  %0 = phi i8 [ %.pre14, %entry.if.then_crit_edge ], [ undef, %exit ]
504  %1 = and i8 %0, 1
505  store i8 %1, ptr undef, align 4
506  br label %if.end
507
508if.end:
509  ret void
510}
511
512!1 = !{!"branch_weights", i32 1000, i32 1}
513!3 = !{!"branch_weights", i32 1, i32 1000}
514
515declare i32 @f()
516declare i32 @g()
517declare i32 @h(i32 %x)
518
519define i32 @test_global_cfg_break_profitability(i1 %arg) {
520; Check that our metrics for the profitability of a CFG break are global rather
521; than local. A successor may be very hot, but if the current block isn't, it
522; doesn't matter. Within this test the 'then' block is slightly warmer than the
523; 'else' block, but not nearly enough to merit merging it with the exit block
524; even though the probability of 'then' branching to the 'exit' block is very
525; high.
526; CHECK: test_global_cfg_break_profitability
527; CHECK: calll {{_?}}f
528; CHECK: calll {{_?}}g
529; CHECK: calll {{_?}}h
530; CHECK: ret
531
532entry:
533  br i1 %arg, label %then, label %else, !prof !2
534
535then:
536  %then.result = call i32 @f()
537  br label %exit
538
539else:
540  %else.result = call i32 @g()
541  br label %exit
542
543exit:
544  %result = phi i32 [ %then.result, %then ], [ %else.result, %else ]
545  %result2 = call i32 @h(i32 %result)
546  ret i32 %result
547}
548
549!2 = !{!"branch_weights", i32 3, i32 1}
550
551declare i32 @__gxx_personality_v0(...)
552
553define void @test_eh_lpad_successor() personality ptr @__gxx_personality_v0 {
554; Some times the landing pad ends up as the first successor of an invoke block.
555; When this happens, a strange result used to fall out of updateTerminators: we
556; didn't correctly locate the fallthrough successor, assuming blindly that the
557; first one was the fallthrough successor. As a result, we would add an
558; erroneous jump to the landing pad thinking *that* was the default successor.
559; CHECK-LABEL: test_eh_lpad_successor
560; CHECK: %entry
561; CHECK-NOT: jmp
562; CHECK: %loop
563
564entry:
565  invoke i32 @f() to label %preheader unwind label %lpad
566
567preheader:
568  br label %loop
569
570lpad:
571  %lpad.val = landingpad { ptr, i32 }
572          cleanup
573  resume { ptr, i32 } %lpad.val
574
575loop:
576  br label %loop
577}
578
579declare void @fake_throw() noreturn
580
581define void @test_eh_throw() personality ptr @__gxx_personality_v0 {
582; For blocks containing a 'throw' (or similar functionality), we have
583; a no-return invoke. In this case, only EH successors will exist, and
584; fallthrough simply won't occur. Make sure we don't crash trying to update
585; terminators for such constructs.
586;
587; CHECK-LABEL: test_eh_throw
588; CHECK: %entry
589; CHECK: %cleanup
590
591entry:
592  invoke void @fake_throw() to label %continue unwind label %cleanup
593
594continue:
595  unreachable
596
597cleanup:
598  %0 = landingpad { ptr, i32 }
599          cleanup
600  unreachable
601}
602
603define void @test_unnatural_cfg_backwards_inner_loop(i1 %arg) {
604; Test that when we encounter an unnatural CFG structure after having formed
605; a chain for an inner loop which happened to be laid out backwards we don't
606; attempt to merge onto the wrong end of the inner loop just because we find it
607; first. This was reduced from a crasher in GCC's single source.
608;
609; CHECK-LABEL: test_unnatural_cfg_backwards_inner_loop
610; CHECK: %entry
611; CHECK: %loop2b
612; CHECK: %loop3
613
614entry:
615  br i1 %arg, label %loop2a, label %body
616
617body:
618  br label %loop2a
619
620loop1:
621  %next.load = load ptr, ptr undef
622  br i1 %comp.a, label %loop2a, label %loop2b
623
624loop2a:
625  %var = phi ptr [ null, %entry ], [ null, %body ], [ %next.phi, %loop1 ]
626  %next.var = phi ptr [ null, %entry ], [ undef, %body ], [ %next.load, %loop1 ]
627  %comp.a = icmp eq ptr %var, null
628  br label %loop3
629
630loop2b:
631  %gep = getelementptr inbounds i32, ptr %var.phi, i32 0
632  %next.ptr = bitcast ptr %gep to ptr
633  store ptr %next.phi, ptr %next.ptr
634  br label %loop3
635
636loop3:
637  %var.phi = phi ptr [ %next.phi, %loop2b ], [ %var, %loop2a ]
638  %next.phi = phi ptr [ %next.load, %loop2b ], [ %next.var, %loop2a ]
639  br label %loop1
640}
641
642define void @unanalyzable_branch_to_loop_header(double %a0) {
643; Ensure that we can handle unanalyzable branches into loop headers. We
644; pre-form chains for unanalyzable branches, and will find the tail end of that
645; at the start of the loop. This function uses floating point comparison
646; fallthrough because that happens to always produce unanalyzable branches on
647; x86.
648;
649; CHECK-LABEL: unanalyzable_branch_to_loop_header
650; CHECK: %entry
651; CHECK: %loop
652; CHECK: %exit
653
654entry:
655  %cmp = fcmp une double 0.000000e+00, %a0
656  br i1 %cmp, label %loop, label %exit
657
658loop:
659  %cond = icmp eq i8 undef, 42
660  br i1 %cond, label %exit, label %loop
661
662exit:
663  ret void
664}
665
666define void @unanalyzable_branch_to_best_succ(i1 %cond, double %a0) {
667; Ensure that we can handle unanalyzable branches where the destination block
668; gets selected as the optimal successor to merge.
669;
670; This branch is now analyzable and hence the destination block becomes the
671; hotter one. The right order is entry->bar->exit->foo.
672;
673; CHECK-LABEL: unanalyzable_branch_to_best_succ
674; CHECK: %entry
675; CHECK: %bar
676; CHECK: %exit
677; CHECK: %foo
678
679entry:
680  ; Bias this branch toward bar to ensure we form that chain.
681  br i1 %cond, label %bar, label %foo, !prof !1
682
683foo:
684  %cmp = fcmp une double 0.000000e+00, %a0
685  br i1 %cmp, label %bar, label %exit
686
687bar:
688  call i32 @f()
689  br label %exit
690
691exit:
692  ret void
693}
694
695define void @unanalyzable_branch_to_free_block(float %x, i1 %arg) {
696; Ensure that we can handle unanalyzable branches where the destination block
697; gets selected as the best free block in the CFG.
698;
699; CHECK-LABEL: unanalyzable_branch_to_free_block
700; CHECK: %entry
701; CHECK: %a
702; CHECK: %b
703; CHECK: %c
704; CHECK: %exit
705
706entry:
707  br i1 %arg, label %a, label %b
708
709a:
710  call i32 @f()
711  br label %c
712
713b:
714  %cmp = fcmp une float %x, 0.0
715  br i1 %cmp, label %c, label %exit
716
717c:
718  call i32 @g()
719  br label %exit
720
721exit:
722  ret void
723}
724
725define void @many_unanalyzable_branches() {
726; Ensure that we don't crash as we're building up many unanalyzable branches,
727; blocks, and loops.
728;
729; CHECK-LABEL: many_unanalyzable_branches
730; CHECK: %entry
731; CHECK: %exit
732
733entry:
734  br label %0
735
736  %val0 = load volatile float, ptr undef
737  %cmp0 = fcmp une float %val0, 0.0
738  br i1 %cmp0, label %1, label %0
739  %val1 = load volatile float, ptr undef
740  %cmp1 = fcmp une float %val1, 0.0
741  br i1 %cmp1, label %2, label %1
742  %val2 = load volatile float, ptr undef
743  %cmp2 = fcmp une float %val2, 0.0
744  br i1 %cmp2, label %3, label %2
745  %val3 = load volatile float, ptr undef
746  %cmp3 = fcmp une float %val3, 0.0
747  br i1 %cmp3, label %4, label %3
748  %val4 = load volatile float, ptr undef
749  %cmp4 = fcmp une float %val4, 0.0
750  br i1 %cmp4, label %5, label %4
751  %val5 = load volatile float, ptr undef
752  %cmp5 = fcmp une float %val5, 0.0
753  br i1 %cmp5, label %6, label %5
754  %val6 = load volatile float, ptr undef
755  %cmp6 = fcmp une float %val6, 0.0
756  br i1 %cmp6, label %7, label %6
757  %val7 = load volatile float, ptr undef
758  %cmp7 = fcmp une float %val7, 0.0
759  br i1 %cmp7, label %8, label %7
760  %val8 = load volatile float, ptr undef
761  %cmp8 = fcmp une float %val8, 0.0
762  br i1 %cmp8, label %9, label %8
763  %val9 = load volatile float, ptr undef
764  %cmp9 = fcmp une float %val9, 0.0
765  br i1 %cmp9, label %10, label %9
766  %val10 = load volatile float, ptr undef
767  %cmp10 = fcmp une float %val10, 0.0
768  br i1 %cmp10, label %11, label %10
769  %val11 = load volatile float, ptr undef
770  %cmp11 = fcmp une float %val11, 0.0
771  br i1 %cmp11, label %12, label %11
772  %val12 = load volatile float, ptr undef
773  %cmp12 = fcmp une float %val12, 0.0
774  br i1 %cmp12, label %13, label %12
775  %val13 = load volatile float, ptr undef
776  %cmp13 = fcmp une float %val13, 0.0
777  br i1 %cmp13, label %14, label %13
778  %val14 = load volatile float, ptr undef
779  %cmp14 = fcmp une float %val14, 0.0
780  br i1 %cmp14, label %15, label %14
781  %val15 = load volatile float, ptr undef
782  %cmp15 = fcmp une float %val15, 0.0
783  br i1 %cmp15, label %16, label %15
784  %val16 = load volatile float, ptr undef
785  %cmp16 = fcmp une float %val16, 0.0
786  br i1 %cmp16, label %17, label %16
787  %val17 = load volatile float, ptr undef
788  %cmp17 = fcmp une float %val17, 0.0
789  br i1 %cmp17, label %18, label %17
790  %val18 = load volatile float, ptr undef
791  %cmp18 = fcmp une float %val18, 0.0
792  br i1 %cmp18, label %19, label %18
793  %val19 = load volatile float, ptr undef
794  %cmp19 = fcmp une float %val19, 0.0
795  br i1 %cmp19, label %20, label %19
796  %val20 = load volatile float, ptr undef
797  %cmp20 = fcmp une float %val20, 0.0
798  br i1 %cmp20, label %21, label %20
799  %val21 = load volatile float, ptr undef
800  %cmp21 = fcmp une float %val21, 0.0
801  br i1 %cmp21, label %22, label %21
802  %val22 = load volatile float, ptr undef
803  %cmp22 = fcmp une float %val22, 0.0
804  br i1 %cmp22, label %23, label %22
805  %val23 = load volatile float, ptr undef
806  %cmp23 = fcmp une float %val23, 0.0
807  br i1 %cmp23, label %24, label %23
808  %val24 = load volatile float, ptr undef
809  %cmp24 = fcmp une float %val24, 0.0
810  br i1 %cmp24, label %25, label %24
811  %val25 = load volatile float, ptr undef
812  %cmp25 = fcmp une float %val25, 0.0
813  br i1 %cmp25, label %26, label %25
814  %val26 = load volatile float, ptr undef
815  %cmp26 = fcmp une float %val26, 0.0
816  br i1 %cmp26, label %27, label %26
817  %val27 = load volatile float, ptr undef
818  %cmp27 = fcmp une float %val27, 0.0
819  br i1 %cmp27, label %28, label %27
820  %val28 = load volatile float, ptr undef
821  %cmp28 = fcmp une float %val28, 0.0
822  br i1 %cmp28, label %29, label %28
823  %val29 = load volatile float, ptr undef
824  %cmp29 = fcmp une float %val29, 0.0
825  br i1 %cmp29, label %30, label %29
826  %val30 = load volatile float, ptr undef
827  %cmp30 = fcmp une float %val30, 0.0
828  br i1 %cmp30, label %31, label %30
829  %val31 = load volatile float, ptr undef
830  %cmp31 = fcmp une float %val31, 0.0
831  br i1 %cmp31, label %32, label %31
832  %val32 = load volatile float, ptr undef
833  %cmp32 = fcmp une float %val32, 0.0
834  br i1 %cmp32, label %33, label %32
835  %val33 = load volatile float, ptr undef
836  %cmp33 = fcmp une float %val33, 0.0
837  br i1 %cmp33, label %34, label %33
838  %val34 = load volatile float, ptr undef
839  %cmp34 = fcmp une float %val34, 0.0
840  br i1 %cmp34, label %35, label %34
841  %val35 = load volatile float, ptr undef
842  %cmp35 = fcmp une float %val35, 0.0
843  br i1 %cmp35, label %36, label %35
844  %val36 = load volatile float, ptr undef
845  %cmp36 = fcmp une float %val36, 0.0
846  br i1 %cmp36, label %37, label %36
847  %val37 = load volatile float, ptr undef
848  %cmp37 = fcmp une float %val37, 0.0
849  br i1 %cmp37, label %38, label %37
850  %val38 = load volatile float, ptr undef
851  %cmp38 = fcmp une float %val38, 0.0
852  br i1 %cmp38, label %39, label %38
853  %val39 = load volatile float, ptr undef
854  %cmp39 = fcmp une float %val39, 0.0
855  br i1 %cmp39, label %40, label %39
856  %val40 = load volatile float, ptr undef
857  %cmp40 = fcmp une float %val40, 0.0
858  br i1 %cmp40, label %41, label %40
859  %val41 = load volatile float, ptr undef
860  %cmp41 = fcmp une float %val41, undef
861  br i1 %cmp41, label %42, label %41
862  %val42 = load volatile float, ptr undef
863  %cmp42 = fcmp une float %val42, 0.0
864  br i1 %cmp42, label %43, label %42
865  %val43 = load volatile float, ptr undef
866  %cmp43 = fcmp une float %val43, 0.0
867  br i1 %cmp43, label %44, label %43
868  %val44 = load volatile float, ptr undef
869  %cmp44 = fcmp une float %val44, 0.0
870  br i1 %cmp44, label %45, label %44
871  %val45 = load volatile float, ptr undef
872  %cmp45 = fcmp une float %val45, 0.0
873  br i1 %cmp45, label %46, label %45
874  %val46 = load volatile float, ptr undef
875  %cmp46 = fcmp une float %val46, 0.0
876  br i1 %cmp46, label %47, label %46
877  %val47 = load volatile float, ptr undef
878  %cmp47 = fcmp une float %val47, 0.0
879  br i1 %cmp47, label %48, label %47
880  %val48 = load volatile float, ptr undef
881  %cmp48 = fcmp une float %val48, 0.0
882  br i1 %cmp48, label %49, label %48
883  %val49 = load volatile float, ptr undef
884  %cmp49 = fcmp une float %val49, 0.0
885  br i1 %cmp49, label %50, label %49
886  %val50 = load volatile float, ptr undef
887  %cmp50 = fcmp une float %val50, 0.0
888  br i1 %cmp50, label %51, label %50
889  %val51 = load volatile float, ptr undef
890  %cmp51 = fcmp une float %val51, 0.0
891  br i1 %cmp51, label %52, label %51
892  %val52 = load volatile float, ptr undef
893  %cmp52 = fcmp une float %val52, 0.0
894  br i1 %cmp52, label %53, label %52
895  %val53 = load volatile float, ptr undef
896  %cmp53 = fcmp une float %val53, 0.0
897  br i1 %cmp53, label %54, label %53
898  %val54 = load volatile float, ptr undef
899  %cmp54 = fcmp une float %val54, 0.0
900  br i1 %cmp54, label %55, label %54
901  %val55 = load volatile float, ptr undef
902  %cmp55 = fcmp une float %val55, 0.0
903  br i1 %cmp55, label %56, label %55
904  %val56 = load volatile float, ptr undef
905  %cmp56 = fcmp une float %val56, 0.0
906  br i1 %cmp56, label %57, label %56
907  %val57 = load volatile float, ptr undef
908  %cmp57 = fcmp une float %val57, 0.0
909  br i1 %cmp57, label %58, label %57
910  %val58 = load volatile float, ptr undef
911  %cmp58 = fcmp une float %val58, 0.0
912  br i1 %cmp58, label %59, label %58
913  %val59 = load volatile float, ptr undef
914  %cmp59 = fcmp une float %val59, 0.0
915  br i1 %cmp59, label %60, label %59
916  %val60 = load volatile float, ptr undef
917  %cmp60 = fcmp une float %val60, 0.0
918  br i1 %cmp60, label %61, label %60
919  %val61 = load volatile float, ptr undef
920  %cmp61 = fcmp une float %val61, 0.0
921  br i1 %cmp61, label %62, label %61
922  %val62 = load volatile float, ptr undef
923  %cmp62 = fcmp une float %val62, 0.0
924  br i1 %cmp62, label %63, label %62
925  %val63 = load volatile float, ptr undef
926  %cmp63 = fcmp une float %val63, 0.0
927  br i1 %cmp63, label %64, label %63
928  %val64 = load volatile float, ptr undef
929  %cmp64 = fcmp une float %val64, 0.0
930  br i1 %cmp64, label %65, label %64
931
932  br label %exit
933exit:
934  ret void
935}
936
937define void @benchmark_heapsort(i32 %n, ptr nocapture %ra) {
938; This test case comes from the heapsort benchmark, and exemplifies several
939; important aspects to block placement in the presence of loops:
940; 1) Loop rotation needs to *ensure* that the desired exiting edge can be
941;    a fallthrough.
942; 2) The exiting edge from the loop which is rotated to be laid out at the
943;    bottom of the loop needs to be exiting into the nearest enclosing loop (to
944;    which there is an exit). Otherwise, we force that enclosing loop into
945;    strange layouts that are siginificantly less efficient, often times making
946;    it discontiguous.
947;
948; CHECK-LABEL: @benchmark_heapsort
949; CHECK: %entry
950; First rotated loop top.
951; CHECK: .p2align
952; CHECK: %while.end
953; %for.cond gets completely tail-duplicated away.
954; CHECK: %if.then
955; CHECK: %if.else
956; CHECK: %if.end10
957; Second rotated loop top
958; CHECK: %while.cond.outer
959; Third rotated loop top
960; CHECK: .p2align
961; CHECK: %if.end20
962; CHECK: %while.cond
963; CHECK: %while.body
964; CHECK: %land.lhs.true
965; CHECK: %if.then19
966; CHECK: %if.then24
967; CHECK: %if.then8
968; CHECK: ret
969
970entry:
971  %shr = ashr i32 %n, 1
972  %add = add nsw i32 %shr, 1
973  %arrayidx3 = getelementptr inbounds double, ptr %ra, i64 1
974  br label %for.cond
975
976for.cond:
977  %ir.0 = phi i32 [ %n, %entry ], [ %ir.1, %while.end ]
978  %l.0 = phi i32 [ %add, %entry ], [ %l.1, %while.end ]
979  %cmp = icmp sgt i32 %l.0, 1
980  br i1 %cmp, label %if.then, label %if.else
981
982if.then:
983  %dec = add nsw i32 %l.0, -1
984  %idxprom = sext i32 %dec to i64
985  %arrayidx = getelementptr inbounds double, ptr %ra, i64 %idxprom
986  %0 = load double, ptr %arrayidx, align 8
987  br label %if.end10
988
989if.else:
990  %idxprom1 = sext i32 %ir.0 to i64
991  %arrayidx2 = getelementptr inbounds double, ptr %ra, i64 %idxprom1
992  %1 = load double, ptr %arrayidx2, align 8
993  %2 = load double, ptr %arrayidx3, align 8
994  store double %2, ptr %arrayidx2, align 8
995  %dec6 = add nsw i32 %ir.0, -1
996  %cmp7 = icmp eq i32 %dec6, 1
997  br i1 %cmp7, label %if.then8, label %if.end10
998
999if.then8:
1000  store double %1, ptr %arrayidx3, align 8
1001  ret void
1002
1003if.end10:
1004  %ir.1 = phi i32 [ %ir.0, %if.then ], [ %dec6, %if.else ]
1005  %l.1 = phi i32 [ %dec, %if.then ], [ %l.0, %if.else ]
1006  %rra.0 = phi double [ %0, %if.then ], [ %1, %if.else ]
1007  %add31 = add nsw i32 %ir.1, 1
1008  br label %while.cond.outer
1009
1010while.cond.outer:
1011  %j.0.ph.in = phi i32 [ %l.1, %if.end10 ], [ %j.1, %if.then24 ]
1012  %j.0.ph = shl i32 %j.0.ph.in, 1
1013  br label %while.cond
1014
1015while.cond:
1016  %j.0 = phi i32 [ %add31, %if.end20 ], [ %j.0.ph, %while.cond.outer ]
1017  %cmp11 = icmp sgt i32 %j.0, %ir.1
1018  br i1 %cmp11, label %while.end, label %while.body
1019
1020while.body:
1021  %cmp12 = icmp slt i32 %j.0, %ir.1
1022  br i1 %cmp12, label %land.lhs.true, label %if.end20
1023
1024land.lhs.true:
1025  %idxprom13 = sext i32 %j.0 to i64
1026  %arrayidx14 = getelementptr inbounds double, ptr %ra, i64 %idxprom13
1027  %3 = load double, ptr %arrayidx14, align 8
1028  %add15 = add nsw i32 %j.0, 1
1029  %idxprom16 = sext i32 %add15 to i64
1030  %arrayidx17 = getelementptr inbounds double, ptr %ra, i64 %idxprom16
1031  %4 = load double, ptr %arrayidx17, align 8
1032  %cmp18 = fcmp olt double %3, %4
1033  br i1 %cmp18, label %if.then19, label %if.end20
1034
1035if.then19:
1036  br label %if.end20
1037
1038if.end20:
1039  %j.1 = phi i32 [ %add15, %if.then19 ], [ %j.0, %land.lhs.true ], [ %j.0, %while.body ]
1040  %idxprom21 = sext i32 %j.1 to i64
1041  %arrayidx22 = getelementptr inbounds double, ptr %ra, i64 %idxprom21
1042  %5 = load double, ptr %arrayidx22, align 8
1043  %cmp23 = fcmp olt double %rra.0, %5
1044  br i1 %cmp23, label %if.then24, label %while.cond
1045
1046if.then24:
1047  %idxprom27 = sext i32 %j.0.ph.in to i64
1048  %arrayidx28 = getelementptr inbounds double, ptr %ra, i64 %idxprom27
1049  store double %5, ptr %arrayidx28, align 8
1050  br label %while.cond.outer
1051
1052while.end:
1053  %idxprom33 = sext i32 %j.0.ph.in to i64
1054  %arrayidx34 = getelementptr inbounds double, ptr %ra, i64 %idxprom33
1055  store double %rra.0, ptr %arrayidx34, align 8
1056  br label %for.cond
1057}
1058
1059declare void @cold_function() cold
1060
1061define i32 @test_cold_calls(ptr %a) {
1062; Test that edges to blocks post-dominated by cold calls are
1063; marked as not expected to be taken.  They should be laid out
1064; at the bottom.
1065; CHECK-LABEL: test_cold_calls:
1066; CHECK: %entry
1067; CHECK: %else
1068; CHECK: %exit
1069; CHECK: %then
1070
1071entry:
1072  %gep1 = getelementptr i32, ptr %a, i32 1
1073  %val1 = load i32, ptr %gep1
1074  %cond1 = icmp ugt i32 %val1, 1
1075  br i1 %cond1, label %then, label %else
1076
1077then:
1078  call void @cold_function()
1079  br label %exit
1080
1081else:
1082  %gep2 = getelementptr i32, ptr %a, i32 2
1083  %val2 = load i32, ptr %gep2
1084  br label %exit
1085
1086exit:
1087  %ret = phi i32 [ %val1, %then ], [ %val2, %else ]
1088  ret i32 %ret
1089}
1090
1091; Make sure we put landingpads out of the way.
1092declare i32 @pers(...)
1093
1094declare i32 @foo();
1095
1096declare i32 @bar();
1097
1098define i32 @test_lp(i32 %a) personality ptr @pers {
1099; CHECK-LABEL: test_lp:
1100; CHECK: %entry
1101; CHECK: %hot
1102; CHECK: %then
1103; CHECK: %cold
1104; CHECK: %coldlp
1105; CHECK: %hotlp
1106; CHECK: %lpret
1107entry:
1108  %0 = icmp sgt i32 %a, 1
1109  br i1 %0, label %hot, label %cold, !prof !4
1110
1111hot:
1112  %1 = invoke i32 @foo()
1113          to label %then unwind label %hotlp
1114
1115cold:
1116  %2 = invoke i32 @bar()
1117          to label %then unwind label %coldlp
1118
1119then:
1120  %3 = phi i32 [ %1, %hot ], [ %2, %cold ]
1121  ret i32 %3
1122
1123hotlp:
1124  %4 = landingpad { ptr, i32 }
1125          cleanup
1126  br label %lpret
1127
1128coldlp:
1129  %5 = landingpad { ptr, i32 }
1130          cleanup
1131  br label %lpret
1132
1133lpret:
1134  %6 = phi i32 [-1, %hotlp], [-2, %coldlp]
1135  %7 = add i32 %6, 42
1136  ret i32 %7
1137}
1138
1139!4 = !{!"branch_weights", i32 65536, i32 0}
1140
1141; Make sure that ehpad are scheduled from the least probable one
1142; to the most probable one. See selectBestCandidateBlock as to why.
1143declare void @clean();
1144
1145define void @test_flow_unwind() personality ptr @pers {
1146; CHECK-LABEL: test_flow_unwind:
1147; CHECK: %entry
1148; CHECK: %then
1149; CHECK: %exit
1150; CHECK: %innerlp
1151; CHECK: %outerlp
1152; CHECK: %outercleanup
1153entry:
1154  %0 = invoke i32 @foo()
1155          to label %then unwind label %outerlp
1156
1157then:
1158  %1 = invoke i32 @bar()
1159          to label %exit unwind label %innerlp
1160
1161exit:
1162  ret void
1163
1164innerlp:
1165  %2 = landingpad { ptr, i32 }
1166          cleanup
1167  br label %innercleanup
1168
1169outerlp:
1170  %3 = landingpad { ptr, i32 }
1171          cleanup
1172  br label %outercleanup
1173
1174outercleanup:
1175  %4 = phi { ptr, i32 } [%2, %innercleanup], [%3, %outerlp]
1176  call void @clean()
1177  resume { ptr, i32 } %4
1178
1179innercleanup:
1180  call void @clean()
1181  br label %outercleanup
1182}
1183
1184declare void @hot_function()
1185
1186define void @test_hot_branch(ptr %a) {
1187; Test that a hot branch that has a probability a little larger than 80% will
1188; break CFG constrains when doing block placement.
1189; CHECK-LABEL: test_hot_branch:
1190; CHECK: %entry
1191; CHECK: %then
1192; CHECK: %exit
1193; CHECK: %else
1194
1195entry:
1196  %gep1 = getelementptr i32, ptr %a, i32 1
1197  %val1 = load i32, ptr %gep1
1198  %cond1 = icmp ugt i32 %val1, 1
1199  br i1 %cond1, label %then, label %else, !prof !5
1200
1201then:
1202  call void @hot_function()
1203  br label %exit
1204
1205else:
1206  call void @cold_function()
1207  br label %exit
1208
1209exit:
1210  call void @hot_function()
1211  ret void
1212}
1213
1214define void @test_hot_branch_profile(ptr %a) !prof !6 {
1215; Test that a hot branch that has a probability a little larger than 50% will
1216; break CFG constrains when doing block placement when profile is available.
1217; CHECK-LABEL: test_hot_branch_profile:
1218; CHECK: %entry
1219; CHECK: %then
1220; CHECK: %exit
1221; CHECK: %else
1222
1223entry:
1224  %gep1 = getelementptr i32, ptr %a, i32 1
1225  %val1 = load i32, ptr %gep1
1226  %cond1 = icmp ugt i32 %val1, 1
1227  br i1 %cond1, label %then, label %else, !prof !7
1228
1229then:
1230  call void @hot_function()
1231  br label %exit
1232
1233else:
1234  call void @cold_function()
1235  br label %exit
1236
1237exit:
1238  call void @hot_function()
1239  ret void
1240}
1241
1242define void @test_hot_branch_triangle_profile(ptr %a) !prof !6 {
1243; Test that a hot branch that has a probability a little larger than 80% will
1244; break triangle shaped CFG constrains when doing block placement if profile
1245; is present.
1246; CHECK-LABEL: test_hot_branch_triangle_profile:
1247; CHECK: %entry
1248; CHECK: %exit
1249; CHECK: %then
1250
1251entry:
1252  %gep1 = getelementptr i32, ptr %a, i32 1
1253  %val1 = load i32, ptr %gep1
1254  %cond1 = icmp ugt i32 %val1, 1
1255  br i1 %cond1, label %exit, label %then, !prof !5
1256
1257then:
1258  call void @hot_function()
1259  br label %exit
1260
1261exit:
1262  call void @hot_function()
1263  ret void
1264}
1265
1266define void @test_hot_branch_triangle_profile_topology(ptr %a) !prof !6 {
1267; Test that a hot branch that has a probability between 50% and 66% will not
1268; break triangle shaped CFG constrains when doing block placement if profile
1269; is present.
1270; CHECK-LABEL: test_hot_branch_triangle_profile_topology:
1271; CHECK: %entry
1272; CHECK: %then
1273; CHECK: %exit
1274
1275entry:
1276  %gep1 = getelementptr i32, ptr %a, i32 1
1277  %val1 = load i32, ptr %gep1
1278  %cond1 = icmp ugt i32 %val1, 1
1279  br i1 %cond1, label %exit, label %then, !prof !7
1280
1281then:
1282  call void @hot_function()
1283  br label %exit
1284
1285exit:
1286  call void @hot_function()
1287  ret void
1288}
1289
1290declare void @a()
1291declare void @b()
1292
1293define void @test_forked_hot_diamond(ptr %a) {
1294; Test that a hot-branch with probability > 80% followed by a 50/50 branch
1295; will not place the cold predecessor if the probability for the fallthrough
1296; remains above 80%
1297; CHECK-LABEL: test_forked_hot_diamond
1298; CHECK: %entry
1299; CHECK: %then
1300; CHECK: %fork1
1301; CHECK: %else
1302; CHECK: %fork2
1303; CHECK: %exit
1304entry:
1305  %gep1 = getelementptr i32, ptr %a, i32 1
1306  %val1 = load i32, ptr %gep1
1307  %cond1 = icmp ugt i32 %val1, 1
1308  br i1 %cond1, label %then, label %else, !prof !5
1309
1310then:
1311  call void @hot_function()
1312  %gep2 = getelementptr i32, ptr %a, i32 2
1313  %val2 = load i32, ptr %gep2
1314  %cond2 = icmp ugt i32 %val2, 2
1315  br i1 %cond2, label %fork1, label %fork2, !prof !8
1316
1317else:
1318  call void @cold_function()
1319  %gep3 = getelementptr i32, ptr %a, i32 3
1320  %val3 = load i32, ptr %gep3
1321  %cond3 = icmp ugt i32 %val3, 3
1322  br i1 %cond3, label %fork1, label %fork2, !prof !8
1323
1324fork1:
1325  call void @a()
1326  br label %exit
1327
1328fork2:
1329  call void @b()
1330  br label %exit
1331
1332exit:
1333  call void @hot_function()
1334  ret void
1335}
1336
1337define void @test_forked_hot_diamond_gets_cold(ptr %a) {
1338; Test that a hot-branch with probability > 80% followed by a 50/50 branch
1339; will place the cold predecessor if the probability for the fallthrough
1340; falls below 80%
1341; The probability for both branches is 85%. For then2 vs else1
1342; this results in a compounded probability of 83%.
1343; Neither then2->fork1 nor then2->fork2 has a large enough relative
1344; probability to break the CFG.
1345; Relative probs:
1346; then2 -> fork1 vs else1 -> fork1 = 71%
1347; then2 -> fork2 vs else2 -> fork2 = 74%
1348; CHECK-LABEL: test_forked_hot_diamond_gets_cold
1349; CHECK: %entry
1350; CHECK: %then1
1351; CHECK: %then2
1352; CHECK: %else1
1353; CHECK: %fork1
1354; CHECK: %else2
1355; CHECK: %fork2
1356; CHECK: %exit
1357entry:
1358  %gep1 = getelementptr i32, ptr %a, i32 1
1359  %val1 = load i32, ptr %gep1
1360  %cond1 = icmp ugt i32 %val1, 1
1361  br i1 %cond1, label %then1, label %else1, !prof !9
1362
1363then1:
1364  call void @hot_function()
1365  %gep2 = getelementptr i32, ptr %a, i32 2
1366  %val2 = load i32, ptr %gep2
1367  %cond2 = icmp ugt i32 %val2, 2
1368  br i1 %cond2, label %then2, label %else2, !prof !9
1369
1370else1:
1371  call void @cold_function()
1372  br label %fork1
1373
1374then2:
1375  call void @hot_function()
1376  %gep3 = getelementptr i32, ptr %a, i32 3
1377  %val3 = load i32, ptr %gep2
1378  %cond3 = icmp ugt i32 %val2, 3
1379  br i1 %cond3, label %fork1, label %fork2, !prof !8
1380
1381else2:
1382  call void @cold_function()
1383  br label %fork2
1384
1385fork1:
1386  call void @a()
1387  br label %exit
1388
1389fork2:
1390  call void @b()
1391  br label %exit
1392
1393exit:
1394  call void @hot_function()
1395  ret void
1396}
1397
1398define void @test_forked_hot_diamond_stays_hot(ptr %a) {
1399; Test that a hot-branch with probability > 88.88% (1:8) followed by a 50/50
1400; branch will not place the cold predecessor as the probability for the
1401; fallthrough stays above 80%
1402; (1:8) followed by (1:1) is still (1:4)
1403; Here we use 90% probability because two in a row
1404; have a 89 % probability vs the original branch.
1405; CHECK-LABEL: test_forked_hot_diamond_stays_hot
1406; CHECK: %entry
1407; CHECK: %then1
1408; CHECK: %then2
1409; CHECK: %fork1
1410; CHECK: %else1
1411; CHECK: %else2
1412; CHECK: %fork2
1413; CHECK: %exit
1414entry:
1415  %gep1 = getelementptr i32, ptr %a, i32 1
1416  %val1 = load i32, ptr %gep1
1417  %cond1 = icmp ugt i32 %val1, 1
1418  br i1 %cond1, label %then1, label %else1, !prof !10
1419
1420then1:
1421  call void @hot_function()
1422  %gep2 = getelementptr i32, ptr %a, i32 2
1423  %val2 = load i32, ptr %gep2
1424  %cond2 = icmp ugt i32 %val2, 2
1425  br i1 %cond2, label %then2, label %else2, !prof !10
1426
1427else1:
1428  call void @cold_function()
1429  br label %fork1
1430
1431then2:
1432  call void @hot_function()
1433  %gep3 = getelementptr i32, ptr %a, i32 3
1434  %val3 = load i32, ptr %gep2
1435  %cond3 = icmp ugt i32 %val2, 3
1436  br i1 %cond3, label %fork1, label %fork2, !prof !8
1437
1438else2:
1439  call void @cold_function()
1440  br label %fork2
1441
1442fork1:
1443  call void @a()
1444  br label %exit
1445
1446fork2:
1447  call void @b()
1448  br label %exit
1449
1450exit:
1451  call void @hot_function()
1452  ret void
1453}
1454
1455; Because %endif has a higher frequency than %if, the calculations show we
1456; shouldn't tail-duplicate %endif so that we can place it after %if. We were
1457; previously undercounting the cost by ignoring execution frequency that didn't
1458; come from the %if->%endif path.
1459; CHECK-LABEL: higher_frequency_succ_tail_dup
1460; CHECK: %entry
1461; CHECK: %elseif
1462; CHECK: %else
1463; CHECK: %endif
1464; CHECK: %then
1465; CHECK: %ret
1466define void @higher_frequency_succ_tail_dup(i1 %a, i1 %b, i1 %c) {
1467entry:
1468  br label %if
1469if:                                               ; preds = %entry
1470  call void @effect(i32 0)
1471  br i1 %a, label %elseif, label %endif, !prof !11 ; even
1472
1473elseif:                                           ; preds = %if
1474  call void @effect(i32 1)
1475  br i1 %b, label %else, label %endif, !prof !11 ; even
1476
1477else:                                             ; preds = %elseif
1478  call void @effect(i32 2)
1479  br label %endif
1480
1481endif:                                            ; preds = %if, %elseif, %else
1482  br i1 %c, label %then, label %ret, !prof !12 ; 5 to 3
1483
1484then:                                             ; preds = %endif
1485  call void @effect(i32 3)
1486  br label %ret
1487
1488ret:                                              ; preds = %endif, %then
1489  ret void
1490}
1491
1492define i32 @not_rotate_if_extra_branch(i32 %count) {
1493; Test checks that there is no loop rotation
1494; if it introduces extra branch.
1495; Specifically in this case because best exit is .header
1496; but it has fallthrough to .middle block and last block in
1497; loop chain .slow does not have afallthrough to .header.
1498; CHECK-LABEL: not_rotate_if_extra_branch
1499; CHECK: %.entry
1500; CHECK: %.header
1501; CHECK: %.middle
1502; CHECK: %.backedge
1503; CHECK: %.slow
1504; CHECK: %.bailout
1505; CHECK: %.stop
1506.entry:
1507  %sum.0 = shl nsw i32 %count, 1
1508  br label %.header
1509
1510.header:
1511  %i = phi i32 [ %i.1, %.backedge ], [ 0, %.entry ]
1512  %sum = phi i32 [ %sum.1, %.backedge ], [ %sum.0, %.entry ]
1513  %is_exc = icmp sgt i32 %i, 9000000
1514  br i1 %is_exc, label %.bailout, label %.middle, !prof !13
1515
1516.bailout:
1517  %sum.2 = add nsw i32 %count, 1
1518  br label %.stop
1519
1520.middle:
1521  %pr.1 = and i32 %i, 1023
1522  %pr.2 = icmp eq i32 %pr.1, 0
1523  br i1 %pr.2, label %.slow, label %.backedge, !prof !14
1524
1525.slow:
1526  tail call void @effect(i32 %sum)
1527  br label %.backedge
1528
1529.backedge:
1530  %sum.1 = add nsw i32 %i, %sum
1531  %i.1 = add nsw i32 %i, 1
1532  %end = icmp slt i32 %i.1, %count
1533  br i1 %end, label %.header, label %.stop, !prof !15
1534
1535.stop:
1536  %sum.phi = phi i32 [ %sum.1, %.backedge ], [ %sum.2, %.bailout ]
1537  ret i32 %sum.phi
1538}
1539
1540define i32 @not_rotate_if_extra_branch_regression(i32 %count, i32 %init) {
1541; This is a regression test against patch avoid loop rotation if
1542; it introduce an extra btanch.
1543; CHECK-LABEL: not_rotate_if_extra_branch_regression
1544; CHECK: %.entry
1545; CHECK: %.first_backedge
1546; CHECK: %.second_header
1547; CHECK: %.slow
1548.entry:
1549  %sum.0 = shl nsw i32 %count, 1
1550  br label %.first_header
1551
1552.first_header:
1553  %i = phi i32 [ %i.1, %.first_backedge ], [ 0, %.entry ]
1554  %is_bo1 = icmp sgt i32 %i, 9000000
1555  br i1 %is_bo1, label %.bailout, label %.first_backedge, !prof !14
1556
1557.first_backedge:
1558  %i.1 = add nsw i32 %i, 1
1559  %end = icmp slt i32 %i.1, %count
1560  br i1 %end, label %.first_header, label %.second_header, !prof !13
1561
1562.second_header:
1563  %j = phi i32 [ %j.1, %.second_backedge ], [ %init, %.first_backedge ]
1564  %end.2 = icmp sgt i32 %j, %count
1565  br i1 %end.2, label %.stop, label %.second_middle, !prof !14
1566
1567.second_middle:
1568  %is_slow = icmp sgt i32 %j, 9000000
1569  br i1 %is_slow, label %.slow, label %.second_backedge, !prof !14
1570
1571.slow:
1572  tail call void @effect(i32 %j)
1573  br label %.second_backedge
1574
1575.second_backedge:
1576  %j.1 = add nsw i32 %j, 1
1577  %end.3 = icmp slt i32 %j, 10000000
1578  br i1 %end.3, label %.second_header, label %.stop, !prof !13
1579
1580.stop:
1581  %res = add nsw i32 %j, %i.1
1582  ret i32 %res
1583
1584.bailout:
1585  ret i32 0
1586}
1587
1588declare void @effect(i32)
1589
1590!5 = !{!"branch_weights", i32 84, i32 16}
1591!6 = !{!"function_entry_count", i32 10}
1592!7 = !{!"branch_weights", i32 60, i32 40}
1593!8 = !{!"branch_weights", i32 5001, i32 4999}
1594!9 = !{!"branch_weights", i32 85, i32 15}
1595!10 = !{!"branch_weights", i32 90, i32 10}
1596!11 = !{!"branch_weights", i32 1, i32 1}
1597!12 = !{!"branch_weights", i32 5, i32 3}
1598!13 = !{!"branch_weights", i32 1, i32 1}
1599!14 = !{!"branch_weights", i32 1, i32 1023}
1600!15 = !{!"branch_weights", i32 4095, i32 1}
1601