xref: /netbsd-src/external/gpl3/gcc.old/dist/gcc/bb-reorder.c (revision 23f5f46327e37e7811da3520f4bb933f9489322f)
1 /* Basic block reordering routines for the GNU compiler.
2    Copyright (C) 2000-2020 Free Software Foundation, Inc.
3 
4    This file is part of GCC.
5 
6    GCC is free software; you can redistribute it and/or modify it
7    under the terms of the GNU General Public License as published by
8    the Free Software Foundation; either version 3, or (at your option)
9    any later version.
10 
11    GCC is distributed in the hope that it will be useful, but WITHOUT
12    ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
13    or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public
14    License for more details.
15 
16    You should have received a copy of the GNU General Public License
17    along with GCC; see the file COPYING3.  If not see
18    <http://www.gnu.org/licenses/>.  */
19 
20 /* This file contains the "reorder blocks" pass, which changes the control
21    flow of a function to encounter fewer branches; the "partition blocks"
22    pass, which divides the basic blocks into "hot" and "cold" partitions,
23    which are kept separate; and the "duplicate computed gotos" pass, which
24    duplicates blocks ending in an indirect jump.
25 
26    There are two algorithms for "reorder blocks": the "simple" algorithm,
27    which just rearranges blocks, trying to minimize the number of executed
28    unconditional branches; and the "software trace cache" algorithm, which
29    also copies code, and in general tries a lot harder to have long linear
30    pieces of machine code executed.  This algorithm is described next.  */
31 
32 /* This (greedy) algorithm constructs traces in several rounds.
33    The construction starts from "seeds".  The seed for the first round
34    is the entry point of the function.  When there are more than one seed,
35    the one with the lowest key in the heap is selected first (see bb_to_key).
36    Then the algorithm repeatedly adds the most probable successor to the end
37    of a trace.  Finally it connects the traces.
38 
39    There are two parameters: Branch Threshold and Exec Threshold.
40    If the probability of an edge to a successor of the current basic block is
41    lower than Branch Threshold or its count is lower than Exec Threshold,
42    then the successor will be the seed in one of the next rounds.
43    Each round has these parameters lower than the previous one.
44    The last round has to have these parameters set to zero so that the
45    remaining blocks are picked up.
46 
47    The algorithm selects the most probable successor from all unvisited
48    successors and successors that have been added to this trace.
49    The other successors (that has not been "sent" to the next round) will be
50    other seeds for this round and the secondary traces will start from them.
51    If the successor has not been visited in this trace, it is added to the
52    trace (however, there is some heuristic for simple branches).
53    If the successor has been visited in this trace, a loop has been found.
54    If the loop has many iterations, the loop is rotated so that the source
55    block of the most probable edge going out of the loop is the last block
56    of the trace.
57    If the loop has few iterations and there is no edge from the last block of
58    the loop going out of the loop, the loop header is duplicated.
59 
60    When connecting traces, the algorithm first checks whether there is an edge
61    from the last block of a trace to the first block of another trace.
62    When there are still some unconnected traces it checks whether there exists
63    a basic block BB such that BB is a successor of the last block of a trace
64    and BB is a predecessor of the first block of another trace.  In this case,
65    BB is duplicated, added at the end of the first trace and the traces are
66    connected through it.
67    The rest of traces are simply connected so there will be a jump to the
68    beginning of the rest of traces.
69 
70    The above description is for the full algorithm, which is used when the
71    function is optimized for speed.  When the function is optimized for size,
72    in order to reduce long jumps and connect more fallthru edges, the
73    algorithm is modified as follows:
74    (1) Break long traces to short ones.  A trace is broken at a block that has
75    multiple predecessors/ successors during trace discovery.  When connecting
76    traces, only connect Trace n with Trace n + 1.  This change reduces most
77    long jumps compared with the above algorithm.
78    (2) Ignore the edge probability and count for fallthru edges.
79    (3) Keep the original order of blocks when there is no chance to fall
80    through.  We rely on the results of cfg_cleanup.
81 
82    To implement the change for code size optimization, block's index is
83    selected as the key and all traces are found in one round.
84 
85    References:
86 
87    "Software Trace Cache"
88    A. Ramirez, J. Larriba-Pey, C. Navarro, J. Torrellas and M. Valero; 1999
89    http://citeseer.nj.nec.com/15361.html
90 
91 */
92 
93 #include "config.h"
94 #include "system.h"
95 #include "coretypes.h"
96 #include "backend.h"
97 #include "target.h"
98 #include "rtl.h"
99 #include "tree.h"
100 #include "cfghooks.h"
101 #include "df.h"
102 #include "memmodel.h"
103 #include "optabs.h"
104 #include "regs.h"
105 #include "emit-rtl.h"
106 #include "output.h"
107 #include "expr.h"
108 #include "tree-pass.h"
109 #include "cfgrtl.h"
110 #include "cfganal.h"
111 #include "cfgbuild.h"
112 #include "cfgcleanup.h"
113 #include "bb-reorder.h"
114 #include "except.h"
115 #include "alloc-pool.h"
116 #include "fibonacci_heap.h"
117 #include "stringpool.h"
118 #include "attribs.h"
119 #include "common/common-target.h"
120 
121 /* The number of rounds.  In most cases there will only be 4 rounds, but
122    when partitioning hot and cold basic blocks into separate sections of
123    the object file there will be an extra round.  */
124 #define N_ROUNDS 5
125 
126 struct target_bb_reorder default_target_bb_reorder;
127 #if SWITCHABLE_TARGET
128 struct target_bb_reorder *this_target_bb_reorder = &default_target_bb_reorder;
129 #endif
130 
131 #define uncond_jump_length \
132   (this_target_bb_reorder->x_uncond_jump_length)
133 
134 /* Branch thresholds in thousandths (per mille) of the REG_BR_PROB_BASE.  */
135 static const int branch_threshold[N_ROUNDS] = {400, 200, 100, 0, 0};
136 
137 /* Exec thresholds in thousandths (per mille) of the count of bb 0.  */
138 static const int exec_threshold[N_ROUNDS] = {500, 200, 50, 0, 0};
139 
140 /* If edge count is lower than DUPLICATION_THRESHOLD per mille of entry
141    block the edge destination is not duplicated while connecting traces.  */
142 #define DUPLICATION_THRESHOLD 100
143 
144 typedef fibonacci_heap <long, basic_block_def> bb_heap_t;
145 typedef fibonacci_node <long, basic_block_def> bb_heap_node_t;
146 
147 /* Structure to hold needed information for each basic block.  */
148 struct bbro_basic_block_data
149 {
150   /* Which trace is the bb start of (-1 means it is not a start of any).  */
151   int start_of_trace;
152 
153   /* Which trace is the bb end of (-1 means it is not an end of any).  */
154   int end_of_trace;
155 
156   /* Which trace is the bb in?  */
157   int in_trace;
158 
159   /* Which trace was this bb visited in?  */
160   int visited;
161 
162   /* Cached maximum frequency of interesting incoming edges.
163      Minus one means not yet computed.  */
164   int priority;
165 
166   /* Which heap is BB in (if any)?  */
167   bb_heap_t *heap;
168 
169   /* Which heap node is BB in (if any)?  */
170   bb_heap_node_t *node;
171 };
172 
173 /* The current size of the following dynamic array.  */
174 static int array_size;
175 
176 /* The array which holds needed information for basic blocks.  */
177 static bbro_basic_block_data *bbd;
178 
179 /* To avoid frequent reallocation the size of arrays is greater than needed,
180    the number of elements is (not less than) 1.25 * size_wanted.  */
181 #define GET_ARRAY_SIZE(X) ((((X) / 4) + 1) * 5)
182 
183 /* Free the memory and set the pointer to NULL.  */
184 #define FREE(P) (gcc_assert (P), free (P), P = 0)
185 
186 /* Structure for holding information about a trace.  */
187 struct trace
188 {
189   /* First and last basic block of the trace.  */
190   basic_block first, last;
191 
192   /* The round of the STC creation which this trace was found in.  */
193   int round;
194 
195   /* The length (i.e. the number of basic blocks) of the trace.  */
196   int length;
197 };
198 
199 /* Maximum count of one of the entry blocks.  */
200 static profile_count max_entry_count;
201 
202 /* Local function prototypes.  */
203 static void find_traces_1_round (int, profile_count, struct trace *, int *,
204 				 int, bb_heap_t **, int);
205 static basic_block copy_bb (basic_block, edge, basic_block, int);
206 static long bb_to_key (basic_block);
207 static bool better_edge_p (const_basic_block, const_edge, profile_probability,
208 			   profile_count, profile_probability, profile_count,
209 			   const_edge);
210 static bool copy_bb_p (const_basic_block, int);
211 
212 /* Return the trace number in which BB was visited.  */
213 
214 static int
bb_visited_trace(const_basic_block bb)215 bb_visited_trace (const_basic_block bb)
216 {
217   gcc_assert (bb->index < array_size);
218   return bbd[bb->index].visited;
219 }
220 
221 /* This function marks BB that it was visited in trace number TRACE.  */
222 
223 static void
mark_bb_visited(basic_block bb,int trace)224 mark_bb_visited (basic_block bb, int trace)
225 {
226   bbd[bb->index].visited = trace;
227   if (bbd[bb->index].heap)
228     {
229       bbd[bb->index].heap->delete_node (bbd[bb->index].node);
230       bbd[bb->index].heap = NULL;
231       bbd[bb->index].node = NULL;
232     }
233 }
234 
235 /* Check to see if bb should be pushed into the next round of trace
236    collections or not.  Reasons for pushing the block forward are 1).
237    If the block is cold, we are doing partitioning, and there will be
238    another round (cold partition blocks are not supposed to be
239    collected into traces until the very last round); or 2). There will
240    be another round, and the basic block is not "hot enough" for the
241    current round of trace collection.  */
242 
243 static bool
push_to_next_round_p(const_basic_block bb,int round,int number_of_rounds,profile_count count_th)244 push_to_next_round_p (const_basic_block bb, int round, int number_of_rounds,
245 		      profile_count count_th)
246 {
247   bool there_exists_another_round;
248   bool block_not_hot_enough;
249 
250   there_exists_another_round = round < number_of_rounds - 1;
251 
252   block_not_hot_enough = (bb->count < count_th
253 			  || probably_never_executed_bb_p (cfun, bb));
254 
255   if (there_exists_another_round
256       && block_not_hot_enough)
257     return true;
258   else
259     return false;
260 }
261 
262 /* Find the traces for Software Trace Cache.  Chain each trace through
263    RBI()->next.  Store the number of traces to N_TRACES and description of
264    traces to TRACES.  */
265 
266 static void
find_traces(int * n_traces,struct trace * traces)267 find_traces (int *n_traces, struct trace *traces)
268 {
269   int i;
270   int number_of_rounds;
271   edge e;
272   edge_iterator ei;
273   bb_heap_t *heap = new bb_heap_t (LONG_MIN);
274 
275   /* Add one extra round of trace collection when partitioning hot/cold
276      basic blocks into separate sections.  The last round is for all the
277      cold blocks (and ONLY the cold blocks).  */
278 
279   number_of_rounds = N_ROUNDS - 1;
280 
281   /* Insert entry points of function into heap.  */
282   max_entry_count = profile_count::zero ();
283   FOR_EACH_EDGE (e, ei, ENTRY_BLOCK_PTR_FOR_FN (cfun)->succs)
284     {
285       bbd[e->dest->index].heap = heap;
286       bbd[e->dest->index].node = heap->insert (bb_to_key (e->dest), e->dest);
287       if (e->dest->count > max_entry_count)
288 	max_entry_count = e->dest->count;
289     }
290 
291   /* Find the traces.  */
292   for (i = 0; i < number_of_rounds; i++)
293     {
294       profile_count count_threshold;
295 
296       if (dump_file)
297 	fprintf (dump_file, "STC - round %d\n", i + 1);
298 
299       count_threshold = max_entry_count.apply_scale (exec_threshold[i], 1000);
300 
301       find_traces_1_round (REG_BR_PROB_BASE * branch_threshold[i] / 1000,
302 			   count_threshold, traces, n_traces, i, &heap,
303 			   number_of_rounds);
304     }
305   delete heap;
306 
307   if (dump_file)
308     {
309       for (i = 0; i < *n_traces; i++)
310 	{
311 	  basic_block bb;
312 	  fprintf (dump_file, "Trace %d (round %d):  ", i + 1,
313 		   traces[i].round + 1);
314 	  for (bb = traces[i].first;
315 	       bb != traces[i].last;
316 	       bb = (basic_block) bb->aux)
317 	    {
318 	      fprintf (dump_file, "%d [", bb->index);
319 	      bb->count.dump (dump_file);
320 	      fprintf (dump_file, "] ");
321 	    }
322 	  fprintf (dump_file, "%d [", bb->index);
323 	  bb->count.dump (dump_file);
324 	  fprintf (dump_file, "]\n");
325 	}
326       fflush (dump_file);
327     }
328 }
329 
330 /* Rotate loop whose back edge is BACK_EDGE in the tail of trace TRACE
331    (with sequential number TRACE_N).  */
332 
333 static basic_block
rotate_loop(edge back_edge,struct trace * trace,int trace_n)334 rotate_loop (edge back_edge, struct trace *trace, int trace_n)
335 {
336   basic_block bb;
337 
338   /* Information about the best end (end after rotation) of the loop.  */
339   basic_block best_bb = NULL;
340   edge best_edge = NULL;
341   profile_count best_count = profile_count::uninitialized ();
342   /* The best edge is preferred when its destination is not visited yet
343      or is a start block of some trace.  */
344   bool is_preferred = false;
345 
346   /* Find the most frequent edge that goes out from current trace.  */
347   bb = back_edge->dest;
348   do
349     {
350       edge e;
351       edge_iterator ei;
352 
353       FOR_EACH_EDGE (e, ei, bb->succs)
354 	if (e->dest != EXIT_BLOCK_PTR_FOR_FN (cfun)
355 	    && bb_visited_trace (e->dest) != trace_n
356 	    && (e->flags & EDGE_CAN_FALLTHRU)
357 	    && !(e->flags & EDGE_COMPLEX))
358 	{
359 	  if (is_preferred)
360 	    {
361 	      /* The best edge is preferred.  */
362 	      if (!bb_visited_trace (e->dest)
363 		  || bbd[e->dest->index].start_of_trace >= 0)
364 		{
365 		  /* The current edge E is also preferred.  */
366 		  if (e->count () > best_count)
367 		    {
368 		      best_count = e->count ();
369 		      best_edge = e;
370 		      best_bb = bb;
371 		    }
372 		}
373 	    }
374 	  else
375 	    {
376 	      if (!bb_visited_trace (e->dest)
377 		  || bbd[e->dest->index].start_of_trace >= 0)
378 		{
379 		  /* The current edge E is preferred.  */
380 		  is_preferred = true;
381 		  best_count = e->count ();
382 		  best_edge = e;
383 		  best_bb = bb;
384 		}
385 	      else
386 		{
387 		  if (!best_edge || e->count () > best_count)
388 		    {
389 		      best_count = e->count ();
390 		      best_edge = e;
391 		      best_bb = bb;
392 		    }
393 		}
394 	    }
395 	}
396       bb = (basic_block) bb->aux;
397     }
398   while (bb != back_edge->dest);
399 
400   if (best_bb)
401     {
402       /* Rotate the loop so that the BEST_EDGE goes out from the last block of
403 	 the trace.  */
404       if (back_edge->dest == trace->first)
405 	{
406 	  trace->first = (basic_block) best_bb->aux;
407 	}
408       else
409 	{
410 	  basic_block prev_bb;
411 
412 	  for (prev_bb = trace->first;
413 	       prev_bb->aux != back_edge->dest;
414 	       prev_bb = (basic_block) prev_bb->aux)
415 	    ;
416 	  prev_bb->aux = best_bb->aux;
417 
418 	  /* Try to get rid of uncond jump to cond jump.  */
419 	  if (single_succ_p (prev_bb))
420 	    {
421 	      basic_block header = single_succ (prev_bb);
422 
423 	      /* Duplicate HEADER if it is a small block containing cond jump
424 		 in the end.  */
425 	      if (any_condjump_p (BB_END (header)) && copy_bb_p (header, 0)
426 		  && !CROSSING_JUMP_P (BB_END (header)))
427 		copy_bb (header, single_succ_edge (prev_bb), prev_bb, trace_n);
428 	    }
429 	}
430     }
431   else
432     {
433       /* We have not found suitable loop tail so do no rotation.  */
434       best_bb = back_edge->src;
435     }
436   best_bb->aux = NULL;
437   return best_bb;
438 }
439 
440 /* One round of finding traces.  Find traces for BRANCH_TH and EXEC_TH i.e. do
441    not include basic blocks whose probability is lower than BRANCH_TH or whose
442    count is lower than EXEC_TH into traces (or whose count is lower than
443    COUNT_TH).  Store the new traces into TRACES and modify the number of
444    traces *N_TRACES.  Set the round (which the trace belongs to) to ROUND.
445    The function expects starting basic blocks to be in *HEAP and will delete
446    *HEAP and store starting points for the next round into new *HEAP.  */
447 
448 static void
find_traces_1_round(int branch_th,profile_count count_th,struct trace * traces,int * n_traces,int round,bb_heap_t ** heap,int number_of_rounds)449 find_traces_1_round (int branch_th, profile_count count_th,
450 		     struct trace *traces, int *n_traces, int round,
451 		     bb_heap_t **heap, int number_of_rounds)
452 {
453   /* Heap for discarded basic blocks which are possible starting points for
454      the next round.  */
455   bb_heap_t *new_heap = new bb_heap_t (LONG_MIN);
456   bool for_size = optimize_function_for_size_p (cfun);
457 
458   while (!(*heap)->empty ())
459     {
460       basic_block bb;
461       struct trace *trace;
462       edge best_edge, e;
463       long key;
464       edge_iterator ei;
465 
466       bb = (*heap)->extract_min ();
467       bbd[bb->index].heap = NULL;
468       bbd[bb->index].node = NULL;
469 
470       if (dump_file)
471 	fprintf (dump_file, "Getting bb %d\n", bb->index);
472 
473       /* If the BB's count is too low, send BB to the next round.  When
474 	 partitioning hot/cold blocks into separate sections, make sure all
475 	 the cold blocks (and ONLY the cold blocks) go into the (extra) final
476 	 round.  When optimizing for size, do not push to next round.  */
477 
478       if (!for_size
479 	  && push_to_next_round_p (bb, round, number_of_rounds,
480 				   count_th))
481 	{
482 	  int key = bb_to_key (bb);
483 	  bbd[bb->index].heap = new_heap;
484 	  bbd[bb->index].node = new_heap->insert (key, bb);
485 
486 	  if (dump_file)
487 	    fprintf (dump_file,
488 		     "  Possible start point of next round: %d (key: %d)\n",
489 		     bb->index, key);
490 	  continue;
491 	}
492 
493       trace = traces + *n_traces;
494       trace->first = bb;
495       trace->round = round;
496       trace->length = 0;
497       bbd[bb->index].in_trace = *n_traces;
498       (*n_traces)++;
499 
500       do
501 	{
502 	  bool ends_in_call;
503 
504 	  /* The probability and count of the best edge.  */
505 	  profile_probability best_prob = profile_probability::uninitialized ();
506 	  profile_count best_count = profile_count::uninitialized ();
507 
508 	  best_edge = NULL;
509 	  mark_bb_visited (bb, *n_traces);
510 	  trace->length++;
511 
512 	  if (dump_file)
513 	    fprintf (dump_file, "Basic block %d was visited in trace %d\n",
514 		     bb->index, *n_traces);
515 
516 	  ends_in_call = block_ends_with_call_p (bb);
517 
518 	  /* Select the successor that will be placed after BB.  */
519 	  FOR_EACH_EDGE (e, ei, bb->succs)
520 	    {
521 	      gcc_assert (!(e->flags & EDGE_FAKE));
522 
523 	      if (e->dest == EXIT_BLOCK_PTR_FOR_FN (cfun))
524 		continue;
525 
526 	      if (bb_visited_trace (e->dest)
527 		  && bb_visited_trace (e->dest) != *n_traces)
528 		continue;
529 
530 	      /* If partitioning hot/cold basic blocks, don't consider edges
531 		 that cross section boundaries.  */
532 	      if (BB_PARTITION (e->dest) != BB_PARTITION (bb))
533 		continue;
534 
535 	      profile_probability prob = e->probability;
536 	      profile_count count = e->dest->count;
537 
538 	      /* The only sensible preference for a call instruction is the
539 		 fallthru edge.  Don't bother selecting anything else.  */
540 	      if (ends_in_call)
541 		{
542 		  if (e->flags & EDGE_CAN_FALLTHRU)
543 		    {
544 		      best_edge = e;
545 		      best_prob = prob;
546 		      best_count = count;
547 		    }
548 		  continue;
549 		}
550 
551 	      /* Edge that cannot be fallthru or improbable or infrequent
552 		 successor (i.e. it is unsuitable successor).  When optimizing
553 		 for size, ignore the probability and count.  */
554 	      if (!(e->flags & EDGE_CAN_FALLTHRU) || (e->flags & EDGE_COMPLEX)
555 		  || !prob.initialized_p ()
556 		  || ((prob.to_reg_br_prob_base () < branch_th
557 		      || e->count () < count_th) && (!for_size)))
558 		continue;
559 
560 	      if (better_edge_p (bb, e, prob, count, best_prob, best_count,
561 				 best_edge))
562 		{
563 		  best_edge = e;
564 		  best_prob = prob;
565 		  best_count = count;
566 		}
567 	    }
568 
569 	  /* If the best destination has multiple predecessors and can be
570 	     duplicated cheaper than a jump, don't allow it to be added to
571 	     a trace; we'll duplicate it when connecting the traces later.
572 	     However, we need to check that this duplication wouldn't leave
573 	     the best destination with only crossing predecessors, because
574 	     this would change its effective partition from hot to cold.  */
575 	  if (best_edge
576 	      && EDGE_COUNT (best_edge->dest->preds) >= 2
577 	      && copy_bb_p (best_edge->dest, 0))
578 	    {
579 	      bool only_crossing_preds = true;
580 	      edge e;
581 	      edge_iterator ei;
582 	      FOR_EACH_EDGE (e, ei, best_edge->dest->preds)
583 		if (e != best_edge && !(e->flags & EDGE_CROSSING))
584 		  {
585 		    only_crossing_preds = false;
586 		    break;
587 		  }
588 	      if (!only_crossing_preds)
589 		best_edge = NULL;
590 	    }
591 
592 	  /* If the best destination has multiple successors or predecessors,
593 	     don't allow it to be added when optimizing for size.  This makes
594 	     sure predecessors with smaller index are handled before the best
595 	     destination.  It breaks long trace and reduces long jumps.
596 
597 	     Take if-then-else as an example.
598 		A
599 	       / \
600 	      B   C
601 	       \ /
602 		D
603 	     If we do not remove the best edge B->D/C->D, the final order might
604 	     be A B D ... C.  C is at the end of the program.  If D's successors
605 	     and D are complicated, might need long jumps for A->C and C->D.
606 	     Similar issue for order: A C D ... B.
607 
608 	     After removing the best edge, the final result will be ABCD/ ACBD.
609 	     It does not add jump compared with the previous order.  But it
610 	     reduces the possibility of long jumps.  */
611 	  if (best_edge && for_size
612 	      && (EDGE_COUNT (best_edge->dest->succs) > 1
613 		 || EDGE_COUNT (best_edge->dest->preds) > 1))
614 	    best_edge = NULL;
615 
616 	  /* Add all non-selected successors to the heaps.  */
617 	  FOR_EACH_EDGE (e, ei, bb->succs)
618 	    {
619 	      if (e == best_edge
620 		  || e->dest == EXIT_BLOCK_PTR_FOR_FN (cfun)
621 		  || bb_visited_trace (e->dest))
622 		continue;
623 
624 	      key = bb_to_key (e->dest);
625 
626 	      if (bbd[e->dest->index].heap)
627 		{
628 		  /* E->DEST is already in some heap.  */
629 		  if (key != bbd[e->dest->index].node->get_key ())
630 		    {
631 		      if (dump_file)
632 			{
633 			  fprintf (dump_file,
634 				   "Changing key for bb %d from %ld to %ld.\n",
635 				   e->dest->index,
636 				   (long) bbd[e->dest->index].node->get_key (),
637 				   key);
638 			}
639 		      bbd[e->dest->index].heap->replace_key
640 		        (bbd[e->dest->index].node, key);
641 		    }
642 		}
643 	      else
644 		{
645 		  bb_heap_t *which_heap = *heap;
646 
647 		  profile_probability prob = e->probability;
648 
649 		  if (!(e->flags & EDGE_CAN_FALLTHRU)
650 		      || (e->flags & EDGE_COMPLEX)
651 		      || !prob.initialized_p ()
652 		      || prob.to_reg_br_prob_base () < branch_th
653 		      || e->count () < count_th)
654 		    {
655 		      /* When partitioning hot/cold basic blocks, make sure
656 			 the cold blocks (and only the cold blocks) all get
657 			 pushed to the last round of trace collection.  When
658 			 optimizing for size, do not push to next round.  */
659 
660 		      if (!for_size && push_to_next_round_p (e->dest, round,
661 							     number_of_rounds,
662 							     count_th))
663 			which_heap = new_heap;
664 		    }
665 
666 		  bbd[e->dest->index].heap = which_heap;
667 		  bbd[e->dest->index].node = which_heap->insert (key, e->dest);
668 
669 		  if (dump_file)
670 		    {
671 		      fprintf (dump_file,
672 			       "  Possible start of %s round: %d (key: %ld)\n",
673 			       (which_heap == new_heap) ? "next" : "this",
674 			       e->dest->index, (long) key);
675 		    }
676 
677 		}
678 	    }
679 
680 	  if (best_edge) /* Suitable successor was found.  */
681 	    {
682 	      if (bb_visited_trace (best_edge->dest) == *n_traces)
683 		{
684 		  /* We do nothing with one basic block loops.  */
685 		  if (best_edge->dest != bb)
686 		    {
687 		      if (best_edge->count ()
688 			  > best_edge->dest->count.apply_scale (4, 5))
689 			{
690 			  /* The loop has at least 4 iterations.  If the loop
691 			     header is not the first block of the function
692 			     we can rotate the loop.  */
693 
694 			  if (best_edge->dest
695 			      != ENTRY_BLOCK_PTR_FOR_FN (cfun)->next_bb)
696 			    {
697 			      if (dump_file)
698 				{
699 				  fprintf (dump_file,
700 					   "Rotating loop %d - %d\n",
701 					   best_edge->dest->index, bb->index);
702 				}
703 			      bb->aux = best_edge->dest;
704 			      bbd[best_edge->dest->index].in_trace =
705 							     (*n_traces) - 1;
706 			      bb = rotate_loop (best_edge, trace, *n_traces);
707 			    }
708 			}
709 		      else
710 			{
711 			  /* The loop has less than 4 iterations.  */
712 
713 			  if (single_succ_p (bb)
714 			      && copy_bb_p (best_edge->dest,
715 			      		    optimize_edge_for_speed_p
716 			      		    (best_edge)))
717 			    {
718 			      bb = copy_bb (best_edge->dest, best_edge, bb,
719 					    *n_traces);
720 			      trace->length++;
721 			    }
722 			}
723 		    }
724 
725 		  /* Terminate the trace.  */
726 		  break;
727 		}
728 	      else
729 		{
730 		  /* Check for a situation
731 
732 		    A
733 		   /|
734 		  B |
735 		   \|
736 		    C
737 
738 		  where
739 		  AB->count () + BC->count () >= AC->count ().
740 		  (i.e. 2 * B->count >= AC->count )
741 		  Best ordering is then A B C.
742 
743 		  When optimizing for size, A B C is always the best order.
744 
745 		  This situation is created for example by:
746 
747 		  if (A) B;
748 		  C;
749 
750 		  */
751 
752 		  FOR_EACH_EDGE (e, ei, bb->succs)
753 		    if (e != best_edge
754 			&& (e->flags & EDGE_CAN_FALLTHRU)
755 			&& !(e->flags & EDGE_COMPLEX)
756 			&& !bb_visited_trace (e->dest)
757 			&& single_pred_p (e->dest)
758 			&& !(e->flags & EDGE_CROSSING)
759 			&& single_succ_p (e->dest)
760 			&& (single_succ_edge (e->dest)->flags
761 			    & EDGE_CAN_FALLTHRU)
762 			&& !(single_succ_edge (e->dest)->flags & EDGE_COMPLEX)
763 			&& single_succ (e->dest) == best_edge->dest
764 			&& (e->dest->count.apply_scale (2, 1)
765 			    >= best_edge->count () || for_size))
766 		      {
767 			best_edge = e;
768 			if (dump_file)
769 			  fprintf (dump_file, "Selecting BB %d\n",
770 				   best_edge->dest->index);
771 			break;
772 		      }
773 
774 		  bb->aux = best_edge->dest;
775 		  bbd[best_edge->dest->index].in_trace = (*n_traces) - 1;
776 		  bb = best_edge->dest;
777 		}
778 	    }
779 	}
780       while (best_edge);
781       trace->last = bb;
782       bbd[trace->first->index].start_of_trace = *n_traces - 1;
783       if (bbd[trace->last->index].end_of_trace != *n_traces - 1)
784 	{
785 	  bbd[trace->last->index].end_of_trace = *n_traces - 1;
786 	  /* Update the cached maximum frequency for interesting predecessor
787 	     edges for successors of the new trace end.  */
788 	  FOR_EACH_EDGE (e, ei, trace->last->succs)
789 	    if (EDGE_FREQUENCY (e) > bbd[e->dest->index].priority)
790 	      bbd[e->dest->index].priority = EDGE_FREQUENCY (e);
791 	}
792 
793       /* The trace is terminated so we have to recount the keys in heap
794 	 (some block can have a lower key because now one of its predecessors
795 	 is an end of the trace).  */
796       FOR_EACH_EDGE (e, ei, bb->succs)
797 	{
798 	  if (e->dest == EXIT_BLOCK_PTR_FOR_FN (cfun)
799 	      || bb_visited_trace (e->dest))
800 	    continue;
801 
802 	  if (bbd[e->dest->index].heap)
803 	    {
804 	      key = bb_to_key (e->dest);
805 	      if (key != bbd[e->dest->index].node->get_key ())
806 		{
807 		  if (dump_file)
808 		    {
809 		      fprintf (dump_file,
810 			       "Changing key for bb %d from %ld to %ld.\n",
811 			       e->dest->index,
812 			       (long) bbd[e->dest->index].node->get_key (), key);
813 		    }
814 		  bbd[e->dest->index].heap->replace_key
815 		    (bbd[e->dest->index].node, key);
816 		}
817 	    }
818 	}
819     }
820 
821   delete (*heap);
822 
823   /* "Return" the new heap.  */
824   *heap = new_heap;
825 }
826 
827 /* Create a duplicate of the basic block OLD_BB and redirect edge E to it, add
828    it to trace after BB, mark OLD_BB visited and update pass' data structures
829    (TRACE is a number of trace which OLD_BB is duplicated to).  */
830 
831 static basic_block
copy_bb(basic_block old_bb,edge e,basic_block bb,int trace)832 copy_bb (basic_block old_bb, edge e, basic_block bb, int trace)
833 {
834   basic_block new_bb;
835 
836   new_bb = duplicate_block (old_bb, e, bb);
837   BB_COPY_PARTITION (new_bb, old_bb);
838 
839   gcc_assert (e->dest == new_bb);
840 
841   if (dump_file)
842     fprintf (dump_file,
843 	     "Duplicated bb %d (created bb %d)\n",
844 	     old_bb->index, new_bb->index);
845 
846   if (new_bb->index >= array_size
847       || last_basic_block_for_fn (cfun) > array_size)
848     {
849       int i;
850       int new_size;
851 
852       new_size = MAX (last_basic_block_for_fn (cfun), new_bb->index + 1);
853       new_size = GET_ARRAY_SIZE (new_size);
854       bbd = XRESIZEVEC (bbro_basic_block_data, bbd, new_size);
855       for (i = array_size; i < new_size; i++)
856 	{
857 	  bbd[i].start_of_trace = -1;
858 	  bbd[i].end_of_trace = -1;
859 	  bbd[i].in_trace = -1;
860 	  bbd[i].visited = 0;
861 	  bbd[i].priority = -1;
862 	  bbd[i].heap = NULL;
863 	  bbd[i].node = NULL;
864 	}
865       array_size = new_size;
866 
867       if (dump_file)
868 	{
869 	  fprintf (dump_file,
870 		   "Growing the dynamic array to %d elements.\n",
871 		   array_size);
872 	}
873     }
874 
875   gcc_assert (!bb_visited_trace (e->dest));
876   mark_bb_visited (new_bb, trace);
877   new_bb->aux = bb->aux;
878   bb->aux = new_bb;
879 
880   bbd[new_bb->index].in_trace = trace;
881 
882   return new_bb;
883 }
884 
885 /* Compute and return the key (for the heap) of the basic block BB.  */
886 
887 static long
bb_to_key(basic_block bb)888 bb_to_key (basic_block bb)
889 {
890   edge e;
891   edge_iterator ei;
892 
893   /* Use index as key to align with its original order.  */
894   if (optimize_function_for_size_p (cfun))
895     return bb->index;
896 
897   /* Do not start in probably never executed blocks.  */
898 
899   if (BB_PARTITION (bb) == BB_COLD_PARTITION
900       || probably_never_executed_bb_p (cfun, bb))
901     return BB_FREQ_MAX;
902 
903   /* Prefer blocks whose predecessor is an end of some trace
904      or whose predecessor edge is EDGE_DFS_BACK.  */
905   int priority = bbd[bb->index].priority;
906   if (priority == -1)
907     {
908       priority = 0;
909       FOR_EACH_EDGE (e, ei, bb->preds)
910 	{
911 	  if ((e->src != ENTRY_BLOCK_PTR_FOR_FN (cfun)
912 	       && bbd[e->src->index].end_of_trace >= 0)
913 	      || (e->flags & EDGE_DFS_BACK))
914 	    {
915 	      int edge_freq = EDGE_FREQUENCY (e);
916 
917 	      if (edge_freq > priority)
918 		priority = edge_freq;
919 	    }
920 	}
921       bbd[bb->index].priority = priority;
922     }
923 
924   if (priority)
925     /* The block with priority should have significantly lower key.  */
926     return -(100 * BB_FREQ_MAX + 100 * priority + bb->count.to_frequency (cfun));
927 
928   return -bb->count.to_frequency (cfun);
929 }
930 
931 /* Return true when the edge E from basic block BB is better than the temporary
932    best edge (details are in function).  The probability of edge E is PROB. The
933    count of the successor is COUNT.  The current best probability is
934    BEST_PROB, the best count is BEST_COUNT.
935    The edge is considered to be equivalent when PROB does not differ much from
936    BEST_PROB; similarly for count.  */
937 
938 static bool
better_edge_p(const_basic_block bb,const_edge e,profile_probability prob,profile_count count,profile_probability best_prob,profile_count best_count,const_edge cur_best_edge)939 better_edge_p (const_basic_block bb, const_edge e, profile_probability prob,
940 	       profile_count count, profile_probability best_prob,
941 	       profile_count best_count, const_edge cur_best_edge)
942 {
943   bool is_better_edge;
944 
945   /* The BEST_* values do not have to be best, but can be a bit smaller than
946      maximum values.  */
947   profile_probability diff_prob = best_prob.apply_scale (1, 10);
948 
949   /* The smaller one is better to keep the original order.  */
950   if (optimize_function_for_size_p (cfun))
951     return !cur_best_edge
952 	   || cur_best_edge->dest->index > e->dest->index;
953 
954   /* Those edges are so expensive that continuing a trace is not useful
955      performance wise.  */
956   if (e->flags & (EDGE_ABNORMAL | EDGE_EH))
957     return false;
958 
959   if (prob > best_prob + diff_prob
960       || (!best_prob.initialized_p ()
961 	  && prob > profile_probability::guessed_never ()))
962     /* The edge has higher probability than the temporary best edge.  */
963     is_better_edge = true;
964   else if (prob < best_prob - diff_prob)
965     /* The edge has lower probability than the temporary best edge.  */
966     is_better_edge = false;
967   else
968     {
969       profile_count diff_count = best_count.apply_scale (1, 10);
970       if (count < best_count - diff_count
971 	  || (!best_count.initialized_p ()
972 	      && count.nonzero_p ()))
973 	/* The edge and the temporary best edge  have almost equivalent
974 	   probabilities.  The higher countuency of a successor now means
975 	   that there is another edge going into that successor.
976 	   This successor has lower countuency so it is better.  */
977 	is_better_edge = true;
978       else if (count > best_count + diff_count)
979 	/* This successor has higher countuency so it is worse.  */
980 	is_better_edge = false;
981       else if (e->dest->prev_bb == bb)
982 	/* The edges have equivalent probabilities and the successors
983 	   have equivalent frequencies.  Select the previous successor.  */
984 	is_better_edge = true;
985       else
986 	is_better_edge = false;
987     }
988 
989   return is_better_edge;
990 }
991 
992 /* Return true when the edge E is better than the temporary best edge
993    CUR_BEST_EDGE.  If SRC_INDEX_P is true, the function compares the src bb of
994    E and CUR_BEST_EDGE; otherwise it will compare the dest bb.
995    BEST_LEN is the trace length of src (or dest) bb in CUR_BEST_EDGE.
996    TRACES record the information about traces.
997    When optimizing for size, the edge with smaller index is better.
998    When optimizing for speed, the edge with bigger probability or longer trace
999    is better.  */
1000 
1001 static bool
connect_better_edge_p(const_edge e,bool src_index_p,int best_len,const_edge cur_best_edge,struct trace * traces)1002 connect_better_edge_p (const_edge e, bool src_index_p, int best_len,
1003 		       const_edge cur_best_edge, struct trace *traces)
1004 {
1005   int e_index;
1006   int b_index;
1007   bool is_better_edge;
1008 
1009   if (!cur_best_edge)
1010     return true;
1011 
1012   if (optimize_function_for_size_p (cfun))
1013     {
1014       e_index = src_index_p ? e->src->index : e->dest->index;
1015       b_index = src_index_p ? cur_best_edge->src->index
1016 			      : cur_best_edge->dest->index;
1017       /* The smaller one is better to keep the original order.  */
1018       return b_index > e_index;
1019     }
1020 
1021   if (src_index_p)
1022     {
1023       e_index = e->src->index;
1024 
1025       /* We are looking for predecessor, so probabilities are not that
1026 	 informative.  We do not want to connect A to B because A has
1027 	 only one successor (probability is 100%) while there is edge
1028 	 A' to B where probability is 90% but which is much more frequent.  */
1029       if (e->count () > cur_best_edge->count ())
1030 	/* The edge has higher probability than the temporary best edge.  */
1031 	is_better_edge = true;
1032       else if (e->count () < cur_best_edge->count ())
1033 	/* The edge has lower probability than the temporary best edge.  */
1034 	is_better_edge = false;
1035       else if (e->probability > cur_best_edge->probability)
1036 	/* The edge has higher probability than the temporary best edge.  */
1037 	is_better_edge = true;
1038       else if (e->probability < cur_best_edge->probability)
1039 	/* The edge has lower probability than the temporary best edge.  */
1040 	is_better_edge = false;
1041       else if (traces[bbd[e_index].end_of_trace].length > best_len)
1042 	/* The edge and the temporary best edge have equivalent probabilities.
1043 	   The edge with longer trace is better.  */
1044 	is_better_edge = true;
1045       else
1046 	is_better_edge = false;
1047     }
1048   else
1049     {
1050       e_index = e->dest->index;
1051 
1052       if (e->probability > cur_best_edge->probability)
1053 	/* The edge has higher probability than the temporary best edge.  */
1054 	is_better_edge = true;
1055       else if (e->probability < cur_best_edge->probability)
1056 	/* The edge has lower probability than the temporary best edge.  */
1057 	is_better_edge = false;
1058       else if (traces[bbd[e_index].start_of_trace].length > best_len)
1059 	/* The edge and the temporary best edge have equivalent probabilities.
1060 	   The edge with longer trace is better.  */
1061 	is_better_edge = true;
1062       else
1063 	is_better_edge = false;
1064     }
1065 
1066   return is_better_edge;
1067 }
1068 
1069 /* Connect traces in array TRACES, N_TRACES is the count of traces.  */
1070 
1071 static void
connect_traces(int n_traces,struct trace * traces)1072 connect_traces (int n_traces, struct trace *traces)
1073 {
1074   int i;
1075   bool *connected;
1076   bool two_passes;
1077   int last_trace;
1078   int current_pass;
1079   int current_partition;
1080   profile_count count_threshold;
1081   bool for_size = optimize_function_for_size_p (cfun);
1082 
1083   count_threshold = max_entry_count.apply_scale (DUPLICATION_THRESHOLD, 1000);
1084 
1085   connected = XCNEWVEC (bool, n_traces);
1086   last_trace = -1;
1087   current_pass = 1;
1088   current_partition = BB_PARTITION (traces[0].first);
1089   two_passes = false;
1090 
1091   if (crtl->has_bb_partition)
1092     for (i = 0; i < n_traces && !two_passes; i++)
1093       if (BB_PARTITION (traces[0].first)
1094 	  != BB_PARTITION (traces[i].first))
1095 	two_passes = true;
1096 
1097   for (i = 0; i < n_traces || (two_passes && current_pass == 1) ; i++)
1098     {
1099       int t = i;
1100       int t2;
1101       edge e, best;
1102       int best_len;
1103 
1104       if (i >= n_traces)
1105 	{
1106 	  gcc_assert (two_passes && current_pass == 1);
1107 	  i = 0;
1108 	  t = i;
1109 	  current_pass = 2;
1110 	  if (current_partition == BB_HOT_PARTITION)
1111 	    current_partition = BB_COLD_PARTITION;
1112 	  else
1113 	    current_partition = BB_HOT_PARTITION;
1114 	}
1115 
1116       if (connected[t])
1117 	continue;
1118 
1119       if (two_passes
1120 	  && BB_PARTITION (traces[t].first) != current_partition)
1121 	continue;
1122 
1123       connected[t] = true;
1124 
1125       /* Find the predecessor traces.  */
1126       for (t2 = t; t2 > 0;)
1127 	{
1128 	  edge_iterator ei;
1129 	  best = NULL;
1130 	  best_len = 0;
1131 	  FOR_EACH_EDGE (e, ei, traces[t2].first->preds)
1132 	    {
1133 	      int si = e->src->index;
1134 
1135 	      if (e->src != ENTRY_BLOCK_PTR_FOR_FN (cfun)
1136 		  && (e->flags & EDGE_CAN_FALLTHRU)
1137 		  && !(e->flags & EDGE_COMPLEX)
1138 		  && bbd[si].end_of_trace >= 0
1139 		  && !connected[bbd[si].end_of_trace]
1140 		  && (BB_PARTITION (e->src) == current_partition)
1141 		  && connect_better_edge_p (e, true, best_len, best, traces))
1142 		{
1143 		  best = e;
1144 		  best_len = traces[bbd[si].end_of_trace].length;
1145 		}
1146 	    }
1147 	  if (best)
1148 	    {
1149 	      best->src->aux = best->dest;
1150 	      t2 = bbd[best->src->index].end_of_trace;
1151 	      connected[t2] = true;
1152 
1153 	      if (dump_file)
1154 		{
1155 		  fprintf (dump_file, "Connection: %d %d\n",
1156 			   best->src->index, best->dest->index);
1157 		}
1158 	    }
1159 	  else
1160 	    break;
1161 	}
1162 
1163       if (last_trace >= 0)
1164 	traces[last_trace].last->aux = traces[t2].first;
1165       last_trace = t;
1166 
1167       /* Find the successor traces.  */
1168       while (1)
1169 	{
1170 	  /* Find the continuation of the chain.  */
1171 	  edge_iterator ei;
1172 	  best = NULL;
1173 	  best_len = 0;
1174 	  FOR_EACH_EDGE (e, ei, traces[t].last->succs)
1175 	    {
1176 	      int di = e->dest->index;
1177 
1178 	      if (e->dest != EXIT_BLOCK_PTR_FOR_FN (cfun)
1179 		  && (e->flags & EDGE_CAN_FALLTHRU)
1180 		  && !(e->flags & EDGE_COMPLEX)
1181 		  && bbd[di].start_of_trace >= 0
1182 		  && !connected[bbd[di].start_of_trace]
1183 		  && (BB_PARTITION (e->dest) == current_partition)
1184 		  && connect_better_edge_p (e, false, best_len, best, traces))
1185 		{
1186 		  best = e;
1187 		  best_len = traces[bbd[di].start_of_trace].length;
1188 		}
1189 	    }
1190 
1191 	  if (for_size)
1192 	    {
1193 	      if (!best)
1194 		/* Stop finding the successor traces.  */
1195 		break;
1196 
1197 	      /* It is OK to connect block n with block n + 1 or a block
1198 		 before n.  For others, only connect to the loop header.  */
1199 	      if (best->dest->index > (traces[t].last->index + 1))
1200 		{
1201 		  int count = EDGE_COUNT (best->dest->preds);
1202 
1203 		  FOR_EACH_EDGE (e, ei, best->dest->preds)
1204 		    if (e->flags & EDGE_DFS_BACK)
1205 		      count--;
1206 
1207 		  /* If dest has multiple predecessors, skip it.  We expect
1208 		     that one predecessor with smaller index connects with it
1209 		     later.  */
1210 		  if (count != 1)
1211 		    break;
1212 		}
1213 
1214 	      /* Only connect Trace n with Trace n + 1.  It is conservative
1215 		 to keep the order as close as possible to the original order.
1216 		 It also helps to reduce long jumps.  */
1217 	      if (last_trace != bbd[best->dest->index].start_of_trace - 1)
1218 		break;
1219 
1220 	      if (dump_file)
1221 		fprintf (dump_file, "Connection: %d %d\n",
1222 			 best->src->index, best->dest->index);
1223 
1224 	      t = bbd[best->dest->index].start_of_trace;
1225 	      traces[last_trace].last->aux = traces[t].first;
1226 	      connected[t] = true;
1227 	      last_trace = t;
1228 	    }
1229 	  else if (best)
1230 	    {
1231 	      if (dump_file)
1232 		{
1233 		  fprintf (dump_file, "Connection: %d %d\n",
1234 			   best->src->index, best->dest->index);
1235 		}
1236 	      t = bbd[best->dest->index].start_of_trace;
1237 	      traces[last_trace].last->aux = traces[t].first;
1238 	      connected[t] = true;
1239 	      last_trace = t;
1240 	    }
1241 	  else
1242 	    {
1243 	      /* Try to connect the traces by duplication of 1 block.  */
1244 	      edge e2;
1245 	      basic_block next_bb = NULL;
1246 	      bool try_copy = false;
1247 
1248 	      FOR_EACH_EDGE (e, ei, traces[t].last->succs)
1249 		if (e->dest != EXIT_BLOCK_PTR_FOR_FN (cfun)
1250 		    && (e->flags & EDGE_CAN_FALLTHRU)
1251 		    && !(e->flags & EDGE_COMPLEX)
1252 		    && (!best || e->probability > best->probability))
1253 		  {
1254 		    edge_iterator ei;
1255 		    edge best2 = NULL;
1256 		    int best2_len = 0;
1257 
1258 		    /* If the destination is a start of a trace which is only
1259 		       one block long, then no need to search the successor
1260 		       blocks of the trace.  Accept it.  */
1261 		    if (bbd[e->dest->index].start_of_trace >= 0
1262 			&& traces[bbd[e->dest->index].start_of_trace].length
1263 			   == 1)
1264 		      {
1265 			best = e;
1266 			try_copy = true;
1267 			continue;
1268 		      }
1269 
1270 		    FOR_EACH_EDGE (e2, ei, e->dest->succs)
1271 		      {
1272 			int di = e2->dest->index;
1273 
1274 			if (e2->dest == EXIT_BLOCK_PTR_FOR_FN (cfun)
1275 			    || ((e2->flags & EDGE_CAN_FALLTHRU)
1276 				&& !(e2->flags & EDGE_COMPLEX)
1277 				&& bbd[di].start_of_trace >= 0
1278 				&& !connected[bbd[di].start_of_trace]
1279 				&& BB_PARTITION (e2->dest) == current_partition
1280 				&& e2->count () >= count_threshold
1281 				&& (!best2
1282 				    || e2->probability > best2->probability
1283 				    || (e2->probability == best2->probability
1284 					&& traces[bbd[di].start_of_trace].length
1285 					   > best2_len))))
1286 			  {
1287 			    best = e;
1288 			    best2 = e2;
1289 			    if (e2->dest != EXIT_BLOCK_PTR_FOR_FN (cfun))
1290 			      best2_len = traces[bbd[di].start_of_trace].length;
1291 			    else
1292 			      best2_len = INT_MAX;
1293 			    next_bb = e2->dest;
1294 			    try_copy = true;
1295 			  }
1296 		      }
1297 		  }
1298 
1299 	      /* Copy tiny blocks always; copy larger blocks only when the
1300 		 edge is traversed frequently enough.  */
1301 	      if (try_copy
1302 		  && BB_PARTITION (best->src) == BB_PARTITION (best->dest)
1303 		  && copy_bb_p (best->dest,
1304 				optimize_edge_for_speed_p (best)
1305 				&& (!best->count ().initialized_p ()
1306 				    || best->count () >= count_threshold)))
1307 		{
1308 		  basic_block new_bb;
1309 
1310 		  if (dump_file)
1311 		    {
1312 		      fprintf (dump_file, "Connection: %d %d ",
1313 			       traces[t].last->index, best->dest->index);
1314 		      if (!next_bb)
1315 			fputc ('\n', dump_file);
1316 		      else if (next_bb == EXIT_BLOCK_PTR_FOR_FN (cfun))
1317 			fprintf (dump_file, "exit\n");
1318 		      else
1319 			fprintf (dump_file, "%d\n", next_bb->index);
1320 		    }
1321 
1322 		  new_bb = copy_bb (best->dest, best, traces[t].last, t);
1323 		  traces[t].last = new_bb;
1324 		  if (next_bb && next_bb != EXIT_BLOCK_PTR_FOR_FN (cfun))
1325 		    {
1326 		      t = bbd[next_bb->index].start_of_trace;
1327 		      traces[last_trace].last->aux = traces[t].first;
1328 		      connected[t] = true;
1329 		      last_trace = t;
1330 		    }
1331 		  else
1332 		    break;	/* Stop finding the successor traces.  */
1333 		}
1334 	      else
1335 		break;	/* Stop finding the successor traces.  */
1336 	    }
1337 	}
1338     }
1339 
1340   if (dump_file)
1341     {
1342       basic_block bb;
1343 
1344       fprintf (dump_file, "Final order:\n");
1345       for (bb = traces[0].first; bb; bb = (basic_block) bb->aux)
1346 	fprintf (dump_file, "%d ", bb->index);
1347       fprintf (dump_file, "\n");
1348       fflush (dump_file);
1349     }
1350 
1351   FREE (connected);
1352 }
1353 
1354 /* Return true when BB can and should be copied. CODE_MAY_GROW is true
1355    when code size is allowed to grow by duplication.  */
1356 
1357 static bool
copy_bb_p(const_basic_block bb,int code_may_grow)1358 copy_bb_p (const_basic_block bb, int code_may_grow)
1359 {
1360   unsigned int size = 0;
1361   unsigned int max_size = uncond_jump_length;
1362   rtx_insn *insn;
1363 
1364   if (EDGE_COUNT (bb->preds) < 2)
1365     return false;
1366   if (!can_duplicate_block_p (bb))
1367     return false;
1368 
1369   /* Avoid duplicating blocks which have many successors (PR/13430).  */
1370   if (EDGE_COUNT (bb->succs) > 8)
1371     return false;
1372 
1373   if (code_may_grow && optimize_bb_for_speed_p (bb))
1374     max_size *= param_max_grow_copy_bb_insns;
1375 
1376   FOR_BB_INSNS (bb, insn)
1377     {
1378       if (INSN_P (insn))
1379 	{
1380 	  size += get_attr_min_length (insn);
1381 	  if (size > max_size)
1382 	    break;
1383 	}
1384     }
1385 
1386   if (size <= max_size)
1387     return true;
1388 
1389   if (dump_file)
1390     {
1391       fprintf (dump_file,
1392 	       "Block %d can't be copied because its size = %u.\n",
1393 	       bb->index, size);
1394     }
1395 
1396   return false;
1397 }
1398 
1399 /* Return the length of unconditional jump instruction.  */
1400 
1401 int
get_uncond_jump_length(void)1402 get_uncond_jump_length (void)
1403 {
1404   unsigned int length;
1405 
1406   start_sequence ();
1407   rtx_code_label *label = emit_label (gen_label_rtx ());
1408   rtx_insn *jump = emit_jump_insn (targetm.gen_jump (label));
1409   length = get_attr_min_length (jump);
1410   end_sequence ();
1411 
1412   gcc_assert (length < INT_MAX);
1413   return length;
1414 }
1415 
1416 /* Create a forwarder block to OLD_BB starting with NEW_LABEL and in the
1417    other partition wrt OLD_BB.  */
1418 
1419 static basic_block
create_eh_forwarder_block(rtx_code_label * new_label,basic_block old_bb)1420 create_eh_forwarder_block (rtx_code_label *new_label, basic_block old_bb)
1421 {
1422   /* Split OLD_BB, so that EH pads have always only incoming EH edges,
1423      bb_has_eh_pred bbs are treated specially by DF infrastructure.  */
1424   old_bb = split_block_after_labels (old_bb)->dest;
1425 
1426   /* Put the new label and a jump in the new basic block.  */
1427   rtx_insn *label = emit_label (new_label);
1428   rtx_code_label *old_label = block_label (old_bb);
1429   rtx_insn *jump = emit_jump_insn (targetm.gen_jump (old_label));
1430   JUMP_LABEL (jump) = old_label;
1431 
1432   /* Create the new basic block and put it in last position.  */
1433   basic_block last_bb = EXIT_BLOCK_PTR_FOR_FN (cfun)->prev_bb;
1434   basic_block new_bb = create_basic_block (label, jump, last_bb);
1435   new_bb->aux = last_bb->aux;
1436   new_bb->count = old_bb->count;
1437   last_bb->aux = new_bb;
1438 
1439   emit_barrier_after_bb (new_bb);
1440 
1441   make_single_succ_edge (new_bb, old_bb, 0);
1442 
1443   /* Make sure the new basic block is in the other partition.  */
1444   unsigned new_partition = BB_PARTITION (old_bb);
1445   new_partition ^= BB_HOT_PARTITION | BB_COLD_PARTITION;
1446   BB_SET_PARTITION (new_bb, new_partition);
1447 
1448   return new_bb;
1449 }
1450 
1451 /* The common landing pad in block OLD_BB has edges from both partitions.
1452    Add a new landing pad that will just jump to the old one and split the
1453    edges so that no EH edge crosses partitions.  */
1454 
1455 static void
sjlj_fix_up_crossing_landing_pad(basic_block old_bb)1456 sjlj_fix_up_crossing_landing_pad (basic_block old_bb)
1457 {
1458   const unsigned lp_len = cfun->eh->lp_array->length ();
1459   edge_iterator ei;
1460   edge e;
1461 
1462   /* Generate the new common landing-pad label.  */
1463   rtx_code_label *new_label = gen_label_rtx ();
1464   LABEL_PRESERVE_P (new_label) = 1;
1465 
1466   /* Create the forwarder block.  */
1467   basic_block new_bb = create_eh_forwarder_block (new_label, old_bb);
1468 
1469   /* Create the map from old to new lp index and initialize it.  */
1470   unsigned *index_map = (unsigned *) alloca (lp_len * sizeof (unsigned));
1471   memset (index_map, 0, lp_len * sizeof (unsigned));
1472 
1473   /* Fix up the edges.  */
1474   for (ei = ei_start (old_bb->preds); (e = ei_safe_edge (ei)) != NULL; )
1475     if (e->src != new_bb && BB_PARTITION (e->src) == BB_PARTITION (new_bb))
1476       {
1477 	rtx_insn *insn = BB_END (e->src);
1478 	rtx note = find_reg_note (insn, REG_EH_REGION, NULL_RTX);
1479 
1480 	gcc_assert (note != NULL);
1481 	const unsigned old_index = INTVAL (XEXP (note, 0));
1482 
1483 	/* Generate the new landing-pad structure.  */
1484 	if (index_map[old_index] == 0)
1485 	  {
1486 	    eh_landing_pad old_lp = (*cfun->eh->lp_array)[old_index];
1487 	    eh_landing_pad new_lp = gen_eh_landing_pad (old_lp->region);
1488 	    new_lp->post_landing_pad = old_lp->post_landing_pad;
1489 	    new_lp->landing_pad = new_label;
1490 	    index_map[old_index] = new_lp->index;
1491 	  }
1492 	XEXP (note, 0) = GEN_INT (index_map[old_index]);
1493 
1494 	/* Adjust the edge to the new destination.  */
1495 	redirect_edge_succ (e, new_bb);
1496       }
1497     else
1498       ei_next (&ei);
1499 }
1500 
1501 /* The landing pad OLD_LP, in block OLD_BB, has edges from both partitions.
1502    Add a new landing pad that will just jump to the old one and split the
1503    edges so that no EH edge crosses partitions.  */
1504 
1505 static void
dw2_fix_up_crossing_landing_pad(eh_landing_pad old_lp,basic_block old_bb)1506 dw2_fix_up_crossing_landing_pad (eh_landing_pad old_lp, basic_block old_bb)
1507 {
1508   eh_landing_pad new_lp;
1509   edge_iterator ei;
1510   edge e;
1511 
1512   /* Generate the new landing-pad structure.  */
1513   new_lp = gen_eh_landing_pad (old_lp->region);
1514   new_lp->post_landing_pad = old_lp->post_landing_pad;
1515   new_lp->landing_pad = gen_label_rtx ();
1516   LABEL_PRESERVE_P (new_lp->landing_pad) = 1;
1517 
1518   /* Create the forwarder block.  */
1519   basic_block new_bb = create_eh_forwarder_block (new_lp->landing_pad, old_bb);
1520 
1521   /* Fix up the edges.  */
1522   for (ei = ei_start (old_bb->preds); (e = ei_safe_edge (ei)) != NULL; )
1523     if (e->src != new_bb && BB_PARTITION (e->src) == BB_PARTITION (new_bb))
1524       {
1525 	rtx_insn *insn = BB_END (e->src);
1526 	rtx note = find_reg_note (insn, REG_EH_REGION, NULL_RTX);
1527 
1528 	gcc_assert (note != NULL);
1529 	gcc_checking_assert (INTVAL (XEXP (note, 0)) == old_lp->index);
1530 	XEXP (note, 0) = GEN_INT (new_lp->index);
1531 
1532 	/* Adjust the edge to the new destination.  */
1533 	redirect_edge_succ (e, new_bb);
1534       }
1535     else
1536       ei_next (&ei);
1537 }
1538 
1539 
1540 /* Ensure that all hot bbs are included in a hot path through the
1541    procedure. This is done by calling this function twice, once
1542    with WALK_UP true (to look for paths from the entry to hot bbs) and
1543    once with WALK_UP false (to look for paths from hot bbs to the exit).
1544    Returns the updated value of COLD_BB_COUNT and adds newly-hot bbs
1545    to BBS_IN_HOT_PARTITION.  */
1546 
1547 static unsigned int
sanitize_hot_paths(bool walk_up,unsigned int cold_bb_count,vec<basic_block> * bbs_in_hot_partition)1548 sanitize_hot_paths (bool walk_up, unsigned int cold_bb_count,
1549                     vec<basic_block> *bbs_in_hot_partition)
1550 {
1551   /* Callers check this.  */
1552   gcc_checking_assert (cold_bb_count);
1553 
1554   /* Keep examining hot bbs while we still have some left to check
1555      and there are remaining cold bbs.  */
1556   vec<basic_block> hot_bbs_to_check = bbs_in_hot_partition->copy ();
1557   while (! hot_bbs_to_check.is_empty ()
1558          && cold_bb_count)
1559     {
1560       basic_block bb = hot_bbs_to_check.pop ();
1561       vec<edge, va_gc> *edges = walk_up ? bb->preds : bb->succs;
1562       edge e;
1563       edge_iterator ei;
1564       profile_probability highest_probability
1565 				 = profile_probability::uninitialized ();
1566       profile_count highest_count = profile_count::uninitialized ();
1567       bool found = false;
1568 
1569       /* Walk the preds/succs and check if there is at least one already
1570          marked hot. Keep track of the most frequent pred/succ so that we
1571          can mark it hot if we don't find one.  */
1572       FOR_EACH_EDGE (e, ei, edges)
1573         {
1574           basic_block reach_bb = walk_up ? e->src : e->dest;
1575 
1576           if (e->flags & EDGE_DFS_BACK)
1577             continue;
1578 
1579 	  /* Do not expect profile insanities when profile was not adjusted.  */
1580 	  if (e->probability == profile_probability::never ()
1581 	      || e->count () == profile_count::zero ())
1582 	    continue;
1583 
1584           if (BB_PARTITION (reach_bb) != BB_COLD_PARTITION)
1585           {
1586             found = true;
1587             break;
1588           }
1589           /* The following loop will look for the hottest edge via
1590              the edge count, if it is non-zero, then fallback to
1591              the edge probability.  */
1592           if (!(e->count () > highest_count))
1593             highest_count = e->count ();
1594           if (!highest_probability.initialized_p ()
1595 	      || e->probability > highest_probability)
1596             highest_probability = e->probability;
1597         }
1598 
1599       /* If bb is reached by (or reaches, in the case of !WALK_UP) another hot
1600          block (or unpartitioned, e.g. the entry block) then it is ok. If not,
1601          then the most frequent pred (or succ) needs to be adjusted.  In the
1602          case where multiple preds/succs have the same frequency (e.g. a
1603          50-50 branch), then both will be adjusted.  */
1604       if (found)
1605         continue;
1606 
1607       FOR_EACH_EDGE (e, ei, edges)
1608         {
1609           if (e->flags & EDGE_DFS_BACK)
1610             continue;
1611 	  /* Do not expect profile insanities when profile was not adjusted.  */
1612 	  if (e->probability == profile_probability::never ()
1613 	      || e->count () == profile_count::zero ())
1614 	    continue;
1615           /* Select the hottest edge using the edge count, if it is non-zero,
1616              then fallback to the edge probability.  */
1617           if (highest_count.initialized_p ())
1618             {
1619               if (!(e->count () >= highest_count))
1620                 continue;
1621             }
1622           else if (!(e->probability >= highest_probability))
1623             continue;
1624 
1625           basic_block reach_bb = walk_up ? e->src : e->dest;
1626 
1627           /* We have a hot bb with an immediate dominator that is cold.
1628              The dominator needs to be re-marked hot.  */
1629           BB_SET_PARTITION (reach_bb, BB_HOT_PARTITION);
1630 	  if (dump_file)
1631 	    fprintf (dump_file, "Promoting bb %i to hot partition to sanitize "
1632 		     "profile of bb %i in %s walk\n", reach_bb->index,
1633 		     bb->index, walk_up ? "backward" : "forward");
1634           cold_bb_count--;
1635 
1636           /* Now we need to examine newly-hot reach_bb to see if it is also
1637              dominated by a cold bb.  */
1638           bbs_in_hot_partition->safe_push (reach_bb);
1639           hot_bbs_to_check.safe_push (reach_bb);
1640         }
1641     }
1642   hot_bbs_to_check.release ();
1643 
1644   return cold_bb_count;
1645 }
1646 
1647 
1648 /* Find the basic blocks that are rarely executed and need to be moved to
1649    a separate section of the .o file (to cut down on paging and improve
1650    cache locality).  Return a vector of all edges that cross.  */
1651 
1652 static vec<edge>
find_rarely_executed_basic_blocks_and_crossing_edges(void)1653 find_rarely_executed_basic_blocks_and_crossing_edges (void)
1654 {
1655   vec<edge> crossing_edges = vNULL;
1656   basic_block bb;
1657   edge e;
1658   edge_iterator ei;
1659   unsigned int cold_bb_count = 0;
1660   auto_vec<basic_block> bbs_in_hot_partition;
1661 
1662   propagate_unlikely_bbs_forward ();
1663 
1664   /* Mark which partition (hot/cold) each basic block belongs in.  */
1665   FOR_EACH_BB_FN (bb, cfun)
1666     {
1667       bool cold_bb = false;
1668 
1669       if (probably_never_executed_bb_p (cfun, bb))
1670         {
1671           cold_bb = true;
1672 
1673           /* Handle profile insanities created by upstream optimizations
1674              by also checking the incoming edge weights. If there is a non-cold
1675              incoming edge, conservatively prevent this block from being split
1676              into the cold section.  */
1677 	  if (!bb->count.precise_p ())
1678 	    FOR_EACH_EDGE (e, ei, bb->preds)
1679 	      if (!probably_never_executed_edge_p (cfun, e))
1680 		{
1681 		  cold_bb = false;
1682 		  break;
1683 		}
1684         }
1685       if (cold_bb)
1686         {
1687           BB_SET_PARTITION (bb, BB_COLD_PARTITION);
1688           cold_bb_count++;
1689         }
1690       else
1691         {
1692           BB_SET_PARTITION (bb, BB_HOT_PARTITION);
1693           bbs_in_hot_partition.safe_push (bb);
1694         }
1695     }
1696 
1697   /* Ensure that hot bbs are included along a hot path from the entry to exit.
1698      Several different possibilities may include cold bbs along all paths
1699      to/from a hot bb. One is that there are edge weight insanities
1700      due to optimization phases that do not properly update basic block profile
1701      counts. The second is that the entry of the function may not be hot, because
1702      it is entered fewer times than the number of profile training runs, but there
1703      is a loop inside the function that causes blocks within the function to be
1704      above the threshold for hotness. This is fixed by walking up from hot bbs
1705      to the entry block, and then down from hot bbs to the exit, performing
1706      partitioning fixups as necessary.  */
1707   if (cold_bb_count)
1708     {
1709       mark_dfs_back_edges ();
1710       cold_bb_count = sanitize_hot_paths (true, cold_bb_count,
1711                                           &bbs_in_hot_partition);
1712       if (cold_bb_count)
1713         sanitize_hot_paths (false, cold_bb_count, &bbs_in_hot_partition);
1714 
1715       hash_set <basic_block> set;
1716       find_bbs_reachable_by_hot_paths (&set);
1717       FOR_EACH_BB_FN (bb, cfun)
1718 	if (!set.contains (bb))
1719 	  BB_SET_PARTITION (bb, BB_COLD_PARTITION);
1720     }
1721 
1722   /* The format of .gcc_except_table does not allow landing pads to
1723      be in a different partition as the throw.  Fix this by either
1724      moving the landing pads or inserting forwarder landing pads.  */
1725   if (cfun->eh->lp_array)
1726     {
1727       const bool sjlj
1728 	= (targetm_common.except_unwind_info (&global_options) == UI_SJLJ);
1729       unsigned i;
1730       eh_landing_pad lp;
1731 
1732       FOR_EACH_VEC_ELT (*cfun->eh->lp_array, i, lp)
1733 	{
1734 	  bool all_same, all_diff;
1735 
1736 	  if (lp == NULL
1737 	      || lp->landing_pad == NULL_RTX
1738 	      || !LABEL_P (lp->landing_pad))
1739 	    continue;
1740 
1741 	  all_same = all_diff = true;
1742 	  bb = BLOCK_FOR_INSN (lp->landing_pad);
1743 	  FOR_EACH_EDGE (e, ei, bb->preds)
1744 	    {
1745 	      gcc_assert (e->flags & EDGE_EH);
1746 	      if (BB_PARTITION (bb) == BB_PARTITION (e->src))
1747 		all_diff = false;
1748 	      else
1749 		all_same = false;
1750 	    }
1751 
1752 	  if (all_same)
1753 	    ;
1754 	  else if (all_diff)
1755 	    {
1756 	      int which = BB_PARTITION (bb);
1757 	      which ^= BB_HOT_PARTITION | BB_COLD_PARTITION;
1758 	      BB_SET_PARTITION (bb, which);
1759 	    }
1760 	  else if (sjlj)
1761 	    sjlj_fix_up_crossing_landing_pad (bb);
1762 	  else
1763 	    dw2_fix_up_crossing_landing_pad (lp, bb);
1764 
1765 	  /* There is a single, common landing pad in SJLJ mode.  */
1766 	  if (sjlj)
1767 	    break;
1768 	}
1769     }
1770 
1771   /* Mark every edge that crosses between sections.  */
1772   FOR_EACH_BB_FN (bb, cfun)
1773     FOR_EACH_EDGE (e, ei, bb->succs)
1774       {
1775 	unsigned int flags = e->flags;
1776 
1777         /* We should never have EDGE_CROSSING set yet.  */
1778 	gcc_checking_assert ((flags & EDGE_CROSSING) == 0);
1779 
1780 	if (e->src != ENTRY_BLOCK_PTR_FOR_FN (cfun)
1781 	    && e->dest != EXIT_BLOCK_PTR_FOR_FN (cfun)
1782 	    && BB_PARTITION (e->src) != BB_PARTITION (e->dest))
1783 	  {
1784 	    crossing_edges.safe_push (e);
1785 	    flags |= EDGE_CROSSING;
1786 	  }
1787 
1788 	/* Now that we've split eh edges as appropriate, allow landing pads
1789 	   to be merged with the post-landing pads.  */
1790 	flags &= ~EDGE_PRESERVE;
1791 
1792 	e->flags = flags;
1793       }
1794 
1795   return crossing_edges;
1796 }
1797 
1798 /* Set the flag EDGE_CAN_FALLTHRU for edges that can be fallthru.  */
1799 
1800 static void
set_edge_can_fallthru_flag(void)1801 set_edge_can_fallthru_flag (void)
1802 {
1803   basic_block bb;
1804 
1805   FOR_EACH_BB_FN (bb, cfun)
1806     {
1807       edge e;
1808       edge_iterator ei;
1809 
1810       FOR_EACH_EDGE (e, ei, bb->succs)
1811 	{
1812 	  e->flags &= ~EDGE_CAN_FALLTHRU;
1813 
1814 	  /* The FALLTHRU edge is also CAN_FALLTHRU edge.  */
1815 	  if (e->flags & EDGE_FALLTHRU)
1816 	    e->flags |= EDGE_CAN_FALLTHRU;
1817 	}
1818 
1819       /* If the BB ends with an invertible condjump all (2) edges are
1820 	 CAN_FALLTHRU edges.  */
1821       if (EDGE_COUNT (bb->succs) != 2)
1822 	continue;
1823       if (!any_condjump_p (BB_END (bb)))
1824 	continue;
1825 
1826       rtx_jump_insn *bb_end_jump = as_a <rtx_jump_insn *> (BB_END (bb));
1827       if (!invert_jump (bb_end_jump, JUMP_LABEL (bb_end_jump), 0))
1828 	continue;
1829       invert_jump (bb_end_jump, JUMP_LABEL (bb_end_jump), 0);
1830       EDGE_SUCC (bb, 0)->flags |= EDGE_CAN_FALLTHRU;
1831       EDGE_SUCC (bb, 1)->flags |= EDGE_CAN_FALLTHRU;
1832     }
1833 }
1834 
1835 /* If any destination of a crossing edge does not have a label, add label;
1836    Convert any easy fall-through crossing edges to unconditional jumps.  */
1837 
1838 static void
add_labels_and_missing_jumps(vec<edge> crossing_edges)1839 add_labels_and_missing_jumps (vec<edge> crossing_edges)
1840 {
1841   size_t i;
1842   edge e;
1843 
1844   FOR_EACH_VEC_ELT (crossing_edges, i, e)
1845     {
1846       basic_block src = e->src;
1847       basic_block dest = e->dest;
1848       rtx_jump_insn *new_jump;
1849 
1850       if (dest == EXIT_BLOCK_PTR_FOR_FN (cfun))
1851 	continue;
1852 
1853       /* Make sure dest has a label.  */
1854       rtx_code_label *label = block_label (dest);
1855 
1856       /* Nothing to do for non-fallthru edges.  */
1857       if (src == ENTRY_BLOCK_PTR_FOR_FN (cfun))
1858 	continue;
1859       if ((e->flags & EDGE_FALLTHRU) == 0)
1860 	continue;
1861 
1862       /* If the block does not end with a control flow insn, then we
1863 	 can trivially add a jump to the end to fixup the crossing.
1864 	 Otherwise the jump will have to go in a new bb, which will
1865 	 be handled by fix_up_fall_thru_edges function.  */
1866       if (control_flow_insn_p (BB_END (src)))
1867 	continue;
1868 
1869       /* Make sure there's only one successor.  */
1870       gcc_assert (single_succ_p (src));
1871 
1872       new_jump = emit_jump_insn_after (targetm.gen_jump (label), BB_END (src));
1873       BB_END (src) = new_jump;
1874       JUMP_LABEL (new_jump) = label;
1875       LABEL_NUSES (label) += 1;
1876 
1877       emit_barrier_after_bb (src);
1878 
1879       /* Mark edge as non-fallthru.  */
1880       e->flags &= ~EDGE_FALLTHRU;
1881     }
1882 }
1883 
1884 /* Find any bb's where the fall-through edge is a crossing edge (note that
1885    these bb's must also contain a conditional jump or end with a call
1886    instruction; we've already dealt with fall-through edges for blocks
1887    that didn't have a conditional jump or didn't end with call instruction
1888    in the call to add_labels_and_missing_jumps).  Convert the fall-through
1889    edge to non-crossing edge by inserting a new bb to fall-through into.
1890    The new bb will contain an unconditional jump (crossing edge) to the
1891    original fall through destination.  */
1892 
1893 static void
fix_up_fall_thru_edges(void)1894 fix_up_fall_thru_edges (void)
1895 {
1896   basic_block cur_bb;
1897 
1898   FOR_EACH_BB_FN (cur_bb, cfun)
1899     {
1900       edge succ1;
1901       edge succ2;
1902       edge fall_thru = NULL;
1903       edge cond_jump = NULL;
1904 
1905       fall_thru = NULL;
1906       if (EDGE_COUNT (cur_bb->succs) > 0)
1907 	succ1 = EDGE_SUCC (cur_bb, 0);
1908       else
1909 	succ1 = NULL;
1910 
1911       if (EDGE_COUNT (cur_bb->succs) > 1)
1912 	succ2 = EDGE_SUCC (cur_bb, 1);
1913       else
1914 	succ2 = NULL;
1915 
1916       /* Find the fall-through edge.  */
1917 
1918       if (succ1
1919 	  && (succ1->flags & EDGE_FALLTHRU))
1920 	{
1921 	  fall_thru = succ1;
1922 	  cond_jump = succ2;
1923 	}
1924       else if (succ2
1925 	       && (succ2->flags & EDGE_FALLTHRU))
1926 	{
1927 	  fall_thru = succ2;
1928 	  cond_jump = succ1;
1929 	}
1930       else if (succ2 && EDGE_COUNT (cur_bb->succs) > 2)
1931 	fall_thru = find_fallthru_edge (cur_bb->succs);
1932 
1933       if (fall_thru && (fall_thru->dest != EXIT_BLOCK_PTR_FOR_FN (cfun)))
1934 	{
1935 	  /* Check to see if the fall-thru edge is a crossing edge.  */
1936 
1937 	  if (fall_thru->flags & EDGE_CROSSING)
1938 	    {
1939 	      /* The fall_thru edge crosses; now check the cond jump edge, if
1940 		 it exists.  */
1941 
1942 	      bool cond_jump_crosses = true;
1943 	      int invert_worked = 0;
1944 	      rtx_insn *old_jump = BB_END (cur_bb);
1945 
1946 	      /* Find the jump instruction, if there is one.  */
1947 
1948 	      if (cond_jump)
1949 		{
1950 		  if (!(cond_jump->flags & EDGE_CROSSING))
1951 		    cond_jump_crosses = false;
1952 
1953 		  /* We know the fall-thru edge crosses; if the cond
1954 		     jump edge does NOT cross, and its destination is the
1955 		     next block in the bb order, invert the jump
1956 		     (i.e. fix it so the fall through does not cross and
1957 		     the cond jump does).  */
1958 
1959 		  if (!cond_jump_crosses)
1960 		    {
1961 		      /* Find label in fall_thru block. We've already added
1962 			 any missing labels, so there must be one.  */
1963 
1964 		      rtx_code_label *fall_thru_label
1965 			= block_label (fall_thru->dest);
1966 
1967 		      if (old_jump && fall_thru_label)
1968 			{
1969 			  rtx_jump_insn *old_jump_insn
1970 			    = dyn_cast <rtx_jump_insn *> (old_jump);
1971 			  if (old_jump_insn)
1972 			    invert_worked = invert_jump (old_jump_insn,
1973 							 fall_thru_label, 0);
1974 			}
1975 
1976 		      if (invert_worked)
1977 			{
1978 			  fall_thru->flags &= ~EDGE_FALLTHRU;
1979 			  cond_jump->flags |= EDGE_FALLTHRU;
1980 			  update_br_prob_note (cur_bb);
1981 			  std::swap (fall_thru, cond_jump);
1982 			  cond_jump->flags |= EDGE_CROSSING;
1983 			  fall_thru->flags &= ~EDGE_CROSSING;
1984 			}
1985 		    }
1986 		}
1987 
1988 	      if (cond_jump_crosses || !invert_worked)
1989 		{
1990 		  /* This is the case where both edges out of the basic
1991 		     block are crossing edges. Here we will fix up the
1992 		     fall through edge. The jump edge will be taken care
1993 		     of later.  The EDGE_CROSSING flag of fall_thru edge
1994 		     is unset before the call to force_nonfallthru
1995 		     function because if a new basic-block is created
1996 		     this edge remains in the current section boundary
1997 		     while the edge between new_bb and the fall_thru->dest
1998 		     becomes EDGE_CROSSING.  */
1999 
2000 		  fall_thru->flags &= ~EDGE_CROSSING;
2001 		  unsigned old_count = EDGE_COUNT (cur_bb->succs);
2002 		  basic_block new_bb = force_nonfallthru (fall_thru);
2003 
2004 		  if (new_bb)
2005 		    {
2006 		      new_bb->aux = cur_bb->aux;
2007 		      cur_bb->aux = new_bb;
2008 
2009                       /* This is done by force_nonfallthru_and_redirect.  */
2010 		      gcc_assert (BB_PARTITION (new_bb)
2011                                   == BB_PARTITION (cur_bb));
2012 
2013 		      edge e = single_succ_edge (new_bb);
2014 		      e->flags |= EDGE_CROSSING;
2015 		      if (EDGE_COUNT (cur_bb->succs) > old_count)
2016 			{
2017 			  /* If asm goto has a crossing fallthrough edge
2018 			     and at least one of the labels to the same bb,
2019 			     force_nonfallthru can result in the fallthrough
2020 			     edge being redirected and a new edge added for the
2021 			     label or more labels to e->dest.  As we've
2022 			     temporarily cleared EDGE_CROSSING flag on the
2023 			     fallthrough edge, we need to restore it again.
2024 			     See PR108596.  */
2025 			  rtx_insn *j = BB_END (cur_bb);
2026 			  gcc_checking_assert (JUMP_P (j)
2027 					       && asm_noperands (PATTERN (j)));
2028 			  edge e2 = find_edge (cur_bb, e->dest);
2029 			  if (e2)
2030 			    e2->flags |= EDGE_CROSSING;
2031 			}
2032 		    }
2033 		  else
2034 		    {
2035 		      /* If a new basic-block was not created; restore
2036 			 the EDGE_CROSSING flag.  */
2037 		      fall_thru->flags |= EDGE_CROSSING;
2038 		    }
2039 
2040 		  /* Add barrier after new jump */
2041 		  emit_barrier_after_bb (new_bb ? new_bb : cur_bb);
2042 		}
2043 	    }
2044 	}
2045     }
2046 }
2047 
2048 /* This function checks the destination block of a "crossing jump" to
2049    see if it has any crossing predecessors that begin with a code label
2050    and end with an unconditional jump.  If so, it returns that predecessor
2051    block.  (This is to avoid creating lots of new basic blocks that all
2052    contain unconditional jumps to the same destination).  */
2053 
2054 static basic_block
find_jump_block(basic_block jump_dest)2055 find_jump_block (basic_block jump_dest)
2056 {
2057   basic_block source_bb = NULL;
2058   edge e;
2059   rtx_insn *insn;
2060   edge_iterator ei;
2061 
2062   FOR_EACH_EDGE (e, ei, jump_dest->preds)
2063     if (e->flags & EDGE_CROSSING)
2064       {
2065 	basic_block src = e->src;
2066 
2067 	/* Check each predecessor to see if it has a label, and contains
2068 	   only one executable instruction, which is an unconditional jump.
2069 	   If so, we can use it.  */
2070 
2071 	if (LABEL_P (BB_HEAD (src)))
2072 	  for (insn = BB_HEAD (src);
2073 	       !INSN_P (insn) && insn != NEXT_INSN (BB_END (src));
2074 	       insn = NEXT_INSN (insn))
2075 	    {
2076 	      if (INSN_P (insn)
2077 		  && insn == BB_END (src)
2078 		  && JUMP_P (insn)
2079 		  && !any_condjump_p (insn))
2080 		{
2081 		  source_bb = src;
2082 		  break;
2083 		}
2084 	    }
2085 
2086 	if (source_bb)
2087 	  break;
2088       }
2089 
2090   return source_bb;
2091 }
2092 
2093 /* Find all BB's with conditional jumps that are crossing edges;
2094    insert a new bb and make the conditional jump branch to the new
2095    bb instead (make the new bb same color so conditional branch won't
2096    be a 'crossing' edge).  Insert an unconditional jump from the
2097    new bb to the original destination of the conditional jump.  */
2098 
2099 static void
fix_crossing_conditional_branches(void)2100 fix_crossing_conditional_branches (void)
2101 {
2102   basic_block cur_bb;
2103   basic_block new_bb;
2104   basic_block dest;
2105   edge succ1;
2106   edge succ2;
2107   edge crossing_edge;
2108   edge new_edge;
2109   rtx set_src;
2110   rtx old_label = NULL_RTX;
2111   rtx_code_label *new_label;
2112 
2113   FOR_EACH_BB_FN (cur_bb, cfun)
2114     {
2115       crossing_edge = NULL;
2116       if (EDGE_COUNT (cur_bb->succs) > 0)
2117 	succ1 = EDGE_SUCC (cur_bb, 0);
2118       else
2119 	succ1 = NULL;
2120 
2121       if (EDGE_COUNT (cur_bb->succs) > 1)
2122 	succ2 = EDGE_SUCC (cur_bb, 1);
2123       else
2124 	succ2 = NULL;
2125 
2126       /* We already took care of fall-through edges, so only one successor
2127 	 can be a crossing edge.  */
2128 
2129       if (succ1 && (succ1->flags & EDGE_CROSSING))
2130 	crossing_edge = succ1;
2131       else if (succ2 && (succ2->flags & EDGE_CROSSING))
2132 	crossing_edge = succ2;
2133 
2134       if (crossing_edge)
2135 	{
2136 	  rtx_insn *old_jump = BB_END (cur_bb);
2137 
2138 	  /* Check to make sure the jump instruction is a
2139 	     conditional jump.  */
2140 
2141 	  set_src = NULL_RTX;
2142 
2143 	  if (any_condjump_p (old_jump))
2144 	    {
2145 	      if (GET_CODE (PATTERN (old_jump)) == SET)
2146 		set_src = SET_SRC (PATTERN (old_jump));
2147 	      else if (GET_CODE (PATTERN (old_jump)) == PARALLEL)
2148 		{
2149 		  set_src = XVECEXP (PATTERN (old_jump), 0,0);
2150 		  if (GET_CODE (set_src) == SET)
2151 		    set_src = SET_SRC (set_src);
2152 		  else
2153 		    set_src = NULL_RTX;
2154 		}
2155 	    }
2156 
2157 	  if (set_src && (GET_CODE (set_src) == IF_THEN_ELSE))
2158 	    {
2159 	      rtx_jump_insn *old_jump_insn =
2160 			as_a <rtx_jump_insn *> (old_jump);
2161 
2162 	      if (GET_CODE (XEXP (set_src, 1)) == PC)
2163 		old_label = XEXP (set_src, 2);
2164 	      else if (GET_CODE (XEXP (set_src, 2)) == PC)
2165 		old_label = XEXP (set_src, 1);
2166 
2167 	      /* Check to see if new bb for jumping to that dest has
2168 		 already been created; if so, use it; if not, create
2169 		 a new one.  */
2170 
2171 	      new_bb = find_jump_block (crossing_edge->dest);
2172 
2173 	      if (new_bb)
2174 		new_label = block_label (new_bb);
2175 	      else
2176 		{
2177 		  basic_block last_bb;
2178 		  rtx_code_label *old_jump_target;
2179 		  rtx_jump_insn *new_jump;
2180 
2181 		  /* Create new basic block to be dest for
2182 		     conditional jump.  */
2183 
2184 		  /* Put appropriate instructions in new bb.  */
2185 
2186 		  new_label = gen_label_rtx ();
2187 		  emit_label (new_label);
2188 
2189 		  gcc_assert (GET_CODE (old_label) == LABEL_REF);
2190 		  old_jump_target = old_jump_insn->jump_target ();
2191 		  new_jump = as_a <rtx_jump_insn *>
2192 		    (emit_jump_insn (targetm.gen_jump (old_jump_target)));
2193 		  new_jump->set_jump_target (old_jump_target);
2194 
2195 		  last_bb = EXIT_BLOCK_PTR_FOR_FN (cfun)->prev_bb;
2196 		  new_bb = create_basic_block (new_label, new_jump, last_bb);
2197 		  new_bb->aux = last_bb->aux;
2198 		  last_bb->aux = new_bb;
2199 
2200 		  emit_barrier_after_bb (new_bb);
2201 
2202 		  /* Make sure new bb is in same partition as source
2203 		     of conditional branch.  */
2204 		  BB_COPY_PARTITION (new_bb, cur_bb);
2205 		}
2206 
2207 	      /* Make old jump branch to new bb.  */
2208 
2209 	      redirect_jump (old_jump_insn, new_label, 0);
2210 
2211 	      /* Remove crossing_edge as predecessor of 'dest'.  */
2212 
2213 	      dest = crossing_edge->dest;
2214 
2215 	      redirect_edge_succ (crossing_edge, new_bb);
2216 
2217 	      /* Make a new edge from new_bb to old dest; new edge
2218 		 will be a successor for new_bb and a predecessor
2219 		 for 'dest'.  */
2220 
2221 	      if (EDGE_COUNT (new_bb->succs) == 0)
2222 		new_edge = make_single_succ_edge (new_bb, dest, 0);
2223 	      else
2224 		new_edge = EDGE_SUCC (new_bb, 0);
2225 
2226 	      crossing_edge->flags &= ~EDGE_CROSSING;
2227 	      new_edge->flags |= EDGE_CROSSING;
2228 	    }
2229 	}
2230     }
2231 }
2232 
2233 /* Find any unconditional branches that cross between hot and cold
2234    sections.  Convert them into indirect jumps instead.  */
2235 
2236 static void
fix_crossing_unconditional_branches(void)2237 fix_crossing_unconditional_branches (void)
2238 {
2239   basic_block cur_bb;
2240   rtx_insn *last_insn;
2241   rtx label;
2242   rtx label_addr;
2243   rtx_insn *indirect_jump_sequence;
2244   rtx_insn *jump_insn = NULL;
2245   rtx new_reg;
2246   rtx_insn *cur_insn;
2247   edge succ;
2248 
2249   FOR_EACH_BB_FN (cur_bb, cfun)
2250     {
2251       last_insn = BB_END (cur_bb);
2252 
2253       if (EDGE_COUNT (cur_bb->succs) < 1)
2254 	continue;
2255 
2256       succ = EDGE_SUCC (cur_bb, 0);
2257 
2258       /* Check to see if bb ends in a crossing (unconditional) jump.  At
2259 	 this point, no crossing jumps should be conditional.  */
2260 
2261       if (JUMP_P (last_insn)
2262 	  && (succ->flags & EDGE_CROSSING))
2263 	{
2264 	  gcc_assert (!any_condjump_p (last_insn));
2265 
2266 	  /* Make sure the jump is not already an indirect or table jump.  */
2267 
2268 	  if (!computed_jump_p (last_insn)
2269 	      && !tablejump_p (last_insn, NULL, NULL))
2270 	    {
2271 	      /* We have found a "crossing" unconditional branch.  Now
2272 		 we must convert it to an indirect jump.  First create
2273 		 reference of label, as target for jump.  */
2274 
2275 	      label = JUMP_LABEL (last_insn);
2276 	      label_addr = gen_rtx_LABEL_REF (Pmode, label);
2277 	      LABEL_NUSES (label) += 1;
2278 
2279 	      /* Get a register to use for the indirect jump.  */
2280 
2281 	      new_reg = gen_reg_rtx (Pmode);
2282 
2283 	      /* Generate indirect the jump sequence.  */
2284 
2285 	      start_sequence ();
2286 	      emit_move_insn (new_reg, label_addr);
2287 	      emit_indirect_jump (new_reg);
2288 	      indirect_jump_sequence = get_insns ();
2289 	      end_sequence ();
2290 
2291 	      /* Make sure every instruction in the new jump sequence has
2292 		 its basic block set to be cur_bb.  */
2293 
2294 	      for (cur_insn = indirect_jump_sequence; cur_insn;
2295 		   cur_insn = NEXT_INSN (cur_insn))
2296 		{
2297 		  if (!BARRIER_P (cur_insn))
2298 		    BLOCK_FOR_INSN (cur_insn) = cur_bb;
2299 		  if (JUMP_P (cur_insn))
2300 		    jump_insn = cur_insn;
2301 		}
2302 
2303 	      /* Insert the new (indirect) jump sequence immediately before
2304 		 the unconditional jump, then delete the unconditional jump.  */
2305 
2306 	      emit_insn_before (indirect_jump_sequence, last_insn);
2307 	      delete_insn (last_insn);
2308 
2309 	      JUMP_LABEL (jump_insn) = label;
2310 	      LABEL_NUSES (label)++;
2311 
2312 	      /* Make BB_END for cur_bb be the jump instruction (NOT the
2313 		 barrier instruction at the end of the sequence...).  */
2314 
2315 	      BB_END (cur_bb) = jump_insn;
2316 	    }
2317 	}
2318     }
2319 }
2320 
2321 /* Update CROSSING_JUMP_P flags on all jump insns.  */
2322 
2323 static void
update_crossing_jump_flags(void)2324 update_crossing_jump_flags (void)
2325 {
2326   basic_block bb;
2327   edge e;
2328   edge_iterator ei;
2329 
2330   FOR_EACH_BB_FN (bb, cfun)
2331     FOR_EACH_EDGE (e, ei, bb->succs)
2332       if (e->flags & EDGE_CROSSING)
2333 	{
2334 	  if (JUMP_P (BB_END (bb)))
2335 	    CROSSING_JUMP_P (BB_END (bb)) = 1;
2336 	  break;
2337 	}
2338 }
2339 
2340 /* Reorder basic blocks using the software trace cache (STC) algorithm.  */
2341 
2342 static void
reorder_basic_blocks_software_trace_cache(void)2343 reorder_basic_blocks_software_trace_cache (void)
2344 {
2345   if (dump_file)
2346     fprintf (dump_file, "\nReordering with the STC algorithm.\n\n");
2347 
2348   int n_traces;
2349   int i;
2350   struct trace *traces;
2351 
2352   /* We are estimating the length of uncond jump insn only once since the code
2353      for getting the insn length always returns the minimal length now.  */
2354   if (uncond_jump_length == 0)
2355     uncond_jump_length = get_uncond_jump_length ();
2356 
2357   /* We need to know some information for each basic block.  */
2358   array_size = GET_ARRAY_SIZE (last_basic_block_for_fn (cfun));
2359   bbd = XNEWVEC (bbro_basic_block_data, array_size);
2360   for (i = 0; i < array_size; i++)
2361     {
2362       bbd[i].start_of_trace = -1;
2363       bbd[i].end_of_trace = -1;
2364       bbd[i].in_trace = -1;
2365       bbd[i].visited = 0;
2366       bbd[i].priority = -1;
2367       bbd[i].heap = NULL;
2368       bbd[i].node = NULL;
2369     }
2370 
2371   traces = XNEWVEC (struct trace, n_basic_blocks_for_fn (cfun));
2372   n_traces = 0;
2373   find_traces (&n_traces, traces);
2374   connect_traces (n_traces, traces);
2375   FREE (traces);
2376   FREE (bbd);
2377 }
2378 
2379 /* Order edges by execution frequency, higher first.  */
2380 
2381 static int
edge_order(const void * ve1,const void * ve2)2382 edge_order (const void *ve1, const void *ve2)
2383 {
2384   edge e1 = *(const edge *) ve1;
2385   edge e2 = *(const edge *) ve2;
2386   profile_count c1 = e1->count ();
2387   profile_count c2 = e2->count ();
2388   /* Since profile_count::operator< does not establish a strict weak order
2389      in presence of uninitialized counts, use 'max': this makes them appear
2390      as if having execution frequency less than any initialized count.  */
2391   profile_count m = c1.max (c2);
2392   return (m == c2) - (m == c1);
2393 }
2394 
2395 /* Reorder basic blocks using the "simple" algorithm.  This tries to
2396    maximize the dynamic number of branches that are fallthrough, without
2397    copying instructions.  The algorithm is greedy, looking at the most
2398    frequently executed branch first.  */
2399 
2400 static void
reorder_basic_blocks_simple(void)2401 reorder_basic_blocks_simple (void)
2402 {
2403   if (dump_file)
2404     fprintf (dump_file, "\nReordering with the \"simple\" algorithm.\n\n");
2405 
2406   edge *edges = new edge[2 * n_basic_blocks_for_fn (cfun)];
2407 
2408   /* First, collect all edges that can be optimized by reordering blocks:
2409      simple jumps and conditional jumps, as well as the function entry edge.  */
2410 
2411   int n = 0;
2412   edges[n++] = EDGE_SUCC (ENTRY_BLOCK_PTR_FOR_FN (cfun), 0);
2413 
2414   basic_block bb;
2415   FOR_EACH_BB_FN (bb, cfun)
2416     {
2417       rtx_insn *end = BB_END (bb);
2418 
2419       if (computed_jump_p (end) || tablejump_p (end, NULL, NULL))
2420 	continue;
2421 
2422       /* We cannot optimize asm goto.  */
2423       if (JUMP_P (end) && extract_asm_operands (end))
2424 	continue;
2425 
2426       if (single_succ_p (bb))
2427 	edges[n++] = EDGE_SUCC (bb, 0);
2428       else if (any_condjump_p (end))
2429 	{
2430 	  edge e0 = EDGE_SUCC (bb, 0);
2431 	  edge e1 = EDGE_SUCC (bb, 1);
2432 	  /* When optimizing for size it is best to keep the original
2433 	     fallthrough edges.  */
2434 	  if (e1->flags & EDGE_FALLTHRU)
2435 	    std::swap (e0, e1);
2436 	  edges[n++] = e0;
2437 	  edges[n++] = e1;
2438 	}
2439     }
2440 
2441   /* Sort the edges, the most desirable first.  When optimizing for size
2442      all edges are equally desirable.  */
2443 
2444   if (optimize_function_for_speed_p (cfun))
2445     gcc_stablesort (edges, n, sizeof *edges, edge_order);
2446 
2447   /* Now decide which of those edges to make fallthrough edges.  We set
2448      BB_VISITED if a block already has a fallthrough successor assigned
2449      to it.  We make ->AUX of an endpoint point to the opposite endpoint
2450      of a sequence of blocks that fall through, and ->AUX will be NULL
2451      for a block that is in such a sequence but not an endpoint anymore.
2452 
2453      To start with, everything points to itself, nothing is assigned yet.  */
2454 
2455   FOR_ALL_BB_FN (bb, cfun)
2456     {
2457       bb->aux = bb;
2458       bb->flags &= ~BB_VISITED;
2459     }
2460 
2461   EXIT_BLOCK_PTR_FOR_FN (cfun)->aux = 0;
2462 
2463   /* Now for all edges, the most desirable first, see if that edge can
2464      connect two sequences.  If it can, update AUX and BB_VISITED; if it
2465      cannot, zero out the edge in the table.  */
2466 
2467   for (int j = 0; j < n; j++)
2468     {
2469       edge e = edges[j];
2470 
2471       basic_block tail_a = e->src;
2472       basic_block head_b = e->dest;
2473       basic_block head_a = (basic_block) tail_a->aux;
2474       basic_block tail_b = (basic_block) head_b->aux;
2475 
2476       /* An edge cannot connect two sequences if:
2477 	 - it crosses partitions;
2478 	 - its src is not a current endpoint;
2479 	 - its dest is not a current endpoint;
2480 	 - or, it would create a loop.  */
2481 
2482       if (e->flags & EDGE_CROSSING
2483 	  || tail_a->flags & BB_VISITED
2484 	  || !tail_b
2485 	  || (!(head_b->flags & BB_VISITED) && head_b != tail_b)
2486 	  || tail_a == tail_b)
2487 	{
2488 	  edges[j] = 0;
2489 	  continue;
2490 	}
2491 
2492       tail_a->aux = 0;
2493       head_b->aux = 0;
2494       head_a->aux = tail_b;
2495       tail_b->aux = head_a;
2496       tail_a->flags |= BB_VISITED;
2497     }
2498 
2499   /* Put the pieces together, in the same order that the start blocks of
2500      the sequences already had.  The hot/cold partitioning gives a little
2501      complication: as a first pass only do this for blocks in the same
2502      partition as the start block, and (if there is anything left to do)
2503      in a second pass handle the other partition.  */
2504 
2505   basic_block last_tail = (basic_block) ENTRY_BLOCK_PTR_FOR_FN (cfun)->aux;
2506 
2507   int current_partition
2508     = BB_PARTITION (last_tail == ENTRY_BLOCK_PTR_FOR_FN (cfun)
2509 		    ? EDGE_SUCC (ENTRY_BLOCK_PTR_FOR_FN (cfun), 0)->dest
2510 		    : last_tail);
2511   bool need_another_pass = true;
2512 
2513   for (int pass = 0; pass < 2 && need_another_pass; pass++)
2514     {
2515       need_another_pass = false;
2516 
2517       FOR_EACH_BB_FN (bb, cfun)
2518 	if ((bb->flags & BB_VISITED && bb->aux) || bb->aux == bb)
2519 	  {
2520 	    if (BB_PARTITION (bb) != current_partition)
2521 	      {
2522 		need_another_pass = true;
2523 		continue;
2524 	      }
2525 
2526 	    last_tail->aux = bb;
2527 	    last_tail = (basic_block) bb->aux;
2528 	  }
2529 
2530       current_partition ^= BB_HOT_PARTITION | BB_COLD_PARTITION;
2531     }
2532 
2533   last_tail->aux = 0;
2534 
2535   /* Finally, link all the chosen fallthrough edges.  */
2536 
2537   for (int j = 0; j < n; j++)
2538     if (edges[j])
2539       edges[j]->src->aux = edges[j]->dest;
2540 
2541   delete[] edges;
2542 
2543   /* If the entry edge no longer falls through we have to make a new
2544      block so it can do so again.  */
2545 
2546   edge e = EDGE_SUCC (ENTRY_BLOCK_PTR_FOR_FN (cfun), 0);
2547   if (e->dest != ENTRY_BLOCK_PTR_FOR_FN (cfun)->aux)
2548     {
2549       force_nonfallthru (e);
2550       e->src->aux = ENTRY_BLOCK_PTR_FOR_FN (cfun)->aux;
2551     }
2552 }
2553 
2554 /* Reorder basic blocks.  The main entry point to this file.  */
2555 
2556 static void
reorder_basic_blocks(void)2557 reorder_basic_blocks (void)
2558 {
2559   gcc_assert (current_ir_type () == IR_RTL_CFGLAYOUT);
2560 
2561   if (n_basic_blocks_for_fn (cfun) <= NUM_FIXED_BLOCKS + 1)
2562     return;
2563 
2564   set_edge_can_fallthru_flag ();
2565   mark_dfs_back_edges ();
2566 
2567   switch (flag_reorder_blocks_algorithm)
2568     {
2569     case REORDER_BLOCKS_ALGORITHM_SIMPLE:
2570       reorder_basic_blocks_simple ();
2571       break;
2572 
2573     case REORDER_BLOCKS_ALGORITHM_STC:
2574       reorder_basic_blocks_software_trace_cache ();
2575       break;
2576 
2577     default:
2578       gcc_unreachable ();
2579     }
2580 
2581   relink_block_chain (/*stay_in_cfglayout_mode=*/true);
2582 
2583   if (dump_file)
2584     {
2585       if (dump_flags & TDF_DETAILS)
2586 	dump_reg_info (dump_file);
2587       dump_flow_info (dump_file, dump_flags);
2588     }
2589 
2590   /* Signal that rtl_verify_flow_info_1 can now verify that there
2591      is at most one switch between hot/cold sections.  */
2592   crtl->bb_reorder_complete = true;
2593 }
2594 
2595 /* Determine which partition the first basic block in the function
2596    belongs to, then find the first basic block in the current function
2597    that belongs to a different section, and insert a
2598    NOTE_INSN_SWITCH_TEXT_SECTIONS note immediately before it in the
2599    instruction stream.  When writing out the assembly code,
2600    encountering this note will make the compiler switch between the
2601    hot and cold text sections.  */
2602 
2603 void
insert_section_boundary_note(void)2604 insert_section_boundary_note (void)
2605 {
2606   basic_block bb;
2607   bool switched_sections = false;
2608   int current_partition = 0;
2609 
2610   if (!crtl->has_bb_partition)
2611     return;
2612 
2613   FOR_EACH_BB_FN (bb, cfun)
2614     {
2615       if (!current_partition)
2616 	current_partition = BB_PARTITION (bb);
2617       if (BB_PARTITION (bb) != current_partition)
2618 	{
2619 	  gcc_assert (!switched_sections);
2620           switched_sections = true;
2621           emit_note_before (NOTE_INSN_SWITCH_TEXT_SECTIONS, BB_HEAD (bb));
2622           current_partition = BB_PARTITION (bb);
2623 	}
2624     }
2625 
2626   /* Make sure crtl->has_bb_partition matches reality even if bbpart finds
2627      some hot and some cold basic blocks, but later one of those kinds is
2628      optimized away.  */
2629   crtl->has_bb_partition = switched_sections;
2630 }
2631 
2632 namespace {
2633 
2634 const pass_data pass_data_reorder_blocks =
2635 {
2636   RTL_PASS, /* type */
2637   "bbro", /* name */
2638   OPTGROUP_NONE, /* optinfo_flags */
2639   TV_REORDER_BLOCKS, /* tv_id */
2640   0, /* properties_required */
2641   0, /* properties_provided */
2642   0, /* properties_destroyed */
2643   0, /* todo_flags_start */
2644   0, /* todo_flags_finish */
2645 };
2646 
2647 class pass_reorder_blocks : public rtl_opt_pass
2648 {
2649 public:
pass_reorder_blocks(gcc::context * ctxt)2650   pass_reorder_blocks (gcc::context *ctxt)
2651     : rtl_opt_pass (pass_data_reorder_blocks, ctxt)
2652   {}
2653 
2654   /* opt_pass methods: */
gate(function *)2655   virtual bool gate (function *)
2656     {
2657       if (targetm.cannot_modify_jumps_p ())
2658 	return false;
2659       return (optimize > 0
2660 	      && (flag_reorder_blocks || flag_reorder_blocks_and_partition));
2661     }
2662 
2663   virtual unsigned int execute (function *);
2664 
2665 }; // class pass_reorder_blocks
2666 
2667 unsigned int
execute(function * fun)2668 pass_reorder_blocks::execute (function *fun)
2669 {
2670   basic_block bb;
2671 
2672   /* Last attempt to optimize CFG, as scheduling, peepholing and insn
2673      splitting possibly introduced more crossjumping opportunities.  */
2674   cfg_layout_initialize (CLEANUP_EXPENSIVE);
2675 
2676   reorder_basic_blocks ();
2677   cleanup_cfg (CLEANUP_EXPENSIVE | CLEANUP_NO_PARTITIONING);
2678 
2679   FOR_EACH_BB_FN (bb, fun)
2680     if (bb->next_bb != EXIT_BLOCK_PTR_FOR_FN (fun))
2681       bb->aux = bb->next_bb;
2682   cfg_layout_finalize ();
2683 
2684   FOR_EACH_BB_FN (bb, fun)
2685     df_recompute_luids (bb);
2686   return 0;
2687 }
2688 
2689 } // anon namespace
2690 
2691 rtl_opt_pass *
make_pass_reorder_blocks(gcc::context * ctxt)2692 make_pass_reorder_blocks (gcc::context *ctxt)
2693 {
2694   return new pass_reorder_blocks (ctxt);
2695 }
2696 
2697 /* Duplicate a block (that we already know ends in a computed jump) into its
2698    predecessors, where possible.  Return whether anything is changed.  */
2699 static bool
maybe_duplicate_computed_goto(basic_block bb,int max_size)2700 maybe_duplicate_computed_goto (basic_block bb, int max_size)
2701 {
2702   if (single_pred_p (bb))
2703     return false;
2704 
2705   /* Make sure that the block is small enough.  */
2706   rtx_insn *insn;
2707   FOR_BB_INSNS (bb, insn)
2708     if (INSN_P (insn))
2709       {
2710 	max_size -= get_attr_min_length (insn);
2711 	if (max_size < 0)
2712 	   return false;
2713       }
2714 
2715   bool changed = false;
2716   edge e;
2717   edge_iterator ei;
2718   for (ei = ei_start (bb->preds); (e = ei_safe_edge (ei)); )
2719     {
2720       basic_block pred = e->src;
2721 
2722       /* Do not duplicate BB into PRED if that is the last predecessor, or if
2723 	 we cannot merge a copy of BB with PRED.  */
2724       if (single_pred_p (bb)
2725 	  || !single_succ_p (pred)
2726 	  || e->flags & EDGE_COMPLEX
2727 	  || pred->index < NUM_FIXED_BLOCKS
2728 	  || (JUMP_P (BB_END (pred)) && !simplejump_p (BB_END (pred)))
2729 	  || (JUMP_P (BB_END (pred)) && CROSSING_JUMP_P (BB_END (pred))))
2730 	{
2731 	  ei_next (&ei);
2732 	  continue;
2733 	}
2734 
2735       if (dump_file)
2736 	fprintf (dump_file, "Duplicating computed goto bb %d into bb %d\n",
2737 		 bb->index, e->src->index);
2738 
2739       /* Remember if PRED can be duplicated; if so, the copy of BB merged
2740 	 with PRED can be duplicated as well.  */
2741       bool can_dup_more = can_duplicate_block_p (pred);
2742 
2743       /* Make a copy of BB, merge it into PRED.  */
2744       basic_block copy = duplicate_block (bb, e, NULL);
2745       emit_barrier_after_bb (copy);
2746       reorder_insns_nobb (BB_HEAD (copy), BB_END (copy), BB_END (pred));
2747       merge_blocks (pred, copy);
2748 
2749       changed = true;
2750 
2751       /* Try to merge the resulting merged PRED into further predecessors.  */
2752       if (can_dup_more)
2753 	maybe_duplicate_computed_goto (pred, max_size);
2754     }
2755 
2756   return changed;
2757 }
2758 
2759 /* Duplicate the blocks containing computed gotos.  This basically unfactors
2760    computed gotos that were factored early on in the compilation process to
2761    speed up edge based data flow.  We used to not unfactor them again, which
2762    can seriously pessimize code with many computed jumps in the source code,
2763    such as interpreters.  See e.g. PR15242.  */
2764 static void
duplicate_computed_gotos(function * fun)2765 duplicate_computed_gotos (function *fun)
2766 {
2767   /* We are estimating the length of uncond jump insn only once
2768      since the code for getting the insn length always returns
2769      the minimal length now.  */
2770   if (uncond_jump_length == 0)
2771     uncond_jump_length = get_uncond_jump_length ();
2772 
2773   /* Never copy a block larger than this.  */
2774   int max_size
2775     = uncond_jump_length * param_max_goto_duplication_insns;
2776 
2777   bool changed = false;
2778 
2779   /* Try to duplicate all blocks that end in a computed jump and that
2780      can be duplicated at all.  */
2781   basic_block bb;
2782   FOR_EACH_BB_FN (bb, fun)
2783     if (computed_jump_p (BB_END (bb)) && can_duplicate_block_p (bb))
2784       changed |= maybe_duplicate_computed_goto (bb, max_size);
2785 
2786   /* Duplicating blocks will redirect edges and may cause hot blocks
2787     previously reached by both hot and cold blocks to become dominated
2788     only by cold blocks.  */
2789   if (changed)
2790     fixup_partitions ();
2791 }
2792 
2793 namespace {
2794 
2795 const pass_data pass_data_duplicate_computed_gotos =
2796 {
2797   RTL_PASS, /* type */
2798   "compgotos", /* name */
2799   OPTGROUP_NONE, /* optinfo_flags */
2800   TV_REORDER_BLOCKS, /* tv_id */
2801   0, /* properties_required */
2802   0, /* properties_provided */
2803   0, /* properties_destroyed */
2804   0, /* todo_flags_start */
2805   0, /* todo_flags_finish */
2806 };
2807 
2808 class pass_duplicate_computed_gotos : public rtl_opt_pass
2809 {
2810 public:
pass_duplicate_computed_gotos(gcc::context * ctxt)2811   pass_duplicate_computed_gotos (gcc::context *ctxt)
2812     : rtl_opt_pass (pass_data_duplicate_computed_gotos, ctxt)
2813   {}
2814 
2815   /* opt_pass methods: */
2816   virtual bool gate (function *);
2817   virtual unsigned int execute (function *);
2818 
2819 }; // class pass_duplicate_computed_gotos
2820 
2821 bool
gate(function * fun)2822 pass_duplicate_computed_gotos::gate (function *fun)
2823 {
2824   if (targetm.cannot_modify_jumps_p ())
2825     return false;
2826   return (optimize > 0
2827 	  && flag_expensive_optimizations
2828 	  && ! optimize_function_for_size_p (fun));
2829 }
2830 
2831 unsigned int
execute(function * fun)2832 pass_duplicate_computed_gotos::execute (function *fun)
2833 {
2834   duplicate_computed_gotos (fun);
2835 
2836   return 0;
2837 }
2838 
2839 } // anon namespace
2840 
2841 rtl_opt_pass *
make_pass_duplicate_computed_gotos(gcc::context * ctxt)2842 make_pass_duplicate_computed_gotos (gcc::context *ctxt)
2843 {
2844   return new pass_duplicate_computed_gotos (ctxt);
2845 }
2846 
2847 /* This function is the main 'entrance' for the optimization that
2848    partitions hot and cold basic blocks into separate sections of the
2849    .o file (to improve performance and cache locality).  Ideally it
2850    would be called after all optimizations that rearrange the CFG have
2851    been called.  However part of this optimization may introduce new
2852    register usage, so it must be called before register allocation has
2853    occurred.  This means that this optimization is actually called
2854    well before the optimization that reorders basic blocks (see
2855    function above).
2856 
2857    This optimization checks the feedback information to determine
2858    which basic blocks are hot/cold, updates flags on the basic blocks
2859    to indicate which section they belong in.  This information is
2860    later used for writing out sections in the .o file.  Because hot
2861    and cold sections can be arbitrarily large (within the bounds of
2862    memory), far beyond the size of a single function, it is necessary
2863    to fix up all edges that cross section boundaries, to make sure the
2864    instructions used can actually span the required distance.  The
2865    fixes are described below.
2866 
2867    Fall-through edges must be changed into jumps; it is not safe or
2868    legal to fall through across a section boundary.  Whenever a
2869    fall-through edge crossing a section boundary is encountered, a new
2870    basic block is inserted (in the same section as the fall-through
2871    source), and the fall through edge is redirected to the new basic
2872    block.  The new basic block contains an unconditional jump to the
2873    original fall-through target.  (If the unconditional jump is
2874    insufficient to cross section boundaries, that is dealt with a
2875    little later, see below).
2876 
2877    In order to deal with architectures that have short conditional
2878    branches (which cannot span all of memory) we take any conditional
2879    jump that attempts to cross a section boundary and add a level of
2880    indirection: it becomes a conditional jump to a new basic block, in
2881    the same section.  The new basic block contains an unconditional
2882    jump to the original target, in the other section.
2883 
2884    For those architectures whose unconditional branch is also
2885    incapable of reaching all of memory, those unconditional jumps are
2886    converted into indirect jumps, through a register.
2887 
2888    IMPORTANT NOTE: This optimization causes some messy interactions
2889    with the cfg cleanup optimizations; those optimizations want to
2890    merge blocks wherever possible, and to collapse indirect jump
2891    sequences (change "A jumps to B jumps to C" directly into "A jumps
2892    to C").  Those optimizations can undo the jump fixes that
2893    partitioning is required to make (see above), in order to ensure
2894    that jumps attempting to cross section boundaries are really able
2895    to cover whatever distance the jump requires (on many architectures
2896    conditional or unconditional jumps are not able to reach all of
2897    memory).  Therefore tests have to be inserted into each such
2898    optimization to make sure that it does not undo stuff necessary to
2899    cross partition boundaries.  This would be much less of a problem
2900    if we could perform this optimization later in the compilation, but
2901    unfortunately the fact that we may need to create indirect jumps
2902    (through registers) requires that this optimization be performed
2903    before register allocation.
2904 
2905    Hot and cold basic blocks are partitioned and put in separate
2906    sections of the .o file, to reduce paging and improve cache
2907    performance (hopefully).  This can result in bits of code from the
2908    same function being widely separated in the .o file.  However this
2909    is not obvious to the current bb structure.  Therefore we must take
2910    care to ensure that: 1). There are no fall_thru edges that cross
2911    between sections; 2). For those architectures which have "short"
2912    conditional branches, all conditional branches that attempt to
2913    cross between sections are converted to unconditional branches;
2914    and, 3). For those architectures which have "short" unconditional
2915    branches, all unconditional branches that attempt to cross between
2916    sections are converted to indirect jumps.
2917 
2918    The code for fixing up fall_thru edges that cross between hot and
2919    cold basic blocks does so by creating new basic blocks containing
2920    unconditional branches to the appropriate label in the "other"
2921    section.  The new basic block is then put in the same (hot or cold)
2922    section as the original conditional branch, and the fall_thru edge
2923    is modified to fall into the new basic block instead.  By adding
2924    this level of indirection we end up with only unconditional branches
2925    crossing between hot and cold sections.
2926 
2927    Conditional branches are dealt with by adding a level of indirection.
2928    A new basic block is added in the same (hot/cold) section as the
2929    conditional branch, and the conditional branch is retargeted to the
2930    new basic block.  The new basic block contains an unconditional branch
2931    to the original target of the conditional branch (in the other section).
2932 
2933    Unconditional branches are dealt with by converting them into
2934    indirect jumps.  */
2935 
2936 namespace {
2937 
2938 const pass_data pass_data_partition_blocks =
2939 {
2940   RTL_PASS, /* type */
2941   "bbpart", /* name */
2942   OPTGROUP_NONE, /* optinfo_flags */
2943   TV_REORDER_BLOCKS, /* tv_id */
2944   PROP_cfglayout, /* properties_required */
2945   0, /* properties_provided */
2946   0, /* properties_destroyed */
2947   0, /* todo_flags_start */
2948   0, /* todo_flags_finish */
2949 };
2950 
2951 class pass_partition_blocks : public rtl_opt_pass
2952 {
2953 public:
pass_partition_blocks(gcc::context * ctxt)2954   pass_partition_blocks (gcc::context *ctxt)
2955     : rtl_opt_pass (pass_data_partition_blocks, ctxt)
2956   {}
2957 
2958   /* opt_pass methods: */
2959   virtual bool gate (function *);
2960   virtual unsigned int execute (function *);
2961 
2962 }; // class pass_partition_blocks
2963 
2964 bool
gate(function * fun)2965 pass_partition_blocks::gate (function *fun)
2966 {
2967   /* The optimization to partition hot/cold basic blocks into separate
2968      sections of the .o file does not work well with linkonce or with
2969      user defined section attributes or with naked attribute.  Don't call
2970      it if either case arises.  */
2971   return (flag_reorder_blocks_and_partition
2972 	  && optimize
2973 	  /* See pass_reorder_blocks::gate.  We should not partition if
2974 	     we are going to omit the reordering.  */
2975 	  && optimize_function_for_speed_p (fun)
2976 	  && !DECL_COMDAT_GROUP (current_function_decl)
2977 	  && !lookup_attribute ("section", DECL_ATTRIBUTES (fun->decl))
2978 	  && !lookup_attribute ("naked", DECL_ATTRIBUTES (fun->decl))
2979 	  /* Workaround a bug in GDB where read_partial_die doesn't cope
2980 	     with DIEs with DW_AT_ranges, see PR81115.  */
2981 	  && !(in_lto_p && MAIN_NAME_P (DECL_NAME (fun->decl))));
2982 }
2983 
2984 unsigned
execute(function * fun)2985 pass_partition_blocks::execute (function *fun)
2986 {
2987   vec<edge> crossing_edges;
2988 
2989   if (n_basic_blocks_for_fn (fun) <= NUM_FIXED_BLOCKS + 1)
2990     return 0;
2991 
2992   df_set_flags (DF_DEFER_INSN_RESCAN);
2993 
2994   crossing_edges = find_rarely_executed_basic_blocks_and_crossing_edges ();
2995   if (!crossing_edges.exists ())
2996     /* Make sure to process deferred rescans and clear changeable df flags.  */
2997     return TODO_df_finish;
2998 
2999   crtl->has_bb_partition = true;
3000 
3001   /* Make sure the source of any crossing edge ends in a jump and the
3002      destination of any crossing edge has a label.  */
3003   add_labels_and_missing_jumps (crossing_edges);
3004 
3005   /* Convert all crossing fall_thru edges to non-crossing fall
3006      thrus to unconditional jumps (that jump to the original fall
3007      through dest).  */
3008   fix_up_fall_thru_edges ();
3009 
3010   /* If the architecture does not have conditional branches that can
3011      span all of memory, convert crossing conditional branches into
3012      crossing unconditional branches.  */
3013   if (!HAS_LONG_COND_BRANCH)
3014     fix_crossing_conditional_branches ();
3015 
3016   /* If the architecture does not have unconditional branches that
3017      can span all of memory, convert crossing unconditional branches
3018      into indirect jumps.  Since adding an indirect jump also adds
3019      a new register usage, update the register usage information as
3020      well.  */
3021   if (!HAS_LONG_UNCOND_BRANCH)
3022     fix_crossing_unconditional_branches ();
3023 
3024   update_crossing_jump_flags ();
3025 
3026   /* Clear bb->aux fields that the above routines were using.  */
3027   clear_aux_for_blocks ();
3028 
3029   crossing_edges.release ();
3030 
3031   /* ??? FIXME: DF generates the bb info for a block immediately.
3032      And by immediately, I mean *during* creation of the block.
3033 
3034 	#0  df_bb_refs_collect
3035 	#1  in df_bb_refs_record
3036 	#2  in create_basic_block_structure
3037 
3038      Which means that the bb_has_eh_pred test in df_bb_refs_collect
3039      will *always* fail, because no edges can have been added to the
3040      block yet.  Which of course means we don't add the right
3041      artificial refs, which means we fail df_verify (much) later.
3042 
3043      Cleanest solution would seem to make DF_DEFER_INSN_RESCAN imply
3044      that we also shouldn't grab data from the new blocks those new
3045      insns are in either.  In this way one can create the block, link
3046      it up properly, and have everything Just Work later, when deferred
3047      insns are processed.
3048 
3049      In the meantime, we have no other option but to throw away all
3050      of the DF data and recompute it all.  */
3051   if (fun->eh->lp_array)
3052     {
3053       df_finish_pass (true);
3054       df_scan_alloc (NULL);
3055       df_scan_blocks ();
3056       /* Not all post-landing pads use all of the EH_RETURN_DATA_REGNO
3057 	 data.  We blindly generated all of them when creating the new
3058 	 landing pad.  Delete those assignments we don't use.  */
3059       df_set_flags (DF_LR_RUN_DCE);
3060       df_analyze ();
3061     }
3062 
3063   /* Make sure to process deferred rescans and clear changeable df flags.  */
3064   return TODO_df_finish;
3065 }
3066 
3067 } // anon namespace
3068 
3069 rtl_opt_pass *
make_pass_partition_blocks(gcc::context * ctxt)3070 make_pass_partition_blocks (gcc::context *ctxt)
3071 {
3072   return new pass_partition_blocks (ctxt);
3073 }
3074