xref: /netbsd-src/sys/arch/arm/at91/at91emac.c (revision 481d3881954fd794ca5f2d880b68c53a5db8620e)
1 /*	$NetBSD: at91emac.c,v 1.36 2024/07/05 04:31:49 rin Exp $	*/
2 
3 /*
4  * Copyright (c) 2007 Embedtronics Oy
5  * All rights reserved.
6  *
7  * Based on arch/arm/ep93xx/epe.c
8  *
9  * Copyright (c) 2004 Jesse Off
10  * All rights reserved.
11  *
12  * Redistribution and use in source and binary forms, with or without
13  * modification, are permitted provided that the following conditions
14  * are met:
15  * 1. Redistributions of source code must retain the above copyright
16  *    notice, this list of conditions and the following disclaimer.
17  * 2. Redistributions in binary form must reproduce the above copyright
18  *    notice, this list of conditions and the following disclaimer in the
19  *    documentation and/or other materials provided with the distribution.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
22  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
23  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
24  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
25  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
26  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
27  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
28  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
29  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
30  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
31  * POSSIBILITY OF SUCH DAMAGE.
32  */
33 
34 #include <sys/cdefs.h>
35 __KERNEL_RCSID(0, "$NetBSD: at91emac.c,v 1.36 2024/07/05 04:31:49 rin Exp $");
36 
37 #include <sys/types.h>
38 #include <sys/param.h>
39 #include <sys/systm.h>
40 #include <sys/ioctl.h>
41 #include <sys/kernel.h>
42 #include <sys/proc.h>
43 #include <sys/time.h>
44 #include <sys/device.h>
45 #include <uvm/uvm_extern.h>
46 
47 #include <sys/bus.h>
48 #include <machine/intr.h>
49 
50 #include <arm/cpufunc.h>
51 
52 #include <net/if.h>
53 #include <net/if_dl.h>
54 #include <net/if_types.h>
55 #include <net/if_media.h>
56 #include <net/if_ether.h>
57 #include <net/bpf.h>
58 
59 #include <dev/mii/mii.h>
60 #include <dev/mii/miivar.h>
61 
62 #ifdef INET
63 #include <netinet/in.h>
64 #include <netinet/in_systm.h>
65 #include <netinet/in_var.h>
66 #include <netinet/ip.h>
67 #include <netinet/if_inarp.h>
68 #endif
69 
70 #include <arm/at91/at91var.h>
71 #include <arm/at91/at91emacreg.h>
72 #include <arm/at91/at91emacvar.h>
73 
74 #define DEFAULT_MDCDIV	32
75 
76 #ifndef EMAC_FAST
77 #define EMAC_FAST
78 #endif
79 
80 #ifndef EMAC_FAST
81 #define EMAC_READ(x) \
82 	bus_space_read_4(sc->sc_iot, sc->sc_ioh, (EPE_ ## x))
83 #define EMAC_WRITE(x, y) \
84 	bus_space_write_4(sc->sc_iot, sc->sc_ioh, (EPE_ ## x), (y))
85 #else
86 #define EMAC_READ(x) ETHREG(x)
87 #define EMAC_WRITE(x, y) ETHREG(x) = (y)
88 #endif /* ! EMAC_FAST */
89 
90 static int	emac_match(device_t, cfdata_t, void *);
91 static void	emac_attach(device_t, device_t, void *);
92 static void	emac_init(struct emac_softc *);
93 static int	emac_intr(void* arg);
94 static int	emac_gctx(struct emac_softc *);
95 int		emac_mii_readreg (device_t, int, int, uint16_t *);
96 int		emac_mii_writereg (device_t, int, int, uint16_t);
97 void		emac_statchg (struct ifnet *);
98 void		emac_tick (void *);
99 static int	emac_ifioctl (struct ifnet *, u_long, void *);
100 static void	emac_ifstart (struct ifnet *);
101 static void	emac_ifwatchdog (struct ifnet *);
102 static int	emac_ifinit (struct ifnet *);
103 static void	emac_ifstop (struct ifnet *, int);
104 static void	emac_setaddr (struct ifnet *);
105 
106 CFATTACH_DECL_NEW(at91emac, sizeof(struct emac_softc),
107     emac_match, emac_attach, NULL, NULL);
108 
109 #ifdef	EMAC_DEBUG
110 int emac_debug = EMAC_DEBUG;
111 #define	DPRINTFN(n, fmt)	if (emac_debug >= (n)) printf fmt
112 #else
113 #define	DPRINTFN(n, fmt)
114 #endif
115 
116 static int
emac_match(device_t parent,cfdata_t match,void * aux)117 emac_match(device_t parent, cfdata_t match, void *aux)
118 {
119 	if (strcmp(match->cf_name, "at91emac") == 0)
120 		return 2;
121 	return 0;
122 }
123 
124 static void
emac_attach(device_t parent,device_t self,void * aux)125 emac_attach(device_t parent, device_t self, void *aux)
126 {
127 	struct emac_softc		*sc = device_private(self);
128 	struct at91bus_attach_args	*sa = aux;
129 	prop_data_t			enaddr;
130 	uint32_t			u;
131 
132 	printf("\n");
133 	sc->sc_dev = self;
134 	sc->sc_iot = sa->sa_iot;
135 	sc->sc_pid = sa->sa_pid;
136 	sc->sc_dmat = sa->sa_dmat;
137 
138 	if (bus_space_map(sa->sa_iot, sa->sa_addr, sa->sa_size, 0, &sc->sc_ioh))
139 		panic("%s: Cannot map registers", device_xname(self));
140 
141 	/* enable peripheral clock */
142 	at91_peripheral_clock(sc->sc_pid, 1);
143 
144 	/* configure emac: */
145 	EMAC_WRITE(ETH_CTL, 0);			// disable everything
146 	EMAC_WRITE(ETH_IDR, -1);		// disable interrupts
147 	EMAC_WRITE(ETH_RBQP, 0);		// clear receive
148 	EMAC_WRITE(ETH_CFG,
149 	    ETH_CFG_CLK_32 | ETH_CFG_SPD | ETH_CFG_FD | ETH_CFG_BIG);
150 	EMAC_WRITE(ETH_TCR, 0);			// send nothing
151 	//(void)EMAC_READ(ETH_ISR);
152 	u = EMAC_READ(ETH_TSR);
153 	EMAC_WRITE(ETH_TSR, (u & (ETH_TSR_UND | ETH_TSR_COMP | ETH_TSR_BNQ
154 				  | ETH_TSR_IDLE | ETH_TSR_RLE
155 				  | ETH_TSR_COL | ETH_TSR_OVR)));
156 	u = EMAC_READ(ETH_RSR);
157 	EMAC_WRITE(ETH_RSR, (u & (ETH_RSR_OVR | ETH_RSR_REC | ETH_RSR_BNA)));
158 
159 	/* Fetch the Ethernet address from property if set. */
160 	enaddr = prop_dictionary_get(device_properties(self), "mac-address");
161 
162 	if (enaddr != NULL) {
163 		KASSERT(prop_object_type(enaddr) == PROP_TYPE_DATA);
164 		KASSERT(prop_data_size(enaddr) == ETHER_ADDR_LEN);
165 		memcpy(sc->sc_enaddr, prop_data_data_nocopy(enaddr),
166 		       ETHER_ADDR_LEN);
167 	} else {
168 		static const uint8_t hardcoded[ETHER_ADDR_LEN] = {
169 		  0x00, 0x0d, 0x10, 0x81, 0x0c, 0x94
170 		};
171 		memcpy(sc->sc_enaddr, hardcoded, ETHER_ADDR_LEN);
172 	}
173 
174 	at91_intr_establish(sc->sc_pid, IPL_NET, INTR_HIGH_LEVEL, emac_intr,
175 	    sc);
176 	emac_init(sc);
177 }
178 
179 static int
emac_gctx(struct emac_softc * sc)180 emac_gctx(struct emac_softc *sc)
181 {
182 	uint32_t tsr;
183 
184 	tsr = EMAC_READ(ETH_TSR);
185 	if (!(tsr & ETH_TSR_BNQ)) {
186 		// no space left
187 		return 0;
188 	}
189 
190 	// free sent frames
191 	while (sc->txqc > (tsr & ETH_TSR_IDLE ? 0 : 1)) {
192 		int i = sc->txqi % TX_QLEN;
193 		bus_dmamap_sync(sc->sc_dmat, sc->txq[i].m_dmamap, 0,
194 		    sc->txq[i].m->m_pkthdr.len, BUS_DMASYNC_POSTWRITE);
195 		bus_dmamap_unload(sc->sc_dmat, sc->txq[i].m_dmamap);
196 		m_freem(sc->txq[i].m);
197 		DPRINTFN(2,("%s: freed idx #%i mbuf %p (txqc=%i)\n",
198 			__FUNCTION__, i, sc->txq[i].m, sc->txqc));
199 		sc->txq[i].m = NULL;
200 		sc->txqi = (i + 1) % TX_QLEN;
201 		sc->txqc--;
202 	}
203 
204 	// mark we're free
205 	if (sc->tx_busy) {
206 		sc->tx_busy = false;
207 		/* Disable transmit-buffer-free interrupt */
208 		/*EMAC_WRITE(ETH_IDR, ETH_ISR_TBRE);*/
209 	}
210 
211 	return 1;
212 }
213 
214 static int
emac_intr(void * arg)215 emac_intr(void *arg)
216 {
217 	struct emac_softc *sc = (struct emac_softc *)arg;
218 	struct ifnet * ifp = &sc->sc_ec.ec_if;
219 	uint32_t imr, isr, ctl;
220 	int bi;
221 
222 	imr = ~EMAC_READ(ETH_IMR);
223 	if (!(imr & (ETH_ISR_RCOM | ETH_ISR_TBRE | ETH_ISR_TIDLE
224 	    | ETH_ISR_RBNA | ETH_ISR_ROVR))) {
225 		// interrupt not enabled, can't be us
226 		return 0;
227 	}
228 
229 	isr = EMAC_READ(ETH_ISR) & imr;
230 #ifdef EMAC_DEBUG
231 	uint32_t rsr =
232 #endif
233 	EMAC_READ(ETH_RSR);		// get receive status register
234 
235 	DPRINTFN(2, ("%s: isr=0x%08X rsr=0x%08X imr=0x%08X\n", __FUNCTION__,
236 		isr, rsr, imr));
237 
238 	if (isr & ETH_ISR_RBNA) {		// out of receive buffers
239 		EMAC_WRITE(ETH_RSR, ETH_RSR_BNA);	// clear interrupt
240 		ctl = EMAC_READ(ETH_CTL);		// get current control register value
241 		EMAC_WRITE(ETH_CTL, ctl & ~ETH_CTL_RE);	// disable receiver
242 		EMAC_WRITE(ETH_RSR, ETH_RSR_BNA);	// clear BNA bit
243 		EMAC_WRITE(ETH_CTL, ctl |  ETH_CTL_RE);	// re-enable receiver
244 		if_statinc(ifp, if_ierrors);
245 		if_statinc(ifp, if_ipackets);
246 		DPRINTFN(1,("%s: out of receive buffers\n", __FUNCTION__));
247 	}
248 	if (isr & ETH_ISR_ROVR) {
249 		EMAC_WRITE(ETH_RSR, ETH_RSR_OVR);	// clear interrupt
250 		if_statinc(ifp, if_ierrors);
251 		if_statinc(ifp, if_ipackets);
252 		DPRINTFN(1,("%s: receive overrun\n", __FUNCTION__));
253 	}
254 
255 	if (isr & ETH_ISR_RCOM) {			// packet has been received!
256 		uint32_t nfo;
257 		// @@@ if memory is NOT coherent, then we're in trouble @@@@
258 //		bus_dmamap_sync(sc->sc_dmat, sc->rbqpage_dmamap, 0, sc->rbqlen, BUS_DMASYNC_POSTWRITE | BUS_DMASYNC_POSTREAD);
259 //		printf("## RDSC[%i].ADDR=0x%08X\n", sc->rxqi % RX_QLEN, sc->RDSC[sc->rxqi % RX_QLEN].Addr);
260 		DPRINTFN(2,("#2 RDSC[%i].INFO=0x%08X\n", sc->rxqi % RX_QLEN,
261 			sc->RDSC[sc->rxqi % RX_QLEN].Info));
262 		while (sc->RDSC[(bi = sc->rxqi % RX_QLEN)].Addr & ETH_RDSC_F_USED) {
263 			int fl;
264 			struct mbuf *m;
265 
266 			nfo = sc->RDSC[bi].Info;
267 			fl = (nfo & ETH_RDSC_I_LEN) - 4;
268 			DPRINTFN(2,("## nfo=0x%08X\n", nfo));
269 
270 			MGETHDR(m, M_DONTWAIT, MT_DATA);
271 			if (m != NULL) MCLGET(m, M_DONTWAIT);
272 			if (m != NULL && (m->m_flags & M_EXT)) {
273 				bus_dmamap_sync(sc->sc_dmat,
274 				    sc->rxq[bi].m_dmamap, 0,
275 				    MCLBYTES, BUS_DMASYNC_POSTREAD);
276 				bus_dmamap_unload(sc->sc_dmat,
277 					sc->rxq[bi].m_dmamap);
278 				m_set_rcvif(sc->rxq[bi].m, ifp);
279 				sc->rxq[bi].m->m_pkthdr.len =
280 					sc->rxq[bi].m->m_len = fl;
281 				DPRINTFN(2,("received %u bytes packet\n", fl));
282 				if_percpuq_enqueue(ifp->if_percpuq, sc->rxq[bi].m);
283 				if (mtod(m, intptr_t) & 3) {
284 					m_adj(m, mtod(m, intptr_t) & 3);
285 				}
286 				sc->rxq[bi].m = m;
287 				bus_dmamap_load(sc->sc_dmat,
288 					sc->rxq[bi].m_dmamap,
289 					m->m_ext.ext_buf, MCLBYTES,
290 					NULL, BUS_DMA_NOWAIT);
291 				bus_dmamap_sync(sc->sc_dmat,
292 				    sc->rxq[bi].m_dmamap, 0,
293 				    MCLBYTES, BUS_DMASYNC_PREREAD);
294 				sc->RDSC[bi].Info = 0;
295 				sc->RDSC[bi].Addr =
296 					sc->rxq[bi].m_dmamap->dm_segs[0].ds_addr
297 					| (bi == (RX_QLEN-1) ? ETH_RDSC_F_WRAP : 0);
298 			} else {
299 				/* Drop packets until we can get replacement
300 				 * empty mbufs for the RXDQ.
301 				 */
302 				m_freem(m);
303 				if_statinc(ifp, if_ierrors);
304 			}
305 			sc->rxqi++;
306 		}
307 //		bus_dmamap_sync(sc->sc_dmat, sc->rbqpage_dmamap, 0, sc->rbqlen, BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
308 	}
309 
310 	if (emac_gctx(sc) > 0)
311 		if_schedule_deferred_start(ifp);
312 #if 0 // reloop
313 	irq = EMAC_READ(IntStsC);
314 	if ((irq & (IntSts_RxSQ | IntSts_ECI)) != 0)
315 		goto begin;
316 #endif
317 
318 	return (1);
319 }
320 
321 
322 static void
emac_init(struct emac_softc * sc)323 emac_init(struct emac_softc *sc)
324 {
325 	bus_dma_segment_t segs;
326 	void *addr;
327 	int rsegs, err, i;
328 	struct ifnet * ifp = &sc->sc_ec.ec_if;
329 	struct mii_data * const mii = &sc->sc_mii;
330 	uint32_t u;
331 #if 0
332 	int mdcdiv = DEFAULT_MDCDIV;
333 #endif
334 
335 	callout_init(&sc->emac_tick_ch, 0);
336 
337 	// ok...
338 	EMAC_WRITE(ETH_CTL, ETH_CTL_MPE);	// disable everything
339 	EMAC_WRITE(ETH_IDR, -1);		// disable interrupts
340 	EMAC_WRITE(ETH_RBQP, 0);		// clear receive
341 	EMAC_WRITE(ETH_CFG,
342 	    ETH_CFG_CLK_32 | ETH_CFG_SPD | ETH_CFG_FD | ETH_CFG_BIG);
343 	EMAC_WRITE(ETH_TCR, 0);			// send nothing
344 //	(void)EMAC_READ(ETH_ISR);
345 	u = EMAC_READ(ETH_TSR);
346 	EMAC_WRITE(ETH_TSR, (u & (ETH_TSR_UND | ETH_TSR_COMP | ETH_TSR_BNQ
347 				  | ETH_TSR_IDLE | ETH_TSR_RLE
348 				  | ETH_TSR_COL | ETH_TSR_OVR)));
349 	u = EMAC_READ(ETH_RSR);
350 	EMAC_WRITE(ETH_RSR, (u & (ETH_RSR_OVR | ETH_RSR_REC | ETH_RSR_BNA)));
351 
352 	/* configure EMAC */
353 	EMAC_WRITE(ETH_CFG,
354 	    ETH_CFG_CLK_32 | ETH_CFG_SPD | ETH_CFG_FD | ETH_CFG_BIG);
355 	EMAC_WRITE(ETH_CTL, ETH_CTL_MPE);
356 #if 0
357 	if (device_cfdata(sc->sc_dev)->cf_flags)
358 		mdcdiv = device_cfdata(sc->sc_dev)->cf_flags;
359 #endif
360 	/* set ethernet address */
361 	EMAC_WRITE(ETH_SA1L, (sc->sc_enaddr[3] << 24)
362 		   | (sc->sc_enaddr[2] << 16) | (sc->sc_enaddr[1] << 8)
363 		   | (sc->sc_enaddr[0]));
364 	EMAC_WRITE(ETH_SA1H, (sc->sc_enaddr[5] << 8)
365 		   | (sc->sc_enaddr[4]));
366 	EMAC_WRITE(ETH_SA2L, 0);
367 	EMAC_WRITE(ETH_SA2H, 0);
368 	EMAC_WRITE(ETH_SA3L, 0);
369 	EMAC_WRITE(ETH_SA3H, 0);
370 	EMAC_WRITE(ETH_SA4L, 0);
371 	EMAC_WRITE(ETH_SA4H, 0);
372 
373 	/* Allocate a page of memory for receive queue descriptors */
374 	sc->rbqlen = (ETH_RDSC_SIZE * (RX_QLEN + 1) * 2 + PAGE_SIZE - 1) / PAGE_SIZE;
375 	sc->rbqlen *= PAGE_SIZE;
376 	DPRINTFN(1,("%s: rbqlen=%i\n", __FUNCTION__, sc->rbqlen));
377 
378 	err = bus_dmamem_alloc(sc->sc_dmat, sc->rbqlen, 0,
379 		MAX(16384, PAGE_SIZE),	// see EMAC errata why forced to 16384 byte boundary
380 		&segs, 1, &rsegs, BUS_DMA_WAITOK);
381 	if (err == 0) {
382 		DPRINTFN(1,("%s: -> bus_dmamem_map\n", __FUNCTION__));
383 		err = bus_dmamem_map(sc->sc_dmat, &segs, 1, sc->rbqlen,
384 			&sc->rbqpage, (BUS_DMA_WAITOK | BUS_DMA_COHERENT));
385 	}
386 	if (err == 0) {
387 		DPRINTFN(1,("%s: -> bus_dmamap_create\n", __FUNCTION__));
388 		err = bus_dmamap_create(sc->sc_dmat, sc->rbqlen, 1,
389 			sc->rbqlen, MAX(16384, PAGE_SIZE), BUS_DMA_WAITOK,
390 			&sc->rbqpage_dmamap);
391 	}
392 	if (err == 0) {
393 		DPRINTFN(1,("%s: -> bus_dmamap_load\n", __FUNCTION__));
394 		err = bus_dmamap_load(sc->sc_dmat, sc->rbqpage_dmamap,
395 			sc->rbqpage, sc->rbqlen, NULL, BUS_DMA_WAITOK);
396 	}
397 	if (err != 0) {
398 		panic("%s: Cannot get DMA memory", device_xname(sc->sc_dev));
399 	}
400 	sc->rbqpage_dsaddr = sc->rbqpage_dmamap->dm_segs[0].ds_addr;
401 
402 	memset(sc->rbqpage, 0, sc->rbqlen);
403 
404 	/* Set up pointers to start of each queue in kernel addr space.
405 	 * Each descriptor queue or status queue entry uses 2 words
406 	 */
407 	sc->RDSC = (void*)sc->rbqpage;
408 
409 	/* Populate the RXQ with mbufs */
410 	sc->rxqi = 0;
411 	for (i = 0; i < RX_QLEN; i++) {
412 		struct mbuf *m;
413 
414 		err = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1, MCLBYTES,
415 		    PAGE_SIZE, BUS_DMA_WAITOK, &sc->rxq[i].m_dmamap);
416 		if (err)
417 			panic("%s: dmamap_create failed: %i\n",
418 			    __FUNCTION__, err);
419 
420 		MGETHDR(m, M_WAIT, MT_DATA);
421 		MCLGET(m, M_WAIT);
422 		sc->rxq[i].m = m;
423 		if (mtod(m, intptr_t) & 3) {
424 			m_adj(m, mtod(m, intptr_t) & 3);
425 		}
426 		err = bus_dmamap_load(sc->sc_dmat, sc->rxq[i].m_dmamap,
427 			m->m_ext.ext_buf, MCLBYTES, NULL,
428 			BUS_DMA_WAITOK);
429 		if (err)
430 			panic("%s: dmamap_load failed: %i\n",
431 			    __FUNCTION__, err);
432 
433 		sc->RDSC[i].Addr = sc->rxq[i].m_dmamap->dm_segs[0].ds_addr
434 			| (i == (RX_QLEN-1) ? ETH_RDSC_F_WRAP : 0);
435 		sc->RDSC[i].Info = 0;
436 		bus_dmamap_sync(sc->sc_dmat, sc->rxq[i].m_dmamap, 0,
437 			MCLBYTES, BUS_DMASYNC_PREREAD);
438 	}
439 
440 	/* prepare transmit queue */
441 	for (i = 0; i < TX_QLEN; i++) {
442 		err = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1, MCLBYTES, 0,
443 					(BUS_DMA_WAITOK | BUS_DMA_ALLOCNOW),
444 					&sc->txq[i].m_dmamap);
445 		if (err)
446 			panic("ARGH #1");
447 		sc->txq[i].m = NULL;
448 	}
449 
450 	/* Program each queue's start addr, cur addr, and len registers
451 	 * with the physical addresses.
452 	 */
453 	bus_dmamap_sync(sc->sc_dmat, sc->rbqpage_dmamap, 0, sc->rbqlen,
454 			 BUS_DMASYNC_PREREAD);
455 	addr = (void *)sc->rbqpage_dmamap->dm_segs[0].ds_addr;
456 	EMAC_WRITE(ETH_RBQP, (uint32_t)addr);
457 
458 	/* Divide HCLK by 32 for MDC clock */
459 	mii->mii_ifp = ifp;
460 	mii->mii_readreg = emac_mii_readreg;
461 	mii->mii_writereg = emac_mii_writereg;
462 	mii->mii_statchg = emac_statchg;
463 	sc->sc_ec.ec_mii = mii;
464 	ifmedia_init(&mii->mii_media, IFM_IMASK, ether_mediachange,
465 		ether_mediastatus);
466 	mii_attach((device_t )sc, mii, 0xffffffff, MII_PHY_ANY,
467 		MII_OFFSET_ANY, 0);
468 	ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_AUTO);
469 
470 	// enable / disable interrupts
471 
472 #if 0
473 	// enable / disable interrupts
474 	EMAC_WRITE(ETH_IDR, -1);
475 	EMAC_WRITE(ETH_IER, ETH_ISR_RCOM | ETH_ISR_TBRE | ETH_ISR_TIDLE
476 		   | ETH_ISR_RBNA | ETH_ISR_ROVR);
477 //	(void)EMAC_READ(ETH_ISR); // why
478 
479 	// enable transmitter / receiver
480 	EMAC_WRITE(ETH_CTL, ETH_CTL_TE | ETH_CTL_RE | ETH_CTL_ISR
481 		   | ETH_CTL_CSR | ETH_CTL_MPE);
482 #endif
483 	/*
484 	 * We can support 802.1Q VLAN-sized frames.
485 	 */
486 	sc->sc_ec.ec_capabilities |= ETHERCAP_VLAN_MTU;
487 
488 	strcpy(ifp->if_xname, device_xname(sc->sc_dev));
489 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
490 	ifp->if_ioctl = emac_ifioctl;
491 	ifp->if_start = emac_ifstart;
492 	ifp->if_watchdog = emac_ifwatchdog;
493 	ifp->if_init = emac_ifinit;
494 	ifp->if_stop = emac_ifstop;
495 	ifp->if_timer = 0;
496 	ifp->if_softc = sc;
497 	IFQ_SET_READY(&ifp->if_snd);
498 	if_attach(ifp);
499 	if_deferred_start_init(ifp, NULL);
500 	ether_ifattach(ifp, (sc)->sc_enaddr);
501 }
502 
503 int
emac_mii_readreg(device_t self,int phy,int reg,uint16_t * val)504 emac_mii_readreg(device_t self, int phy, int reg, uint16_t *val)
505 {
506 #ifndef EMAC_FAST
507 	struct emac_softc *sc = device_private(self);
508 #endif
509 
510 	EMAC_WRITE(ETH_MAN, (ETH_MAN_HIGH | ETH_MAN_RW_RD
511 			     | ((phy << ETH_MAN_PHYA_SHIFT) & ETH_MAN_PHYA)
512 			     | ((reg << ETH_MAN_REGA_SHIFT) & ETH_MAN_REGA)
513 			     | ETH_MAN_CODE_IEEE802_3));
514 	while (!(EMAC_READ(ETH_SR) & ETH_SR_IDLE))
515 		;
516 	*val = EMAC_READ(ETH_MAN) & ETH_MAN_DATA;
517 
518 	return 0;
519 }
520 
521 int
emac_mii_writereg(device_t self,int phy,int reg,uint16_t val)522 emac_mii_writereg(device_t self, int phy, int reg, uint16_t val)
523 {
524 #ifndef EMAC_FAST
525 	struct emac_softc *sc = device_private(self);
526 #endif
527 
528 	EMAC_WRITE(ETH_MAN, (ETH_MAN_HIGH | ETH_MAN_RW_WR
529 			     | ((phy << ETH_MAN_PHYA_SHIFT) & ETH_MAN_PHYA)
530 			     | ((reg << ETH_MAN_REGA_SHIFT) & ETH_MAN_REGA)
531 			     | ETH_MAN_CODE_IEEE802_3
532 			     | (val & ETH_MAN_DATA)));
533 	while (!(EMAC_READ(ETH_SR) & ETH_SR_IDLE))
534 		;
535 
536 	return 0;
537 }
538 
539 void
emac_statchg(struct ifnet * ifp)540 emac_statchg(struct ifnet *ifp)
541 {
542 	struct emac_softc *sc = ifp->if_softc;
543 	uint32_t reg;
544 
545 	/*
546 	 * We must keep the MAC and the PHY in sync as
547 	 * to the status of full-duplex!
548 	 */
549 	reg = EMAC_READ(ETH_CFG);
550 	if (sc->sc_mii.mii_media_active & IFM_FDX)
551 		reg |= ETH_CFG_FD;
552 	else
553 		reg &= ~ETH_CFG_FD;
554 	EMAC_WRITE(ETH_CFG, reg);
555 }
556 
557 void
emac_tick(void * arg)558 emac_tick(void *arg)
559 {
560 	struct emac_softc* sc = (struct emac_softc *)arg;
561 	struct ifnet * ifp = &sc->sc_ec.ec_if;
562 	int s;
563 	uint32_t misses;
564 
565 	if_statadd(ifp, if_collisions, EMAC_READ(ETH_SCOL) + EMAC_READ(ETH_MCOL));
566 	/* These misses are ok, they will happen if the RAM/CPU can't keep up */
567 	misses = EMAC_READ(ETH_DRFC);
568 	if (misses > 0)
569 		printf("%s: %d rx misses\n", device_xname(sc->sc_dev), misses);
570 
571 	s = splnet();
572 	if (emac_gctx(sc) > 0 && IFQ_IS_EMPTY(&ifp->if_snd) == 0) {
573 		emac_ifstart(ifp);
574 	}
575 	splx(s);
576 
577 	mii_tick(&sc->sc_mii);
578 	callout_reset(&sc->emac_tick_ch, hz, emac_tick, sc);
579 }
580 
581 
582 static int
emac_ifioctl(struct ifnet * ifp,u_long cmd,void * data)583 emac_ifioctl(struct ifnet *ifp, u_long cmd, void *data)
584 {
585 	int s, error;
586 
587 	s = splnet();
588 	switch (cmd) {
589 	default:
590 		error = ether_ioctl(ifp, cmd, data);
591 		if (error == ENETRESET) {
592 			if (ifp->if_flags & IFF_RUNNING)
593 				emac_setaddr(ifp);
594 			error = 0;
595 		}
596 	}
597 	splx(s);
598 	return error;
599 }
600 
601 static void
emac_ifstart(struct ifnet * ifp)602 emac_ifstart(struct ifnet *ifp)
603 {
604 	struct emac_softc *sc = (struct emac_softc *)ifp->if_softc;
605 	struct mbuf *m;
606 	bus_dma_segment_t *segs;
607 	int s, bi, err, nsegs;
608 
609 	s = splnet();
610 start:
611 	if (emac_gctx(sc) == 0) {
612 		/* Enable transmit-buffer-free interrupt */
613 		EMAC_WRITE(ETH_IER, ETH_ISR_TBRE);
614 		sc->tx_busy = true;
615 		ifp->if_timer = 10;
616 		splx(s);
617 		return;
618 	}
619 
620 	ifp->if_timer = 0;
621 
622 	IFQ_POLL(&ifp->if_snd, m);
623 	if (m == NULL) {
624 		splx(s);
625 		return;
626 	}
627 //more:
628 	bi = (sc->txqi + sc->txqc) % TX_QLEN;
629 	if ((err = bus_dmamap_load_mbuf(sc->sc_dmat, sc->txq[bi].m_dmamap, m,
630 		BUS_DMA_NOWAIT)) ||
631 		sc->txq[bi].m_dmamap->dm_segs[0].ds_addr & 0x3 ||
632 		sc->txq[bi].m_dmamap->dm_nsegs > 1) {
633 		/* Copy entire mbuf chain to new single */
634 		struct mbuf *mn;
635 
636 		if (err == 0)
637 			bus_dmamap_unload(sc->sc_dmat, sc->txq[bi].m_dmamap);
638 
639 		MGETHDR(mn, M_DONTWAIT, MT_DATA);
640 		if (mn == NULL) goto stop;
641 		if (m->m_pkthdr.len > MHLEN) {
642 			MCLGET(mn, M_DONTWAIT);
643 			if ((mn->m_flags & M_EXT) == 0) {
644 				m_freem(mn);
645 				goto stop;
646 			}
647 		}
648 		m_copydata(m, 0, m->m_pkthdr.len, mtod(mn, void *));
649 		mn->m_pkthdr.len = mn->m_len = m->m_pkthdr.len;
650 		IFQ_DEQUEUE(&ifp->if_snd, m);
651 		m_freem(m);
652 		m = mn;
653 		bus_dmamap_load_mbuf(sc->sc_dmat, sc->txq[bi].m_dmamap, m,
654 			BUS_DMA_NOWAIT);
655 	} else {
656 		IFQ_DEQUEUE(&ifp->if_snd, m);
657 	}
658 
659 	bpf_mtap(ifp, m, BPF_D_OUT);
660 
661 	nsegs = sc->txq[bi].m_dmamap->dm_nsegs;
662 	segs = sc->txq[bi].m_dmamap->dm_segs;
663 	if (nsegs > 1) {
664 		panic("#### ARGH #2");
665 	}
666 
667 	sc->txq[bi].m = m;
668 	sc->txqc++;
669 
670 	DPRINTFN(2,("%s: start sending idx #%i mbuf %p (txqc=%i, phys %p), len=%u\n", __FUNCTION__, bi, sc->txq[bi].m, sc->txqc, (void*)segs->ds_addr,
671 		       (unsigned)m->m_pkthdr.len));
672 #ifdef	DIAGNOSTIC
673 	if (sc->txqc > TX_QLEN) {
674 		panic("%s: txqc %i > %i", __FUNCTION__, sc->txqc, TX_QLEN);
675 	}
676 #endif
677 
678 	bus_dmamap_sync(sc->sc_dmat, sc->txq[bi].m_dmamap, 0,
679 		sc->txq[bi].m_dmamap->dm_mapsize,
680 		BUS_DMASYNC_PREWRITE);
681 
682 	EMAC_WRITE(ETH_TAR, segs->ds_addr);
683 	EMAC_WRITE(ETH_TCR, m->m_pkthdr.len);
684 	if (IFQ_IS_EMPTY(&ifp->if_snd) == 0)
685 		goto start;
686 stop:
687 
688 	splx(s);
689 	return;
690 }
691 
692 static void
emac_ifwatchdog(struct ifnet * ifp)693 emac_ifwatchdog(struct ifnet *ifp)
694 {
695 	struct emac_softc *sc = (struct emac_softc *)ifp->if_softc;
696 
697 	if ((ifp->if_flags & IFF_RUNNING) == 0)
698 		return;
699 	printf("%s: device timeout, CTL = 0x%08x, CFG = 0x%08x\n",
700 		device_xname(sc->sc_dev), EMAC_READ(ETH_CTL), EMAC_READ(ETH_CFG));
701 }
702 
703 static int
emac_ifinit(struct ifnet * ifp)704 emac_ifinit(struct ifnet *ifp)
705 {
706 	struct emac_softc *sc = ifp->if_softc;
707 	int s = splnet();
708 
709 	callout_stop(&sc->emac_tick_ch);
710 
711 	// enable interrupts
712 	EMAC_WRITE(ETH_IDR, -1);
713 	EMAC_WRITE(ETH_IER, ETH_ISR_RCOM | ETH_ISR_TBRE | ETH_ISR_TIDLE
714 		   | ETH_ISR_RBNA | ETH_ISR_ROVR);
715 
716 	// enable transmitter / receiver
717 	EMAC_WRITE(ETH_CTL, ETH_CTL_TE | ETH_CTL_RE | ETH_CTL_ISR
718 		   | ETH_CTL_CSR | ETH_CTL_MPE);
719 
720 	mii_mediachg(&sc->sc_mii);
721 	callout_reset(&sc->emac_tick_ch, hz, emac_tick, sc);
722 	ifp->if_flags |= IFF_RUNNING;
723 	splx(s);
724 	return 0;
725 }
726 
727 static void
emac_ifstop(struct ifnet * ifp,int disable)728 emac_ifstop(struct ifnet *ifp, int disable)
729 {
730 //	uint32_t u;
731 	struct emac_softc *sc = ifp->if_softc;
732 
733 #if 0
734 	EMAC_WRITE(ETH_CTL, ETH_CTL_MPE);	// disable everything
735 	EMAC_WRITE(ETH_IDR, -1);		// disable interrupts
736 //	EMAC_WRITE(ETH_RBQP, 0);		// clear receive
737 	EMAC_WRITE(ETH_CFG,
738 	    ETH_CFG_CLK_32 | ETH_CFG_SPD | ETH_CFG_FD | ETH_CFG_BIG);
739 	EMAC_WRITE(ETH_TCR, 0);			// send nothing
740 //	(void)EMAC_READ(ETH_ISR);
741 	u = EMAC_READ(ETH_TSR);
742 	EMAC_WRITE(ETH_TSR, (u & (ETH_TSR_UND | ETH_TSR_COMP | ETH_TSR_BNQ
743 				  | ETH_TSR_IDLE | ETH_TSR_RLE
744 				  | ETH_TSR_COL | ETH_TSR_OVR)));
745 	u = EMAC_READ(ETH_RSR);
746 	EMAC_WRITE(ETH_RSR, (u & (ETH_RSR_OVR | ETH_RSR_REC | ETH_RSR_BNA)));
747 #endif
748 	callout_stop(&sc->emac_tick_ch);
749 
750 	/* Down the MII. */
751 	mii_down(&sc->sc_mii);
752 
753 	ifp->if_flags &= ~IFF_RUNNING;
754 	ifp->if_timer = 0;
755 	sc->sc_mii.mii_media_status &= ~IFM_ACTIVE;
756 }
757 
758 static void
emac_setaddr(struct ifnet * ifp)759 emac_setaddr(struct ifnet *ifp)
760 {
761 	struct emac_softc *sc = ifp->if_softc;
762 	struct ethercom *ec = &sc->sc_ec;
763 	struct ether_multi *enm;
764 	struct ether_multistep step;
765 	uint8_t ias[3][ETHER_ADDR_LEN];
766 	uint32_t h, nma = 0, hashes[2] = { 0, 0 };
767 	uint32_t ctl = EMAC_READ(ETH_CTL);
768 	uint32_t cfg = EMAC_READ(ETH_CFG);
769 
770 	/* disable receiver temporarily */
771 	EMAC_WRITE(ETH_CTL, ctl & ~ETH_CTL_RE);
772 
773 	cfg &= ~(ETH_CFG_MTI | ETH_CFG_UNI | ETH_CFG_CAF);
774 
775 	if (ifp->if_flags & IFF_PROMISC) {
776 		cfg |=	ETH_CFG_CAF;
777 	} else {
778 		cfg &= ~ETH_CFG_CAF;
779 	}
780 
781 	// ETH_CFG_BIG?
782 
783 	ifp->if_flags &= ~IFF_ALLMULTI;
784 
785 	ETHER_LOCK(ec);
786 	ETHER_FIRST_MULTI(step, ec, enm);
787 	while (enm != NULL) {
788 		if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
789 			/*
790 			 * We must listen to a range of multicast addresses.
791 			 * For now, just accept all multicasts, rather than
792 			 * trying to set only those filter bits needed to match
793 			 * the range.  (At this time, the only use of address
794 			 * ranges is for IP multicast routing, for which the
795 			 * range is big enough to require all bits set.)
796 			 */
797 			cfg |= ETH_CFG_CAF;
798 			hashes[0] = 0xffffffffUL;
799 			hashes[1] = 0xffffffffUL;
800 			ifp->if_flags |= IFF_ALLMULTI;
801 			nma = 0;
802 			break;
803 		}
804 
805 		if (nma < 3) {
806 			/* We can program 3 perfect address filters for mcast */
807 			memcpy(ias[nma], enm->enm_addrlo, ETHER_ADDR_LEN);
808 		} else {
809 			/*
810 			 * XXX: Datasheet is not very clear here, I'm not sure
811 			 * if I'm doing this right.  --joff
812 			 */
813 			h = ether_crc32_le(enm->enm_addrlo, ETHER_ADDR_LEN);
814 
815 			/* Just want the 6 most-significant bits. */
816 			h = h >> 26;
817 
818 			hashes[ h / 32 ] |=  (1 << (h % 32));
819 			cfg |= ETH_CFG_MTI;
820 		}
821 		ETHER_NEXT_MULTI(step, enm);
822 		nma++;
823 	}
824 	ETHER_UNLOCK(ec);
825 
826 	// program...
827 	DPRINTFN(1,("%s: en0 %02x:%02x:%02x:%02x:%02x:%02x\n", __FUNCTION__,
828 		    sc->sc_enaddr[0], sc->sc_enaddr[1], sc->sc_enaddr[2],
829 		    sc->sc_enaddr[3], sc->sc_enaddr[4], sc->sc_enaddr[5]));
830 	EMAC_WRITE(ETH_SA1L, (sc->sc_enaddr[3] << 24)
831 		   | (sc->sc_enaddr[2] << 16) | (sc->sc_enaddr[1] << 8)
832 		   | (sc->sc_enaddr[0]));
833 	EMAC_WRITE(ETH_SA1H, (sc->sc_enaddr[5] << 8)
834 		   | (sc->sc_enaddr[4]));
835 	if (nma > 1) {
836 		DPRINTFN(1,("%s: en1 %02x:%02x:%02x:%02x:%02x:%02x\n",
837 			__FUNCTION__,
838 			ias[0][0], ias[0][1], ias[0][2],
839 			ias[0][3], ias[0][4], ias[0][5]));
840 		EMAC_WRITE(ETH_SA2L, (ias[0][3] << 24)
841 			   | (ias[0][2] << 16) | (ias[0][1] << 8)
842 			   | (ias[0][0]));
843 		EMAC_WRITE(ETH_SA2H, (ias[0][4] << 8)
844 			   | (ias[0][5]));
845 	}
846 	if (nma > 2) {
847 		DPRINTFN(1,("%s: en2 %02x:%02x:%02x:%02x:%02x:%02x\n",
848 			__FUNCTION__,
849 			ias[1][0], ias[1][1], ias[1][2],
850 			ias[1][3], ias[1][4], ias[1][5]));
851 		EMAC_WRITE(ETH_SA3L, (ias[1][3] << 24)
852 			   | (ias[1][2] << 16) | (ias[1][1] << 8)
853 			   | (ias[1][0]));
854 		EMAC_WRITE(ETH_SA3H, (ias[1][4] << 8)
855 			   | (ias[1][5]));
856 	}
857 	if (nma > 3) {
858 		DPRINTFN(1,("%s: en3 %02x:%02x:%02x:%02x:%02x:%02x\n",
859 			__FUNCTION__,
860 			ias[2][0], ias[2][1], ias[2][2],
861 			ias[2][3], ias[2][4], ias[2][5]));
862 		EMAC_WRITE(ETH_SA3L, (ias[2][3] << 24)
863 			   | (ias[2][2] << 16) | (ias[2][1] << 8)
864 			   | (ias[2][0]));
865 		EMAC_WRITE(ETH_SA3H, (ias[2][4] << 8)
866 			   | (ias[2][5]));
867 	}
868 	EMAC_WRITE(ETH_HSH, hashes[0]);
869 	EMAC_WRITE(ETH_HSL, hashes[1]);
870 	EMAC_WRITE(ETH_CFG, cfg);
871 	EMAC_WRITE(ETH_CTL, ctl | ETH_CTL_RE);
872 }
873