xref: /netbsd-src/sys/dev/ic/arn5008.c (revision 481d3881954fd794ca5f2d880b68c53a5db8620e)
1 /*	$NetBSD: arn5008.c,v 1.20 2024/07/05 04:31:50 rin Exp $	*/
2 /*	$OpenBSD: ar5008.c,v 1.21 2012/08/25 12:14:31 kettenis Exp $	*/
3 
4 /*-
5  * Copyright (c) 2009 Damien Bergamini <damien.bergamini@free.fr>
6  * Copyright (c) 2008-2009 Atheros Communications Inc.
7  *
8  * Permission to use, copy, modify, and/or distribute this software for any
9  * purpose with or without fee is hereby granted, provided that the above
10  * copyright notice and this permission notice appear in all copies.
11  *
12  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
13  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
14  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
15  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
16  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
17  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
18  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
19  */
20 
21 /*
22  * Driver for Atheros 802.11a/g/n chipsets.
23  * Routines common to AR5008, AR9001 and AR9002 families.
24  */
25 
26 #include <sys/cdefs.h>
27 __KERNEL_RCSID(0, "$NetBSD: arn5008.c,v 1.20 2024/07/05 04:31:50 rin Exp $");
28 
29 #include <sys/param.h>
30 #include <sys/sockio.h>
31 #include <sys/mbuf.h>
32 #include <sys/kernel.h>
33 #include <sys/socket.h>
34 #include <sys/systm.h>
35 #include <sys/malloc.h>
36 #include <sys/queue.h>
37 #include <sys/conf.h>
38 #include <sys/device.h>
39 
40 #include <sys/bus.h>
41 #include <sys/endian.h>
42 #include <sys/intr.h>
43 
44 #include <net/bpf.h>
45 #include <net/if.h>
46 #include <net/if_arp.h>
47 #include <net/if_dl.h>
48 #include <net/if_ether.h>
49 #include <net/if_media.h>
50 #include <net/if_types.h>
51 
52 #include <netinet/in.h>
53 #include <netinet/in_systm.h>
54 #include <netinet/in_var.h>
55 #include <netinet/ip.h>
56 
57 #include <net80211/ieee80211_var.h>
58 #include <net80211/ieee80211_amrr.h>
59 #include <net80211/ieee80211_radiotap.h>
60 
61 #include <dev/ic/athnreg.h>
62 #include <dev/ic/athnvar.h>
63 
64 #include <dev/ic/arn5008reg.h>
65 #include <dev/ic/arn5008.h>
66 #include <dev/ic/arn5416.h>
67 #include <dev/ic/arn9280.h>
68 
69 #define Static static
70 
71 Static void	ar5008_calib_adc_dc_off(struct athn_softc *);
72 Static void	ar5008_calib_adc_gain(struct athn_softc *);
73 Static void	ar5008_calib_iq(struct athn_softc *);
74 Static void	ar5008_disable_ofdm_weak_signal(struct athn_softc *);
75 Static void	ar5008_disable_phy(struct athn_softc *);
76 Static int	ar5008_dma_alloc(struct athn_softc *);
77 Static void	ar5008_dma_free(struct athn_softc *);
78 Static void	ar5008_do_calib(struct athn_softc *);
79 Static void	ar5008_do_noisefloor_calib(struct athn_softc *);
80 Static void	ar5008_enable_antenna_diversity(struct athn_softc *);
81 Static void	ar5008_enable_ofdm_weak_signal(struct athn_softc *);
82 Static uint8_t	ar5008_get_vpd(uint8_t, const uint8_t *, const uint8_t *, int);
83 Static void	ar5008_gpio_config_input(struct athn_softc *, int);
84 Static void	ar5008_gpio_config_output(struct athn_softc *, int, int);
85 Static int	ar5008_gpio_read(struct athn_softc *, int);
86 Static void	ar5008_gpio_write(struct athn_softc *, int, int);
87 Static void	ar5008_hw_init(struct athn_softc *, struct ieee80211_channel *,
88 		    struct ieee80211_channel *);
89 Static void	ar5008_init_baseband(struct athn_softc *);
90 Static void	ar5008_init_chains(struct athn_softc *);
91 Static int	ar5008_intr_status(struct athn_softc *);
92 Static int	ar5008_intr(struct athn_softc *);
93 Static void	ar5008_next_calib(struct athn_softc *);
94 Static int	ar5008_read_eep_word(struct athn_softc *, uint32_t,
95 		    uint16_t *);
96 Static int	ar5008_read_rom(struct athn_softc *);
97 Static void	ar5008_rf_bus_release(struct athn_softc *);
98 Static int	ar5008_rf_bus_request(struct athn_softc *);
99 Static void	ar5008_rfsilent_init(struct athn_softc *);
100 Static int	ar5008_rx_alloc(struct athn_softc *);
101 Static void	ar5008_rx_enable(struct athn_softc *);
102 Static void	ar5008_rx_free(struct athn_softc *);
103 Static void	ar5008_rx_intr(struct athn_softc *);
104 Static void	ar5008_rx_radiotap(struct athn_softc *, struct mbuf *,
105 		    struct ar_rx_desc *);
106 Static void	ar5008_set_cck_weak_signal(struct athn_softc *, int);
107 Static void	ar5008_set_delta_slope(struct athn_softc *,
108 		    struct ieee80211_channel *, struct ieee80211_channel *);
109 Static void	ar5008_set_firstep_level(struct athn_softc *, int);
110 Static void	ar5008_set_noise_immunity_level(struct athn_softc *, int);
111 Static void	ar5008_set_phy(struct athn_softc *, struct ieee80211_channel *,
112 		    struct ieee80211_channel *);
113 Static void	ar5008_set_rf_mode(struct athn_softc *,
114 		    struct ieee80211_channel *);
115 Static void	ar5008_set_rxchains(struct athn_softc *);
116 Static void	ar5008_set_spur_immunity_level(struct athn_softc *, int);
117 Static void	ar5008_swap_rom(struct athn_softc *);
118 Static int	ar5008_swba_intr(struct athn_softc *);
119 Static int	ar5008_tx(struct athn_softc *, struct mbuf *,
120 		    struct ieee80211_node *, int);
121 Static int	ar5008_tx_alloc(struct athn_softc *);
122 Static void	ar5008_tx_free(struct athn_softc *);
123 Static void	ar5008_tx_intr(struct athn_softc *);
124 Static int	ar5008_tx_process(struct athn_softc *, int);
125 
126 #ifdef notused
127 Static void	ar5008_bb_load_noisefloor(struct athn_softc *);
128 Static void	ar5008_get_noisefloor(struct athn_softc *,
129 		    struct ieee80211_channel *);
130 Static void	ar5008_noisefloor_calib(struct athn_softc *);
131 Static void	ar5008_read_noisefloor(struct athn_softc *, int16_t *,
132 		    int16_t *);
133 Static void	ar5008_write_noisefloor(struct athn_softc *, int16_t *,
134 		    int16_t *);
135 #endif /* notused */
136 
137 // bf->bf_m = MCLGETI(NULL, M_DONTWAIT, NULL, ATHN_RXBUFSZ);
138 
139 /*
140  * XXX: see if_iwn.c:MCLGETIalt() for a better solution.
141  */
142 static struct mbuf *
MCLGETI(struct athn_softc * sc __unused,int how,struct ifnet * ifp __unused,u_int size)143 MCLGETI(struct athn_softc *sc __unused, int how,
144     struct ifnet *ifp __unused, u_int size)
145 {
146 	struct mbuf *m;
147 
148 	MGETHDR(m, how, MT_DATA);
149 	if (m == NULL)
150 		return NULL;
151 
152 	MEXTMALLOC(m, size, how);
153 	if ((m->m_flags & M_EXT) == 0) {
154 		m_freem(m);
155 		return NULL;
156 	}
157 	return m;
158 }
159 
160 PUBLIC int
ar5008_attach(struct athn_softc * sc)161 ar5008_attach(struct athn_softc *sc)
162 {
163 	struct athn_ops *ops = &sc->sc_ops;
164 	struct ieee80211com *ic = &sc->sc_ic;
165 	struct ar_base_eep_header *base;
166 	uint8_t eep_ver, kc_entries_log;
167 	int error;
168 
169 	/* Set callbacks for AR5008, AR9001 and AR9002 families. */
170 	ops->gpio_read = ar5008_gpio_read;
171 	ops->gpio_write = ar5008_gpio_write;
172 	ops->gpio_config_input = ar5008_gpio_config_input;
173 	ops->gpio_config_output = ar5008_gpio_config_output;
174 	ops->rfsilent_init = ar5008_rfsilent_init;
175 
176 	ops->dma_alloc = ar5008_dma_alloc;
177 	ops->dma_free = ar5008_dma_free;
178 	ops->rx_enable = ar5008_rx_enable;
179 	ops->intr_status = ar5008_intr_status;
180 	ops->intr = ar5008_intr;
181 	ops->tx = ar5008_tx;
182 
183 	ops->set_rf_mode = ar5008_set_rf_mode;
184 	ops->rf_bus_request = ar5008_rf_bus_request;
185 	ops->rf_bus_release = ar5008_rf_bus_release;
186 	ops->set_phy = ar5008_set_phy;
187 	ops->set_delta_slope = ar5008_set_delta_slope;
188 	ops->enable_antenna_diversity = ar5008_enable_antenna_diversity;
189 	ops->init_baseband = ar5008_init_baseband;
190 	ops->disable_phy = ar5008_disable_phy;
191 	ops->set_rxchains = ar5008_set_rxchains;
192 	ops->noisefloor_calib = ar5008_do_noisefloor_calib;
193 	ops->do_calib = ar5008_do_calib;
194 	ops->next_calib = ar5008_next_calib;
195 	ops->hw_init = ar5008_hw_init;
196 
197 	ops->set_noise_immunity_level = ar5008_set_noise_immunity_level;
198 	ops->enable_ofdm_weak_signal = ar5008_enable_ofdm_weak_signal;
199 	ops->disable_ofdm_weak_signal = ar5008_disable_ofdm_weak_signal;
200 	ops->set_cck_weak_signal = ar5008_set_cck_weak_signal;
201 	ops->set_firstep_level = ar5008_set_firstep_level;
202 	ops->set_spur_immunity_level = ar5008_set_spur_immunity_level;
203 
204 	/* Set MAC registers offsets. */
205 	sc->sc_obs_off = AR_OBS;
206 	sc->sc_gpio_input_en_off = AR_GPIO_INPUT_EN_VAL;
207 
208 	if (!(sc->sc_flags & ATHN_FLAG_PCIE))
209 		athn_config_nonpcie(sc);
210 	else
211 		athn_config_pcie(sc);
212 
213 	/* Read entire ROM content in memory. */
214 	if ((error = ar5008_read_rom(sc)) != 0) {
215 		aprint_error_dev(sc->sc_dev, "could not read ROM\n");
216 		return error;
217 	}
218 
219 	/* Get RF revision. */
220 	sc->sc_rf_rev = ar5416_get_rf_rev(sc);
221 
222 	base = sc->sc_eep;
223 	eep_ver = (base->version >> 12) & 0xf;
224 	sc->sc_eep_rev = (base->version & 0xfff);
225 	if (eep_ver != AR_EEP_VER || sc->sc_eep_rev == 0) {
226 		aprint_error_dev(sc->sc_dev, "unsupported ROM version %d.%d\n",
227 		    eep_ver, sc->sc_eep_rev);
228 		return EINVAL;
229 	}
230 
231 	if (base->opCapFlags & AR_OPFLAGS_11A)
232 		sc->sc_flags |= ATHN_FLAG_11A;
233 	if (base->opCapFlags & AR_OPFLAGS_11G)
234 		sc->sc_flags |= ATHN_FLAG_11G;
235 	if (base->opCapFlags & AR_OPFLAGS_11N)
236 		sc->sc_flags |= ATHN_FLAG_11N;
237 
238 	IEEE80211_ADDR_COPY(ic->ic_myaddr, base->macAddr);
239 
240 	/* Check if we have a hardware radio switch. */
241 	if (base->rfSilent & AR_EEP_RFSILENT_ENABLED) {
242 		sc->sc_flags |= ATHN_FLAG_RFSILENT;
243 		/* Get GPIO pin used by hardware radio switch. */
244 		sc->sc_rfsilent_pin = MS(base->rfSilent,
245 		    AR_EEP_RFSILENT_GPIO_SEL);
246 		/* Get polarity of hardware radio switch. */
247 		if (base->rfSilent & AR_EEP_RFSILENT_POLARITY)
248 			sc->sc_flags |= ATHN_FLAG_RFSILENT_REVERSED;
249 	}
250 
251 	/* Get the number of HW key cache entries. */
252 	kc_entries_log = MS(base->deviceCap, AR_EEP_DEVCAP_KC_ENTRIES);
253 	sc->sc_kc_entries = kc_entries_log != 0 ?
254 	    1 << kc_entries_log : AR_KEYTABLE_SIZE;
255 
256 	sc->sc_txchainmask = base->txMask;
257 	if (sc->sc_mac_ver == AR_SREV_VERSION_5416_PCI &&
258 	    !(base->opCapFlags & AR_OPFLAGS_11A)) {
259 		/* For single-band AR5416 PCI, use GPIO pin 0. */
260 		sc->sc_rxchainmask = ar5008_gpio_read(sc, 0) ? 0x5 : 0x7;
261 	}
262 	else
263 		sc->sc_rxchainmask = base->rxMask;
264 
265 	ops->setup(sc);
266 	return 0;
267 }
268 
269 /*
270  * Read 16-bit word from ROM.
271  */
272 Static int
ar5008_read_eep_word(struct athn_softc * sc,uint32_t addr,uint16_t * val)273 ar5008_read_eep_word(struct athn_softc *sc, uint32_t addr, uint16_t *val)
274 {
275 	uint32_t reg;
276 	int ntries;
277 
278 	reg = AR_READ(sc, AR_EEPROM_OFFSET(addr));
279 	for (ntries = 0; ntries < 1000; ntries++) {
280 		reg = AR_READ(sc, AR_EEPROM_STATUS_DATA);
281 		if (!(reg & (AR_EEPROM_STATUS_DATA_BUSY |
282 		    AR_EEPROM_STATUS_DATA_PROT_ACCESS))) {
283 			*val = MS(reg, AR_EEPROM_STATUS_DATA_VAL);
284 			return 0;
285 		}
286 		DELAY(10);
287 	}
288 	*val = 0xffff;
289 	return ETIMEDOUT;
290 }
291 
292 Static int
ar5008_read_rom(struct athn_softc * sc)293 ar5008_read_rom(struct athn_softc *sc)
294 {
295 	uint32_t addr, end;
296 	uint16_t magic, sum, *eep;
297 	int need_swap = 0;
298 	int error;
299 
300 	/* Determine ROM endianness. */
301 	error = ar5008_read_eep_word(sc, AR_EEPROM_MAGIC_OFFSET, &magic);
302 	if (error != 0)
303 		return error;
304 	if (magic != AR_EEPROM_MAGIC) {
305 		if (magic != bswap16(AR_EEPROM_MAGIC)) {
306 			DPRINTFN(DBG_INIT, sc,
307 			    "invalid ROM magic 0x%x != 0x%x\n",
308 			    magic, AR_EEPROM_MAGIC);
309 			return EIO;
310 		}
311 		DPRINTFN(DBG_INIT, sc, "non-native ROM endianness\n");
312 		need_swap = 1;
313 	}
314 
315 	/* Allocate space to store ROM in host memory. */
316 	sc->sc_eep = malloc(sc->sc_eep_size, M_DEVBUF, M_WAITOK);
317 
318 	/* Read entire ROM and compute checksum. */
319 	sum = 0;
320 	eep = sc->sc_eep;
321 	end = sc->sc_eep_base + sc->sc_eep_size / sizeof(uint16_t);
322 	for (addr = sc->sc_eep_base; addr < end; addr++, eep++) {
323 		if ((error = ar5008_read_eep_word(sc, addr, eep)) != 0) {
324 			DPRINTFN(DBG_INIT, sc,
325 			    "could not read ROM at 0x%x\n", addr);
326 			return error;
327 		}
328 		if (need_swap)
329 			*eep = bswap16(*eep);
330 		sum ^= *eep;
331 	}
332 	if (sum != 0xffff) {
333 		aprint_error_dev(sc->sc_dev, "bad ROM checksum 0x%04x\n", sum);
334 		return EIO;
335 	}
336 	if (need_swap)
337 		ar5008_swap_rom(sc);
338 
339 	return 0;
340 }
341 
342 Static void
ar5008_swap_rom(struct athn_softc * sc)343 ar5008_swap_rom(struct athn_softc *sc)
344 {
345 	struct ar_base_eep_header *base = sc->sc_eep;
346 
347 	/* Swap common fields first. */
348 	base->length = bswap16(base->length);
349 	base->version = bswap16(base->version);
350 	base->regDmn[0] = bswap16(base->regDmn[0]);
351 	base->regDmn[1] = bswap16(base->regDmn[1]);
352 	base->rfSilent = bswap16(base->rfSilent);
353 	base->blueToothOptions = bswap16(base->blueToothOptions);
354 	base->deviceCap = bswap16(base->deviceCap);
355 
356 	/* Swap device-dependent fields. */
357 	sc->sc_ops.swap_rom(sc);
358 }
359 
360 /*
361  * Access to General Purpose Input/Output ports.
362  */
363 Static int
ar5008_gpio_read(struct athn_softc * sc,int pin)364 ar5008_gpio_read(struct athn_softc *sc, int pin)
365 {
366 
367 	KASSERT(pin < sc->sc_ngpiopins);
368 	if ((sc->sc_flags & ATHN_FLAG_USB) && !AR_SREV_9271(sc))
369 		return !((AR_READ(sc, AR7010_GPIO_IN) >> pin) & 1);
370 	return (AR_READ(sc, AR_GPIO_IN_OUT) >> (sc->sc_ngpiopins + pin)) & 1;
371 }
372 
373 Static void
ar5008_gpio_write(struct athn_softc * sc,int pin,int set)374 ar5008_gpio_write(struct athn_softc *sc, int pin, int set)
375 {
376 	uint32_t reg;
377 
378 	KASSERT(pin < sc->sc_ngpiopins);
379 
380 	if (sc->sc_flags & ATHN_FLAG_USB)
381 		set = !set;	/* AR9271/AR7010 is reversed. */
382 
383 	if ((sc->sc_flags & ATHN_FLAG_USB) && !AR_SREV_9271(sc)) {
384 		/* Special case for AR7010. */
385 		reg = AR_READ(sc, AR7010_GPIO_OUT);
386 		if (set)
387 			reg |= 1 << pin;
388 		else
389 			reg &= ~(1 << pin);
390 		AR_WRITE(sc, AR7010_GPIO_OUT, reg);
391 	}
392 	else {
393 		reg = AR_READ(sc, AR_GPIO_IN_OUT);
394 		if (set)
395 			reg |= 1 << pin;
396 		else
397 			reg &= ~(1 << pin);
398 		AR_WRITE(sc, AR_GPIO_IN_OUT, reg);
399 	}
400 	AR_WRITE_BARRIER(sc);
401 }
402 
403 Static void
ar5008_gpio_config_input(struct athn_softc * sc,int pin)404 ar5008_gpio_config_input(struct athn_softc *sc, int pin)
405 {
406 	uint32_t reg;
407 
408 	if ((sc->sc_flags & ATHN_FLAG_USB) && !AR_SREV_9271(sc)) {
409 		/* Special case for AR7010. */
410 		AR_SETBITS(sc, AR7010_GPIO_OE, 1 << pin);
411 	}
412 	else {
413 		reg = AR_READ(sc, AR_GPIO_OE_OUT);
414 		reg &= ~(AR_GPIO_OE_OUT_DRV_M << (pin * 2));
415 		reg |= AR_GPIO_OE_OUT_DRV_NO << (pin * 2);
416 		AR_WRITE(sc, AR_GPIO_OE_OUT, reg);
417 	}
418 	AR_WRITE_BARRIER(sc);
419 }
420 
421 Static void
ar5008_gpio_config_output(struct athn_softc * sc,int pin,int type)422 ar5008_gpio_config_output(struct athn_softc *sc, int pin, int type)
423 {
424 	uint32_t reg;
425 	int mux, off;
426 
427 	if ((sc->sc_flags & ATHN_FLAG_USB) && !AR_SREV_9271(sc)) {
428 		/* Special case for AR7010. */
429 		AR_CLRBITS(sc, AR7010_GPIO_OE, 1 << pin);
430 		AR_WRITE_BARRIER(sc);
431 		return;
432 	}
433 	mux = pin / 6;
434 	off = pin % 6;
435 
436 	reg = AR_READ(sc, AR_GPIO_OUTPUT_MUX(mux));
437 	if (!AR_SREV_9280_20_OR_LATER(sc) && mux == 0)
438 		reg = (reg & ~0x1f0) | (reg & 0x1f0) << 1;
439 	reg &= ~(0x1f << (off * 5));
440 	reg |= (type & 0x1f) << (off * 5);
441 	AR_WRITE(sc, AR_GPIO_OUTPUT_MUX(mux), reg);
442 
443 	reg = AR_READ(sc, AR_GPIO_OE_OUT);
444 	reg &= ~(AR_GPIO_OE_OUT_DRV_M << (pin * 2));
445 	reg |= AR_GPIO_OE_OUT_DRV_ALL << (pin * 2);
446 	AR_WRITE(sc, AR_GPIO_OE_OUT, reg);
447 	AR_WRITE_BARRIER(sc);
448 }
449 
450 Static void
ar5008_rfsilent_init(struct athn_softc * sc)451 ar5008_rfsilent_init(struct athn_softc *sc)
452 {
453 	uint32_t reg;
454 
455 	/* Configure hardware radio switch. */
456 	AR_SETBITS(sc, AR_GPIO_INPUT_EN_VAL, AR_GPIO_INPUT_EN_VAL_RFSILENT_BB);
457 	reg = AR_READ(sc, AR_GPIO_INPUT_MUX2);
458 	reg = RW(reg, AR_GPIO_INPUT_MUX2_RFSILENT, 0);
459 	AR_WRITE(sc, AR_GPIO_INPUT_MUX2, reg);
460 	ar5008_gpio_config_input(sc, sc->sc_rfsilent_pin);
461 	AR_SETBITS(sc, AR_PHY_TEST, AR_PHY_TEST_RFSILENT_BB);
462 	if (!(sc->sc_flags & ATHN_FLAG_RFSILENT_REVERSED)) {
463 		AR_SETBITS(sc, AR_GPIO_INTR_POL,
464 		    AR_GPIO_INTR_POL_PIN(sc->sc_rfsilent_pin));
465 	}
466 	AR_WRITE_BARRIER(sc);
467 }
468 
469 Static int
ar5008_dma_alloc(struct athn_softc * sc)470 ar5008_dma_alloc(struct athn_softc *sc)
471 {
472 	int error;
473 
474 	error = ar5008_tx_alloc(sc);
475 	if (error != 0)
476 		return error;
477 
478 	error = ar5008_rx_alloc(sc);
479 	if (error != 0)
480 		return error;
481 
482 	return 0;
483 }
484 
485 Static void
ar5008_dma_free(struct athn_softc * sc)486 ar5008_dma_free(struct athn_softc *sc)
487 {
488 
489 	ar5008_tx_free(sc);
490 	ar5008_rx_free(sc);
491 }
492 
493 Static int
ar5008_tx_alloc(struct athn_softc * sc)494 ar5008_tx_alloc(struct athn_softc *sc)
495 {
496 	struct athn_tx_buf *bf;
497 	bus_size_t size;
498 	int error, nsegs, i;
499 
500 	/*
501 	 * Allocate a pool of Tx descriptors shared between all Tx queues.
502 	 */
503 	size = ATHN_NTXBUFS * AR5008_MAX_SCATTER * sizeof(struct ar_tx_desc);
504 
505 	error = bus_dmamap_create(sc->sc_dmat, size, 1, size, 0,
506 	    BUS_DMA_NOWAIT, &sc->sc_map);
507 	if (error != 0)
508 		goto fail;
509 
510 	error = bus_dmamem_alloc(sc->sc_dmat, size, 4, 0, &sc->sc_seg, 1,
511 // XXX	    &nsegs, BUS_DMA_NOWAIT | BUS_DMA_ZERO);
512 	    &nsegs, BUS_DMA_NOWAIT);
513 	if (error != 0)
514 		goto fail;
515 
516 	error = bus_dmamem_map(sc->sc_dmat, &sc->sc_seg, 1, size,
517 	    (void **)&sc->sc_descs, BUS_DMA_NOWAIT | BUS_DMA_COHERENT);
518 	if (error != 0)
519 		goto fail;
520 
521 	error = bus_dmamap_load(sc->sc_dmat, sc->sc_map, sc->sc_descs,
522 	    size, NULL, BUS_DMA_NOWAIT);
523 	if (error != 0)
524 		goto fail;
525 
526 	SIMPLEQ_INIT(&sc->sc_txbufs);
527 	for (i = 0; i < ATHN_NTXBUFS; i++) {
528 		bf = &sc->sc_txpool[i];
529 
530 		error = bus_dmamap_create(sc->sc_dmat, ATHN_TXBUFSZ,
531 		    AR5008_MAX_SCATTER, ATHN_TXBUFSZ, 0, BUS_DMA_NOWAIT,
532 		    &bf->bf_map);
533 		if (error != 0) {
534 			aprint_error_dev(sc->sc_dev,
535 			    "could not create Tx buf DMA map\n");
536 			goto fail;
537 		}
538 
539 		bf->bf_descs =
540 		    &((struct ar_tx_desc *)sc->sc_descs)[i * AR5008_MAX_SCATTER];
541 		bf->bf_daddr = sc->sc_map->dm_segs[0].ds_addr +
542 		    i * AR5008_MAX_SCATTER * sizeof(struct ar_tx_desc);
543 
544 		SIMPLEQ_INSERT_TAIL(&sc->sc_txbufs, bf, bf_list);
545 	}
546 	return 0;
547  fail:
548 	ar5008_tx_free(sc);
549 	return error;
550 }
551 
552 Static void
ar5008_tx_free(struct athn_softc * sc)553 ar5008_tx_free(struct athn_softc *sc)
554 {
555 	struct athn_tx_buf *bf;
556 	int i;
557 
558 	for (i = 0; i < ATHN_NTXBUFS; i++) {
559 		bf = &sc->sc_txpool[i];
560 
561 		if (bf->bf_map != NULL)
562 			bus_dmamap_destroy(sc->sc_dmat, bf->bf_map);
563 	}
564 	/* Free Tx descriptors. */
565 	if (sc->sc_map != NULL) {
566 		if (sc->sc_descs != NULL) {
567 			bus_dmamap_unload(sc->sc_dmat, sc->sc_map);
568 			bus_dmamem_unmap(sc->sc_dmat, (void *)sc->sc_descs,
569 			    ATHN_NTXBUFS * AR5008_MAX_SCATTER *
570 			    sizeof(struct ar_tx_desc));
571 			bus_dmamem_free(sc->sc_dmat, &sc->sc_seg, 1);
572 		}
573 		bus_dmamap_destroy(sc->sc_dmat, sc->sc_map);
574 	}
575 }
576 
577 Static int
ar5008_rx_alloc(struct athn_softc * sc)578 ar5008_rx_alloc(struct athn_softc *sc)
579 {
580 	struct athn_rxq *rxq = &sc->sc_rxq[0];
581 	struct athn_rx_buf *bf;
582 	struct ar_rx_desc *ds;
583 	bus_size_t size;
584 	int error, nsegs, i;
585 
586 	rxq->bf = malloc(ATHN_NRXBUFS * sizeof(*bf), M_DEVBUF,
587 	    M_WAITOK | M_ZERO);
588 
589 	size = ATHN_NRXBUFS * sizeof(struct ar_rx_desc);
590 
591 	error = bus_dmamap_create(sc->sc_dmat, size, 1, size, 0,
592 	    BUS_DMA_NOWAIT, &rxq->map);
593 	if (error != 0)
594 		goto fail;
595 
596 	error = bus_dmamem_alloc(sc->sc_dmat, size, 0, 0, &rxq->seg, 1,
597 //	    &nsegs, BUS_DMA_NOWAIT | BUS_DMA_ZERO);
598 	    &nsegs, BUS_DMA_NOWAIT);
599 	if (error != 0)
600 		goto fail;
601 
602 	error = bus_dmamem_map(sc->sc_dmat, &rxq->seg, 1, size,
603 	    (void **)&rxq->descs, BUS_DMA_NOWAIT | BUS_DMA_COHERENT);
604 	if (error != 0)
605 		goto fail;
606 
607 	error = bus_dmamap_load(sc->sc_dmat, rxq->map, rxq->descs,
608 	    size, NULL, BUS_DMA_NOWAIT);
609 	if (error != 0)
610 		goto fail;
611 
612 	for (i = 0; i < ATHN_NRXBUFS; i++) {
613 		bf = &rxq->bf[i];
614 		ds = &((struct ar_rx_desc *)rxq->descs)[i];
615 
616 		error = bus_dmamap_create(sc->sc_dmat, ATHN_RXBUFSZ, 1,
617 		    ATHN_RXBUFSZ, 0, BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW,
618 		    &bf->bf_map);
619 		if (error != 0) {
620 			aprint_error_dev(sc->sc_dev,
621 			    " could not create Rx buf DMA map\n");
622 			goto fail;
623 		}
624 		/*
625 		 * Assumes MCLGETI returns cache-line-size aligned buffers.
626 		 * XXX: does ours?
627 		 */
628 		bf->bf_m = MCLGETI(NULL, M_DONTWAIT, NULL, ATHN_RXBUFSZ);
629 		if (bf->bf_m == NULL) {
630 			aprint_error_dev(sc->sc_dev,
631 			    "could not allocate Rx mbuf\n");
632 			error = ENOBUFS;
633 			goto fail;
634 		}
635 
636 		error = bus_dmamap_load(sc->sc_dmat, bf->bf_map,
637 		    mtod(bf->bf_m, void *), ATHN_RXBUFSZ, NULL,
638 		    BUS_DMA_NOWAIT | BUS_DMA_READ);
639 		if (error != 0) {
640 			aprint_error_dev(sc->sc_dev,
641 			    "could not DMA map Rx buffer\n");
642 			goto fail;
643 		}
644 
645 		bus_dmamap_sync(sc->sc_dmat, bf->bf_map, 0, ATHN_RXBUFSZ,
646 		    BUS_DMASYNC_PREREAD);
647 
648 		bf->bf_desc = ds;
649 		bf->bf_daddr = rxq->map->dm_segs[0].ds_addr +
650 		    i * sizeof(struct ar_rx_desc);
651 	}
652 	return 0;
653  fail:
654 	ar5008_rx_free(sc);
655 	return error;
656 }
657 
658 Static void
ar5008_rx_free(struct athn_softc * sc)659 ar5008_rx_free(struct athn_softc *sc)
660 {
661 	struct athn_rxq *rxq = &sc->sc_rxq[0];
662 	struct athn_rx_buf *bf;
663 	int i;
664 
665 	if (rxq->bf == NULL)
666 		return;
667 	for (i = 0; i < ATHN_NRXBUFS; i++) {
668 		bf = &rxq->bf[i];
669 
670 		if (bf->bf_map != NULL)
671 			bus_dmamap_destroy(sc->sc_dmat, bf->bf_map);
672 		m_freem(bf->bf_m);
673 	}
674 	free(rxq->bf, M_DEVBUF);
675 
676 	/* Free Rx descriptors. */
677 	if (rxq->map != NULL) {
678 		if (rxq->descs != NULL) {
679 			bus_dmamap_unload(sc->sc_dmat, rxq->map);
680 			bus_dmamem_unmap(sc->sc_dmat, (void *)rxq->descs,
681 			    ATHN_NRXBUFS * sizeof(struct ar_rx_desc));
682 			bus_dmamem_free(sc->sc_dmat, &rxq->seg, 1);
683 		}
684 		bus_dmamap_destroy(sc->sc_dmat, rxq->map);
685 	}
686 }
687 
688 Static void
ar5008_rx_enable(struct athn_softc * sc)689 ar5008_rx_enable(struct athn_softc *sc)
690 {
691 	struct athn_rxq *rxq = &sc->sc_rxq[0];
692 	struct athn_rx_buf *bf;
693 	struct ar_rx_desc *ds;
694 	int i;
695 
696 	/* Setup and link Rx descriptors. */
697 	SIMPLEQ_INIT(&rxq->head);
698 	rxq->lastds = NULL;
699 	for (i = 0; i < ATHN_NRXBUFS; i++) {
700 		bf = &rxq->bf[i];
701 		ds = bf->bf_desc;
702 
703 		memset(ds, 0, sizeof(*ds));
704 		ds->ds_data = bf->bf_map->dm_segs[0].ds_addr;
705 		ds->ds_ctl1 = SM(AR_RXC1_BUF_LEN, ATHN_RXBUFSZ);
706 
707 		if (rxq->lastds != NULL) {
708 			((struct ar_rx_desc *)rxq->lastds)->ds_link =
709 			    bf->bf_daddr;
710 		}
711 		SIMPLEQ_INSERT_TAIL(&rxq->head, bf, bf_list);
712 		rxq->lastds = ds;
713 	}
714 	bus_dmamap_sync(sc->sc_dmat, rxq->map, 0, rxq->map->dm_mapsize,
715 	    BUS_DMASYNC_PREREAD);
716 
717 	/* Enable Rx. */
718 	AR_WRITE(sc, AR_RXDP, SIMPLEQ_FIRST(&rxq->head)->bf_daddr);
719 	AR_WRITE(sc, AR_CR, AR_CR_RXE);
720 	AR_WRITE_BARRIER(sc);
721 }
722 
723 Static void
ar5008_rx_radiotap(struct athn_softc * sc,struct mbuf * m,struct ar_rx_desc * ds)724 ar5008_rx_radiotap(struct athn_softc *sc, struct mbuf *m,
725     struct ar_rx_desc *ds)
726 {
727 	struct athn_rx_radiotap_header *tap = &sc->sc_rxtap;
728 	struct ieee80211com *ic = &sc->sc_ic;
729 	uint64_t tsf;
730 	uint32_t tstamp;
731 	uint8_t rate;
732 
733 	/* Extend the 15-bit timestamp from Rx descriptor to 64-bit TSF. */
734 	tstamp = ds->ds_status2;
735 	tsf = AR_READ(sc, AR_TSF_U32);
736 	tsf = tsf << 32 | AR_READ(sc, AR_TSF_L32);
737 	if ((tsf & 0x7fff) < tstamp)
738 		tsf -= 0x8000;
739 	tsf = (tsf & ~0x7fff) | tstamp;
740 
741 	tap->wr_flags = IEEE80211_RADIOTAP_F_FCS;
742 	tap->wr_tsft = htole64(tsf);
743 	tap->wr_chan_freq = htole16(ic->ic_curchan->ic_freq);
744 	tap->wr_chan_flags = htole16(ic->ic_curchan->ic_flags);
745 	tap->wr_dbm_antsignal = MS(ds->ds_status4, AR_RXS4_RSSI_COMBINED);
746 	/* XXX noise. */
747 	tap->wr_antenna = MS(ds->ds_status3, AR_RXS3_ANTENNA);
748 	tap->wr_rate = 0;	/* In case it can't be found below. */
749 	if (AR_SREV_5416_20_OR_LATER(sc))
750 		rate = MS(ds->ds_status0, AR_RXS0_RATE);
751 	else
752 		rate = MS(ds->ds_status3, AR_RXS3_RATE);
753 	if (rate & 0x80) {		/* HT. */
754 		/* Bit 7 set means HT MCS instead of rate. */
755 		tap->wr_rate = rate;
756 		if (!(ds->ds_status3 & AR_RXS3_GI))
757 			tap->wr_flags |= IEEE80211_RADIOTAP_F_SHORTGI;
758 
759 	}
760 	else if (rate & 0x10) {	/* CCK. */
761 		if (rate & 0x04)
762 			tap->wr_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
763 		switch (rate & ~0x14) {
764 		case 0xb: tap->wr_rate =   2; break;
765 		case 0xa: tap->wr_rate =   4; break;
766 		case 0x9: tap->wr_rate =  11; break;
767 		case 0x8: tap->wr_rate =  22; break;
768 		}
769 	}
770 	else {			/* OFDM. */
771 		switch (rate) {
772 		case 0xb: tap->wr_rate =  12; break;
773 		case 0xf: tap->wr_rate =  18; break;
774 		case 0xa: tap->wr_rate =  24; break;
775 		case 0xe: tap->wr_rate =  36; break;
776 		case 0x9: tap->wr_rate =  48; break;
777 		case 0xd: tap->wr_rate =  72; break;
778 		case 0x8: tap->wr_rate =  96; break;
779 		case 0xc: tap->wr_rate = 108; break;
780 		}
781 	}
782 	bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_rxtap_len, m, BPF_D_IN);
783 }
784 
785 static __inline int
ar5008_rx_process(struct athn_softc * sc)786 ar5008_rx_process(struct athn_softc *sc)
787 {
788 	struct ieee80211com *ic = &sc->sc_ic;
789 	struct ifnet *ifp = &sc->sc_if;
790 	struct athn_rxq *rxq = &sc->sc_rxq[0];
791 	struct athn_rx_buf *bf, *nbf;
792 	struct ar_rx_desc *ds;
793 	struct ieee80211_frame *wh;
794 	struct ieee80211_node *ni;
795 	struct mbuf *m, *m1;
796 	u_int32_t rstamp;
797 	int error, len, rssi, s;
798 
799 	bf = SIMPLEQ_FIRST(&rxq->head);
800 	if (__predict_false(bf == NULL)) {	/* Should not happen. */
801 		aprint_error_dev(sc->sc_dev, "Rx queue is empty!\n");
802 		return ENOENT;
803 	}
804 	ds = bf->bf_desc;
805 
806 	if (!(ds->ds_status8 & AR_RXS8_DONE)) {
807 		/*
808 		 * On some parts, the status words can get corrupted
809 		 * (including the "done" bit), so we check the next
810 		 * descriptor "done" bit.  If it is set, it is a good
811 		 * indication that the status words are corrupted, so
812 		 * we skip this descriptor and drop the frame.
813 		 */
814 		nbf = SIMPLEQ_NEXT(bf, bf_list);
815 		if (nbf != NULL &&
816 		    (((struct ar_rx_desc *)nbf->bf_desc)->ds_status8 &
817 		     AR_RXS8_DONE)) {
818 			DPRINTFN(DBG_RX, sc,
819 			    "corrupted descriptor status=0x%x\n",
820 			    ds->ds_status8);
821 			/* HW will not "move" RXDP in this case, so do it. */
822 			AR_WRITE(sc, AR_RXDP, nbf->bf_daddr);
823 			AR_WRITE_BARRIER(sc);
824 			if_statinc(ifp, if_ierrors);
825 			goto skip;
826 		}
827 		return EBUSY;
828 	}
829 
830 	if (__predict_false(ds->ds_status1 & AR_RXS1_MORE)) {
831 		/* Drop frames that span multiple Rx descriptors. */
832 		DPRINTFN(DBG_RX, sc, "dropping split frame\n");
833 		if_statinc(ifp, if_ierrors);
834 		goto skip;
835 	}
836 	if (!(ds->ds_status8 & AR_RXS8_FRAME_OK)) {
837 		if (ds->ds_status8 & AR_RXS8_CRC_ERR)
838 			DPRINTFN(DBG_RX, sc, "CRC error\n");
839 		else if (ds->ds_status8 & AR_RXS8_PHY_ERR)
840 			DPRINTFN(DBG_RX, sc, "PHY error=0x%x\n",
841 			    MS(ds->ds_status8, AR_RXS8_PHY_ERR_CODE));
842 		else if (ds->ds_status8 & AR_RXS8_DECRYPT_CRC_ERR)
843 			DPRINTFN(DBG_RX, sc, "Decryption CRC error\n");
844 		else if (ds->ds_status8 & AR_RXS8_MICHAEL_ERR) {
845 			DPRINTFN(DBG_RX, sc, "Michael MIC failure\n");
846 
847 			len = MS(ds->ds_status1, AR_RXS1_DATA_LEN);
848 			m = bf->bf_m;
849 			m_set_rcvif(m, ifp);
850 			m->m_pkthdr.len = m->m_len = len;
851 			wh = mtod(m, struct ieee80211_frame *);
852 
853 			/* Report Michael MIC failures to net80211. */
854 			ieee80211_notify_michael_failure(ic, wh, 0 /* XXX: keyix */);
855 		}
856 		if_statinc(ifp, if_ierrors);
857 		goto skip;
858 	}
859 
860 	len = MS(ds->ds_status1, AR_RXS1_DATA_LEN);
861 	if (__predict_false(len < (int)IEEE80211_MIN_LEN || len > ATHN_RXBUFSZ)) {
862 		DPRINTFN(DBG_RX, sc, "corrupted descriptor length=%d\n", len);
863 		if_statinc(ifp, if_ierrors);
864 		goto skip;
865 	}
866 
867 	/* Allocate a new Rx buffer. */
868 	m1 = MCLGETI(NULL, M_DONTWAIT, NULL, ATHN_RXBUFSZ);
869 	if (__predict_false(m1 == NULL)) {
870 		ic->ic_stats.is_rx_nobuf++;
871 		if_statinc(ifp, if_ierrors);
872 		goto skip;
873 	}
874 
875 	/* Sync and unmap the old Rx buffer. */
876 	bus_dmamap_sync(sc->sc_dmat, bf->bf_map, 0, ATHN_RXBUFSZ,
877 	    BUS_DMASYNC_POSTREAD);
878 	bus_dmamap_unload(sc->sc_dmat, bf->bf_map);
879 
880 	/* Map the new Rx buffer. */
881 	error = bus_dmamap_load(sc->sc_dmat, bf->bf_map, mtod(m1, void *),
882 	    ATHN_RXBUFSZ, NULL, BUS_DMA_NOWAIT | BUS_DMA_READ);
883 	if (__predict_false(error != 0)) {
884 		m_freem(m1);
885 
886 		/* Remap the old Rx buffer or panic. */
887 		error = bus_dmamap_load(sc->sc_dmat, bf->bf_map,
888 		    mtod(bf->bf_m, void *), ATHN_RXBUFSZ, NULL,
889 		    BUS_DMA_NOWAIT | BUS_DMA_READ);
890 		KASSERT(error != 0);
891 		if_statinc(ifp, if_ierrors);
892 		goto skip;
893 	}
894 
895 	bus_dmamap_sync(sc->sc_dmat, bf->bf_map, 0, ATHN_RXBUFSZ,
896 	    BUS_DMASYNC_PREREAD);
897 
898 	/* Write physical address of new Rx buffer. */
899 	ds->ds_data = bf->bf_map->dm_segs[0].ds_addr;
900 
901 	m = bf->bf_m;
902 	bf->bf_m = m1;
903 
904 	/* Finalize mbuf. */
905 	m_set_rcvif(m, ifp);
906 	m->m_pkthdr.len = m->m_len = len;
907 
908 	s = splnet();
909 
910 	/* Grab a reference to the source node. */
911 	wh = mtod(m, struct ieee80211_frame *);
912 	ni = ieee80211_find_rxnode(ic, (struct ieee80211_frame_min *)wh);
913 
914 	/* Remove any HW padding after the 802.11 header. */
915 	if (!(wh->i_fc[0] & IEEE80211_FC0_TYPE_CTL)) {
916 		u_int hdrlen = ieee80211_anyhdrsize(wh);
917 		if (hdrlen & 3) {
918 			memmove((uint8_t *)wh + 2, wh, hdrlen);
919 			m_adj(m, 2);
920 		}
921 	}
922 	if (__predict_false(sc->sc_drvbpf != NULL))
923 		ar5008_rx_radiotap(sc, m, ds);
924 
925 	/* Trim 802.11 FCS after radiotap. */
926 	m_adj(m, -IEEE80211_CRC_LEN);
927 
928 	/* Send the frame to the 802.11 layer. */
929 	rssi = MS(ds->ds_status4, AR_RXS4_RSSI_COMBINED);
930 	rstamp = ds->ds_status2;
931 	ieee80211_input(ic, m, ni, rssi, rstamp);
932 
933 	/* Node is no longer needed. */
934 	ieee80211_free_node(ni);
935 
936 	splx(s);
937 
938  skip:
939 	/* Unlink this descriptor from head. */
940 	SIMPLEQ_REMOVE_HEAD(&rxq->head, bf_list);
941 	memset(&ds->ds_status0, 0, 36);	/* XXX Really needed? */
942 	ds->ds_status8 &= ~AR_RXS8_DONE;
943 	ds->ds_link = 0;
944 
945 	/* Re-use this descriptor and link it to tail. */
946 	if (__predict_true(!SIMPLEQ_EMPTY(&rxq->head)))
947 		((struct ar_rx_desc *)rxq->lastds)->ds_link = bf->bf_daddr;
948 	else
949 		AR_WRITE(sc, AR_RXDP, bf->bf_daddr);
950 	SIMPLEQ_INSERT_TAIL(&rxq->head, bf, bf_list);
951 	rxq->lastds = ds;
952 
953 	/* Re-enable Rx. */
954 	AR_WRITE(sc, AR_CR, AR_CR_RXE);
955 	AR_WRITE_BARRIER(sc);
956 	return 0;
957 }
958 
959 Static void
ar5008_rx_intr(struct athn_softc * sc)960 ar5008_rx_intr(struct athn_softc *sc)
961 {
962 
963 	while (ar5008_rx_process(sc) == 0)
964 		continue;
965 }
966 
967 Static int
ar5008_tx_process(struct athn_softc * sc,int qid)968 ar5008_tx_process(struct athn_softc *sc, int qid)
969 {
970 	struct ifnet *ifp = &sc->sc_if;
971 	struct athn_txq *txq = &sc->sc_txq[qid];
972 	struct athn_node *an;
973 	struct athn_tx_buf *bf;
974 	struct ar_tx_desc *ds;
975 	uint8_t failcnt;
976 
977 	bf = SIMPLEQ_FIRST(&txq->head);
978 	if (bf == NULL)
979 		return ENOENT;
980 	/* Get descriptor of last DMA segment. */
981 	ds = &((struct ar_tx_desc *)bf->bf_descs)[bf->bf_map->dm_nsegs - 1];
982 
983 	if (!(ds->ds_status9 & AR_TXS9_DONE))
984 		return EBUSY;
985 
986 	SIMPLEQ_REMOVE_HEAD(&txq->head, bf_list);
987 	if_statinc(ifp, if_opackets);
988 
989 	sc->sc_tx_timer = 0;
990 
991 	if (ds->ds_status1 & AR_TXS1_EXCESSIVE_RETRIES)
992 		if_statinc(ifp, if_oerrors);
993 
994 	if (ds->ds_status1 & AR_TXS1_UNDERRUN)
995 		athn_inc_tx_trigger_level(sc);
996 
997 	an = (struct athn_node *)bf->bf_ni;
998 	/*
999 	 * NB: the data fail count contains the number of un-acked tries
1000 	 * for the final series used.  We must add the number of tries for
1001 	 * each series that was fully processed.
1002 	 */
1003 	failcnt  = MS(ds->ds_status1, AR_TXS1_DATA_FAIL_CNT);
1004 	/* NB: Assume two tries per series. */
1005 	failcnt += MS(ds->ds_status9, AR_TXS9_FINAL_IDX) * 2;
1006 
1007 	/* Update rate control statistics. */
1008 	an->amn.amn_txcnt++;
1009 	if (failcnt > 0)
1010 		an->amn.amn_retrycnt++;
1011 
1012 	DPRINTFN(DBG_TX, sc, "Tx done qid=%d status1=%d fail count=%d\n",
1013 	    qid, ds->ds_status1, failcnt);
1014 
1015 	bus_dmamap_sync(sc->sc_dmat, bf->bf_map, 0, bf->bf_map->dm_mapsize,
1016 	    BUS_DMASYNC_POSTWRITE);
1017 	bus_dmamap_unload(sc->sc_dmat, bf->bf_map);
1018 
1019 	m_freem(bf->bf_m);
1020 	bf->bf_m = NULL;
1021 	ieee80211_free_node(bf->bf_ni);
1022 	bf->bf_ni = NULL;
1023 
1024 	/* Link Tx buffer back to global free list. */
1025 	SIMPLEQ_INSERT_TAIL(&sc->sc_txbufs, bf, bf_list);
1026 	return 0;
1027 }
1028 
1029 Static void
ar5008_tx_intr(struct athn_softc * sc)1030 ar5008_tx_intr(struct athn_softc *sc)
1031 {
1032 	struct ifnet *ifp = &sc->sc_if;
1033 	uint16_t mask = 0;
1034 	uint32_t reg;
1035 	int qid, s;
1036 
1037 	s = splnet();
1038 
1039 	reg = AR_READ(sc, AR_ISR_S0_S);
1040 	mask |= MS(reg, AR_ISR_S0_QCU_TXOK);
1041 	mask |= MS(reg, AR_ISR_S0_QCU_TXDESC);
1042 
1043 	reg = AR_READ(sc, AR_ISR_S1_S);
1044 	mask |= MS(reg, AR_ISR_S1_QCU_TXERR);
1045 	mask |= MS(reg, AR_ISR_S1_QCU_TXEOL);
1046 
1047 	DPRINTFN(DBG_TX, sc, "Tx interrupt mask=0x%x\n", mask);
1048 	for (qid = 0; mask != 0; mask >>= 1, qid++) {
1049 		if (mask & 1)
1050 			while (ar5008_tx_process(sc, qid) == 0);
1051 	}
1052 	if (!SIMPLEQ_EMPTY(&sc->sc_txbufs)) {
1053 		ifp->if_flags &= ~IFF_OACTIVE;
1054 		ifp->if_start(ifp); /* in softint */
1055 	}
1056 
1057 	splx(s);
1058 }
1059 
1060 #ifndef IEEE80211_STA_ONLY
1061 /*
1062  * Process Software Beacon Alert interrupts.
1063  */
1064 Static int
ar5008_swba_intr(struct athn_softc * sc)1065 ar5008_swba_intr(struct athn_softc *sc)
1066 {
1067 	struct ieee80211com *ic = &sc->sc_ic;
1068 	struct ifnet *ifp = &sc->sc_if;
1069 	struct ieee80211_node *ni = ic->ic_bss;
1070 	struct athn_tx_buf *bf = sc->sc_bcnbuf;
1071 	struct ieee80211_frame *wh;
1072 	struct ieee80211_beacon_offsets bo;
1073 	struct ar_tx_desc *ds;
1074 	struct mbuf *m;
1075 	uint8_t ridx, hwrate;
1076 	int error, totlen;
1077 
1078 #if notyet
1079 	if (ic->ic_tim_mcast_pending &&
1080 	    IF_IS_EMPTY(&ni->ni_savedq) &&
1081 	    SIMPLEQ_EMPTY(&sc->sc_txq[ATHN_QID_CAB].head))
1082 		ic->ic_tim_mcast_pending = 0;
1083 #endif
1084 	if (ic->ic_dtim_count == 0)
1085 		ic->ic_dtim_count = ic->ic_dtim_period - 1;
1086 	else
1087 		ic->ic_dtim_count--;
1088 
1089 	/* Make sure previous beacon has been sent. */
1090 	if (athn_tx_pending(sc, ATHN_QID_BEACON)) {
1091 		DPRINTFN(DBG_INTR, sc, "beacon stuck\n");
1092 		return EBUSY;
1093 	}
1094 	/* Get new beacon. */
1095 	m = ieee80211_beacon_alloc(ic, ic->ic_bss, &bo);
1096 	if (__predict_false(m == NULL))
1097 		return ENOBUFS;
1098 	/* Assign sequence number. */
1099 	/* XXX: use non-QoS tid? */
1100 	wh = mtod(m, struct ieee80211_frame *);
1101 	*(uint16_t *)&wh->i_seq[0] =
1102 	    htole16(ic->ic_bss->ni_txseqs[0] << IEEE80211_SEQ_SEQ_SHIFT);
1103 	ic->ic_bss->ni_txseqs[0]++;
1104 
1105 	/* Unmap and free old beacon if any. */
1106 	if (__predict_true(bf->bf_m != NULL)) {
1107 		bus_dmamap_sync(sc->sc_dmat, bf->bf_map, 0,
1108 		    bf->bf_map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1109 		bus_dmamap_unload(sc->sc_dmat, bf->bf_map);
1110 		m_freem(bf->bf_m);
1111 		bf->bf_m = NULL;
1112 	}
1113 	/* DMA map new beacon. */
1114 	error = bus_dmamap_load_mbuf(sc->sc_dmat, bf->bf_map, m,
1115 	    BUS_DMA_NOWAIT | BUS_DMA_WRITE);
1116 	if (__predict_false(error != 0)) {
1117 		m_freem(m);
1118 		return error;
1119 	}
1120 	bf->bf_m = m;
1121 
1122 	/* Setup Tx descriptor (simplified ar5008_tx()). */
1123 	ds = bf->bf_descs;
1124 	memset(ds, 0, sizeof(*ds));
1125 
1126 	totlen = m->m_pkthdr.len + IEEE80211_CRC_LEN;
1127 	ds->ds_ctl0 = SM(AR_TXC0_FRAME_LEN, totlen);
1128 	ds->ds_ctl0 |= SM(AR_TXC0_XMIT_POWER, AR_MAX_RATE_POWER);
1129 	ds->ds_ctl1 = SM(AR_TXC1_FRAME_TYPE, AR_FRAME_TYPE_BEACON);
1130 	ds->ds_ctl1 |= AR_TXC1_NO_ACK;
1131 	ds->ds_ctl6 = SM(AR_TXC6_ENCR_TYPE, AR_ENCR_TYPE_CLEAR);
1132 
1133 	/* Write number of tries. */
1134 	ds->ds_ctl2 = SM(AR_TXC2_XMIT_DATA_TRIES0, 1);
1135 
1136 	/* Write Tx rate. */
1137 	ridx = (ic->ic_curmode == IEEE80211_MODE_11A) ?
1138 	    ATHN_RIDX_OFDM6 : ATHN_RIDX_CCK1;
1139 	hwrate = athn_rates[ridx].hwrate;
1140 	ds->ds_ctl3 = SM(AR_TXC3_XMIT_RATE0, hwrate);
1141 
1142 	/* Write Tx chains. */
1143 	ds->ds_ctl7 = SM(AR_TXC7_CHAIN_SEL0, sc->sc_txchainmask);
1144 
1145 	ds->ds_data = bf->bf_map->dm_segs[0].ds_addr;
1146 	/* Segment length must be a multiple of 4. */
1147 	ds->ds_ctl1 |= SM(AR_TXC1_BUF_LEN,
1148 	    (bf->bf_map->dm_segs[0].ds_len + 3) & ~3);
1149 
1150 	bus_dmamap_sync(sc->sc_dmat, bf->bf_map, 0, bf->bf_map->dm_mapsize,
1151 	    BUS_DMASYNC_PREWRITE);
1152 
1153 	/* Stop Tx DMA before putting the new beacon on the queue. */
1154 	athn_stop_tx_dma(sc, ATHN_QID_BEACON);
1155 
1156 	AR_WRITE(sc, AR_QTXDP(ATHN_QID_BEACON), bf->bf_daddr);
1157 
1158 	for(;;) {
1159 		if (SIMPLEQ_EMPTY(&sc->sc_txbufs))
1160 			break;
1161 
1162 		IF_DEQUEUE(&ni->ni_savedq, m);
1163 		if (m == NULL)
1164 			break;
1165 		if (!IF_IS_EMPTY(&ni->ni_savedq)) {
1166 			/* more queued frames, set the more data bit */
1167 			wh = mtod(m, struct ieee80211_frame *);
1168 			wh->i_fc[1] |= IEEE80211_FC1_MORE_DATA;
1169 		}
1170 
1171 		if (sc->sc_ops.tx(sc, m, ni, ATHN_TXFLAG_CAB) != 0) {
1172 			ieee80211_free_node(ni);
1173 			if_statinc(ifp, if_oerrors);
1174 			break;
1175 		}
1176 	}
1177 
1178 	/* Kick Tx. */
1179 	AR_WRITE(sc, AR_Q_TXE, 1 << ATHN_QID_BEACON);
1180 	AR_WRITE_BARRIER(sc);
1181 	return 0;
1182 }
1183 #endif
1184 
1185 static int
ar5008_get_intr_status(struct athn_softc * sc,uint32_t * intrp,uint32_t * syncp)1186 ar5008_get_intr_status(struct athn_softc *sc, uint32_t *intrp, uint32_t *syncp)
1187 {
1188 	uint32_t intr, sync;
1189 
1190 	/* Get pending interrupts. */
1191 	intr = AR_READ(sc, AR_INTR_ASYNC_CAUSE);
1192 	if (!(intr & AR_INTR_MAC_IRQ) || intr == AR_INTR_SPURIOUS) {
1193 		intr = AR_READ(sc, AR_INTR_SYNC_CAUSE);
1194 		if (intr == AR_INTR_SPURIOUS || (intr & sc->sc_isync) == 0)
1195 			return 0;	/* Not for us. */
1196 	}
1197 
1198 	if ((AR_READ(sc, AR_INTR_ASYNC_CAUSE) & AR_INTR_MAC_IRQ) &&
1199 	    (AR_READ(sc, AR_RTC_STATUS) & AR_RTC_STATUS_M) == AR_RTC_STATUS_ON)
1200 		intr = AR_READ(sc, AR_ISR);
1201 	else
1202 		intr = 0;
1203 	sync = AR_READ(sc, AR_INTR_SYNC_CAUSE) & sc->sc_isync;
1204 	if (intr == 0 && sync == 0)
1205 		return 0;	/* Not for us. */
1206 
1207 	*intrp = intr;
1208 	*syncp = sync;
1209 	return 1;
1210 }
1211 
1212 
1213 Static int
ar5008_intr_status(struct athn_softc * sc)1214 ar5008_intr_status(struct athn_softc *sc)
1215 {
1216 	uint32_t intr, sync;
1217 
1218 	return ar5008_get_intr_status(sc, &intr, &sync);
1219 }
1220 
1221 Static int
ar5008_intr(struct athn_softc * sc)1222 ar5008_intr(struct athn_softc *sc)
1223 {
1224 	uint32_t intr, intr5, sync;
1225 #ifndef IEEE80211_STA_ONLY
1226 	int s;
1227 #endif
1228 
1229 	if (!ar5008_get_intr_status(sc, &intr, &sync))
1230 		return 0;
1231 
1232 	if (intr != 0) {
1233 		if (intr & AR_ISR_BCNMISC) {
1234 			uint32_t intr2 = AR_READ(sc, AR_ISR_S2);
1235 #if notyet
1236 			if (intr2 & AR_ISR_S2_TIM)
1237 				/* TBD */;
1238 			if (intr2 & AR_ISR_S2_TSFOOR)
1239 				/* TBD */;
1240 #else
1241 			__USE(intr2);
1242 #endif
1243 		}
1244 		intr = AR_READ(sc, AR_ISR_RAC);
1245 		if (intr == AR_INTR_SPURIOUS)
1246 			return 1;
1247 
1248 #ifndef IEEE80211_STA_ONLY
1249 		if (intr & AR_ISR_SWBA) {
1250 			s = splnet();
1251 			ar5008_swba_intr(sc);
1252 			splx(s);
1253 		}
1254 #endif
1255 		if (intr & (AR_ISR_RXMINTR | AR_ISR_RXINTM))
1256 			ar5008_rx_intr(sc);
1257 		if (intr & (AR_ISR_RXOK | AR_ISR_RXERR | AR_ISR_RXORN))
1258 			ar5008_rx_intr(sc);
1259 
1260 		if (intr & (AR_ISR_TXOK | AR_ISR_TXDESC |
1261 		    AR_ISR_TXERR | AR_ISR_TXEOL))
1262 			ar5008_tx_intr(sc);
1263 
1264 		intr5 = AR_READ(sc, AR_ISR_S5_S);
1265 		if (intr & AR_ISR_GENTMR) {
1266 			if (intr5 & AR_ISR_GENTMR) {
1267 				DPRINTFN(DBG_INTR, sc,
1268 				    "GENTMR trigger=%d thresh=%d\n",
1269 				    MS(intr5, AR_ISR_S5_GENTIMER_TRIG),
1270 				    MS(intr5, AR_ISR_S5_GENTIMER_THRESH));
1271 			}
1272 		}
1273 #if notyet
1274 		if (intr5 & AR_ISR_S5_TIM_TIMER) {
1275 			/* TBD */;
1276 		}
1277 #endif
1278 	}
1279 	if (sync != 0) {
1280 #if notyet
1281 		if (sync &
1282 		    (AR_INTR_SYNC_HOST1_FATAL | AR_INTR_SYNC_HOST1_PERR)) {
1283 			/* TBD */;
1284 		}
1285 #endif
1286 		if (sync & AR_INTR_SYNC_RADM_CPL_TIMEOUT) {
1287 			AR_WRITE(sc, AR_RC, AR_RC_HOSTIF);
1288 			AR_WRITE(sc, AR_RC, 0);
1289 		}
1290 
1291 		if ((sc->sc_flags & ATHN_FLAG_RFSILENT) &&
1292 		    (sync & AR_INTR_SYNC_GPIO_PIN(sc->sc_rfsilent_pin))) {
1293 			AR_WRITE(sc, AR_INTR_SYNC_ENABLE, 0);
1294 			(void)AR_READ(sc, AR_INTR_SYNC_ENABLE);
1295 			pmf_event_inject(sc->sc_dev, PMFE_RADIO_OFF);
1296 		}
1297 
1298 		AR_WRITE(sc, AR_INTR_SYNC_CAUSE, sync);
1299 		(void)AR_READ(sc, AR_INTR_SYNC_CAUSE);
1300 	}
1301 	return 1;
1302 }
1303 
1304 Static int
ar5008_tx(struct athn_softc * sc,struct mbuf * m,struct ieee80211_node * ni,int txflags)1305 ar5008_tx(struct athn_softc *sc, struct mbuf *m, struct ieee80211_node *ni,
1306     int txflags)
1307 {
1308 	struct ieee80211com *ic = &sc->sc_ic;
1309 	struct ieee80211_key *k = NULL;
1310 	struct ieee80211_frame *wh;
1311 	struct athn_series series[4];
1312 	struct ar_tx_desc *ds, *lastds;
1313 	struct athn_txq *txq;
1314 	struct athn_tx_buf *bf;
1315 	struct athn_node *an = (void *)ni;
1316 	struct mbuf *m1;
1317 	uint16_t qos;
1318 	uint8_t txpower, type, encrtype, ridx[4];
1319 	int i, error, totlen, hasqos, qid;
1320 
1321 	/* Grab a Tx buffer from our global free list. */
1322 	bf = SIMPLEQ_FIRST(&sc->sc_txbufs);
1323 	KASSERT(bf != NULL);
1324 
1325 	/* Map 802.11 frame type to hardware frame type. */
1326 	wh = mtod(m, struct ieee80211_frame *);
1327 	if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) ==
1328 	    IEEE80211_FC0_TYPE_MGT) {
1329 		/* NB: Beacons do not use ar5008_tx(). */
1330 		if ((wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK) ==
1331 		    IEEE80211_FC0_SUBTYPE_PROBE_RESP)
1332 			type = AR_FRAME_TYPE_PROBE_RESP;
1333 		else if ((wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK) ==
1334 		    IEEE80211_FC0_SUBTYPE_ATIM)
1335 			type = AR_FRAME_TYPE_ATIM;
1336 		else
1337 			type = AR_FRAME_TYPE_NORMAL;
1338 	}
1339 	else if ((wh->i_fc[0] &
1340 	    (IEEE80211_FC0_TYPE_MASK | IEEE80211_FC0_SUBTYPE_MASK)) ==
1341 	    (IEEE80211_FC0_TYPE_CTL  | IEEE80211_FC0_SUBTYPE_PS_POLL)) {
1342 		type = AR_FRAME_TYPE_PSPOLL;
1343 	}
1344 	else
1345 		type = AR_FRAME_TYPE_NORMAL;
1346 
1347 	if (wh->i_fc[1] & IEEE80211_FC1_PROTECTED) {
1348 		k = ieee80211_crypto_encap(ic, ni, m);
1349 		if (k == NULL)
1350 			return ENOBUFS;
1351 
1352 		/* packet header may have moved, reset our local pointer */
1353 		wh = mtod(m, struct ieee80211_frame *);
1354 	}
1355 
1356 	/* XXX 2-byte padding for QoS and 4-addr headers. */
1357 
1358 	/* Select the HW Tx queue to use for this frame. */
1359 	if ((hasqos = ieee80211_has_qos(wh))) {
1360 #ifdef notyet_edca
1361 		uint8_t tid;
1362 
1363 		qos = ieee80211_get_qos(wh);
1364 		tid = qos & IEEE80211_QOS_TID;
1365 		qid = athn_ac2qid[ieee80211_up_to_ac(ic, tid)];
1366 #else
1367 		qos = ieee80211_get_qos(wh);
1368 		qid = ATHN_QID_AC_BE;
1369 #endif /* notyet_edca */
1370 	}
1371 	else if (type == AR_FRAME_TYPE_PSPOLL) {
1372 		qos = 0;
1373 		qid = ATHN_QID_PSPOLL;
1374 	}
1375 	else if (txflags & ATHN_TXFLAG_CAB) {
1376 		qos = 0;
1377 		qid = ATHN_QID_CAB;
1378 	}
1379 	else {
1380 		qos = 0;
1381 		qid = ATHN_QID_AC_BE;
1382 	}
1383 	txq = &sc->sc_txq[qid];
1384 
1385 	/* Select the transmit rates to use for this frame. */
1386 	if (IEEE80211_IS_MULTICAST(wh->i_addr1) ||
1387 	    (wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) !=
1388 	    IEEE80211_FC0_TYPE_DATA) {
1389 		/* Use lowest rate for all tries. */
1390 		ridx[0] = ridx[1] = ridx[2] = ridx[3] =
1391 		    (ic->ic_curmode == IEEE80211_MODE_11A) ?
1392 			ATHN_RIDX_OFDM6 : ATHN_RIDX_CCK1;
1393 	}
1394 	else if (ic->ic_fixed_rate != -1) {
1395 		/* Use same fixed rate for all tries. */
1396 		ridx[0] = ridx[1] = ridx[2] = ridx[3] =
1397 		    sc->sc_fixed_ridx;
1398 	}
1399 	else {
1400 		int txrate = ni->ni_txrate;
1401 		/* Use fallback table of the node. */
1402 		for (i = 0; i < 4; i++) {
1403 			ridx[i] = an->ridx[txrate];
1404 			txrate = an->fallback[txrate];
1405 		}
1406 	}
1407 
1408 	if (__predict_false(sc->sc_drvbpf != NULL)) {
1409 		struct athn_tx_radiotap_header *tap = &sc->sc_txtap;
1410 
1411 		tap->wt_flags = 0;
1412 		/* Use initial transmit rate. */
1413 		tap->wt_rate = athn_rates[ridx[0]].rate;
1414 		tap->wt_chan_freq = htole16(ic->ic_curchan->ic_freq);
1415 		tap->wt_chan_flags = htole16(ic->ic_curchan->ic_flags);
1416 // XXX		tap->wt_hwqueue = qid;
1417 		if (ridx[0] != ATHN_RIDX_CCK1 &&
1418 		    (ic->ic_flags & IEEE80211_F_SHPREAMBLE))
1419 			tap->wt_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
1420 
1421 		bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m, BPF_D_OUT);
1422 	}
1423 
1424 	/* DMA map mbuf. */
1425 	error = bus_dmamap_load_mbuf(sc->sc_dmat, bf->bf_map, m,
1426 	    BUS_DMA_NOWAIT | BUS_DMA_WRITE);
1427 	if (__predict_false(error != 0)) {
1428 		if (error != EFBIG) {
1429 			aprint_error_dev(sc->sc_dev,
1430 			    "can't map mbuf (error %d)\n", error);
1431 			m_freem(m);
1432 			return error;
1433 		}
1434 		/*
1435 		 * DMA mapping requires too many DMA segments; linearize
1436 		 * mbuf in kernel virtual address space and retry.
1437 		 */
1438 		MGETHDR(m1, M_DONTWAIT, MT_DATA);
1439 		if (m1 == NULL) {
1440 			m_freem(m);
1441 			return ENOBUFS;
1442 		}
1443 		if (m->m_pkthdr.len > (int)MHLEN) {
1444 			MCLGET(m1, M_DONTWAIT);
1445 			if (!(m1->m_flags & M_EXT)) {
1446 				m_freem(m);
1447 				m_freem(m1);
1448 				return ENOBUFS;
1449 			}
1450 		}
1451 		m_copydata(m, 0, m->m_pkthdr.len, mtod(m1, void *));
1452 		m1->m_pkthdr.len = m1->m_len = m->m_pkthdr.len;
1453 		m_freem(m);
1454 		m = m1;
1455 
1456 		error = bus_dmamap_load_mbuf(sc->sc_dmat, bf->bf_map, m,
1457 		    BUS_DMA_NOWAIT | BUS_DMA_WRITE);
1458 		if (error != 0) {
1459 			aprint_error_dev(sc->sc_dev,
1460 			    "can't map mbuf (error %d)\n", error);
1461 			m_freem(m);
1462 			return error;
1463 		}
1464 	}
1465 	bf->bf_m = m;
1466 	bf->bf_ni = ni;
1467 	bf->bf_txflags = txflags;
1468 
1469 	wh = mtod(m, struct ieee80211_frame *);
1470 
1471 	totlen = m->m_pkthdr.len + IEEE80211_CRC_LEN;
1472 
1473 	/* Clear all Tx descriptors that we will use. */
1474 	memset(bf->bf_descs, 0, bf->bf_map->dm_nsegs * sizeof(*ds));
1475 
1476 	/* Setup first Tx descriptor. */
1477 	ds = bf->bf_descs;
1478 
1479 	ds->ds_ctl0 = AR_TXC0_INTR_REQ | AR_TXC0_CLR_DEST_MASK;
1480 	txpower = AR_MAX_RATE_POWER;	/* Get from per-rate registers. */
1481 	ds->ds_ctl0 |= SM(AR_TXC0_XMIT_POWER, txpower);
1482 
1483 	ds->ds_ctl1 = SM(AR_TXC1_FRAME_TYPE, type);
1484 
1485 	if (IEEE80211_IS_MULTICAST(wh->i_addr1) ||
1486 	    (hasqos && (qos & IEEE80211_QOS_ACKPOLICY_MASK) ==
1487 	     IEEE80211_QOS_ACKPOLICY_NOACK))
1488 		ds->ds_ctl1 |= AR_TXC1_NO_ACK;
1489 #if notyet
1490 	if (0 && k != NULL) {
1491 		uintptr_t entry;
1492 
1493 		/*
1494 		 * Map 802.11 cipher to hardware encryption type and
1495 		 * compute MIC+ICV overhead.
1496 		 */
1497 		totlen += k->wk_keylen;
1498 		switch (k->wk_cipher->ic_cipher) {
1499 		case IEEE80211_CIPHER_WEP:
1500 			encrtype = AR_ENCR_TYPE_WEP;
1501 			break;
1502 		case IEEE80211_CIPHER_TKIP:
1503 			encrtype = AR_ENCR_TYPE_TKIP;
1504 			break;
1505 		case IEEE80211_CIPHER_AES_OCB:
1506 		case IEEE80211_CIPHER_AES_CCM:
1507 			encrtype = AR_ENCR_TYPE_AES;
1508 			break;
1509 		default:
1510 			panic("unsupported cipher");
1511 		}
1512 		/*
1513 		 * NB: The key cache entry index is stored in the key
1514 		 * private field when the key is installed.
1515 		 */
1516 		entry = (uintptr_t)k->k_priv;
1517 		ds->ds_ctl1 |= SM(AR_TXC1_DEST_IDX, entry);
1518 		ds->ds_ctl0 |= AR_TXC0_DEST_IDX_VALID;
1519 	}
1520 	else
1521 #endif
1522 		encrtype = AR_ENCR_TYPE_CLEAR;
1523 	ds->ds_ctl6 = SM(AR_TXC6_ENCR_TYPE, encrtype);
1524 
1525 	/* Check if frame must be protected using RTS/CTS or CTS-to-self. */
1526 	if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
1527 		/* NB: Group frames are sent using CCK in 802.11b/g. */
1528 		if (totlen > ic->ic_rtsthreshold) {
1529 			ds->ds_ctl0 |= AR_TXC0_RTS_ENABLE;
1530 		}
1531 		else if ((ic->ic_flags & IEEE80211_F_USEPROT) &&
1532 		    athn_rates[ridx[0]].phy == IEEE80211_T_OFDM) {
1533 			if (ic->ic_protmode == IEEE80211_PROT_RTSCTS)
1534 				ds->ds_ctl0 |= AR_TXC0_RTS_ENABLE;
1535 			else if (ic->ic_protmode == IEEE80211_PROT_CTSONLY)
1536 				ds->ds_ctl0 |= AR_TXC0_CTS_ENABLE;
1537 		}
1538 	}
1539 	if (ds->ds_ctl0 & (AR_TXC0_RTS_ENABLE | AR_TXC0_CTS_ENABLE)) {
1540 		/* Disable multi-rate retries when protection is used. */
1541 		ridx[1] = ridx[2] = ridx[3] = ridx[0];
1542 	}
1543 	/* Setup multi-rate retries. */
1544 	for (i = 0; i < 4; i++) {
1545 		series[i].hwrate = athn_rates[ridx[i]].hwrate;
1546 		if (athn_rates[ridx[i]].phy == IEEE80211_T_DS &&
1547 		    ridx[i] != ATHN_RIDX_CCK1 &&
1548 		    (ic->ic_flags & IEEE80211_F_SHPREAMBLE))
1549 			series[i].hwrate |= 0x04;
1550 		series[i].dur = 0;
1551 	}
1552 	if (!(ds->ds_ctl1 & AR_TXC1_NO_ACK)) {
1553 		/* Compute duration for each series. */
1554 		for (i = 0; i < 4; i++) {
1555 			series[i].dur = athn_txtime(sc, IEEE80211_ACK_LEN,
1556 			    athn_rates[ridx[i]].rspridx, ic->ic_flags);
1557 		}
1558 	}
1559 
1560 	/* Write number of tries for each series. */
1561 	ds->ds_ctl2 =
1562 	    SM(AR_TXC2_XMIT_DATA_TRIES0, 2) |
1563 	    SM(AR_TXC2_XMIT_DATA_TRIES1, 2) |
1564 	    SM(AR_TXC2_XMIT_DATA_TRIES2, 2) |
1565 	    SM(AR_TXC2_XMIT_DATA_TRIES3, 4);
1566 
1567 	/* Tell HW to update duration field in 802.11 header. */
1568 	if (type != AR_FRAME_TYPE_PSPOLL)
1569 		ds->ds_ctl2 |= AR_TXC2_DUR_UPDATE_ENA;
1570 
1571 	/* Write Tx rate for each series. */
1572 	ds->ds_ctl3 =
1573 	    SM(AR_TXC3_XMIT_RATE0, series[0].hwrate) |
1574 	    SM(AR_TXC3_XMIT_RATE1, series[1].hwrate) |
1575 	    SM(AR_TXC3_XMIT_RATE2, series[2].hwrate) |
1576 	    SM(AR_TXC3_XMIT_RATE3, series[3].hwrate);
1577 
1578 	/* Write duration for each series. */
1579 	ds->ds_ctl4 =
1580 	    SM(AR_TXC4_PACKET_DUR0, series[0].dur) |
1581 	    SM(AR_TXC4_PACKET_DUR1, series[1].dur);
1582 	ds->ds_ctl5 =
1583 	    SM(AR_TXC5_PACKET_DUR2, series[2].dur) |
1584 	    SM(AR_TXC5_PACKET_DUR3, series[3].dur);
1585 
1586 	/* Use the same Tx chains for all tries. */
1587 	ds->ds_ctl7 =
1588 	    SM(AR_TXC7_CHAIN_SEL0, sc->sc_txchainmask) |
1589 	    SM(AR_TXC7_CHAIN_SEL1, sc->sc_txchainmask) |
1590 	    SM(AR_TXC7_CHAIN_SEL2, sc->sc_txchainmask) |
1591 	    SM(AR_TXC7_CHAIN_SEL3, sc->sc_txchainmask);
1592 #ifdef notyet
1593 #ifndef IEEE80211_NO_HT
1594 	/* Use the same short GI setting for all tries. */
1595 	if (ic->ic_flags & IEEE80211_F_SHGI)
1596 		ds->ds_ctl7 |= AR_TXC7_GI0123;
1597 	/* Use the same channel width for all tries. */
1598 	if (ic->ic_flags & IEEE80211_F_CBW40)
1599 		ds->ds_ctl7 |= AR_TXC7_2040_0123;
1600 #endif
1601 #endif
1602 
1603 	if (ds->ds_ctl0 & (AR_TXC0_RTS_ENABLE | AR_TXC0_CTS_ENABLE)) {
1604 		uint8_t protridx, hwrate;
1605 		uint16_t dur = 0;
1606 
1607 		/* Use the same protection mode for all tries. */
1608 		if (ds->ds_ctl0 & AR_TXC0_RTS_ENABLE) {
1609 			ds->ds_ctl4 |= AR_TXC4_RTSCTS_QUAL01;
1610 			ds->ds_ctl5 |= AR_TXC5_RTSCTS_QUAL23;
1611 		}
1612 		/* Select protection rate (suboptimal but ok). */
1613 		protridx = (ic->ic_curmode == IEEE80211_MODE_11A) ?
1614 		    ATHN_RIDX_OFDM6 : ATHN_RIDX_CCK2;
1615 		if (ds->ds_ctl0 & AR_TXC0_RTS_ENABLE) {
1616 			/* Account for CTS duration. */
1617 			dur += athn_txtime(sc, IEEE80211_ACK_LEN,
1618 			    athn_rates[protridx].rspridx, ic->ic_flags);
1619 		}
1620 		dur += athn_txtime(sc, totlen, ridx[0], ic->ic_flags);
1621 		if (!(ds->ds_ctl1 & AR_TXC1_NO_ACK)) {
1622 			/* Account for ACK duration. */
1623 			dur += athn_txtime(sc, IEEE80211_ACK_LEN,
1624 			    athn_rates[ridx[0]].rspridx, ic->ic_flags);
1625 		}
1626 		/* Write protection frame duration and rate. */
1627 		ds->ds_ctl2 |= SM(AR_TXC2_BURST_DUR, dur);
1628 		hwrate = athn_rates[protridx].hwrate;
1629 		if (protridx == ATHN_RIDX_CCK2 &&
1630 		    (ic->ic_flags & IEEE80211_F_SHPREAMBLE))
1631 			hwrate |= 0x04;
1632 		ds->ds_ctl7 |= SM(AR_TXC7_RTSCTS_RATE, hwrate);
1633 	}
1634 
1635 	/* Finalize first Tx descriptor and fill others (if any). */
1636 	ds->ds_ctl0 |= SM(AR_TXC0_FRAME_LEN, totlen);
1637 
1638 	lastds = NULL;	/* XXX: gcc */
1639 	for (i = 0; i < bf->bf_map->dm_nsegs; i++, ds++) {
1640 		ds->ds_data = bf->bf_map->dm_segs[i].ds_addr;
1641 		ds->ds_ctl1 |= SM(AR_TXC1_BUF_LEN,
1642 		    bf->bf_map->dm_segs[i].ds_len);
1643 
1644 		if (i != bf->bf_map->dm_nsegs - 1)
1645 			ds->ds_ctl1 |= AR_TXC1_MORE;
1646 		ds->ds_link = 0;
1647 
1648 		/* Chain Tx descriptor. */
1649 		if (i != 0)
1650 			lastds->ds_link = bf->bf_daddr + i * sizeof(*ds);
1651 		lastds = ds;
1652 	}
1653 	bus_dmamap_sync(sc->sc_dmat, bf->bf_map, 0, bf->bf_map->dm_mapsize,
1654 	    BUS_DMASYNC_PREWRITE);
1655 
1656 	if (!SIMPLEQ_EMPTY(&txq->head))
1657 		((struct ar_tx_desc *)txq->lastds)->ds_link = bf->bf_daddr;
1658 	else
1659 		AR_WRITE(sc, AR_QTXDP(qid), bf->bf_daddr);
1660 	txq->lastds = lastds;
1661 	SIMPLEQ_REMOVE_HEAD(&sc->sc_txbufs, bf_list);
1662 	SIMPLEQ_INSERT_TAIL(&txq->head, bf, bf_list);
1663 
1664 	ds = bf->bf_descs;
1665 	DPRINTFN(DBG_TX, sc,
1666 	    "Tx qid=%d nsegs=%d ctl0=0x%x ctl1=0x%x ctl3=0x%x\n",
1667 	    qid, bf->bf_map->dm_nsegs, ds->ds_ctl0, ds->ds_ctl1, ds->ds_ctl3);
1668 
1669 	/* Kick Tx. */
1670 	AR_WRITE(sc, AR_Q_TXE, 1 << qid);
1671 	AR_WRITE_BARRIER(sc);
1672 	return 0;
1673 }
1674 
1675 Static void
ar5008_set_rf_mode(struct athn_softc * sc,struct ieee80211_channel * c)1676 ar5008_set_rf_mode(struct athn_softc *sc, struct ieee80211_channel *c)
1677 {
1678 	uint32_t reg;
1679 
1680 	reg = IEEE80211_IS_CHAN_2GHZ(c) ?
1681 	    AR_PHY_MODE_DYNAMIC : AR_PHY_MODE_OFDM;
1682 	if (!AR_SREV_9280_10_OR_LATER(sc)) {
1683 		reg |= IEEE80211_IS_CHAN_2GHZ(c) ?
1684 		    AR_PHY_MODE_RF2GHZ : AR_PHY_MODE_RF5GHZ;
1685 	}
1686 	else if (IEEE80211_IS_CHAN_5GHZ(c) &&
1687 	    (sc->sc_flags & ATHN_FLAG_FAST_PLL_CLOCK)) {
1688 		reg |= AR_PHY_MODE_DYNAMIC | AR_PHY_MODE_DYN_CCK_DISABLE;
1689 	}
1690 	AR_WRITE(sc, AR_PHY_MODE, reg);
1691 	AR_WRITE_BARRIER(sc);
1692 }
1693 
1694 static __inline uint32_t
ar5008_synth_delay(struct athn_softc * sc)1695 ar5008_synth_delay(struct athn_softc *sc)
1696 {
1697 	uint32_t synth_delay;
1698 
1699 	synth_delay = MS(AR_READ(sc, AR_PHY_RX_DELAY), AR_PHY_RX_DELAY_DELAY);
1700 	if (sc->sc_ic.ic_curmode == IEEE80211_MODE_11B)
1701 		synth_delay = (synth_delay * 4) / 22;
1702 	else
1703 		synth_delay = synth_delay / 10;	/* in 100ns steps */
1704 	return synth_delay;
1705 }
1706 
1707 Static int
ar5008_rf_bus_request(struct athn_softc * sc)1708 ar5008_rf_bus_request(struct athn_softc *sc)
1709 {
1710 	int ntries;
1711 
1712 	/* Request RF Bus grant. */
1713 	AR_WRITE(sc, AR_PHY_RFBUS_REQ, AR_PHY_RFBUS_REQ_EN);
1714 	for (ntries = 0; ntries < 10000; ntries++) {
1715 		if (AR_READ(sc, AR_PHY_RFBUS_GRANT) & AR_PHY_RFBUS_GRANT_EN)
1716 			return 0;
1717 		DELAY(10);
1718 	}
1719 	DPRINTFN(DBG_RF, sc, "could not kill baseband Rx");
1720 	return ETIMEDOUT;
1721 }
1722 
1723 Static void
ar5008_rf_bus_release(struct athn_softc * sc)1724 ar5008_rf_bus_release(struct athn_softc *sc)
1725 {
1726 
1727 	/* Wait for the synthesizer to settle. */
1728 	DELAY(AR_BASE_PHY_ACTIVE_DELAY + ar5008_synth_delay(sc));
1729 
1730 	/* Release the RF Bus grant. */
1731 	AR_WRITE(sc, AR_PHY_RFBUS_REQ, 0);
1732 	AR_WRITE_BARRIER(sc);
1733 }
1734 
1735 Static void
ar5008_set_phy(struct athn_softc * sc,struct ieee80211_channel * c,struct ieee80211_channel * extc)1736 ar5008_set_phy(struct athn_softc *sc, struct ieee80211_channel *c,
1737     struct ieee80211_channel *extc)
1738 {
1739 	uint32_t phy;
1740 
1741 	if (AR_SREV_9285_10_OR_LATER(sc))
1742 		phy = AR_READ(sc, AR_PHY_TURBO) & AR_PHY_FC_ENABLE_DAC_FIFO;
1743 	else
1744 		phy = 0;
1745 	phy |= AR_PHY_FC_HT_EN | AR_PHY_FC_SHORT_GI_40 |
1746 	    AR_PHY_FC_SINGLE_HT_LTF1 | AR_PHY_FC_WALSH;
1747 #ifndef IEEE80211_NO_HT
1748 	if (extc != NULL) {
1749 		phy |= AR_PHY_FC_DYN2040_EN;
1750 		if (extc > c)	/* XXX */
1751 			phy |= AR_PHY_FC_DYN2040_PRI_CH;
1752 	}
1753 #endif
1754 	AR_WRITE(sc, AR_PHY_TURBO, phy);
1755 
1756 	AR_WRITE(sc, AR_2040_MODE,
1757 	    (extc != NULL) ? AR_2040_JOINED_RX_CLEAR : 0);
1758 
1759 	/* Set global transmit timeout. */
1760 	AR_WRITE(sc, AR_GTXTO, SM(AR_GTXTO_TIMEOUT_LIMIT, 25));
1761 	/* Set carrier sense timeout. */
1762 	AR_WRITE(sc, AR_CST, SM(AR_CST_TIMEOUT_LIMIT, 15));
1763 	AR_WRITE_BARRIER(sc);
1764 }
1765 
1766 Static void
ar5008_set_delta_slope(struct athn_softc * sc,struct ieee80211_channel * c,struct ieee80211_channel * extc)1767 ar5008_set_delta_slope(struct athn_softc *sc, struct ieee80211_channel *c,
1768     struct ieee80211_channel *extc)
1769 {
1770 	uint32_t coeff, exp, man, reg;
1771 
1772 	/* Set Delta Slope (exponent and mantissa). */
1773 	coeff = (100 << 24) / c->ic_freq;
1774 	athn_get_delta_slope(coeff, &exp, &man);
1775 	DPRINTFN(DBG_RX, sc, "delta slope coeff exp=%u man=%u\n", exp, man);
1776 
1777 	reg = AR_READ(sc, AR_PHY_TIMING3);
1778 	reg = RW(reg, AR_PHY_TIMING3_DSC_EXP, exp);
1779 	reg = RW(reg, AR_PHY_TIMING3_DSC_MAN, man);
1780 	AR_WRITE(sc, AR_PHY_TIMING3, reg);
1781 
1782 	/* For Short GI, coeff is 9/10 that of normal coeff. */
1783 	coeff = (9 * coeff) / 10;
1784 	athn_get_delta_slope(coeff, &exp, &man);
1785 	DPRINTFN(DBG_RX, sc, "delta slope coeff exp=%u man=%u\n", exp, man);
1786 
1787 	reg = AR_READ(sc, AR_PHY_HALFGI);
1788 	reg = RW(reg, AR_PHY_HALFGI_DSC_EXP, exp);
1789 	reg = RW(reg, AR_PHY_HALFGI_DSC_MAN, man);
1790 	AR_WRITE(sc, AR_PHY_HALFGI, reg);
1791 	AR_WRITE_BARRIER(sc);
1792 }
1793 
1794 Static void
ar5008_enable_antenna_diversity(struct athn_softc * sc)1795 ar5008_enable_antenna_diversity(struct athn_softc *sc)
1796 {
1797 
1798 	AR_SETBITS(sc, AR_PHY_CCK_DETECT,
1799 	    AR_PHY_CCK_DETECT_BB_ENABLE_ANT_FAST_DIV);
1800 	AR_WRITE_BARRIER(sc);
1801 }
1802 
1803 Static void
ar5008_init_baseband(struct athn_softc * sc)1804 ar5008_init_baseband(struct athn_softc *sc)
1805 {
1806 	uint32_t synth_delay;
1807 
1808 	synth_delay = ar5008_synth_delay(sc);
1809 	/* Activate the PHY (includes baseband activate and synthesizer on). */
1810 	AR_WRITE(sc, AR_PHY_ACTIVE, AR_PHY_ACTIVE_EN);
1811 	AR_WRITE_BARRIER(sc);
1812 	DELAY(AR_BASE_PHY_ACTIVE_DELAY + synth_delay);
1813 }
1814 
1815 Static void
ar5008_disable_phy(struct athn_softc * sc)1816 ar5008_disable_phy(struct athn_softc *sc)
1817 {
1818 
1819 	AR_WRITE(sc, AR_PHY_ACTIVE, AR_PHY_ACTIVE_DIS);
1820 	AR_WRITE_BARRIER(sc);
1821 }
1822 
1823 Static void
ar5008_init_chains(struct athn_softc * sc)1824 ar5008_init_chains(struct athn_softc *sc)
1825 {
1826 
1827 	if (sc->sc_rxchainmask == 0x5 || sc->sc_txchainmask == 0x5)
1828 		AR_SETBITS(sc, AR_PHY_ANALOG_SWAP, AR_PHY_SWAP_ALT_CHAIN);
1829 
1830 	/* Setup chain masks. */
1831 	if (sc->sc_mac_ver <= AR_SREV_VERSION_9160 &&
1832 	    (sc->sc_rxchainmask == 0x3 || sc->sc_rxchainmask == 0x5)) {
1833 		AR_WRITE(sc, AR_PHY_RX_CHAINMASK,  0x7);
1834 		AR_WRITE(sc, AR_PHY_CAL_CHAINMASK, 0x7);
1835 	}
1836 	else {
1837 		AR_WRITE(sc, AR_PHY_RX_CHAINMASK,  sc->sc_rxchainmask);
1838 		AR_WRITE(sc, AR_PHY_CAL_CHAINMASK, sc->sc_rxchainmask);
1839 	}
1840 	AR_WRITE(sc, AR_SELFGEN_MASK, sc->sc_txchainmask);
1841 	AR_WRITE_BARRIER(sc);
1842 }
1843 
1844 Static void
ar5008_set_rxchains(struct athn_softc * sc)1845 ar5008_set_rxchains(struct athn_softc *sc)
1846 {
1847 
1848 	if (sc->sc_rxchainmask == 0x3 || sc->sc_rxchainmask == 0x5) {
1849 		AR_WRITE(sc, AR_PHY_RX_CHAINMASK,  sc->sc_rxchainmask);
1850 		AR_WRITE(sc, AR_PHY_CAL_CHAINMASK, sc->sc_rxchainmask);
1851 		AR_WRITE_BARRIER(sc);
1852 	}
1853 }
1854 
1855 #ifdef notused
1856 Static void
ar5008_read_noisefloor(struct athn_softc * sc,int16_t * nf,int16_t * nf_ext)1857 ar5008_read_noisefloor(struct athn_softc *sc, int16_t *nf, int16_t *nf_ext)
1858 {
1859 /* Sign-extends 9-bit value (assumes upper bits are zeroes). */
1860 #define SIGN_EXT(v)	(((v) ^ 0x100) - 0x100)
1861 	uint32_t reg;
1862 	int i;
1863 
1864 	for (i = 0; i < sc->sc_nrxchains; i++) {
1865 		reg = AR_READ(sc, AR_PHY_CCA(i));
1866 		if (AR_SREV_9280_10_OR_LATER(sc))
1867 			nf[i] = MS(reg, AR9280_PHY_MINCCA_PWR);
1868 		else
1869 			nf[i] = MS(reg, AR_PHY_MINCCA_PWR);
1870 		nf[i] = SIGN_EXT(nf[i]);
1871 
1872 		reg = AR_READ(sc, AR_PHY_EXT_CCA(i));
1873 		if (AR_SREV_9280_10_OR_LATER(sc))
1874 			nf_ext[i] = MS(reg, AR9280_PHY_EXT_MINCCA_PWR);
1875 		else
1876 			nf_ext[i] = MS(reg, AR_PHY_EXT_MINCCA_PWR);
1877 		nf_ext[i] = SIGN_EXT(nf_ext[i]);
1878 	}
1879 #undef SIGN_EXT
1880 }
1881 #endif /* notused */
1882 
1883 #ifdef notused
1884 Static void
ar5008_write_noisefloor(struct athn_softc * sc,int16_t * nf,int16_t * nf_ext)1885 ar5008_write_noisefloor(struct athn_softc *sc, int16_t *nf, int16_t *nf_ext)
1886 {
1887 	uint32_t reg;
1888 	int i;
1889 
1890 	for (i = 0; i < sc->sc_nrxchains; i++) {
1891 		reg = AR_READ(sc, AR_PHY_CCA(i));
1892 		reg = RW(reg, AR_PHY_MAXCCA_PWR, nf[i]);
1893 		AR_WRITE(sc, AR_PHY_CCA(i), reg);
1894 
1895 		reg = AR_READ(sc, AR_PHY_EXT_CCA(i));
1896 		reg = RW(reg, AR_PHY_EXT_MAXCCA_PWR, nf_ext[i]);
1897 		AR_WRITE(sc, AR_PHY_EXT_CCA(i), reg);
1898 	}
1899 	AR_WRITE_BARRIER(sc);
1900 }
1901 #endif /* notused */
1902 
1903 #ifdef notused
1904 Static void
ar5008_get_noisefloor(struct athn_softc * sc,struct ieee80211_channel * c)1905 ar5008_get_noisefloor(struct athn_softc *sc, struct ieee80211_channel *c)
1906 {
1907 	int16_t nf[AR_MAX_CHAINS], nf_ext[AR_MAX_CHAINS];
1908 	int i;
1909 
1910 	if (AR_READ(sc, AR_PHY_AGC_CONTROL) & AR_PHY_AGC_CONTROL_NF) {
1911 		/* Noisefloor calibration not finished. */
1912 		return;
1913 	}
1914 	/* Noisefloor calibration is finished. */
1915 	ar5008_read_noisefloor(sc, nf, nf_ext);
1916 
1917 	/* Update noisefloor history. */
1918 	for (i = 0; i < sc->sc_nrxchains; i++) {
1919 		sc->sc_nf_hist[sc->sc_nf_hist_cur].nf[i] = nf[i];
1920 		sc->sc_nf_hist[sc->sc_nf_hist_cur].nf_ext[i] = nf_ext[i];
1921 	}
1922 	if (++sc->sc_nf_hist_cur >= ATHN_NF_CAL_HIST_MAX)
1923 		sc->sc_nf_hist_cur = 0;
1924 }
1925 #endif /* notused */
1926 
1927 #ifdef notused
1928 Static void
ar5008_bb_load_noisefloor(struct athn_softc * sc)1929 ar5008_bb_load_noisefloor(struct athn_softc *sc)
1930 {
1931 	int16_t nf[AR_MAX_CHAINS], nf_ext[AR_MAX_CHAINS];
1932 	int i, ntries;
1933 
1934 	/* Write filtered noisefloor values. */
1935 	for (i = 0; i < sc->sc_nrxchains; i++) {
1936 		nf[i] = sc->sc_nf_priv[i] * 2;
1937 		nf_ext[i] = sc->sc_nf_ext_priv[i] * 2;
1938 	}
1939 	ar5008_write_noisefloor(sc, nf, nf_ext);
1940 
1941 	/* Load filtered noisefloor values into baseband. */
1942 	AR_CLRBITS(sc, AR_PHY_AGC_CONTROL, AR_PHY_AGC_CONTROL_ENABLE_NF);
1943 	AR_CLRBITS(sc, AR_PHY_AGC_CONTROL, AR_PHY_AGC_CONTROL_NO_UPDATE_NF);
1944 	AR_SETBITS(sc, AR_PHY_AGC_CONTROL, AR_PHY_AGC_CONTROL_NF);
1945 	/* Wait for load to complete. */
1946 	for (ntries = 0; ntries < 1000; ntries++) {
1947 		if (!(AR_READ(sc, AR_PHY_AGC_CONTROL) & AR_PHY_AGC_CONTROL_NF))
1948 			break;
1949 		DELAY(50);
1950 	}
1951 	if (ntries == 1000) {
1952 		DPRINTFN(DBG_RF, sc, "failed to load noisefloor values\n");
1953 		return;
1954 	}
1955 
1956 	/* Restore noisefloor values to initial (max) values. */
1957 	for (i = 0; i < AR_MAX_CHAINS; i++)
1958 		nf[i] = nf_ext[i] = -50 * 2;
1959 	ar5008_write_noisefloor(sc, nf, nf_ext);
1960 }
1961 #endif /* notused */
1962 
1963 #ifdef notused
1964 Static void
ar5008_noisefloor_calib(struct athn_softc * sc)1965 ar5008_noisefloor_calib(struct athn_softc *sc)
1966 {
1967 
1968 	AR_SETBITS(sc, AR_PHY_AGC_CONTROL, AR_PHY_AGC_CONTROL_ENABLE_NF);
1969 	AR_SETBITS(sc, AR_PHY_AGC_CONTROL, AR_PHY_AGC_CONTROL_NO_UPDATE_NF);
1970 	AR_SETBITS(sc, AR_PHY_AGC_CONTROL, AR_PHY_AGC_CONTROL_NF);
1971 	AR_WRITE_BARRIER(sc);
1972 }
1973 #endif /* notused */
1974 
1975 Static void
ar5008_do_noisefloor_calib(struct athn_softc * sc)1976 ar5008_do_noisefloor_calib(struct athn_softc *sc)
1977 {
1978 
1979 	AR_SETBITS(sc, AR_PHY_AGC_CONTROL, AR_PHY_AGC_CONTROL_NF);
1980 	AR_WRITE_BARRIER(sc);
1981 }
1982 
1983 Static void
ar5008_do_calib(struct athn_softc * sc)1984 ar5008_do_calib(struct athn_softc *sc)
1985 {
1986 	uint32_t mode, reg;
1987 	int log;
1988 
1989 	reg = AR_READ(sc, AR_PHY_TIMING_CTRL4_0);
1990 	log = AR_SREV_9280_10_OR_LATER(sc) ? 10 : 2;
1991 	reg = RW(reg, AR_PHY_TIMING_CTRL4_IQCAL_LOG_COUNT_MAX, log);
1992 	AR_WRITE(sc, AR_PHY_TIMING_CTRL4_0, reg);
1993 
1994 	if (sc->sc_cur_calib_mask & ATHN_CAL_ADC_GAIN)
1995 		mode = AR_PHY_CALMODE_ADC_GAIN;
1996 	else if (sc->sc_cur_calib_mask & ATHN_CAL_ADC_DC)
1997 		mode = AR_PHY_CALMODE_ADC_DC_PER;
1998 	else	/* ATHN_CAL_IQ */
1999 		mode = AR_PHY_CALMODE_IQ;
2000 	AR_WRITE(sc, AR_PHY_CALMODE, mode);
2001 
2002 	DPRINTFN(DBG_RF, sc, "starting calibration mode=0x%x\n", mode);
2003 	AR_SETBITS(sc, AR_PHY_TIMING_CTRL4_0, AR_PHY_TIMING_CTRL4_DO_CAL);
2004 	AR_WRITE_BARRIER(sc);
2005 }
2006 
2007 Static void
ar5008_next_calib(struct athn_softc * sc)2008 ar5008_next_calib(struct athn_softc *sc)
2009 {
2010 
2011 	/* Check if we have any calibration in progress. */
2012 	if (sc->sc_cur_calib_mask != 0) {
2013 		if (!(AR_READ(sc, AR_PHY_TIMING_CTRL4_0) &
2014 		    AR_PHY_TIMING_CTRL4_DO_CAL)) {
2015 			/* Calibration completed for current sample. */
2016 			if (sc->sc_cur_calib_mask & ATHN_CAL_ADC_GAIN)
2017 				ar5008_calib_adc_gain(sc);
2018 			else if (sc->sc_cur_calib_mask & ATHN_CAL_ADC_DC)
2019 				ar5008_calib_adc_dc_off(sc);
2020 			else	/* ATHN_CAL_IQ */
2021 				ar5008_calib_iq(sc);
2022 		}
2023 	}
2024 }
2025 
2026 Static void
ar5008_calib_iq(struct athn_softc * sc)2027 ar5008_calib_iq(struct athn_softc *sc)
2028 {
2029 	struct athn_iq_cal *cal;
2030 	uint32_t reg, i_coff_denom, q_coff_denom;
2031 	int32_t i_coff, q_coff;
2032 	int i, iq_corr_neg;
2033 
2034 	for (i = 0; i < AR_MAX_CHAINS; i++) {
2035 		cal = &sc->sc_calib.iq[i];
2036 
2037 		/* Accumulate IQ calibration measures (clear on read). */
2038 		cal->pwr_meas_i += AR_READ(sc, AR_PHY_CAL_MEAS_0(i));
2039 		cal->pwr_meas_q += AR_READ(sc, AR_PHY_CAL_MEAS_1(i));
2040 		cal->iq_corr_meas +=
2041 		    (int32_t)AR_READ(sc, AR_PHY_CAL_MEAS_2(i));
2042 	}
2043 	if (!AR_SREV_9280_10_OR_LATER(sc) &&
2044 	    ++sc->sc_calib.nsamples < AR_CAL_SAMPLES) {
2045 		/* Not enough samples accumulated, continue. */
2046 		ar5008_do_calib(sc);
2047 		return;
2048 	}
2049 
2050 	for (i = 0; i < sc->sc_nrxchains; i++) {
2051 		cal = &sc->sc_calib.iq[i];
2052 
2053 		if (cal->pwr_meas_q == 0)
2054 			continue;
2055 
2056 		if ((iq_corr_neg = cal->iq_corr_meas) < 0)
2057 			cal->iq_corr_meas = -cal->iq_corr_meas;
2058 
2059 		i_coff_denom =
2060 		    (cal->pwr_meas_i / 2 + cal->pwr_meas_q / 2) / 128;
2061 		q_coff_denom = cal->pwr_meas_q / 64;
2062 
2063 		if (i_coff_denom == 0 || q_coff_denom == 0)
2064 			continue;	/* Prevents division by zero. */
2065 
2066 		i_coff = cal->iq_corr_meas / i_coff_denom;
2067 		q_coff = (cal->pwr_meas_i / q_coff_denom) - 64;
2068 
2069 		/* Negate i_coff if iq_corr_meas is positive. */
2070 		if (!iq_corr_neg)
2071 			i_coff = 0x40 - (i_coff & 0x3f);
2072 		if (q_coff > 15)
2073 			q_coff = 15;
2074 		else if (q_coff <= -16)
2075 			q_coff = -16;	/* XXX Linux has a bug here? */
2076 
2077 		DPRINTFN(DBG_RF, sc, "IQ calibration for chain %d\n", i);
2078 		reg = AR_READ(sc, AR_PHY_TIMING_CTRL4(i));
2079 		reg = RW(reg, AR_PHY_TIMING_CTRL4_IQCORR_Q_I_COFF, i_coff);
2080 		reg = RW(reg, AR_PHY_TIMING_CTRL4_IQCORR_Q_Q_COFF, q_coff);
2081 		AR_WRITE(sc, AR_PHY_TIMING_CTRL4(i), reg);
2082 	}
2083 
2084 	/* Apply new settings. */
2085 	AR_SETBITS(sc, AR_PHY_TIMING_CTRL4_0,
2086 	    AR_PHY_TIMING_CTRL4_IQCORR_ENABLE);
2087 	AR_WRITE_BARRIER(sc);
2088 
2089 	/* IQ calibration done. */
2090 	sc->sc_cur_calib_mask &= ~ATHN_CAL_IQ;
2091 	memset(&sc->sc_calib, 0, sizeof(sc->sc_calib));
2092 }
2093 
2094 Static void
ar5008_calib_adc_gain(struct athn_softc * sc)2095 ar5008_calib_adc_gain(struct athn_softc *sc)
2096 {
2097 	struct athn_adc_cal *cal;
2098 	uint32_t reg, gain_mismatch_i, gain_mismatch_q;
2099 	int i;
2100 
2101 	for (i = 0; i < AR_MAX_CHAINS; i++) {
2102 		cal = &sc->sc_calib.adc_gain[i];
2103 
2104 		/* Accumulate ADC gain measures (clear on read). */
2105 		cal->pwr_meas_odd_i  += AR_READ(sc, AR_PHY_CAL_MEAS_0(i));
2106 		cal->pwr_meas_even_i += AR_READ(sc, AR_PHY_CAL_MEAS_1(i));
2107 		cal->pwr_meas_odd_q  += AR_READ(sc, AR_PHY_CAL_MEAS_2(i));
2108 		cal->pwr_meas_even_q += AR_READ(sc, AR_PHY_CAL_MEAS_3(i));
2109 	}
2110 	if (!AR_SREV_9280_10_OR_LATER(sc) &&
2111 	    ++sc->sc_calib.nsamples < AR_CAL_SAMPLES) {
2112 		/* Not enough samples accumulated, continue. */
2113 		ar5008_do_calib(sc);
2114 		return;
2115 	}
2116 
2117 	for (i = 0; i < sc->sc_nrxchains; i++) {
2118 		cal = &sc->sc_calib.adc_gain[i];
2119 
2120 		if (cal->pwr_meas_odd_i == 0 || cal->pwr_meas_even_q == 0)
2121 			continue;	/* Prevents division by zero. */
2122 
2123 		gain_mismatch_i =
2124 		    (cal->pwr_meas_even_i * 32) / cal->pwr_meas_odd_i;
2125 		gain_mismatch_q =
2126 		    (cal->pwr_meas_odd_q * 32) / cal->pwr_meas_even_q;
2127 
2128 		DPRINTFN(DBG_RF, sc, "ADC gain calibration for chain %d\n", i);
2129 		reg = AR_READ(sc, AR_PHY_NEW_ADC_DC_GAIN_CORR(i));
2130 		reg = RW(reg, AR_PHY_NEW_ADC_DC_GAIN_IGAIN, gain_mismatch_i);
2131 		reg = RW(reg, AR_PHY_NEW_ADC_DC_GAIN_QGAIN, gain_mismatch_q);
2132 		AR_WRITE(sc, AR_PHY_NEW_ADC_DC_GAIN_CORR(i), reg);
2133 	}
2134 
2135 	/* Apply new settings. */
2136 	AR_SETBITS(sc, AR_PHY_NEW_ADC_DC_GAIN_CORR(0),
2137 	    AR_PHY_NEW_ADC_GAIN_CORR_ENABLE);
2138 	AR_WRITE_BARRIER(sc);
2139 
2140 	/* ADC gain calibration done. */
2141 	sc->sc_cur_calib_mask &= ~ATHN_CAL_ADC_GAIN;
2142 	memset(&sc->sc_calib, 0, sizeof(sc->sc_calib));
2143 }
2144 
2145 Static void
ar5008_calib_adc_dc_off(struct athn_softc * sc)2146 ar5008_calib_adc_dc_off(struct athn_softc *sc)
2147 {
2148 	struct athn_adc_cal *cal;
2149 	int32_t dc_offset_mismatch_i, dc_offset_mismatch_q;
2150 	uint32_t reg;
2151 	int count, i;
2152 
2153 	for (i = 0; i < AR_MAX_CHAINS; i++) {
2154 		cal = &sc->sc_calib.adc_dc_offset[i];
2155 
2156 		/* Accumulate ADC DC offset measures (clear on read). */
2157 		cal->pwr_meas_odd_i  += AR_READ(sc, AR_PHY_CAL_MEAS_0(i));
2158 		cal->pwr_meas_even_i += AR_READ(sc, AR_PHY_CAL_MEAS_1(i));
2159 		cal->pwr_meas_odd_q  += AR_READ(sc, AR_PHY_CAL_MEAS_2(i));
2160 		cal->pwr_meas_even_q += AR_READ(sc, AR_PHY_CAL_MEAS_3(i));
2161 	}
2162 	if (!AR_SREV_9280_10_OR_LATER(sc) &&
2163 	    ++sc->sc_calib.nsamples < AR_CAL_SAMPLES) {
2164 		/* Not enough samples accumulated, continue. */
2165 		ar5008_do_calib(sc);
2166 		return;
2167 	}
2168 
2169 	if (AR_SREV_9280_10_OR_LATER(sc))
2170 		count = (1 << (10 + 5));
2171 	else
2172 		count = (1 << ( 2 + 5)) * AR_CAL_SAMPLES;
2173 	for (i = 0; i < sc->sc_nrxchains; i++) {
2174 		cal = &sc->sc_calib.adc_dc_offset[i];
2175 
2176 		dc_offset_mismatch_i =
2177 		    (cal->pwr_meas_even_i - cal->pwr_meas_odd_i * 2) / count;
2178 		dc_offset_mismatch_q =
2179 		    (cal->pwr_meas_odd_q - cal->pwr_meas_even_q * 2) / count;
2180 
2181 		DPRINTFN(DBG_RF, sc, "ADC DC offset calibration for chain %d\n", i);
2182 		reg = AR_READ(sc, AR_PHY_NEW_ADC_DC_GAIN_CORR(i));
2183 		reg = RW(reg, AR_PHY_NEW_ADC_DC_GAIN_QDC,
2184 		    dc_offset_mismatch_q);
2185 		reg = RW(reg, AR_PHY_NEW_ADC_DC_GAIN_IDC,
2186 		    dc_offset_mismatch_i);
2187 		AR_WRITE(sc, AR_PHY_NEW_ADC_DC_GAIN_CORR(i), reg);
2188 	}
2189 
2190 	/* Apply new settings. */
2191 	AR_SETBITS(sc, AR_PHY_NEW_ADC_DC_GAIN_CORR(0),
2192 	    AR_PHY_NEW_ADC_DC_OFFSET_CORR_ENABLE);
2193 	AR_WRITE_BARRIER(sc);
2194 
2195 	/* ADC DC offset calibration done. */
2196 	sc->sc_cur_calib_mask &= ~ATHN_CAL_ADC_DC;
2197 	memset(&sc->sc_calib, 0, sizeof(sc->sc_calib));
2198 }
2199 
2200 PUBLIC void
ar5008_write_txpower(struct athn_softc * sc,int16_t power[ATHN_POWER_COUNT])2201 ar5008_write_txpower(struct athn_softc *sc, int16_t power[ATHN_POWER_COUNT])
2202 {
2203 
2204 	AR_WRITE(sc, AR_PHY_POWER_TX_RATE1,
2205 	    (power[ATHN_POWER_OFDM18  ] & 0x3f) << 24 |
2206 	    (power[ATHN_POWER_OFDM12  ] & 0x3f) << 16 |
2207 	    (power[ATHN_POWER_OFDM9   ] & 0x3f) <<  8 |
2208 	    (power[ATHN_POWER_OFDM6   ] & 0x3f));
2209 	AR_WRITE(sc, AR_PHY_POWER_TX_RATE2,
2210 	    (power[ATHN_POWER_OFDM54  ] & 0x3f) << 24 |
2211 	    (power[ATHN_POWER_OFDM48  ] & 0x3f) << 16 |
2212 	    (power[ATHN_POWER_OFDM36  ] & 0x3f) <<  8 |
2213 	    (power[ATHN_POWER_OFDM24  ] & 0x3f));
2214 	AR_WRITE(sc, AR_PHY_POWER_TX_RATE3,
2215 	    (power[ATHN_POWER_CCK2_SP ] & 0x3f) << 24 |
2216 	    (power[ATHN_POWER_CCK2_LP ] & 0x3f) << 16 |
2217 	    (power[ATHN_POWER_XR      ] & 0x3f) <<  8 |
2218 	    (power[ATHN_POWER_CCK1_LP ] & 0x3f));
2219 	AR_WRITE(sc, AR_PHY_POWER_TX_RATE4,
2220 	    (power[ATHN_POWER_CCK11_SP] & 0x3f) << 24 |
2221 	    (power[ATHN_POWER_CCK11_LP] & 0x3f) << 16 |
2222 	    (power[ATHN_POWER_CCK55_SP] & 0x3f) <<  8 |
2223 	    (power[ATHN_POWER_CCK55_LP] & 0x3f));
2224 #ifndef IEEE80211_NO_HT
2225 	AR_WRITE(sc, AR_PHY_POWER_TX_RATE5,
2226 	    (power[ATHN_POWER_HT20(3) ] & 0x3f) << 24 |
2227 	    (power[ATHN_POWER_HT20(2) ] & 0x3f) << 16 |
2228 	    (power[ATHN_POWER_HT20(1) ] & 0x3f) <<  8 |
2229 	    (power[ATHN_POWER_HT20(0) ] & 0x3f));
2230 	AR_WRITE(sc, AR_PHY_POWER_TX_RATE6,
2231 	    (power[ATHN_POWER_HT20(7) ] & 0x3f) << 24 |
2232 	    (power[ATHN_POWER_HT20(6) ] & 0x3f) << 16 |
2233 	    (power[ATHN_POWER_HT20(5) ] & 0x3f) <<  8 |
2234 	    (power[ATHN_POWER_HT20(4) ] & 0x3f));
2235 	AR_WRITE(sc, AR_PHY_POWER_TX_RATE7,
2236 	    (power[ATHN_POWER_HT40(3) ] & 0x3f) << 24 |
2237 	    (power[ATHN_POWER_HT40(2) ] & 0x3f) << 16 |
2238 	    (power[ATHN_POWER_HT40(1) ] & 0x3f) <<  8 |
2239 	    (power[ATHN_POWER_HT40(0) ] & 0x3f));
2240 	AR_WRITE(sc, AR_PHY_POWER_TX_RATE8,
2241 	    (power[ATHN_POWER_HT40(7) ] & 0x3f) << 24 |
2242 	    (power[ATHN_POWER_HT40(6) ] & 0x3f) << 16 |
2243 	    (power[ATHN_POWER_HT40(5) ] & 0x3f) <<  8 |
2244 	    (power[ATHN_POWER_HT40(4) ] & 0x3f));
2245 	AR_WRITE(sc, AR_PHY_POWER_TX_RATE9,
2246 	    (power[ATHN_POWER_OFDM_EXT] & 0x3f) << 24 |
2247 	    (power[ATHN_POWER_CCK_EXT ] & 0x3f) << 16 |
2248 	    (power[ATHN_POWER_OFDM_DUP] & 0x3f) <<  8 |
2249 	    (power[ATHN_POWER_CCK_DUP ] & 0x3f));
2250 #endif
2251 	AR_WRITE_BARRIER(sc);
2252 }
2253 
2254 PUBLIC void
ar5008_set_viterbi_mask(struct athn_softc * sc,int bin)2255 ar5008_set_viterbi_mask(struct athn_softc *sc, int bin)
2256 {
2257 	uint32_t mask[4], reg;
2258 	uint8_t m[62], p[62];	/* XXX use bit arrays? */
2259 	int i, bit, cur;
2260 
2261 	/* Compute pilot mask. */
2262 	cur = -6000;
2263 	for (i = 0; i < 4; i++) {
2264 		mask[i] = 0;
2265 		for (bit = 0; bit < 30; bit++) {
2266 			if (abs(cur - bin) < 100)
2267 				mask[i] |= 1 << bit;
2268 			cur += 100;
2269 		}
2270 		if (cur == 0)	/* Skip entry "0". */
2271 			cur = 100;
2272 	}
2273 	/* Write entries from -6000 to -3100. */
2274 	AR_WRITE(sc, AR_PHY_TIMING7, mask[0]);
2275 	AR_WRITE(sc, AR_PHY_TIMING9, mask[0]);
2276 	/* Write entries from -3000 to -100. */
2277 	AR_WRITE(sc, AR_PHY_TIMING8, mask[1]);
2278 	AR_WRITE(sc, AR_PHY_TIMING10, mask[1]);
2279 	/* Write entries from 100 to 3000. */
2280 	AR_WRITE(sc, AR_PHY_PILOT_MASK_01_30, mask[2]);
2281 	AR_WRITE(sc, AR_PHY_CHANNEL_MASK_01_30, mask[2]);
2282 	/* Write entries from 3100 to 6000. */
2283 	AR_WRITE(sc, AR_PHY_PILOT_MASK_31_60, mask[3]);
2284 	AR_WRITE(sc, AR_PHY_CHANNEL_MASK_31_60, mask[3]);
2285 
2286 	/* Compute viterbi mask. */
2287 	for (cur = 6100; cur >= 0; cur -= 100)
2288 		p[+cur / 100] = abs(cur - bin) < 75;
2289 	for (cur = 0; cur >= -6100; cur -= 100)
2290 		m[-cur / 100] = abs(cur - bin) < 75;
2291 
2292 	/* Write viterbi mask (XXX needs to be reworked). */
2293 	reg =
2294 	    m[46] << 30 | m[47] << 28 | m[48] << 26 | m[49] << 24 |
2295 	    m[50] << 22 | m[51] << 20 | m[52] << 18 | m[53] << 16 |
2296 	    m[54] << 14 | m[55] << 12 | m[56] << 10 | m[57] <<  8 |
2297 	    m[58] <<  6 | m[59] <<  4 | m[60] <<  2 | m[61] <<  0;
2298 	AR_WRITE(sc, AR_PHY_BIN_MASK_1, reg);
2299 	AR_WRITE(sc, AR_PHY_VIT_MASK2_M_46_61, reg);
2300 
2301 	/* XXX m[48] should be m[38] ? */
2302 	reg =             m[31] << 28 | m[32] << 26 | m[33] << 24 |
2303 	    m[34] << 22 | m[35] << 20 | m[36] << 18 | m[37] << 16 |
2304 	    m[48] << 14 | m[39] << 12 | m[40] << 10 | m[41] <<  8 |
2305 	    m[42] <<  6 | m[43] <<  4 | m[44] <<  2 | m[45] <<  0;
2306 	AR_WRITE(sc, AR_PHY_BIN_MASK_2, reg);
2307 	AR_WRITE(sc, AR_PHY_VIT_MASK2_M_31_45, reg);
2308 
2309 	/* XXX This one is weird too. */
2310 	reg =
2311 	    m[16] << 30 | m[16] << 28 | m[18] << 26 | m[18] << 24 |
2312 	    m[20] << 22 | m[20] << 20 | m[22] << 18 | m[22] << 16 |
2313 	    m[24] << 14 | m[24] << 12 | m[25] << 10 | m[26] <<  8 |
2314 	    m[27] <<  6 | m[28] <<  4 | m[29] <<  2 | m[30] <<  0;
2315 	AR_WRITE(sc, AR_PHY_BIN_MASK_3, reg);
2316 	AR_WRITE(sc, AR_PHY_VIT_MASK2_M_16_30, reg);
2317 
2318 	reg =
2319 	    m[ 0] << 30 | m[ 1] << 28 | m[ 2] << 26 | m[ 3] << 24 |
2320 	    m[ 4] << 22 | m[ 5] << 20 | m[ 6] << 18 | m[ 7] << 16 |
2321 	    m[ 8] << 14 | m[ 9] << 12 | m[10] << 10 | m[11] <<  8 |
2322 	    m[12] <<  6 | m[13] <<  4 | m[14] <<  2 | m[15] <<  0;
2323 	AR_WRITE(sc, AR_PHY_MASK_CTL, reg);
2324 	AR_WRITE(sc, AR_PHY_VIT_MASK2_M_00_15, reg);
2325 
2326 	reg =             p[15] << 28 | p[14] << 26 | p[13] << 24 |
2327 	    p[12] << 22 | p[11] << 20 | p[10] << 18 | p[ 9] << 16 |
2328 	    p[ 8] << 14 | p[ 7] << 12 | p[ 6] << 10 | p[ 5] <<  8 |
2329 	    p[ 4] <<  6 | p[ 3] <<  4 | p[ 2] <<  2 | p[ 1] <<  0;
2330 	AR_WRITE(sc, AR_PHY_BIN_MASK2_1, reg);
2331 	AR_WRITE(sc, AR_PHY_VIT_MASK2_P_15_01, reg);
2332 
2333 	reg =             p[30] << 28 | p[29] << 26 | p[28] << 24 |
2334 	    p[27] << 22 | p[26] << 20 | p[25] << 18 | p[24] << 16 |
2335 	    p[23] << 14 | p[22] << 12 | p[21] << 10 | p[20] <<  8 |
2336 	    p[19] <<  6 | p[18] <<  4 | p[17] <<  2 | p[16] <<  0;
2337 	AR_WRITE(sc, AR_PHY_BIN_MASK2_2, reg);
2338 	AR_WRITE(sc, AR_PHY_VIT_MASK2_P_30_16, reg);
2339 
2340 	reg =             p[45] << 28 | p[44] << 26 | p[43] << 24 |
2341 	    p[42] << 22 | p[41] << 20 | p[40] << 18 | p[39] << 16 |
2342 	    p[38] << 14 | p[37] << 12 | p[36] << 10 | p[35] <<  8 |
2343 	    p[34] <<  6 | p[33] <<  4 | p[32] <<  2 | p[31] <<  0;
2344 	AR_WRITE(sc, AR_PHY_BIN_MASK2_3, reg);
2345 	AR_WRITE(sc, AR_PHY_VIT_MASK2_P_45_31, reg);
2346 
2347 	reg =
2348 	    p[61] << 30 | p[60] << 28 | p[59] << 26 | p[58] << 24 |
2349 	    p[57] << 22 | p[56] << 20 | p[55] << 18 | p[54] << 16 |
2350 	    p[53] << 14 | p[52] << 12 | p[51] << 10 | p[50] <<  8 |
2351 	    p[49] <<  6 | p[48] <<  4 | p[47] <<  2 | p[46] <<  0;
2352 	AR_WRITE(sc, AR_PHY_BIN_MASK2_4, reg);
2353 	AR_WRITE(sc, AR_PHY_VIT_MASK2_P_61_46, reg);
2354 	AR_WRITE_BARRIER(sc);
2355 }
2356 
2357 Static void
ar5008_hw_init(struct athn_softc * sc,struct ieee80211_channel * c,struct ieee80211_channel * extc)2358 ar5008_hw_init(struct athn_softc *sc, struct ieee80211_channel *c,
2359     struct ieee80211_channel *extc)
2360 {
2361 	struct athn_ops *ops = &sc->sc_ops;
2362 	const struct athn_ini *ini = sc->sc_ini;
2363 	const uint32_t *pvals;
2364 	uint32_t reg;
2365 	int i;
2366 
2367 	AR_WRITE(sc, AR_PHY(0), 0x00000007);
2368 	AR_WRITE(sc, AR_PHY_ADC_SERIAL_CTL, AR_PHY_SEL_EXTERNAL_RADIO);
2369 
2370 	if (!AR_SINGLE_CHIP(sc))
2371 		ar5416_reset_addac(sc, c);
2372 
2373 	AR_WRITE(sc, AR_PHY_ADC_SERIAL_CTL, AR_PHY_SEL_INTERNAL_ADDAC);
2374 
2375 	/* First initialization step (depends on channel band/bandwidth). */
2376 #ifndef IEEE80211_NO_HT
2377 	if (extc != NULL) {
2378 		if (IEEE80211_IS_CHAN_2GHZ(c))
2379 			pvals = ini->vals_2g40;
2380 		else
2381 			pvals = ini->vals_5g40;
2382 	}
2383 	else
2384 #endif
2385 	{
2386 		if (IEEE80211_IS_CHAN_2GHZ(c))
2387 			pvals = ini->vals_2g20;
2388 		else
2389 			pvals = ini->vals_5g20;
2390 	}
2391 	DPRINTFN(DBG_INIT, sc, "writing modal init vals\n");
2392 	for (i = 0; i < ini->nregs; i++) {
2393 		uint32_t val = pvals[i];
2394 
2395 		/* Fix AR_AN_TOP2 initialization value if required. */
2396 		if (ini->regs[i] == AR_AN_TOP2 &&
2397 		    (sc->sc_flags & ATHN_FLAG_AN_TOP2_FIXUP))
2398 			val &= ~AR_AN_TOP2_PWDCLKIND;
2399 		AR_WRITE(sc, ini->regs[i], val);
2400 		if (AR_IS_ANALOG_REG(ini->regs[i])) {
2401 			AR_WRITE_BARRIER(sc);
2402 			DELAY(100);
2403 		}
2404 		if ((i & 0x1f) == 0)
2405 			DELAY(1);
2406 	}
2407 	AR_WRITE_BARRIER(sc);
2408 
2409 	if (sc->sc_rx_gain != NULL)
2410 		ar9280_reset_rx_gain(sc, c);
2411 	if (sc->sc_tx_gain != NULL)
2412 		ar9280_reset_tx_gain(sc, c);
2413 
2414 	if (AR_SREV_9271_10(sc)) {
2415 		AR_WRITE(sc, AR_PHY(68), 0x30002311);
2416 		AR_WRITE(sc, AR_PHY_RF_CTL3, 0x0a020001);
2417 	}
2418 	AR_WRITE_BARRIER(sc);
2419 
2420 	/* Second initialization step (common to all channels). */
2421 	DPRINTFN(DBG_INIT, sc, "writing common init vals\n");
2422 	for (i = 0; i < ini->ncmregs; i++) {
2423 		AR_WRITE(sc, ini->cmregs[i], ini->cmvals[i]);
2424 		if (AR_IS_ANALOG_REG(ini->cmregs[i])) {
2425 			AR_WRITE_BARRIER(sc);
2426 			DELAY(100);
2427 		}
2428 		if ((i & 0x1f) == 0)
2429 			DELAY(1);
2430 	}
2431 	AR_WRITE_BARRIER(sc);
2432 
2433 	if (!AR_SINGLE_CHIP(sc))
2434 		ar5416_reset_bb_gain(sc, c);
2435 
2436 	if (IEEE80211_IS_CHAN_5GHZ(c) &&
2437 	    (sc->sc_flags & ATHN_FLAG_FAST_PLL_CLOCK)) {
2438 		/* Update modal values for fast PLL clock. */
2439 #ifndef IEEE80211_NO_HT
2440 		if (extc != NULL)
2441 			pvals = ini->fastvals_5g40;
2442 		else
2443 #endif
2444 			pvals = ini->fastvals_5g20;
2445 		DPRINTFN(DBG_INIT, sc, "writing fast pll clock init vals\n");
2446 		for (i = 0; i < ini->nfastregs; i++) {
2447 			AR_WRITE(sc, ini->fastregs[i], pvals[i]);
2448 			if (AR_IS_ANALOG_REG(ini->fastregs[i])) {
2449 				AR_WRITE_BARRIER(sc);
2450 				DELAY(100);
2451 			}
2452 			if ((i & 0x1f) == 0)
2453 				DELAY(1);
2454 		}
2455 	}
2456 
2457 	/*
2458 	 * Set the RX_ABORT and RX_DIS bits to prevent frames with corrupted
2459 	 * descriptor status.
2460 	 */
2461 	AR_SETBITS(sc, AR_DIAG_SW, AR_DIAG_RX_DIS | AR_DIAG_RX_ABORT);
2462 
2463 	/* Hardware workarounds for occasional Rx data corruption. */
2464 	if (AR_SREV_9280_10_OR_LATER(sc)) {
2465 		reg = AR_READ(sc, AR_PCU_MISC_MODE2);
2466 		if (!AR_SREV_9271(sc))
2467 			reg &= ~AR_PCU_MISC_MODE2_HWWAR1;
2468 		if (AR_SREV_9287_10_OR_LATER(sc))
2469 			reg &= ~AR_PCU_MISC_MODE2_HWWAR2;
2470 		AR_WRITE(sc, AR_PCU_MISC_MODE2, reg);
2471 
2472 	}
2473 	else if (AR_SREV_5416_20_OR_LATER(sc)) {
2474 		/* Disable baseband clock gating. */
2475 		AR_WRITE(sc, AR_PHY(651), 0x11);
2476 
2477 		if (AR_SREV_9160(sc)) {
2478 			/* Disable RIFS search to fix baseband hang. */
2479 			AR_CLRBITS(sc, AR_PHY_HEAVY_CLIP_FACTOR_RIFS,
2480 			    AR_PHY_RIFS_INIT_DELAY_M);
2481 		}
2482 	}
2483 	AR_WRITE_BARRIER(sc);
2484 
2485 	ar5008_set_phy(sc, c, extc);
2486 	ar5008_init_chains(sc);
2487 
2488 	if (sc->sc_flags & ATHN_FLAG_OLPC) {
2489 		sc->sc_olpc_ticks = ticks;
2490 		ops->olpc_init(sc);
2491 	}
2492 
2493 	ops->set_txpower(sc, c, extc);
2494 
2495 	if (!AR_SINGLE_CHIP(sc))
2496 		ar5416_rf_reset(sc, c);
2497 }
2498 
2499 Static uint8_t
ar5008_get_vpd(uint8_t pwr,const uint8_t * pwrPdg,const uint8_t * vpdPdg,int nicepts)2500 ar5008_get_vpd(uint8_t pwr, const uint8_t *pwrPdg, const uint8_t *vpdPdg,
2501     int nicepts)
2502 {
2503 	uint8_t vpd;
2504 	int i, lo, hi;
2505 
2506 	for (i = 0; i < nicepts; i++)
2507 		if (pwrPdg[i] > pwr)
2508 			break;
2509 	hi = i;
2510 	lo = hi - 1;
2511 	if (lo == -1)
2512 		lo = hi;
2513 	else if (hi == nicepts)
2514 		hi = lo;
2515 
2516 	vpd = athn_interpolate(pwr, pwrPdg[lo], vpdPdg[lo],
2517 	    pwrPdg[hi], vpdPdg[hi]);
2518 	return vpd;
2519 }
2520 
2521 PUBLIC void
ar5008_get_pdadcs(struct athn_softc * sc,uint8_t fbin,struct athn_pier * lopier,struct athn_pier * hipier,int nxpdgains,int nicepts,uint8_t overlap,uint8_t * boundaries,uint8_t * pdadcs)2522 ar5008_get_pdadcs(struct athn_softc *sc, uint8_t fbin,
2523     struct athn_pier *lopier, struct athn_pier *hipier, int nxpdgains,
2524     int nicepts, uint8_t overlap, uint8_t *boundaries, uint8_t *pdadcs)
2525 {
2526 #define DB(x)	((x) / 2)	/* Convert half dB to dB. */
2527 	uint8_t minpwr[AR_PD_GAINS_IN_MASK], maxpwr[AR_PD_GAINS_IN_MASK];
2528 	uint8_t vpd[AR_MAX_PWR_RANGE_IN_HALF_DB], pwr;
2529 	uint8_t lovpd, hivpd, boundary;
2530 	int16_t ss, delta, vpdstep, val;
2531 	int i, j, npdadcs, nvpds, maxidx, tgtidx;
2532 
2533 	/* Compute min and max power in half dB for each pdGain. */
2534 	for (i = 0; i < nxpdgains; i++) {
2535 		minpwr[i] = MAX(lopier->pwr[i][0], hipier->pwr[i][0]);
2536 		maxpwr[i] = MIN(lopier->pwr[i][nicepts - 1],
2537 		    hipier->pwr[i][nicepts - 1]);
2538 	}
2539 
2540 	/* Fill phase domain analog-to-digital converter (PDADC) table. */
2541 	npdadcs = 0;
2542 	for (i = 0; i < nxpdgains; i++) {
2543 		if (i != nxpdgains - 1)
2544 			boundaries[i] = DB(maxpwr[i] + minpwr[i + 1]) / 2;
2545 		else
2546 			boundaries[i] = DB(maxpwr[i]);
2547 		if (boundaries[i] > AR_MAX_RATE_POWER)
2548 			boundaries[i] = AR_MAX_RATE_POWER;
2549 
2550 		if (i == 0 && !AR_SREV_5416_20_OR_LATER(sc)) {
2551 			/* Fix the gain delta (AR5416 1.0 only). */
2552 			delta = boundaries[0] - 23;
2553 			boundaries[0] = 23;
2554 		}
2555 		else
2556 			delta = 0;
2557 
2558 		/* Find starting index for this pdGain. */
2559 		if (i != 0) {
2560 			ss = boundaries[i - 1] - DB(minpwr[i]) -
2561 			    overlap + 1 + delta;
2562 		}
2563 		else if (AR_SREV_9280_10_OR_LATER(sc))
2564 			ss = -DB(minpwr[i]);
2565 		else
2566 			ss = 0;
2567 
2568 		/* Compute Vpd table for this pdGain. */
2569 		nvpds = DB(maxpwr[i] - minpwr[i]) + 1;
2570 		memset(vpd, 0, sizeof(vpd));
2571 		pwr = minpwr[i];
2572 		for (j = 0; j < nvpds; j++) {
2573 			/* Get lower and higher Vpd. */
2574 			lovpd = ar5008_get_vpd(pwr, lopier->pwr[i],
2575 			    lopier->vpd[i], nicepts);
2576 			hivpd = ar5008_get_vpd(pwr, hipier->pwr[i],
2577 			    hipier->vpd[i], nicepts);
2578 
2579 			/* Interpolate the final Vpd. */
2580 			vpd[j] = athn_interpolate(fbin,
2581 			    lopier->fbin, lovpd, hipier->fbin, hivpd);
2582 
2583 			pwr += 2;	/* In half dB. */
2584 		}
2585 
2586 		/* Extrapolate data for ss < 0. */
2587 		if (vpd[1] > vpd[0])
2588 			vpdstep = vpd[1] - vpd[0];
2589 		else
2590 			vpdstep = 1;
2591 		while (ss < 0 && npdadcs < AR_NUM_PDADC_VALUES - 1) {
2592 			val = vpd[0] + ss * vpdstep;
2593 			pdadcs[npdadcs++] = MAX(val, 0);
2594 			ss++;
2595 		}
2596 
2597 		tgtidx = boundaries[i] + overlap - DB(minpwr[i]);
2598 		maxidx = MIN(tgtidx, nvpds);
2599 		while (ss < maxidx && npdadcs < AR_NUM_PDADC_VALUES - 1)
2600 			pdadcs[npdadcs++] = vpd[ss++];
2601 
2602 		if (tgtidx < maxidx)
2603 			continue;
2604 
2605 		/* Extrapolate data for maxidx <= ss <= tgtidx. */
2606 		if (vpd[nvpds - 1] > vpd[nvpds - 2])
2607 			vpdstep = vpd[nvpds - 1] - vpd[nvpds - 2];
2608 		else
2609 			vpdstep = 1;
2610 		while (ss <= tgtidx && npdadcs < AR_NUM_PDADC_VALUES - 1) {
2611 			val = vpd[nvpds - 1] + (ss - maxidx + 1) * vpdstep;
2612 			pdadcs[npdadcs++] = MIN(val, 255);
2613 			ss++;
2614 		}
2615 	}
2616 
2617 	/* Fill remaining PDADC and boundaries entries. */
2618 	if (AR_SREV_9285(sc))
2619 		boundary = AR9285_PD_GAIN_BOUNDARY_DEFAULT;
2620 	else	/* Fill with latest. */
2621 		boundary = boundaries[nxpdgains - 1];
2622 
2623 	for (; nxpdgains < AR_PD_GAINS_IN_MASK; nxpdgains++)
2624 		boundaries[nxpdgains] = boundary;
2625 
2626 	for (; npdadcs < AR_NUM_PDADC_VALUES; npdadcs++)
2627 		pdadcs[npdadcs] = pdadcs[npdadcs - 1];
2628 #undef DB
2629 }
2630 
2631 PUBLIC void
ar5008_get_lg_tpow(struct athn_softc * sc,struct ieee80211_channel * c,uint8_t ctl,const struct ar_cal_target_power_leg * tgt,int nchans,uint8_t tpow[4])2632 ar5008_get_lg_tpow(struct athn_softc *sc, struct ieee80211_channel *c,
2633     uint8_t ctl, const struct ar_cal_target_power_leg *tgt, int nchans,
2634     uint8_t tpow[4])
2635 {
2636 	uint8_t fbin;
2637 	int i, lo, hi;
2638 
2639 	/* Find interval (lower and upper indices). */
2640 	fbin = athn_chan2fbin(c);
2641 	for (i = 0; i < nchans; i++) {
2642 		if (tgt[i].bChannel == AR_BCHAN_UNUSED ||
2643 		    tgt[i].bChannel > fbin)
2644 			break;
2645 	}
2646 	hi = i;
2647 	lo = hi - 1;
2648 	if (lo == -1)
2649 		lo = hi;
2650 	else if (hi == nchans || tgt[hi].bChannel == AR_BCHAN_UNUSED)
2651 		hi = lo;
2652 
2653 	/* Interpolate values. */
2654 	for (i = 0; i < 4; i++) {
2655 		tpow[i] = athn_interpolate(fbin,
2656 		    tgt[lo].bChannel, tgt[lo].tPow2x[i],
2657 		    tgt[hi].bChannel, tgt[hi].tPow2x[i]);
2658 	}
2659 	/* XXX Apply conformance testing limit. */
2660 }
2661 
2662 #ifndef IEEE80211_NO_HT
2663 PUBLIC void
ar5008_get_ht_tpow(struct athn_softc * sc,struct ieee80211_channel * c,uint8_t ctl,const struct ar_cal_target_power_ht * tgt,int nchans,uint8_t tpow[8])2664 ar5008_get_ht_tpow(struct athn_softc *sc, struct ieee80211_channel *c,
2665     uint8_t ctl, const struct ar_cal_target_power_ht *tgt, int nchans,
2666     uint8_t tpow[8])
2667 {
2668 	uint8_t fbin;
2669 	int i, lo, hi;
2670 
2671 	/* Find interval (lower and upper indices). */
2672 	fbin = athn_chan2fbin(c);
2673 	for (i = 0; i < nchans; i++) {
2674 		if (tgt[i].bChannel == AR_BCHAN_UNUSED ||
2675 		    tgt[i].bChannel > fbin)
2676 			break;
2677 	}
2678 	hi = i;
2679 	lo = hi - 1;
2680 	if (lo == -1)
2681 		lo = hi;
2682 	else if (hi == nchans || tgt[hi].bChannel == AR_BCHAN_UNUSED)
2683 		hi = lo;
2684 
2685 	/* Interpolate values. */
2686 	for (i = 0; i < 8; i++) {
2687 		tpow[i] = athn_interpolate(fbin,
2688 		    tgt[lo].bChannel, tgt[lo].tPow2x[i],
2689 		    tgt[hi].bChannel, tgt[hi].tPow2x[i]);
2690 	}
2691 	/* XXX Apply conformance testing limit. */
2692 }
2693 #endif
2694 
2695 /*
2696  * Adaptive noise immunity.
2697  */
2698 Static void
ar5008_set_noise_immunity_level(struct athn_softc * sc,int level)2699 ar5008_set_noise_immunity_level(struct athn_softc *sc, int level)
2700 {
2701 	int high = level == 4;
2702 	uint32_t reg;
2703 
2704 	reg = AR_READ(sc, AR_PHY_DESIRED_SZ);
2705 	reg = RW(reg, AR_PHY_DESIRED_SZ_TOT_DES, high ? -62 : -55);
2706 	AR_WRITE(sc, AR_PHY_DESIRED_SZ, reg);
2707 
2708 	reg = AR_READ(sc, AR_PHY_AGC_CTL1);
2709 	reg = RW(reg, AR_PHY_AGC_CTL1_COARSE_LOW, high ? -70 : -64);
2710 	reg = RW(reg, AR_PHY_AGC_CTL1_COARSE_HIGH, high ? -12 : -14);
2711 	AR_WRITE(sc, AR_PHY_AGC_CTL1, reg);
2712 
2713 	reg = AR_READ(sc, AR_PHY_FIND_SIG);
2714 	reg = RW(reg, AR_PHY_FIND_SIG_FIRPWR, high ? -80 : -78);
2715 	AR_WRITE(sc, AR_PHY_FIND_SIG, reg);
2716 
2717 	AR_WRITE_BARRIER(sc);
2718 }
2719 
2720 Static void
ar5008_enable_ofdm_weak_signal(struct athn_softc * sc)2721 ar5008_enable_ofdm_weak_signal(struct athn_softc *sc)
2722 {
2723 	uint32_t reg;
2724 
2725 	reg = AR_READ(sc, AR_PHY_SFCORR_LOW);
2726 	reg = RW(reg, AR_PHY_SFCORR_LOW_M1_THRESH_LOW, 50);
2727 	reg = RW(reg, AR_PHY_SFCORR_LOW_M2_THRESH_LOW, 40);
2728 	reg = RW(reg, AR_PHY_SFCORR_LOW_M2COUNT_THR_LOW, 48);
2729 	AR_WRITE(sc, AR_PHY_SFCORR_LOW, reg);
2730 
2731 	reg = AR_READ(sc, AR_PHY_SFCORR);
2732 	reg = RW(reg, AR_PHY_SFCORR_M1_THRESH, 77);
2733 	reg = RW(reg, AR_PHY_SFCORR_M2_THRESH, 64);
2734 	reg = RW(reg, AR_PHY_SFCORR_M2COUNT_THR, 16);
2735 	AR_WRITE(sc, AR_PHY_SFCORR, reg);
2736 
2737 	reg = AR_READ(sc, AR_PHY_SFCORR_EXT);
2738 	reg = RW(reg, AR_PHY_SFCORR_EXT_M1_THRESH_LOW, 50);
2739 	reg = RW(reg, AR_PHY_SFCORR_EXT_M2_THRESH_LOW, 40);
2740 	reg = RW(reg, AR_PHY_SFCORR_EXT_M1_THRESH, 77);
2741 	reg = RW(reg, AR_PHY_SFCORR_EXT_M2_THRESH, 64);
2742 	AR_WRITE(sc, AR_PHY_SFCORR_EXT, reg);
2743 
2744 	AR_SETBITS(sc, AR_PHY_SFCORR_LOW,
2745 	    AR_PHY_SFCORR_LOW_USE_SELF_CORR_LOW);
2746 	AR_WRITE_BARRIER(sc);
2747 }
2748 
2749 Static void
ar5008_disable_ofdm_weak_signal(struct athn_softc * sc)2750 ar5008_disable_ofdm_weak_signal(struct athn_softc *sc)
2751 {
2752 	uint32_t reg;
2753 
2754 	reg = AR_READ(sc, AR_PHY_SFCORR_LOW);
2755 	reg = RW(reg, AR_PHY_SFCORR_LOW_M1_THRESH_LOW, 127);
2756 	reg = RW(reg, AR_PHY_SFCORR_LOW_M2_THRESH_LOW, 127);
2757 	reg = RW(reg, AR_PHY_SFCORR_LOW_M2COUNT_THR_LOW, 63);
2758 	AR_WRITE(sc, AR_PHY_SFCORR_LOW, reg);
2759 
2760 	reg = AR_READ(sc, AR_PHY_SFCORR);
2761 	reg = RW(reg, AR_PHY_SFCORR_M1_THRESH, 127);
2762 	reg = RW(reg, AR_PHY_SFCORR_M2_THRESH, 127);
2763 	reg = RW(reg, AR_PHY_SFCORR_M2COUNT_THR, 31);
2764 	AR_WRITE(sc, AR_PHY_SFCORR, reg);
2765 
2766 	reg = AR_READ(sc, AR_PHY_SFCORR_EXT);
2767 	reg = RW(reg, AR_PHY_SFCORR_EXT_M1_THRESH_LOW, 127);
2768 	reg = RW(reg, AR_PHY_SFCORR_EXT_M2_THRESH_LOW, 127);
2769 	reg = RW(reg, AR_PHY_SFCORR_EXT_M1_THRESH, 127);
2770 	reg = RW(reg, AR_PHY_SFCORR_EXT_M2_THRESH, 127);
2771 	AR_WRITE(sc, AR_PHY_SFCORR_EXT, reg);
2772 
2773 	AR_CLRBITS(sc, AR_PHY_SFCORR_LOW,
2774 	    AR_PHY_SFCORR_LOW_USE_SELF_CORR_LOW);
2775 	AR_WRITE_BARRIER(sc);
2776 }
2777 
2778 Static void
ar5008_set_cck_weak_signal(struct athn_softc * sc,int high)2779 ar5008_set_cck_weak_signal(struct athn_softc *sc, int high)
2780 {
2781 	uint32_t reg;
2782 
2783 	reg = AR_READ(sc, AR_PHY_CCK_DETECT);
2784 	reg = RW(reg, AR_PHY_CCK_DETECT_WEAK_SIG_THR_CCK, high ? 6 : 8);
2785 	AR_WRITE(sc, AR_PHY_CCK_DETECT, reg);
2786 	AR_WRITE_BARRIER(sc);
2787 }
2788 
2789 Static void
ar5008_set_firstep_level(struct athn_softc * sc,int level)2790 ar5008_set_firstep_level(struct athn_softc *sc, int level)
2791 {
2792 	uint32_t reg;
2793 
2794 	reg = AR_READ(sc, AR_PHY_FIND_SIG);
2795 	reg = RW(reg, AR_PHY_FIND_SIG_FIRSTEP, level * 4);
2796 	AR_WRITE(sc, AR_PHY_FIND_SIG, reg);
2797 	AR_WRITE_BARRIER(sc);
2798 }
2799 
2800 Static void
ar5008_set_spur_immunity_level(struct athn_softc * sc,int level)2801 ar5008_set_spur_immunity_level(struct athn_softc *sc, int level)
2802 {
2803 	uint32_t reg;
2804 
2805 	reg = AR_READ(sc, AR_PHY_TIMING5);
2806 	reg = RW(reg, AR_PHY_TIMING5_CYCPWR_THR1, (level + 1) * 2);
2807 	AR_WRITE(sc, AR_PHY_TIMING5, reg);
2808 	AR_WRITE_BARRIER(sc);
2809 }
2810