xref: /netbsd-src/sys/arch/arm/ti/omap2_nand.c (revision c7fb772b85b2b5d4cfb282f868f454b4701534fd)
1 /*	$NetBSD: omap2_nand.c,v 1.5 2021/08/07 16:18:46 thorpej Exp $	*/
2 
3 /*-
4  * Copyright (c) 2010 Department of Software Engineering,
5  *		      University of Szeged, Hungary
6  * Copyright (c) 2010 Adam Hoka <ahoka@NetBSD.org>
7  * All rights reserved.
8  *
9  * This code is derived from software contributed to The NetBSD Foundation
10  * by the Department of Software Engineering, University of Szeged, Hungary
11  *
12  * Redistribution and use in source and binary forms, with or without
13  * modification, are permitted provided that the following conditions
14  * are met:
15  * 1. Redistributions of source code must retain the above copyright
16  *    notice, this list of conditions and the following disclaimer.
17  * 2. Redistributions in binary form must reproduce the above copyright
18  *    notice, this list of conditions and the following disclaimer in the
19  *    documentation and/or other materials provided with the distribution.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
22  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
23  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
24  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
25  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
26  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
27  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
28  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
29  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31  * SUCH DAMAGE.
32  */
33 
34 /* Device driver for the NAND controller found in Texas Instruments OMAP2
35  * and later SOCs.
36  */
37 
38 #include <sys/cdefs.h>
39 __KERNEL_RCSID(0, "$NetBSD: omap2_nand.c,v 1.5 2021/08/07 16:18:46 thorpej Exp $");
40 
41 /* TODO move to opt_* */
42 #undef OMAP2_NAND_HARDWARE_ECC
43 
44 #include <sys/param.h>
45 #include <sys/systm.h>
46 #include <sys/cdefs.h>
47 #include <sys/device.h>
48 
49 #include <sys/bus.h>
50 
51 #include <arm/ti/omap2_gpmcreg.h>
52 
53 #include <dev/nand/nand.h>
54 #include <dev/nand/onfi.h>
55 
56 #include <dev/fdt/fdtvar.h>
57 
58 extern struct flash_interface nand_flash_if;
59 extern int flash_print(void *, const char *);
60 
61 /* GPMC_STATUS */
62 #define WAIT0		__BIT(8)	/* active low */
63 
64 /* GPMC_ECC_CONTROL */
65 #define ECCCLEAR	__BIT(8)
66 #define ECCPOINTER	__BITS(3,0)
67 
68 /* GPMC_ECC_CONFIG */
69 #define ECCALGORITHM	__BIT(16)
70 #define ECCCS		__BITS(3,1)
71 #define ECC16B		__BIT(7)
72 #define ECCENABLE	__BIT(0)
73 /* GPMC_ECC_SIZE_CONFIG */
74 #define ECCSIZE1	__BITS(29,22)
75 
76 /* GPMC_CONFIG1_i */
77 #define DEVICETYPE	__BITS(11,10)
78 #define DEVICESIZE	__BITS(13,12)
79 
80 #define MASKEDINT(mask, integer) ((integer) << (ffs(mask) - 1) & mask)
81 
82 /* NAND status register */
83 #define NAND_WP_BIT __BIT(4)
84 
85 static int	omap2_nand_match(device_t, cfdata_t, void *);
86 static void	omap2_nand_attach(device_t, device_t, void *);
87 
88 static void omap2_nand_command(device_t self, uint8_t command);
89 static void omap2_nand_address(device_t self, uint8_t address);
90 static void omap2_nand_busy(device_t self);
91 static void omap2_nand_read_1(device_t self, uint8_t *data);
92 static void omap2_nand_write_1(device_t self, uint8_t data);
93 static void omap2_nand_read_2(device_t self, uint16_t *data);
94 static void omap2_nand_write_2(device_t self, uint16_t data);
95 bool omap2_nand_isbusy(device_t self);
96 static void omap2_nand_read_buf_1(device_t self, void *buf, size_t len);
97 static void omap2_nand_read_buf_2(device_t self, void *buf, size_t len);
98 static void omap2_nand_write_buf_1(device_t self, const void *buf, size_t len);
99 static void omap2_nand_write_buf_2(device_t self, const void *buf, size_t len);
100 
101 #ifdef OMAP2_NAND_HARDWARE_ECC
102 static int omap2_nand_ecc_init(device_t self);
103 static int omap2_nand_ecc_prepare(device_t self, int mode);
104 static int omap2_nand_ecc_compute(device_t self, const uint8_t *data, uint8_t *ecc);
105 static int omap2_nand_ecc_correct(device_t self, uint8_t *data, const uint8_t *oldecc,
106     const uint8_t *calcecc);
107 #endif
108 
109 struct omap2_nand_softc {
110 	device_t sc_dev;
111 	device_t sc_nanddev;
112 
113 	int sc_cs;
114 	int sc_buswidth;	/* 0: 8bit, 1: 16bit */
115 
116 	struct nand_interface	sc_nand_if;
117 
118 	bus_space_tag_t		sc_iot;
119 	bus_space_handle_t	sc_ioh;
120 	bus_space_handle_t	sc_gpmc_ioh;
121 
122 	bus_size_t		sc_cmd_reg;
123 	bus_size_t		sc_addr_reg;
124 	bus_size_t		sc_data_reg;
125 };
126 
127 static const struct device_compatible_entry compat_data[] = {
128 	{ .compat = "ti,omap2-nand" },
129 	{ .compat = "ti,omap2-onenand" },
130 	DEVICE_COMPAT_EOL
131 };
132 
133 CFATTACH_DECL_NEW(omapnand, sizeof(struct omap2_nand_softc), omap2_nand_match,
134     omap2_nand_attach, NULL, NULL);
135 
136 static inline uint32_t
gpmc_register_read(struct omap2_nand_softc * sc,bus_size_t reg)137 gpmc_register_read(struct omap2_nand_softc *sc, bus_size_t reg)
138 {
139 	return bus_space_read_4(sc->sc_iot, sc->sc_gpmc_ioh, reg);
140 }
141 
142 static inline void
gpmc_register_write(struct omap2_nand_softc * sc,bus_size_t reg,const uint32_t data)143 gpmc_register_write(struct omap2_nand_softc *sc, bus_size_t reg, const uint32_t data)
144 {
145 	bus_space_write_4(sc->sc_iot, sc->sc_gpmc_ioh, reg, data);
146 }
147 
148 static void
omap2_nand_command(device_t self,uint8_t command)149 omap2_nand_command(device_t self, uint8_t command)
150 {
151 	struct omap2_nand_softc *sc = device_private(self);
152 
153 	bus_space_write_1(sc->sc_iot, sc->sc_ioh, sc->sc_cmd_reg, command);
154 };
155 
156 static void
omap2_nand_address(device_t self,uint8_t address)157 omap2_nand_address(device_t self, uint8_t address)
158 {
159 	struct omap2_nand_softc *sc = device_private(self);
160 
161 	bus_space_write_1(sc->sc_iot, sc->sc_ioh, sc->sc_addr_reg, address);
162 };
163 
164 bool
omap2_nand_isbusy(device_t self)165 omap2_nand_isbusy(device_t self)
166 {
167 	struct omap2_nand_softc *sc = device_private(self);
168 	uint8_t status;
169 
170 	DELAY(1);		/* just to be sure we are not early */
171 
172 	bus_space_write_1(sc->sc_iot, sc->sc_ioh,
173 	    sc->sc_cmd_reg, ONFI_READ_STATUS);
174 
175 	DELAY(1);
176 
177 	status = bus_space_read_1(sc->sc_iot,
178 	    sc->sc_ioh, sc->sc_data_reg);
179 
180 	return !(status & ONFI_STATUS_RDY);
181 };
182 
183 static int
omap2_nand_match(device_t parent,cfdata_t match,void * aux)184 omap2_nand_match(device_t parent, cfdata_t match, void *aux)
185 {
186 	struct fdt_attach_args * const faa = aux;
187 
188 	return of_compatible_match(faa->faa_phandle, compat_data);
189 }
190 
191 static void
omap2_nand_attach(device_t parent,device_t self,void * aux)192 omap2_nand_attach(device_t parent, device_t self, void *aux)
193 {
194 	struct omap2_nand_softc *sc = device_private(self);
195 	struct fdt_attach_args * const faa = aux;
196 	const int phandle = faa->faa_phandle;
197 	struct flash_attach_args flash;
198 	bus_addr_t addr, part_addr;
199 	bus_size_t size, part_size;
200 	const u_int *prop;
201 	uint32_t val;
202 	int len, child;
203 
204 	if (fdtbus_get_reg(OF_parent(phandle), 0, &addr, &size) != 0) {
205 		aprint_error(": couldn't get registers\n");
206 		return;
207 	}
208 
209 	sc->sc_iot = faa->faa_bst;
210 	sc->sc_dev = self;
211 
212 	prop = fdtbus_get_prop(phandle, "reg", &len);
213 	if (prop == NULL || len < 4) {
214 		aprint_error(": couldn't read reg property\n");
215 		return;
216 	}
217 
218 	sc->sc_cs = be32toh(prop[0]);
219 
220 	/* map i/o space */
221 	if (bus_space_map(sc->sc_iot, addr, size, 0, &sc->sc_gpmc_ioh) != 0) {
222 		aprint_error(": couldn't map registers\n");
223 		return;
224 	}
225 	if (bus_space_subregion(sc->sc_iot, sc->sc_gpmc_ioh, GPMC_CS_CONFIG(sc->sc_cs), 0x30, &sc->sc_ioh) != 0) {
226 		aprint_error(": couldn't map cs registers\n");
227 		return;
228 	}
229 
230 	aprint_naive("\n");
231 	aprint_normal(": CS%d\n", sc->sc_cs);
232 
233         sc->sc_cmd_reg = GPMC_NAND_COMMAND_0 - GPMC_CONFIG1_0;
234 	sc->sc_addr_reg = GPMC_NAND_ADDRESS_0 - GPMC_CONFIG1_0;
235 	sc->sc_data_reg = GPMC_NAND_DATA_0 - GPMC_CONFIG1_0;
236 
237 	/* turn off write protection if enabled */
238 	val = gpmc_register_read(sc, GPMC_CONFIG);
239 	val |= NAND_WP_BIT;
240 	gpmc_register_write(sc, GPMC_CONFIG, val);
241 
242 	/*
243 	 * do the reset dance for NAND
244 	 */
245 	bus_space_write_1(sc->sc_iot, sc->sc_ioh,
246 	    sc->sc_cmd_reg, ONFI_RESET);
247 
248 	omap2_nand_busy(self);
249 
250 	/* read GPMC_CONFIG1_i to get buswidth */
251 	val = bus_space_read_4(sc->sc_iot, sc->sc_ioh, GPMC_CONFIG1_i);
252 
253 	if ((val & DEVICESIZE) == MASKEDINT(DEVICESIZE, 0x01)) {
254 		/* 16bit */
255 		sc->sc_buswidth = 1;
256 	} else if ((val & DEVICESIZE) == MASKEDINT(DEVICESIZE, 0x00)) {
257 		/* 8bit */
258 		sc->sc_buswidth = 0;
259 	} else {
260 		panic("invalid buswidth reported by config1");
261 	}
262 
263 	nand_init_interface(&sc->sc_nand_if);
264 
265 	sc->sc_nand_if.command = &omap2_nand_command;
266 	sc->sc_nand_if.address = &omap2_nand_address;
267 	sc->sc_nand_if.read_buf_1 = &omap2_nand_read_buf_1;
268 	sc->sc_nand_if.read_buf_2 = &omap2_nand_read_buf_2;
269 	sc->sc_nand_if.read_1 = &omap2_nand_read_1;
270 	sc->sc_nand_if.read_2 = &omap2_nand_read_2;
271 	sc->sc_nand_if.write_buf_1 = &omap2_nand_write_buf_1;
272 	sc->sc_nand_if.write_buf_2 = &omap2_nand_write_buf_2;
273 	sc->sc_nand_if.write_1 = &omap2_nand_write_1;
274 	sc->sc_nand_if.write_2 = &omap2_nand_write_2;
275 	sc->sc_nand_if.busy = &omap2_nand_busy;
276 
277 #ifdef OMAP2_NAND_HARDWARE_ECC
278 	omap2_nand_ecc_init(self);
279 	sc->sc_nand_if.ecc_compute = &omap2_nand_ecc_compute;
280 	sc->sc_nand_if.ecc_correct = &omap2_nand_ecc_correct;
281 	sc->sc_nand_if.ecc_prepare = &omap2_nand_ecc_prepare;
282 	sc->sc_nand_if.ecc.necc_code_size = 3;
283 	sc->sc_nand_if.ecc.necc_block_size = 512;
284 	sc->sc_nand_if.ecc.necc_type = NAND_ECC_TYPE_HW;
285 #else
286 	sc->sc_nand_if.ecc.necc_code_size = 3;
287 	sc->sc_nand_if.ecc.necc_block_size = 256;
288 #endif	/* OMAP2_NAND_HARDWARE_ECC */
289 
290 	if (!pmf_device_register1(sc->sc_dev, NULL, NULL, NULL))
291 		aprint_error_dev(sc->sc_dev,
292 		    "couldn't establish power handler\n");
293 
294 	sc->sc_nanddev = nand_attach_mi(&sc->sc_nand_if, sc->sc_dev);
295 	if (sc->sc_nanddev == NULL)
296 		return;
297 
298 	for (child = OF_child(phandle); child; child = OF_peer(child)) {
299 		if (!fdtbus_status_okay(child))
300 			continue;
301 
302 		if (fdtbus_get_reg(child, 0, &part_addr, &part_size) != 0) {
303 			aprint_error_dev(self, "couldn't parse partition %s\n",
304 			    fdtbus_get_string(child, "name"));
305 			continue;
306 		}
307 
308 		memset(&flash, 0, sizeof(flash));
309 		flash.flash_if = &nand_flash_if;
310 		flash.partinfo.part_offset = part_addr;
311 		flash.partinfo.part_size = part_size;
312 		flash.partinfo.part_flags = 0;
313 		flash.partinfo.part_name = fdtbus_get_string(child, "label");
314 		if (flash.partinfo.part_name == NULL)
315 			flash.partinfo.part_name = fdtbus_get_string(child, "name");
316 
317 		config_found(sc->sc_nanddev, &flash, flash_print, CFARGS_NONE);
318 	}
319 }
320 
321 static void
omap2_nand_busy(device_t self)322 omap2_nand_busy(device_t self)
323 {
324 	struct omap2_nand_softc *sc = device_private(self);
325 
326 	while (!(gpmc_register_read(sc, GPMC_STATUS) & WAIT0)) {
327 		DELAY(1);
328 	}
329 }
330 
331 static void
omap2_nand_read_1(device_t self,uint8_t * data)332 omap2_nand_read_1(device_t self, uint8_t *data)
333 {
334 	struct omap2_nand_softc *sc = device_private(self);
335 
336 	*data = bus_space_read_1(sc->sc_iot, sc->sc_ioh, sc->sc_data_reg);
337 }
338 
339 static void
omap2_nand_write_1(device_t self,uint8_t data)340 omap2_nand_write_1(device_t self, uint8_t data)
341 {
342 	struct omap2_nand_softc *sc = device_private(self);
343 
344 	bus_space_write_1(sc->sc_iot, sc->sc_ioh, sc->sc_data_reg, data);
345 }
346 
347 static void
omap2_nand_read_2(device_t self,uint16_t * data)348 omap2_nand_read_2(device_t self, uint16_t *data)
349 {
350 	struct omap2_nand_softc *sc = device_private(self);
351 
352 	*data = bus_space_read_2(sc->sc_iot, sc->sc_ioh, sc->sc_data_reg);
353 }
354 
355 static void
omap2_nand_write_2(device_t self,uint16_t data)356 omap2_nand_write_2(device_t self, uint16_t data)
357 {
358 	struct omap2_nand_softc *sc = device_private(self);
359 
360 	bus_space_write_2(sc->sc_iot, sc->sc_ioh, sc->sc_data_reg, data);
361 }
362 
363 static void
omap2_nand_read_buf_1(device_t self,void * buf,size_t len)364 omap2_nand_read_buf_1(device_t self, void *buf, size_t len)
365 {
366 	struct omap2_nand_softc *sc = device_private(self);
367 
368 	KASSERT(buf != NULL);
369 	KASSERT(len >= 1);
370 
371 	bus_space_read_multi_1(sc->sc_iot, sc->sc_ioh,
372 	    sc->sc_data_reg, buf, len);
373 }
374 
375 static void
omap2_nand_read_buf_2(device_t self,void * buf,size_t len)376 omap2_nand_read_buf_2(device_t self, void *buf, size_t len)
377 {
378 	struct omap2_nand_softc *sc = device_private(self);
379 
380 	KASSERT(buf != NULL);
381 	KASSERT(len >= 2);
382 	KASSERT(!(len & 0x01));
383 
384 	bus_space_read_multi_2(sc->sc_iot, sc->sc_ioh,
385 	    sc->sc_data_reg, buf, len / 2);
386 }
387 
388 static void
omap2_nand_write_buf_1(device_t self,const void * buf,size_t len)389 omap2_nand_write_buf_1(device_t self, const void *buf, size_t len)
390 {
391 	struct omap2_nand_softc *sc = device_private(self);
392 
393 	KASSERT(buf != NULL);
394 	KASSERT(len >= 1);
395 
396 	bus_space_write_multi_1(sc->sc_iot, sc->sc_ioh,
397 	    sc->sc_data_reg, buf, len);
398 }
399 
400 static void
omap2_nand_write_buf_2(device_t self,const void * buf,size_t len)401 omap2_nand_write_buf_2(device_t self, const void *buf, size_t len)
402 {
403 	struct omap2_nand_softc *sc = device_private(self);
404 
405 	KASSERT(buf != NULL);
406 	KASSERT(len >= 2);
407 	KASSERT(!(len & 0x01));
408 
409 	bus_space_write_multi_2(sc->sc_iot, sc->sc_ioh,
410 	    sc->sc_data_reg, buf, len / 2);
411 }
412 
413 #ifdef OMAP2_NAND_HARDWARE_ECC
414 static uint32_t
convert_ecc(const uint8_t * ecc)415 convert_ecc(const uint8_t *ecc)
416 {
417 	return ecc[0] | (ecc[1] << 16) | ((ecc[2] & 0xf0) << 20) |
418 	    ((ecc[2] & 0x0f) << 8);
419 }
420 
421 static int
omap2_nand_ecc_init(device_t self)422 omap2_nand_ecc_init(device_t self)
423 {
424 	struct omap2_nand_softc *sc = device_private(self);
425 	uint32_t val;
426 
427 	val = gpmc_register_read(sc, GPMC_ECC_CONTROL);
428 	/* clear ecc, select ecc register 1 */
429 	val &= ~ECCPOINTER;
430 	val |= ECCCLEAR | MASKEDINT(ECCPOINTER, 1);
431 	gpmc_register_write(sc, GPMC_ECC_CONTROL, val);
432 
433 	/* XXX too many MAGIC */
434 	/* set ecc size to 512, set all regs to eccsize1*/
435 	val = gpmc_register_read(sc, GPMC_ECC_SIZE_CONFIG);
436 	val &= ~ECCSIZE1;
437 	val |= MASKEDINT(ECCSIZE1, 512) | 0x0f;
438 	gpmc_register_write(sc, GPMC_ECC_CONTROL, val);
439 
440 	return 0;
441 }
442 
443 static int
omap2_nand_ecc_compute(device_t self,const uint8_t * data,uint8_t * ecc)444 omap2_nand_ecc_compute(device_t self, const uint8_t *data, uint8_t *ecc)
445 {
446 	struct omap2_nand_softc *sc = device_private(self);
447 	uint32_t val;
448 
449 	/* read ecc result register */
450 	val = gpmc_register_read(sc, GPMC_ECC1_RESULT);
451 
452 	ecc[0] = val & 0xff;
453 	ecc[1] = (val >> 16) & 0xff;
454 	ecc[2] = ((val >> 8) & 0x0f) | ((val >> 20) & 0xf0);
455 
456 	/* disable ecc engine */
457 	val = gpmc_register_read(sc, GPMC_ECC_CONFIG);
458 	val &= ~ECCENABLE;
459 	gpmc_register_write(sc, GPMC_ECC_CONFIG, val);
460 
461 	return 0;
462 }
463 
464 static int
omap2_nand_ecc_prepare(device_t self,int mode)465 omap2_nand_ecc_prepare(device_t self, int mode)
466 {
467 	struct omap2_nand_softc *sc = device_private(self);
468 	uint32_t val;
469 
470 	/* same for read/write */
471 	switch (mode) {
472 	case NAND_ECC_READ:
473 	case NAND_ECC_WRITE:
474 		val = gpmc_register_read(sc, GPMC_ECC_CONTROL);
475 		/* clear ecc, select ecc register 1 */
476 		val &= ~ECCPOINTER;
477 		val |= ECCCLEAR | MASKEDINT(ECCPOINTER, 1);
478 		gpmc_register_write(sc, GPMC_ECC_CONTROL, val);
479 
480 		val = gpmc_register_read(sc, GPMC_ECC_CONFIG);
481 		val &= ~ECCCS;
482 		val |= ECCENABLE | MASKEDINT(ECCCS, sc->sc_cs);
483 		if (sc->sc_buswidth == 1)
484 			val |= ECC16B;
485 		else
486 			val &= ~ECC16B;
487 		gpmc_register_write(sc, GPMC_ECC_CONFIG, val);
488 
489 		break;
490 	default:
491 		aprint_error_dev(self, "invalid i/o mode for ecc prepare\n");
492 		return -1;
493 	}
494 
495 	return 0;
496 }
497 
498 static int
omap2_nand_ecc_correct(device_t self,uint8_t * data,const uint8_t * oldecc,const uint8_t * calcecc)499 omap2_nand_ecc_correct(device_t self, uint8_t *data, const uint8_t *oldecc,
500     const uint8_t *calcecc)
501 {
502 	uint32_t oecc, cecc, xor;
503 	uint16_t parity, offset;
504 	uint8_t bit;
505 
506 	oecc = convert_ecc(oldecc);
507 	cecc = convert_ecc(calcecc);
508 
509 	/* get the difference */
510 	xor = oecc ^ cecc;
511 
512 	/* the data was correct if all bits are zero */
513 	if (xor == 0x00)
514 		return NAND_ECC_OK;
515 
516 	switch (popcount32(xor)) {
517 	case 12:
518 		/* single byte error */
519 		parity = xor >> 16;
520 		bit = (parity & 0x07);
521 		offset = (parity >> 3) & 0x01ff;
522 		/* correct bit */
523 		data[offset] ^= (0x01 << bit);
524 		return NAND_ECC_CORRECTED;
525 	case 1:
526 		return NAND_ECC_INVALID;
527 	default:
528 		/* erased page! */
529 		if ((oecc == 0x0fff0fff) && (cecc == 0x00000000))
530 			return NAND_ECC_OK;
531 
532 		return NAND_ECC_TWOBIT;
533 	}
534 }
535 #endif /* !OMAP2_NAND_HARDWARE_ECC */
536