xref: /netbsd-src/sys/arch/arm/imx/if_enet.c (revision 90313c06e62e910bf0d1bb24faa9d17dcefd0ab6)
1 /*	$NetBSD: if_enet.c,v 1.37 2024/02/07 04:20:26 msaitoh Exp $	*/
2 
3 /*
4  * Copyright (c) 2014 Ryo Shimizu
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
17  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
18  * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
19  * DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT,
20  * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
21  * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
22  * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
24  * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
25  * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
26  * POSSIBILITY OF SUCH DAMAGE.
27  */
28 
29 /*
30  * i.MX6,7 10/100/1000-Mbps ethernet MAC (ENET)
31  */
32 
33 #include <sys/cdefs.h>
34 __KERNEL_RCSID(0, "$NetBSD: if_enet.c,v 1.37 2024/02/07 04:20:26 msaitoh Exp $");
35 
36 #include "vlan.h"
37 
38 #include <sys/param.h>
39 #include <sys/bus.h>
40 #include <sys/mbuf.h>
41 #include <sys/device.h>
42 #include <sys/sockio.h>
43 #include <sys/kernel.h>
44 #include <sys/rndsource.h>
45 
46 #include <lib/libkern/libkern.h>
47 
48 #include <net/if.h>
49 #include <net/if_dl.h>
50 #include <net/if_media.h>
51 #include <net/if_ether.h>
52 #include <net/bpf.h>
53 #include <net/if_vlanvar.h>
54 
55 #include <netinet/in.h>
56 #include <netinet/in_systm.h>
57 #include <netinet/ip.h>
58 
59 #include <dev/mii/mii.h>
60 #include <dev/mii/miivar.h>
61 
62 #include <arm/imx/if_enetreg.h>
63 #include <arm/imx/if_enetvar.h>
64 
65 #undef DEBUG_ENET
66 #undef ENET_EVENT_COUNTER
67 
68 #define ENET_TICK	hz
69 
70 #ifdef DEBUG_ENET
71 int enet_debug = 0;
72 # define DEVICE_DPRINTF(args...)	\
73 	do { if (enet_debug) device_printf(sc->sc_dev, args); } while (0)
74 #else
75 # define DEVICE_DPRINTF(args...)
76 #endif
77 
78 
79 #define RXDESC_MAXBUFSIZE	0x07f0
80 				/* ENET does not work greather than 0x0800... */
81 
82 #undef ENET_SUPPORT_JUMBO	/* JUMBO FRAME SUPPORT is unstable */
83 #ifdef ENET_SUPPORT_JUMBO
84 # define ENET_MAX_PKT_LEN	4034	/* MAX FIFO LEN */
85 #else
86 # define ENET_MAX_PKT_LEN	1522
87 #endif
88 #define ENET_DEFAULT_PKT_LEN	1522	/* including VLAN tag */
89 #define MTU2FRAMESIZE(n)	\
90 	((n) + ETHER_HDR_LEN + ETHER_CRC_LEN + ETHER_VLAN_ENCAP_LEN)
91 
92 
93 #define ENET_MAX_PKT_NSEGS	64
94 
95 #define ENET_TX_NEXTIDX(idx)	\
96 	(((idx) >= (ENET_TX_RING_CNT - 1)) ? 0 : ((idx) + 1))
97 #define ENET_RX_NEXTIDX(idx)	\
98 	(((idx) >= (ENET_RX_RING_CNT - 1)) ? 0 : ((idx) + 1))
99 
100 #define TXDESC_WRITEOUT(idx)					\
101 	bus_dmamap_sync(sc->sc_dmat, sc->sc_txdesc_dmamap,	\
102 	    sizeof(struct enet_txdesc) * (idx),			\
103 	    sizeof(struct enet_txdesc),				\
104 	    BUS_DMASYNC_PREWRITE)
105 
106 #define TXDESC_READIN(idx)					\
107 	bus_dmamap_sync(sc->sc_dmat, sc->sc_txdesc_dmamap,	\
108 	    sizeof(struct enet_txdesc) * (idx),			\
109 	    sizeof(struct enet_txdesc),				\
110 	    BUS_DMASYNC_PREREAD)
111 
112 #define RXDESC_WRITEOUT(idx)					\
113 	bus_dmamap_sync(sc->sc_dmat, sc->sc_rxdesc_dmamap,	\
114 	    sizeof(struct enet_rxdesc) * (idx),			\
115 	    sizeof(struct enet_rxdesc),				\
116 	    BUS_DMASYNC_PREWRITE)
117 
118 #define RXDESC_READIN(idx)					\
119 	bus_dmamap_sync(sc->sc_dmat, sc->sc_rxdesc_dmamap,	\
120 	    sizeof(struct enet_rxdesc) * (idx),			\
121 	    sizeof(struct enet_rxdesc),				\
122 	    BUS_DMASYNC_PREREAD)
123 
124 #define ENET_REG_READ(sc, reg)					\
125 	bus_space_read_4((sc)->sc_iot, (sc)->sc_ioh, reg)
126 
127 #define ENET_REG_WRITE(sc, reg, value)				\
128 	bus_space_write_4((sc)->sc_iot, (sc)->sc_ioh, reg, value)
129 
130 #ifdef ENET_EVENT_COUNTER
131 static void enet_attach_evcnt(struct enet_softc *);
132 static void enet_update_evcnt(struct enet_softc *);
133 #endif
134 
135 static void enet_tick(void *);
136 static int enet_tx_intr(void *);
137 static int enet_rx_intr(void *);
138 static void enet_rx_csum(struct enet_softc *, struct ifnet *, struct mbuf *,
139 			 int);
140 
141 static void enet_start(struct ifnet *);
142 static int enet_ifflags_cb(struct ethercom *);
143 static int enet_ioctl(struct ifnet *, u_long, void *);
144 static int enet_init(struct ifnet *);
145 static void enet_stop(struct ifnet *, int);
146 static void enet_watchdog(struct ifnet *);
147 static void enet_mediastatus(struct ifnet *, struct ifmediareq *);
148 
149 static int enet_miibus_readreg(device_t, int, int, uint16_t *);
150 static int enet_miibus_writereg(device_t, int, int, uint16_t);
151 static void enet_miibus_statchg(struct ifnet *);
152 
153 static void enet_gethwaddr(struct enet_softc *, uint8_t *);
154 static void enet_sethwaddr(struct enet_softc *, uint8_t *);
155 static void enet_setmulti(struct enet_softc *);
156 static int enet_encap_mbufalign(struct mbuf **);
157 static int enet_encap_txring(struct enet_softc *, struct mbuf **);
158 static int enet_init_regs(struct enet_softc *, int);
159 static int enet_alloc_ring(struct enet_softc *);
160 static void enet_init_txring(struct enet_softc *);
161 static int enet_init_rxring(struct enet_softc *);
162 static void enet_reset_rxdesc(struct enet_softc *, int);
163 static int enet_alloc_rxbuf(struct enet_softc *, int);
164 static void enet_drain_txbuf(struct enet_softc *);
165 static void enet_drain_rxbuf(struct enet_softc *);
166 static int enet_alloc_dma(struct enet_softc *, size_t, void **,
167 			  bus_dmamap_t *);
168 
169 int
enet_attach_common(device_t self)170 enet_attach_common(device_t self)
171 {
172 	struct enet_softc *sc = device_private(self);
173 	struct ifnet *ifp;
174 	struct mii_data * const mii = &sc->sc_mii;
175 
176 	/* allocate dma buffer */
177 	if (enet_alloc_ring(sc))
178 		return -1;
179 
180 #define IS_ENADDR_ZERO(enaddr)				\
181 	((enaddr[0] | enaddr[1] | enaddr[2] |		\
182 	 enaddr[3] | enaddr[4] | enaddr[5]) == 0)
183 
184 	if (IS_ENADDR_ZERO(sc->sc_enaddr)) {
185 		/* by any chance, mac-address is already set by bootloader? */
186 		enet_gethwaddr(sc, sc->sc_enaddr);
187 		if (IS_ENADDR_ZERO(sc->sc_enaddr)) {
188 			/* give up. set randomly */
189 			uint32_t eaddr = random();
190 			/* not multicast */
191 			sc->sc_enaddr[0] = (eaddr >> 24) & 0xfc;
192 			sc->sc_enaddr[1] = eaddr >> 16;
193 			sc->sc_enaddr[2] = eaddr >> 8;
194 			sc->sc_enaddr[3] = eaddr;
195 			eaddr = random();
196 			sc->sc_enaddr[4] = eaddr >> 8;
197 			sc->sc_enaddr[5] = eaddr;
198 
199 			aprint_error_dev(self,
200 			    "cannot get mac address. set randomly\n");
201 		}
202 	}
203 	enet_sethwaddr(sc, sc->sc_enaddr);
204 
205 	aprint_normal_dev(self, "Ethernet address %s\n",
206 	    ether_sprintf(sc->sc_enaddr));
207 
208 	enet_init_regs(sc, 1);
209 
210 	/* callout will be scheduled from enet_init() */
211 	callout_init(&sc->sc_tick_ch, 0);
212 	callout_setfunc(&sc->sc_tick_ch, enet_tick, sc);
213 
214 	/* setup ifp */
215 	ifp = &sc->sc_ethercom.ec_if;
216 	strlcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
217 	ifp->if_softc = sc;
218 	ifp->if_mtu = ETHERMTU;
219 	ifp->if_baudrate = IF_Gbps(1);
220 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
221 	ifp->if_ioctl = enet_ioctl;
222 	ifp->if_start = enet_start;
223 	ifp->if_init = enet_init;
224 	ifp->if_stop = enet_stop;
225 	ifp->if_watchdog = enet_watchdog;
226 
227 	sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_MTU;
228 #ifdef ENET_SUPPORT_JUMBO
229 	sc->sc_ethercom.ec_capabilities |= ETHERCAP_JUMBO_MTU;
230 #endif
231 
232 	ifp->if_capabilities = IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx |
233 	    IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_UDPv4_Tx |
234 	    IFCAP_CSUM_TCPv4_Rx | IFCAP_CSUM_UDPv4_Rx |
235 	    IFCAP_CSUM_TCPv6_Tx | IFCAP_CSUM_UDPv6_Tx |
236 	    IFCAP_CSUM_TCPv6_Rx | IFCAP_CSUM_UDPv6_Rx;
237 
238 	IFQ_SET_MAXLEN(&ifp->if_snd, uimax(ENET_TX_RING_CNT, IFQ_MAXLEN));
239 	IFQ_SET_READY(&ifp->if_snd);
240 
241 	/* setup MII */
242 	sc->sc_ethercom.ec_mii = mii;
243 	mii->mii_ifp = ifp;
244 	mii->mii_readreg = enet_miibus_readreg;
245 	mii->mii_writereg = enet_miibus_writereg;
246 	mii->mii_statchg = enet_miibus_statchg;
247 	ifmedia_init(&mii->mii_media, 0, ether_mediachange, enet_mediastatus);
248 
249 	/* try to attach PHY */
250 	mii_attach(self, mii, 0xffffffff, sc->sc_phyid, MII_OFFSET_ANY, 0);
251 	if (LIST_FIRST(&mii->mii_phys) == NULL) {
252 		ifmedia_add(&mii->mii_media, IFM_ETHER | IFM_MANUAL, 0, NULL);
253 		ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_MANUAL);
254 	} else {
255 		ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_AUTO);
256 	}
257 
258 	if_attach(ifp);
259 	ether_ifattach(ifp, sc->sc_enaddr);
260 	ether_set_ifflags_cb(&sc->sc_ethercom, enet_ifflags_cb);
261 
262 	rnd_attach_source(&sc->sc_rnd_source, device_xname(sc->sc_dev),
263 	    RND_TYPE_NET, RND_FLAG_DEFAULT);
264 
265 #ifdef ENET_EVENT_COUNTER
266 	enet_attach_evcnt(sc);
267 #endif
268 
269 	sc->sc_stopping = false;
270 
271 	return 0;
272 }
273 
274 #ifdef ENET_EVENT_COUNTER
275 static void
enet_attach_evcnt(struct enet_softc * sc)276 enet_attach_evcnt(struct enet_softc *sc)
277 {
278 	const char *xname;
279 
280 	xname = device_xname(sc->sc_dev);
281 
282 #define ENET_EVCNT_ATTACH(name)	\
283 	evcnt_attach_dynamic(&sc->sc_ev_ ## name, EVCNT_TYPE_MISC,	\
284 	    NULL, xname, #name);
285 
286 	ENET_EVCNT_ATTACH(t_drop);
287 	ENET_EVCNT_ATTACH(t_packets);
288 	ENET_EVCNT_ATTACH(t_bc_pkt);
289 	ENET_EVCNT_ATTACH(t_mc_pkt);
290 	ENET_EVCNT_ATTACH(t_crc_align);
291 	ENET_EVCNT_ATTACH(t_undersize);
292 	ENET_EVCNT_ATTACH(t_oversize);
293 	ENET_EVCNT_ATTACH(t_frag);
294 	ENET_EVCNT_ATTACH(t_jab);
295 	ENET_EVCNT_ATTACH(t_col);
296 	ENET_EVCNT_ATTACH(t_p64);
297 	ENET_EVCNT_ATTACH(t_p65to127n);
298 	ENET_EVCNT_ATTACH(t_p128to255n);
299 	ENET_EVCNT_ATTACH(t_p256to511);
300 	ENET_EVCNT_ATTACH(t_p512to1023);
301 	ENET_EVCNT_ATTACH(t_p1024to2047);
302 	ENET_EVCNT_ATTACH(t_p_gte2048);
303 	ENET_EVCNT_ATTACH(t_octets);
304 	ENET_EVCNT_ATTACH(r_packets);
305 	ENET_EVCNT_ATTACH(r_bc_pkt);
306 	ENET_EVCNT_ATTACH(r_mc_pkt);
307 	ENET_EVCNT_ATTACH(r_crc_align);
308 	ENET_EVCNT_ATTACH(r_undersize);
309 	ENET_EVCNT_ATTACH(r_oversize);
310 	ENET_EVCNT_ATTACH(r_frag);
311 	ENET_EVCNT_ATTACH(r_jab);
312 	ENET_EVCNT_ATTACH(r_p64);
313 	ENET_EVCNT_ATTACH(r_p65to127);
314 	ENET_EVCNT_ATTACH(r_p128to255);
315 	ENET_EVCNT_ATTACH(r_p256to511);
316 	ENET_EVCNT_ATTACH(r_p512to1023);
317 	ENET_EVCNT_ATTACH(r_p1024to2047);
318 	ENET_EVCNT_ATTACH(r_p_gte2048);
319 	ENET_EVCNT_ATTACH(r_octets);
320 }
321 
322 static void
enet_update_evcnt(struct enet_softc * sc)323 enet_update_evcnt(struct enet_softc *sc)
324 {
325 	sc->sc_ev_t_drop.ev_count += ENET_REG_READ(sc, ENET_RMON_T_DROP);
326 	sc->sc_ev_t_packets.ev_count += ENET_REG_READ(sc, ENET_RMON_T_PACKETS);
327 	sc->sc_ev_t_bc_pkt.ev_count += ENET_REG_READ(sc, ENET_RMON_T_BC_PKT);
328 	sc->sc_ev_t_mc_pkt.ev_count += ENET_REG_READ(sc, ENET_RMON_T_MC_PKT);
329 	sc->sc_ev_t_crc_align.ev_count += ENET_REG_READ(sc, ENET_RMON_T_CRC_ALIGN);
330 	sc->sc_ev_t_undersize.ev_count += ENET_REG_READ(sc, ENET_RMON_T_UNDERSIZE);
331 	sc->sc_ev_t_oversize.ev_count += ENET_REG_READ(sc, ENET_RMON_T_OVERSIZE);
332 	sc->sc_ev_t_frag.ev_count += ENET_REG_READ(sc, ENET_RMON_T_FRAG);
333 	sc->sc_ev_t_jab.ev_count += ENET_REG_READ(sc, ENET_RMON_T_JAB);
334 	sc->sc_ev_t_col.ev_count += ENET_REG_READ(sc, ENET_RMON_T_COL);
335 	sc->sc_ev_t_p64.ev_count += ENET_REG_READ(sc, ENET_RMON_T_P64);
336 	sc->sc_ev_t_p65to127n.ev_count += ENET_REG_READ(sc, ENET_RMON_T_P65TO127N);
337 	sc->sc_ev_t_p128to255n.ev_count += ENET_REG_READ(sc, ENET_RMON_T_P128TO255N);
338 	sc->sc_ev_t_p256to511.ev_count += ENET_REG_READ(sc, ENET_RMON_T_P256TO511);
339 	sc->sc_ev_t_p512to1023.ev_count += ENET_REG_READ(sc, ENET_RMON_T_P512TO1023);
340 	sc->sc_ev_t_p1024to2047.ev_count += ENET_REG_READ(sc, ENET_RMON_T_P1024TO2047);
341 	sc->sc_ev_t_p_gte2048.ev_count += ENET_REG_READ(sc, ENET_RMON_T_P_GTE2048);
342 	sc->sc_ev_t_octets.ev_count += ENET_REG_READ(sc, ENET_RMON_T_OCTETS);
343 	sc->sc_ev_r_packets.ev_count += ENET_REG_READ(sc, ENET_RMON_R_PACKETS);
344 	sc->sc_ev_r_bc_pkt.ev_count += ENET_REG_READ(sc, ENET_RMON_R_BC_PKT);
345 	sc->sc_ev_r_mc_pkt.ev_count += ENET_REG_READ(sc, ENET_RMON_R_MC_PKT);
346 	sc->sc_ev_r_crc_align.ev_count += ENET_REG_READ(sc, ENET_RMON_R_CRC_ALIGN);
347 	sc->sc_ev_r_undersize.ev_count += ENET_REG_READ(sc, ENET_RMON_R_UNDERSIZE);
348 	sc->sc_ev_r_oversize.ev_count += ENET_REG_READ(sc, ENET_RMON_R_OVERSIZE);
349 	sc->sc_ev_r_frag.ev_count += ENET_REG_READ(sc, ENET_RMON_R_FRAG);
350 	sc->sc_ev_r_jab.ev_count += ENET_REG_READ(sc, ENET_RMON_R_JAB);
351 	sc->sc_ev_r_p64.ev_count += ENET_REG_READ(sc, ENET_RMON_R_P64);
352 	sc->sc_ev_r_p65to127.ev_count += ENET_REG_READ(sc, ENET_RMON_R_P65TO127);
353 	sc->sc_ev_r_p128to255.ev_count += ENET_REG_READ(sc, ENET_RMON_R_P128TO255);
354 	sc->sc_ev_r_p256to511.ev_count += ENET_REG_READ(sc, ENET_RMON_R_P256TO511);
355 	sc->sc_ev_r_p512to1023.ev_count += ENET_REG_READ(sc, ENET_RMON_R_P512TO1023);
356 	sc->sc_ev_r_p1024to2047.ev_count += ENET_REG_READ(sc, ENET_RMON_R_P1024TO2047);
357 	sc->sc_ev_r_p_gte2048.ev_count += ENET_REG_READ(sc, ENET_RMON_R_P_GTE2048);
358 	sc->sc_ev_r_octets.ev_count += ENET_REG_READ(sc, ENET_RMON_R_OCTETS);
359 }
360 #endif /* ENET_EVENT_COUNTER */
361 
362 static void
enet_tick(void * arg)363 enet_tick(void *arg)
364 {
365 	struct enet_softc *sc;
366 	struct mii_data *mii;
367 	struct ifnet *ifp;
368 	int s;
369 
370 	sc = arg;
371 	mii = &sc->sc_mii;
372 	ifp = &sc->sc_ethercom.ec_if;
373 
374 	s = splnet();
375 
376 	if (sc->sc_stopping)
377 		goto out;
378 
379 #ifdef ENET_EVENT_COUNTER
380 	enet_update_evcnt(sc);
381 #endif
382 
383 	/* update counters */
384 	if_statadd(ifp, if_ierrors,
385 	    (uint64_t)ENET_REG_READ(sc, ENET_RMON_R_UNDERSIZE) +
386 	    (uint64_t)ENET_REG_READ(sc, ENET_RMON_R_FRAG) +
387 	    (uint64_t)ENET_REG_READ(sc, ENET_RMON_R_JAB));
388 
389 	/* clear counters */
390 	ENET_REG_WRITE(sc, ENET_MIBC, ENET_MIBC_MIB_CLEAR);
391 	ENET_REG_WRITE(sc, ENET_MIBC, 0);
392 
393 	mii_tick(mii);
394  out:
395 
396 	if (!sc->sc_stopping)
397 		callout_schedule(&sc->sc_tick_ch, ENET_TICK);
398 
399 	splx(s);
400 }
401 
402 int
enet_intr(void * arg)403 enet_intr(void *arg)
404 {
405 	struct enet_softc *sc;
406 	struct ifnet *ifp;
407 	uint32_t status;
408 
409 	sc = arg;
410 	status = ENET_REG_READ(sc, ENET_EIR);
411 
412 	if (sc->sc_imxtype == 7) {
413 		if (status & (ENET_EIR_TXF | ENET_EIR_TXF1 | ENET_EIR_TXF2))
414 			enet_tx_intr(arg);
415 		if (status & (ENET_EIR_RXF | ENET_EIR_RXF1 | ENET_EIR_RXF2))
416 			enet_rx_intr(arg);
417 	} else {
418 		if (status & ENET_EIR_TXF)
419 			enet_tx_intr(arg);
420 		if (status & ENET_EIR_RXF)
421 			enet_rx_intr(arg);
422 	}
423 
424 	if (status & ENET_EIR_EBERR) {
425 		device_printf(sc->sc_dev, "Ethernet Bus Error\n");
426 		ifp = &sc->sc_ethercom.ec_if;
427 		enet_stop(ifp, 1);
428 		enet_init(ifp);
429 	} else {
430 		ENET_REG_WRITE(sc, ENET_EIR, status);
431 	}
432 
433 	rnd_add_uint32(&sc->sc_rnd_source, status);
434 
435 	return 1;
436 }
437 
438 static int
enet_tx_intr(void * arg)439 enet_tx_intr(void *arg)
440 {
441 	struct enet_softc *sc;
442 	struct ifnet *ifp;
443 	struct enet_txsoft *txs;
444 	int idx;
445 
446 	sc = (struct enet_softc *)arg;
447 	ifp = &sc->sc_ethercom.ec_if;
448 
449 	for (idx = sc->sc_tx_considx; idx != sc->sc_tx_prodidx;
450 	    idx = ENET_TX_NEXTIDX(idx)) {
451 
452 		txs = &sc->sc_txsoft[idx];
453 
454 		TXDESC_READIN(idx);
455 		if (sc->sc_txdesc_ring[idx].tx_flags1_len & TXFLAGS1_R) {
456 			/* This TX Descriptor has not been transmitted yet */
457 			break;
458 		}
459 
460 		/* txsoft is available on first segment (TXFLAGS1_T1) */
461 		if (sc->sc_txdesc_ring[idx].tx_flags1_len & TXFLAGS1_T1) {
462 			bus_dmamap_unload(sc->sc_dmat,
463 			    txs->txs_dmamap);
464 			m_freem(txs->txs_mbuf);
465 			if_statinc(ifp, if_opackets);
466 		}
467 
468 		/* checking error */
469 		if (sc->sc_txdesc_ring[idx].tx_flags1_len & TXFLAGS1_L) {
470 			uint32_t flags2;
471 
472 			flags2 = sc->sc_txdesc_ring[idx].tx_flags2;
473 
474 			if (flags2 & (TXFLAGS2_TXE |
475 			    TXFLAGS2_UE | TXFLAGS2_EE | TXFLAGS2_FE |
476 			    TXFLAGS2_LCE | TXFLAGS2_OE | TXFLAGS2_TSE)) {
477 #ifdef DEBUG_ENET
478 				if (enet_debug) {
479 					char flagsbuf[128];
480 
481 					snprintb(flagsbuf, sizeof(flagsbuf),
482 					    "\20" "\20TRANSMIT" "\16UNDERFLOW"
483 					    "\15COLLISION" "\14FRAME"
484 					    "\13LATECOLLISION" "\12OVERFLOW",
485 					    flags2);
486 
487 					device_printf(sc->sc_dev,
488 					    "txdesc[%d]: transmit error: "
489 					    "flags2=%s\n", idx, flagsbuf);
490 				}
491 #endif /* DEBUG_ENET */
492 				if_statinc(ifp, if_oerrors);
493 			}
494 		}
495 
496 		sc->sc_tx_free++;
497 	}
498 	sc->sc_tx_considx = idx;
499 
500 	if (sc->sc_tx_free > 0)
501 		sc->sc_txbusy = false;
502 
503 	/*
504 	 * No more pending TX descriptor,
505 	 * cancel the watchdog timer.
506 	 */
507 	if (sc->sc_tx_free == ENET_TX_RING_CNT)
508 		ifp->if_timer = 0;
509 
510 	return 1;
511 }
512 
513 static int
enet_rx_intr(void * arg)514 enet_rx_intr(void *arg)
515 {
516 	struct enet_softc *sc;
517 	struct ifnet *ifp;
518 	struct enet_rxsoft *rxs;
519 	int idx, len, amount;
520 	uint32_t flags1, flags2;
521 	struct mbuf *m, *m0, *mprev;
522 
523 	sc = arg;
524 	ifp = &sc->sc_ethercom.ec_if;
525 
526 	m0 = mprev = NULL;
527 	amount = 0;
528 	for (idx = sc->sc_rx_readidx; ; idx = ENET_RX_NEXTIDX(idx)) {
529 
530 		rxs = &sc->sc_rxsoft[idx];
531 
532 		RXDESC_READIN(idx);
533 		if (sc->sc_rxdesc_ring[idx].rx_flags1_len & RXFLAGS1_E) {
534 			/* This RX Descriptor has not been received yet */
535 			break;
536 		}
537 
538 		/*
539 		 * build mbuf from RX Descriptor if needed
540 		 */
541 		m = rxs->rxs_mbuf;
542 		rxs->rxs_mbuf = NULL;
543 
544 		flags1 = sc->sc_rxdesc_ring[idx].rx_flags1_len;
545 		len = RXFLAGS1_LEN(flags1);
546 
547 #define RACC_SHIFT16	2
548 		if (m0 == NULL) {
549 			m0 = m;
550 			m_adj(m0, RACC_SHIFT16);
551 			len -= RACC_SHIFT16;
552 			m->m_len = len;
553 			amount = len;
554 		} else {
555 			if (flags1 & RXFLAGS1_L)
556 				len = len - amount - RACC_SHIFT16;
557 
558 			m->m_len = len;
559 			amount += len;
560 			if (m->m_flags & M_PKTHDR)
561 				m_remove_pkthdr(m);
562 			mprev->m_next = m;
563 		}
564 		mprev = m;
565 
566 		flags2 = sc->sc_rxdesc_ring[idx].rx_flags2;
567 
568 		if (flags1 & RXFLAGS1_L) {
569 			/* last buffer */
570 			if ((amount < ETHER_HDR_LEN) ||
571 			    ((flags1 & (RXFLAGS1_LG | RXFLAGS1_NO |
572 			    RXFLAGS1_CR | RXFLAGS1_OV | RXFLAGS1_TR)) ||
573 			    (flags2 & (RXFLAGS2_ME | RXFLAGS2_PE |
574 			    RXFLAGS2_CE)))) {
575 
576 #ifdef DEBUG_ENET
577 				if (enet_debug) {
578 					char flags1buf[128], flags2buf[128];
579 					snprintb(flags1buf, sizeof(flags1buf),
580 					    "\20" "\31MISS" "\26LENGTHVIOLATION"
581 					    "\25NONOCTET" "\23CRC" "\22OVERRUN"
582 					    "\21TRUNCATED", flags1);
583 					snprintb(flags2buf, sizeof(flags2buf),
584 					    "\20" "\40MAC" "\33PHY"
585 					    "\32COLLISION", flags2);
586 
587 					DEVICE_DPRINTF(
588 					    "rxdesc[%d]: receive error: "
589 					    "flags1=%s,flags2=%s,len=%d\n",
590 					    idx, flags1buf, flags2buf, amount);
591 				}
592 #endif /* DEBUG_ENET */
593 				if_statinc(ifp, if_ierrors);
594 				m_freem(m0);
595 
596 			} else {
597 				/* packet receive ok */
598 				m_set_rcvif(m0, ifp);
599 				m0->m_pkthdr.len = amount;
600 
601 				bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
602 				    rxs->rxs_dmamap->dm_mapsize,
603 				    BUS_DMASYNC_PREREAD);
604 
605 				if (ifp->if_csum_flags_rx & (M_CSUM_IPv4 |
606 				    M_CSUM_TCPv4 | M_CSUM_UDPv4 |
607 				    M_CSUM_TCPv6 | M_CSUM_UDPv6))
608 					enet_rx_csum(sc, ifp, m0, idx);
609 
610 				if_percpuq_enqueue(ifp->if_percpuq, m0);
611 			}
612 
613 			m0 = NULL;
614 			mprev = NULL;
615 			amount = 0;
616 
617 		} else {
618 			/* continued from previous buffer */
619 			bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
620 			    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
621 		}
622 
623 		bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
624 		if (enet_alloc_rxbuf(sc, idx) != 0) {
625 			panic("enet_alloc_rxbuf NULL\n");
626 		}
627 	}
628 	sc->sc_rx_readidx = idx;
629 
630 	/* re-enable RX DMA to make sure */
631 	ENET_REG_WRITE(sc, ENET_RDAR, ENET_RDAR_ACTIVE);
632 
633 	return 1;
634 }
635 
636 static void
enet_rx_csum(struct enet_softc * sc,struct ifnet * ifp,struct mbuf * m,int idx)637 enet_rx_csum(struct enet_softc *sc, struct ifnet *ifp, struct mbuf *m, int idx)
638 {
639 	uint32_t flags2;
640 	uint8_t proto;
641 
642 	flags2 = sc->sc_rxdesc_ring[idx].rx_flags2;
643 
644 	if (flags2 & RXFLAGS2_IPV6) {
645 		proto = sc->sc_rxdesc_ring[idx].rx_proto;
646 
647 		/* RXFLAGS2_PCR is valid when IPv6 and TCP/UDP */
648 		if ((proto == IPPROTO_TCP) &&
649 		    (ifp->if_csum_flags_rx & M_CSUM_TCPv6))
650 			m->m_pkthdr.csum_flags |= M_CSUM_TCPv6;
651 		else if ((proto == IPPROTO_UDP) &&
652 		    (ifp->if_csum_flags_rx & M_CSUM_UDPv6))
653 			m->m_pkthdr.csum_flags |= M_CSUM_UDPv6;
654 		else
655 			return;
656 
657 		/* IPv6 protocol checksum error */
658 		if (flags2 & RXFLAGS2_PCR)
659 			m->m_pkthdr.csum_flags |= M_CSUM_TCP_UDP_BAD;
660 
661 	} else {
662 		struct ether_header *eh;
663 		uint8_t *ip;
664 
665 		eh = mtod(m, struct ether_header *);
666 
667 		/* XXX: is an IPv4? */
668 		if (ntohs(eh->ether_type) != ETHERTYPE_IP)
669 			return;
670 		ip = (uint8_t *)(eh + 1);
671 		if ((ip[0] & 0xf0) == 0x40)
672 			return;
673 
674 		proto = sc->sc_rxdesc_ring[idx].rx_proto;
675 		if (flags2 & RXFLAGS2_ICE) {
676 			if (ifp->if_csum_flags_rx & M_CSUM_IPv4) {
677 				m->m_pkthdr.csum_flags |=
678 				    M_CSUM_IPv4 | M_CSUM_IPv4_BAD;
679 			}
680 		} else {
681 			if (ifp->if_csum_flags_rx & M_CSUM_IPv4) {
682 				m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
683 			}
684 
685 			/*
686 			 * PCR is valid when
687 			 * ICE == 0 and FRAG == 0
688 			 */
689 			if (flags2 & RXFLAGS2_FRAG)
690 				return;
691 
692 			/*
693 			 * PCR is valid when proto is TCP or UDP
694 			 */
695 			if ((proto == IPPROTO_TCP) &&
696 			    (ifp->if_csum_flags_rx & M_CSUM_TCPv4))
697 				m->m_pkthdr.csum_flags |= M_CSUM_TCPv4;
698 			else if ((proto == IPPROTO_UDP) &&
699 			    (ifp->if_csum_flags_rx & M_CSUM_UDPv4))
700 				m->m_pkthdr.csum_flags |= M_CSUM_UDPv4;
701 			else
702 				return;
703 
704 			/* IPv4 protocol cksum error */
705 			if (flags2 & RXFLAGS2_PCR)
706 				m->m_pkthdr.csum_flags |= M_CSUM_TCP_UDP_BAD;
707 		}
708 	}
709 }
710 
711 static void
enet_setmulti(struct enet_softc * sc)712 enet_setmulti(struct enet_softc *sc)
713 {
714 	struct ethercom *ec = &sc->sc_ethercom;
715 	struct ifnet *ifp = &ec->ec_if;
716 	struct ether_multi *enm;
717 	struct ether_multistep step;
718 	uint32_t crc, hashidx;
719 	uint32_t gaddr[2];
720 
721 	if (ifp->if_flags & IFF_PROMISC) {
722 		/* receive all unicast packet */
723 		ENET_REG_WRITE(sc, ENET_IAUR, 0xffffffff);
724 		ENET_REG_WRITE(sc, ENET_IALR, 0xffffffff);
725 		/* receive all multicast packet */
726 		gaddr[0] = gaddr[1] = 0xffffffff;
727 	} else {
728 		gaddr[0] = gaddr[1] = 0;
729 
730 		ETHER_LOCK(ec);
731 		ETHER_FIRST_MULTI(step, ec, enm);
732 		while (enm != NULL) {
733 			if (memcmp(enm->enm_addrlo, enm->enm_addrhi,
734 			    ETHER_ADDR_LEN)) {
735 				/*
736 				 * if specified by range, give up setting hash,
737 				 * and fallback to allmulti.
738 				 */
739 				gaddr[0] = gaddr[1] = 0xffffffff;
740 				break;
741 			}
742 
743 			crc = ether_crc32_le(enm->enm_addrlo, ETHER_ADDR_LEN);
744 			hashidx = __SHIFTOUT(crc, __BITS(30,26));
745 			gaddr[__SHIFTOUT(crc, __BIT(31))] |= __BIT(hashidx);
746 
747 			ETHER_NEXT_MULTI(step, enm);
748 		}
749 		ETHER_UNLOCK(ec);
750 
751 		/* dont't receive any unicast packet (except own address) */
752 		ENET_REG_WRITE(sc, ENET_IAUR, 0);
753 		ENET_REG_WRITE(sc, ENET_IALR, 0);
754 	}
755 
756 	if (gaddr[0] == 0xffffffff && gaddr[1] == 0xffffffff)
757 		ifp->if_flags |= IFF_ALLMULTI;
758 	else
759 		ifp->if_flags &= ~IFF_ALLMULTI;
760 
761 	/* receive multicast packets according to multicast filter */
762 	ENET_REG_WRITE(sc, ENET_GAUR, gaddr[1]);
763 	ENET_REG_WRITE(sc, ENET_GALR, gaddr[0]);
764 
765 }
766 
767 static void
enet_gethwaddr(struct enet_softc * sc,uint8_t * hwaddr)768 enet_gethwaddr(struct enet_softc *sc, uint8_t *hwaddr)
769 {
770 	uint32_t paddr;
771 
772 	paddr = ENET_REG_READ(sc, ENET_PALR);
773 	hwaddr[0] = paddr >> 24;
774 	hwaddr[1] = paddr >> 16;
775 	hwaddr[2] = paddr >> 8;
776 	hwaddr[3] = paddr;
777 
778 	paddr = ENET_REG_READ(sc, ENET_PAUR);
779 	hwaddr[4] = paddr >> 24;
780 	hwaddr[5] = paddr >> 16;
781 }
782 
783 static void
enet_sethwaddr(struct enet_softc * sc,uint8_t * hwaddr)784 enet_sethwaddr(struct enet_softc *sc, uint8_t *hwaddr)
785 {
786 	uint32_t paddr;
787 
788 	paddr = (hwaddr[0] << 24) | (hwaddr[1] << 16) | (hwaddr[2] << 8) |
789 	    hwaddr[3];
790 	ENET_REG_WRITE(sc, ENET_PALR, paddr);
791 	paddr = (hwaddr[4] << 24) | (hwaddr[5] << 16);
792 	ENET_REG_WRITE(sc, ENET_PAUR, paddr);
793 }
794 
795 /*
796  * ifnet interfaces
797  */
798 static int
enet_init(struct ifnet * ifp)799 enet_init(struct ifnet *ifp)
800 {
801 	struct enet_softc *sc;
802 	int s, error;
803 
804 	sc = ifp->if_softc;
805 
806 	s = splnet();
807 
808 	enet_init_regs(sc, 0);
809 	enet_init_txring(sc);
810 	error = enet_init_rxring(sc);
811 	if (error != 0) {
812 		enet_drain_rxbuf(sc);
813 		device_printf(sc->sc_dev, "Cannot allocate mbuf cluster\n");
814 		goto init_failure;
815 	}
816 
817 	/* reload mac address */
818 	memcpy(sc->sc_enaddr, CLLADDR(ifp->if_sadl), ETHER_ADDR_LEN);
819 	enet_sethwaddr(sc, sc->sc_enaddr);
820 
821 	/* program multicast address */
822 	enet_setmulti(sc);
823 
824 	/* update if_flags */
825 	ifp->if_flags |= IFF_RUNNING;
826 	sc->sc_txbusy = false;
827 
828 	/* update local copy of if_flags */
829 	sc->sc_if_flags = ifp->if_flags;
830 
831 	/* mii */
832 	mii_mediachg(&sc->sc_mii);
833 
834 	/* enable RX DMA */
835 	ENET_REG_WRITE(sc, ENET_RDAR, ENET_RDAR_ACTIVE);
836 
837 	sc->sc_stopping = false;
838 	callout_schedule(&sc->sc_tick_ch, ENET_TICK);
839 
840  init_failure:
841 	splx(s);
842 
843 	return error;
844 }
845 
846 static void
enet_start(struct ifnet * ifp)847 enet_start(struct ifnet *ifp)
848 {
849 	struct enet_softc *sc;
850 	struct mbuf *m;
851 	int npkt;
852 
853 	if ((ifp->if_flags & IFF_RUNNING) == 0)
854 		return;
855 
856 	sc = ifp->if_softc;
857 	for (npkt = 0; !sc->sc_txbusy; npkt++) {
858 		IFQ_POLL(&ifp->if_snd, m);
859 		if (m == NULL)
860 			break;
861 
862 		if (sc->sc_tx_free <= 0) {
863 			/* no tx descriptor now... */
864 			sc->sc_txbusy = true;
865 			DEVICE_DPRINTF("TX descriptor is full\n");
866 			break;
867 		}
868 
869 		IFQ_DEQUEUE(&ifp->if_snd, m);
870 
871 		if (enet_encap_txring(sc, &m) != 0) {
872 			/* too many mbuf chains? */
873 			sc->sc_txbusy = true;
874 			DEVICE_DPRINTF(
875 			    "TX descriptor is full. dropping packet\n");
876 			m_freem(m);
877 			if_statinc(ifp, if_oerrors);
878 			break;
879 		}
880 
881 		/* Pass the packet to any BPF listeners */
882 		bpf_mtap(ifp, m, BPF_D_OUT);
883 	}
884 
885 	if (npkt) {
886 		/* enable TX DMA */
887 		ENET_REG_WRITE(sc, ENET_TDAR, ENET_TDAR_ACTIVE);
888 
889 		ifp->if_timer = 5;
890 	}
891 }
892 
893 static void
enet_stop(struct ifnet * ifp,int disable)894 enet_stop(struct ifnet *ifp, int disable)
895 {
896 	struct enet_softc *sc;
897 	int s;
898 	uint32_t v;
899 
900 	sc = ifp->if_softc;
901 
902 	s = splnet();
903 
904 	sc->sc_stopping = true;
905 	callout_stop(&sc->sc_tick_ch);
906 
907 	/* clear ENET_ECR[ETHEREN] to abort receive and transmit */
908 	v = ENET_REG_READ(sc, ENET_ECR);
909 	ENET_REG_WRITE(sc, ENET_ECR, v & ~ENET_ECR_ETHEREN);
910 
911 	/* Mark the interface as down and cancel the watchdog timer. */
912 	ifp->if_flags &= ~IFF_RUNNING;
913 	ifp->if_timer = 0;
914 	sc->sc_txbusy = false;
915 
916 	if (disable) {
917 		enet_drain_txbuf(sc);
918 		enet_drain_rxbuf(sc);
919 	}
920 
921 	splx(s);
922 }
923 
924 static void
enet_watchdog(struct ifnet * ifp)925 enet_watchdog(struct ifnet *ifp)
926 {
927 	struct enet_softc *sc;
928 	int s;
929 
930 	sc = ifp->if_softc;
931 	s = splnet();
932 
933 	device_printf(sc->sc_dev, "watchdog timeout\n");
934 	if_statinc(ifp, if_oerrors);
935 
936 	/* salvage packets left in descriptors */
937 	enet_tx_intr(sc);
938 	enet_rx_intr(sc);
939 
940 	/* reset */
941 	enet_stop(ifp, 1);
942 	enet_init(ifp);
943 
944 	splx(s);
945 }
946 
947 static void
enet_mediastatus(struct ifnet * ifp,struct ifmediareq * ifmr)948 enet_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
949 {
950 	struct enet_softc *sc = ifp->if_softc;
951 
952 	ether_mediastatus(ifp, ifmr);
953 	ifmr->ifm_active = (ifmr->ifm_active & ~IFM_ETH_FMASK)
954 	    | sc->sc_flowflags;
955 }
956 
957 static int
enet_ifflags_cb(struct ethercom * ec)958 enet_ifflags_cb(struct ethercom *ec)
959 {
960 	struct ifnet *ifp = &ec->ec_if;
961 	struct enet_softc *sc = ifp->if_softc;
962 	u_short change = ifp->if_flags ^ sc->sc_if_flags;
963 
964 	if ((change & ~(IFF_CANTCHANGE | IFF_DEBUG)) != 0)
965 		return ENETRESET;
966 	else if ((change & (IFF_PROMISC | IFF_ALLMULTI)) == 0)
967 		return 0;
968 
969 	enet_setmulti(sc);
970 
971 	sc->sc_if_flags = ifp->if_flags;
972 	return 0;
973 }
974 
975 static int
enet_ioctl(struct ifnet * ifp,u_long command,void * data)976 enet_ioctl(struct ifnet *ifp, u_long command, void *data)
977 {
978 	struct enet_softc *sc;
979 	struct ifreq *ifr;
980 	int s, error;
981 	uint32_t v;
982 
983 	sc = ifp->if_softc;
984 	ifr = data;
985 
986 	error = 0;
987 
988 	s = splnet();
989 
990 	switch (command) {
991 	case SIOCSIFMTU:
992 		if (MTU2FRAMESIZE(ifr->ifr_mtu) > ENET_MAX_PKT_LEN) {
993 			error = EINVAL;
994 		} else {
995 			ifp->if_mtu = ifr->ifr_mtu;
996 
997 			/* set maximum frame length */
998 			v = MTU2FRAMESIZE(ifr->ifr_mtu);
999 			ENET_REG_WRITE(sc, ENET_FTRL, v);
1000 			v = ENET_REG_READ(sc, ENET_RCR);
1001 			v &= ~ENET_RCR_MAX_FL(0x3fff);
1002 			v |= ENET_RCR_MAX_FL(ifp->if_mtu + ETHER_HDR_LEN +
1003 			    ETHER_CRC_LEN + ETHER_VLAN_ENCAP_LEN);
1004 			ENET_REG_WRITE(sc, ENET_RCR, v);
1005 		}
1006 		break;
1007 	case SIOCSIFMEDIA:
1008 		/* Flow control requires full-duplex mode. */
1009 		if (IFM_SUBTYPE(ifr->ifr_media) == IFM_AUTO ||
1010 		    (ifr->ifr_media & IFM_FDX) == 0)
1011 			ifr->ifr_media &= ~IFM_ETH_FMASK;
1012 		if (IFM_SUBTYPE(ifr->ifr_media) != IFM_AUTO) {
1013 			if ((ifr->ifr_media & IFM_ETH_FMASK) == IFM_FLOW) {
1014 				/* We can do both TXPAUSE and RXPAUSE. */
1015 				ifr->ifr_media |=
1016 				    IFM_ETH_TXPAUSE | IFM_ETH_RXPAUSE;
1017 			}
1018 			sc->sc_flowflags = ifr->ifr_media & IFM_ETH_FMASK;
1019 		}
1020 		error = ifmedia_ioctl(ifp, ifr, &sc->sc_mii.mii_media, command);
1021 		break;
1022 	default:
1023 		error = ether_ioctl(ifp, command, data);
1024 		if (error != ENETRESET)
1025 			break;
1026 
1027 		/* post-process */
1028 		error = 0;
1029 		switch (command) {
1030 		case SIOCSIFCAP:
1031 			error = if_init(ifp);
1032 			break;
1033 		case SIOCADDMULTI:
1034 		case SIOCDELMULTI:
1035 			if (ifp->if_flags & IFF_RUNNING)
1036 				enet_setmulti(sc);
1037 			break;
1038 		}
1039 		break;
1040 	}
1041 
1042 	splx(s);
1043 
1044 	return error;
1045 }
1046 
1047 /*
1048  * for MII
1049  */
1050 static int
enet_miibus_readreg(device_t dev,int phy,int reg,uint16_t * val)1051 enet_miibus_readreg(device_t dev, int phy, int reg, uint16_t *val)
1052 {
1053 	struct enet_softc *sc;
1054 	int timeout;
1055 	uint32_t status;
1056 
1057 	sc = device_private(dev);
1058 
1059 	/* clear MII update */
1060 	ENET_REG_WRITE(sc, ENET_EIR, ENET_EIR_MII);
1061 
1062 	/* read command */
1063 	ENET_REG_WRITE(sc, ENET_MMFR,
1064 	    ENET_MMFR_ST | ENET_MMFR_OP_READ | ENET_MMFR_TA |
1065 	    ENET_MMFR_PHY_REG(reg) | ENET_MMFR_PHY_ADDR(phy));
1066 
1067 	/* check MII update */
1068 	for (timeout = 5000; timeout > 0; --timeout) {
1069 		status = ENET_REG_READ(sc, ENET_EIR);
1070 		if (status & ENET_EIR_MII)
1071 			break;
1072 	}
1073 	if (timeout <= 0) {
1074 		DEVICE_DPRINTF("MII read timeout: reg=0x%02x\n",
1075 		    reg);
1076 		return ETIMEDOUT;
1077 	} else
1078 		*val = ENET_REG_READ(sc, ENET_MMFR) & ENET_MMFR_DATAMASK;
1079 
1080 	return 0;
1081 }
1082 
1083 static int
enet_miibus_writereg(device_t dev,int phy,int reg,uint16_t val)1084 enet_miibus_writereg(device_t dev, int phy, int reg, uint16_t val)
1085 {
1086 	struct enet_softc *sc;
1087 	int timeout;
1088 
1089 	sc = device_private(dev);
1090 
1091 	/* clear MII update */
1092 	ENET_REG_WRITE(sc, ENET_EIR, ENET_EIR_MII);
1093 
1094 	/* write command */
1095 	ENET_REG_WRITE(sc, ENET_MMFR,
1096 	    ENET_MMFR_ST | ENET_MMFR_OP_WRITE | ENET_MMFR_TA |
1097 	    ENET_MMFR_PHY_REG(reg) | ENET_MMFR_PHY_ADDR(phy) |
1098 	    (ENET_MMFR_DATAMASK & val));
1099 
1100 	/* check MII update */
1101 	for (timeout = 5000; timeout > 0; --timeout) {
1102 		if (ENET_REG_READ(sc, ENET_EIR) & ENET_EIR_MII)
1103 			break;
1104 	}
1105 	if (timeout <= 0) {
1106 		DEVICE_DPRINTF("MII write timeout: reg=0x%02x\n", reg);
1107 		return ETIMEDOUT;
1108 	}
1109 
1110 	return 0;
1111 }
1112 
1113 static void
enet_miibus_statchg(struct ifnet * ifp)1114 enet_miibus_statchg(struct ifnet *ifp)
1115 {
1116 	struct enet_softc *sc;
1117 	struct mii_data *mii;
1118 	struct ifmedia_entry *ife;
1119 	uint32_t ecr, ecr0;
1120 	uint32_t rcr, rcr0;
1121 	uint32_t tcr, tcr0;
1122 
1123 	sc = ifp->if_softc;
1124 	mii = &sc->sc_mii;
1125 	ife = mii->mii_media.ifm_cur;
1126 
1127 	/* get current status */
1128 	ecr0 = ecr = ENET_REG_READ(sc, ENET_ECR) & ~ENET_ECR_RESET;
1129 	rcr0 = rcr = ENET_REG_READ(sc, ENET_RCR);
1130 	tcr0 = tcr = ENET_REG_READ(sc, ENET_TCR);
1131 
1132 	if (IFM_SUBTYPE(mii->mii_media.ifm_cur->ifm_media) == IFM_AUTO &&
1133 	    (mii->mii_media_active & IFM_ETH_FMASK) != sc->sc_flowflags) {
1134 		sc->sc_flowflags = mii->mii_media_active & IFM_ETH_FMASK;
1135 		mii->mii_media_active &= ~IFM_ETH_FMASK;
1136 	}
1137 
1138 	if ((ife->ifm_media & IFM_FDX) != 0) {
1139 		tcr |= ENET_TCR_FDEN;	/* full duplex */
1140 		rcr &= ~ENET_RCR_DRT;	/* enable receive on transmit */
1141 	} else {
1142 		tcr &= ~ENET_TCR_FDEN;	/* half duplex */
1143 		rcr |= ENET_RCR_DRT;	/* disable receive on transmit */
1144 	}
1145 
1146 	if ((tcr ^ tcr0) & ENET_TCR_FDEN) {
1147 		/*
1148 		 * need to reset because
1149 		 * FDEN can change when ECR[ETHEREN] is 0
1150 		 */
1151 		enet_init_regs(sc, 0);
1152 		return;
1153 	}
1154 
1155 	switch (IFM_SUBTYPE(ife->ifm_media)) {
1156 	case IFM_AUTO:
1157 	case IFM_1000_T:
1158 		ecr |= ENET_ECR_SPEED;		/* 1000Mbps mode */
1159 		rcr &= ~ENET_RCR_RMII_10T;
1160 		break;
1161 	case IFM_100_TX:
1162 		ecr &= ~ENET_ECR_SPEED;		/* 100Mbps mode */
1163 		rcr &= ~ENET_RCR_RMII_10T;	/* 100Mbps mode */
1164 		break;
1165 	case IFM_10_T:
1166 		ecr &= ~ENET_ECR_SPEED;		/* 10Mbps mode */
1167 		rcr |= ENET_RCR_RMII_10T;	/* 10Mbps mode */
1168 		break;
1169 	default:
1170 		ecr = ecr0;
1171 		rcr = rcr0;
1172 		tcr = tcr0;
1173 		break;
1174 	}
1175 
1176 	if (sc->sc_rgmii == 0)
1177 		ecr &= ~ENET_ECR_SPEED;
1178 
1179 	if (sc->sc_flowflags & IFM_FLOW)
1180 		rcr |= ENET_RCR_FCE;
1181 	else
1182 		rcr &= ~ENET_RCR_FCE;
1183 
1184 	/* update registers if need change */
1185 	if (ecr != ecr0)
1186 		ENET_REG_WRITE(sc, ENET_ECR, ecr);
1187 	if (rcr != rcr0)
1188 		ENET_REG_WRITE(sc, ENET_RCR, rcr);
1189 	if (tcr != tcr0)
1190 		ENET_REG_WRITE(sc, ENET_TCR, tcr);
1191 }
1192 
1193 /*
1194  * handling descriptors
1195  */
1196 static void
enet_init_txring(struct enet_softc * sc)1197 enet_init_txring(struct enet_softc *sc)
1198 {
1199 	int i;
1200 
1201 	/* build TX ring */
1202 	for (i = 0; i < ENET_TX_RING_CNT; i++) {
1203 		sc->sc_txdesc_ring[i].tx_flags1_len =
1204 		    ((i == (ENET_TX_RING_CNT - 1)) ? TXFLAGS1_W : 0);
1205 		sc->sc_txdesc_ring[i].tx_databuf = 0;
1206 		sc->sc_txdesc_ring[i].tx_flags2 = TXFLAGS2_INT;
1207 		sc->sc_txdesc_ring[i].tx__reserved1 = 0;
1208 		sc->sc_txdesc_ring[i].tx_flags3 = 0;
1209 		sc->sc_txdesc_ring[i].tx_1588timestamp = 0;
1210 		sc->sc_txdesc_ring[i].tx__reserved2 = 0;
1211 		sc->sc_txdesc_ring[i].tx__reserved3 = 0;
1212 
1213 		TXDESC_WRITEOUT(i);
1214 	}
1215 
1216 	sc->sc_tx_free = ENET_TX_RING_CNT;
1217 	sc->sc_tx_considx = 0;
1218 	sc->sc_tx_prodidx = 0;
1219 }
1220 
1221 static int
enet_init_rxring(struct enet_softc * sc)1222 enet_init_rxring(struct enet_softc *sc)
1223 {
1224 	int i, error;
1225 
1226 	/* build RX ring */
1227 	for (i = 0; i < ENET_RX_RING_CNT; i++) {
1228 		error = enet_alloc_rxbuf(sc, i);
1229 		if (error != 0)
1230 			return error;
1231 	}
1232 
1233 	sc->sc_rx_readidx = 0;
1234 
1235 	return 0;
1236 }
1237 
1238 static int
enet_alloc_rxbuf(struct enet_softc * sc,int idx)1239 enet_alloc_rxbuf(struct enet_softc *sc, int idx)
1240 {
1241 	struct mbuf *m;
1242 	int error;
1243 
1244 	KASSERT((idx >= 0) && (idx < ENET_RX_RING_CNT));
1245 
1246 	/* free mbuf if already allocated */
1247 	if (sc->sc_rxsoft[idx].rxs_mbuf != NULL) {
1248 		bus_dmamap_unload(sc->sc_dmat, sc->sc_rxsoft[idx].rxs_dmamap);
1249 		m_freem(sc->sc_rxsoft[idx].rxs_mbuf);
1250 		sc->sc_rxsoft[idx].rxs_mbuf = NULL;
1251 	}
1252 
1253 	/* allocate new mbuf cluster */
1254 	MGETHDR(m, M_DONTWAIT, MT_DATA);
1255 	if (m == NULL)
1256 		return ENOBUFS;
1257 	MCLGET(m, M_DONTWAIT);
1258 	if (!(m->m_flags & M_EXT)) {
1259 		m_freem(m);
1260 		return ENOBUFS;
1261 	}
1262 	m->m_len = MCLBYTES;
1263 	m->m_next = NULL;
1264 
1265 	error = bus_dmamap_load(sc->sc_dmat, sc->sc_rxsoft[idx].rxs_dmamap,
1266 	    m->m_ext.ext_buf, m->m_ext.ext_size, NULL,
1267 	    BUS_DMA_READ | BUS_DMA_NOWAIT);
1268 	if (error) {
1269 		m_freem(m);
1270 		return error;
1271 	}
1272 
1273 	bus_dmamap_sync(sc->sc_dmat, sc->sc_rxsoft[idx].rxs_dmamap, 0,
1274 	    sc->sc_rxsoft[idx].rxs_dmamap->dm_mapsize,
1275 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1276 
1277 	sc->sc_rxsoft[idx].rxs_mbuf = m;
1278 	enet_reset_rxdesc(sc, idx);
1279 	return 0;
1280 }
1281 
1282 static void
enet_reset_rxdesc(struct enet_softc * sc,int idx)1283 enet_reset_rxdesc(struct enet_softc *sc, int idx)
1284 {
1285 	uint32_t paddr;
1286 
1287 	paddr = sc->sc_rxsoft[idx].rxs_dmamap->dm_segs[0].ds_addr;
1288 
1289 	sc->sc_rxdesc_ring[idx].rx_flags1_len =
1290 	    RXFLAGS1_E |
1291 	    ((idx == (ENET_RX_RING_CNT - 1)) ? RXFLAGS1_W : 0);
1292 	sc->sc_rxdesc_ring[idx].rx_databuf = paddr;
1293 	sc->sc_rxdesc_ring[idx].rx_flags2 =
1294 	    RXFLAGS2_INT;
1295 	sc->sc_rxdesc_ring[idx].rx_hl = 0;
1296 	sc->sc_rxdesc_ring[idx].rx_proto = 0;
1297 	sc->sc_rxdesc_ring[idx].rx_cksum = 0;
1298 	sc->sc_rxdesc_ring[idx].rx_flags3 = 0;
1299 	sc->sc_rxdesc_ring[idx].rx_1588timestamp = 0;
1300 	sc->sc_rxdesc_ring[idx].rx__reserved2 = 0;
1301 	sc->sc_rxdesc_ring[idx].rx__reserved3 = 0;
1302 
1303 	RXDESC_WRITEOUT(idx);
1304 }
1305 
1306 static void
enet_drain_txbuf(struct enet_softc * sc)1307 enet_drain_txbuf(struct enet_softc *sc)
1308 {
1309 	int idx;
1310 	struct enet_txsoft *txs;
1311 	struct ifnet *ifp;
1312 
1313 	ifp = &sc->sc_ethercom.ec_if;
1314 
1315 	for (idx = sc->sc_tx_considx; idx != sc->sc_tx_prodidx;
1316 	    idx = ENET_TX_NEXTIDX(idx)) {
1317 
1318 		/* txsoft[] is used only first segment */
1319 		txs = &sc->sc_txsoft[idx];
1320 		TXDESC_READIN(idx);
1321 		if (sc->sc_txdesc_ring[idx].tx_flags1_len & TXFLAGS1_T1) {
1322 			sc->sc_txdesc_ring[idx].tx_flags1_len = 0;
1323 			bus_dmamap_unload(sc->sc_dmat,
1324 			    txs->txs_dmamap);
1325 			m_freem(txs->txs_mbuf);
1326 
1327 			if_statinc(ifp, if_oerrors);
1328 		}
1329 		sc->sc_tx_free++;
1330 	}
1331 }
1332 
1333 static void
enet_drain_rxbuf(struct enet_softc * sc)1334 enet_drain_rxbuf(struct enet_softc *sc)
1335 {
1336 	int i;
1337 
1338 	for (i = 0; i < ENET_RX_RING_CNT; i++) {
1339 		if (sc->sc_rxsoft[i].rxs_mbuf != NULL) {
1340 			sc->sc_rxdesc_ring[i].rx_flags1_len = 0;
1341 			bus_dmamap_unload(sc->sc_dmat,
1342 			    sc->sc_rxsoft[i].rxs_dmamap);
1343 			m_freem(sc->sc_rxsoft[i].rxs_mbuf);
1344 			sc->sc_rxsoft[i].rxs_mbuf = NULL;
1345 		}
1346 	}
1347 }
1348 
1349 static int
enet_alloc_ring(struct enet_softc * sc)1350 enet_alloc_ring(struct enet_softc *sc)
1351 {
1352 	int i, error;
1353 
1354 	/*
1355 	 * build DMA maps for TX.
1356 	 * TX descriptor must be able to contain mbuf chains,
1357 	 * so, make up ENET_MAX_PKT_NSEGS dmamap.
1358 	 */
1359 	for (i = 0; i < ENET_TX_RING_CNT; i++) {
1360 		error = bus_dmamap_create(sc->sc_dmat, ENET_MAX_PKT_LEN,
1361 		    ENET_MAX_PKT_NSEGS, ENET_MAX_PKT_LEN, 0, BUS_DMA_NOWAIT,
1362 		    &sc->sc_txsoft[i].txs_dmamap);
1363 
1364 		if (error) {
1365 			aprint_error_dev(sc->sc_dev,
1366 			    "can't create DMA map for TX descs\n");
1367 			goto fail_1;
1368 		}
1369 	}
1370 
1371 	/*
1372 	 * build DMA maps for RX.
1373 	 * RX descripter contains An mbuf cluster,
1374 	 * and make up a dmamap.
1375 	 */
1376 	for (i = 0; i < ENET_RX_RING_CNT; i++) {
1377 		error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
1378 		    1, MCLBYTES, 0, BUS_DMA_NOWAIT,
1379 		    &sc->sc_rxsoft[i].rxs_dmamap);
1380 		if (error) {
1381 			aprint_error_dev(sc->sc_dev,
1382 			    "can't create DMA map for RX descs\n");
1383 			goto fail_2;
1384 		}
1385 	}
1386 
1387 	if (enet_alloc_dma(sc, sizeof(struct enet_txdesc) * ENET_TX_RING_CNT,
1388 	    (void **)&(sc->sc_txdesc_ring), &(sc->sc_txdesc_dmamap)) != 0)
1389 		return -1;
1390 	memset(sc->sc_txdesc_ring, 0,
1391 	    sizeof(struct enet_txdesc) * ENET_TX_RING_CNT);
1392 
1393 	if (enet_alloc_dma(sc, sizeof(struct enet_rxdesc) * ENET_RX_RING_CNT,
1394 	    (void **)&(sc->sc_rxdesc_ring), &(sc->sc_rxdesc_dmamap)) != 0)
1395 		return -1;
1396 	memset(sc->sc_rxdesc_ring, 0,
1397 	    sizeof(struct enet_rxdesc) * ENET_RX_RING_CNT);
1398 
1399 	return 0;
1400 
1401  fail_2:
1402 	for (i = 0; i < ENET_RX_RING_CNT; i++) {
1403 		if (sc->sc_rxsoft[i].rxs_dmamap != NULL)
1404 			bus_dmamap_destroy(sc->sc_dmat,
1405 			    sc->sc_rxsoft[i].rxs_dmamap);
1406 	}
1407  fail_1:
1408 	for (i = 0; i < ENET_TX_RING_CNT; i++) {
1409 		if (sc->sc_txsoft[i].txs_dmamap != NULL)
1410 			bus_dmamap_destroy(sc->sc_dmat,
1411 			    sc->sc_txsoft[i].txs_dmamap);
1412 	}
1413 	return error;
1414 }
1415 
1416 static int
enet_encap_mbufalign(struct mbuf ** mp)1417 enet_encap_mbufalign(struct mbuf **mp)
1418 {
1419 	struct mbuf *m, *m0, *mt, *p, *x;
1420 	void *ap;
1421 	uint32_t alignoff, chiplen;
1422 
1423 	/*
1424 	 * iMX6 SoC ethernet controller requires
1425 	 * address of buffer must aligned 8, and
1426 	 * length of buffer must be greater than 10 (first fragment only?)
1427 	 */
1428 #define ALIGNBYTE	8
1429 #define MINBUFSIZE	10
1430 #define ALIGN_PTR(p, align)	\
1431 	(void *)(((uintptr_t)(p) + ((align) - 1)) & -(align))
1432 
1433 	m0 = *mp;
1434 	mt = p = NULL;
1435 	for (m = m0; m != NULL; m = m->m_next) {
1436 		alignoff = (uintptr_t)m->m_data & (ALIGNBYTE - 1);
1437 		if (m->m_len < (ALIGNBYTE * 2)) {
1438 			/*
1439 			 * rearrange mbuf data aligned
1440 			 *
1441 			 *        align 8 *       *       *       *       *
1442 			 *               +0123456789abcdef0123456789abcdef0
1443 			 * FROM m->m_data[___________abcdefghijklmn_______]
1444 			 *
1445 			 *               +0123456789abcdef0123456789abcdef0
1446 			 * TO   m->m_data[________abcdefghijklm___________] or
1447 			 *      m->m_data[________________abcdefghijklmn__]
1448 			 */
1449 			if ((alignoff != 0) && (m->m_len != 0)) {
1450 				chiplen = ALIGNBYTE - alignoff;
1451 				if (M_LEADINGSPACE(m) >= alignoff) {
1452 					ap = m->m_data - alignoff;
1453 					memmove(ap, m->m_data, m->m_len);
1454 					m->m_data = ap;
1455 				} else if (M_TRAILINGSPACE(m) >= chiplen) {
1456 					ap = m->m_data + chiplen;
1457 					memmove(ap, m->m_data, m->m_len);
1458 					m->m_data = ap;
1459 				} else {
1460 					/*
1461 					 * no space to align data. (M_READONLY?)
1462 					 * allocate new mbuf aligned,
1463 					 * and copy to it.
1464 					 */
1465 					MGET(x, M_DONTWAIT, m->m_type);
1466 					if (x == NULL) {
1467 						m_freem(m);
1468 						return ENOBUFS;
1469 					}
1470 					MCLAIM(x, m->m_owner);
1471 					if (m->m_flags & M_PKTHDR)
1472 						m_move_pkthdr(x, m);
1473 					x->m_len = m->m_len;
1474 					x->m_data = ALIGN_PTR(x->m_data,
1475 					    ALIGNBYTE);
1476 					memcpy(mtod(x, void *), mtod(m, void *),
1477 					    m->m_len);
1478 					p->m_next = x;
1479 					x->m_next = m_free(m);
1480 					m = x;
1481 				}
1482 			}
1483 
1484 			/*
1485 			 * fill 1st mbuf at least 10byte
1486 			 *
1487 			 *        align 8 *       *       *       *       *
1488 			 *               +0123456789abcdef0123456789abcdef0
1489 			 * FROM m->m_data[________abcde___________________]
1490 			 *      m->m_data[__fg____________________________]
1491 			 *      m->m_data[_________________hi_____________]
1492 			 *      m->m_data[__________jk____________________]
1493 			 *      m->m_data[____l___________________________]
1494 			 *
1495 			 *               +0123456789abcdef0123456789abcdef0
1496 			 * TO   m->m_data[________abcdefghij______________]
1497 			 *      m->m_data[________________________________]
1498 			 *      m->m_data[________________________________]
1499 			 *      m->m_data[___________k____________________]
1500 			 *      m->m_data[____l___________________________]
1501 			 */
1502 			if (mt == NULL) {
1503 				mt = m;
1504 				while (mt->m_len == 0) {
1505 					mt = mt->m_next;
1506 					if (mt == NULL) {
1507 						m_freem(m);
1508 						return ENOBUFS;
1509 					}
1510 				}
1511 
1512 				/* mt = 1st mbuf, x = 2nd mbuf */
1513 				x = mt->m_next;
1514 				while (mt->m_len < MINBUFSIZE) {
1515 					if (x == NULL) {
1516 						m_freem(m);
1517 						return ENOBUFS;
1518 					}
1519 
1520 					alignoff = (uintptr_t)x->m_data &
1521 					    (ALIGNBYTE - 1);
1522 					chiplen = ALIGNBYTE - alignoff;
1523 					if (chiplen > x->m_len) {
1524 						chiplen = x->m_len;
1525 					} else if ((mt->m_len + chiplen) <
1526 					    MINBUFSIZE) {
1527 						/*
1528 						 * next mbuf should be greater
1529 						 * than ALIGNBYTE?
1530 						 */
1531 						if (x->m_len >= (chiplen +
1532 						    ALIGNBYTE * 2))
1533 							chiplen += ALIGNBYTE;
1534 						else
1535 							chiplen = x->m_len;
1536 					}
1537 
1538 					if (chiplen &&
1539 					    (M_TRAILINGSPACE(mt) < chiplen)) {
1540 						/*
1541 						 * move data to the beginning of
1542 						 * m_dat[] (aligned) to en-
1543 						 * large trailingspace
1544 						 */
1545 						ap = M_BUFADDR(mt);
1546 						ap = ALIGN_PTR(ap, ALIGNBYTE);
1547 						memcpy(ap, mt->m_data,
1548 						    mt->m_len);
1549 						mt->m_data = ap;
1550 					}
1551 
1552 					if (chiplen &&
1553 					    (M_TRAILINGSPACE(mt) >= chiplen)) {
1554 						memcpy(mt->m_data + mt->m_len,
1555 						    x->m_data, chiplen);
1556 						mt->m_len += chiplen;
1557 						m_adj(x, chiplen);
1558 					}
1559 
1560 					x = x->m_next;
1561 				}
1562 			}
1563 
1564 		} else {
1565 			mt = m;
1566 
1567 			/*
1568 			 * allocate new mbuf x, and rearrange as below;
1569 			 *
1570 			 *        align 8 *       *       *       *       *
1571 			 *               +0123456789abcdef0123456789abcdef0
1572 			 * FROM m->m_data[____________abcdefghijklmnopq___]
1573 			 *
1574 			 *               +0123456789abcdef0123456789abcdef0
1575 			 * TO   x->m_data[________abcdefghijkl____________]
1576 			 *      m->m_data[________________________mnopq___]
1577 			 *
1578 			 */
1579 			if (alignoff != 0) {
1580 				/* at least ALIGNBYTE */
1581 				chiplen = ALIGNBYTE - alignoff + ALIGNBYTE;
1582 
1583 				MGET(x, M_DONTWAIT, m->m_type);
1584 				if (x == NULL) {
1585 					m_freem(m);
1586 					return ENOBUFS;
1587 				}
1588 				MCLAIM(x, m->m_owner);
1589 				if (m->m_flags & M_PKTHDR)
1590 					m_move_pkthdr(x, m);
1591 				x->m_data = ALIGN_PTR(x->m_data, ALIGNBYTE);
1592 				memcpy(mtod(x, void *), mtod(m, void *),
1593 				    chiplen);
1594 				x->m_len = chiplen;
1595 				x->m_next = m;
1596 				m_adj(m, chiplen);
1597 
1598 				if (p == NULL)
1599 					m0 = x;
1600 				else
1601 					p->m_next = x;
1602 			}
1603 		}
1604 		p = m;
1605 	}
1606 	*mp = m0;
1607 
1608 	return 0;
1609 }
1610 
1611 static int
enet_encap_txring(struct enet_softc * sc,struct mbuf ** mp)1612 enet_encap_txring(struct enet_softc *sc, struct mbuf **mp)
1613 {
1614 	bus_dmamap_t map;
1615 	struct mbuf *m;
1616 	int csumflags, idx, i, error;
1617 	uint32_t flags1, flags2;
1618 
1619 	idx = sc->sc_tx_prodidx;
1620 	map = sc->sc_txsoft[idx].txs_dmamap;
1621 
1622 	/* align mbuf data for claim of ENET */
1623 	error = enet_encap_mbufalign(mp);
1624 	if (error != 0)
1625 		return error;
1626 
1627 	m = *mp;
1628 	csumflags = m->m_pkthdr.csum_flags;
1629 
1630 	error = bus_dmamap_load_mbuf(sc->sc_dmat, map, m,
1631 	    BUS_DMA_NOWAIT);
1632 	if (error != 0) {
1633 		device_printf(sc->sc_dev,
1634 		    "Error mapping mbuf into TX chain: error=%d\n", error);
1635 		m_freem(m);
1636 		return error;
1637 	}
1638 
1639 	if (map->dm_nsegs > sc->sc_tx_free) {
1640 		bus_dmamap_unload(sc->sc_dmat, map);
1641 		device_printf(sc->sc_dev,
1642 		    "too many mbuf chain %d\n", map->dm_nsegs);
1643 		m_freem(m);
1644 		return ENOBUFS;
1645 	}
1646 
1647 	/* fill protocol cksum zero beforehand */
1648 	if (csumflags & (M_CSUM_UDPv4 | M_CSUM_TCPv4 |
1649 	    M_CSUM_UDPv6 | M_CSUM_TCPv6)) {
1650 		int ehlen;
1651 		uint16_t etype;
1652 
1653 		m_copydata(m, ETHER_ADDR_LEN * 2, sizeof(etype), &etype);
1654 		switch (ntohs(etype)) {
1655 		case ETHERTYPE_IP:
1656 		case ETHERTYPE_IPV6:
1657 			ehlen = ETHER_HDR_LEN;
1658 			break;
1659 		case ETHERTYPE_VLAN:
1660 			ehlen = ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN;
1661 			break;
1662 		default:
1663 			ehlen = 0;
1664 			break;
1665 		}
1666 
1667 		if (ehlen) {
1668 			const int off =
1669 			    M_CSUM_DATA_IPv4_IPHL(m->m_pkthdr.csum_data) +
1670 			    M_CSUM_DATA_IPv4_OFFSET(m->m_pkthdr.csum_data);
1671 			if (m->m_pkthdr.len >= ehlen + off + sizeof(uint16_t)) {
1672 				uint16_t zero = 0;
1673 				m_copyback(m, ehlen + off, sizeof(zero), &zero);
1674 			}
1675 		}
1676 	}
1677 
1678 	bus_dmamap_sync(sc->sc_dmat, map, 0, map->dm_mapsize,
1679 	    BUS_DMASYNC_PREWRITE);
1680 
1681 	for (i = 0; i < map->dm_nsegs; i++) {
1682 		flags1 = TXFLAGS1_R;
1683 		flags2 = 0;
1684 
1685 		if (i == 0) {
1686 			flags1 |= TXFLAGS1_T1;	/* mark as first segment */
1687 			sc->sc_txsoft[idx].txs_mbuf = m;
1688 		}
1689 
1690 		/* checksum offloading */
1691 		if (csumflags & (M_CSUM_UDPv4 | M_CSUM_TCPv4 |
1692 		    M_CSUM_UDPv6 | M_CSUM_TCPv6))
1693 			flags2 |= TXFLAGS2_PINS;
1694 		if (csumflags & (M_CSUM_IPv4))
1695 			flags2 |= TXFLAGS2_IINS;
1696 
1697 		if (i == map->dm_nsegs - 1) {
1698 			/* mark last segment */
1699 			flags1 |= TXFLAGS1_L | TXFLAGS1_TC;
1700 			flags2 |= TXFLAGS2_INT;
1701 		}
1702 		if (idx == ENET_TX_RING_CNT - 1) {
1703 			/* mark end of ring */
1704 			flags1 |= TXFLAGS1_W;
1705 		}
1706 
1707 		sc->sc_txdesc_ring[idx].tx_databuf = map->dm_segs[i].ds_addr;
1708 		sc->sc_txdesc_ring[idx].tx_flags2 = flags2;
1709 		sc->sc_txdesc_ring[idx].tx_flags3 = 0;
1710 		TXDESC_WRITEOUT(idx);
1711 
1712 		sc->sc_txdesc_ring[idx].tx_flags1_len =
1713 		    flags1 | TXFLAGS1_LEN(map->dm_segs[i].ds_len);
1714 		TXDESC_WRITEOUT(idx);
1715 
1716 		idx = ENET_TX_NEXTIDX(idx);
1717 		sc->sc_tx_free--;
1718 	}
1719 
1720 	sc->sc_tx_prodidx = idx;
1721 
1722 	return 0;
1723 }
1724 
1725 /*
1726  * device initialize
1727  */
1728 static int
enet_init_regs(struct enet_softc * sc,int init)1729 enet_init_regs(struct enet_softc *sc, int init)
1730 {
1731 	struct mii_data *mii;
1732 	struct ifmedia_entry *ife;
1733 	paddr_t paddr;
1734 	uint32_t val;
1735 	int miimode, fulldup, ecr_speed, rcr_speed, flowctrl;
1736 
1737 	if (init) {
1738 		fulldup = 1;
1739 		ecr_speed = ENET_ECR_SPEED;
1740 		rcr_speed = 0;
1741 		flowctrl = 0;
1742 	} else {
1743 		mii = &sc->sc_mii;
1744 		ife = mii->mii_media.ifm_cur;
1745 
1746 		if ((ife->ifm_media & IFM_FDX) != 0)
1747 			fulldup = 1;
1748 		else
1749 			fulldup = 0;
1750 
1751 		switch (IFM_SUBTYPE(ife->ifm_media)) {
1752 		case IFM_10_T:
1753 			ecr_speed = 0;
1754 			rcr_speed = ENET_RCR_RMII_10T;
1755 			break;
1756 		case IFM_100_TX:
1757 			ecr_speed = 0;
1758 			rcr_speed = 0;
1759 			break;
1760 		default:
1761 			ecr_speed = ENET_ECR_SPEED;
1762 			rcr_speed = 0;
1763 			break;
1764 		}
1765 
1766 		flowctrl = sc->sc_flowflags & IFM_FLOW;
1767 	}
1768 
1769 	if (sc->sc_rgmii == 0)
1770 		ecr_speed = 0;
1771 
1772 	/* reset */
1773 	ENET_REG_WRITE(sc, ENET_ECR, ecr_speed | ENET_ECR_RESET);
1774 
1775 	/* mask and clear all interrupt */
1776 	ENET_REG_WRITE(sc, ENET_EIMR, 0);
1777 	ENET_REG_WRITE(sc, ENET_EIR, 0xffffffff);
1778 
1779 	/* full duplex */
1780 	ENET_REG_WRITE(sc, ENET_TCR, fulldup ? ENET_TCR_FDEN : 0);
1781 
1782 	/* clear and enable MIB register */
1783 	ENET_REG_WRITE(sc, ENET_MIBC, ENET_MIBC_MIB_CLEAR);
1784 	ENET_REG_WRITE(sc, ENET_MIBC, 0);
1785 
1786 	/* MII speed setup. MDCclk(=2.5MHz) = (internal module clock)/((val+1)*2) */
1787 	val = (sc->sc_clock + (5000000 - 1)) / 5000000 - 1;
1788 	ENET_REG_WRITE(sc, ENET_MSCR, __SHIFTIN(val, ENET_MSCR_MII_SPEED));
1789 
1790 	/* Opcode/Pause Duration */
1791 	ENET_REG_WRITE(sc, ENET_OPD, 0x00010020);
1792 
1793 	/* Receive FIFO */
1794 	ENET_REG_WRITE(sc, ENET_RSFL, 16);	/* RxFIFO Section Full */
1795 	ENET_REG_WRITE(sc, ENET_RSEM, 0x84);	/* RxFIFO Section Empty */
1796 	ENET_REG_WRITE(sc, ENET_RAEM, 8);	/* RxFIFO Almost Empty */
1797 	ENET_REG_WRITE(sc, ENET_RAFL, 8);	/* RxFIFO Almost Full */
1798 
1799 	/* Transmit FIFO */
1800 	ENET_REG_WRITE(sc, ENET_TFWR, ENET_TFWR_STRFWD |
1801 	    ENET_TFWR_FIFO(128));		/* TxFIFO Watermark */
1802 	ENET_REG_WRITE(sc, ENET_TSEM, 0);	/* TxFIFO Section Empty */
1803 	ENET_REG_WRITE(sc, ENET_TAEM, 256);	/* TxFIFO Almost Empty */
1804 	ENET_REG_WRITE(sc, ENET_TAFL, 8);	/* TxFIFO Almost Full */
1805 	ENET_REG_WRITE(sc, ENET_TIPG, 12);	/* Tx Inter-Packet Gap */
1806 
1807 	/* hardware checksum is default off (override in TX descripter) */
1808 	ENET_REG_WRITE(sc, ENET_TACC, 0);
1809 
1810 	/*
1811 	 * align ethernet payload on 32bit, discard frames with MAC layer error,
1812 	 * and don't discard checksum error
1813 	 */
1814 	ENET_REG_WRITE(sc, ENET_RACC, ENET_RACC_SHIFT16 | ENET_RACC_LINEDIS);
1815 
1816 	/* maximum frame size */
1817 	val = ENET_DEFAULT_PKT_LEN;
1818 	ENET_REG_WRITE(sc, ENET_FTRL, val);	/* Frame Truncation Length */
1819 
1820 	if (sc->sc_rgmii == 0)
1821 		miimode = ENET_RCR_RMII_MODE | ENET_RCR_MII_MODE;
1822 	else
1823 		miimode = ENET_RCR_RGMII_EN;
1824 	ENET_REG_WRITE(sc, ENET_RCR,
1825 	    ENET_RCR_PADEN |			/* RX frame padding remove */
1826 	    miimode |
1827 	    (flowctrl ? ENET_RCR_FCE : 0) |	/* flow control enable */
1828 	    rcr_speed |
1829 	    (fulldup ? 0 : ENET_RCR_DRT) |
1830 	    ENET_RCR_MAX_FL(val));
1831 
1832 	/* Maximum Receive BufSize per one descriptor */
1833 	ENET_REG_WRITE(sc, ENET_MRBR, RXDESC_MAXBUFSIZE);
1834 
1835 
1836 	/* TX/RX Descriptor Physical Address */
1837 	paddr = sc->sc_txdesc_dmamap->dm_segs[0].ds_addr;
1838 	ENET_REG_WRITE(sc, ENET_TDSR, paddr);
1839 	paddr = sc->sc_rxdesc_dmamap->dm_segs[0].ds_addr;
1840 	ENET_REG_WRITE(sc, ENET_RDSR, paddr);
1841 	/* sync cache */
1842 	bus_dmamap_sync(sc->sc_dmat, sc->sc_txdesc_dmamap, 0,
1843 	    sc->sc_txdesc_dmamap->dm_mapsize, BUS_DMASYNC_PREWRITE);
1844 	bus_dmamap_sync(sc->sc_dmat, sc->sc_rxdesc_dmamap, 0,
1845 	    sc->sc_rxdesc_dmamap->dm_mapsize, BUS_DMASYNC_PREWRITE);
1846 
1847 	/* enable interrupts */
1848 	val = ENET_EIR_TXF | ENET_EIR_RXF | ENET_EIR_EBERR;
1849 	if (sc->sc_imxtype == 7)
1850 		val |= ENET_EIR_TXF2 | ENET_EIR_RXF2 | ENET_EIR_TXF1 |
1851 		    ENET_EIR_RXF1;
1852 	ENET_REG_WRITE(sc, ENET_EIMR, val);
1853 
1854 	/* enable ether */
1855 	ENET_REG_WRITE(sc, ENET_ECR,
1856 #if _BYTE_ORDER == _LITTLE_ENDIAN
1857 	    ENET_ECR_DBSWP |
1858 #endif
1859 	    ecr_speed |
1860 	    ENET_ECR_EN1588 |	/* use enhanced TX/RX descriptor */
1861 	    ENET_ECR_ETHEREN);	/* Ethernet Enable */
1862 
1863 	return 0;
1864 }
1865 
1866 static int
enet_alloc_dma(struct enet_softc * sc,size_t size,void ** addrp,bus_dmamap_t * mapp)1867 enet_alloc_dma(struct enet_softc *sc, size_t size, void **addrp,
1868     bus_dmamap_t *mapp)
1869 {
1870 	bus_dma_segment_t seglist[1];
1871 	int nsegs, error;
1872 
1873 	if ((error = bus_dmamem_alloc(sc->sc_dmat, size, PAGE_SIZE, 0, seglist,
1874 	    1, &nsegs, M_NOWAIT)) != 0) {
1875 		device_printf(sc->sc_dev,
1876 		    "unable to allocate DMA buffer, error=%d\n", error);
1877 		goto fail_alloc;
1878 	}
1879 
1880 	if ((error = bus_dmamem_map(sc->sc_dmat, seglist, 1, size, addrp,
1881 	    BUS_DMA_NOWAIT | BUS_DMA_COHERENT)) != 0) {
1882 		device_printf(sc->sc_dev,
1883 		    "unable to map DMA buffer, error=%d\n",
1884 		    error);
1885 		goto fail_map;
1886 	}
1887 
1888 	if ((error = bus_dmamap_create(sc->sc_dmat, size, 1, size, 0,
1889 	    BUS_DMA_NOWAIT, mapp)) != 0) {
1890 		device_printf(sc->sc_dev,
1891 		    "unable to create DMA map, error=%d\n", error);
1892 		goto fail_create;
1893 	}
1894 
1895 	if ((error = bus_dmamap_load(sc->sc_dmat, *mapp, *addrp, size, NULL,
1896 	    BUS_DMA_NOWAIT)) != 0) {
1897 		aprint_error_dev(sc->sc_dev,
1898 		    "unable to load DMA map, error=%d\n", error);
1899 		goto fail_load;
1900 	}
1901 
1902 	return 0;
1903 
1904  fail_load:
1905 	bus_dmamap_destroy(sc->sc_dmat, *mapp);
1906  fail_create:
1907 	bus_dmamem_unmap(sc->sc_dmat, *addrp, size);
1908  fail_map:
1909 	bus_dmamem_free(sc->sc_dmat, seglist, 1);
1910  fail_alloc:
1911 	return error;
1912 }
1913