1 //===-- X86TargetMachine.cpp - Define TargetMachine for the X86 -----------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file defines the X86 specific subclass of TargetMachine. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "X86TargetMachine.h" 14 #include "MCTargetDesc/X86MCTargetDesc.h" 15 #include "TargetInfo/X86TargetInfo.h" 16 #include "X86.h" 17 #include "X86MachineFunctionInfo.h" 18 #include "X86MacroFusion.h" 19 #include "X86Subtarget.h" 20 #include "X86TargetObjectFile.h" 21 #include "X86TargetTransformInfo.h" 22 #include "llvm/ADT/SmallString.h" 23 #include "llvm/ADT/StringRef.h" 24 #include "llvm/Analysis/TargetTransformInfo.h" 25 #include "llvm/CodeGen/ExecutionDomainFix.h" 26 #include "llvm/CodeGen/GlobalISel/CSEInfo.h" 27 #include "llvm/CodeGen/GlobalISel/CallLowering.h" 28 #include "llvm/CodeGen/GlobalISel/IRTranslator.h" 29 #include "llvm/CodeGen/GlobalISel/InstructionSelect.h" 30 #include "llvm/CodeGen/GlobalISel/InstructionSelector.h" 31 #include "llvm/CodeGen/GlobalISel/Legalizer.h" 32 #include "llvm/CodeGen/GlobalISel/RegBankSelect.h" 33 #include "llvm/CodeGen/MIRParser/MIParser.h" 34 #include "llvm/CodeGen/MIRYamlMapping.h" 35 #include "llvm/CodeGen/MachineScheduler.h" 36 #include "llvm/CodeGen/Passes.h" 37 #include "llvm/CodeGen/TargetPassConfig.h" 38 #include "llvm/IR/Attributes.h" 39 #include "llvm/IR/DataLayout.h" 40 #include "llvm/IR/Function.h" 41 #include "llvm/MC/MCAsmInfo.h" 42 #include "llvm/MC/TargetRegistry.h" 43 #include "llvm/Pass.h" 44 #include "llvm/Support/CodeGen.h" 45 #include "llvm/Support/CommandLine.h" 46 #include "llvm/Support/ErrorHandling.h" 47 #include "llvm/Target/TargetLoweringObjectFile.h" 48 #include "llvm/Target/TargetOptions.h" 49 #include "llvm/TargetParser/Triple.h" 50 #include "llvm/Transforms/CFGuard.h" 51 #include <memory> 52 #include <optional> 53 #include <string> 54 55 using namespace llvm; 56 57 static cl::opt<bool> EnableMachineCombinerPass("x86-machine-combiner", 58 cl::desc("Enable the machine combiner pass"), 59 cl::init(true), cl::Hidden); 60 61 static cl::opt<bool> 62 EnableTileRAPass("x86-tile-ra", 63 cl::desc("Enable the tile register allocation pass"), 64 cl::init(true), cl::Hidden); 65 66 extern "C" LLVM_C_ABI void LLVMInitializeX86Target() { 67 // Register the target. 68 RegisterTargetMachine<X86TargetMachine> X(getTheX86_32Target()); 69 RegisterTargetMachine<X86TargetMachine> Y(getTheX86_64Target()); 70 71 PassRegistry &PR = *PassRegistry::getPassRegistry(); 72 initializeX86LowerAMXIntrinsicsLegacyPassPass(PR); 73 initializeX86LowerAMXTypeLegacyPassPass(PR); 74 initializeX86PreTileConfigPass(PR); 75 initializeGlobalISel(PR); 76 initializeWinEHStatePassPass(PR); 77 initializeFixupBWInstPassPass(PR); 78 initializeCompressEVEXPassPass(PR); 79 initializeFixupLEAPassPass(PR); 80 initializeFPSPass(PR); 81 initializeX86FixupSetCCPassPass(PR); 82 initializeX86CallFrameOptimizationPass(PR); 83 initializeX86CmovConverterPassPass(PR); 84 initializeX86TileConfigPass(PR); 85 initializeX86FastPreTileConfigPass(PR); 86 initializeX86FastTileConfigPass(PR); 87 initializeKCFIPass(PR); 88 initializeX86LowerTileCopyPass(PR); 89 initializeX86ExpandPseudoPass(PR); 90 initializeX86ExecutionDomainFixPass(PR); 91 initializeX86DomainReassignmentPass(PR); 92 initializeX86AvoidSFBPassPass(PR); 93 initializeX86AvoidTrailingCallPassPass(PR); 94 initializeX86SpeculativeLoadHardeningPassPass(PR); 95 initializeX86SpeculativeExecutionSideEffectSuppressionPass(PR); 96 initializeX86FlagsCopyLoweringPassPass(PR); 97 initializeX86LoadValueInjectionLoadHardeningPassPass(PR); 98 initializeX86LoadValueInjectionRetHardeningPassPass(PR); 99 initializeX86OptimizeLEAPassPass(PR); 100 initializeX86PartialReductionPass(PR); 101 initializePseudoProbeInserterPass(PR); 102 initializeX86ReturnThunksPass(PR); 103 initializeX86DAGToDAGISelLegacyPass(PR); 104 initializeX86ArgumentStackSlotPassPass(PR); 105 initializeX86FixupInstTuningPassPass(PR); 106 initializeX86FixupVectorConstantsPassPass(PR); 107 initializeX86DynAllocaExpanderPass(PR); 108 } 109 110 static std::unique_ptr<TargetLoweringObjectFile> createTLOF(const Triple &TT) { 111 if (TT.isOSBinFormatMachO()) { 112 if (TT.getArch() == Triple::x86_64) 113 return std::make_unique<X86_64MachoTargetObjectFile>(); 114 return std::make_unique<TargetLoweringObjectFileMachO>(); 115 } 116 117 if (TT.isOSBinFormatCOFF()) 118 return std::make_unique<TargetLoweringObjectFileCOFF>(); 119 120 if (TT.getArch() == Triple::x86_64) 121 return std::make_unique<X86_64ELFTargetObjectFile>(); 122 return std::make_unique<X86ELFTargetObjectFile>(); 123 } 124 125 static std::string computeDataLayout(const Triple &TT) { 126 // X86 is little endian 127 std::string Ret = "e"; 128 129 Ret += DataLayout::getManglingComponent(TT); 130 // X86 and x32 have 32 bit pointers. 131 if (!TT.isArch64Bit() || TT.isX32() || TT.isOSNaCl()) 132 Ret += "-p:32:32"; 133 134 // Address spaces for 32 bit signed, 32 bit unsigned, and 64 bit pointers. 135 Ret += "-p270:32:32-p271:32:32-p272:64:64"; 136 137 // Some ABIs align 64 bit integers and doubles to 64 bits, others to 32. 138 // 128 bit integers are not specified in the 32-bit ABIs but are used 139 // internally for lowering f128, so we match the alignment to that. 140 if (TT.isArch64Bit() || TT.isOSWindows() || TT.isOSNaCl()) 141 Ret += "-i64:64-i128:128"; 142 else if (TT.isOSIAMCU()) 143 Ret += "-i64:32-f64:32"; 144 else 145 Ret += "-i128:128-f64:32:64"; 146 147 // Some ABIs align long double to 128 bits, others to 32. 148 if (TT.isOSNaCl() || TT.isOSIAMCU()) 149 ; // No f80 150 else if (TT.isArch64Bit() || TT.isOSDarwin() || TT.isWindowsMSVCEnvironment()) 151 Ret += "-f80:128"; 152 else 153 Ret += "-f80:32"; 154 155 if (TT.isOSIAMCU()) 156 Ret += "-f128:32"; 157 158 // The registers can hold 8, 16, 32 or, in x86-64, 64 bits. 159 if (TT.isArch64Bit()) 160 Ret += "-n8:16:32:64"; 161 else 162 Ret += "-n8:16:32"; 163 164 // The stack is aligned to 32 bits on some ABIs and 128 bits on others. 165 if ((!TT.isArch64Bit() && TT.isOSWindows()) || TT.isOSIAMCU()) 166 Ret += "-a:0:32-S32"; 167 else 168 Ret += "-S128"; 169 170 return Ret; 171 } 172 173 static Reloc::Model getEffectiveRelocModel(const Triple &TT, bool JIT, 174 std::optional<Reloc::Model> RM) { 175 bool is64Bit = TT.getArch() == Triple::x86_64; 176 if (!RM) { 177 // JIT codegen should use static relocations by default, since it's 178 // typically executed in process and not relocatable. 179 if (JIT) 180 return Reloc::Static; 181 182 // Darwin defaults to PIC in 64 bit mode and dynamic-no-pic in 32 bit mode. 183 // Win64 requires rip-rel addressing, thus we force it to PIC. Otherwise we 184 // use static relocation model by default. 185 if (TT.isOSDarwin()) { 186 if (is64Bit) 187 return Reloc::PIC_; 188 return Reloc::DynamicNoPIC; 189 } 190 if (TT.isOSWindows() && is64Bit) 191 return Reloc::PIC_; 192 return Reloc::Static; 193 } 194 195 // ELF and X86-64 don't have a distinct DynamicNoPIC model. DynamicNoPIC 196 // is defined as a model for code which may be used in static or dynamic 197 // executables but not necessarily a shared library. On X86-32 we just 198 // compile in -static mode, in x86-64 we use PIC. 199 if (*RM == Reloc::DynamicNoPIC) { 200 if (is64Bit) 201 return Reloc::PIC_; 202 if (!TT.isOSDarwin()) 203 return Reloc::Static; 204 } 205 206 // If we are on Darwin, disallow static relocation model in X86-64 mode, since 207 // the Mach-O file format doesn't support it. 208 if (*RM == Reloc::Static && TT.isOSDarwin() && is64Bit) 209 return Reloc::PIC_; 210 211 return *RM; 212 } 213 214 static CodeModel::Model 215 getEffectiveX86CodeModel(const Triple &TT, std::optional<CodeModel::Model> CM, 216 bool JIT) { 217 bool Is64Bit = TT.getArch() == Triple::x86_64; 218 if (CM) { 219 if (*CM == CodeModel::Tiny) 220 report_fatal_error("Target does not support the tiny CodeModel", false); 221 return *CM; 222 } 223 if (JIT) 224 return Is64Bit ? CodeModel::Large : CodeModel::Small; 225 return CodeModel::Small; 226 } 227 228 /// Create an X86 target. 229 /// 230 X86TargetMachine::X86TargetMachine(const Target &T, const Triple &TT, 231 StringRef CPU, StringRef FS, 232 const TargetOptions &Options, 233 std::optional<Reloc::Model> RM, 234 std::optional<CodeModel::Model> CM, 235 CodeGenOptLevel OL, bool JIT) 236 : CodeGenTargetMachineImpl(T, computeDataLayout(TT), TT, CPU, FS, Options, 237 getEffectiveRelocModel(TT, JIT, RM), 238 getEffectiveX86CodeModel(TT, CM, JIT), OL), 239 TLOF(createTLOF(getTargetTriple())), IsJIT(JIT) { 240 // On PS4/PS5, the "return address" of a 'noreturn' call must still be within 241 // the calling function. Note that this also includes __stack_chk_fail, 242 // so there was some target-specific logic in the instruction selectors 243 // to handle that. That code has since been generalized, so the only thing 244 // needed is to set TrapUnreachable here. 245 if (TT.isPS() || TT.isOSBinFormatMachO()) { 246 this->Options.TrapUnreachable = true; 247 this->Options.NoTrapAfterNoreturn = TT.isOSBinFormatMachO(); 248 } 249 250 setMachineOutliner(true); 251 252 // x86 supports the debug entry values. 253 setSupportsDebugEntryValues(true); 254 255 initAsmInfo(); 256 } 257 258 X86TargetMachine::~X86TargetMachine() = default; 259 260 const X86Subtarget * 261 X86TargetMachine::getSubtargetImpl(const Function &F) const { 262 Attribute CPUAttr = F.getFnAttribute("target-cpu"); 263 Attribute TuneAttr = F.getFnAttribute("tune-cpu"); 264 Attribute FSAttr = F.getFnAttribute("target-features"); 265 266 StringRef CPU = 267 CPUAttr.isValid() ? CPUAttr.getValueAsString() : (StringRef)TargetCPU; 268 // "x86-64" is a default target setting for many front ends. In these cases, 269 // they actually request for "generic" tuning unless the "tune-cpu" was 270 // specified. 271 StringRef TuneCPU = TuneAttr.isValid() ? TuneAttr.getValueAsString() 272 : CPU == "x86-64" ? "generic" 273 : (StringRef)CPU; 274 StringRef FS = 275 FSAttr.isValid() ? FSAttr.getValueAsString() : (StringRef)TargetFS; 276 277 SmallString<512> Key; 278 // The additions here are ordered so that the definitely short strings are 279 // added first so we won't exceed the small size. We append the 280 // much longer FS string at the end so that we only heap allocate at most 281 // one time. 282 283 // Extract prefer-vector-width attribute. 284 unsigned PreferVectorWidthOverride = 0; 285 Attribute PreferVecWidthAttr = F.getFnAttribute("prefer-vector-width"); 286 if (PreferVecWidthAttr.isValid()) { 287 StringRef Val = PreferVecWidthAttr.getValueAsString(); 288 unsigned Width; 289 if (!Val.getAsInteger(0, Width)) { 290 Key += 'p'; 291 Key += Val; 292 PreferVectorWidthOverride = Width; 293 } 294 } 295 296 // Extract min-legal-vector-width attribute. 297 unsigned RequiredVectorWidth = UINT32_MAX; 298 Attribute MinLegalVecWidthAttr = F.getFnAttribute("min-legal-vector-width"); 299 if (MinLegalVecWidthAttr.isValid()) { 300 StringRef Val = MinLegalVecWidthAttr.getValueAsString(); 301 unsigned Width; 302 if (!Val.getAsInteger(0, Width)) { 303 Key += 'm'; 304 Key += Val; 305 RequiredVectorWidth = Width; 306 } 307 } 308 309 // Add CPU to the Key. 310 Key += CPU; 311 312 // Add tune CPU to the Key. 313 Key += TuneCPU; 314 315 // Keep track of the start of the feature portion of the string. 316 unsigned FSStart = Key.size(); 317 318 // FIXME: This is related to the code below to reset the target options, 319 // we need to know whether or not the soft float flag is set on the 320 // function before we can generate a subtarget. We also need to use 321 // it as a key for the subtarget since that can be the only difference 322 // between two functions. 323 bool SoftFloat = F.getFnAttribute("use-soft-float").getValueAsBool(); 324 // If the soft float attribute is set on the function turn on the soft float 325 // subtarget feature. 326 if (SoftFloat) 327 Key += FS.empty() ? "+soft-float" : "+soft-float,"; 328 329 Key += FS; 330 331 // We may have added +soft-float to the features so move the StringRef to 332 // point to the full string in the Key. 333 FS = Key.substr(FSStart); 334 335 auto &I = SubtargetMap[Key]; 336 if (!I) { 337 // This needs to be done before we create a new subtarget since any 338 // creation will depend on the TM and the code generation flags on the 339 // function that reside in TargetOptions. 340 resetTargetOptions(F); 341 I = std::make_unique<X86Subtarget>( 342 TargetTriple, CPU, TuneCPU, FS, *this, 343 MaybeAlign(F.getParent()->getOverrideStackAlignment()), 344 PreferVectorWidthOverride, RequiredVectorWidth); 345 } 346 return I.get(); 347 } 348 349 yaml::MachineFunctionInfo *X86TargetMachine::createDefaultFuncInfoYAML() const { 350 return new yaml::X86MachineFunctionInfo(); 351 } 352 353 yaml::MachineFunctionInfo * 354 X86TargetMachine::convertFuncInfoToYAML(const MachineFunction &MF) const { 355 const auto *MFI = MF.getInfo<X86MachineFunctionInfo>(); 356 return new yaml::X86MachineFunctionInfo(*MFI); 357 } 358 359 bool X86TargetMachine::parseMachineFunctionInfo( 360 const yaml::MachineFunctionInfo &MFI, PerFunctionMIParsingState &PFS, 361 SMDiagnostic &Error, SMRange &SourceRange) const { 362 const auto &YamlMFI = static_cast<const yaml::X86MachineFunctionInfo &>(MFI); 363 PFS.MF.getInfo<X86MachineFunctionInfo>()->initializeBaseYamlFields(YamlMFI); 364 return false; 365 } 366 367 bool X86TargetMachine::isNoopAddrSpaceCast(unsigned SrcAS, 368 unsigned DestAS) const { 369 assert(SrcAS != DestAS && "Expected different address spaces!"); 370 if (getPointerSize(SrcAS) != getPointerSize(DestAS)) 371 return false; 372 return SrcAS < 256 && DestAS < 256; 373 } 374 375 void X86TargetMachine::reset() { SubtargetMap.clear(); } 376 377 //===----------------------------------------------------------------------===// 378 // X86 TTI query. 379 //===----------------------------------------------------------------------===// 380 381 TargetTransformInfo 382 X86TargetMachine::getTargetTransformInfo(const Function &F) const { 383 return TargetTransformInfo(X86TTIImpl(this, F)); 384 } 385 386 //===----------------------------------------------------------------------===// 387 // Pass Pipeline Configuration 388 //===----------------------------------------------------------------------===// 389 390 namespace { 391 392 /// X86 Code Generator Pass Configuration Options. 393 class X86PassConfig : public TargetPassConfig { 394 public: 395 X86PassConfig(X86TargetMachine &TM, PassManagerBase &PM) 396 : TargetPassConfig(TM, PM) {} 397 398 X86TargetMachine &getX86TargetMachine() const { 399 return getTM<X86TargetMachine>(); 400 } 401 402 ScheduleDAGInstrs * 403 createMachineScheduler(MachineSchedContext *C) const override { 404 ScheduleDAGMILive *DAG = createGenericSchedLive(C); 405 DAG->addMutation(createX86MacroFusionDAGMutation()); 406 return DAG; 407 } 408 409 ScheduleDAGInstrs * 410 createPostMachineScheduler(MachineSchedContext *C) const override { 411 ScheduleDAGMI *DAG = createGenericSchedPostRA(C); 412 DAG->addMutation(createX86MacroFusionDAGMutation()); 413 return DAG; 414 } 415 416 void addIRPasses() override; 417 bool addInstSelector() override; 418 bool addIRTranslator() override; 419 bool addLegalizeMachineIR() override; 420 bool addRegBankSelect() override; 421 bool addGlobalInstructionSelect() override; 422 bool addILPOpts() override; 423 bool addPreISel() override; 424 void addMachineSSAOptimization() override; 425 void addPreRegAlloc() override; 426 bool addPostFastRegAllocRewrite() override; 427 void addPostRegAlloc() override; 428 void addPreEmitPass() override; 429 void addPreEmitPass2() override; 430 void addPreSched2() override; 431 bool addRegAssignAndRewriteOptimized() override; 432 433 std::unique_ptr<CSEConfigBase> getCSEConfig() const override; 434 }; 435 436 class X86ExecutionDomainFix : public ExecutionDomainFix { 437 public: 438 static char ID; 439 X86ExecutionDomainFix() : ExecutionDomainFix(ID, X86::VR128XRegClass) {} 440 StringRef getPassName() const override { 441 return "X86 Execution Dependency Fix"; 442 } 443 }; 444 char X86ExecutionDomainFix::ID; 445 446 } // end anonymous namespace 447 448 INITIALIZE_PASS_BEGIN(X86ExecutionDomainFix, "x86-execution-domain-fix", 449 "X86 Execution Domain Fix", false, false) 450 INITIALIZE_PASS_DEPENDENCY(ReachingDefAnalysis) 451 INITIALIZE_PASS_END(X86ExecutionDomainFix, "x86-execution-domain-fix", 452 "X86 Execution Domain Fix", false, false) 453 454 TargetPassConfig *X86TargetMachine::createPassConfig(PassManagerBase &PM) { 455 return new X86PassConfig(*this, PM); 456 } 457 458 MachineFunctionInfo *X86TargetMachine::createMachineFunctionInfo( 459 BumpPtrAllocator &Allocator, const Function &F, 460 const TargetSubtargetInfo *STI) const { 461 return X86MachineFunctionInfo::create<X86MachineFunctionInfo>(Allocator, F, 462 STI); 463 } 464 465 void X86PassConfig::addIRPasses() { 466 addPass(createAtomicExpandLegacyPass()); 467 468 // We add both pass anyway and when these two passes run, we skip the pass 469 // based on the option level and option attribute. 470 addPass(createX86LowerAMXIntrinsicsPass()); 471 addPass(createX86LowerAMXTypePass()); 472 473 TargetPassConfig::addIRPasses(); 474 475 if (TM->getOptLevel() != CodeGenOptLevel::None) { 476 addPass(createInterleavedAccessPass()); 477 addPass(createX86PartialReductionPass()); 478 } 479 480 // Add passes that handle indirect branch removal and insertion of a retpoline 481 // thunk. These will be a no-op unless a function subtarget has the retpoline 482 // feature enabled. 483 addPass(createIndirectBrExpandPass()); 484 485 // Add Control Flow Guard checks. 486 const Triple &TT = TM->getTargetTriple(); 487 if (TT.isOSWindows()) { 488 if (TT.getArch() == Triple::x86_64) { 489 addPass(createCFGuardDispatchPass()); 490 } else { 491 addPass(createCFGuardCheckPass()); 492 } 493 } 494 495 if (TM->Options.JMCInstrument) 496 addPass(createJMCInstrumenterPass()); 497 } 498 499 bool X86PassConfig::addInstSelector() { 500 // Install an instruction selector. 501 addPass(createX86ISelDag(getX86TargetMachine(), getOptLevel())); 502 503 // For ELF, cleanup any local-dynamic TLS accesses. 504 if (TM->getTargetTriple().isOSBinFormatELF() && 505 getOptLevel() != CodeGenOptLevel::None) 506 addPass(createCleanupLocalDynamicTLSPass()); 507 508 addPass(createX86GlobalBaseRegPass()); 509 addPass(createX86ArgumentStackSlotPass()); 510 return false; 511 } 512 513 bool X86PassConfig::addIRTranslator() { 514 addPass(new IRTranslator(getOptLevel())); 515 return false; 516 } 517 518 bool X86PassConfig::addLegalizeMachineIR() { 519 addPass(new Legalizer()); 520 return false; 521 } 522 523 bool X86PassConfig::addRegBankSelect() { 524 addPass(new RegBankSelect()); 525 return false; 526 } 527 528 bool X86PassConfig::addGlobalInstructionSelect() { 529 addPass(new InstructionSelect(getOptLevel())); 530 // Add GlobalBaseReg in case there is no SelectionDAG passes afterwards 531 if (isGlobalISelAbortEnabled()) 532 addPass(createX86GlobalBaseRegPass()); 533 return false; 534 } 535 536 bool X86PassConfig::addILPOpts() { 537 addPass(&EarlyIfConverterLegacyID); 538 if (EnableMachineCombinerPass) 539 addPass(&MachineCombinerID); 540 addPass(createX86CmovConverterPass()); 541 return true; 542 } 543 544 bool X86PassConfig::addPreISel() { 545 // Only add this pass for 32-bit x86 Windows. 546 const Triple &TT = TM->getTargetTriple(); 547 if (TT.isOSWindows() && TT.getArch() == Triple::x86) 548 addPass(createX86WinEHStatePass()); 549 return true; 550 } 551 552 void X86PassConfig::addPreRegAlloc() { 553 if (getOptLevel() != CodeGenOptLevel::None) { 554 addPass(&LiveRangeShrinkID); 555 addPass(createX86WinFixupBufferSecurityCheckPass()); 556 addPass(createX86FixupSetCC()); 557 addPass(createX86OptimizeLEAs()); 558 addPass(createX86CallFrameOptimization()); 559 addPass(createX86AvoidStoreForwardingBlocks()); 560 } 561 562 addPass(createX86SpeculativeLoadHardeningPass()); 563 addPass(createX86FlagsCopyLoweringPass()); 564 addPass(createX86DynAllocaExpander()); 565 566 if (getOptLevel() != CodeGenOptLevel::None) 567 addPass(createX86PreTileConfigPass()); 568 else 569 addPass(createX86FastPreTileConfigPass()); 570 } 571 572 void X86PassConfig::addMachineSSAOptimization() { 573 addPass(createX86DomainReassignmentPass()); 574 TargetPassConfig::addMachineSSAOptimization(); 575 } 576 577 void X86PassConfig::addPostRegAlloc() { 578 addPass(createX86LowerTileCopyPass()); 579 addPass(createX86FloatingPointStackifierPass()); 580 // When -O0 is enabled, the Load Value Injection Hardening pass will fall back 581 // to using the Speculative Execution Side Effect Suppression pass for 582 // mitigation. This is to prevent slow downs due to 583 // analyses needed by the LVIHardening pass when compiling at -O0. 584 if (getOptLevel() != CodeGenOptLevel::None) 585 addPass(createX86LoadValueInjectionLoadHardeningPass()); 586 } 587 588 void X86PassConfig::addPreSched2() { 589 addPass(createX86ExpandPseudoPass()); 590 addPass(createKCFIPass()); 591 } 592 593 void X86PassConfig::addPreEmitPass() { 594 if (getOptLevel() != CodeGenOptLevel::None) { 595 addPass(new X86ExecutionDomainFix()); 596 addPass(createBreakFalseDeps()); 597 } 598 599 addPass(createX86IndirectBranchTrackingPass()); 600 601 addPass(createX86IssueVZeroUpperPass()); 602 603 if (getOptLevel() != CodeGenOptLevel::None) { 604 addPass(createX86FixupBWInsts()); 605 addPass(createX86PadShortFunctions()); 606 addPass(createX86FixupLEAs()); 607 addPass(createX86FixupInstTuning()); 608 addPass(createX86FixupVectorConstants()); 609 } 610 addPass(createX86CompressEVEXPass()); 611 addPass(createX86DiscriminateMemOpsPass()); 612 addPass(createX86InsertPrefetchPass()); 613 addPass(createX86InsertX87waitPass()); 614 } 615 616 void X86PassConfig::addPreEmitPass2() { 617 const Triple &TT = TM->getTargetTriple(); 618 const MCAsmInfo *MAI = TM->getMCAsmInfo(); 619 620 // The X86 Speculative Execution Pass must run after all control 621 // flow graph modifying passes. As a result it was listed to run right before 622 // the X86 Retpoline Thunks pass. The reason it must run after control flow 623 // graph modifications is that the model of LFENCE in LLVM has to be updated 624 // (FIXME: https://bugs.llvm.org/show_bug.cgi?id=45167). Currently the 625 // placement of this pass was hand checked to ensure that the subsequent 626 // passes don't move the code around the LFENCEs in a way that will hurt the 627 // correctness of this pass. This placement has been shown to work based on 628 // hand inspection of the codegen output. 629 addPass(createX86SpeculativeExecutionSideEffectSuppression()); 630 addPass(createX86IndirectThunksPass()); 631 addPass(createX86ReturnThunksPass()); 632 633 // Insert extra int3 instructions after trailing call instructions to avoid 634 // issues in the unwinder. 635 if (TT.isOSWindows() && TT.getArch() == Triple::x86_64) 636 addPass(createX86AvoidTrailingCallPass()); 637 638 // Verify basic block incoming and outgoing cfa offset and register values and 639 // correct CFA calculation rule where needed by inserting appropriate CFI 640 // instructions. 641 if (!TT.isOSDarwin() && 642 (!TT.isOSWindows() || 643 MAI->getExceptionHandlingType() == ExceptionHandling::DwarfCFI)) 644 addPass(createCFIInstrInserter()); 645 646 if (TT.isOSWindows()) { 647 // Identify valid longjmp targets for Windows Control Flow Guard. 648 addPass(createCFGuardLongjmpPass()); 649 // Identify valid eh continuation targets for Windows EHCont Guard. 650 addPass(createEHContGuardCatchretPass()); 651 } 652 addPass(createX86LoadValueInjectionRetHardeningPass()); 653 654 // Insert pseudo probe annotation for callsite profiling 655 addPass(createPseudoProbeInserter()); 656 657 // KCFI indirect call checks are lowered to a bundle, and on Darwin platforms, 658 // also CALL_RVMARKER. 659 addPass(createUnpackMachineBundles([&TT](const MachineFunction &MF) { 660 // Only run bundle expansion if the module uses kcfi, or there are relevant 661 // ObjC runtime functions present in the module. 662 const Function &F = MF.getFunction(); 663 const Module *M = F.getParent(); 664 return M->getModuleFlag("kcfi") || 665 (TT.isOSDarwin() && 666 (M->getFunction("objc_retainAutoreleasedReturnValue") || 667 M->getFunction("objc_unsafeClaimAutoreleasedReturnValue"))); 668 })); 669 } 670 671 bool X86PassConfig::addPostFastRegAllocRewrite() { 672 addPass(createX86FastTileConfigPass()); 673 return true; 674 } 675 676 std::unique_ptr<CSEConfigBase> X86PassConfig::getCSEConfig() const { 677 return getStandardCSEConfigForOpt(TM->getOptLevel()); 678 } 679 680 static bool onlyAllocateTileRegisters(const TargetRegisterInfo &TRI, 681 const MachineRegisterInfo &MRI, 682 const Register Reg) { 683 const TargetRegisterClass *RC = MRI.getRegClass(Reg); 684 return static_cast<const X86RegisterInfo &>(TRI).isTileRegisterClass(RC); 685 } 686 687 bool X86PassConfig::addRegAssignAndRewriteOptimized() { 688 // Don't support tile RA when RA is specified by command line "-regalloc". 689 if (!isCustomizedRegAlloc() && EnableTileRAPass) { 690 // Allocate tile register first. 691 addPass(createGreedyRegisterAllocator(onlyAllocateTileRegisters)); 692 addPass(createX86TileConfigPass()); 693 } 694 return TargetPassConfig::addRegAssignAndRewriteOptimized(); 695 } 696