xref: /llvm-project/llvm/lib/Target/X86/MCTargetDesc/X86MCTargetDesc.cpp (revision dfe43bd1ca46c59399b7cbbf81b09256232e27f9)
1 //===-- X86MCTargetDesc.cpp - X86 Target Descriptions ---------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file provides X86 specific target descriptions.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "X86MCTargetDesc.h"
14 #include "TargetInfo/X86TargetInfo.h"
15 #include "X86ATTInstPrinter.h"
16 #include "X86BaseInfo.h"
17 #include "X86IntelInstPrinter.h"
18 #include "X86MCAsmInfo.h"
19 #include "X86TargetStreamer.h"
20 #include "llvm/ADT/APInt.h"
21 #include "llvm/DebugInfo/CodeView/CodeView.h"
22 #include "llvm/MC/MCDwarf.h"
23 #include "llvm/MC/MCInstrAnalysis.h"
24 #include "llvm/MC/MCInstrInfo.h"
25 #include "llvm/MC/MCRegisterInfo.h"
26 #include "llvm/MC/MCStreamer.h"
27 #include "llvm/MC/MCSubtargetInfo.h"
28 #include "llvm/MC/TargetRegistry.h"
29 #include "llvm/Support/ErrorHandling.h"
30 #include "llvm/TargetParser/Host.h"
31 #include "llvm/TargetParser/Triple.h"
32 
33 using namespace llvm;
34 
35 #define GET_REGINFO_MC_DESC
36 #include "X86GenRegisterInfo.inc"
37 
38 #define GET_INSTRINFO_MC_DESC
39 #define GET_INSTRINFO_MC_HELPERS
40 #define ENABLE_INSTR_PREDICATE_VERIFIER
41 #include "X86GenInstrInfo.inc"
42 
43 #define GET_SUBTARGETINFO_MC_DESC
44 #include "X86GenSubtargetInfo.inc"
45 
46 std::string X86_MC::ParseX86Triple(const Triple &TT) {
47   std::string FS;
48   // SSE2 should default to enabled in 64-bit mode, but can be turned off
49   // explicitly.
50   if (TT.isArch64Bit())
51     FS = "+64bit-mode,-32bit-mode,-16bit-mode,+sse2";
52   else if (TT.getEnvironment() != Triple::CODE16)
53     FS = "-64bit-mode,+32bit-mode,-16bit-mode";
54   else
55     FS = "-64bit-mode,-32bit-mode,+16bit-mode";
56 
57   return FS;
58 }
59 
60 unsigned X86_MC::getDwarfRegFlavour(const Triple &TT, bool isEH) {
61   if (TT.getArch() == Triple::x86_64)
62     return DWARFFlavour::X86_64;
63 
64   if (TT.isOSDarwin())
65     return isEH ? DWARFFlavour::X86_32_DarwinEH : DWARFFlavour::X86_32_Generic;
66   if (TT.isOSCygMing())
67     // Unsupported by now, just quick fallback
68     return DWARFFlavour::X86_32_Generic;
69   return DWARFFlavour::X86_32_Generic;
70 }
71 
72 bool X86_MC::hasLockPrefix(const MCInst &MI) {
73   return MI.getFlags() & X86::IP_HAS_LOCK;
74 }
75 
76 static bool isMemOperand(const MCInst &MI, unsigned Op, unsigned RegClassID) {
77   const MCOperand &Base = MI.getOperand(Op + X86::AddrBaseReg);
78   const MCOperand &Index = MI.getOperand(Op + X86::AddrIndexReg);
79   const MCRegisterClass &RC = X86MCRegisterClasses[RegClassID];
80 
81   return (Base.isReg() && Base.getReg() && RC.contains(Base.getReg())) ||
82          (Index.isReg() && Index.getReg() && RC.contains(Index.getReg()));
83 }
84 
85 bool X86_MC::is16BitMemOperand(const MCInst &MI, unsigned Op,
86                                const MCSubtargetInfo &STI) {
87   const MCOperand &Base = MI.getOperand(Op + X86::AddrBaseReg);
88   const MCOperand &Index = MI.getOperand(Op + X86::AddrIndexReg);
89 
90   if (STI.hasFeature(X86::Is16Bit) && Base.isReg() && !Base.getReg() &&
91       Index.isReg() && !Index.getReg())
92     return true;
93   return isMemOperand(MI, Op, X86::GR16RegClassID);
94 }
95 
96 bool X86_MC::is32BitMemOperand(const MCInst &MI, unsigned Op) {
97   const MCOperand &Base = MI.getOperand(Op + X86::AddrBaseReg);
98   const MCOperand &Index = MI.getOperand(Op + X86::AddrIndexReg);
99   if (Base.isReg() && Base.getReg() == X86::EIP) {
100     assert(Index.isReg() && !Index.getReg() && "Invalid eip-based address");
101     return true;
102   }
103   if (Index.isReg() && Index.getReg() == X86::EIZ)
104     return true;
105   return isMemOperand(MI, Op, X86::GR32RegClassID);
106 }
107 
108 #ifndef NDEBUG
109 bool X86_MC::is64BitMemOperand(const MCInst &MI, unsigned Op) {
110   return isMemOperand(MI, Op, X86::GR64RegClassID);
111 }
112 #endif
113 
114 bool X86_MC::needsAddressSizeOverride(const MCInst &MI,
115                                       const MCSubtargetInfo &STI,
116                                       int MemoryOperand, uint64_t TSFlags) {
117   uint64_t AdSize = TSFlags & X86II::AdSizeMask;
118   bool Is16BitMode = STI.hasFeature(X86::Is16Bit);
119   bool Is32BitMode = STI.hasFeature(X86::Is32Bit);
120   bool Is64BitMode = STI.hasFeature(X86::Is64Bit);
121   if ((Is16BitMode && AdSize == X86II::AdSize32) ||
122       (Is32BitMode && AdSize == X86II::AdSize16) ||
123       (Is64BitMode && AdSize == X86II::AdSize32))
124     return true;
125   uint64_t Form = TSFlags & X86II::FormMask;
126   switch (Form) {
127   default:
128     break;
129   case X86II::RawFrmDstSrc: {
130     MCRegister siReg = MI.getOperand(1).getReg();
131     assert(((siReg == X86::SI && MI.getOperand(0).getReg() == X86::DI) ||
132             (siReg == X86::ESI && MI.getOperand(0).getReg() == X86::EDI) ||
133             (siReg == X86::RSI && MI.getOperand(0).getReg() == X86::RDI)) &&
134            "SI and DI register sizes do not match");
135     return (!Is32BitMode && siReg == X86::ESI) ||
136            (Is32BitMode && siReg == X86::SI);
137   }
138   case X86II::RawFrmSrc: {
139     MCRegister siReg = MI.getOperand(0).getReg();
140     return (!Is32BitMode && siReg == X86::ESI) ||
141            (Is32BitMode && siReg == X86::SI);
142   }
143   case X86II::RawFrmDst: {
144     MCRegister siReg = MI.getOperand(0).getReg();
145     return (!Is32BitMode && siReg == X86::EDI) ||
146            (Is32BitMode && siReg == X86::DI);
147   }
148   }
149 
150   // Determine where the memory operand starts, if present.
151   if (MemoryOperand < 0)
152     return false;
153 
154   if (STI.hasFeature(X86::Is64Bit)) {
155     assert(!is16BitMemOperand(MI, MemoryOperand, STI));
156     return is32BitMemOperand(MI, MemoryOperand);
157   }
158   if (STI.hasFeature(X86::Is32Bit)) {
159     assert(!is64BitMemOperand(MI, MemoryOperand));
160     return is16BitMemOperand(MI, MemoryOperand, STI);
161   }
162   assert(STI.hasFeature(X86::Is16Bit));
163   assert(!is64BitMemOperand(MI, MemoryOperand));
164   return !is16BitMemOperand(MI, MemoryOperand, STI);
165 }
166 
167 void X86_MC::initLLVMToSEHAndCVRegMapping(MCRegisterInfo *MRI) {
168   // FIXME: TableGen these.
169   for (unsigned Reg = X86::NoRegister + 1; Reg < X86::NUM_TARGET_REGS; ++Reg) {
170     unsigned SEH = MRI->getEncodingValue(Reg);
171     MRI->mapLLVMRegToSEHReg(Reg, SEH);
172   }
173 
174   // Mapping from CodeView to MC register id.
175   static const struct {
176     codeview::RegisterId CVReg;
177     MCPhysReg Reg;
178   } RegMap[] = {
179       {codeview::RegisterId::AL, X86::AL},
180       {codeview::RegisterId::CL, X86::CL},
181       {codeview::RegisterId::DL, X86::DL},
182       {codeview::RegisterId::BL, X86::BL},
183       {codeview::RegisterId::AH, X86::AH},
184       {codeview::RegisterId::CH, X86::CH},
185       {codeview::RegisterId::DH, X86::DH},
186       {codeview::RegisterId::BH, X86::BH},
187       {codeview::RegisterId::AX, X86::AX},
188       {codeview::RegisterId::CX, X86::CX},
189       {codeview::RegisterId::DX, X86::DX},
190       {codeview::RegisterId::BX, X86::BX},
191       {codeview::RegisterId::SP, X86::SP},
192       {codeview::RegisterId::BP, X86::BP},
193       {codeview::RegisterId::SI, X86::SI},
194       {codeview::RegisterId::DI, X86::DI},
195       {codeview::RegisterId::EAX, X86::EAX},
196       {codeview::RegisterId::ECX, X86::ECX},
197       {codeview::RegisterId::EDX, X86::EDX},
198       {codeview::RegisterId::EBX, X86::EBX},
199       {codeview::RegisterId::ESP, X86::ESP},
200       {codeview::RegisterId::EBP, X86::EBP},
201       {codeview::RegisterId::ESI, X86::ESI},
202       {codeview::RegisterId::EDI, X86::EDI},
203 
204       {codeview::RegisterId::EFLAGS, X86::EFLAGS},
205 
206       {codeview::RegisterId::ST0, X86::ST0},
207       {codeview::RegisterId::ST1, X86::ST1},
208       {codeview::RegisterId::ST2, X86::ST2},
209       {codeview::RegisterId::ST3, X86::ST3},
210       {codeview::RegisterId::ST4, X86::ST4},
211       {codeview::RegisterId::ST5, X86::ST5},
212       {codeview::RegisterId::ST6, X86::ST6},
213       {codeview::RegisterId::ST7, X86::ST7},
214 
215       {codeview::RegisterId::ST0, X86::FP0},
216       {codeview::RegisterId::ST1, X86::FP1},
217       {codeview::RegisterId::ST2, X86::FP2},
218       {codeview::RegisterId::ST3, X86::FP3},
219       {codeview::RegisterId::ST4, X86::FP4},
220       {codeview::RegisterId::ST5, X86::FP5},
221       {codeview::RegisterId::ST6, X86::FP6},
222       {codeview::RegisterId::ST7, X86::FP7},
223 
224       {codeview::RegisterId::MM0, X86::MM0},
225       {codeview::RegisterId::MM1, X86::MM1},
226       {codeview::RegisterId::MM2, X86::MM2},
227       {codeview::RegisterId::MM3, X86::MM3},
228       {codeview::RegisterId::MM4, X86::MM4},
229       {codeview::RegisterId::MM5, X86::MM5},
230       {codeview::RegisterId::MM6, X86::MM6},
231       {codeview::RegisterId::MM7, X86::MM7},
232 
233       {codeview::RegisterId::XMM0, X86::XMM0},
234       {codeview::RegisterId::XMM1, X86::XMM1},
235       {codeview::RegisterId::XMM2, X86::XMM2},
236       {codeview::RegisterId::XMM3, X86::XMM3},
237       {codeview::RegisterId::XMM4, X86::XMM4},
238       {codeview::RegisterId::XMM5, X86::XMM5},
239       {codeview::RegisterId::XMM6, X86::XMM6},
240       {codeview::RegisterId::XMM7, X86::XMM7},
241 
242       {codeview::RegisterId::XMM8, X86::XMM8},
243       {codeview::RegisterId::XMM9, X86::XMM9},
244       {codeview::RegisterId::XMM10, X86::XMM10},
245       {codeview::RegisterId::XMM11, X86::XMM11},
246       {codeview::RegisterId::XMM12, X86::XMM12},
247       {codeview::RegisterId::XMM13, X86::XMM13},
248       {codeview::RegisterId::XMM14, X86::XMM14},
249       {codeview::RegisterId::XMM15, X86::XMM15},
250 
251       {codeview::RegisterId::SIL, X86::SIL},
252       {codeview::RegisterId::DIL, X86::DIL},
253       {codeview::RegisterId::BPL, X86::BPL},
254       {codeview::RegisterId::SPL, X86::SPL},
255       {codeview::RegisterId::RAX, X86::RAX},
256       {codeview::RegisterId::RBX, X86::RBX},
257       {codeview::RegisterId::RCX, X86::RCX},
258       {codeview::RegisterId::RDX, X86::RDX},
259       {codeview::RegisterId::RSI, X86::RSI},
260       {codeview::RegisterId::RDI, X86::RDI},
261       {codeview::RegisterId::RBP, X86::RBP},
262       {codeview::RegisterId::RSP, X86::RSP},
263       {codeview::RegisterId::R8, X86::R8},
264       {codeview::RegisterId::R9, X86::R9},
265       {codeview::RegisterId::R10, X86::R10},
266       {codeview::RegisterId::R11, X86::R11},
267       {codeview::RegisterId::R12, X86::R12},
268       {codeview::RegisterId::R13, X86::R13},
269       {codeview::RegisterId::R14, X86::R14},
270       {codeview::RegisterId::R15, X86::R15},
271       {codeview::RegisterId::R8B, X86::R8B},
272       {codeview::RegisterId::R9B, X86::R9B},
273       {codeview::RegisterId::R10B, X86::R10B},
274       {codeview::RegisterId::R11B, X86::R11B},
275       {codeview::RegisterId::R12B, X86::R12B},
276       {codeview::RegisterId::R13B, X86::R13B},
277       {codeview::RegisterId::R14B, X86::R14B},
278       {codeview::RegisterId::R15B, X86::R15B},
279       {codeview::RegisterId::R8W, X86::R8W},
280       {codeview::RegisterId::R9W, X86::R9W},
281       {codeview::RegisterId::R10W, X86::R10W},
282       {codeview::RegisterId::R11W, X86::R11W},
283       {codeview::RegisterId::R12W, X86::R12W},
284       {codeview::RegisterId::R13W, X86::R13W},
285       {codeview::RegisterId::R14W, X86::R14W},
286       {codeview::RegisterId::R15W, X86::R15W},
287       {codeview::RegisterId::R8D, X86::R8D},
288       {codeview::RegisterId::R9D, X86::R9D},
289       {codeview::RegisterId::R10D, X86::R10D},
290       {codeview::RegisterId::R11D, X86::R11D},
291       {codeview::RegisterId::R12D, X86::R12D},
292       {codeview::RegisterId::R13D, X86::R13D},
293       {codeview::RegisterId::R14D, X86::R14D},
294       {codeview::RegisterId::R15D, X86::R15D},
295       {codeview::RegisterId::AMD64_YMM0, X86::YMM0},
296       {codeview::RegisterId::AMD64_YMM1, X86::YMM1},
297       {codeview::RegisterId::AMD64_YMM2, X86::YMM2},
298       {codeview::RegisterId::AMD64_YMM3, X86::YMM3},
299       {codeview::RegisterId::AMD64_YMM4, X86::YMM4},
300       {codeview::RegisterId::AMD64_YMM5, X86::YMM5},
301       {codeview::RegisterId::AMD64_YMM6, X86::YMM6},
302       {codeview::RegisterId::AMD64_YMM7, X86::YMM7},
303       {codeview::RegisterId::AMD64_YMM8, X86::YMM8},
304       {codeview::RegisterId::AMD64_YMM9, X86::YMM9},
305       {codeview::RegisterId::AMD64_YMM10, X86::YMM10},
306       {codeview::RegisterId::AMD64_YMM11, X86::YMM11},
307       {codeview::RegisterId::AMD64_YMM12, X86::YMM12},
308       {codeview::RegisterId::AMD64_YMM13, X86::YMM13},
309       {codeview::RegisterId::AMD64_YMM14, X86::YMM14},
310       {codeview::RegisterId::AMD64_YMM15, X86::YMM15},
311       {codeview::RegisterId::AMD64_YMM16, X86::YMM16},
312       {codeview::RegisterId::AMD64_YMM17, X86::YMM17},
313       {codeview::RegisterId::AMD64_YMM18, X86::YMM18},
314       {codeview::RegisterId::AMD64_YMM19, X86::YMM19},
315       {codeview::RegisterId::AMD64_YMM20, X86::YMM20},
316       {codeview::RegisterId::AMD64_YMM21, X86::YMM21},
317       {codeview::RegisterId::AMD64_YMM22, X86::YMM22},
318       {codeview::RegisterId::AMD64_YMM23, X86::YMM23},
319       {codeview::RegisterId::AMD64_YMM24, X86::YMM24},
320       {codeview::RegisterId::AMD64_YMM25, X86::YMM25},
321       {codeview::RegisterId::AMD64_YMM26, X86::YMM26},
322       {codeview::RegisterId::AMD64_YMM27, X86::YMM27},
323       {codeview::RegisterId::AMD64_YMM28, X86::YMM28},
324       {codeview::RegisterId::AMD64_YMM29, X86::YMM29},
325       {codeview::RegisterId::AMD64_YMM30, X86::YMM30},
326       {codeview::RegisterId::AMD64_YMM31, X86::YMM31},
327       {codeview::RegisterId::AMD64_ZMM0, X86::ZMM0},
328       {codeview::RegisterId::AMD64_ZMM1, X86::ZMM1},
329       {codeview::RegisterId::AMD64_ZMM2, X86::ZMM2},
330       {codeview::RegisterId::AMD64_ZMM3, X86::ZMM3},
331       {codeview::RegisterId::AMD64_ZMM4, X86::ZMM4},
332       {codeview::RegisterId::AMD64_ZMM5, X86::ZMM5},
333       {codeview::RegisterId::AMD64_ZMM6, X86::ZMM6},
334       {codeview::RegisterId::AMD64_ZMM7, X86::ZMM7},
335       {codeview::RegisterId::AMD64_ZMM8, X86::ZMM8},
336       {codeview::RegisterId::AMD64_ZMM9, X86::ZMM9},
337       {codeview::RegisterId::AMD64_ZMM10, X86::ZMM10},
338       {codeview::RegisterId::AMD64_ZMM11, X86::ZMM11},
339       {codeview::RegisterId::AMD64_ZMM12, X86::ZMM12},
340       {codeview::RegisterId::AMD64_ZMM13, X86::ZMM13},
341       {codeview::RegisterId::AMD64_ZMM14, X86::ZMM14},
342       {codeview::RegisterId::AMD64_ZMM15, X86::ZMM15},
343       {codeview::RegisterId::AMD64_ZMM16, X86::ZMM16},
344       {codeview::RegisterId::AMD64_ZMM17, X86::ZMM17},
345       {codeview::RegisterId::AMD64_ZMM18, X86::ZMM18},
346       {codeview::RegisterId::AMD64_ZMM19, X86::ZMM19},
347       {codeview::RegisterId::AMD64_ZMM20, X86::ZMM20},
348       {codeview::RegisterId::AMD64_ZMM21, X86::ZMM21},
349       {codeview::RegisterId::AMD64_ZMM22, X86::ZMM22},
350       {codeview::RegisterId::AMD64_ZMM23, X86::ZMM23},
351       {codeview::RegisterId::AMD64_ZMM24, X86::ZMM24},
352       {codeview::RegisterId::AMD64_ZMM25, X86::ZMM25},
353       {codeview::RegisterId::AMD64_ZMM26, X86::ZMM26},
354       {codeview::RegisterId::AMD64_ZMM27, X86::ZMM27},
355       {codeview::RegisterId::AMD64_ZMM28, X86::ZMM28},
356       {codeview::RegisterId::AMD64_ZMM29, X86::ZMM29},
357       {codeview::RegisterId::AMD64_ZMM30, X86::ZMM30},
358       {codeview::RegisterId::AMD64_ZMM31, X86::ZMM31},
359       {codeview::RegisterId::AMD64_K0, X86::K0},
360       {codeview::RegisterId::AMD64_K1, X86::K1},
361       {codeview::RegisterId::AMD64_K2, X86::K2},
362       {codeview::RegisterId::AMD64_K3, X86::K3},
363       {codeview::RegisterId::AMD64_K4, X86::K4},
364       {codeview::RegisterId::AMD64_K5, X86::K5},
365       {codeview::RegisterId::AMD64_K6, X86::K6},
366       {codeview::RegisterId::AMD64_K7, X86::K7},
367       {codeview::RegisterId::AMD64_XMM16, X86::XMM16},
368       {codeview::RegisterId::AMD64_XMM17, X86::XMM17},
369       {codeview::RegisterId::AMD64_XMM18, X86::XMM18},
370       {codeview::RegisterId::AMD64_XMM19, X86::XMM19},
371       {codeview::RegisterId::AMD64_XMM20, X86::XMM20},
372       {codeview::RegisterId::AMD64_XMM21, X86::XMM21},
373       {codeview::RegisterId::AMD64_XMM22, X86::XMM22},
374       {codeview::RegisterId::AMD64_XMM23, X86::XMM23},
375       {codeview::RegisterId::AMD64_XMM24, X86::XMM24},
376       {codeview::RegisterId::AMD64_XMM25, X86::XMM25},
377       {codeview::RegisterId::AMD64_XMM26, X86::XMM26},
378       {codeview::RegisterId::AMD64_XMM27, X86::XMM27},
379       {codeview::RegisterId::AMD64_XMM28, X86::XMM28},
380       {codeview::RegisterId::AMD64_XMM29, X86::XMM29},
381       {codeview::RegisterId::AMD64_XMM30, X86::XMM30},
382       {codeview::RegisterId::AMD64_XMM31, X86::XMM31},
383 
384   };
385   for (const auto &I : RegMap)
386     MRI->mapLLVMRegToCVReg(I.Reg, static_cast<int>(I.CVReg));
387 }
388 
389 MCSubtargetInfo *X86_MC::createX86MCSubtargetInfo(const Triple &TT,
390                                                   StringRef CPU, StringRef FS) {
391   std::string ArchFS = X86_MC::ParseX86Triple(TT);
392   assert(!ArchFS.empty() && "Failed to parse X86 triple");
393   if (!FS.empty())
394     ArchFS = (Twine(ArchFS) + "," + FS).str();
395 
396   if (CPU.empty())
397     CPU = "generic";
398 
399   size_t posNoEVEX512 = FS.rfind("-evex512");
400   // Make sure we won't be cheated by "-avx512fp16".
401   size_t posNoAVX512F =
402       FS.ends_with("-avx512f") ? FS.size() - 8 : FS.rfind("-avx512f,");
403   size_t posEVEX512 = FS.rfind("+evex512");
404   size_t posAVX512F = FS.rfind("+avx512"); // Any AVX512XXX will enable AVX512F.
405 
406   if (posAVX512F != StringRef::npos &&
407       (posNoAVX512F == StringRef::npos || posNoAVX512F < posAVX512F))
408     if (posEVEX512 == StringRef::npos && posNoEVEX512 == StringRef::npos)
409       ArchFS += ",+evex512";
410 
411   return createX86MCSubtargetInfoImpl(TT, CPU, /*TuneCPU*/ CPU, ArchFS);
412 }
413 
414 static MCInstrInfo *createX86MCInstrInfo() {
415   MCInstrInfo *X = new MCInstrInfo();
416   InitX86MCInstrInfo(X);
417   return X;
418 }
419 
420 static MCRegisterInfo *createX86MCRegisterInfo(const Triple &TT) {
421   unsigned RA = (TT.getArch() == Triple::x86_64)
422                     ? X86::RIP  // Should have dwarf #16.
423                     : X86::EIP; // Should have dwarf #8.
424 
425   MCRegisterInfo *X = new MCRegisterInfo();
426   InitX86MCRegisterInfo(X, RA, X86_MC::getDwarfRegFlavour(TT, false),
427                         X86_MC::getDwarfRegFlavour(TT, true), RA);
428   X86_MC::initLLVMToSEHAndCVRegMapping(X);
429   return X;
430 }
431 
432 static MCAsmInfo *createX86MCAsmInfo(const MCRegisterInfo &MRI,
433                                      const Triple &TheTriple,
434                                      const MCTargetOptions &Options) {
435   bool is64Bit = TheTriple.getArch() == Triple::x86_64;
436 
437   MCAsmInfo *MAI;
438   if (TheTriple.isOSBinFormatMachO()) {
439     if (is64Bit)
440       MAI = new X86_64MCAsmInfoDarwin(TheTriple);
441     else
442       MAI = new X86MCAsmInfoDarwin(TheTriple);
443   } else if (TheTriple.isOSBinFormatELF()) {
444     // Force the use of an ELF container.
445     MAI = new X86ELFMCAsmInfo(TheTriple);
446   } else if (TheTriple.isWindowsMSVCEnvironment() ||
447              TheTriple.isWindowsCoreCLREnvironment()) {
448     if (Options.getAssemblyLanguage().equals_insensitive("masm"))
449       MAI = new X86MCAsmInfoMicrosoftMASM(TheTriple);
450     else
451       MAI = new X86MCAsmInfoMicrosoft(TheTriple);
452   } else if (TheTriple.isOSCygMing() ||
453              TheTriple.isWindowsItaniumEnvironment()) {
454     MAI = new X86MCAsmInfoGNUCOFF(TheTriple);
455   } else if (TheTriple.isUEFI()) {
456     MAI = new X86MCAsmInfoGNUCOFF(TheTriple);
457   } else {
458     // The default is ELF.
459     MAI = new X86ELFMCAsmInfo(TheTriple);
460   }
461 
462   // Initialize initial frame state.
463   // Calculate amount of bytes used for return address storing
464   int stackGrowth = is64Bit ? -8 : -4;
465 
466   // Initial state of the frame pointer is esp+stackGrowth.
467   unsigned StackPtr = is64Bit ? X86::RSP : X86::ESP;
468   MCCFIInstruction Inst = MCCFIInstruction::cfiDefCfa(
469       nullptr, MRI.getDwarfRegNum(StackPtr, true), -stackGrowth);
470   MAI->addInitialFrameState(Inst);
471 
472   // Add return address to move list
473   unsigned InstPtr = is64Bit ? X86::RIP : X86::EIP;
474   MCCFIInstruction Inst2 = MCCFIInstruction::createOffset(
475       nullptr, MRI.getDwarfRegNum(InstPtr, true), stackGrowth);
476   MAI->addInitialFrameState(Inst2);
477 
478   return MAI;
479 }
480 
481 static MCInstPrinter *createX86MCInstPrinter(const Triple &T,
482                                              unsigned SyntaxVariant,
483                                              const MCAsmInfo &MAI,
484                                              const MCInstrInfo &MII,
485                                              const MCRegisterInfo &MRI) {
486   if (SyntaxVariant == 0)
487     return new X86ATTInstPrinter(MAI, MII, MRI);
488   if (SyntaxVariant == 1)
489     return new X86IntelInstPrinter(MAI, MII, MRI);
490   return nullptr;
491 }
492 
493 static MCRelocationInfo *createX86MCRelocationInfo(const Triple &TheTriple,
494                                                    MCContext &Ctx) {
495   // Default to the stock relocation info.
496   return llvm::createMCRelocationInfo(TheTriple, Ctx);
497 }
498 
499 namespace llvm {
500 namespace X86_MC {
501 
502 class X86MCInstrAnalysis : public MCInstrAnalysis {
503   X86MCInstrAnalysis(const X86MCInstrAnalysis &) = delete;
504   X86MCInstrAnalysis &operator=(const X86MCInstrAnalysis &) = delete;
505   virtual ~X86MCInstrAnalysis() = default;
506 
507 public:
508   X86MCInstrAnalysis(const MCInstrInfo *MCII) : MCInstrAnalysis(MCII) {}
509 
510 #define GET_STIPREDICATE_DECLS_FOR_MC_ANALYSIS
511 #include "X86GenSubtargetInfo.inc"
512 
513   bool clearsSuperRegisters(const MCRegisterInfo &MRI, const MCInst &Inst,
514                             APInt &Mask) const override;
515   std::vector<std::pair<uint64_t, uint64_t>>
516   findPltEntries(uint64_t PltSectionVA, ArrayRef<uint8_t> PltContents,
517                  const Triple &TargetTriple) const override;
518 
519   bool evaluateBranch(const MCInst &Inst, uint64_t Addr, uint64_t Size,
520                       uint64_t &Target) const override;
521   std::optional<uint64_t>
522   evaluateMemoryOperandAddress(const MCInst &Inst, const MCSubtargetInfo *STI,
523                                uint64_t Addr, uint64_t Size) const override;
524   std::optional<uint64_t>
525   getMemoryOperandRelocationOffset(const MCInst &Inst,
526                                    uint64_t Size) const override;
527 };
528 
529 #define GET_STIPREDICATE_DEFS_FOR_MC_ANALYSIS
530 #include "X86GenSubtargetInfo.inc"
531 
532 bool X86MCInstrAnalysis::clearsSuperRegisters(const MCRegisterInfo &MRI,
533                                               const MCInst &Inst,
534                                               APInt &Mask) const {
535   const MCInstrDesc &Desc = Info->get(Inst.getOpcode());
536   unsigned NumDefs = Desc.getNumDefs();
537   unsigned NumImplicitDefs = Desc.implicit_defs().size();
538   assert(Mask.getBitWidth() == NumDefs + NumImplicitDefs &&
539          "Unexpected number of bits in the mask!");
540 
541   bool HasVEX = (Desc.TSFlags & X86II::EncodingMask) == X86II::VEX;
542   bool HasEVEX = (Desc.TSFlags & X86II::EncodingMask) == X86II::EVEX;
543   bool HasXOP = (Desc.TSFlags & X86II::EncodingMask) == X86II::XOP;
544 
545   const MCRegisterClass &GR32RC = MRI.getRegClass(X86::GR32RegClassID);
546   const MCRegisterClass &VR128XRC = MRI.getRegClass(X86::VR128XRegClassID);
547   const MCRegisterClass &VR256XRC = MRI.getRegClass(X86::VR256XRegClassID);
548 
549   auto ClearsSuperReg = [=](unsigned RegID) {
550     // On X86-64, a general purpose integer register is viewed as a 64-bit
551     // register internal to the processor.
552     // An update to the lower 32 bits of a 64 bit integer register is
553     // architecturally defined to zero extend the upper 32 bits.
554     if (GR32RC.contains(RegID))
555       return true;
556 
557     // Early exit if this instruction has no vex/evex/xop prefix.
558     if (!HasEVEX && !HasVEX && !HasXOP)
559       return false;
560 
561     // All VEX and EVEX encoded instructions are defined to zero the high bits
562     // of the destination register up to VLMAX (i.e. the maximum vector register
563     // width pertaining to the instruction).
564     // We assume the same behavior for XOP instructions too.
565     return VR128XRC.contains(RegID) || VR256XRC.contains(RegID);
566   };
567 
568   Mask.clearAllBits();
569   for (unsigned I = 0, E = NumDefs; I < E; ++I) {
570     const MCOperand &Op = Inst.getOperand(I);
571     if (ClearsSuperReg(Op.getReg()))
572       Mask.setBit(I);
573   }
574 
575   for (unsigned I = 0, E = NumImplicitDefs; I < E; ++I) {
576     const MCPhysReg Reg = Desc.implicit_defs()[I];
577     if (ClearsSuperReg(Reg))
578       Mask.setBit(NumDefs + I);
579   }
580 
581   return Mask.getBoolValue();
582 }
583 
584 static std::vector<std::pair<uint64_t, uint64_t>>
585 findX86PltEntries(uint64_t PltSectionVA, ArrayRef<uint8_t> PltContents) {
586   // Do a lightweight parsing of PLT entries.
587   std::vector<std::pair<uint64_t, uint64_t>> Result;
588   for (uint64_t Byte = 0, End = PltContents.size(); Byte + 6 < End; ) {
589     // Recognize a jmp.
590     if (PltContents[Byte] == 0xff && PltContents[Byte + 1] == 0xa3) {
591       // The jmp instruction at the beginning of each PLT entry jumps to the
592       // address of the base of the .got.plt section plus the immediate.
593       // Set the 1 << 32 bit to let ELFObjectFileBase::getPltEntries convert the
594       // offset to an address. Imm may be a negative int32_t if the GOT entry is
595       // in .got.
596       uint32_t Imm = support::endian::read32le(PltContents.data() + Byte + 2);
597       Result.emplace_back(PltSectionVA + Byte, Imm | (uint64_t(1) << 32));
598       Byte += 6;
599     } else if (PltContents[Byte] == 0xff && PltContents[Byte + 1] == 0x25) {
600       // The jmp instruction at the beginning of each PLT entry jumps to the
601       // immediate.
602       uint32_t Imm = support::endian::read32le(PltContents.data() + Byte + 2);
603       Result.push_back(std::make_pair(PltSectionVA + Byte, Imm));
604       Byte += 6;
605     } else
606       Byte++;
607   }
608   return Result;
609 }
610 
611 static std::vector<std::pair<uint64_t, uint64_t>>
612 findX86_64PltEntries(uint64_t PltSectionVA, ArrayRef<uint8_t> PltContents) {
613   // Do a lightweight parsing of PLT entries.
614   std::vector<std::pair<uint64_t, uint64_t>> Result;
615   for (uint64_t Byte = 0, End = PltContents.size(); Byte + 6 < End; ) {
616     // Recognize a jmp.
617     if (PltContents[Byte] == 0xff && PltContents[Byte + 1] == 0x25) {
618       // The jmp instruction at the beginning of each PLT entry jumps to the
619       // address of the next instruction plus the immediate.
620       uint32_t Imm = support::endian::read32le(PltContents.data() + Byte + 2);
621       Result.push_back(
622           std::make_pair(PltSectionVA + Byte, PltSectionVA + Byte + 6 + Imm));
623       Byte += 6;
624     } else
625       Byte++;
626   }
627   return Result;
628 }
629 
630 std::vector<std::pair<uint64_t, uint64_t>>
631 X86MCInstrAnalysis::findPltEntries(uint64_t PltSectionVA,
632                                    ArrayRef<uint8_t> PltContents,
633                                    const Triple &TargetTriple) const {
634   switch (TargetTriple.getArch()) {
635   case Triple::x86:
636     return findX86PltEntries(PltSectionVA, PltContents);
637   case Triple::x86_64:
638     return findX86_64PltEntries(PltSectionVA, PltContents);
639   default:
640     return {};
641   }
642 }
643 
644 bool X86MCInstrAnalysis::evaluateBranch(const MCInst &Inst, uint64_t Addr,
645                                         uint64_t Size, uint64_t &Target) const {
646   if (Inst.getNumOperands() == 0 ||
647       Info->get(Inst.getOpcode()).operands()[0].OperandType !=
648           MCOI::OPERAND_PCREL)
649     return false;
650   Target = Addr + Size + Inst.getOperand(0).getImm();
651   return true;
652 }
653 
654 std::optional<uint64_t> X86MCInstrAnalysis::evaluateMemoryOperandAddress(
655     const MCInst &Inst, const MCSubtargetInfo *STI, uint64_t Addr,
656     uint64_t Size) const {
657   const MCInstrDesc &MCID = Info->get(Inst.getOpcode());
658   int MemOpStart = X86II::getMemoryOperandNo(MCID.TSFlags);
659   if (MemOpStart == -1)
660     return std::nullopt;
661   MemOpStart += X86II::getOperandBias(MCID);
662 
663   const MCOperand &SegReg = Inst.getOperand(MemOpStart + X86::AddrSegmentReg);
664   const MCOperand &BaseReg = Inst.getOperand(MemOpStart + X86::AddrBaseReg);
665   const MCOperand &IndexReg = Inst.getOperand(MemOpStart + X86::AddrIndexReg);
666   const MCOperand &ScaleAmt = Inst.getOperand(MemOpStart + X86::AddrScaleAmt);
667   const MCOperand &Disp = Inst.getOperand(MemOpStart + X86::AddrDisp);
668   if (SegReg.getReg() || IndexReg.getReg() || ScaleAmt.getImm() != 1 ||
669       !Disp.isImm())
670     return std::nullopt;
671 
672   // RIP-relative addressing.
673   if (BaseReg.getReg() == X86::RIP)
674     return Addr + Size + Disp.getImm();
675 
676   return std::nullopt;
677 }
678 
679 std::optional<uint64_t>
680 X86MCInstrAnalysis::getMemoryOperandRelocationOffset(const MCInst &Inst,
681                                                      uint64_t Size) const {
682   if (Inst.getOpcode() != X86::LEA64r)
683     return std::nullopt;
684   const MCInstrDesc &MCID = Info->get(Inst.getOpcode());
685   int MemOpStart = X86II::getMemoryOperandNo(MCID.TSFlags);
686   if (MemOpStart == -1)
687     return std::nullopt;
688   MemOpStart += X86II::getOperandBias(MCID);
689   const MCOperand &SegReg = Inst.getOperand(MemOpStart + X86::AddrSegmentReg);
690   const MCOperand &BaseReg = Inst.getOperand(MemOpStart + X86::AddrBaseReg);
691   const MCOperand &IndexReg = Inst.getOperand(MemOpStart + X86::AddrIndexReg);
692   const MCOperand &ScaleAmt = Inst.getOperand(MemOpStart + X86::AddrScaleAmt);
693   const MCOperand &Disp = Inst.getOperand(MemOpStart + X86::AddrDisp);
694   // Must be a simple rip-relative address.
695   if (BaseReg.getReg() != X86::RIP || SegReg.getReg() || IndexReg.getReg() ||
696       ScaleAmt.getImm() != 1 || !Disp.isImm())
697     return std::nullopt;
698   // rip-relative ModR/M immediate is 32 bits.
699   assert(Size > 4 && "invalid instruction size for rip-relative lea");
700   return Size - 4;
701 }
702 
703 } // end of namespace X86_MC
704 
705 } // end of namespace llvm
706 
707 static MCInstrAnalysis *createX86MCInstrAnalysis(const MCInstrInfo *Info) {
708   return new X86_MC::X86MCInstrAnalysis(Info);
709 }
710 
711 // Force static initialization.
712 extern "C" LLVM_C_ABI void LLVMInitializeX86TargetMC() {
713   for (Target *T : {&getTheX86_32Target(), &getTheX86_64Target()}) {
714     // Register the MC asm info.
715     RegisterMCAsmInfoFn X(*T, createX86MCAsmInfo);
716 
717     // Register the MC instruction info.
718     TargetRegistry::RegisterMCInstrInfo(*T, createX86MCInstrInfo);
719 
720     // Register the MC register info.
721     TargetRegistry::RegisterMCRegInfo(*T, createX86MCRegisterInfo);
722 
723     // Register the MC subtarget info.
724     TargetRegistry::RegisterMCSubtargetInfo(*T,
725                                             X86_MC::createX86MCSubtargetInfo);
726 
727     // Register the MC instruction analyzer.
728     TargetRegistry::RegisterMCInstrAnalysis(*T, createX86MCInstrAnalysis);
729 
730     // Register the code emitter.
731     TargetRegistry::RegisterMCCodeEmitter(*T, createX86MCCodeEmitter);
732 
733     // Register the obj target streamer.
734     TargetRegistry::RegisterObjectTargetStreamer(*T,
735                                                  createX86ObjectTargetStreamer);
736 
737     // Register the asm target streamer.
738     TargetRegistry::RegisterAsmTargetStreamer(*T, createX86AsmTargetStreamer);
739 
740     // Register the null streamer.
741     TargetRegistry::RegisterNullTargetStreamer(*T, createX86NullTargetStreamer);
742 
743     TargetRegistry::RegisterCOFFStreamer(*T, createX86WinCOFFStreamer);
744     TargetRegistry::RegisterELFStreamer(*T, createX86ELFStreamer);
745 
746     // Register the MCInstPrinter.
747     TargetRegistry::RegisterMCInstPrinter(*T, createX86MCInstPrinter);
748 
749     // Register the MC relocation info.
750     TargetRegistry::RegisterMCRelocationInfo(*T, createX86MCRelocationInfo);
751   }
752 
753   // Register the asm backend.
754   TargetRegistry::RegisterMCAsmBackend(getTheX86_32Target(),
755                                        createX86_32AsmBackend);
756   TargetRegistry::RegisterMCAsmBackend(getTheX86_64Target(),
757                                        createX86_64AsmBackend);
758 }
759 
760 MCRegister llvm::getX86SubSuperRegister(MCRegister Reg, unsigned Size,
761                                         bool High) {
762 #define DEFAULT_NOREG                                                          \
763   default:                                                                     \
764     return X86::NoRegister;
765 #define SUB_SUPER(R1, R2, R3, R4, R)                                           \
766   case X86::R1:                                                                \
767   case X86::R2:                                                                \
768   case X86::R3:                                                                \
769   case X86::R4:                                                                \
770     return X86::R;
771 #define A_SUB_SUPER(R)                                                         \
772   case X86::AH:                                                                \
773     SUB_SUPER(AL, AX, EAX, RAX, R)
774 #define D_SUB_SUPER(R)                                                         \
775   case X86::DH:                                                                \
776     SUB_SUPER(DL, DX, EDX, RDX, R)
777 #define C_SUB_SUPER(R)                                                         \
778   case X86::CH:                                                                \
779     SUB_SUPER(CL, CX, ECX, RCX, R)
780 #define B_SUB_SUPER(R)                                                         \
781   case X86::BH:                                                                \
782     SUB_SUPER(BL, BX, EBX, RBX, R)
783 #define SI_SUB_SUPER(R) SUB_SUPER(SIL, SI, ESI, RSI, R)
784 #define DI_SUB_SUPER(R) SUB_SUPER(DIL, DI, EDI, RDI, R)
785 #define BP_SUB_SUPER(R) SUB_SUPER(BPL, BP, EBP, RBP, R)
786 #define SP_SUB_SUPER(R) SUB_SUPER(SPL, SP, ESP, RSP, R)
787 #define NO_SUB_SUPER(NO, REG)                                                  \
788   SUB_SUPER(R##NO##B, R##NO##W, R##NO##D, R##NO, REG)
789 #define NO_SUB_SUPER_B(NO) NO_SUB_SUPER(NO, R##NO##B)
790 #define NO_SUB_SUPER_W(NO) NO_SUB_SUPER(NO, R##NO##W)
791 #define NO_SUB_SUPER_D(NO) NO_SUB_SUPER(NO, R##NO##D)
792 #define NO_SUB_SUPER_Q(NO) NO_SUB_SUPER(NO, R##NO)
793   switch (Size) {
794   default:
795     llvm_unreachable("illegal register size");
796   case 8:
797     if (High) {
798       switch (Reg.id()) {
799         DEFAULT_NOREG
800         A_SUB_SUPER(AH)
801         D_SUB_SUPER(DH)
802         C_SUB_SUPER(CH)
803         B_SUB_SUPER(BH)
804       }
805     } else {
806       switch (Reg.id()) {
807         DEFAULT_NOREG
808         A_SUB_SUPER(AL)
809         D_SUB_SUPER(DL)
810         C_SUB_SUPER(CL)
811         B_SUB_SUPER(BL)
812         SI_SUB_SUPER(SIL)
813         DI_SUB_SUPER(DIL)
814         BP_SUB_SUPER(BPL)
815         SP_SUB_SUPER(SPL)
816         NO_SUB_SUPER_B(8)
817         NO_SUB_SUPER_B(9)
818         NO_SUB_SUPER_B(10)
819         NO_SUB_SUPER_B(11)
820         NO_SUB_SUPER_B(12)
821         NO_SUB_SUPER_B(13)
822         NO_SUB_SUPER_B(14)
823         NO_SUB_SUPER_B(15)
824         NO_SUB_SUPER_B(16)
825         NO_SUB_SUPER_B(17)
826         NO_SUB_SUPER_B(18)
827         NO_SUB_SUPER_B(19)
828         NO_SUB_SUPER_B(20)
829         NO_SUB_SUPER_B(21)
830         NO_SUB_SUPER_B(22)
831         NO_SUB_SUPER_B(23)
832         NO_SUB_SUPER_B(24)
833         NO_SUB_SUPER_B(25)
834         NO_SUB_SUPER_B(26)
835         NO_SUB_SUPER_B(27)
836         NO_SUB_SUPER_B(28)
837         NO_SUB_SUPER_B(29)
838         NO_SUB_SUPER_B(30)
839         NO_SUB_SUPER_B(31)
840       }
841     }
842   case 16:
843     switch (Reg.id()) {
844       DEFAULT_NOREG
845       A_SUB_SUPER(AX)
846       D_SUB_SUPER(DX)
847       C_SUB_SUPER(CX)
848       B_SUB_SUPER(BX)
849       SI_SUB_SUPER(SI)
850       DI_SUB_SUPER(DI)
851       BP_SUB_SUPER(BP)
852       SP_SUB_SUPER(SP)
853       NO_SUB_SUPER_W(8)
854       NO_SUB_SUPER_W(9)
855       NO_SUB_SUPER_W(10)
856       NO_SUB_SUPER_W(11)
857       NO_SUB_SUPER_W(12)
858       NO_SUB_SUPER_W(13)
859       NO_SUB_SUPER_W(14)
860       NO_SUB_SUPER_W(15)
861       NO_SUB_SUPER_W(16)
862       NO_SUB_SUPER_W(17)
863       NO_SUB_SUPER_W(18)
864       NO_SUB_SUPER_W(19)
865       NO_SUB_SUPER_W(20)
866       NO_SUB_SUPER_W(21)
867       NO_SUB_SUPER_W(22)
868       NO_SUB_SUPER_W(23)
869       NO_SUB_SUPER_W(24)
870       NO_SUB_SUPER_W(25)
871       NO_SUB_SUPER_W(26)
872       NO_SUB_SUPER_W(27)
873       NO_SUB_SUPER_W(28)
874       NO_SUB_SUPER_W(29)
875       NO_SUB_SUPER_W(30)
876       NO_SUB_SUPER_W(31)
877     }
878   case 32:
879     switch (Reg.id()) {
880       DEFAULT_NOREG
881       A_SUB_SUPER(EAX)
882       D_SUB_SUPER(EDX)
883       C_SUB_SUPER(ECX)
884       B_SUB_SUPER(EBX)
885       SI_SUB_SUPER(ESI)
886       DI_SUB_SUPER(EDI)
887       BP_SUB_SUPER(EBP)
888       SP_SUB_SUPER(ESP)
889       NO_SUB_SUPER_D(8)
890       NO_SUB_SUPER_D(9)
891       NO_SUB_SUPER_D(10)
892       NO_SUB_SUPER_D(11)
893       NO_SUB_SUPER_D(12)
894       NO_SUB_SUPER_D(13)
895       NO_SUB_SUPER_D(14)
896       NO_SUB_SUPER_D(15)
897       NO_SUB_SUPER_D(16)
898       NO_SUB_SUPER_D(17)
899       NO_SUB_SUPER_D(18)
900       NO_SUB_SUPER_D(19)
901       NO_SUB_SUPER_D(20)
902       NO_SUB_SUPER_D(21)
903       NO_SUB_SUPER_D(22)
904       NO_SUB_SUPER_D(23)
905       NO_SUB_SUPER_D(24)
906       NO_SUB_SUPER_D(25)
907       NO_SUB_SUPER_D(26)
908       NO_SUB_SUPER_D(27)
909       NO_SUB_SUPER_D(28)
910       NO_SUB_SUPER_D(29)
911       NO_SUB_SUPER_D(30)
912       NO_SUB_SUPER_D(31)
913     }
914   case 64:
915     switch (Reg.id()) {
916       DEFAULT_NOREG
917       A_SUB_SUPER(RAX)
918       D_SUB_SUPER(RDX)
919       C_SUB_SUPER(RCX)
920       B_SUB_SUPER(RBX)
921       SI_SUB_SUPER(RSI)
922       DI_SUB_SUPER(RDI)
923       BP_SUB_SUPER(RBP)
924       SP_SUB_SUPER(RSP)
925       NO_SUB_SUPER_Q(8)
926       NO_SUB_SUPER_Q(9)
927       NO_SUB_SUPER_Q(10)
928       NO_SUB_SUPER_Q(11)
929       NO_SUB_SUPER_Q(12)
930       NO_SUB_SUPER_Q(13)
931       NO_SUB_SUPER_Q(14)
932       NO_SUB_SUPER_Q(15)
933       NO_SUB_SUPER_Q(16)
934       NO_SUB_SUPER_Q(17)
935       NO_SUB_SUPER_Q(18)
936       NO_SUB_SUPER_Q(19)
937       NO_SUB_SUPER_Q(20)
938       NO_SUB_SUPER_Q(21)
939       NO_SUB_SUPER_Q(22)
940       NO_SUB_SUPER_Q(23)
941       NO_SUB_SUPER_Q(24)
942       NO_SUB_SUPER_Q(25)
943       NO_SUB_SUPER_Q(26)
944       NO_SUB_SUPER_Q(27)
945       NO_SUB_SUPER_Q(28)
946       NO_SUB_SUPER_Q(29)
947       NO_SUB_SUPER_Q(30)
948       NO_SUB_SUPER_Q(31)
949     }
950   }
951 }
952