1 //===-- X86FrameLowering.cpp - X86 Frame Information ----------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file contains the X86 implementation of TargetFrameLowering class. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "X86FrameLowering.h" 14 #include "MCTargetDesc/X86MCTargetDesc.h" 15 #include "X86InstrBuilder.h" 16 #include "X86InstrInfo.h" 17 #include "X86MachineFunctionInfo.h" 18 #include "X86Subtarget.h" 19 #include "X86TargetMachine.h" 20 #include "llvm/ADT/Statistic.h" 21 #include "llvm/CodeGen/LivePhysRegs.h" 22 #include "llvm/CodeGen/MachineFrameInfo.h" 23 #include "llvm/CodeGen/MachineFunction.h" 24 #include "llvm/CodeGen/MachineInstrBuilder.h" 25 #include "llvm/CodeGen/MachineModuleInfo.h" 26 #include "llvm/CodeGen/MachineRegisterInfo.h" 27 #include "llvm/CodeGen/WinEHFuncInfo.h" 28 #include "llvm/IR/DataLayout.h" 29 #include "llvm/IR/EHPersonalities.h" 30 #include "llvm/IR/Function.h" 31 #include "llvm/IR/Module.h" 32 #include "llvm/MC/MCAsmInfo.h" 33 #include "llvm/MC/MCObjectFileInfo.h" 34 #include "llvm/MC/MCSymbol.h" 35 #include "llvm/Support/LEB128.h" 36 #include "llvm/Target/TargetOptions.h" 37 #include <cstdlib> 38 39 #define DEBUG_TYPE "x86-fl" 40 41 STATISTIC(NumFrameLoopProbe, "Number of loop stack probes used in prologue"); 42 STATISTIC(NumFrameExtraProbe, 43 "Number of extra stack probes generated in prologue"); 44 STATISTIC(NumFunctionUsingPush2Pop2, "Number of funtions using push2/pop2"); 45 46 using namespace llvm; 47 48 X86FrameLowering::X86FrameLowering(const X86Subtarget &STI, 49 MaybeAlign StackAlignOverride) 50 : TargetFrameLowering(StackGrowsDown, StackAlignOverride.valueOrOne(), 51 STI.is64Bit() ? -8 : -4), 52 STI(STI), TII(*STI.getInstrInfo()), TRI(STI.getRegisterInfo()) { 53 // Cache a bunch of frame-related predicates for this subtarget. 54 SlotSize = TRI->getSlotSize(); 55 Is64Bit = STI.is64Bit(); 56 IsLP64 = STI.isTarget64BitLP64(); 57 // standard x86_64 and NaCl use 64-bit frame/stack pointers, x32 - 32-bit. 58 Uses64BitFramePtr = STI.isTarget64BitLP64() || STI.isTargetNaCl64(); 59 StackPtr = TRI->getStackRegister(); 60 } 61 62 bool X86FrameLowering::hasReservedCallFrame(const MachineFunction &MF) const { 63 return !MF.getFrameInfo().hasVarSizedObjects() && 64 !MF.getInfo<X86MachineFunctionInfo>()->getHasPushSequences() && 65 !MF.getInfo<X86MachineFunctionInfo>()->hasPreallocatedCall(); 66 } 67 68 /// canSimplifyCallFramePseudos - If there is a reserved call frame, the 69 /// call frame pseudos can be simplified. Having a FP, as in the default 70 /// implementation, is not sufficient here since we can't always use it. 71 /// Use a more nuanced condition. 72 bool X86FrameLowering::canSimplifyCallFramePseudos( 73 const MachineFunction &MF) const { 74 return hasReservedCallFrame(MF) || 75 MF.getInfo<X86MachineFunctionInfo>()->hasPreallocatedCall() || 76 (hasFP(MF) && !TRI->hasStackRealignment(MF)) || 77 TRI->hasBasePointer(MF); 78 } 79 80 // needsFrameIndexResolution - Do we need to perform FI resolution for 81 // this function. Normally, this is required only when the function 82 // has any stack objects. However, FI resolution actually has another job, 83 // not apparent from the title - it resolves callframesetup/destroy 84 // that were not simplified earlier. 85 // So, this is required for x86 functions that have push sequences even 86 // when there are no stack objects. 87 bool X86FrameLowering::needsFrameIndexResolution( 88 const MachineFunction &MF) const { 89 return MF.getFrameInfo().hasStackObjects() || 90 MF.getInfo<X86MachineFunctionInfo>()->getHasPushSequences(); 91 } 92 93 /// hasFPImpl - Return true if the specified function should have a dedicated 94 /// frame pointer register. This is true if the function has variable sized 95 /// allocas or if frame pointer elimination is disabled. 96 bool X86FrameLowering::hasFPImpl(const MachineFunction &MF) const { 97 const MachineFrameInfo &MFI = MF.getFrameInfo(); 98 return (MF.getTarget().Options.DisableFramePointerElim(MF) || 99 TRI->hasStackRealignment(MF) || MFI.hasVarSizedObjects() || 100 MFI.isFrameAddressTaken() || MFI.hasOpaqueSPAdjustment() || 101 MF.getInfo<X86MachineFunctionInfo>()->getForceFramePointer() || 102 MF.getInfo<X86MachineFunctionInfo>()->hasPreallocatedCall() || 103 MF.callsUnwindInit() || MF.hasEHFunclets() || MF.callsEHReturn() || 104 MFI.hasStackMap() || MFI.hasPatchPoint() || 105 (isWin64Prologue(MF) && MFI.hasCopyImplyingStackAdjustment())); 106 } 107 108 static unsigned getSUBriOpcode(bool IsLP64) { 109 return IsLP64 ? X86::SUB64ri32 : X86::SUB32ri; 110 } 111 112 static unsigned getADDriOpcode(bool IsLP64) { 113 return IsLP64 ? X86::ADD64ri32 : X86::ADD32ri; 114 } 115 116 static unsigned getSUBrrOpcode(bool IsLP64) { 117 return IsLP64 ? X86::SUB64rr : X86::SUB32rr; 118 } 119 120 static unsigned getADDrrOpcode(bool IsLP64) { 121 return IsLP64 ? X86::ADD64rr : X86::ADD32rr; 122 } 123 124 static unsigned getANDriOpcode(bool IsLP64, int64_t Imm) { 125 return IsLP64 ? X86::AND64ri32 : X86::AND32ri; 126 } 127 128 static unsigned getLEArOpcode(bool IsLP64) { 129 return IsLP64 ? X86::LEA64r : X86::LEA32r; 130 } 131 132 static unsigned getMOVriOpcode(bool Use64BitReg, int64_t Imm) { 133 if (Use64BitReg) { 134 if (isUInt<32>(Imm)) 135 return X86::MOV32ri64; 136 if (isInt<32>(Imm)) 137 return X86::MOV64ri32; 138 return X86::MOV64ri; 139 } 140 return X86::MOV32ri; 141 } 142 143 // Push-Pop Acceleration (PPX) hint is used to indicate that the POP reads the 144 // value written by the PUSH from the stack. The processor tracks these marked 145 // instructions internally and fast-forwards register data between matching PUSH 146 // and POP instructions, without going through memory or through the training 147 // loop of the Fast Store Forwarding Predictor (FSFP). Instead, a more efficient 148 // memory-renaming optimization can be used. 149 // 150 // The PPX hint is purely a performance hint. Instructions with this hint have 151 // the same functional semantics as those without. PPX hints set by the 152 // compiler that violate the balancing rule may turn off the PPX optimization, 153 // but they will not affect program semantics. 154 // 155 // Hence, PPX is used for balanced spill/reloads (Exceptions and setjmp/longjmp 156 // are not considered). 157 // 158 // PUSH2 and POP2 are instructions for (respectively) pushing/popping 2 159 // GPRs at a time to/from the stack. 160 static unsigned getPUSHOpcode(const X86Subtarget &ST) { 161 return ST.is64Bit() ? (ST.hasPPX() ? X86::PUSHP64r : X86::PUSH64r) 162 : X86::PUSH32r; 163 } 164 static unsigned getPOPOpcode(const X86Subtarget &ST) { 165 return ST.is64Bit() ? (ST.hasPPX() ? X86::POPP64r : X86::POP64r) 166 : X86::POP32r; 167 } 168 static unsigned getPUSH2Opcode(const X86Subtarget &ST) { 169 return ST.hasPPX() ? X86::PUSH2P : X86::PUSH2; 170 } 171 static unsigned getPOP2Opcode(const X86Subtarget &ST) { 172 return ST.hasPPX() ? X86::POP2P : X86::POP2; 173 } 174 175 static bool isEAXLiveIn(MachineBasicBlock &MBB) { 176 for (MachineBasicBlock::RegisterMaskPair RegMask : MBB.liveins()) { 177 MCRegister Reg = RegMask.PhysReg; 178 179 if (Reg == X86::RAX || Reg == X86::EAX || Reg == X86::AX || 180 Reg == X86::AH || Reg == X86::AL) 181 return true; 182 } 183 184 return false; 185 } 186 187 /// Check if the flags need to be preserved before the terminators. 188 /// This would be the case, if the eflags is live-in of the region 189 /// composed by the terminators or live-out of that region, without 190 /// being defined by a terminator. 191 static bool 192 flagsNeedToBePreservedBeforeTheTerminators(const MachineBasicBlock &MBB) { 193 for (const MachineInstr &MI : MBB.terminators()) { 194 bool BreakNext = false; 195 for (const MachineOperand &MO : MI.operands()) { 196 if (!MO.isReg()) 197 continue; 198 Register Reg = MO.getReg(); 199 if (Reg != X86::EFLAGS) 200 continue; 201 202 // This terminator needs an eflags that is not defined 203 // by a previous another terminator: 204 // EFLAGS is live-in of the region composed by the terminators. 205 if (!MO.isDef()) 206 return true; 207 // This terminator defines the eflags, i.e., we don't need to preserve it. 208 // However, we still need to check this specific terminator does not 209 // read a live-in value. 210 BreakNext = true; 211 } 212 // We found a definition of the eflags, no need to preserve them. 213 if (BreakNext) 214 return false; 215 } 216 217 // None of the terminators use or define the eflags. 218 // Check if they are live-out, that would imply we need to preserve them. 219 for (const MachineBasicBlock *Succ : MBB.successors()) 220 if (Succ->isLiveIn(X86::EFLAGS)) 221 return true; 222 223 return false; 224 } 225 226 /// emitSPUpdate - Emit a series of instructions to increment / decrement the 227 /// stack pointer by a constant value. 228 void X86FrameLowering::emitSPUpdate(MachineBasicBlock &MBB, 229 MachineBasicBlock::iterator &MBBI, 230 const DebugLoc &DL, int64_t NumBytes, 231 bool InEpilogue) const { 232 bool isSub = NumBytes < 0; 233 uint64_t Offset = isSub ? -NumBytes : NumBytes; 234 MachineInstr::MIFlag Flag = 235 isSub ? MachineInstr::FrameSetup : MachineInstr::FrameDestroy; 236 237 if (!Uses64BitFramePtr && !isUInt<32>(Offset)) { 238 // We're being asked to adjust a 32-bit stack pointer by 4 GiB or more. 239 // This might be unreachable code, so don't complain now; just trap if 240 // it's reached at runtime. 241 BuildMI(MBB, MBBI, DL, TII.get(X86::TRAP)); 242 return; 243 } 244 245 uint64_t Chunk = (1LL << 31) - 1; 246 247 MachineFunction &MF = *MBB.getParent(); 248 const X86Subtarget &STI = MF.getSubtarget<X86Subtarget>(); 249 const X86TargetLowering &TLI = *STI.getTargetLowering(); 250 const bool EmitInlineStackProbe = TLI.hasInlineStackProbe(MF); 251 252 // It's ok to not take into account large chunks when probing, as the 253 // allocation is split in smaller chunks anyway. 254 if (EmitInlineStackProbe && !InEpilogue) { 255 256 // This pseudo-instruction is going to be expanded, potentially using a 257 // loop, by inlineStackProbe(). 258 BuildMI(MBB, MBBI, DL, TII.get(X86::STACKALLOC_W_PROBING)).addImm(Offset); 259 return; 260 } else if (Offset > Chunk) { 261 // Rather than emit a long series of instructions for large offsets, 262 // load the offset into a register and do one sub/add 263 unsigned Reg = 0; 264 unsigned Rax = (unsigned)(Uses64BitFramePtr ? X86::RAX : X86::EAX); 265 266 if (isSub && !isEAXLiveIn(MBB)) 267 Reg = Rax; 268 else 269 Reg = getX86SubSuperRegister(TRI->findDeadCallerSavedReg(MBB, MBBI), 270 Uses64BitFramePtr ? 64 : 32); 271 272 unsigned AddSubRROpc = isSub ? getSUBrrOpcode(Uses64BitFramePtr) 273 : getADDrrOpcode(Uses64BitFramePtr); 274 if (Reg) { 275 BuildMI(MBB, MBBI, DL, TII.get(getMOVriOpcode(Uses64BitFramePtr, Offset)), 276 Reg) 277 .addImm(Offset) 278 .setMIFlag(Flag); 279 MachineInstr *MI = BuildMI(MBB, MBBI, DL, TII.get(AddSubRROpc), StackPtr) 280 .addReg(StackPtr) 281 .addReg(Reg); 282 MI->getOperand(3).setIsDead(); // The EFLAGS implicit def is dead. 283 return; 284 } else if (Offset > 8 * Chunk) { 285 // If we would need more than 8 add or sub instructions (a >16GB stack 286 // frame), it's worth spilling RAX to materialize this immediate. 287 // pushq %rax 288 // movabsq +-$Offset+-SlotSize, %rax 289 // addq %rsp, %rax 290 // xchg %rax, (%rsp) 291 // movq (%rsp), %rsp 292 assert(Uses64BitFramePtr && "can't have 32-bit 16GB stack frame"); 293 BuildMI(MBB, MBBI, DL, TII.get(X86::PUSH64r)) 294 .addReg(Rax, RegState::Kill) 295 .setMIFlag(Flag); 296 // Subtract is not commutative, so negate the offset and always use add. 297 // Subtract 8 less and add 8 more to account for the PUSH we just did. 298 if (isSub) 299 Offset = -(Offset - SlotSize); 300 else 301 Offset = Offset + SlotSize; 302 BuildMI(MBB, MBBI, DL, TII.get(getMOVriOpcode(Uses64BitFramePtr, Offset)), 303 Rax) 304 .addImm(Offset) 305 .setMIFlag(Flag); 306 MachineInstr *MI = BuildMI(MBB, MBBI, DL, TII.get(X86::ADD64rr), Rax) 307 .addReg(Rax) 308 .addReg(StackPtr); 309 MI->getOperand(3).setIsDead(); // The EFLAGS implicit def is dead. 310 // Exchange the new SP in RAX with the top of the stack. 311 addRegOffset( 312 BuildMI(MBB, MBBI, DL, TII.get(X86::XCHG64rm), Rax).addReg(Rax), 313 StackPtr, false, 0); 314 // Load new SP from the top of the stack into RSP. 315 addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(X86::MOV64rm), StackPtr), 316 StackPtr, false, 0); 317 return; 318 } 319 } 320 321 while (Offset) { 322 uint64_t ThisVal = std::min(Offset, Chunk); 323 if (ThisVal == SlotSize) { 324 // Use push / pop for slot sized adjustments as a size optimization. We 325 // need to find a dead register when using pop. 326 unsigned Reg = isSub ? (unsigned)(Is64Bit ? X86::RAX : X86::EAX) 327 : TRI->findDeadCallerSavedReg(MBB, MBBI); 328 if (Reg) { 329 unsigned Opc = isSub ? (Is64Bit ? X86::PUSH64r : X86::PUSH32r) 330 : (Is64Bit ? X86::POP64r : X86::POP32r); 331 BuildMI(MBB, MBBI, DL, TII.get(Opc)) 332 .addReg(Reg, getDefRegState(!isSub) | getUndefRegState(isSub)) 333 .setMIFlag(Flag); 334 Offset -= ThisVal; 335 continue; 336 } 337 } 338 339 BuildStackAdjustment(MBB, MBBI, DL, isSub ? -ThisVal : ThisVal, InEpilogue) 340 .setMIFlag(Flag); 341 342 Offset -= ThisVal; 343 } 344 } 345 346 MachineInstrBuilder X86FrameLowering::BuildStackAdjustment( 347 MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI, 348 const DebugLoc &DL, int64_t Offset, bool InEpilogue) const { 349 assert(Offset != 0 && "zero offset stack adjustment requested"); 350 351 // On Atom, using LEA to adjust SP is preferred, but using it in the epilogue 352 // is tricky. 353 bool UseLEA; 354 if (!InEpilogue) { 355 // Check if inserting the prologue at the beginning 356 // of MBB would require to use LEA operations. 357 // We need to use LEA operations if EFLAGS is live in, because 358 // it means an instruction will read it before it gets defined. 359 UseLEA = STI.useLeaForSP() || MBB.isLiveIn(X86::EFLAGS); 360 } else { 361 // If we can use LEA for SP but we shouldn't, check that none 362 // of the terminators uses the eflags. Otherwise we will insert 363 // a ADD that will redefine the eflags and break the condition. 364 // Alternatively, we could move the ADD, but this may not be possible 365 // and is an optimization anyway. 366 UseLEA = canUseLEAForSPInEpilogue(*MBB.getParent()); 367 if (UseLEA && !STI.useLeaForSP()) 368 UseLEA = flagsNeedToBePreservedBeforeTheTerminators(MBB); 369 // If that assert breaks, that means we do not do the right thing 370 // in canUseAsEpilogue. 371 assert((UseLEA || !flagsNeedToBePreservedBeforeTheTerminators(MBB)) && 372 "We shouldn't have allowed this insertion point"); 373 } 374 375 MachineInstrBuilder MI; 376 if (UseLEA) { 377 MI = addRegOffset(BuildMI(MBB, MBBI, DL, 378 TII.get(getLEArOpcode(Uses64BitFramePtr)), 379 StackPtr), 380 StackPtr, false, Offset); 381 } else { 382 bool IsSub = Offset < 0; 383 uint64_t AbsOffset = IsSub ? -Offset : Offset; 384 const unsigned Opc = IsSub ? getSUBriOpcode(Uses64BitFramePtr) 385 : getADDriOpcode(Uses64BitFramePtr); 386 MI = BuildMI(MBB, MBBI, DL, TII.get(Opc), StackPtr) 387 .addReg(StackPtr) 388 .addImm(AbsOffset); 389 MI->getOperand(3).setIsDead(); // The EFLAGS implicit def is dead. 390 } 391 return MI; 392 } 393 394 int X86FrameLowering::mergeSPUpdates(MachineBasicBlock &MBB, 395 MachineBasicBlock::iterator &MBBI, 396 bool doMergeWithPrevious) const { 397 if ((doMergeWithPrevious && MBBI == MBB.begin()) || 398 (!doMergeWithPrevious && MBBI == MBB.end())) 399 return 0; 400 401 MachineBasicBlock::iterator PI = doMergeWithPrevious ? std::prev(MBBI) : MBBI; 402 403 PI = skipDebugInstructionsBackward(PI, MBB.begin()); 404 // It is assumed that ADD/SUB/LEA instruction is succeded by one CFI 405 // instruction, and that there are no DBG_VALUE or other instructions between 406 // ADD/SUB/LEA and its corresponding CFI instruction. 407 /* TODO: Add support for the case where there are multiple CFI instructions 408 below the ADD/SUB/LEA, e.g.: 409 ... 410 add 411 cfi_def_cfa_offset 412 cfi_offset 413 ... 414 */ 415 if (doMergeWithPrevious && PI != MBB.begin() && PI->isCFIInstruction()) 416 PI = std::prev(PI); 417 418 unsigned Opc = PI->getOpcode(); 419 int Offset = 0; 420 421 if ((Opc == X86::ADD64ri32 || Opc == X86::ADD32ri) && 422 PI->getOperand(0).getReg() == StackPtr) { 423 assert(PI->getOperand(1).getReg() == StackPtr); 424 Offset = PI->getOperand(2).getImm(); 425 } else if ((Opc == X86::LEA32r || Opc == X86::LEA64_32r) && 426 PI->getOperand(0).getReg() == StackPtr && 427 PI->getOperand(1).getReg() == StackPtr && 428 PI->getOperand(2).getImm() == 1 && 429 PI->getOperand(3).getReg() == X86::NoRegister && 430 PI->getOperand(5).getReg() == X86::NoRegister) { 431 // For LEAs we have: def = lea SP, FI, noreg, Offset, noreg. 432 Offset = PI->getOperand(4).getImm(); 433 } else if ((Opc == X86::SUB64ri32 || Opc == X86::SUB32ri) && 434 PI->getOperand(0).getReg() == StackPtr) { 435 assert(PI->getOperand(1).getReg() == StackPtr); 436 Offset = -PI->getOperand(2).getImm(); 437 } else 438 return 0; 439 440 PI = MBB.erase(PI); 441 if (PI != MBB.end() && PI->isCFIInstruction()) { 442 auto CIs = MBB.getParent()->getFrameInstructions(); 443 MCCFIInstruction CI = CIs[PI->getOperand(0).getCFIIndex()]; 444 if (CI.getOperation() == MCCFIInstruction::OpDefCfaOffset || 445 CI.getOperation() == MCCFIInstruction::OpAdjustCfaOffset) 446 PI = MBB.erase(PI); 447 } 448 if (!doMergeWithPrevious) 449 MBBI = skipDebugInstructionsForward(PI, MBB.end()); 450 451 return Offset; 452 } 453 454 void X86FrameLowering::BuildCFI(MachineBasicBlock &MBB, 455 MachineBasicBlock::iterator MBBI, 456 const DebugLoc &DL, 457 const MCCFIInstruction &CFIInst, 458 MachineInstr::MIFlag Flag) const { 459 MachineFunction &MF = *MBB.getParent(); 460 unsigned CFIIndex = MF.addFrameInst(CFIInst); 461 462 if (CFIInst.getOperation() == MCCFIInstruction::OpAdjustCfaOffset) 463 MF.getInfo<X86MachineFunctionInfo>()->setHasCFIAdjustCfa(true); 464 465 BuildMI(MBB, MBBI, DL, TII.get(TargetOpcode::CFI_INSTRUCTION)) 466 .addCFIIndex(CFIIndex) 467 .setMIFlag(Flag); 468 } 469 470 /// Emits Dwarf Info specifying offsets of callee saved registers and 471 /// frame pointer. This is called only when basic block sections are enabled. 472 void X86FrameLowering::emitCalleeSavedFrameMovesFullCFA( 473 MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI) const { 474 MachineFunction &MF = *MBB.getParent(); 475 if (!hasFP(MF)) { 476 emitCalleeSavedFrameMoves(MBB, MBBI, DebugLoc{}, true); 477 return; 478 } 479 const MCRegisterInfo *MRI = MF.getContext().getRegisterInfo(); 480 const Register FramePtr = TRI->getFrameRegister(MF); 481 const Register MachineFramePtr = 482 STI.isTarget64BitILP32() ? Register(getX86SubSuperRegister(FramePtr, 64)) 483 : FramePtr; 484 unsigned DwarfReg = MRI->getDwarfRegNum(MachineFramePtr, true); 485 // Offset = space for return address + size of the frame pointer itself. 486 int64_t Offset = (Is64Bit ? 8 : 4) + (Uses64BitFramePtr ? 8 : 4); 487 BuildCFI(MBB, MBBI, DebugLoc{}, 488 MCCFIInstruction::createOffset(nullptr, DwarfReg, -Offset)); 489 emitCalleeSavedFrameMoves(MBB, MBBI, DebugLoc{}, true); 490 } 491 492 void X86FrameLowering::emitCalleeSavedFrameMoves( 493 MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI, 494 const DebugLoc &DL, bool IsPrologue) const { 495 MachineFunction &MF = *MBB.getParent(); 496 MachineFrameInfo &MFI = MF.getFrameInfo(); 497 const MCRegisterInfo *MRI = MF.getContext().getRegisterInfo(); 498 X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>(); 499 500 // Add callee saved registers to move list. 501 const std::vector<CalleeSavedInfo> &CSI = MFI.getCalleeSavedInfo(); 502 503 // Calculate offsets. 504 for (const CalleeSavedInfo &I : CSI) { 505 int64_t Offset = MFI.getObjectOffset(I.getFrameIdx()); 506 Register Reg = I.getReg(); 507 unsigned DwarfReg = MRI->getDwarfRegNum(Reg, true); 508 509 if (IsPrologue) { 510 if (X86FI->getStackPtrSaveMI()) { 511 // +2*SlotSize because there is return address and ebp at the bottom 512 // of the stack. 513 // | retaddr | 514 // | ebp | 515 // | |<--ebp 516 Offset += 2 * SlotSize; 517 SmallString<64> CfaExpr; 518 CfaExpr.push_back(dwarf::DW_CFA_expression); 519 uint8_t buffer[16]; 520 CfaExpr.append(buffer, buffer + encodeULEB128(DwarfReg, buffer)); 521 CfaExpr.push_back(2); 522 Register FramePtr = TRI->getFrameRegister(MF); 523 const Register MachineFramePtr = 524 STI.isTarget64BitILP32() 525 ? Register(getX86SubSuperRegister(FramePtr, 64)) 526 : FramePtr; 527 unsigned DwarfFramePtr = MRI->getDwarfRegNum(MachineFramePtr, true); 528 CfaExpr.push_back((uint8_t)(dwarf::DW_OP_breg0 + DwarfFramePtr)); 529 CfaExpr.append(buffer, buffer + encodeSLEB128(Offset, buffer)); 530 BuildCFI(MBB, MBBI, DL, 531 MCCFIInstruction::createEscape(nullptr, CfaExpr.str()), 532 MachineInstr::FrameSetup); 533 } else { 534 BuildCFI(MBB, MBBI, DL, 535 MCCFIInstruction::createOffset(nullptr, DwarfReg, Offset)); 536 } 537 } else { 538 BuildCFI(MBB, MBBI, DL, 539 MCCFIInstruction::createRestore(nullptr, DwarfReg)); 540 } 541 } 542 if (auto *MI = X86FI->getStackPtrSaveMI()) { 543 int FI = MI->getOperand(1).getIndex(); 544 int64_t Offset = MFI.getObjectOffset(FI) + 2 * SlotSize; 545 SmallString<64> CfaExpr; 546 Register FramePtr = TRI->getFrameRegister(MF); 547 const Register MachineFramePtr = 548 STI.isTarget64BitILP32() 549 ? Register(getX86SubSuperRegister(FramePtr, 64)) 550 : FramePtr; 551 unsigned DwarfFramePtr = MRI->getDwarfRegNum(MachineFramePtr, true); 552 CfaExpr.push_back((uint8_t)(dwarf::DW_OP_breg0 + DwarfFramePtr)); 553 uint8_t buffer[16]; 554 CfaExpr.append(buffer, buffer + encodeSLEB128(Offset, buffer)); 555 CfaExpr.push_back(dwarf::DW_OP_deref); 556 557 SmallString<64> DefCfaExpr; 558 DefCfaExpr.push_back(dwarf::DW_CFA_def_cfa_expression); 559 DefCfaExpr.append(buffer, buffer + encodeSLEB128(CfaExpr.size(), buffer)); 560 DefCfaExpr.append(CfaExpr.str()); 561 // DW_CFA_def_cfa_expression: DW_OP_breg5 offset, DW_OP_deref 562 BuildCFI(MBB, MBBI, DL, 563 MCCFIInstruction::createEscape(nullptr, DefCfaExpr.str()), 564 MachineInstr::FrameSetup); 565 } 566 } 567 568 void X86FrameLowering::emitZeroCallUsedRegs(BitVector RegsToZero, 569 MachineBasicBlock &MBB) const { 570 const MachineFunction &MF = *MBB.getParent(); 571 572 // Insertion point. 573 MachineBasicBlock::iterator MBBI = MBB.getFirstTerminator(); 574 575 // Fake a debug loc. 576 DebugLoc DL; 577 if (MBBI != MBB.end()) 578 DL = MBBI->getDebugLoc(); 579 580 // Zero out FP stack if referenced. Do this outside of the loop below so that 581 // it's done only once. 582 const X86Subtarget &ST = MF.getSubtarget<X86Subtarget>(); 583 for (MCRegister Reg : RegsToZero.set_bits()) { 584 if (!X86::RFP80RegClass.contains(Reg)) 585 continue; 586 587 unsigned NumFPRegs = ST.is64Bit() ? 8 : 7; 588 for (unsigned i = 0; i != NumFPRegs; ++i) 589 BuildMI(MBB, MBBI, DL, TII.get(X86::LD_F0)); 590 591 for (unsigned i = 0; i != NumFPRegs; ++i) 592 BuildMI(MBB, MBBI, DL, TII.get(X86::ST_FPrr)).addReg(X86::ST0); 593 break; 594 } 595 596 // For GPRs, we only care to clear out the 32-bit register. 597 BitVector GPRsToZero(TRI->getNumRegs()); 598 for (MCRegister Reg : RegsToZero.set_bits()) 599 if (TRI->isGeneralPurposeRegister(MF, Reg)) { 600 GPRsToZero.set(getX86SubSuperRegister(Reg, 32)); 601 RegsToZero.reset(Reg); 602 } 603 604 // Zero out the GPRs first. 605 for (MCRegister Reg : GPRsToZero.set_bits()) 606 TII.buildClearRegister(Reg, MBB, MBBI, DL); 607 608 // Zero out the remaining registers. 609 for (MCRegister Reg : RegsToZero.set_bits()) 610 TII.buildClearRegister(Reg, MBB, MBBI, DL); 611 } 612 613 void X86FrameLowering::emitStackProbe( 614 MachineFunction &MF, MachineBasicBlock &MBB, 615 MachineBasicBlock::iterator MBBI, const DebugLoc &DL, bool InProlog, 616 std::optional<MachineFunction::DebugInstrOperandPair> InstrNum) const { 617 const X86Subtarget &STI = MF.getSubtarget<X86Subtarget>(); 618 if (STI.isTargetWindowsCoreCLR()) { 619 if (InProlog) { 620 BuildMI(MBB, MBBI, DL, TII.get(X86::STACKALLOC_W_PROBING)) 621 .addImm(0 /* no explicit stack size */); 622 } else { 623 emitStackProbeInline(MF, MBB, MBBI, DL, false); 624 } 625 } else { 626 emitStackProbeCall(MF, MBB, MBBI, DL, InProlog, InstrNum); 627 } 628 } 629 630 bool X86FrameLowering::stackProbeFunctionModifiesSP() const { 631 return STI.isOSWindows() && !STI.isTargetWin64(); 632 } 633 634 void X86FrameLowering::inlineStackProbe(MachineFunction &MF, 635 MachineBasicBlock &PrologMBB) const { 636 auto Where = llvm::find_if(PrologMBB, [](MachineInstr &MI) { 637 return MI.getOpcode() == X86::STACKALLOC_W_PROBING; 638 }); 639 if (Where != PrologMBB.end()) { 640 DebugLoc DL = PrologMBB.findDebugLoc(Where); 641 emitStackProbeInline(MF, PrologMBB, Where, DL, true); 642 Where->eraseFromParent(); 643 } 644 } 645 646 void X86FrameLowering::emitStackProbeInline(MachineFunction &MF, 647 MachineBasicBlock &MBB, 648 MachineBasicBlock::iterator MBBI, 649 const DebugLoc &DL, 650 bool InProlog) const { 651 const X86Subtarget &STI = MF.getSubtarget<X86Subtarget>(); 652 if (STI.isTargetWindowsCoreCLR() && STI.is64Bit()) 653 emitStackProbeInlineWindowsCoreCLR64(MF, MBB, MBBI, DL, InProlog); 654 else 655 emitStackProbeInlineGeneric(MF, MBB, MBBI, DL, InProlog); 656 } 657 658 void X86FrameLowering::emitStackProbeInlineGeneric( 659 MachineFunction &MF, MachineBasicBlock &MBB, 660 MachineBasicBlock::iterator MBBI, const DebugLoc &DL, bool InProlog) const { 661 MachineInstr &AllocWithProbe = *MBBI; 662 uint64_t Offset = AllocWithProbe.getOperand(0).getImm(); 663 664 const X86Subtarget &STI = MF.getSubtarget<X86Subtarget>(); 665 const X86TargetLowering &TLI = *STI.getTargetLowering(); 666 assert(!(STI.is64Bit() && STI.isTargetWindowsCoreCLR()) && 667 "different expansion expected for CoreCLR 64 bit"); 668 669 const uint64_t StackProbeSize = TLI.getStackProbeSize(MF); 670 uint64_t ProbeChunk = StackProbeSize * 8; 671 672 uint64_t MaxAlign = 673 TRI->hasStackRealignment(MF) ? calculateMaxStackAlign(MF) : 0; 674 675 // Synthesize a loop or unroll it, depending on the number of iterations. 676 // BuildStackAlignAND ensures that only MaxAlign % StackProbeSize bits left 677 // between the unaligned rsp and current rsp. 678 if (Offset > ProbeChunk) { 679 emitStackProbeInlineGenericLoop(MF, MBB, MBBI, DL, Offset, 680 MaxAlign % StackProbeSize); 681 } else { 682 emitStackProbeInlineGenericBlock(MF, MBB, MBBI, DL, Offset, 683 MaxAlign % StackProbeSize); 684 } 685 } 686 687 void X86FrameLowering::emitStackProbeInlineGenericBlock( 688 MachineFunction &MF, MachineBasicBlock &MBB, 689 MachineBasicBlock::iterator MBBI, const DebugLoc &DL, uint64_t Offset, 690 uint64_t AlignOffset) const { 691 692 const bool NeedsDwarfCFI = needsDwarfCFI(MF); 693 const bool HasFP = hasFP(MF); 694 const X86Subtarget &STI = MF.getSubtarget<X86Subtarget>(); 695 const X86TargetLowering &TLI = *STI.getTargetLowering(); 696 const unsigned MovMIOpc = Is64Bit ? X86::MOV64mi32 : X86::MOV32mi; 697 const uint64_t StackProbeSize = TLI.getStackProbeSize(MF); 698 699 uint64_t CurrentOffset = 0; 700 701 assert(AlignOffset < StackProbeSize); 702 703 // If the offset is so small it fits within a page, there's nothing to do. 704 if (StackProbeSize < Offset + AlignOffset) { 705 706 uint64_t StackAdjustment = StackProbeSize - AlignOffset; 707 BuildStackAdjustment(MBB, MBBI, DL, -StackAdjustment, /*InEpilogue=*/false) 708 .setMIFlag(MachineInstr::FrameSetup); 709 if (!HasFP && NeedsDwarfCFI) { 710 BuildCFI( 711 MBB, MBBI, DL, 712 MCCFIInstruction::createAdjustCfaOffset(nullptr, StackAdjustment)); 713 } 714 715 addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(MovMIOpc)) 716 .setMIFlag(MachineInstr::FrameSetup), 717 StackPtr, false, 0) 718 .addImm(0) 719 .setMIFlag(MachineInstr::FrameSetup); 720 NumFrameExtraProbe++; 721 CurrentOffset = StackProbeSize - AlignOffset; 722 } 723 724 // For the next N - 1 pages, just probe. I tried to take advantage of 725 // natural probes but it implies much more logic and there was very few 726 // interesting natural probes to interleave. 727 while (CurrentOffset + StackProbeSize < Offset) { 728 BuildStackAdjustment(MBB, MBBI, DL, -StackProbeSize, /*InEpilogue=*/false) 729 .setMIFlag(MachineInstr::FrameSetup); 730 731 if (!HasFP && NeedsDwarfCFI) { 732 BuildCFI( 733 MBB, MBBI, DL, 734 MCCFIInstruction::createAdjustCfaOffset(nullptr, StackProbeSize)); 735 } 736 addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(MovMIOpc)) 737 .setMIFlag(MachineInstr::FrameSetup), 738 StackPtr, false, 0) 739 .addImm(0) 740 .setMIFlag(MachineInstr::FrameSetup); 741 NumFrameExtraProbe++; 742 CurrentOffset += StackProbeSize; 743 } 744 745 // No need to probe the tail, it is smaller than a Page. 746 uint64_t ChunkSize = Offset - CurrentOffset; 747 if (ChunkSize == SlotSize) { 748 // Use push for slot sized adjustments as a size optimization, 749 // like emitSPUpdate does when not probing. 750 unsigned Reg = Is64Bit ? X86::RAX : X86::EAX; 751 unsigned Opc = Is64Bit ? X86::PUSH64r : X86::PUSH32r; 752 BuildMI(MBB, MBBI, DL, TII.get(Opc)) 753 .addReg(Reg, RegState::Undef) 754 .setMIFlag(MachineInstr::FrameSetup); 755 } else { 756 BuildStackAdjustment(MBB, MBBI, DL, -ChunkSize, /*InEpilogue=*/false) 757 .setMIFlag(MachineInstr::FrameSetup); 758 } 759 // No need to adjust Dwarf CFA offset here, the last position of the stack has 760 // been defined 761 } 762 763 void X86FrameLowering::emitStackProbeInlineGenericLoop( 764 MachineFunction &MF, MachineBasicBlock &MBB, 765 MachineBasicBlock::iterator MBBI, const DebugLoc &DL, uint64_t Offset, 766 uint64_t AlignOffset) const { 767 assert(Offset && "null offset"); 768 769 assert(MBB.computeRegisterLiveness(TRI, X86::EFLAGS, MBBI) != 770 MachineBasicBlock::LQR_Live && 771 "Inline stack probe loop will clobber live EFLAGS."); 772 773 const bool NeedsDwarfCFI = needsDwarfCFI(MF); 774 const bool HasFP = hasFP(MF); 775 const X86Subtarget &STI = MF.getSubtarget<X86Subtarget>(); 776 const X86TargetLowering &TLI = *STI.getTargetLowering(); 777 const unsigned MovMIOpc = Is64Bit ? X86::MOV64mi32 : X86::MOV32mi; 778 const uint64_t StackProbeSize = TLI.getStackProbeSize(MF); 779 780 if (AlignOffset) { 781 if (AlignOffset < StackProbeSize) { 782 // Perform a first smaller allocation followed by a probe. 783 BuildStackAdjustment(MBB, MBBI, DL, -AlignOffset, /*InEpilogue=*/false) 784 .setMIFlag(MachineInstr::FrameSetup); 785 786 addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(MovMIOpc)) 787 .setMIFlag(MachineInstr::FrameSetup), 788 StackPtr, false, 0) 789 .addImm(0) 790 .setMIFlag(MachineInstr::FrameSetup); 791 NumFrameExtraProbe++; 792 Offset -= AlignOffset; 793 } 794 } 795 796 // Synthesize a loop 797 NumFrameLoopProbe++; 798 const BasicBlock *LLVM_BB = MBB.getBasicBlock(); 799 800 MachineBasicBlock *testMBB = MF.CreateMachineBasicBlock(LLVM_BB); 801 MachineBasicBlock *tailMBB = MF.CreateMachineBasicBlock(LLVM_BB); 802 803 MachineFunction::iterator MBBIter = ++MBB.getIterator(); 804 MF.insert(MBBIter, testMBB); 805 MF.insert(MBBIter, tailMBB); 806 807 Register FinalStackProbed = Uses64BitFramePtr ? X86::R11 808 : Is64Bit ? X86::R11D 809 : X86::EAX; 810 811 // save loop bound 812 { 813 const uint64_t BoundOffset = alignDown(Offset, StackProbeSize); 814 815 // Can we calculate the loop bound using SUB with a 32-bit immediate? 816 // Note that the immediate gets sign-extended when used with a 64-bit 817 // register, so in that case we only have 31 bits to work with. 818 bool canUseSub = 819 Uses64BitFramePtr ? isUInt<31>(BoundOffset) : isUInt<32>(BoundOffset); 820 821 if (canUseSub) { 822 const unsigned SUBOpc = getSUBriOpcode(Uses64BitFramePtr); 823 824 BuildMI(MBB, MBBI, DL, TII.get(TargetOpcode::COPY), FinalStackProbed) 825 .addReg(StackPtr) 826 .setMIFlag(MachineInstr::FrameSetup); 827 BuildMI(MBB, MBBI, DL, TII.get(SUBOpc), FinalStackProbed) 828 .addReg(FinalStackProbed) 829 .addImm(BoundOffset) 830 .setMIFlag(MachineInstr::FrameSetup); 831 } else if (Uses64BitFramePtr) { 832 BuildMI(MBB, MBBI, DL, TII.get(X86::MOV64ri), FinalStackProbed) 833 .addImm(-BoundOffset) 834 .setMIFlag(MachineInstr::FrameSetup); 835 BuildMI(MBB, MBBI, DL, TII.get(X86::ADD64rr), FinalStackProbed) 836 .addReg(FinalStackProbed) 837 .addReg(StackPtr) 838 .setMIFlag(MachineInstr::FrameSetup); 839 } else { 840 llvm_unreachable("Offset too large for 32-bit stack pointer"); 841 } 842 843 // while in the loop, use loop-invariant reg for CFI, 844 // instead of the stack pointer, which changes during the loop 845 if (!HasFP && NeedsDwarfCFI) { 846 // x32 uses the same DWARF register numbers as x86-64, 847 // so there isn't a register number for r11d, we must use r11 instead 848 const Register DwarfFinalStackProbed = 849 STI.isTarget64BitILP32() 850 ? Register(getX86SubSuperRegister(FinalStackProbed, 64)) 851 : FinalStackProbed; 852 853 BuildCFI(MBB, MBBI, DL, 854 MCCFIInstruction::createDefCfaRegister( 855 nullptr, TRI->getDwarfRegNum(DwarfFinalStackProbed, true))); 856 BuildCFI(MBB, MBBI, DL, 857 MCCFIInstruction::createAdjustCfaOffset(nullptr, BoundOffset)); 858 } 859 } 860 861 // allocate a page 862 BuildStackAdjustment(*testMBB, testMBB->end(), DL, -StackProbeSize, 863 /*InEpilogue=*/false) 864 .setMIFlag(MachineInstr::FrameSetup); 865 866 // touch the page 867 addRegOffset(BuildMI(testMBB, DL, TII.get(MovMIOpc)) 868 .setMIFlag(MachineInstr::FrameSetup), 869 StackPtr, false, 0) 870 .addImm(0) 871 .setMIFlag(MachineInstr::FrameSetup); 872 873 // cmp with stack pointer bound 874 BuildMI(testMBB, DL, TII.get(Uses64BitFramePtr ? X86::CMP64rr : X86::CMP32rr)) 875 .addReg(StackPtr) 876 .addReg(FinalStackProbed) 877 .setMIFlag(MachineInstr::FrameSetup); 878 879 // jump 880 BuildMI(testMBB, DL, TII.get(X86::JCC_1)) 881 .addMBB(testMBB) 882 .addImm(X86::COND_NE) 883 .setMIFlag(MachineInstr::FrameSetup); 884 testMBB->addSuccessor(testMBB); 885 testMBB->addSuccessor(tailMBB); 886 887 // BB management 888 tailMBB->splice(tailMBB->end(), &MBB, MBBI, MBB.end()); 889 tailMBB->transferSuccessorsAndUpdatePHIs(&MBB); 890 MBB.addSuccessor(testMBB); 891 892 // handle tail 893 const uint64_t TailOffset = Offset % StackProbeSize; 894 MachineBasicBlock::iterator TailMBBIter = tailMBB->begin(); 895 if (TailOffset) { 896 BuildStackAdjustment(*tailMBB, TailMBBIter, DL, -TailOffset, 897 /*InEpilogue=*/false) 898 .setMIFlag(MachineInstr::FrameSetup); 899 } 900 901 // after the loop, switch back to stack pointer for CFI 902 if (!HasFP && NeedsDwarfCFI) { 903 // x32 uses the same DWARF register numbers as x86-64, 904 // so there isn't a register number for esp, we must use rsp instead 905 const Register DwarfStackPtr = 906 STI.isTarget64BitILP32() 907 ? Register(getX86SubSuperRegister(StackPtr, 64)) 908 : Register(StackPtr); 909 910 BuildCFI(*tailMBB, TailMBBIter, DL, 911 MCCFIInstruction::createDefCfaRegister( 912 nullptr, TRI->getDwarfRegNum(DwarfStackPtr, true))); 913 } 914 915 // Update Live In information 916 fullyRecomputeLiveIns({tailMBB, testMBB}); 917 } 918 919 void X86FrameLowering::emitStackProbeInlineWindowsCoreCLR64( 920 MachineFunction &MF, MachineBasicBlock &MBB, 921 MachineBasicBlock::iterator MBBI, const DebugLoc &DL, bool InProlog) const { 922 const X86Subtarget &STI = MF.getSubtarget<X86Subtarget>(); 923 assert(STI.is64Bit() && "different expansion needed for 32 bit"); 924 assert(STI.isTargetWindowsCoreCLR() && "custom expansion expects CoreCLR"); 925 const TargetInstrInfo &TII = *STI.getInstrInfo(); 926 const BasicBlock *LLVM_BB = MBB.getBasicBlock(); 927 928 assert(MBB.computeRegisterLiveness(TRI, X86::EFLAGS, MBBI) != 929 MachineBasicBlock::LQR_Live && 930 "Inline stack probe loop will clobber live EFLAGS."); 931 932 // RAX contains the number of bytes of desired stack adjustment. 933 // The handling here assumes this value has already been updated so as to 934 // maintain stack alignment. 935 // 936 // We need to exit with RSP modified by this amount and execute suitable 937 // page touches to notify the OS that we're growing the stack responsibly. 938 // All stack probing must be done without modifying RSP. 939 // 940 // MBB: 941 // SizeReg = RAX; 942 // ZeroReg = 0 943 // CopyReg = RSP 944 // Flags, TestReg = CopyReg - SizeReg 945 // FinalReg = !Flags.Ovf ? TestReg : ZeroReg 946 // LimitReg = gs magic thread env access 947 // if FinalReg >= LimitReg goto ContinueMBB 948 // RoundBB: 949 // RoundReg = page address of FinalReg 950 // LoopMBB: 951 // LoopReg = PHI(LimitReg,ProbeReg) 952 // ProbeReg = LoopReg - PageSize 953 // [ProbeReg] = 0 954 // if (ProbeReg > RoundReg) goto LoopMBB 955 // ContinueMBB: 956 // RSP = RSP - RAX 957 // [rest of original MBB] 958 959 // Set up the new basic blocks 960 MachineBasicBlock *RoundMBB = MF.CreateMachineBasicBlock(LLVM_BB); 961 MachineBasicBlock *LoopMBB = MF.CreateMachineBasicBlock(LLVM_BB); 962 MachineBasicBlock *ContinueMBB = MF.CreateMachineBasicBlock(LLVM_BB); 963 964 MachineFunction::iterator MBBIter = std::next(MBB.getIterator()); 965 MF.insert(MBBIter, RoundMBB); 966 MF.insert(MBBIter, LoopMBB); 967 MF.insert(MBBIter, ContinueMBB); 968 969 // Split MBB and move the tail portion down to ContinueMBB. 970 MachineBasicBlock::iterator BeforeMBBI = std::prev(MBBI); 971 ContinueMBB->splice(ContinueMBB->begin(), &MBB, MBBI, MBB.end()); 972 ContinueMBB->transferSuccessorsAndUpdatePHIs(&MBB); 973 974 // Some useful constants 975 const int64_t ThreadEnvironmentStackLimit = 0x10; 976 const int64_t PageSize = 0x1000; 977 const int64_t PageMask = ~(PageSize - 1); 978 979 // Registers we need. For the normal case we use virtual 980 // registers. For the prolog expansion we use RAX, RCX and RDX. 981 MachineRegisterInfo &MRI = MF.getRegInfo(); 982 const TargetRegisterClass *RegClass = &X86::GR64RegClass; 983 const Register 984 SizeReg = InProlog ? X86::RAX : MRI.createVirtualRegister(RegClass), 985 ZeroReg = InProlog ? X86::RCX : MRI.createVirtualRegister(RegClass), 986 CopyReg = InProlog ? X86::RDX : MRI.createVirtualRegister(RegClass), 987 TestReg = InProlog ? X86::RDX : MRI.createVirtualRegister(RegClass), 988 FinalReg = InProlog ? X86::RDX : MRI.createVirtualRegister(RegClass), 989 RoundedReg = InProlog ? X86::RDX : MRI.createVirtualRegister(RegClass), 990 LimitReg = InProlog ? X86::RCX : MRI.createVirtualRegister(RegClass), 991 JoinReg = InProlog ? X86::RCX : MRI.createVirtualRegister(RegClass), 992 ProbeReg = InProlog ? X86::RCX : MRI.createVirtualRegister(RegClass); 993 994 // SP-relative offsets where we can save RCX and RDX. 995 int64_t RCXShadowSlot = 0; 996 int64_t RDXShadowSlot = 0; 997 998 // If inlining in the prolog, save RCX and RDX. 999 if (InProlog) { 1000 // Compute the offsets. We need to account for things already 1001 // pushed onto the stack at this point: return address, frame 1002 // pointer (if used), and callee saves. 1003 X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>(); 1004 const int64_t CalleeSaveSize = X86FI->getCalleeSavedFrameSize(); 1005 const bool HasFP = hasFP(MF); 1006 1007 // Check if we need to spill RCX and/or RDX. 1008 // Here we assume that no earlier prologue instruction changes RCX and/or 1009 // RDX, so checking the block live-ins is enough. 1010 const bool IsRCXLiveIn = MBB.isLiveIn(X86::RCX); 1011 const bool IsRDXLiveIn = MBB.isLiveIn(X86::RDX); 1012 int64_t InitSlot = 8 + CalleeSaveSize + (HasFP ? 8 : 0); 1013 // Assign the initial slot to both registers, then change RDX's slot if both 1014 // need to be spilled. 1015 if (IsRCXLiveIn) 1016 RCXShadowSlot = InitSlot; 1017 if (IsRDXLiveIn) 1018 RDXShadowSlot = InitSlot; 1019 if (IsRDXLiveIn && IsRCXLiveIn) 1020 RDXShadowSlot += 8; 1021 // Emit the saves if needed. 1022 if (IsRCXLiveIn) 1023 addRegOffset(BuildMI(&MBB, DL, TII.get(X86::MOV64mr)), X86::RSP, false, 1024 RCXShadowSlot) 1025 .addReg(X86::RCX); 1026 if (IsRDXLiveIn) 1027 addRegOffset(BuildMI(&MBB, DL, TII.get(X86::MOV64mr)), X86::RSP, false, 1028 RDXShadowSlot) 1029 .addReg(X86::RDX); 1030 } else { 1031 // Not in the prolog. Copy RAX to a virtual reg. 1032 BuildMI(&MBB, DL, TII.get(X86::MOV64rr), SizeReg).addReg(X86::RAX); 1033 } 1034 1035 // Add code to MBB to check for overflow and set the new target stack pointer 1036 // to zero if so. 1037 BuildMI(&MBB, DL, TII.get(X86::XOR64rr), ZeroReg) 1038 .addReg(ZeroReg, RegState::Undef) 1039 .addReg(ZeroReg, RegState::Undef); 1040 BuildMI(&MBB, DL, TII.get(X86::MOV64rr), CopyReg).addReg(X86::RSP); 1041 BuildMI(&MBB, DL, TII.get(X86::SUB64rr), TestReg) 1042 .addReg(CopyReg) 1043 .addReg(SizeReg); 1044 BuildMI(&MBB, DL, TII.get(X86::CMOV64rr), FinalReg) 1045 .addReg(TestReg) 1046 .addReg(ZeroReg) 1047 .addImm(X86::COND_B); 1048 1049 // FinalReg now holds final stack pointer value, or zero if 1050 // allocation would overflow. Compare against the current stack 1051 // limit from the thread environment block. Note this limit is the 1052 // lowest touched page on the stack, not the point at which the OS 1053 // will cause an overflow exception, so this is just an optimization 1054 // to avoid unnecessarily touching pages that are below the current 1055 // SP but already committed to the stack by the OS. 1056 BuildMI(&MBB, DL, TII.get(X86::MOV64rm), LimitReg) 1057 .addReg(0) 1058 .addImm(1) 1059 .addReg(0) 1060 .addImm(ThreadEnvironmentStackLimit) 1061 .addReg(X86::GS); 1062 BuildMI(&MBB, DL, TII.get(X86::CMP64rr)).addReg(FinalReg).addReg(LimitReg); 1063 // Jump if the desired stack pointer is at or above the stack limit. 1064 BuildMI(&MBB, DL, TII.get(X86::JCC_1)) 1065 .addMBB(ContinueMBB) 1066 .addImm(X86::COND_AE); 1067 1068 // Add code to roundMBB to round the final stack pointer to a page boundary. 1069 if (InProlog) 1070 RoundMBB->addLiveIn(FinalReg); 1071 BuildMI(RoundMBB, DL, TII.get(X86::AND64ri32), RoundedReg) 1072 .addReg(FinalReg) 1073 .addImm(PageMask); 1074 BuildMI(RoundMBB, DL, TII.get(X86::JMP_1)).addMBB(LoopMBB); 1075 1076 // LimitReg now holds the current stack limit, RoundedReg page-rounded 1077 // final RSP value. Add code to loopMBB to decrement LimitReg page-by-page 1078 // and probe until we reach RoundedReg. 1079 if (!InProlog) { 1080 BuildMI(LoopMBB, DL, TII.get(X86::PHI), JoinReg) 1081 .addReg(LimitReg) 1082 .addMBB(RoundMBB) 1083 .addReg(ProbeReg) 1084 .addMBB(LoopMBB); 1085 } 1086 1087 if (InProlog) 1088 LoopMBB->addLiveIn(JoinReg); 1089 addRegOffset(BuildMI(LoopMBB, DL, TII.get(X86::LEA64r), ProbeReg), JoinReg, 1090 false, -PageSize); 1091 1092 // Probe by storing a byte onto the stack. 1093 BuildMI(LoopMBB, DL, TII.get(X86::MOV8mi)) 1094 .addReg(ProbeReg) 1095 .addImm(1) 1096 .addReg(0) 1097 .addImm(0) 1098 .addReg(0) 1099 .addImm(0); 1100 1101 if (InProlog) 1102 LoopMBB->addLiveIn(RoundedReg); 1103 BuildMI(LoopMBB, DL, TII.get(X86::CMP64rr)) 1104 .addReg(RoundedReg) 1105 .addReg(ProbeReg); 1106 BuildMI(LoopMBB, DL, TII.get(X86::JCC_1)) 1107 .addMBB(LoopMBB) 1108 .addImm(X86::COND_NE); 1109 1110 MachineBasicBlock::iterator ContinueMBBI = ContinueMBB->getFirstNonPHI(); 1111 1112 // If in prolog, restore RDX and RCX. 1113 if (InProlog) { 1114 if (RCXShadowSlot) // It means we spilled RCX in the prologue. 1115 addRegOffset(BuildMI(*ContinueMBB, ContinueMBBI, DL, 1116 TII.get(X86::MOV64rm), X86::RCX), 1117 X86::RSP, false, RCXShadowSlot); 1118 if (RDXShadowSlot) // It means we spilled RDX in the prologue. 1119 addRegOffset(BuildMI(*ContinueMBB, ContinueMBBI, DL, 1120 TII.get(X86::MOV64rm), X86::RDX), 1121 X86::RSP, false, RDXShadowSlot); 1122 } 1123 1124 // Now that the probing is done, add code to continueMBB to update 1125 // the stack pointer for real. 1126 BuildMI(*ContinueMBB, ContinueMBBI, DL, TII.get(X86::SUB64rr), X86::RSP) 1127 .addReg(X86::RSP) 1128 .addReg(SizeReg); 1129 1130 // Add the control flow edges we need. 1131 MBB.addSuccessor(ContinueMBB); 1132 MBB.addSuccessor(RoundMBB); 1133 RoundMBB->addSuccessor(LoopMBB); 1134 LoopMBB->addSuccessor(ContinueMBB); 1135 LoopMBB->addSuccessor(LoopMBB); 1136 1137 if (InProlog) { 1138 LivePhysRegs LiveRegs; 1139 computeAndAddLiveIns(LiveRegs, *ContinueMBB); 1140 } 1141 1142 // Mark all the instructions added to the prolog as frame setup. 1143 if (InProlog) { 1144 for (++BeforeMBBI; BeforeMBBI != MBB.end(); ++BeforeMBBI) { 1145 BeforeMBBI->setFlag(MachineInstr::FrameSetup); 1146 } 1147 for (MachineInstr &MI : *RoundMBB) { 1148 MI.setFlag(MachineInstr::FrameSetup); 1149 } 1150 for (MachineInstr &MI : *LoopMBB) { 1151 MI.setFlag(MachineInstr::FrameSetup); 1152 } 1153 for (MachineInstr &MI : 1154 llvm::make_range(ContinueMBB->begin(), ContinueMBBI)) { 1155 MI.setFlag(MachineInstr::FrameSetup); 1156 } 1157 } 1158 } 1159 1160 void X86FrameLowering::emitStackProbeCall( 1161 MachineFunction &MF, MachineBasicBlock &MBB, 1162 MachineBasicBlock::iterator MBBI, const DebugLoc &DL, bool InProlog, 1163 std::optional<MachineFunction::DebugInstrOperandPair> InstrNum) const { 1164 bool IsLargeCodeModel = MF.getTarget().getCodeModel() == CodeModel::Large; 1165 1166 // FIXME: Add indirect thunk support and remove this. 1167 if (Is64Bit && IsLargeCodeModel && STI.useIndirectThunkCalls()) 1168 report_fatal_error("Emitting stack probe calls on 64-bit with the large " 1169 "code model and indirect thunks not yet implemented."); 1170 1171 assert(MBB.computeRegisterLiveness(TRI, X86::EFLAGS, MBBI) != 1172 MachineBasicBlock::LQR_Live && 1173 "Stack probe calls will clobber live EFLAGS."); 1174 1175 unsigned CallOp; 1176 if (Is64Bit) 1177 CallOp = IsLargeCodeModel ? X86::CALL64r : X86::CALL64pcrel32; 1178 else 1179 CallOp = X86::CALLpcrel32; 1180 1181 StringRef Symbol = STI.getTargetLowering()->getStackProbeSymbolName(MF); 1182 1183 MachineInstrBuilder CI; 1184 MachineBasicBlock::iterator ExpansionMBBI = std::prev(MBBI); 1185 1186 // All current stack probes take AX and SP as input, clobber flags, and 1187 // preserve all registers. x86_64 probes leave RSP unmodified. 1188 if (Is64Bit && MF.getTarget().getCodeModel() == CodeModel::Large) { 1189 // For the large code model, we have to call through a register. Use R11, 1190 // as it is scratch in all supported calling conventions. 1191 BuildMI(MBB, MBBI, DL, TII.get(X86::MOV64ri), X86::R11) 1192 .addExternalSymbol(MF.createExternalSymbolName(Symbol)); 1193 CI = BuildMI(MBB, MBBI, DL, TII.get(CallOp)).addReg(X86::R11); 1194 } else { 1195 CI = BuildMI(MBB, MBBI, DL, TII.get(CallOp)) 1196 .addExternalSymbol(MF.createExternalSymbolName(Symbol)); 1197 } 1198 1199 unsigned AX = Uses64BitFramePtr ? X86::RAX : X86::EAX; 1200 unsigned SP = Uses64BitFramePtr ? X86::RSP : X86::ESP; 1201 CI.addReg(AX, RegState::Implicit) 1202 .addReg(SP, RegState::Implicit) 1203 .addReg(AX, RegState::Define | RegState::Implicit) 1204 .addReg(SP, RegState::Define | RegState::Implicit) 1205 .addReg(X86::EFLAGS, RegState::Define | RegState::Implicit); 1206 1207 MachineInstr *ModInst = CI; 1208 if (STI.isTargetWin64() || !STI.isOSWindows()) { 1209 // MSVC x32's _chkstk and cygwin/mingw's _alloca adjust %esp themselves. 1210 // MSVC x64's __chkstk and cygwin/mingw's ___chkstk_ms do not adjust %rsp 1211 // themselves. They also does not clobber %rax so we can reuse it when 1212 // adjusting %rsp. 1213 // All other platforms do not specify a particular ABI for the stack probe 1214 // function, so we arbitrarily define it to not adjust %esp/%rsp itself. 1215 ModInst = 1216 BuildMI(MBB, MBBI, DL, TII.get(getSUBrrOpcode(Uses64BitFramePtr)), SP) 1217 .addReg(SP) 1218 .addReg(AX); 1219 } 1220 1221 // DebugInfo variable locations -- if there's an instruction number for the 1222 // allocation (i.e., DYN_ALLOC_*), substitute it for the instruction that 1223 // modifies SP. 1224 if (InstrNum) { 1225 if (STI.isTargetWin64() || !STI.isOSWindows()) { 1226 // Label destination operand of the subtract. 1227 MF.makeDebugValueSubstitution(*InstrNum, 1228 {ModInst->getDebugInstrNum(), 0}); 1229 } else { 1230 // Label the call. The operand number is the penultimate operand, zero 1231 // based. 1232 unsigned SPDefOperand = ModInst->getNumOperands() - 2; 1233 MF.makeDebugValueSubstitution( 1234 *InstrNum, {ModInst->getDebugInstrNum(), SPDefOperand}); 1235 } 1236 } 1237 1238 if (InProlog) { 1239 // Apply the frame setup flag to all inserted instrs. 1240 for (++ExpansionMBBI; ExpansionMBBI != MBBI; ++ExpansionMBBI) 1241 ExpansionMBBI->setFlag(MachineInstr::FrameSetup); 1242 } 1243 } 1244 1245 static unsigned calculateSetFPREG(uint64_t SPAdjust) { 1246 // Win64 ABI has a less restrictive limitation of 240; 128 works equally well 1247 // and might require smaller successive adjustments. 1248 const uint64_t Win64MaxSEHOffset = 128; 1249 uint64_t SEHFrameOffset = std::min(SPAdjust, Win64MaxSEHOffset); 1250 // Win64 ABI requires 16-byte alignment for the UWOP_SET_FPREG opcode. 1251 return SEHFrameOffset & -16; 1252 } 1253 1254 // If we're forcing a stack realignment we can't rely on just the frame 1255 // info, we need to know the ABI stack alignment as well in case we 1256 // have a call out. Otherwise just make sure we have some alignment - we'll 1257 // go with the minimum SlotSize. 1258 uint64_t 1259 X86FrameLowering::calculateMaxStackAlign(const MachineFunction &MF) const { 1260 const MachineFrameInfo &MFI = MF.getFrameInfo(); 1261 Align MaxAlign = MFI.getMaxAlign(); // Desired stack alignment. 1262 Align StackAlign = getStackAlign(); 1263 bool HasRealign = MF.getFunction().hasFnAttribute("stackrealign"); 1264 if (HasRealign) { 1265 if (MFI.hasCalls()) 1266 MaxAlign = (StackAlign > MaxAlign) ? StackAlign : MaxAlign; 1267 else if (MaxAlign < SlotSize) 1268 MaxAlign = Align(SlotSize); 1269 } 1270 1271 if (!Is64Bit && MF.getFunction().getCallingConv() == CallingConv::X86_INTR) { 1272 if (HasRealign) 1273 MaxAlign = (MaxAlign > 16) ? MaxAlign : Align(16); 1274 else 1275 MaxAlign = Align(16); 1276 } 1277 return MaxAlign.value(); 1278 } 1279 1280 void X86FrameLowering::BuildStackAlignAND(MachineBasicBlock &MBB, 1281 MachineBasicBlock::iterator MBBI, 1282 const DebugLoc &DL, unsigned Reg, 1283 uint64_t MaxAlign) const { 1284 uint64_t Val = -MaxAlign; 1285 unsigned AndOp = getANDriOpcode(Uses64BitFramePtr, Val); 1286 1287 MachineFunction &MF = *MBB.getParent(); 1288 const X86Subtarget &STI = MF.getSubtarget<X86Subtarget>(); 1289 const X86TargetLowering &TLI = *STI.getTargetLowering(); 1290 const uint64_t StackProbeSize = TLI.getStackProbeSize(MF); 1291 const bool EmitInlineStackProbe = TLI.hasInlineStackProbe(MF); 1292 1293 // We want to make sure that (in worst case) less than StackProbeSize bytes 1294 // are not probed after the AND. This assumption is used in 1295 // emitStackProbeInlineGeneric. 1296 if (Reg == StackPtr && EmitInlineStackProbe && MaxAlign >= StackProbeSize) { 1297 { 1298 NumFrameLoopProbe++; 1299 MachineBasicBlock *entryMBB = 1300 MF.CreateMachineBasicBlock(MBB.getBasicBlock()); 1301 MachineBasicBlock *headMBB = 1302 MF.CreateMachineBasicBlock(MBB.getBasicBlock()); 1303 MachineBasicBlock *bodyMBB = 1304 MF.CreateMachineBasicBlock(MBB.getBasicBlock()); 1305 MachineBasicBlock *footMBB = 1306 MF.CreateMachineBasicBlock(MBB.getBasicBlock()); 1307 1308 MachineFunction::iterator MBBIter = MBB.getIterator(); 1309 MF.insert(MBBIter, entryMBB); 1310 MF.insert(MBBIter, headMBB); 1311 MF.insert(MBBIter, bodyMBB); 1312 MF.insert(MBBIter, footMBB); 1313 const unsigned MovMIOpc = Is64Bit ? X86::MOV64mi32 : X86::MOV32mi; 1314 Register FinalStackProbed = Uses64BitFramePtr ? X86::R11 1315 : Is64Bit ? X86::R11D 1316 : X86::EAX; 1317 1318 // Setup entry block 1319 { 1320 1321 entryMBB->splice(entryMBB->end(), &MBB, MBB.begin(), MBBI); 1322 BuildMI(entryMBB, DL, TII.get(TargetOpcode::COPY), FinalStackProbed) 1323 .addReg(StackPtr) 1324 .setMIFlag(MachineInstr::FrameSetup); 1325 MachineInstr *MI = 1326 BuildMI(entryMBB, DL, TII.get(AndOp), FinalStackProbed) 1327 .addReg(FinalStackProbed) 1328 .addImm(Val) 1329 .setMIFlag(MachineInstr::FrameSetup); 1330 1331 // The EFLAGS implicit def is dead. 1332 MI->getOperand(3).setIsDead(); 1333 1334 BuildMI(entryMBB, DL, 1335 TII.get(Uses64BitFramePtr ? X86::CMP64rr : X86::CMP32rr)) 1336 .addReg(FinalStackProbed) 1337 .addReg(StackPtr) 1338 .setMIFlag(MachineInstr::FrameSetup); 1339 BuildMI(entryMBB, DL, TII.get(X86::JCC_1)) 1340 .addMBB(&MBB) 1341 .addImm(X86::COND_E) 1342 .setMIFlag(MachineInstr::FrameSetup); 1343 entryMBB->addSuccessor(headMBB); 1344 entryMBB->addSuccessor(&MBB); 1345 } 1346 1347 // Loop entry block 1348 1349 { 1350 const unsigned SUBOpc = getSUBriOpcode(Uses64BitFramePtr); 1351 BuildMI(headMBB, DL, TII.get(SUBOpc), StackPtr) 1352 .addReg(StackPtr) 1353 .addImm(StackProbeSize) 1354 .setMIFlag(MachineInstr::FrameSetup); 1355 1356 BuildMI(headMBB, DL, 1357 TII.get(Uses64BitFramePtr ? X86::CMP64rr : X86::CMP32rr)) 1358 .addReg(StackPtr) 1359 .addReg(FinalStackProbed) 1360 .setMIFlag(MachineInstr::FrameSetup); 1361 1362 // jump to the footer if StackPtr < FinalStackProbed 1363 BuildMI(headMBB, DL, TII.get(X86::JCC_1)) 1364 .addMBB(footMBB) 1365 .addImm(X86::COND_B) 1366 .setMIFlag(MachineInstr::FrameSetup); 1367 1368 headMBB->addSuccessor(bodyMBB); 1369 headMBB->addSuccessor(footMBB); 1370 } 1371 1372 // setup loop body 1373 { 1374 addRegOffset(BuildMI(bodyMBB, DL, TII.get(MovMIOpc)) 1375 .setMIFlag(MachineInstr::FrameSetup), 1376 StackPtr, false, 0) 1377 .addImm(0) 1378 .setMIFlag(MachineInstr::FrameSetup); 1379 1380 const unsigned SUBOpc = getSUBriOpcode(Uses64BitFramePtr); 1381 BuildMI(bodyMBB, DL, TII.get(SUBOpc), StackPtr) 1382 .addReg(StackPtr) 1383 .addImm(StackProbeSize) 1384 .setMIFlag(MachineInstr::FrameSetup); 1385 1386 // cmp with stack pointer bound 1387 BuildMI(bodyMBB, DL, 1388 TII.get(Uses64BitFramePtr ? X86::CMP64rr : X86::CMP32rr)) 1389 .addReg(FinalStackProbed) 1390 .addReg(StackPtr) 1391 .setMIFlag(MachineInstr::FrameSetup); 1392 1393 // jump back while FinalStackProbed < StackPtr 1394 BuildMI(bodyMBB, DL, TII.get(X86::JCC_1)) 1395 .addMBB(bodyMBB) 1396 .addImm(X86::COND_B) 1397 .setMIFlag(MachineInstr::FrameSetup); 1398 bodyMBB->addSuccessor(bodyMBB); 1399 bodyMBB->addSuccessor(footMBB); 1400 } 1401 1402 // setup loop footer 1403 { 1404 BuildMI(footMBB, DL, TII.get(TargetOpcode::COPY), StackPtr) 1405 .addReg(FinalStackProbed) 1406 .setMIFlag(MachineInstr::FrameSetup); 1407 addRegOffset(BuildMI(footMBB, DL, TII.get(MovMIOpc)) 1408 .setMIFlag(MachineInstr::FrameSetup), 1409 StackPtr, false, 0) 1410 .addImm(0) 1411 .setMIFlag(MachineInstr::FrameSetup); 1412 footMBB->addSuccessor(&MBB); 1413 } 1414 1415 fullyRecomputeLiveIns({footMBB, bodyMBB, headMBB, &MBB}); 1416 } 1417 } else { 1418 MachineInstr *MI = BuildMI(MBB, MBBI, DL, TII.get(AndOp), Reg) 1419 .addReg(Reg) 1420 .addImm(Val) 1421 .setMIFlag(MachineInstr::FrameSetup); 1422 1423 // The EFLAGS implicit def is dead. 1424 MI->getOperand(3).setIsDead(); 1425 } 1426 } 1427 1428 bool X86FrameLowering::has128ByteRedZone(const MachineFunction &MF) const { 1429 // x86-64 (non Win64) has a 128 byte red zone which is guaranteed not to be 1430 // clobbered by any interrupt handler. 1431 assert(&STI == &MF.getSubtarget<X86Subtarget>() && 1432 "MF used frame lowering for wrong subtarget"); 1433 const Function &Fn = MF.getFunction(); 1434 const bool IsWin64CC = STI.isCallingConvWin64(Fn.getCallingConv()); 1435 return Is64Bit && !IsWin64CC && !Fn.hasFnAttribute(Attribute::NoRedZone); 1436 } 1437 1438 /// Return true if we need to use the restricted Windows x64 prologue and 1439 /// epilogue code patterns that can be described with WinCFI (.seh_* 1440 /// directives). 1441 bool X86FrameLowering::isWin64Prologue(const MachineFunction &MF) const { 1442 return MF.getTarget().getMCAsmInfo()->usesWindowsCFI(); 1443 } 1444 1445 bool X86FrameLowering::needsDwarfCFI(const MachineFunction &MF) const { 1446 return !isWin64Prologue(MF) && MF.needsFrameMoves(); 1447 } 1448 1449 /// Return true if an opcode is part of the REP group of instructions 1450 static bool isOpcodeRep(unsigned Opcode) { 1451 switch (Opcode) { 1452 case X86::REPNE_PREFIX: 1453 case X86::REP_MOVSB_32: 1454 case X86::REP_MOVSB_64: 1455 case X86::REP_MOVSD_32: 1456 case X86::REP_MOVSD_64: 1457 case X86::REP_MOVSQ_32: 1458 case X86::REP_MOVSQ_64: 1459 case X86::REP_MOVSW_32: 1460 case X86::REP_MOVSW_64: 1461 case X86::REP_PREFIX: 1462 case X86::REP_STOSB_32: 1463 case X86::REP_STOSB_64: 1464 case X86::REP_STOSD_32: 1465 case X86::REP_STOSD_64: 1466 case X86::REP_STOSQ_32: 1467 case X86::REP_STOSQ_64: 1468 case X86::REP_STOSW_32: 1469 case X86::REP_STOSW_64: 1470 return true; 1471 default: 1472 break; 1473 } 1474 return false; 1475 } 1476 1477 /// emitPrologue - Push callee-saved registers onto the stack, which 1478 /// automatically adjust the stack pointer. Adjust the stack pointer to allocate 1479 /// space for local variables. Also emit labels used by the exception handler to 1480 /// generate the exception handling frames. 1481 1482 /* 1483 Here's a gist of what gets emitted: 1484 1485 ; Establish frame pointer, if needed 1486 [if needs FP] 1487 push %rbp 1488 .cfi_def_cfa_offset 16 1489 .cfi_offset %rbp, -16 1490 .seh_pushreg %rpb 1491 mov %rsp, %rbp 1492 .cfi_def_cfa_register %rbp 1493 1494 ; Spill general-purpose registers 1495 [for all callee-saved GPRs] 1496 pushq %<reg> 1497 [if not needs FP] 1498 .cfi_def_cfa_offset (offset from RETADDR) 1499 .seh_pushreg %<reg> 1500 1501 ; If the required stack alignment > default stack alignment 1502 ; rsp needs to be re-aligned. This creates a "re-alignment gap" 1503 ; of unknown size in the stack frame. 1504 [if stack needs re-alignment] 1505 and $MASK, %rsp 1506 1507 ; Allocate space for locals 1508 [if target is Windows and allocated space > 4096 bytes] 1509 ; Windows needs special care for allocations larger 1510 ; than one page. 1511 mov $NNN, %rax 1512 call ___chkstk_ms/___chkstk 1513 sub %rax, %rsp 1514 [else] 1515 sub $NNN, %rsp 1516 1517 [if needs FP] 1518 .seh_stackalloc (size of XMM spill slots) 1519 .seh_setframe %rbp, SEHFrameOffset ; = size of all spill slots 1520 [else] 1521 .seh_stackalloc NNN 1522 1523 ; Spill XMMs 1524 ; Note, that while only Windows 64 ABI specifies XMMs as callee-preserved, 1525 ; they may get spilled on any platform, if the current function 1526 ; calls @llvm.eh.unwind.init 1527 [if needs FP] 1528 [for all callee-saved XMM registers] 1529 movaps %<xmm reg>, -MMM(%rbp) 1530 [for all callee-saved XMM registers] 1531 .seh_savexmm %<xmm reg>, (-MMM + SEHFrameOffset) 1532 ; i.e. the offset relative to (%rbp - SEHFrameOffset) 1533 [else] 1534 [for all callee-saved XMM registers] 1535 movaps %<xmm reg>, KKK(%rsp) 1536 [for all callee-saved XMM registers] 1537 .seh_savexmm %<xmm reg>, KKK 1538 1539 .seh_endprologue 1540 1541 [if needs base pointer] 1542 mov %rsp, %rbx 1543 [if needs to restore base pointer] 1544 mov %rsp, -MMM(%rbp) 1545 1546 ; Emit CFI info 1547 [if needs FP] 1548 [for all callee-saved registers] 1549 .cfi_offset %<reg>, (offset from %rbp) 1550 [else] 1551 .cfi_def_cfa_offset (offset from RETADDR) 1552 [for all callee-saved registers] 1553 .cfi_offset %<reg>, (offset from %rsp) 1554 1555 Notes: 1556 - .seh directives are emitted only for Windows 64 ABI 1557 - .cv_fpo directives are emitted on win32 when emitting CodeView 1558 - .cfi directives are emitted for all other ABIs 1559 - for 32-bit code, substitute %e?? registers for %r?? 1560 */ 1561 1562 void X86FrameLowering::emitPrologue(MachineFunction &MF, 1563 MachineBasicBlock &MBB) const { 1564 assert(&STI == &MF.getSubtarget<X86Subtarget>() && 1565 "MF used frame lowering for wrong subtarget"); 1566 MachineBasicBlock::iterator MBBI = MBB.begin(); 1567 MachineFrameInfo &MFI = MF.getFrameInfo(); 1568 const Function &Fn = MF.getFunction(); 1569 X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>(); 1570 uint64_t MaxAlign = calculateMaxStackAlign(MF); // Desired stack alignment. 1571 uint64_t StackSize = MFI.getStackSize(); // Number of bytes to allocate. 1572 bool IsFunclet = MBB.isEHFuncletEntry(); 1573 EHPersonality Personality = EHPersonality::Unknown; 1574 if (Fn.hasPersonalityFn()) 1575 Personality = classifyEHPersonality(Fn.getPersonalityFn()); 1576 bool FnHasClrFunclet = 1577 MF.hasEHFunclets() && Personality == EHPersonality::CoreCLR; 1578 bool IsClrFunclet = IsFunclet && FnHasClrFunclet; 1579 bool HasFP = hasFP(MF); 1580 bool IsWin64Prologue = isWin64Prologue(MF); 1581 bool NeedsWin64CFI = IsWin64Prologue && Fn.needsUnwindTableEntry(); 1582 // FIXME: Emit FPO data for EH funclets. 1583 bool NeedsWinFPO = !IsFunclet && STI.isTargetWin32() && 1584 MF.getFunction().getParent()->getCodeViewFlag(); 1585 bool NeedsWinCFI = NeedsWin64CFI || NeedsWinFPO; 1586 bool NeedsDwarfCFI = needsDwarfCFI(MF); 1587 Register FramePtr = TRI->getFrameRegister(MF); 1588 const Register MachineFramePtr = 1589 STI.isTarget64BitILP32() ? Register(getX86SubSuperRegister(FramePtr, 64)) 1590 : FramePtr; 1591 Register BasePtr = TRI->getBaseRegister(); 1592 bool HasWinCFI = false; 1593 1594 // Debug location must be unknown since the first debug location is used 1595 // to determine the end of the prologue. 1596 DebugLoc DL; 1597 Register ArgBaseReg; 1598 1599 // Emit extra prolog for argument stack slot reference. 1600 if (auto *MI = X86FI->getStackPtrSaveMI()) { 1601 // MI is lea instruction that created in X86ArgumentStackSlotPass. 1602 // Creat extra prolog for stack realignment. 1603 ArgBaseReg = MI->getOperand(0).getReg(); 1604 // leal 4(%esp), %basereg 1605 // .cfi_def_cfa %basereg, 0 1606 // andl $-128, %esp 1607 // pushl -4(%basereg) 1608 BuildMI(MBB, MBBI, DL, TII.get(Is64Bit ? X86::LEA64r : X86::LEA32r), 1609 ArgBaseReg) 1610 .addUse(StackPtr) 1611 .addImm(1) 1612 .addUse(X86::NoRegister) 1613 .addImm(SlotSize) 1614 .addUse(X86::NoRegister) 1615 .setMIFlag(MachineInstr::FrameSetup); 1616 if (NeedsDwarfCFI) { 1617 // .cfi_def_cfa %basereg, 0 1618 unsigned DwarfStackPtr = TRI->getDwarfRegNum(ArgBaseReg, true); 1619 BuildCFI(MBB, MBBI, DL, 1620 MCCFIInstruction::cfiDefCfa(nullptr, DwarfStackPtr, 0), 1621 MachineInstr::FrameSetup); 1622 } 1623 BuildStackAlignAND(MBB, MBBI, DL, StackPtr, MaxAlign); 1624 int64_t Offset = -(int64_t)SlotSize; 1625 BuildMI(MBB, MBBI, DL, TII.get(Is64Bit ? X86::PUSH64rmm : X86::PUSH32rmm)) 1626 .addReg(ArgBaseReg) 1627 .addImm(1) 1628 .addReg(X86::NoRegister) 1629 .addImm(Offset) 1630 .addReg(X86::NoRegister) 1631 .setMIFlag(MachineInstr::FrameSetup); 1632 } 1633 1634 // Space reserved for stack-based arguments when making a (ABI-guaranteed) 1635 // tail call. 1636 unsigned TailCallArgReserveSize = -X86FI->getTCReturnAddrDelta(); 1637 if (TailCallArgReserveSize && IsWin64Prologue) 1638 report_fatal_error("Can't handle guaranteed tail call under win64 yet"); 1639 1640 const bool EmitStackProbeCall = 1641 STI.getTargetLowering()->hasStackProbeSymbol(MF); 1642 unsigned StackProbeSize = STI.getTargetLowering()->getStackProbeSize(MF); 1643 1644 if (HasFP && X86FI->hasSwiftAsyncContext()) { 1645 switch (MF.getTarget().Options.SwiftAsyncFramePointer) { 1646 case SwiftAsyncFramePointerMode::DeploymentBased: 1647 if (STI.swiftAsyncContextIsDynamicallySet()) { 1648 // The special symbol below is absolute and has a *value* suitable to be 1649 // combined with the frame pointer directly. 1650 BuildMI(MBB, MBBI, DL, TII.get(X86::OR64rm), MachineFramePtr) 1651 .addUse(MachineFramePtr) 1652 .addUse(X86::RIP) 1653 .addImm(1) 1654 .addUse(X86::NoRegister) 1655 .addExternalSymbol("swift_async_extendedFramePointerFlags", 1656 X86II::MO_GOTPCREL) 1657 .addUse(X86::NoRegister); 1658 break; 1659 } 1660 [[fallthrough]]; 1661 1662 case SwiftAsyncFramePointerMode::Always: 1663 assert( 1664 !IsWin64Prologue && 1665 "win64 prologue does not set the bit 60 in the saved frame pointer"); 1666 BuildMI(MBB, MBBI, DL, TII.get(X86::BTS64ri8), MachineFramePtr) 1667 .addUse(MachineFramePtr) 1668 .addImm(60) 1669 .setMIFlag(MachineInstr::FrameSetup); 1670 break; 1671 1672 case SwiftAsyncFramePointerMode::Never: 1673 break; 1674 } 1675 } 1676 1677 // Re-align the stack on 64-bit if the x86-interrupt calling convention is 1678 // used and an error code was pushed, since the x86-64 ABI requires a 16-byte 1679 // stack alignment. 1680 if (Fn.getCallingConv() == CallingConv::X86_INTR && Is64Bit && 1681 Fn.arg_size() == 2) { 1682 StackSize += 8; 1683 MFI.setStackSize(StackSize); 1684 1685 // Update the stack pointer by pushing a register. This is the instruction 1686 // emitted that would be end up being emitted by a call to `emitSPUpdate`. 1687 // Hard-coding the update to a push avoids emitting a second 1688 // `STACKALLOC_W_PROBING` instruction in the save block: We know that stack 1689 // probing isn't needed anyways for an 8-byte update. 1690 // Pushing a register leaves us in a similar situation to a regular 1691 // function call where we know that the address at (rsp-8) is writeable. 1692 // That way we avoid any off-by-ones with stack probing for additional 1693 // stack pointer updates later on. 1694 BuildMI(MBB, MBBI, DL, TII.get(X86::PUSH64r)) 1695 .addReg(X86::RAX, RegState::Undef) 1696 .setMIFlag(MachineInstr::FrameSetup); 1697 } 1698 1699 // If this is x86-64 and the Red Zone is not disabled, if we are a leaf 1700 // function, and use up to 128 bytes of stack space, don't have a frame 1701 // pointer, calls, or dynamic alloca then we do not need to adjust the 1702 // stack pointer (we fit in the Red Zone). We also check that we don't 1703 // push and pop from the stack. 1704 if (has128ByteRedZone(MF) && !TRI->hasStackRealignment(MF) && 1705 !MFI.hasVarSizedObjects() && // No dynamic alloca. 1706 !MFI.adjustsStack() && // No calls. 1707 !EmitStackProbeCall && // No stack probes. 1708 !MFI.hasCopyImplyingStackAdjustment() && // Don't push and pop. 1709 !MF.shouldSplitStack()) { // Regular stack 1710 uint64_t MinSize = 1711 X86FI->getCalleeSavedFrameSize() - X86FI->getTCReturnAddrDelta(); 1712 if (HasFP) 1713 MinSize += SlotSize; 1714 X86FI->setUsesRedZone(MinSize > 0 || StackSize > 0); 1715 StackSize = std::max(MinSize, StackSize > 128 ? StackSize - 128 : 0); 1716 MFI.setStackSize(StackSize); 1717 } 1718 1719 // Insert stack pointer adjustment for later moving of return addr. Only 1720 // applies to tail call optimized functions where the callee argument stack 1721 // size is bigger than the callers. 1722 if (TailCallArgReserveSize != 0) { 1723 BuildStackAdjustment(MBB, MBBI, DL, -(int)TailCallArgReserveSize, 1724 /*InEpilogue=*/false) 1725 .setMIFlag(MachineInstr::FrameSetup); 1726 } 1727 1728 // Mapping for machine moves: 1729 // 1730 // DST: VirtualFP AND 1731 // SRC: VirtualFP => DW_CFA_def_cfa_offset 1732 // ELSE => DW_CFA_def_cfa 1733 // 1734 // SRC: VirtualFP AND 1735 // DST: Register => DW_CFA_def_cfa_register 1736 // 1737 // ELSE 1738 // OFFSET < 0 => DW_CFA_offset_extended_sf 1739 // REG < 64 => DW_CFA_offset + Reg 1740 // ELSE => DW_CFA_offset_extended 1741 1742 uint64_t NumBytes = 0; 1743 int stackGrowth = -SlotSize; 1744 1745 // Find the funclet establisher parameter 1746 Register Establisher = X86::NoRegister; 1747 if (IsClrFunclet) 1748 Establisher = Uses64BitFramePtr ? X86::RCX : X86::ECX; 1749 else if (IsFunclet) 1750 Establisher = Uses64BitFramePtr ? X86::RDX : X86::EDX; 1751 1752 if (IsWin64Prologue && IsFunclet && !IsClrFunclet) { 1753 // Immediately spill establisher into the home slot. 1754 // The runtime cares about this. 1755 // MOV64mr %rdx, 16(%rsp) 1756 unsigned MOVmr = Uses64BitFramePtr ? X86::MOV64mr : X86::MOV32mr; 1757 addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(MOVmr)), StackPtr, true, 16) 1758 .addReg(Establisher) 1759 .setMIFlag(MachineInstr::FrameSetup); 1760 MBB.addLiveIn(Establisher); 1761 } 1762 1763 if (HasFP) { 1764 assert(MF.getRegInfo().isReserved(MachineFramePtr) && "FP reserved"); 1765 1766 // Calculate required stack adjustment. 1767 uint64_t FrameSize = StackSize - SlotSize; 1768 NumBytes = 1769 FrameSize - (X86FI->getCalleeSavedFrameSize() + TailCallArgReserveSize); 1770 1771 // Callee-saved registers are pushed on stack before the stack is realigned. 1772 if (TRI->hasStackRealignment(MF) && !IsWin64Prologue) 1773 NumBytes = alignTo(NumBytes, MaxAlign); 1774 1775 // Save EBP/RBP into the appropriate stack slot. 1776 BuildMI(MBB, MBBI, DL, 1777 TII.get(getPUSHOpcode(MF.getSubtarget<X86Subtarget>()))) 1778 .addReg(MachineFramePtr, RegState::Kill) 1779 .setMIFlag(MachineInstr::FrameSetup); 1780 1781 if (NeedsDwarfCFI && !ArgBaseReg.isValid()) { 1782 // Mark the place where EBP/RBP was saved. 1783 // Define the current CFA rule to use the provided offset. 1784 assert(StackSize); 1785 BuildCFI(MBB, MBBI, DL, 1786 MCCFIInstruction::cfiDefCfaOffset( 1787 nullptr, -2 * stackGrowth + (int)TailCallArgReserveSize), 1788 MachineInstr::FrameSetup); 1789 1790 // Change the rule for the FramePtr to be an "offset" rule. 1791 unsigned DwarfFramePtr = TRI->getDwarfRegNum(MachineFramePtr, true); 1792 BuildCFI(MBB, MBBI, DL, 1793 MCCFIInstruction::createOffset(nullptr, DwarfFramePtr, 1794 2 * stackGrowth - 1795 (int)TailCallArgReserveSize), 1796 MachineInstr::FrameSetup); 1797 } 1798 1799 if (NeedsWinCFI) { 1800 HasWinCFI = true; 1801 BuildMI(MBB, MBBI, DL, TII.get(X86::SEH_PushReg)) 1802 .addImm(FramePtr) 1803 .setMIFlag(MachineInstr::FrameSetup); 1804 } 1805 1806 if (!IsFunclet) { 1807 if (X86FI->hasSwiftAsyncContext()) { 1808 assert(!IsWin64Prologue && 1809 "win64 prologue does not store async context right below rbp"); 1810 const auto &Attrs = MF.getFunction().getAttributes(); 1811 1812 // Before we update the live frame pointer we have to ensure there's a 1813 // valid (or null) asynchronous context in its slot just before FP in 1814 // the frame record, so store it now. 1815 if (Attrs.hasAttrSomewhere(Attribute::SwiftAsync)) { 1816 // We have an initial context in r14, store it just before the frame 1817 // pointer. 1818 MBB.addLiveIn(X86::R14); 1819 BuildMI(MBB, MBBI, DL, TII.get(X86::PUSH64r)) 1820 .addReg(X86::R14) 1821 .setMIFlag(MachineInstr::FrameSetup); 1822 } else { 1823 // No initial context, store null so that there's no pointer that 1824 // could be misused. 1825 BuildMI(MBB, MBBI, DL, TII.get(X86::PUSH64i32)) 1826 .addImm(0) 1827 .setMIFlag(MachineInstr::FrameSetup); 1828 } 1829 1830 if (NeedsWinCFI) { 1831 HasWinCFI = true; 1832 BuildMI(MBB, MBBI, DL, TII.get(X86::SEH_PushReg)) 1833 .addImm(X86::R14) 1834 .setMIFlag(MachineInstr::FrameSetup); 1835 } 1836 1837 BuildMI(MBB, MBBI, DL, TII.get(X86::LEA64r), FramePtr) 1838 .addUse(X86::RSP) 1839 .addImm(1) 1840 .addUse(X86::NoRegister) 1841 .addImm(8) 1842 .addUse(X86::NoRegister) 1843 .setMIFlag(MachineInstr::FrameSetup); 1844 BuildMI(MBB, MBBI, DL, TII.get(X86::SUB64ri32), X86::RSP) 1845 .addUse(X86::RSP) 1846 .addImm(8) 1847 .setMIFlag(MachineInstr::FrameSetup); 1848 } 1849 1850 if (!IsWin64Prologue && !IsFunclet) { 1851 // Update EBP with the new base value. 1852 if (!X86FI->hasSwiftAsyncContext()) 1853 BuildMI(MBB, MBBI, DL, 1854 TII.get(Uses64BitFramePtr ? X86::MOV64rr : X86::MOV32rr), 1855 FramePtr) 1856 .addReg(StackPtr) 1857 .setMIFlag(MachineInstr::FrameSetup); 1858 1859 if (NeedsDwarfCFI) { 1860 if (ArgBaseReg.isValid()) { 1861 SmallString<64> CfaExpr; 1862 CfaExpr.push_back(dwarf::DW_CFA_expression); 1863 uint8_t buffer[16]; 1864 unsigned DwarfReg = TRI->getDwarfRegNum(MachineFramePtr, true); 1865 CfaExpr.append(buffer, buffer + encodeULEB128(DwarfReg, buffer)); 1866 CfaExpr.push_back(2); 1867 CfaExpr.push_back((uint8_t)(dwarf::DW_OP_breg0 + DwarfReg)); 1868 CfaExpr.push_back(0); 1869 // DW_CFA_expression: reg5 DW_OP_breg5 +0 1870 BuildCFI(MBB, MBBI, DL, 1871 MCCFIInstruction::createEscape(nullptr, CfaExpr.str()), 1872 MachineInstr::FrameSetup); 1873 } else { 1874 // Mark effective beginning of when frame pointer becomes valid. 1875 // Define the current CFA to use the EBP/RBP register. 1876 unsigned DwarfFramePtr = TRI->getDwarfRegNum(MachineFramePtr, true); 1877 BuildCFI( 1878 MBB, MBBI, DL, 1879 MCCFIInstruction::createDefCfaRegister(nullptr, DwarfFramePtr), 1880 MachineInstr::FrameSetup); 1881 } 1882 } 1883 1884 if (NeedsWinFPO) { 1885 // .cv_fpo_setframe $FramePtr 1886 HasWinCFI = true; 1887 BuildMI(MBB, MBBI, DL, TII.get(X86::SEH_SetFrame)) 1888 .addImm(FramePtr) 1889 .addImm(0) 1890 .setMIFlag(MachineInstr::FrameSetup); 1891 } 1892 } 1893 } 1894 } else { 1895 assert(!IsFunclet && "funclets without FPs not yet implemented"); 1896 NumBytes = 1897 StackSize - (X86FI->getCalleeSavedFrameSize() + TailCallArgReserveSize); 1898 } 1899 1900 // Update the offset adjustment, which is mainly used by codeview to translate 1901 // from ESP to VFRAME relative local variable offsets. 1902 if (!IsFunclet) { 1903 if (HasFP && TRI->hasStackRealignment(MF)) 1904 MFI.setOffsetAdjustment(-NumBytes); 1905 else 1906 MFI.setOffsetAdjustment(-StackSize); 1907 } 1908 1909 // For EH funclets, only allocate enough space for outgoing calls. Save the 1910 // NumBytes value that we would've used for the parent frame. 1911 unsigned ParentFrameNumBytes = NumBytes; 1912 if (IsFunclet) 1913 NumBytes = getWinEHFuncletFrameSize(MF); 1914 1915 // Skip the callee-saved push instructions. 1916 bool PushedRegs = false; 1917 int StackOffset = 2 * stackGrowth; 1918 MachineBasicBlock::const_iterator LastCSPush = MBBI; 1919 auto IsCSPush = [&](const MachineBasicBlock::iterator &MBBI) { 1920 if (MBBI == MBB.end() || !MBBI->getFlag(MachineInstr::FrameSetup)) 1921 return false; 1922 unsigned Opc = MBBI->getOpcode(); 1923 return Opc == X86::PUSH32r || Opc == X86::PUSH64r || Opc == X86::PUSHP64r || 1924 Opc == X86::PUSH2 || Opc == X86::PUSH2P; 1925 }; 1926 1927 while (IsCSPush(MBBI)) { 1928 PushedRegs = true; 1929 Register Reg = MBBI->getOperand(0).getReg(); 1930 LastCSPush = MBBI; 1931 ++MBBI; 1932 unsigned Opc = LastCSPush->getOpcode(); 1933 1934 if (!HasFP && NeedsDwarfCFI) { 1935 // Mark callee-saved push instruction. 1936 // Define the current CFA rule to use the provided offset. 1937 assert(StackSize); 1938 // Compared to push, push2 introduces more stack offset (one more 1939 // register). 1940 if (Opc == X86::PUSH2 || Opc == X86::PUSH2P) 1941 StackOffset += stackGrowth; 1942 BuildCFI(MBB, MBBI, DL, 1943 MCCFIInstruction::cfiDefCfaOffset(nullptr, -StackOffset), 1944 MachineInstr::FrameSetup); 1945 StackOffset += stackGrowth; 1946 } 1947 1948 if (NeedsWinCFI) { 1949 HasWinCFI = true; 1950 BuildMI(MBB, MBBI, DL, TII.get(X86::SEH_PushReg)) 1951 .addImm(Reg) 1952 .setMIFlag(MachineInstr::FrameSetup); 1953 if (Opc == X86::PUSH2 || Opc == X86::PUSH2P) 1954 BuildMI(MBB, MBBI, DL, TII.get(X86::SEH_PushReg)) 1955 .addImm(LastCSPush->getOperand(1).getReg()) 1956 .setMIFlag(MachineInstr::FrameSetup); 1957 } 1958 } 1959 1960 // Realign stack after we pushed callee-saved registers (so that we'll be 1961 // able to calculate their offsets from the frame pointer). 1962 // Don't do this for Win64, it needs to realign the stack after the prologue. 1963 if (!IsWin64Prologue && !IsFunclet && TRI->hasStackRealignment(MF) && 1964 !ArgBaseReg.isValid()) { 1965 assert(HasFP && "There should be a frame pointer if stack is realigned."); 1966 BuildStackAlignAND(MBB, MBBI, DL, StackPtr, MaxAlign); 1967 1968 if (NeedsWinCFI) { 1969 HasWinCFI = true; 1970 BuildMI(MBB, MBBI, DL, TII.get(X86::SEH_StackAlign)) 1971 .addImm(MaxAlign) 1972 .setMIFlag(MachineInstr::FrameSetup); 1973 } 1974 } 1975 1976 // If there is an SUB32ri of ESP immediately before this instruction, merge 1977 // the two. This can be the case when tail call elimination is enabled and 1978 // the callee has more arguments then the caller. 1979 NumBytes -= mergeSPUpdates(MBB, MBBI, true); 1980 1981 // Adjust stack pointer: ESP -= numbytes. 1982 1983 // Windows and cygwin/mingw require a prologue helper routine when allocating 1984 // more than 4K bytes on the stack. Windows uses __chkstk and cygwin/mingw 1985 // uses __alloca. __alloca and the 32-bit version of __chkstk will probe the 1986 // stack and adjust the stack pointer in one go. The 64-bit version of 1987 // __chkstk is only responsible for probing the stack. The 64-bit prologue is 1988 // responsible for adjusting the stack pointer. Touching the stack at 4K 1989 // increments is necessary to ensure that the guard pages used by the OS 1990 // virtual memory manager are allocated in correct sequence. 1991 uint64_t AlignedNumBytes = NumBytes; 1992 if (IsWin64Prologue && !IsFunclet && TRI->hasStackRealignment(MF)) 1993 AlignedNumBytes = alignTo(AlignedNumBytes, MaxAlign); 1994 if (AlignedNumBytes >= StackProbeSize && EmitStackProbeCall) { 1995 assert(!X86FI->getUsesRedZone() && 1996 "The Red Zone is not accounted for in stack probes"); 1997 1998 // Check whether EAX is livein for this block. 1999 bool isEAXAlive = isEAXLiveIn(MBB); 2000 2001 if (isEAXAlive) { 2002 if (Is64Bit) { 2003 // Save RAX 2004 BuildMI(MBB, MBBI, DL, TII.get(X86::PUSH64r)) 2005 .addReg(X86::RAX, RegState::Kill) 2006 .setMIFlag(MachineInstr::FrameSetup); 2007 } else { 2008 // Save EAX 2009 BuildMI(MBB, MBBI, DL, TII.get(X86::PUSH32r)) 2010 .addReg(X86::EAX, RegState::Kill) 2011 .setMIFlag(MachineInstr::FrameSetup); 2012 } 2013 } 2014 2015 if (Is64Bit) { 2016 // Handle the 64-bit Windows ABI case where we need to call __chkstk. 2017 // Function prologue is responsible for adjusting the stack pointer. 2018 int64_t Alloc = isEAXAlive ? NumBytes - 8 : NumBytes; 2019 BuildMI(MBB, MBBI, DL, TII.get(getMOVriOpcode(Is64Bit, Alloc)), X86::RAX) 2020 .addImm(Alloc) 2021 .setMIFlag(MachineInstr::FrameSetup); 2022 } else { 2023 // Allocate NumBytes-4 bytes on stack in case of isEAXAlive. 2024 // We'll also use 4 already allocated bytes for EAX. 2025 BuildMI(MBB, MBBI, DL, TII.get(X86::MOV32ri), X86::EAX) 2026 .addImm(isEAXAlive ? NumBytes - 4 : NumBytes) 2027 .setMIFlag(MachineInstr::FrameSetup); 2028 } 2029 2030 // Call __chkstk, __chkstk_ms, or __alloca. 2031 emitStackProbe(MF, MBB, MBBI, DL, true); 2032 2033 if (isEAXAlive) { 2034 // Restore RAX/EAX 2035 MachineInstr *MI; 2036 if (Is64Bit) 2037 MI = addRegOffset(BuildMI(MF, DL, TII.get(X86::MOV64rm), X86::RAX), 2038 StackPtr, false, NumBytes - 8); 2039 else 2040 MI = addRegOffset(BuildMI(MF, DL, TII.get(X86::MOV32rm), X86::EAX), 2041 StackPtr, false, NumBytes - 4); 2042 MI->setFlag(MachineInstr::FrameSetup); 2043 MBB.insert(MBBI, MI); 2044 } 2045 } else if (NumBytes) { 2046 emitSPUpdate(MBB, MBBI, DL, -(int64_t)NumBytes, /*InEpilogue=*/false); 2047 } 2048 2049 if (NeedsWinCFI && NumBytes) { 2050 HasWinCFI = true; 2051 BuildMI(MBB, MBBI, DL, TII.get(X86::SEH_StackAlloc)) 2052 .addImm(NumBytes) 2053 .setMIFlag(MachineInstr::FrameSetup); 2054 } 2055 2056 int SEHFrameOffset = 0; 2057 unsigned SPOrEstablisher; 2058 if (IsFunclet) { 2059 if (IsClrFunclet) { 2060 // The establisher parameter passed to a CLR funclet is actually a pointer 2061 // to the (mostly empty) frame of its nearest enclosing funclet; we have 2062 // to find the root function establisher frame by loading the PSPSym from 2063 // the intermediate frame. 2064 unsigned PSPSlotOffset = getPSPSlotOffsetFromSP(MF); 2065 MachinePointerInfo NoInfo; 2066 MBB.addLiveIn(Establisher); 2067 addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(X86::MOV64rm), Establisher), 2068 Establisher, false, PSPSlotOffset) 2069 .addMemOperand(MF.getMachineMemOperand( 2070 NoInfo, MachineMemOperand::MOLoad, SlotSize, Align(SlotSize))); 2071 ; 2072 // Save the root establisher back into the current funclet's (mostly 2073 // empty) frame, in case a sub-funclet or the GC needs it. 2074 addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(X86::MOV64mr)), StackPtr, 2075 false, PSPSlotOffset) 2076 .addReg(Establisher) 2077 .addMemOperand(MF.getMachineMemOperand( 2078 NoInfo, 2079 MachineMemOperand::MOStore | MachineMemOperand::MOVolatile, 2080 SlotSize, Align(SlotSize))); 2081 } 2082 SPOrEstablisher = Establisher; 2083 } else { 2084 SPOrEstablisher = StackPtr; 2085 } 2086 2087 if (IsWin64Prologue && HasFP) { 2088 // Set RBP to a small fixed offset from RSP. In the funclet case, we base 2089 // this calculation on the incoming establisher, which holds the value of 2090 // RSP from the parent frame at the end of the prologue. 2091 SEHFrameOffset = calculateSetFPREG(ParentFrameNumBytes); 2092 if (SEHFrameOffset) 2093 addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(X86::LEA64r), FramePtr), 2094 SPOrEstablisher, false, SEHFrameOffset); 2095 else 2096 BuildMI(MBB, MBBI, DL, TII.get(X86::MOV64rr), FramePtr) 2097 .addReg(SPOrEstablisher); 2098 2099 // If this is not a funclet, emit the CFI describing our frame pointer. 2100 if (NeedsWinCFI && !IsFunclet) { 2101 assert(!NeedsWinFPO && "this setframe incompatible with FPO data"); 2102 HasWinCFI = true; 2103 BuildMI(MBB, MBBI, DL, TII.get(X86::SEH_SetFrame)) 2104 .addImm(FramePtr) 2105 .addImm(SEHFrameOffset) 2106 .setMIFlag(MachineInstr::FrameSetup); 2107 if (isAsynchronousEHPersonality(Personality)) 2108 MF.getWinEHFuncInfo()->SEHSetFrameOffset = SEHFrameOffset; 2109 } 2110 } else if (IsFunclet && STI.is32Bit()) { 2111 // Reset EBP / ESI to something good for funclets. 2112 MBBI = restoreWin32EHStackPointers(MBB, MBBI, DL); 2113 // If we're a catch funclet, we can be returned to via catchret. Save ESP 2114 // into the registration node so that the runtime will restore it for us. 2115 if (!MBB.isCleanupFuncletEntry()) { 2116 assert(Personality == EHPersonality::MSVC_CXX); 2117 Register FrameReg; 2118 int FI = MF.getWinEHFuncInfo()->EHRegNodeFrameIndex; 2119 int64_t EHRegOffset = getFrameIndexReference(MF, FI, FrameReg).getFixed(); 2120 // ESP is the first field, so no extra displacement is needed. 2121 addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(X86::MOV32mr)), FrameReg, 2122 false, EHRegOffset) 2123 .addReg(X86::ESP); 2124 } 2125 } 2126 2127 while (MBBI != MBB.end() && MBBI->getFlag(MachineInstr::FrameSetup)) { 2128 const MachineInstr &FrameInstr = *MBBI; 2129 ++MBBI; 2130 2131 if (NeedsWinCFI) { 2132 int FI; 2133 if (Register Reg = TII.isStoreToStackSlot(FrameInstr, FI)) { 2134 if (X86::FR64RegClass.contains(Reg)) { 2135 int Offset; 2136 Register IgnoredFrameReg; 2137 if (IsWin64Prologue && IsFunclet) 2138 Offset = getWin64EHFrameIndexRef(MF, FI, IgnoredFrameReg); 2139 else 2140 Offset = 2141 getFrameIndexReference(MF, FI, IgnoredFrameReg).getFixed() + 2142 SEHFrameOffset; 2143 2144 HasWinCFI = true; 2145 assert(!NeedsWinFPO && "SEH_SaveXMM incompatible with FPO data"); 2146 BuildMI(MBB, MBBI, DL, TII.get(X86::SEH_SaveXMM)) 2147 .addImm(Reg) 2148 .addImm(Offset) 2149 .setMIFlag(MachineInstr::FrameSetup); 2150 } 2151 } 2152 } 2153 } 2154 2155 if (NeedsWinCFI && HasWinCFI) 2156 BuildMI(MBB, MBBI, DL, TII.get(X86::SEH_EndPrologue)) 2157 .setMIFlag(MachineInstr::FrameSetup); 2158 2159 if (FnHasClrFunclet && !IsFunclet) { 2160 // Save the so-called Initial-SP (i.e. the value of the stack pointer 2161 // immediately after the prolog) into the PSPSlot so that funclets 2162 // and the GC can recover it. 2163 unsigned PSPSlotOffset = getPSPSlotOffsetFromSP(MF); 2164 auto PSPInfo = MachinePointerInfo::getFixedStack( 2165 MF, MF.getWinEHFuncInfo()->PSPSymFrameIdx); 2166 addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(X86::MOV64mr)), StackPtr, false, 2167 PSPSlotOffset) 2168 .addReg(StackPtr) 2169 .addMemOperand(MF.getMachineMemOperand( 2170 PSPInfo, MachineMemOperand::MOStore | MachineMemOperand::MOVolatile, 2171 SlotSize, Align(SlotSize))); 2172 } 2173 2174 // Realign stack after we spilled callee-saved registers (so that we'll be 2175 // able to calculate their offsets from the frame pointer). 2176 // Win64 requires aligning the stack after the prologue. 2177 if (IsWin64Prologue && TRI->hasStackRealignment(MF)) { 2178 assert(HasFP && "There should be a frame pointer if stack is realigned."); 2179 BuildStackAlignAND(MBB, MBBI, DL, SPOrEstablisher, MaxAlign); 2180 } 2181 2182 // We already dealt with stack realignment and funclets above. 2183 if (IsFunclet && STI.is32Bit()) 2184 return; 2185 2186 // If we need a base pointer, set it up here. It's whatever the value 2187 // of the stack pointer is at this point. Any variable size objects 2188 // will be allocated after this, so we can still use the base pointer 2189 // to reference locals. 2190 if (TRI->hasBasePointer(MF)) { 2191 // Update the base pointer with the current stack pointer. 2192 unsigned Opc = Uses64BitFramePtr ? X86::MOV64rr : X86::MOV32rr; 2193 BuildMI(MBB, MBBI, DL, TII.get(Opc), BasePtr) 2194 .addReg(SPOrEstablisher) 2195 .setMIFlag(MachineInstr::FrameSetup); 2196 if (X86FI->getRestoreBasePointer()) { 2197 // Stash value of base pointer. Saving RSP instead of EBP shortens 2198 // dependence chain. Used by SjLj EH. 2199 unsigned Opm = Uses64BitFramePtr ? X86::MOV64mr : X86::MOV32mr; 2200 addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(Opm)), FramePtr, true, 2201 X86FI->getRestoreBasePointerOffset()) 2202 .addReg(SPOrEstablisher) 2203 .setMIFlag(MachineInstr::FrameSetup); 2204 } 2205 2206 if (X86FI->getHasSEHFramePtrSave() && !IsFunclet) { 2207 // Stash the value of the frame pointer relative to the base pointer for 2208 // Win32 EH. This supports Win32 EH, which does the inverse of the above: 2209 // it recovers the frame pointer from the base pointer rather than the 2210 // other way around. 2211 unsigned Opm = Uses64BitFramePtr ? X86::MOV64mr : X86::MOV32mr; 2212 Register UsedReg; 2213 int Offset = 2214 getFrameIndexReference(MF, X86FI->getSEHFramePtrSaveIndex(), UsedReg) 2215 .getFixed(); 2216 assert(UsedReg == BasePtr); 2217 addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(Opm)), UsedReg, true, Offset) 2218 .addReg(FramePtr) 2219 .setMIFlag(MachineInstr::FrameSetup); 2220 } 2221 } 2222 if (ArgBaseReg.isValid()) { 2223 // Save argument base pointer. 2224 auto *MI = X86FI->getStackPtrSaveMI(); 2225 int FI = MI->getOperand(1).getIndex(); 2226 unsigned MOVmr = Is64Bit ? X86::MOV64mr : X86::MOV32mr; 2227 // movl %basereg, offset(%ebp) 2228 addFrameReference(BuildMI(MBB, MBBI, DL, TII.get(MOVmr)), FI) 2229 .addReg(ArgBaseReg) 2230 .setMIFlag(MachineInstr::FrameSetup); 2231 } 2232 2233 if (((!HasFP && NumBytes) || PushedRegs) && NeedsDwarfCFI) { 2234 // Mark end of stack pointer adjustment. 2235 if (!HasFP && NumBytes) { 2236 // Define the current CFA rule to use the provided offset. 2237 assert(StackSize); 2238 BuildCFI( 2239 MBB, MBBI, DL, 2240 MCCFIInstruction::cfiDefCfaOffset(nullptr, StackSize - stackGrowth), 2241 MachineInstr::FrameSetup); 2242 } 2243 2244 // Emit DWARF info specifying the offsets of the callee-saved registers. 2245 emitCalleeSavedFrameMoves(MBB, MBBI, DL, true); 2246 } 2247 2248 // X86 Interrupt handling function cannot assume anything about the direction 2249 // flag (DF in EFLAGS register). Clear this flag by creating "cld" instruction 2250 // in each prologue of interrupt handler function. 2251 // 2252 // Create "cld" instruction only in these cases: 2253 // 1. The interrupt handling function uses any of the "rep" instructions. 2254 // 2. Interrupt handling function calls another function. 2255 // 3. If there are any inline asm blocks, as we do not know what they do 2256 // 2257 // TODO: We should also emit cld if we detect the use of std, but as of now, 2258 // the compiler does not even emit that instruction or even define it, so in 2259 // practice, this would only happen with inline asm, which we cover anyway. 2260 if (Fn.getCallingConv() == CallingConv::X86_INTR) { 2261 bool NeedsCLD = false; 2262 2263 for (const MachineBasicBlock &B : MF) { 2264 for (const MachineInstr &MI : B) { 2265 if (MI.isCall()) { 2266 NeedsCLD = true; 2267 break; 2268 } 2269 2270 if (isOpcodeRep(MI.getOpcode())) { 2271 NeedsCLD = true; 2272 break; 2273 } 2274 2275 if (MI.isInlineAsm()) { 2276 // TODO: Parse asm for rep instructions or call sites? 2277 // For now, let's play it safe and emit a cld instruction 2278 // just in case. 2279 NeedsCLD = true; 2280 break; 2281 } 2282 } 2283 } 2284 2285 if (NeedsCLD) { 2286 BuildMI(MBB, MBBI, DL, TII.get(X86::CLD)) 2287 .setMIFlag(MachineInstr::FrameSetup); 2288 } 2289 } 2290 2291 // At this point we know if the function has WinCFI or not. 2292 MF.setHasWinCFI(HasWinCFI); 2293 } 2294 2295 bool X86FrameLowering::canUseLEAForSPInEpilogue( 2296 const MachineFunction &MF) const { 2297 // We can't use LEA instructions for adjusting the stack pointer if we don't 2298 // have a frame pointer in the Win64 ABI. Only ADD instructions may be used 2299 // to deallocate the stack. 2300 // This means that we can use LEA for SP in two situations: 2301 // 1. We *aren't* using the Win64 ABI which means we are free to use LEA. 2302 // 2. We *have* a frame pointer which means we are permitted to use LEA. 2303 return !MF.getTarget().getMCAsmInfo()->usesWindowsCFI() || hasFP(MF); 2304 } 2305 2306 static bool isFuncletReturnInstr(MachineInstr &MI) { 2307 switch (MI.getOpcode()) { 2308 case X86::CATCHRET: 2309 case X86::CLEANUPRET: 2310 return true; 2311 default: 2312 return false; 2313 } 2314 llvm_unreachable("impossible"); 2315 } 2316 2317 // CLR funclets use a special "Previous Stack Pointer Symbol" slot on the 2318 // stack. It holds a pointer to the bottom of the root function frame. The 2319 // establisher frame pointer passed to a nested funclet may point to the 2320 // (mostly empty) frame of its parent funclet, but it will need to find 2321 // the frame of the root function to access locals. To facilitate this, 2322 // every funclet copies the pointer to the bottom of the root function 2323 // frame into a PSPSym slot in its own (mostly empty) stack frame. Using the 2324 // same offset for the PSPSym in the root function frame that's used in the 2325 // funclets' frames allows each funclet to dynamically accept any ancestor 2326 // frame as its establisher argument (the runtime doesn't guarantee the 2327 // immediate parent for some reason lost to history), and also allows the GC, 2328 // which uses the PSPSym for some bookkeeping, to find it in any funclet's 2329 // frame with only a single offset reported for the entire method. 2330 unsigned 2331 X86FrameLowering::getPSPSlotOffsetFromSP(const MachineFunction &MF) const { 2332 const WinEHFuncInfo &Info = *MF.getWinEHFuncInfo(); 2333 Register SPReg; 2334 int Offset = getFrameIndexReferencePreferSP(MF, Info.PSPSymFrameIdx, SPReg, 2335 /*IgnoreSPUpdates*/ true) 2336 .getFixed(); 2337 assert(Offset >= 0 && SPReg == TRI->getStackRegister()); 2338 return static_cast<unsigned>(Offset); 2339 } 2340 2341 unsigned 2342 X86FrameLowering::getWinEHFuncletFrameSize(const MachineFunction &MF) const { 2343 const X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>(); 2344 // This is the size of the pushed CSRs. 2345 unsigned CSSize = X86FI->getCalleeSavedFrameSize(); 2346 // This is the size of callee saved XMMs. 2347 const auto &WinEHXMMSlotInfo = X86FI->getWinEHXMMSlotInfo(); 2348 unsigned XMMSize = 2349 WinEHXMMSlotInfo.size() * TRI->getSpillSize(X86::VR128RegClass); 2350 // This is the amount of stack a funclet needs to allocate. 2351 unsigned UsedSize; 2352 EHPersonality Personality = 2353 classifyEHPersonality(MF.getFunction().getPersonalityFn()); 2354 if (Personality == EHPersonality::CoreCLR) { 2355 // CLR funclets need to hold enough space to include the PSPSym, at the 2356 // same offset from the stack pointer (immediately after the prolog) as it 2357 // resides at in the main function. 2358 UsedSize = getPSPSlotOffsetFromSP(MF) + SlotSize; 2359 } else { 2360 // Other funclets just need enough stack for outgoing call arguments. 2361 UsedSize = MF.getFrameInfo().getMaxCallFrameSize(); 2362 } 2363 // RBP is not included in the callee saved register block. After pushing RBP, 2364 // everything is 16 byte aligned. Everything we allocate before an outgoing 2365 // call must also be 16 byte aligned. 2366 unsigned FrameSizeMinusRBP = alignTo(CSSize + UsedSize, getStackAlign()); 2367 // Subtract out the size of the callee saved registers. This is how much stack 2368 // each funclet will allocate. 2369 return FrameSizeMinusRBP + XMMSize - CSSize; 2370 } 2371 2372 static bool isTailCallOpcode(unsigned Opc) { 2373 return Opc == X86::TCRETURNri || Opc == X86::TCRETURNdi || 2374 Opc == X86::TCRETURNmi || Opc == X86::TCRETURNri64 || 2375 Opc == X86::TCRETURNdi64 || Opc == X86::TCRETURNmi64; 2376 } 2377 2378 void X86FrameLowering::emitEpilogue(MachineFunction &MF, 2379 MachineBasicBlock &MBB) const { 2380 const MachineFrameInfo &MFI = MF.getFrameInfo(); 2381 X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>(); 2382 MachineBasicBlock::iterator Terminator = MBB.getFirstTerminator(); 2383 MachineBasicBlock::iterator MBBI = Terminator; 2384 DebugLoc DL; 2385 if (MBBI != MBB.end()) 2386 DL = MBBI->getDebugLoc(); 2387 // standard x86_64 and NaCl use 64-bit frame/stack pointers, x32 - 32-bit. 2388 const bool Is64BitILP32 = STI.isTarget64BitILP32(); 2389 Register FramePtr = TRI->getFrameRegister(MF); 2390 Register MachineFramePtr = 2391 Is64BitILP32 ? Register(getX86SubSuperRegister(FramePtr, 64)) : FramePtr; 2392 2393 bool IsWin64Prologue = MF.getTarget().getMCAsmInfo()->usesWindowsCFI(); 2394 bool NeedsWin64CFI = 2395 IsWin64Prologue && MF.getFunction().needsUnwindTableEntry(); 2396 bool IsFunclet = MBBI == MBB.end() ? false : isFuncletReturnInstr(*MBBI); 2397 2398 // Get the number of bytes to allocate from the FrameInfo. 2399 uint64_t StackSize = MFI.getStackSize(); 2400 uint64_t MaxAlign = calculateMaxStackAlign(MF); 2401 unsigned CSSize = X86FI->getCalleeSavedFrameSize(); 2402 unsigned TailCallArgReserveSize = -X86FI->getTCReturnAddrDelta(); 2403 bool HasFP = hasFP(MF); 2404 uint64_t NumBytes = 0; 2405 2406 bool NeedsDwarfCFI = (!MF.getTarget().getTargetTriple().isOSDarwin() && 2407 !MF.getTarget().getTargetTriple().isOSWindows()) && 2408 MF.needsFrameMoves(); 2409 2410 Register ArgBaseReg; 2411 if (auto *MI = X86FI->getStackPtrSaveMI()) { 2412 unsigned Opc = X86::LEA32r; 2413 Register StackReg = X86::ESP; 2414 ArgBaseReg = MI->getOperand(0).getReg(); 2415 if (STI.is64Bit()) { 2416 Opc = X86::LEA64r; 2417 StackReg = X86::RSP; 2418 } 2419 // leal -4(%basereg), %esp 2420 // .cfi_def_cfa %esp, 4 2421 BuildMI(MBB, MBBI, DL, TII.get(Opc), StackReg) 2422 .addUse(ArgBaseReg) 2423 .addImm(1) 2424 .addUse(X86::NoRegister) 2425 .addImm(-(int64_t)SlotSize) 2426 .addUse(X86::NoRegister) 2427 .setMIFlag(MachineInstr::FrameDestroy); 2428 if (NeedsDwarfCFI) { 2429 unsigned DwarfStackPtr = TRI->getDwarfRegNum(StackReg, true); 2430 BuildCFI(MBB, MBBI, DL, 2431 MCCFIInstruction::cfiDefCfa(nullptr, DwarfStackPtr, SlotSize), 2432 MachineInstr::FrameDestroy); 2433 --MBBI; 2434 } 2435 --MBBI; 2436 } 2437 2438 if (IsFunclet) { 2439 assert(HasFP && "EH funclets without FP not yet implemented"); 2440 NumBytes = getWinEHFuncletFrameSize(MF); 2441 } else if (HasFP) { 2442 // Calculate required stack adjustment. 2443 uint64_t FrameSize = StackSize - SlotSize; 2444 NumBytes = FrameSize - CSSize - TailCallArgReserveSize; 2445 2446 // Callee-saved registers were pushed on stack before the stack was 2447 // realigned. 2448 if (TRI->hasStackRealignment(MF) && !IsWin64Prologue) 2449 NumBytes = alignTo(FrameSize, MaxAlign); 2450 } else { 2451 NumBytes = StackSize - CSSize - TailCallArgReserveSize; 2452 } 2453 uint64_t SEHStackAllocAmt = NumBytes; 2454 2455 // AfterPop is the position to insert .cfi_restore. 2456 MachineBasicBlock::iterator AfterPop = MBBI; 2457 if (HasFP) { 2458 if (X86FI->hasSwiftAsyncContext()) { 2459 // Discard the context. 2460 int Offset = 16 + mergeSPUpdates(MBB, MBBI, true); 2461 emitSPUpdate(MBB, MBBI, DL, Offset, /*InEpilogue*/ true); 2462 } 2463 // Pop EBP. 2464 BuildMI(MBB, MBBI, DL, 2465 TII.get(getPOPOpcode(MF.getSubtarget<X86Subtarget>())), 2466 MachineFramePtr) 2467 .setMIFlag(MachineInstr::FrameDestroy); 2468 2469 // We need to reset FP to its untagged state on return. Bit 60 is currently 2470 // used to show the presence of an extended frame. 2471 if (X86FI->hasSwiftAsyncContext()) { 2472 BuildMI(MBB, MBBI, DL, TII.get(X86::BTR64ri8), MachineFramePtr) 2473 .addUse(MachineFramePtr) 2474 .addImm(60) 2475 .setMIFlag(MachineInstr::FrameDestroy); 2476 } 2477 2478 if (NeedsDwarfCFI) { 2479 if (!ArgBaseReg.isValid()) { 2480 unsigned DwarfStackPtr = 2481 TRI->getDwarfRegNum(Is64Bit ? X86::RSP : X86::ESP, true); 2482 BuildCFI(MBB, MBBI, DL, 2483 MCCFIInstruction::cfiDefCfa(nullptr, DwarfStackPtr, SlotSize), 2484 MachineInstr::FrameDestroy); 2485 } 2486 if (!MBB.succ_empty() && !MBB.isReturnBlock()) { 2487 unsigned DwarfFramePtr = TRI->getDwarfRegNum(MachineFramePtr, true); 2488 BuildCFI(MBB, AfterPop, DL, 2489 MCCFIInstruction::createRestore(nullptr, DwarfFramePtr), 2490 MachineInstr::FrameDestroy); 2491 --MBBI; 2492 --AfterPop; 2493 } 2494 --MBBI; 2495 } 2496 } 2497 2498 MachineBasicBlock::iterator FirstCSPop = MBBI; 2499 // Skip the callee-saved pop instructions. 2500 while (MBBI != MBB.begin()) { 2501 MachineBasicBlock::iterator PI = std::prev(MBBI); 2502 unsigned Opc = PI->getOpcode(); 2503 2504 if (Opc != X86::DBG_VALUE && !PI->isTerminator()) { 2505 if (!PI->getFlag(MachineInstr::FrameDestroy) || 2506 (Opc != X86::POP32r && Opc != X86::POP64r && Opc != X86::BTR64ri8 && 2507 Opc != X86::ADD64ri32 && Opc != X86::POPP64r && Opc != X86::POP2 && 2508 Opc != X86::POP2P && Opc != X86::LEA64r)) 2509 break; 2510 FirstCSPop = PI; 2511 } 2512 2513 --MBBI; 2514 } 2515 if (ArgBaseReg.isValid()) { 2516 // Restore argument base pointer. 2517 auto *MI = X86FI->getStackPtrSaveMI(); 2518 int FI = MI->getOperand(1).getIndex(); 2519 unsigned MOVrm = Is64Bit ? X86::MOV64rm : X86::MOV32rm; 2520 // movl offset(%ebp), %basereg 2521 addFrameReference(BuildMI(MBB, MBBI, DL, TII.get(MOVrm), ArgBaseReg), FI) 2522 .setMIFlag(MachineInstr::FrameDestroy); 2523 } 2524 MBBI = FirstCSPop; 2525 2526 if (IsFunclet && Terminator->getOpcode() == X86::CATCHRET) 2527 emitCatchRetReturnValue(MBB, FirstCSPop, &*Terminator); 2528 2529 if (MBBI != MBB.end()) 2530 DL = MBBI->getDebugLoc(); 2531 // If there is an ADD32ri or SUB32ri of ESP immediately before this 2532 // instruction, merge the two instructions. 2533 if (NumBytes || MFI.hasVarSizedObjects()) 2534 NumBytes += mergeSPUpdates(MBB, MBBI, true); 2535 2536 // If dynamic alloca is used, then reset esp to point to the last callee-saved 2537 // slot before popping them off! Same applies for the case, when stack was 2538 // realigned. Don't do this if this was a funclet epilogue, since the funclets 2539 // will not do realignment or dynamic stack allocation. 2540 if (((TRI->hasStackRealignment(MF)) || MFI.hasVarSizedObjects()) && 2541 !IsFunclet) { 2542 if (TRI->hasStackRealignment(MF)) 2543 MBBI = FirstCSPop; 2544 unsigned SEHFrameOffset = calculateSetFPREG(SEHStackAllocAmt); 2545 uint64_t LEAAmount = 2546 IsWin64Prologue ? SEHStackAllocAmt - SEHFrameOffset : -CSSize; 2547 2548 if (X86FI->hasSwiftAsyncContext()) 2549 LEAAmount -= 16; 2550 2551 // There are only two legal forms of epilogue: 2552 // - add SEHAllocationSize, %rsp 2553 // - lea SEHAllocationSize(%FramePtr), %rsp 2554 // 2555 // 'mov %FramePtr, %rsp' will not be recognized as an epilogue sequence. 2556 // However, we may use this sequence if we have a frame pointer because the 2557 // effects of the prologue can safely be undone. 2558 if (LEAAmount != 0) { 2559 unsigned Opc = getLEArOpcode(Uses64BitFramePtr); 2560 addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(Opc), StackPtr), FramePtr, 2561 false, LEAAmount); 2562 --MBBI; 2563 } else { 2564 unsigned Opc = (Uses64BitFramePtr ? X86::MOV64rr : X86::MOV32rr); 2565 BuildMI(MBB, MBBI, DL, TII.get(Opc), StackPtr).addReg(FramePtr); 2566 --MBBI; 2567 } 2568 } else if (NumBytes) { 2569 // Adjust stack pointer back: ESP += numbytes. 2570 emitSPUpdate(MBB, MBBI, DL, NumBytes, /*InEpilogue=*/true); 2571 if (!HasFP && NeedsDwarfCFI) { 2572 // Define the current CFA rule to use the provided offset. 2573 BuildCFI(MBB, MBBI, DL, 2574 MCCFIInstruction::cfiDefCfaOffset( 2575 nullptr, CSSize + TailCallArgReserveSize + SlotSize), 2576 MachineInstr::FrameDestroy); 2577 } 2578 --MBBI; 2579 } 2580 2581 // Windows unwinder will not invoke function's exception handler if IP is 2582 // either in prologue or in epilogue. This behavior causes a problem when a 2583 // call immediately precedes an epilogue, because the return address points 2584 // into the epilogue. To cope with that, we insert an epilogue marker here, 2585 // then replace it with a 'nop' if it ends up immediately after a CALL in the 2586 // final emitted code. 2587 if (NeedsWin64CFI && MF.hasWinCFI()) 2588 BuildMI(MBB, MBBI, DL, TII.get(X86::SEH_Epilogue)); 2589 2590 if (!HasFP && NeedsDwarfCFI) { 2591 MBBI = FirstCSPop; 2592 int64_t Offset = -(int64_t)CSSize - SlotSize; 2593 // Mark callee-saved pop instruction. 2594 // Define the current CFA rule to use the provided offset. 2595 while (MBBI != MBB.end()) { 2596 MachineBasicBlock::iterator PI = MBBI; 2597 unsigned Opc = PI->getOpcode(); 2598 ++MBBI; 2599 if (Opc == X86::POP32r || Opc == X86::POP64r || Opc == X86::POPP64r || 2600 Opc == X86::POP2 || Opc == X86::POP2P) { 2601 Offset += SlotSize; 2602 // Compared to pop, pop2 introduces more stack offset (one more 2603 // register). 2604 if (Opc == X86::POP2 || Opc == X86::POP2P) 2605 Offset += SlotSize; 2606 BuildCFI(MBB, MBBI, DL, 2607 MCCFIInstruction::cfiDefCfaOffset(nullptr, -Offset), 2608 MachineInstr::FrameDestroy); 2609 } 2610 } 2611 } 2612 2613 // Emit DWARF info specifying the restores of the callee-saved registers. 2614 // For epilogue with return inside or being other block without successor, 2615 // no need to generate .cfi_restore for callee-saved registers. 2616 if (NeedsDwarfCFI && !MBB.succ_empty()) 2617 emitCalleeSavedFrameMoves(MBB, AfterPop, DL, false); 2618 2619 if (Terminator == MBB.end() || !isTailCallOpcode(Terminator->getOpcode())) { 2620 // Add the return addr area delta back since we are not tail calling. 2621 int Offset = -1 * X86FI->getTCReturnAddrDelta(); 2622 assert(Offset >= 0 && "TCDelta should never be positive"); 2623 if (Offset) { 2624 // Check for possible merge with preceding ADD instruction. 2625 Offset += mergeSPUpdates(MBB, Terminator, true); 2626 emitSPUpdate(MBB, Terminator, DL, Offset, /*InEpilogue=*/true); 2627 } 2628 } 2629 2630 // Emit tilerelease for AMX kernel. 2631 if (X86FI->getAMXProgModel() == AMXProgModelEnum::ManagedRA) 2632 BuildMI(MBB, Terminator, DL, TII.get(X86::TILERELEASE)); 2633 } 2634 2635 StackOffset X86FrameLowering::getFrameIndexReference(const MachineFunction &MF, 2636 int FI, 2637 Register &FrameReg) const { 2638 const MachineFrameInfo &MFI = MF.getFrameInfo(); 2639 2640 bool IsFixed = MFI.isFixedObjectIndex(FI); 2641 // We can't calculate offset from frame pointer if the stack is realigned, 2642 // so enforce usage of stack/base pointer. The base pointer is used when we 2643 // have dynamic allocas in addition to dynamic realignment. 2644 if (TRI->hasBasePointer(MF)) 2645 FrameReg = IsFixed ? TRI->getFramePtr() : TRI->getBaseRegister(); 2646 else if (TRI->hasStackRealignment(MF)) 2647 FrameReg = IsFixed ? TRI->getFramePtr() : TRI->getStackRegister(); 2648 else 2649 FrameReg = TRI->getFrameRegister(MF); 2650 2651 // Offset will hold the offset from the stack pointer at function entry to the 2652 // object. 2653 // We need to factor in additional offsets applied during the prologue to the 2654 // frame, base, and stack pointer depending on which is used. 2655 int Offset = MFI.getObjectOffset(FI) - getOffsetOfLocalArea(); 2656 const X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>(); 2657 unsigned CSSize = X86FI->getCalleeSavedFrameSize(); 2658 uint64_t StackSize = MFI.getStackSize(); 2659 bool IsWin64Prologue = MF.getTarget().getMCAsmInfo()->usesWindowsCFI(); 2660 int64_t FPDelta = 0; 2661 2662 // In an x86 interrupt, remove the offset we added to account for the return 2663 // address from any stack object allocated in the caller's frame. Interrupts 2664 // do not have a standard return address. Fixed objects in the current frame, 2665 // such as SSE register spills, should not get this treatment. 2666 if (MF.getFunction().getCallingConv() == CallingConv::X86_INTR && 2667 Offset >= 0) { 2668 Offset += getOffsetOfLocalArea(); 2669 } 2670 2671 if (IsWin64Prologue) { 2672 assert(!MFI.hasCalls() || (StackSize % 16) == 8); 2673 2674 // Calculate required stack adjustment. 2675 uint64_t FrameSize = StackSize - SlotSize; 2676 // If required, include space for extra hidden slot for stashing base 2677 // pointer. 2678 if (X86FI->getRestoreBasePointer()) 2679 FrameSize += SlotSize; 2680 uint64_t NumBytes = FrameSize - CSSize; 2681 2682 uint64_t SEHFrameOffset = calculateSetFPREG(NumBytes); 2683 if (FI && FI == X86FI->getFAIndex()) 2684 return StackOffset::getFixed(-SEHFrameOffset); 2685 2686 // FPDelta is the offset from the "traditional" FP location of the old base 2687 // pointer followed by return address and the location required by the 2688 // restricted Win64 prologue. 2689 // Add FPDelta to all offsets below that go through the frame pointer. 2690 FPDelta = FrameSize - SEHFrameOffset; 2691 assert((!MFI.hasCalls() || (FPDelta % 16) == 0) && 2692 "FPDelta isn't aligned per the Win64 ABI!"); 2693 } 2694 2695 if (FrameReg == TRI->getFramePtr()) { 2696 // Skip saved EBP/RBP 2697 Offset += SlotSize; 2698 2699 // Account for restricted Windows prologue. 2700 Offset += FPDelta; 2701 2702 // Skip the RETADDR move area 2703 int TailCallReturnAddrDelta = X86FI->getTCReturnAddrDelta(); 2704 if (TailCallReturnAddrDelta < 0) 2705 Offset -= TailCallReturnAddrDelta; 2706 2707 return StackOffset::getFixed(Offset); 2708 } 2709 2710 // FrameReg is either the stack pointer or a base pointer. But the base is 2711 // located at the end of the statically known StackSize so the distinction 2712 // doesn't really matter. 2713 if (TRI->hasStackRealignment(MF) || TRI->hasBasePointer(MF)) 2714 assert(isAligned(MFI.getObjectAlign(FI), -(Offset + StackSize))); 2715 return StackOffset::getFixed(Offset + StackSize); 2716 } 2717 2718 int X86FrameLowering::getWin64EHFrameIndexRef(const MachineFunction &MF, int FI, 2719 Register &FrameReg) const { 2720 const MachineFrameInfo &MFI = MF.getFrameInfo(); 2721 const X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>(); 2722 const auto &WinEHXMMSlotInfo = X86FI->getWinEHXMMSlotInfo(); 2723 const auto it = WinEHXMMSlotInfo.find(FI); 2724 2725 if (it == WinEHXMMSlotInfo.end()) 2726 return getFrameIndexReference(MF, FI, FrameReg).getFixed(); 2727 2728 FrameReg = TRI->getStackRegister(); 2729 return alignDown(MFI.getMaxCallFrameSize(), getStackAlign().value()) + 2730 it->second; 2731 } 2732 2733 StackOffset 2734 X86FrameLowering::getFrameIndexReferenceSP(const MachineFunction &MF, int FI, 2735 Register &FrameReg, 2736 int Adjustment) const { 2737 const MachineFrameInfo &MFI = MF.getFrameInfo(); 2738 FrameReg = TRI->getStackRegister(); 2739 return StackOffset::getFixed(MFI.getObjectOffset(FI) - 2740 getOffsetOfLocalArea() + Adjustment); 2741 } 2742 2743 StackOffset 2744 X86FrameLowering::getFrameIndexReferencePreferSP(const MachineFunction &MF, 2745 int FI, Register &FrameReg, 2746 bool IgnoreSPUpdates) const { 2747 2748 const MachineFrameInfo &MFI = MF.getFrameInfo(); 2749 // Does not include any dynamic realign. 2750 const uint64_t StackSize = MFI.getStackSize(); 2751 // LLVM arranges the stack as follows: 2752 // ... 2753 // ARG2 2754 // ARG1 2755 // RETADDR 2756 // PUSH RBP <-- RBP points here 2757 // PUSH CSRs 2758 // ~~~~~~~ <-- possible stack realignment (non-win64) 2759 // ... 2760 // STACK OBJECTS 2761 // ... <-- RSP after prologue points here 2762 // ~~~~~~~ <-- possible stack realignment (win64) 2763 // 2764 // if (hasVarSizedObjects()): 2765 // ... <-- "base pointer" (ESI/RBX) points here 2766 // DYNAMIC ALLOCAS 2767 // ... <-- RSP points here 2768 // 2769 // Case 1: In the simple case of no stack realignment and no dynamic 2770 // allocas, both "fixed" stack objects (arguments and CSRs) are addressable 2771 // with fixed offsets from RSP. 2772 // 2773 // Case 2: In the case of stack realignment with no dynamic allocas, fixed 2774 // stack objects are addressed with RBP and regular stack objects with RSP. 2775 // 2776 // Case 3: In the case of dynamic allocas and stack realignment, RSP is used 2777 // to address stack arguments for outgoing calls and nothing else. The "base 2778 // pointer" points to local variables, and RBP points to fixed objects. 2779 // 2780 // In cases 2 and 3, we can only answer for non-fixed stack objects, and the 2781 // answer we give is relative to the SP after the prologue, and not the 2782 // SP in the middle of the function. 2783 2784 if (MFI.isFixedObjectIndex(FI) && TRI->hasStackRealignment(MF) && 2785 !STI.isTargetWin64()) 2786 return getFrameIndexReference(MF, FI, FrameReg); 2787 2788 // If !hasReservedCallFrame the function might have SP adjustement in the 2789 // body. So, even though the offset is statically known, it depends on where 2790 // we are in the function. 2791 if (!IgnoreSPUpdates && !hasReservedCallFrame(MF)) 2792 return getFrameIndexReference(MF, FI, FrameReg); 2793 2794 // We don't handle tail calls, and shouldn't be seeing them either. 2795 assert(MF.getInfo<X86MachineFunctionInfo>()->getTCReturnAddrDelta() >= 0 && 2796 "we don't handle this case!"); 2797 2798 // This is how the math works out: 2799 // 2800 // %rsp grows (i.e. gets lower) left to right. Each box below is 2801 // one word (eight bytes). Obj0 is the stack slot we're trying to 2802 // get to. 2803 // 2804 // ---------------------------------- 2805 // | BP | Obj0 | Obj1 | ... | ObjN | 2806 // ---------------------------------- 2807 // ^ ^ ^ ^ 2808 // A B C E 2809 // 2810 // A is the incoming stack pointer. 2811 // (B - A) is the local area offset (-8 for x86-64) [1] 2812 // (C - A) is the Offset returned by MFI.getObjectOffset for Obj0 [2] 2813 // 2814 // |(E - B)| is the StackSize (absolute value, positive). For a 2815 // stack that grown down, this works out to be (B - E). [3] 2816 // 2817 // E is also the value of %rsp after stack has been set up, and we 2818 // want (C - E) -- the value we can add to %rsp to get to Obj0. Now 2819 // (C - E) == (C - A) - (B - A) + (B - E) 2820 // { Using [1], [2] and [3] above } 2821 // == getObjectOffset - LocalAreaOffset + StackSize 2822 2823 return getFrameIndexReferenceSP(MF, FI, FrameReg, StackSize); 2824 } 2825 2826 bool X86FrameLowering::assignCalleeSavedSpillSlots( 2827 MachineFunction &MF, const TargetRegisterInfo *TRI, 2828 std::vector<CalleeSavedInfo> &CSI) const { 2829 MachineFrameInfo &MFI = MF.getFrameInfo(); 2830 X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>(); 2831 2832 unsigned CalleeSavedFrameSize = 0; 2833 unsigned XMMCalleeSavedFrameSize = 0; 2834 auto &WinEHXMMSlotInfo = X86FI->getWinEHXMMSlotInfo(); 2835 int SpillSlotOffset = getOffsetOfLocalArea() + X86FI->getTCReturnAddrDelta(); 2836 2837 int64_t TailCallReturnAddrDelta = X86FI->getTCReturnAddrDelta(); 2838 2839 if (TailCallReturnAddrDelta < 0) { 2840 // create RETURNADDR area 2841 // arg 2842 // arg 2843 // RETADDR 2844 // { ... 2845 // RETADDR area 2846 // ... 2847 // } 2848 // [EBP] 2849 MFI.CreateFixedObject(-TailCallReturnAddrDelta, 2850 TailCallReturnAddrDelta - SlotSize, true); 2851 } 2852 2853 // Spill the BasePtr if it's used. 2854 if (this->TRI->hasBasePointer(MF)) { 2855 // Allocate a spill slot for EBP if we have a base pointer and EH funclets. 2856 if (MF.hasEHFunclets()) { 2857 int FI = MFI.CreateSpillStackObject(SlotSize, Align(SlotSize)); 2858 X86FI->setHasSEHFramePtrSave(true); 2859 X86FI->setSEHFramePtrSaveIndex(FI); 2860 } 2861 } 2862 2863 if (hasFP(MF)) { 2864 // emitPrologue always spills frame register the first thing. 2865 SpillSlotOffset -= SlotSize; 2866 MFI.CreateFixedSpillStackObject(SlotSize, SpillSlotOffset); 2867 2868 // The async context lives directly before the frame pointer, and we 2869 // allocate a second slot to preserve stack alignment. 2870 if (X86FI->hasSwiftAsyncContext()) { 2871 SpillSlotOffset -= SlotSize; 2872 MFI.CreateFixedSpillStackObject(SlotSize, SpillSlotOffset); 2873 SpillSlotOffset -= SlotSize; 2874 } 2875 2876 // Since emitPrologue and emitEpilogue will handle spilling and restoring of 2877 // the frame register, we can delete it from CSI list and not have to worry 2878 // about avoiding it later. 2879 Register FPReg = TRI->getFrameRegister(MF); 2880 for (unsigned i = 0; i < CSI.size(); ++i) { 2881 if (TRI->regsOverlap(CSI[i].getReg(), FPReg)) { 2882 CSI.erase(CSI.begin() + i); 2883 break; 2884 } 2885 } 2886 } 2887 2888 // Strategy: 2889 // 1. Use push2 when 2890 // a) number of CSR > 1 if no need padding 2891 // b) number of CSR > 2 if need padding 2892 // 2. When the number of CSR push is odd 2893 // a. Start to use push2 from the 1st push if stack is 16B aligned. 2894 // b. Start to use push2 from the 2nd push if stack is not 16B aligned. 2895 // 3. When the number of CSR push is even, start to use push2 from the 1st 2896 // push and make the stack 16B aligned before the push 2897 unsigned NumRegsForPush2 = 0; 2898 if (STI.hasPush2Pop2()) { 2899 unsigned NumCSGPR = llvm::count_if(CSI, [](const CalleeSavedInfo &I) { 2900 return X86::GR64RegClass.contains(I.getReg()); 2901 }); 2902 bool NeedPadding = (SpillSlotOffset % 16 != 0) && (NumCSGPR % 2 == 0); 2903 bool UsePush2Pop2 = NeedPadding ? NumCSGPR > 2 : NumCSGPR > 1; 2904 X86FI->setPadForPush2Pop2(NeedPadding && UsePush2Pop2); 2905 NumRegsForPush2 = UsePush2Pop2 ? alignDown(NumCSGPR, 2) : 0; 2906 if (X86FI->padForPush2Pop2()) { 2907 SpillSlotOffset -= SlotSize; 2908 MFI.CreateFixedSpillStackObject(SlotSize, SpillSlotOffset); 2909 } 2910 } 2911 2912 // Assign slots for GPRs. It increases frame size. 2913 for (CalleeSavedInfo &I : llvm::reverse(CSI)) { 2914 Register Reg = I.getReg(); 2915 2916 if (!X86::GR64RegClass.contains(Reg) && !X86::GR32RegClass.contains(Reg)) 2917 continue; 2918 2919 // A CSR is a candidate for push2/pop2 when it's slot offset is 16B aligned 2920 // or only an odd number of registers in the candidates. 2921 if (X86FI->getNumCandidatesForPush2Pop2() < NumRegsForPush2 && 2922 (SpillSlotOffset % 16 == 0 || 2923 X86FI->getNumCandidatesForPush2Pop2() % 2)) 2924 X86FI->addCandidateForPush2Pop2(Reg); 2925 2926 SpillSlotOffset -= SlotSize; 2927 CalleeSavedFrameSize += SlotSize; 2928 2929 int SlotIndex = MFI.CreateFixedSpillStackObject(SlotSize, SpillSlotOffset); 2930 I.setFrameIdx(SlotIndex); 2931 } 2932 2933 // Adjust the offset of spill slot as we know the accurate callee saved frame 2934 // size. 2935 if (X86FI->getRestoreBasePointer()) { 2936 SpillSlotOffset -= SlotSize; 2937 CalleeSavedFrameSize += SlotSize; 2938 2939 MFI.CreateFixedSpillStackObject(SlotSize, SpillSlotOffset); 2940 // TODO: saving the slot index is better? 2941 X86FI->setRestoreBasePointer(CalleeSavedFrameSize); 2942 } 2943 assert(X86FI->getNumCandidatesForPush2Pop2() % 2 == 0 && 2944 "Expect even candidates for push2/pop2"); 2945 if (X86FI->getNumCandidatesForPush2Pop2()) 2946 ++NumFunctionUsingPush2Pop2; 2947 X86FI->setCalleeSavedFrameSize(CalleeSavedFrameSize); 2948 MFI.setCVBytesOfCalleeSavedRegisters(CalleeSavedFrameSize); 2949 2950 // Assign slots for XMMs. 2951 for (CalleeSavedInfo &I : llvm::reverse(CSI)) { 2952 Register Reg = I.getReg(); 2953 if (X86::GR64RegClass.contains(Reg) || X86::GR32RegClass.contains(Reg)) 2954 continue; 2955 2956 // If this is k-register make sure we lookup via the largest legal type. 2957 MVT VT = MVT::Other; 2958 if (X86::VK16RegClass.contains(Reg)) 2959 VT = STI.hasBWI() ? MVT::v64i1 : MVT::v16i1; 2960 2961 const TargetRegisterClass *RC = TRI->getMinimalPhysRegClass(Reg, VT); 2962 unsigned Size = TRI->getSpillSize(*RC); 2963 Align Alignment = TRI->getSpillAlign(*RC); 2964 // ensure alignment 2965 assert(SpillSlotOffset < 0 && "SpillSlotOffset should always < 0 on X86"); 2966 SpillSlotOffset = -alignTo(-SpillSlotOffset, Alignment); 2967 2968 // spill into slot 2969 SpillSlotOffset -= Size; 2970 int SlotIndex = MFI.CreateFixedSpillStackObject(Size, SpillSlotOffset); 2971 I.setFrameIdx(SlotIndex); 2972 MFI.ensureMaxAlignment(Alignment); 2973 2974 // Save the start offset and size of XMM in stack frame for funclets. 2975 if (X86::VR128RegClass.contains(Reg)) { 2976 WinEHXMMSlotInfo[SlotIndex] = XMMCalleeSavedFrameSize; 2977 XMMCalleeSavedFrameSize += Size; 2978 } 2979 } 2980 2981 return true; 2982 } 2983 2984 bool X86FrameLowering::spillCalleeSavedRegisters( 2985 MachineBasicBlock &MBB, MachineBasicBlock::iterator MI, 2986 ArrayRef<CalleeSavedInfo> CSI, const TargetRegisterInfo *TRI) const { 2987 DebugLoc DL = MBB.findDebugLoc(MI); 2988 2989 // Don't save CSRs in 32-bit EH funclets. The caller saves EBX, EBP, ESI, EDI 2990 // for us, and there are no XMM CSRs on Win32. 2991 if (MBB.isEHFuncletEntry() && STI.is32Bit() && STI.isOSWindows()) 2992 return true; 2993 2994 // Push GPRs. It increases frame size. 2995 const MachineFunction &MF = *MBB.getParent(); 2996 const X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>(); 2997 if (X86FI->padForPush2Pop2()) 2998 emitSPUpdate(MBB, MI, DL, -(int64_t)SlotSize, /*InEpilogue=*/false); 2999 3000 // Update LiveIn of the basic block and decide whether we can add a kill flag 3001 // to the use. 3002 auto UpdateLiveInCheckCanKill = [&](Register Reg) { 3003 const MachineRegisterInfo &MRI = MF.getRegInfo(); 3004 // Do not set a kill flag on values that are also marked as live-in. This 3005 // happens with the @llvm-returnaddress intrinsic and with arguments 3006 // passed in callee saved registers. 3007 // Omitting the kill flags is conservatively correct even if the live-in 3008 // is not used after all. 3009 if (MRI.isLiveIn(Reg)) 3010 return false; 3011 MBB.addLiveIn(Reg); 3012 // Check if any subregister is live-in 3013 for (MCRegAliasIterator AReg(Reg, TRI, false); AReg.isValid(); ++AReg) 3014 if (MRI.isLiveIn(*AReg)) 3015 return false; 3016 return true; 3017 }; 3018 auto UpdateLiveInGetKillRegState = [&](Register Reg) { 3019 return getKillRegState(UpdateLiveInCheckCanKill(Reg)); 3020 }; 3021 3022 for (auto RI = CSI.rbegin(), RE = CSI.rend(); RI != RE; ++RI) { 3023 Register Reg = RI->getReg(); 3024 if (!X86::GR64RegClass.contains(Reg) && !X86::GR32RegClass.contains(Reg)) 3025 continue; 3026 3027 if (X86FI->isCandidateForPush2Pop2(Reg)) { 3028 Register Reg2 = (++RI)->getReg(); 3029 BuildMI(MBB, MI, DL, TII.get(getPUSH2Opcode(STI))) 3030 .addReg(Reg, UpdateLiveInGetKillRegState(Reg)) 3031 .addReg(Reg2, UpdateLiveInGetKillRegState(Reg2)) 3032 .setMIFlag(MachineInstr::FrameSetup); 3033 } else { 3034 BuildMI(MBB, MI, DL, TII.get(getPUSHOpcode(STI))) 3035 .addReg(Reg, UpdateLiveInGetKillRegState(Reg)) 3036 .setMIFlag(MachineInstr::FrameSetup); 3037 } 3038 } 3039 3040 if (X86FI->getRestoreBasePointer()) { 3041 unsigned Opc = STI.is64Bit() ? X86::PUSH64r : X86::PUSH32r; 3042 Register BaseReg = this->TRI->getBaseRegister(); 3043 BuildMI(MBB, MI, DL, TII.get(Opc)) 3044 .addReg(BaseReg, getKillRegState(true)) 3045 .setMIFlag(MachineInstr::FrameSetup); 3046 } 3047 3048 // Make XMM regs spilled. X86 does not have ability of push/pop XMM. 3049 // It can be done by spilling XMMs to stack frame. 3050 for (const CalleeSavedInfo &I : llvm::reverse(CSI)) { 3051 Register Reg = I.getReg(); 3052 if (X86::GR64RegClass.contains(Reg) || X86::GR32RegClass.contains(Reg)) 3053 continue; 3054 3055 // If this is k-register make sure we lookup via the largest legal type. 3056 MVT VT = MVT::Other; 3057 if (X86::VK16RegClass.contains(Reg)) 3058 VT = STI.hasBWI() ? MVT::v64i1 : MVT::v16i1; 3059 3060 // Add the callee-saved register as live-in. It's killed at the spill. 3061 MBB.addLiveIn(Reg); 3062 const TargetRegisterClass *RC = TRI->getMinimalPhysRegClass(Reg, VT); 3063 3064 TII.storeRegToStackSlot(MBB, MI, Reg, true, I.getFrameIdx(), RC, TRI, 3065 Register(), MachineInstr::FrameSetup); 3066 } 3067 3068 return true; 3069 } 3070 3071 void X86FrameLowering::emitCatchRetReturnValue(MachineBasicBlock &MBB, 3072 MachineBasicBlock::iterator MBBI, 3073 MachineInstr *CatchRet) const { 3074 // SEH shouldn't use catchret. 3075 assert(!isAsynchronousEHPersonality(classifyEHPersonality( 3076 MBB.getParent()->getFunction().getPersonalityFn())) && 3077 "SEH should not use CATCHRET"); 3078 const DebugLoc &DL = CatchRet->getDebugLoc(); 3079 MachineBasicBlock *CatchRetTarget = CatchRet->getOperand(0).getMBB(); 3080 3081 // Fill EAX/RAX with the address of the target block. 3082 if (STI.is64Bit()) { 3083 // LEA64r CatchRetTarget(%rip), %rax 3084 BuildMI(MBB, MBBI, DL, TII.get(X86::LEA64r), X86::RAX) 3085 .addReg(X86::RIP) 3086 .addImm(0) 3087 .addReg(0) 3088 .addMBB(CatchRetTarget) 3089 .addReg(0); 3090 } else { 3091 // MOV32ri $CatchRetTarget, %eax 3092 BuildMI(MBB, MBBI, DL, TII.get(X86::MOV32ri), X86::EAX) 3093 .addMBB(CatchRetTarget); 3094 } 3095 3096 // Record that we've taken the address of CatchRetTarget and no longer just 3097 // reference it in a terminator. 3098 CatchRetTarget->setMachineBlockAddressTaken(); 3099 } 3100 3101 bool X86FrameLowering::restoreCalleeSavedRegisters( 3102 MachineBasicBlock &MBB, MachineBasicBlock::iterator MI, 3103 MutableArrayRef<CalleeSavedInfo> CSI, const TargetRegisterInfo *TRI) const { 3104 if (CSI.empty()) 3105 return false; 3106 3107 if (MI != MBB.end() && isFuncletReturnInstr(*MI) && STI.isOSWindows()) { 3108 // Don't restore CSRs in 32-bit EH funclets. Matches 3109 // spillCalleeSavedRegisters. 3110 if (STI.is32Bit()) 3111 return true; 3112 // Don't restore CSRs before an SEH catchret. SEH except blocks do not form 3113 // funclets. emitEpilogue transforms these to normal jumps. 3114 if (MI->getOpcode() == X86::CATCHRET) { 3115 const Function &F = MBB.getParent()->getFunction(); 3116 bool IsSEH = isAsynchronousEHPersonality( 3117 classifyEHPersonality(F.getPersonalityFn())); 3118 if (IsSEH) 3119 return true; 3120 } 3121 } 3122 3123 DebugLoc DL = MBB.findDebugLoc(MI); 3124 3125 // Reload XMMs from stack frame. 3126 for (const CalleeSavedInfo &I : CSI) { 3127 Register Reg = I.getReg(); 3128 if (X86::GR64RegClass.contains(Reg) || X86::GR32RegClass.contains(Reg)) 3129 continue; 3130 3131 // If this is k-register make sure we lookup via the largest legal type. 3132 MVT VT = MVT::Other; 3133 if (X86::VK16RegClass.contains(Reg)) 3134 VT = STI.hasBWI() ? MVT::v64i1 : MVT::v16i1; 3135 3136 const TargetRegisterClass *RC = TRI->getMinimalPhysRegClass(Reg, VT); 3137 TII.loadRegFromStackSlot(MBB, MI, Reg, I.getFrameIdx(), RC, TRI, 3138 Register()); 3139 } 3140 3141 // Clear the stack slot for spill base pointer register. 3142 MachineFunction &MF = *MBB.getParent(); 3143 const X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>(); 3144 if (X86FI->getRestoreBasePointer()) { 3145 unsigned Opc = STI.is64Bit() ? X86::POP64r : X86::POP32r; 3146 Register BaseReg = this->TRI->getBaseRegister(); 3147 BuildMI(MBB, MI, DL, TII.get(Opc), BaseReg) 3148 .setMIFlag(MachineInstr::FrameDestroy); 3149 } 3150 3151 // POP GPRs. 3152 for (auto I = CSI.begin(), E = CSI.end(); I != E; ++I) { 3153 Register Reg = I->getReg(); 3154 if (!X86::GR64RegClass.contains(Reg) && !X86::GR32RegClass.contains(Reg)) 3155 continue; 3156 3157 if (X86FI->isCandidateForPush2Pop2(Reg)) 3158 BuildMI(MBB, MI, DL, TII.get(getPOP2Opcode(STI)), Reg) 3159 .addReg((++I)->getReg(), RegState::Define) 3160 .setMIFlag(MachineInstr::FrameDestroy); 3161 else 3162 BuildMI(MBB, MI, DL, TII.get(getPOPOpcode(STI)), Reg) 3163 .setMIFlag(MachineInstr::FrameDestroy); 3164 } 3165 if (X86FI->padForPush2Pop2()) 3166 emitSPUpdate(MBB, MI, DL, SlotSize, /*InEpilogue=*/true); 3167 3168 return true; 3169 } 3170 3171 void X86FrameLowering::determineCalleeSaves(MachineFunction &MF, 3172 BitVector &SavedRegs, 3173 RegScavenger *RS) const { 3174 TargetFrameLowering::determineCalleeSaves(MF, SavedRegs, RS); 3175 3176 // Spill the BasePtr if it's used. 3177 if (TRI->hasBasePointer(MF)) { 3178 Register BasePtr = TRI->getBaseRegister(); 3179 if (STI.isTarget64BitILP32()) 3180 BasePtr = getX86SubSuperRegister(BasePtr, 64); 3181 SavedRegs.set(BasePtr); 3182 } 3183 } 3184 3185 static bool HasNestArgument(const MachineFunction *MF) { 3186 const Function &F = MF->getFunction(); 3187 for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E; 3188 I++) { 3189 if (I->hasNestAttr() && !I->use_empty()) 3190 return true; 3191 } 3192 return false; 3193 } 3194 3195 /// GetScratchRegister - Get a temp register for performing work in the 3196 /// segmented stack and the Erlang/HiPE stack prologue. Depending on platform 3197 /// and the properties of the function either one or two registers will be 3198 /// needed. Set primary to true for the first register, false for the second. 3199 static unsigned GetScratchRegister(bool Is64Bit, bool IsLP64, 3200 const MachineFunction &MF, bool Primary) { 3201 CallingConv::ID CallingConvention = MF.getFunction().getCallingConv(); 3202 3203 // Erlang stuff. 3204 if (CallingConvention == CallingConv::HiPE) { 3205 if (Is64Bit) 3206 return Primary ? X86::R14 : X86::R13; 3207 else 3208 return Primary ? X86::EBX : X86::EDI; 3209 } 3210 3211 if (Is64Bit) { 3212 if (IsLP64) 3213 return Primary ? X86::R11 : X86::R12; 3214 else 3215 return Primary ? X86::R11D : X86::R12D; 3216 } 3217 3218 bool IsNested = HasNestArgument(&MF); 3219 3220 if (CallingConvention == CallingConv::X86_FastCall || 3221 CallingConvention == CallingConv::Fast || 3222 CallingConvention == CallingConv::Tail) { 3223 if (IsNested) 3224 report_fatal_error("Segmented stacks does not support fastcall with " 3225 "nested function."); 3226 return Primary ? X86::EAX : X86::ECX; 3227 } 3228 if (IsNested) 3229 return Primary ? X86::EDX : X86::EAX; 3230 return Primary ? X86::ECX : X86::EAX; 3231 } 3232 3233 // The stack limit in the TCB is set to this many bytes above the actual stack 3234 // limit. 3235 static const uint64_t kSplitStackAvailable = 256; 3236 3237 void X86FrameLowering::adjustForSegmentedStacks( 3238 MachineFunction &MF, MachineBasicBlock &PrologueMBB) const { 3239 MachineFrameInfo &MFI = MF.getFrameInfo(); 3240 uint64_t StackSize; 3241 unsigned TlsReg, TlsOffset; 3242 DebugLoc DL; 3243 3244 // To support shrink-wrapping we would need to insert the new blocks 3245 // at the right place and update the branches to PrologueMBB. 3246 assert(&(*MF.begin()) == &PrologueMBB && "Shrink-wrapping not supported yet"); 3247 3248 unsigned ScratchReg = GetScratchRegister(Is64Bit, IsLP64, MF, true); 3249 assert(!MF.getRegInfo().isLiveIn(ScratchReg) && 3250 "Scratch register is live-in"); 3251 3252 if (MF.getFunction().isVarArg()) 3253 report_fatal_error("Segmented stacks do not support vararg functions."); 3254 if (!STI.isTargetLinux() && !STI.isTargetDarwin() && !STI.isTargetWin32() && 3255 !STI.isTargetWin64() && !STI.isTargetFreeBSD() && 3256 !STI.isTargetDragonFly()) 3257 report_fatal_error("Segmented stacks not supported on this platform."); 3258 3259 // Eventually StackSize will be calculated by a link-time pass; which will 3260 // also decide whether checking code needs to be injected into this particular 3261 // prologue. 3262 StackSize = MFI.getStackSize(); 3263 3264 if (!MFI.needsSplitStackProlog()) 3265 return; 3266 3267 MachineBasicBlock *allocMBB = MF.CreateMachineBasicBlock(); 3268 MachineBasicBlock *checkMBB = MF.CreateMachineBasicBlock(); 3269 X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>(); 3270 bool IsNested = false; 3271 3272 // We need to know if the function has a nest argument only in 64 bit mode. 3273 if (Is64Bit) 3274 IsNested = HasNestArgument(&MF); 3275 3276 // The MOV R10, RAX needs to be in a different block, since the RET we emit in 3277 // allocMBB needs to be last (terminating) instruction. 3278 3279 for (const auto &LI : PrologueMBB.liveins()) { 3280 allocMBB->addLiveIn(LI); 3281 checkMBB->addLiveIn(LI); 3282 } 3283 3284 if (IsNested) 3285 allocMBB->addLiveIn(IsLP64 ? X86::R10 : X86::R10D); 3286 3287 MF.push_front(allocMBB); 3288 MF.push_front(checkMBB); 3289 3290 // When the frame size is less than 256 we just compare the stack 3291 // boundary directly to the value of the stack pointer, per gcc. 3292 bool CompareStackPointer = StackSize < kSplitStackAvailable; 3293 3294 // Read the limit off the current stacklet off the stack_guard location. 3295 if (Is64Bit) { 3296 if (STI.isTargetLinux()) { 3297 TlsReg = X86::FS; 3298 TlsOffset = IsLP64 ? 0x70 : 0x40; 3299 } else if (STI.isTargetDarwin()) { 3300 TlsReg = X86::GS; 3301 TlsOffset = 0x60 + 90 * 8; // See pthread_machdep.h. Steal TLS slot 90. 3302 } else if (STI.isTargetWin64()) { 3303 TlsReg = X86::GS; 3304 TlsOffset = 0x28; // pvArbitrary, reserved for application use 3305 } else if (STI.isTargetFreeBSD()) { 3306 TlsReg = X86::FS; 3307 TlsOffset = 0x18; 3308 } else if (STI.isTargetDragonFly()) { 3309 TlsReg = X86::FS; 3310 TlsOffset = 0x20; // use tls_tcb.tcb_segstack 3311 } else { 3312 report_fatal_error("Segmented stacks not supported on this platform."); 3313 } 3314 3315 if (CompareStackPointer) 3316 ScratchReg = IsLP64 ? X86::RSP : X86::ESP; 3317 else 3318 BuildMI(checkMBB, DL, TII.get(IsLP64 ? X86::LEA64r : X86::LEA64_32r), 3319 ScratchReg) 3320 .addReg(X86::RSP) 3321 .addImm(1) 3322 .addReg(0) 3323 .addImm(-StackSize) 3324 .addReg(0); 3325 3326 BuildMI(checkMBB, DL, TII.get(IsLP64 ? X86::CMP64rm : X86::CMP32rm)) 3327 .addReg(ScratchReg) 3328 .addReg(0) 3329 .addImm(1) 3330 .addReg(0) 3331 .addImm(TlsOffset) 3332 .addReg(TlsReg); 3333 } else { 3334 if (STI.isTargetLinux()) { 3335 TlsReg = X86::GS; 3336 TlsOffset = 0x30; 3337 } else if (STI.isTargetDarwin()) { 3338 TlsReg = X86::GS; 3339 TlsOffset = 0x48 + 90 * 4; 3340 } else if (STI.isTargetWin32()) { 3341 TlsReg = X86::FS; 3342 TlsOffset = 0x14; // pvArbitrary, reserved for application use 3343 } else if (STI.isTargetDragonFly()) { 3344 TlsReg = X86::FS; 3345 TlsOffset = 0x10; // use tls_tcb.tcb_segstack 3346 } else if (STI.isTargetFreeBSD()) { 3347 report_fatal_error("Segmented stacks not supported on FreeBSD i386."); 3348 } else { 3349 report_fatal_error("Segmented stacks not supported on this platform."); 3350 } 3351 3352 if (CompareStackPointer) 3353 ScratchReg = X86::ESP; 3354 else 3355 BuildMI(checkMBB, DL, TII.get(X86::LEA32r), ScratchReg) 3356 .addReg(X86::ESP) 3357 .addImm(1) 3358 .addReg(0) 3359 .addImm(-StackSize) 3360 .addReg(0); 3361 3362 if (STI.isTargetLinux() || STI.isTargetWin32() || STI.isTargetWin64() || 3363 STI.isTargetDragonFly()) { 3364 BuildMI(checkMBB, DL, TII.get(X86::CMP32rm)) 3365 .addReg(ScratchReg) 3366 .addReg(0) 3367 .addImm(0) 3368 .addReg(0) 3369 .addImm(TlsOffset) 3370 .addReg(TlsReg); 3371 } else if (STI.isTargetDarwin()) { 3372 3373 // TlsOffset doesn't fit into a mod r/m byte so we need an extra register. 3374 unsigned ScratchReg2; 3375 bool SaveScratch2; 3376 if (CompareStackPointer) { 3377 // The primary scratch register is available for holding the TLS offset. 3378 ScratchReg2 = GetScratchRegister(Is64Bit, IsLP64, MF, true); 3379 SaveScratch2 = false; 3380 } else { 3381 // Need to use a second register to hold the TLS offset 3382 ScratchReg2 = GetScratchRegister(Is64Bit, IsLP64, MF, false); 3383 3384 // Unfortunately, with fastcc the second scratch register may hold an 3385 // argument. 3386 SaveScratch2 = MF.getRegInfo().isLiveIn(ScratchReg2); 3387 } 3388 3389 // If Scratch2 is live-in then it needs to be saved. 3390 assert((!MF.getRegInfo().isLiveIn(ScratchReg2) || SaveScratch2) && 3391 "Scratch register is live-in and not saved"); 3392 3393 if (SaveScratch2) 3394 BuildMI(checkMBB, DL, TII.get(X86::PUSH32r)) 3395 .addReg(ScratchReg2, RegState::Kill); 3396 3397 BuildMI(checkMBB, DL, TII.get(X86::MOV32ri), ScratchReg2) 3398 .addImm(TlsOffset); 3399 BuildMI(checkMBB, DL, TII.get(X86::CMP32rm)) 3400 .addReg(ScratchReg) 3401 .addReg(ScratchReg2) 3402 .addImm(1) 3403 .addReg(0) 3404 .addImm(0) 3405 .addReg(TlsReg); 3406 3407 if (SaveScratch2) 3408 BuildMI(checkMBB, DL, TII.get(X86::POP32r), ScratchReg2); 3409 } 3410 } 3411 3412 // This jump is taken if SP >= (Stacklet Limit + Stack Space required). 3413 // It jumps to normal execution of the function body. 3414 BuildMI(checkMBB, DL, TII.get(X86::JCC_1)) 3415 .addMBB(&PrologueMBB) 3416 .addImm(X86::COND_A); 3417 3418 // On 32 bit we first push the arguments size and then the frame size. On 64 3419 // bit, we pass the stack frame size in r10 and the argument size in r11. 3420 if (Is64Bit) { 3421 // Functions with nested arguments use R10, so it needs to be saved across 3422 // the call to _morestack 3423 3424 const unsigned RegAX = IsLP64 ? X86::RAX : X86::EAX; 3425 const unsigned Reg10 = IsLP64 ? X86::R10 : X86::R10D; 3426 const unsigned Reg11 = IsLP64 ? X86::R11 : X86::R11D; 3427 const unsigned MOVrr = IsLP64 ? X86::MOV64rr : X86::MOV32rr; 3428 3429 if (IsNested) 3430 BuildMI(allocMBB, DL, TII.get(MOVrr), RegAX).addReg(Reg10); 3431 3432 BuildMI(allocMBB, DL, TII.get(getMOVriOpcode(IsLP64, StackSize)), Reg10) 3433 .addImm(StackSize); 3434 BuildMI(allocMBB, DL, 3435 TII.get(getMOVriOpcode(IsLP64, X86FI->getArgumentStackSize())), 3436 Reg11) 3437 .addImm(X86FI->getArgumentStackSize()); 3438 } else { 3439 BuildMI(allocMBB, DL, TII.get(X86::PUSH32i)) 3440 .addImm(X86FI->getArgumentStackSize()); 3441 BuildMI(allocMBB, DL, TII.get(X86::PUSH32i)).addImm(StackSize); 3442 } 3443 3444 // __morestack is in libgcc 3445 if (Is64Bit && MF.getTarget().getCodeModel() == CodeModel::Large) { 3446 // Under the large code model, we cannot assume that __morestack lives 3447 // within 2^31 bytes of the call site, so we cannot use pc-relative 3448 // addressing. We cannot perform the call via a temporary register, 3449 // as the rax register may be used to store the static chain, and all 3450 // other suitable registers may be either callee-save or used for 3451 // parameter passing. We cannot use the stack at this point either 3452 // because __morestack manipulates the stack directly. 3453 // 3454 // To avoid these issues, perform an indirect call via a read-only memory 3455 // location containing the address. 3456 // 3457 // This solution is not perfect, as it assumes that the .rodata section 3458 // is laid out within 2^31 bytes of each function body, but this seems 3459 // to be sufficient for JIT. 3460 // FIXME: Add retpoline support and remove the error here.. 3461 if (STI.useIndirectThunkCalls()) 3462 report_fatal_error("Emitting morestack calls on 64-bit with the large " 3463 "code model and thunks not yet implemented."); 3464 BuildMI(allocMBB, DL, TII.get(X86::CALL64m)) 3465 .addReg(X86::RIP) 3466 .addImm(0) 3467 .addReg(0) 3468 .addExternalSymbol("__morestack_addr") 3469 .addReg(0); 3470 } else { 3471 if (Is64Bit) 3472 BuildMI(allocMBB, DL, TII.get(X86::CALL64pcrel32)) 3473 .addExternalSymbol("__morestack"); 3474 else 3475 BuildMI(allocMBB, DL, TII.get(X86::CALLpcrel32)) 3476 .addExternalSymbol("__morestack"); 3477 } 3478 3479 if (IsNested) 3480 BuildMI(allocMBB, DL, TII.get(X86::MORESTACK_RET_RESTORE_R10)); 3481 else 3482 BuildMI(allocMBB, DL, TII.get(X86::MORESTACK_RET)); 3483 3484 allocMBB->addSuccessor(&PrologueMBB); 3485 3486 checkMBB->addSuccessor(allocMBB, BranchProbability::getZero()); 3487 checkMBB->addSuccessor(&PrologueMBB, BranchProbability::getOne()); 3488 3489 #ifdef EXPENSIVE_CHECKS 3490 MF.verify(); 3491 #endif 3492 } 3493 3494 /// Lookup an ERTS parameter in the !hipe.literals named metadata node. 3495 /// HiPE provides Erlang Runtime System-internal parameters, such as PCB offsets 3496 /// to fields it needs, through a named metadata node "hipe.literals" containing 3497 /// name-value pairs. 3498 static unsigned getHiPELiteral(NamedMDNode *HiPELiteralsMD, 3499 const StringRef LiteralName) { 3500 for (int i = 0, e = HiPELiteralsMD->getNumOperands(); i != e; ++i) { 3501 MDNode *Node = HiPELiteralsMD->getOperand(i); 3502 if (Node->getNumOperands() != 2) 3503 continue; 3504 MDString *NodeName = dyn_cast<MDString>(Node->getOperand(0)); 3505 ValueAsMetadata *NodeVal = dyn_cast<ValueAsMetadata>(Node->getOperand(1)); 3506 if (!NodeName || !NodeVal) 3507 continue; 3508 ConstantInt *ValConst = dyn_cast_or_null<ConstantInt>(NodeVal->getValue()); 3509 if (ValConst && NodeName->getString() == LiteralName) { 3510 return ValConst->getZExtValue(); 3511 } 3512 } 3513 3514 report_fatal_error("HiPE literal " + LiteralName + 3515 " required but not provided"); 3516 } 3517 3518 // Return true if there are no non-ehpad successors to MBB and there are no 3519 // non-meta instructions between MBBI and MBB.end(). 3520 static bool blockEndIsUnreachable(const MachineBasicBlock &MBB, 3521 MachineBasicBlock::const_iterator MBBI) { 3522 return llvm::all_of( 3523 MBB.successors(), 3524 [](const MachineBasicBlock *Succ) { return Succ->isEHPad(); }) && 3525 std::all_of(MBBI, MBB.end(), [](const MachineInstr &MI) { 3526 return MI.isMetaInstruction(); 3527 }); 3528 } 3529 3530 /// Erlang programs may need a special prologue to handle the stack size they 3531 /// might need at runtime. That is because Erlang/OTP does not implement a C 3532 /// stack but uses a custom implementation of hybrid stack/heap architecture. 3533 /// (for more information see Eric Stenman's Ph.D. thesis: 3534 /// http://publications.uu.se/uu/fulltext/nbn_se_uu_diva-2688.pdf) 3535 /// 3536 /// CheckStack: 3537 /// temp0 = sp - MaxStack 3538 /// if( temp0 < SP_LIMIT(P) ) goto IncStack else goto OldStart 3539 /// OldStart: 3540 /// ... 3541 /// IncStack: 3542 /// call inc_stack # doubles the stack space 3543 /// temp0 = sp - MaxStack 3544 /// if( temp0 < SP_LIMIT(P) ) goto IncStack else goto OldStart 3545 void X86FrameLowering::adjustForHiPEPrologue( 3546 MachineFunction &MF, MachineBasicBlock &PrologueMBB) const { 3547 MachineFrameInfo &MFI = MF.getFrameInfo(); 3548 DebugLoc DL; 3549 3550 // To support shrink-wrapping we would need to insert the new blocks 3551 // at the right place and update the branches to PrologueMBB. 3552 assert(&(*MF.begin()) == &PrologueMBB && "Shrink-wrapping not supported yet"); 3553 3554 // HiPE-specific values 3555 NamedMDNode *HiPELiteralsMD = 3556 MF.getFunction().getParent()->getNamedMetadata("hipe.literals"); 3557 if (!HiPELiteralsMD) 3558 report_fatal_error( 3559 "Can't generate HiPE prologue without runtime parameters"); 3560 const unsigned HipeLeafWords = getHiPELiteral( 3561 HiPELiteralsMD, Is64Bit ? "AMD64_LEAF_WORDS" : "X86_LEAF_WORDS"); 3562 const unsigned CCRegisteredArgs = Is64Bit ? 6 : 5; 3563 const unsigned Guaranteed = HipeLeafWords * SlotSize; 3564 unsigned CallerStkArity = MF.getFunction().arg_size() > CCRegisteredArgs 3565 ? MF.getFunction().arg_size() - CCRegisteredArgs 3566 : 0; 3567 unsigned MaxStack = MFI.getStackSize() + CallerStkArity * SlotSize + SlotSize; 3568 3569 assert(STI.isTargetLinux() && 3570 "HiPE prologue is only supported on Linux operating systems."); 3571 3572 // Compute the largest caller's frame that is needed to fit the callees' 3573 // frames. This 'MaxStack' is computed from: 3574 // 3575 // a) the fixed frame size, which is the space needed for all spilled temps, 3576 // b) outgoing on-stack parameter areas, and 3577 // c) the minimum stack space this function needs to make available for the 3578 // functions it calls (a tunable ABI property). 3579 if (MFI.hasCalls()) { 3580 unsigned MoreStackForCalls = 0; 3581 3582 for (auto &MBB : MF) { 3583 for (auto &MI : MBB) { 3584 if (!MI.isCall()) 3585 continue; 3586 3587 // Get callee operand. 3588 const MachineOperand &MO = MI.getOperand(0); 3589 3590 // Only take account of global function calls (no closures etc.). 3591 if (!MO.isGlobal()) 3592 continue; 3593 3594 const Function *F = dyn_cast<Function>(MO.getGlobal()); 3595 if (!F) 3596 continue; 3597 3598 // Do not update 'MaxStack' for primitive and built-in functions 3599 // (encoded with names either starting with "erlang."/"bif_" or not 3600 // having a ".", such as a simple <Module>.<Function>.<Arity>, or an 3601 // "_", such as the BIF "suspend_0") as they are executed on another 3602 // stack. 3603 if (F->getName().contains("erlang.") || F->getName().contains("bif_") || 3604 F->getName().find_first_of("._") == StringRef::npos) 3605 continue; 3606 3607 unsigned CalleeStkArity = F->arg_size() > CCRegisteredArgs 3608 ? F->arg_size() - CCRegisteredArgs 3609 : 0; 3610 if (HipeLeafWords - 1 > CalleeStkArity) 3611 MoreStackForCalls = 3612 std::max(MoreStackForCalls, 3613 (HipeLeafWords - 1 - CalleeStkArity) * SlotSize); 3614 } 3615 } 3616 MaxStack += MoreStackForCalls; 3617 } 3618 3619 // If the stack frame needed is larger than the guaranteed then runtime checks 3620 // and calls to "inc_stack_0" BIF should be inserted in the assembly prologue. 3621 if (MaxStack > Guaranteed) { 3622 MachineBasicBlock *stackCheckMBB = MF.CreateMachineBasicBlock(); 3623 MachineBasicBlock *incStackMBB = MF.CreateMachineBasicBlock(); 3624 3625 for (const auto &LI : PrologueMBB.liveins()) { 3626 stackCheckMBB->addLiveIn(LI); 3627 incStackMBB->addLiveIn(LI); 3628 } 3629 3630 MF.push_front(incStackMBB); 3631 MF.push_front(stackCheckMBB); 3632 3633 unsigned ScratchReg, SPReg, PReg, SPLimitOffset; 3634 unsigned LEAop, CMPop, CALLop; 3635 SPLimitOffset = getHiPELiteral(HiPELiteralsMD, "P_NSP_LIMIT"); 3636 if (Is64Bit) { 3637 SPReg = X86::RSP; 3638 PReg = X86::RBP; 3639 LEAop = X86::LEA64r; 3640 CMPop = X86::CMP64rm; 3641 CALLop = X86::CALL64pcrel32; 3642 } else { 3643 SPReg = X86::ESP; 3644 PReg = X86::EBP; 3645 LEAop = X86::LEA32r; 3646 CMPop = X86::CMP32rm; 3647 CALLop = X86::CALLpcrel32; 3648 } 3649 3650 ScratchReg = GetScratchRegister(Is64Bit, IsLP64, MF, true); 3651 assert(!MF.getRegInfo().isLiveIn(ScratchReg) && 3652 "HiPE prologue scratch register is live-in"); 3653 3654 // Create new MBB for StackCheck: 3655 addRegOffset(BuildMI(stackCheckMBB, DL, TII.get(LEAop), ScratchReg), SPReg, 3656 false, -MaxStack); 3657 // SPLimitOffset is in a fixed heap location (pointed by BP). 3658 addRegOffset(BuildMI(stackCheckMBB, DL, TII.get(CMPop)).addReg(ScratchReg), 3659 PReg, false, SPLimitOffset); 3660 BuildMI(stackCheckMBB, DL, TII.get(X86::JCC_1)) 3661 .addMBB(&PrologueMBB) 3662 .addImm(X86::COND_AE); 3663 3664 // Create new MBB for IncStack: 3665 BuildMI(incStackMBB, DL, TII.get(CALLop)).addExternalSymbol("inc_stack_0"); 3666 addRegOffset(BuildMI(incStackMBB, DL, TII.get(LEAop), ScratchReg), SPReg, 3667 false, -MaxStack); 3668 addRegOffset(BuildMI(incStackMBB, DL, TII.get(CMPop)).addReg(ScratchReg), 3669 PReg, false, SPLimitOffset); 3670 BuildMI(incStackMBB, DL, TII.get(X86::JCC_1)) 3671 .addMBB(incStackMBB) 3672 .addImm(X86::COND_LE); 3673 3674 stackCheckMBB->addSuccessor(&PrologueMBB, {99, 100}); 3675 stackCheckMBB->addSuccessor(incStackMBB, {1, 100}); 3676 incStackMBB->addSuccessor(&PrologueMBB, {99, 100}); 3677 incStackMBB->addSuccessor(incStackMBB, {1, 100}); 3678 } 3679 #ifdef EXPENSIVE_CHECKS 3680 MF.verify(); 3681 #endif 3682 } 3683 3684 bool X86FrameLowering::adjustStackWithPops(MachineBasicBlock &MBB, 3685 MachineBasicBlock::iterator MBBI, 3686 const DebugLoc &DL, 3687 int Offset) const { 3688 if (Offset <= 0) 3689 return false; 3690 3691 if (Offset % SlotSize) 3692 return false; 3693 3694 int NumPops = Offset / SlotSize; 3695 // This is only worth it if we have at most 2 pops. 3696 if (NumPops != 1 && NumPops != 2) 3697 return false; 3698 3699 // Handle only the trivial case where the adjustment directly follows 3700 // a call. This is the most common one, anyway. 3701 if (MBBI == MBB.begin()) 3702 return false; 3703 MachineBasicBlock::iterator Prev = std::prev(MBBI); 3704 if (!Prev->isCall() || !Prev->getOperand(1).isRegMask()) 3705 return false; 3706 3707 unsigned Regs[2]; 3708 unsigned FoundRegs = 0; 3709 3710 const MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo(); 3711 const MachineOperand &RegMask = Prev->getOperand(1); 3712 3713 auto &RegClass = 3714 Is64Bit ? X86::GR64_NOREX_NOSPRegClass : X86::GR32_NOREX_NOSPRegClass; 3715 // Try to find up to NumPops free registers. 3716 for (auto Candidate : RegClass) { 3717 // Poor man's liveness: 3718 // Since we're immediately after a call, any register that is clobbered 3719 // by the call and not defined by it can be considered dead. 3720 if (!RegMask.clobbersPhysReg(Candidate)) 3721 continue; 3722 3723 // Don't clobber reserved registers 3724 if (MRI.isReserved(Candidate)) 3725 continue; 3726 3727 bool IsDef = false; 3728 for (const MachineOperand &MO : Prev->implicit_operands()) { 3729 if (MO.isReg() && MO.isDef() && 3730 TRI->isSuperOrSubRegisterEq(MO.getReg(), Candidate)) { 3731 IsDef = true; 3732 break; 3733 } 3734 } 3735 3736 if (IsDef) 3737 continue; 3738 3739 Regs[FoundRegs++] = Candidate; 3740 if (FoundRegs == (unsigned)NumPops) 3741 break; 3742 } 3743 3744 if (FoundRegs == 0) 3745 return false; 3746 3747 // If we found only one free register, but need two, reuse the same one twice. 3748 while (FoundRegs < (unsigned)NumPops) 3749 Regs[FoundRegs++] = Regs[0]; 3750 3751 for (int i = 0; i < NumPops; ++i) 3752 BuildMI(MBB, MBBI, DL, TII.get(STI.is64Bit() ? X86::POP64r : X86::POP32r), 3753 Regs[i]); 3754 3755 return true; 3756 } 3757 3758 MachineBasicBlock::iterator X86FrameLowering::eliminateCallFramePseudoInstr( 3759 MachineFunction &MF, MachineBasicBlock &MBB, 3760 MachineBasicBlock::iterator I) const { 3761 bool reserveCallFrame = hasReservedCallFrame(MF); 3762 unsigned Opcode = I->getOpcode(); 3763 bool isDestroy = Opcode == TII.getCallFrameDestroyOpcode(); 3764 DebugLoc DL = I->getDebugLoc(); // copy DebugLoc as I will be erased. 3765 uint64_t Amount = TII.getFrameSize(*I); 3766 uint64_t InternalAmt = (isDestroy || Amount) ? TII.getFrameAdjustment(*I) : 0; 3767 I = MBB.erase(I); 3768 auto InsertPos = skipDebugInstructionsForward(I, MBB.end()); 3769 3770 // Try to avoid emitting dead SP adjustments if the block end is unreachable, 3771 // typically because the function is marked noreturn (abort, throw, 3772 // assert_fail, etc). 3773 if (isDestroy && blockEndIsUnreachable(MBB, I)) 3774 return I; 3775 3776 if (!reserveCallFrame) { 3777 // If the stack pointer can be changed after prologue, turn the 3778 // adjcallstackup instruction into a 'sub ESP, <amt>' and the 3779 // adjcallstackdown instruction into 'add ESP, <amt>' 3780 3781 // We need to keep the stack aligned properly. To do this, we round the 3782 // amount of space needed for the outgoing arguments up to the next 3783 // alignment boundary. 3784 Amount = alignTo(Amount, getStackAlign()); 3785 3786 const Function &F = MF.getFunction(); 3787 bool WindowsCFI = MF.getTarget().getMCAsmInfo()->usesWindowsCFI(); 3788 bool DwarfCFI = !WindowsCFI && MF.needsFrameMoves(); 3789 3790 // If we have any exception handlers in this function, and we adjust 3791 // the SP before calls, we may need to indicate this to the unwinder 3792 // using GNU_ARGS_SIZE. Note that this may be necessary even when 3793 // Amount == 0, because the preceding function may have set a non-0 3794 // GNU_ARGS_SIZE. 3795 // TODO: We don't need to reset this between subsequent functions, 3796 // if it didn't change. 3797 bool HasDwarfEHHandlers = !WindowsCFI && !MF.getLandingPads().empty(); 3798 3799 if (HasDwarfEHHandlers && !isDestroy && 3800 MF.getInfo<X86MachineFunctionInfo>()->getHasPushSequences()) 3801 BuildCFI(MBB, InsertPos, DL, 3802 MCCFIInstruction::createGnuArgsSize(nullptr, Amount)); 3803 3804 if (Amount == 0) 3805 return I; 3806 3807 // Factor out the amount that gets handled inside the sequence 3808 // (Pushes of argument for frame setup, callee pops for frame destroy) 3809 Amount -= InternalAmt; 3810 3811 // TODO: This is needed only if we require precise CFA. 3812 // If this is a callee-pop calling convention, emit a CFA adjust for 3813 // the amount the callee popped. 3814 if (isDestroy && InternalAmt && DwarfCFI && !hasFP(MF)) 3815 BuildCFI(MBB, InsertPos, DL, 3816 MCCFIInstruction::createAdjustCfaOffset(nullptr, -InternalAmt)); 3817 3818 // Add Amount to SP to destroy a frame, or subtract to setup. 3819 int64_t StackAdjustment = isDestroy ? Amount : -Amount; 3820 3821 if (StackAdjustment) { 3822 // Merge with any previous or following adjustment instruction. Note: the 3823 // instructions merged with here do not have CFI, so their stack 3824 // adjustments do not feed into CfaAdjustment. 3825 StackAdjustment += mergeSPUpdates(MBB, InsertPos, true); 3826 StackAdjustment += mergeSPUpdates(MBB, InsertPos, false); 3827 3828 if (StackAdjustment) { 3829 if (!(F.hasMinSize() && 3830 adjustStackWithPops(MBB, InsertPos, DL, StackAdjustment))) 3831 BuildStackAdjustment(MBB, InsertPos, DL, StackAdjustment, 3832 /*InEpilogue=*/false); 3833 } 3834 } 3835 3836 if (DwarfCFI && !hasFP(MF)) { 3837 // If we don't have FP, but need to generate unwind information, 3838 // we need to set the correct CFA offset after the stack adjustment. 3839 // How much we adjust the CFA offset depends on whether we're emitting 3840 // CFI only for EH purposes or for debugging. EH only requires the CFA 3841 // offset to be correct at each call site, while for debugging we want 3842 // it to be more precise. 3843 3844 int64_t CfaAdjustment = -StackAdjustment; 3845 // TODO: When not using precise CFA, we also need to adjust for the 3846 // InternalAmt here. 3847 if (CfaAdjustment) { 3848 BuildCFI( 3849 MBB, InsertPos, DL, 3850 MCCFIInstruction::createAdjustCfaOffset(nullptr, CfaAdjustment)); 3851 } 3852 } 3853 3854 return I; 3855 } 3856 3857 if (InternalAmt) { 3858 MachineBasicBlock::iterator CI = I; 3859 MachineBasicBlock::iterator B = MBB.begin(); 3860 while (CI != B && !std::prev(CI)->isCall()) 3861 --CI; 3862 BuildStackAdjustment(MBB, CI, DL, -InternalAmt, /*InEpilogue=*/false); 3863 } 3864 3865 return I; 3866 } 3867 3868 bool X86FrameLowering::canUseAsPrologue(const MachineBasicBlock &MBB) const { 3869 assert(MBB.getParent() && "Block is not attached to a function!"); 3870 const MachineFunction &MF = *MBB.getParent(); 3871 if (!MBB.isLiveIn(X86::EFLAGS)) 3872 return true; 3873 3874 // If stack probes have to loop inline or call, that will clobber EFLAGS. 3875 // FIXME: we could allow cases that will use emitStackProbeInlineGenericBlock. 3876 const X86Subtarget &STI = MF.getSubtarget<X86Subtarget>(); 3877 const X86TargetLowering &TLI = *STI.getTargetLowering(); 3878 if (TLI.hasInlineStackProbe(MF) || TLI.hasStackProbeSymbol(MF)) 3879 return false; 3880 3881 const X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>(); 3882 return !TRI->hasStackRealignment(MF) && !X86FI->hasSwiftAsyncContext(); 3883 } 3884 3885 bool X86FrameLowering::canUseAsEpilogue(const MachineBasicBlock &MBB) const { 3886 assert(MBB.getParent() && "Block is not attached to a function!"); 3887 3888 // Win64 has strict requirements in terms of epilogue and we are 3889 // not taking a chance at messing with them. 3890 // I.e., unless this block is already an exit block, we can't use 3891 // it as an epilogue. 3892 if (STI.isTargetWin64() && !MBB.succ_empty() && !MBB.isReturnBlock()) 3893 return false; 3894 3895 // Swift async context epilogue has a BTR instruction that clobbers parts of 3896 // EFLAGS. 3897 const MachineFunction &MF = *MBB.getParent(); 3898 if (MF.getInfo<X86MachineFunctionInfo>()->hasSwiftAsyncContext()) 3899 return !flagsNeedToBePreservedBeforeTheTerminators(MBB); 3900 3901 if (canUseLEAForSPInEpilogue(*MBB.getParent())) 3902 return true; 3903 3904 // If we cannot use LEA to adjust SP, we may need to use ADD, which 3905 // clobbers the EFLAGS. Check that we do not need to preserve it, 3906 // otherwise, conservatively assume this is not 3907 // safe to insert the epilogue here. 3908 return !flagsNeedToBePreservedBeforeTheTerminators(MBB); 3909 } 3910 3911 bool X86FrameLowering::enableShrinkWrapping(const MachineFunction &MF) const { 3912 // If we may need to emit frameless compact unwind information, give 3913 // up as this is currently broken: PR25614. 3914 bool CompactUnwind = 3915 MF.getContext().getObjectFileInfo()->getCompactUnwindSection() != nullptr; 3916 return (MF.getFunction().hasFnAttribute(Attribute::NoUnwind) || hasFP(MF) || 3917 !CompactUnwind) && 3918 // The lowering of segmented stack and HiPE only support entry 3919 // blocks as prologue blocks: PR26107. This limitation may be 3920 // lifted if we fix: 3921 // - adjustForSegmentedStacks 3922 // - adjustForHiPEPrologue 3923 MF.getFunction().getCallingConv() != CallingConv::HiPE && 3924 !MF.shouldSplitStack(); 3925 } 3926 3927 MachineBasicBlock::iterator X86FrameLowering::restoreWin32EHStackPointers( 3928 MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI, 3929 const DebugLoc &DL, bool RestoreSP) const { 3930 assert(STI.isTargetWindowsMSVC() && "funclets only supported in MSVC env"); 3931 assert(STI.isTargetWin32() && "EBP/ESI restoration only required on win32"); 3932 assert(STI.is32Bit() && !Uses64BitFramePtr && 3933 "restoring EBP/ESI on non-32-bit target"); 3934 3935 MachineFunction &MF = *MBB.getParent(); 3936 Register FramePtr = TRI->getFrameRegister(MF); 3937 Register BasePtr = TRI->getBaseRegister(); 3938 WinEHFuncInfo &FuncInfo = *MF.getWinEHFuncInfo(); 3939 X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>(); 3940 MachineFrameInfo &MFI = MF.getFrameInfo(); 3941 3942 // FIXME: Don't set FrameSetup flag in catchret case. 3943 3944 int FI = FuncInfo.EHRegNodeFrameIndex; 3945 int EHRegSize = MFI.getObjectSize(FI); 3946 3947 if (RestoreSP) { 3948 // MOV32rm -EHRegSize(%ebp), %esp 3949 addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(X86::MOV32rm), X86::ESP), 3950 X86::EBP, true, -EHRegSize) 3951 .setMIFlag(MachineInstr::FrameSetup); 3952 } 3953 3954 Register UsedReg; 3955 int EHRegOffset = getFrameIndexReference(MF, FI, UsedReg).getFixed(); 3956 int EndOffset = -EHRegOffset - EHRegSize; 3957 FuncInfo.EHRegNodeEndOffset = EndOffset; 3958 3959 if (UsedReg == FramePtr) { 3960 // ADD $offset, %ebp 3961 unsigned ADDri = getADDriOpcode(false); 3962 BuildMI(MBB, MBBI, DL, TII.get(ADDri), FramePtr) 3963 .addReg(FramePtr) 3964 .addImm(EndOffset) 3965 .setMIFlag(MachineInstr::FrameSetup) 3966 ->getOperand(3) 3967 .setIsDead(); 3968 assert(EndOffset >= 0 && 3969 "end of registration object above normal EBP position!"); 3970 } else if (UsedReg == BasePtr) { 3971 // LEA offset(%ebp), %esi 3972 addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(X86::LEA32r), BasePtr), 3973 FramePtr, false, EndOffset) 3974 .setMIFlag(MachineInstr::FrameSetup); 3975 // MOV32rm SavedEBPOffset(%esi), %ebp 3976 assert(X86FI->getHasSEHFramePtrSave()); 3977 int Offset = 3978 getFrameIndexReference(MF, X86FI->getSEHFramePtrSaveIndex(), UsedReg) 3979 .getFixed(); 3980 assert(UsedReg == BasePtr); 3981 addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(X86::MOV32rm), FramePtr), 3982 UsedReg, true, Offset) 3983 .setMIFlag(MachineInstr::FrameSetup); 3984 } else { 3985 llvm_unreachable("32-bit frames with WinEH must use FramePtr or BasePtr"); 3986 } 3987 return MBBI; 3988 } 3989 3990 int X86FrameLowering::getInitialCFAOffset(const MachineFunction &MF) const { 3991 return TRI->getSlotSize(); 3992 } 3993 3994 Register 3995 X86FrameLowering::getInitialCFARegister(const MachineFunction &MF) const { 3996 return StackPtr; 3997 } 3998 3999 TargetFrameLowering::DwarfFrameBase 4000 X86FrameLowering::getDwarfFrameBase(const MachineFunction &MF) const { 4001 const TargetRegisterInfo *RI = MF.getSubtarget().getRegisterInfo(); 4002 Register FrameRegister = RI->getFrameRegister(MF); 4003 if (getInitialCFARegister(MF) == FrameRegister && 4004 MF.getInfo<X86MachineFunctionInfo>()->hasCFIAdjustCfa()) { 4005 DwarfFrameBase FrameBase; 4006 FrameBase.Kind = DwarfFrameBase::CFA; 4007 FrameBase.Location.Offset = 4008 -MF.getFrameInfo().getStackSize() - getInitialCFAOffset(MF); 4009 return FrameBase; 4010 } 4011 4012 return DwarfFrameBase{DwarfFrameBase::Register, {FrameRegister}}; 4013 } 4014 4015 namespace { 4016 // Struct used by orderFrameObjects to help sort the stack objects. 4017 struct X86FrameSortingObject { 4018 bool IsValid = false; // true if we care about this Object. 4019 unsigned ObjectIndex = 0; // Index of Object into MFI list. 4020 unsigned ObjectSize = 0; // Size of Object in bytes. 4021 Align ObjectAlignment = Align(1); // Alignment of Object in bytes. 4022 unsigned ObjectNumUses = 0; // Object static number of uses. 4023 }; 4024 4025 // The comparison function we use for std::sort to order our local 4026 // stack symbols. The current algorithm is to use an estimated 4027 // "density". This takes into consideration the size and number of 4028 // uses each object has in order to roughly minimize code size. 4029 // So, for example, an object of size 16B that is referenced 5 times 4030 // will get higher priority than 4 4B objects referenced 1 time each. 4031 // It's not perfect and we may be able to squeeze a few more bytes out of 4032 // it (for example : 0(esp) requires fewer bytes, symbols allocated at the 4033 // fringe end can have special consideration, given their size is less 4034 // important, etc.), but the algorithmic complexity grows too much to be 4035 // worth the extra gains we get. This gets us pretty close. 4036 // The final order leaves us with objects with highest priority going 4037 // at the end of our list. 4038 struct X86FrameSortingComparator { 4039 inline bool operator()(const X86FrameSortingObject &A, 4040 const X86FrameSortingObject &B) const { 4041 uint64_t DensityAScaled, DensityBScaled; 4042 4043 // For consistency in our comparison, all invalid objects are placed 4044 // at the end. This also allows us to stop walking when we hit the 4045 // first invalid item after it's all sorted. 4046 if (!A.IsValid) 4047 return false; 4048 if (!B.IsValid) 4049 return true; 4050 4051 // The density is calculated by doing : 4052 // (double)DensityA = A.ObjectNumUses / A.ObjectSize 4053 // (double)DensityB = B.ObjectNumUses / B.ObjectSize 4054 // Since this approach may cause inconsistencies in 4055 // the floating point <, >, == comparisons, depending on the floating 4056 // point model with which the compiler was built, we're going 4057 // to scale both sides by multiplying with 4058 // A.ObjectSize * B.ObjectSize. This ends up factoring away 4059 // the division and, with it, the need for any floating point 4060 // arithmetic. 4061 DensityAScaled = static_cast<uint64_t>(A.ObjectNumUses) * 4062 static_cast<uint64_t>(B.ObjectSize); 4063 DensityBScaled = static_cast<uint64_t>(B.ObjectNumUses) * 4064 static_cast<uint64_t>(A.ObjectSize); 4065 4066 // If the two densities are equal, prioritize highest alignment 4067 // objects. This allows for similar alignment objects 4068 // to be packed together (given the same density). 4069 // There's room for improvement here, also, since we can pack 4070 // similar alignment (different density) objects next to each 4071 // other to save padding. This will also require further 4072 // complexity/iterations, and the overall gain isn't worth it, 4073 // in general. Something to keep in mind, though. 4074 if (DensityAScaled == DensityBScaled) 4075 return A.ObjectAlignment < B.ObjectAlignment; 4076 4077 return DensityAScaled < DensityBScaled; 4078 } 4079 }; 4080 } // namespace 4081 4082 // Order the symbols in the local stack. 4083 // We want to place the local stack objects in some sort of sensible order. 4084 // The heuristic we use is to try and pack them according to static number 4085 // of uses and size of object in order to minimize code size. 4086 void X86FrameLowering::orderFrameObjects( 4087 const MachineFunction &MF, SmallVectorImpl<int> &ObjectsToAllocate) const { 4088 const MachineFrameInfo &MFI = MF.getFrameInfo(); 4089 4090 // Don't waste time if there's nothing to do. 4091 if (ObjectsToAllocate.empty()) 4092 return; 4093 4094 // Create an array of all MFI objects. We won't need all of these 4095 // objects, but we're going to create a full array of them to make 4096 // it easier to index into when we're counting "uses" down below. 4097 // We want to be able to easily/cheaply access an object by simply 4098 // indexing into it, instead of having to search for it every time. 4099 std::vector<X86FrameSortingObject> SortingObjects(MFI.getObjectIndexEnd()); 4100 4101 // Walk the objects we care about and mark them as such in our working 4102 // struct. 4103 for (auto &Obj : ObjectsToAllocate) { 4104 SortingObjects[Obj].IsValid = true; 4105 SortingObjects[Obj].ObjectIndex = Obj; 4106 SortingObjects[Obj].ObjectAlignment = MFI.getObjectAlign(Obj); 4107 // Set the size. 4108 int ObjectSize = MFI.getObjectSize(Obj); 4109 if (ObjectSize == 0) 4110 // Variable size. Just use 4. 4111 SortingObjects[Obj].ObjectSize = 4; 4112 else 4113 SortingObjects[Obj].ObjectSize = ObjectSize; 4114 } 4115 4116 // Count the number of uses for each object. 4117 for (auto &MBB : MF) { 4118 for (auto &MI : MBB) { 4119 if (MI.isDebugInstr()) 4120 continue; 4121 for (const MachineOperand &MO : MI.operands()) { 4122 // Check to see if it's a local stack symbol. 4123 if (!MO.isFI()) 4124 continue; 4125 int Index = MO.getIndex(); 4126 // Check to see if it falls within our range, and is tagged 4127 // to require ordering. 4128 if (Index >= 0 && Index < MFI.getObjectIndexEnd() && 4129 SortingObjects[Index].IsValid) 4130 SortingObjects[Index].ObjectNumUses++; 4131 } 4132 } 4133 } 4134 4135 // Sort the objects using X86FrameSortingAlgorithm (see its comment for 4136 // info). 4137 llvm::stable_sort(SortingObjects, X86FrameSortingComparator()); 4138 4139 // Now modify the original list to represent the final order that 4140 // we want. The order will depend on whether we're going to access them 4141 // from the stack pointer or the frame pointer. For SP, the list should 4142 // end up with the END containing objects that we want with smaller offsets. 4143 // For FP, it should be flipped. 4144 int i = 0; 4145 for (auto &Obj : SortingObjects) { 4146 // All invalid items are sorted at the end, so it's safe to stop. 4147 if (!Obj.IsValid) 4148 break; 4149 ObjectsToAllocate[i++] = Obj.ObjectIndex; 4150 } 4151 4152 // Flip it if we're accessing off of the FP. 4153 if (!TRI->hasStackRealignment(MF) && hasFP(MF)) 4154 std::reverse(ObjectsToAllocate.begin(), ObjectsToAllocate.end()); 4155 } 4156 4157 unsigned 4158 X86FrameLowering::getWinEHParentFrameOffset(const MachineFunction &MF) const { 4159 // RDX, the parent frame pointer, is homed into 16(%rsp) in the prologue. 4160 unsigned Offset = 16; 4161 // RBP is immediately pushed. 4162 Offset += SlotSize; 4163 // All callee-saved registers are then pushed. 4164 Offset += MF.getInfo<X86MachineFunctionInfo>()->getCalleeSavedFrameSize(); 4165 // Every funclet allocates enough stack space for the largest outgoing call. 4166 Offset += getWinEHFuncletFrameSize(MF); 4167 return Offset; 4168 } 4169 4170 void X86FrameLowering::processFunctionBeforeFrameFinalized( 4171 MachineFunction &MF, RegScavenger *RS) const { 4172 // Mark the function as not having WinCFI. We will set it back to true in 4173 // emitPrologue if it gets called and emits CFI. 4174 MF.setHasWinCFI(false); 4175 4176 // If we are using Windows x64 CFI, ensure that the stack is always 8 byte 4177 // aligned. The format doesn't support misaligned stack adjustments. 4178 if (MF.getTarget().getMCAsmInfo()->usesWindowsCFI()) 4179 MF.getFrameInfo().ensureMaxAlignment(Align(SlotSize)); 4180 4181 // If this function isn't doing Win64-style C++ EH, we don't need to do 4182 // anything. 4183 if (STI.is64Bit() && MF.hasEHFunclets() && 4184 classifyEHPersonality(MF.getFunction().getPersonalityFn()) == 4185 EHPersonality::MSVC_CXX) { 4186 adjustFrameForMsvcCxxEh(MF); 4187 } 4188 } 4189 4190 void X86FrameLowering::adjustFrameForMsvcCxxEh(MachineFunction &MF) const { 4191 // Win64 C++ EH needs to allocate the UnwindHelp object at some fixed offset 4192 // relative to RSP after the prologue. Find the offset of the last fixed 4193 // object, so that we can allocate a slot immediately following it. If there 4194 // were no fixed objects, use offset -SlotSize, which is immediately after the 4195 // return address. Fixed objects have negative frame indices. 4196 MachineFrameInfo &MFI = MF.getFrameInfo(); 4197 WinEHFuncInfo &EHInfo = *MF.getWinEHFuncInfo(); 4198 int64_t MinFixedObjOffset = -SlotSize; 4199 for (int I = MFI.getObjectIndexBegin(); I < 0; ++I) 4200 MinFixedObjOffset = std::min(MinFixedObjOffset, MFI.getObjectOffset(I)); 4201 4202 for (WinEHTryBlockMapEntry &TBME : EHInfo.TryBlockMap) { 4203 for (WinEHHandlerType &H : TBME.HandlerArray) { 4204 int FrameIndex = H.CatchObj.FrameIndex; 4205 if (FrameIndex != INT_MAX) { 4206 // Ensure alignment. 4207 unsigned Align = MFI.getObjectAlign(FrameIndex).value(); 4208 MinFixedObjOffset -= std::abs(MinFixedObjOffset) % Align; 4209 MinFixedObjOffset -= MFI.getObjectSize(FrameIndex); 4210 MFI.setObjectOffset(FrameIndex, MinFixedObjOffset); 4211 } 4212 } 4213 } 4214 4215 // Ensure alignment. 4216 MinFixedObjOffset -= std::abs(MinFixedObjOffset) % 8; 4217 int64_t UnwindHelpOffset = MinFixedObjOffset - SlotSize; 4218 int UnwindHelpFI = 4219 MFI.CreateFixedObject(SlotSize, UnwindHelpOffset, /*IsImmutable=*/false); 4220 EHInfo.UnwindHelpFrameIdx = UnwindHelpFI; 4221 4222 // Store -2 into UnwindHelp on function entry. We have to scan forwards past 4223 // other frame setup instructions. 4224 MachineBasicBlock &MBB = MF.front(); 4225 auto MBBI = MBB.begin(); 4226 while (MBBI != MBB.end() && MBBI->getFlag(MachineInstr::FrameSetup)) 4227 ++MBBI; 4228 4229 DebugLoc DL = MBB.findDebugLoc(MBBI); 4230 addFrameReference(BuildMI(MBB, MBBI, DL, TII.get(X86::MOV64mi32)), 4231 UnwindHelpFI) 4232 .addImm(-2); 4233 } 4234 4235 void X86FrameLowering::processFunctionBeforeFrameIndicesReplaced( 4236 MachineFunction &MF, RegScavenger *RS) const { 4237 auto *X86FI = MF.getInfo<X86MachineFunctionInfo>(); 4238 4239 if (STI.is32Bit() && MF.hasEHFunclets()) 4240 restoreWinEHStackPointersInParent(MF); 4241 // We have emitted prolog and epilog. Don't need stack pointer saving 4242 // instruction any more. 4243 if (MachineInstr *MI = X86FI->getStackPtrSaveMI()) { 4244 MI->eraseFromParent(); 4245 X86FI->setStackPtrSaveMI(nullptr); 4246 } 4247 } 4248 4249 void X86FrameLowering::restoreWinEHStackPointersInParent( 4250 MachineFunction &MF) const { 4251 // 32-bit functions have to restore stack pointers when control is transferred 4252 // back to the parent function. These blocks are identified as eh pads that 4253 // are not funclet entries. 4254 bool IsSEH = isAsynchronousEHPersonality( 4255 classifyEHPersonality(MF.getFunction().getPersonalityFn())); 4256 for (MachineBasicBlock &MBB : MF) { 4257 bool NeedsRestore = MBB.isEHPad() && !MBB.isEHFuncletEntry(); 4258 if (NeedsRestore) 4259 restoreWin32EHStackPointers(MBB, MBB.begin(), DebugLoc(), 4260 /*RestoreSP=*/IsSEH); 4261 } 4262 } 4263 4264 // Compute the alignment gap between current SP after spilling FP/BP and the 4265 // next properly aligned stack offset. 4266 static int computeFPBPAlignmentGap(MachineFunction &MF, 4267 const TargetRegisterClass *RC, 4268 unsigned NumSpilledRegs) { 4269 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 4270 unsigned AllocSize = TRI->getSpillSize(*RC) * NumSpilledRegs; 4271 Align StackAlign = MF.getSubtarget().getFrameLowering()->getStackAlign(); 4272 unsigned AlignedSize = alignTo(AllocSize, StackAlign); 4273 return AlignedSize - AllocSize; 4274 } 4275 4276 void X86FrameLowering::spillFPBPUsingSP(MachineFunction &MF, 4277 MachineBasicBlock::iterator BeforeMI, 4278 Register FP, Register BP, 4279 int SPAdjust) const { 4280 assert(FP.isValid() || BP.isValid()); 4281 4282 MachineBasicBlock *MBB = BeforeMI->getParent(); 4283 DebugLoc DL = BeforeMI->getDebugLoc(); 4284 4285 // Spill FP. 4286 if (FP.isValid()) { 4287 BuildMI(*MBB, BeforeMI, DL, 4288 TII.get(getPUSHOpcode(MF.getSubtarget<X86Subtarget>()))) 4289 .addReg(FP); 4290 } 4291 4292 // Spill BP. 4293 if (BP.isValid()) { 4294 BuildMI(*MBB, BeforeMI, DL, 4295 TII.get(getPUSHOpcode(MF.getSubtarget<X86Subtarget>()))) 4296 .addReg(BP); 4297 } 4298 4299 // Make sure SP is aligned. 4300 if (SPAdjust) 4301 emitSPUpdate(*MBB, BeforeMI, DL, -SPAdjust, false); 4302 4303 // Emit unwinding information. 4304 if (FP.isValid() && needsDwarfCFI(MF)) { 4305 // Emit .cfi_remember_state to remember old frame. 4306 unsigned CFIIndex = 4307 MF.addFrameInst(MCCFIInstruction::createRememberState(nullptr)); 4308 BuildMI(*MBB, BeforeMI, DL, TII.get(TargetOpcode::CFI_INSTRUCTION)) 4309 .addCFIIndex(CFIIndex); 4310 4311 // Setup new CFA value with DW_CFA_def_cfa_expression: 4312 // DW_OP_breg7+offset, DW_OP_deref, DW_OP_consts 16, DW_OP_plus 4313 SmallString<64> CfaExpr; 4314 uint8_t buffer[16]; 4315 int Offset = SPAdjust; 4316 if (BP.isValid()) 4317 Offset += TRI->getSpillSize(*TRI->getMinimalPhysRegClass(BP)); 4318 // If BeforeMI is a frame setup instruction, we need to adjust the position 4319 // and offset of the new cfi instruction. 4320 if (TII.isFrameSetup(*BeforeMI)) { 4321 Offset += alignTo(TII.getFrameSize(*BeforeMI), getStackAlign()); 4322 BeforeMI = std::next(BeforeMI); 4323 } 4324 Register StackPtr = TRI->getStackRegister(); 4325 if (STI.isTarget64BitILP32()) 4326 StackPtr = Register(getX86SubSuperRegister(StackPtr, 64)); 4327 unsigned DwarfStackPtr = TRI->getDwarfRegNum(StackPtr, true); 4328 CfaExpr.push_back((uint8_t)(dwarf::DW_OP_breg0 + DwarfStackPtr)); 4329 CfaExpr.append(buffer, buffer + encodeSLEB128(Offset, buffer)); 4330 CfaExpr.push_back(dwarf::DW_OP_deref); 4331 CfaExpr.push_back(dwarf::DW_OP_consts); 4332 CfaExpr.append(buffer, buffer + encodeSLEB128(SlotSize * 2, buffer)); 4333 CfaExpr.push_back((uint8_t)dwarf::DW_OP_plus); 4334 4335 SmallString<64> DefCfaExpr; 4336 DefCfaExpr.push_back(dwarf::DW_CFA_def_cfa_expression); 4337 DefCfaExpr.append(buffer, buffer + encodeSLEB128(CfaExpr.size(), buffer)); 4338 DefCfaExpr.append(CfaExpr.str()); 4339 BuildCFI(*MBB, BeforeMI, DL, 4340 MCCFIInstruction::createEscape(nullptr, DefCfaExpr.str()), 4341 MachineInstr::FrameSetup); 4342 } 4343 } 4344 4345 void X86FrameLowering::restoreFPBPUsingSP(MachineFunction &MF, 4346 MachineBasicBlock::iterator AfterMI, 4347 Register FP, Register BP, 4348 int SPAdjust) const { 4349 assert(FP.isValid() || BP.isValid()); 4350 4351 // Adjust SP so it points to spilled FP or BP. 4352 MachineBasicBlock *MBB = AfterMI->getParent(); 4353 MachineBasicBlock::iterator Pos = std::next(AfterMI); 4354 DebugLoc DL = AfterMI->getDebugLoc(); 4355 if (SPAdjust) 4356 emitSPUpdate(*MBB, Pos, DL, SPAdjust, false); 4357 4358 // Restore BP. 4359 if (BP.isValid()) { 4360 BuildMI(*MBB, Pos, DL, 4361 TII.get(getPOPOpcode(MF.getSubtarget<X86Subtarget>())), BP); 4362 } 4363 4364 // Restore FP. 4365 if (FP.isValid()) { 4366 BuildMI(*MBB, Pos, DL, 4367 TII.get(getPOPOpcode(MF.getSubtarget<X86Subtarget>())), FP); 4368 4369 // Emit unwinding information. 4370 if (needsDwarfCFI(MF)) { 4371 // Restore original frame with .cfi_restore_state. 4372 unsigned CFIIndex = 4373 MF.addFrameInst(MCCFIInstruction::createRestoreState(nullptr)); 4374 BuildMI(*MBB, Pos, DL, TII.get(TargetOpcode::CFI_INSTRUCTION)) 4375 .addCFIIndex(CFIIndex); 4376 } 4377 } 4378 } 4379 4380 void X86FrameLowering::saveAndRestoreFPBPUsingSP( 4381 MachineFunction &MF, MachineBasicBlock::iterator BeforeMI, 4382 MachineBasicBlock::iterator AfterMI, bool SpillFP, bool SpillBP) const { 4383 assert(SpillFP || SpillBP); 4384 4385 Register FP, BP; 4386 const TargetRegisterClass *RC; 4387 unsigned NumRegs = 0; 4388 4389 if (SpillFP) { 4390 FP = TRI->getFrameRegister(MF); 4391 if (STI.isTarget64BitILP32()) 4392 FP = Register(getX86SubSuperRegister(FP, 64)); 4393 RC = TRI->getMinimalPhysRegClass(FP); 4394 ++NumRegs; 4395 } 4396 if (SpillBP) { 4397 BP = TRI->getBaseRegister(); 4398 if (STI.isTarget64BitILP32()) 4399 BP = Register(getX86SubSuperRegister(BP, 64)); 4400 RC = TRI->getMinimalPhysRegClass(BP); 4401 ++NumRegs; 4402 } 4403 int SPAdjust = computeFPBPAlignmentGap(MF, RC, NumRegs); 4404 4405 spillFPBPUsingSP(MF, BeforeMI, FP, BP, SPAdjust); 4406 restoreFPBPUsingSP(MF, AfterMI, FP, BP, SPAdjust); 4407 } 4408 4409 bool X86FrameLowering::skipSpillFPBP( 4410 MachineFunction &MF, MachineBasicBlock::reverse_iterator &MI) const { 4411 if (MI->getOpcode() == X86::LCMPXCHG16B_SAVE_RBX) { 4412 // The pseudo instruction LCMPXCHG16B_SAVE_RBX is generated in the form 4413 // SaveRbx = COPY RBX 4414 // SaveRbx = LCMPXCHG16B_SAVE_RBX ..., SaveRbx, implicit-def rbx 4415 // And later LCMPXCHG16B_SAVE_RBX is expanded to restore RBX from SaveRbx. 4416 // We should skip this instruction sequence. 4417 int FI; 4418 unsigned Reg; 4419 while (!(MI->getOpcode() == TargetOpcode::COPY && 4420 MI->getOperand(1).getReg() == X86::RBX) && 4421 !((Reg = TII.isStoreToStackSlot(*MI, FI)) && Reg == X86::RBX)) 4422 ++MI; 4423 return true; 4424 } 4425 return false; 4426 } 4427 4428 static bool isFPBPAccess(const MachineInstr &MI, Register FP, Register BP, 4429 const TargetRegisterInfo *TRI, bool &AccessFP, 4430 bool &AccessBP) { 4431 AccessFP = AccessBP = false; 4432 if (FP) { 4433 if (MI.findRegisterUseOperandIdx(FP, TRI, false) != -1 || 4434 MI.findRegisterDefOperandIdx(FP, TRI, false, true) != -1) 4435 AccessFP = true; 4436 } 4437 if (BP) { 4438 if (MI.findRegisterUseOperandIdx(BP, TRI, false) != -1 || 4439 MI.findRegisterDefOperandIdx(BP, TRI, false, true) != -1) 4440 AccessBP = true; 4441 } 4442 return AccessFP || AccessBP; 4443 } 4444 4445 // Invoke instruction has been lowered to normal function call. We try to figure 4446 // out if MI comes from Invoke. 4447 // Do we have any better method? 4448 static bool isInvoke(const MachineInstr &MI, bool InsideEHLabels) { 4449 if (!MI.isCall()) 4450 return false; 4451 if (InsideEHLabels) 4452 return true; 4453 4454 const MachineBasicBlock *MBB = MI.getParent(); 4455 if (!MBB->hasEHPadSuccessor()) 4456 return false; 4457 4458 // Check if there is another call instruction from MI to the end of MBB. 4459 MachineBasicBlock::const_iterator MBBI = MI, ME = MBB->end(); 4460 for (++MBBI; MBBI != ME; ++MBBI) 4461 if (MBBI->isCall()) 4462 return false; 4463 return true; 4464 } 4465 4466 /// Given the live range of FP or BP (DefMI, KillMI), check if there is any 4467 /// interfered stack access in the range, usually generated by register spill. 4468 void X86FrameLowering::checkInterferedAccess( 4469 MachineFunction &MF, MachineBasicBlock::reverse_iterator DefMI, 4470 MachineBasicBlock::reverse_iterator KillMI, bool SpillFP, 4471 bool SpillBP) const { 4472 if (DefMI == KillMI) 4473 return; 4474 if (TRI->hasBasePointer(MF)) { 4475 if (!SpillBP) 4476 return; 4477 } else { 4478 if (!SpillFP) 4479 return; 4480 } 4481 4482 auto MI = KillMI; 4483 while (MI != DefMI) { 4484 if (any_of(MI->operands(), 4485 [](const MachineOperand &MO) { return MO.isFI(); })) 4486 MF.getContext().reportError(SMLoc(), 4487 "Interference usage of base pointer/frame " 4488 "pointer."); 4489 MI++; 4490 } 4491 } 4492 4493 /// If a function uses base pointer and the base pointer is clobbered by inline 4494 /// asm, RA doesn't detect this case, and after the inline asm, the base pointer 4495 /// contains garbage value. 4496 /// For example if a 32b x86 function uses base pointer esi, and esi is 4497 /// clobbered by following inline asm 4498 /// asm("rep movsb" : "+D"(ptr), "+S"(x), "+c"(c)::"memory"); 4499 /// We need to save esi before the asm and restore it after the asm. 4500 /// 4501 /// The problem can also occur to frame pointer if there is a function call, and 4502 /// the callee uses a different calling convention and clobbers the fp. 4503 /// 4504 /// Because normal frame objects (spill slots) are accessed through fp/bp 4505 /// register, so we can't spill fp/bp to normal spill slots. 4506 /// 4507 /// FIXME: There are 2 possible enhancements: 4508 /// 1. In many cases there are different physical registers not clobbered by 4509 /// inline asm, we can use one of them as base pointer. Or use a virtual 4510 /// register as base pointer and let RA allocate a physical register to it. 4511 /// 2. If there is no other instructions access stack with fp/bp from the 4512 /// inline asm to the epilog, and no cfi requirement for a correct fp, we can 4513 /// skip the save and restore operations. 4514 void X86FrameLowering::spillFPBP(MachineFunction &MF) const { 4515 Register FP, BP; 4516 const TargetFrameLowering &TFI = *MF.getSubtarget().getFrameLowering(); 4517 if (TFI.hasFP(MF)) 4518 FP = TRI->getFrameRegister(MF); 4519 if (TRI->hasBasePointer(MF)) 4520 BP = TRI->getBaseRegister(); 4521 4522 // Currently only inline asm and function call can clobbers fp/bp. So we can 4523 // do some quick test and return early. 4524 if (!MF.hasInlineAsm()) { 4525 X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>(); 4526 if (!X86FI->getFPClobberedByCall()) 4527 FP = 0; 4528 if (!X86FI->getBPClobberedByCall()) 4529 BP = 0; 4530 } 4531 if (!FP && !BP) 4532 return; 4533 4534 for (MachineBasicBlock &MBB : MF) { 4535 bool InsideEHLabels = false; 4536 auto MI = MBB.rbegin(), ME = MBB.rend(); 4537 auto TermMI = MBB.getFirstTerminator(); 4538 if (TermMI == MBB.begin()) 4539 continue; 4540 MI = *(std::prev(TermMI)); 4541 4542 while (MI != ME) { 4543 // Skip frame setup/destroy instructions. 4544 // Skip Invoke (call inside try block) instructions. 4545 // Skip instructions handled by target. 4546 if (MI->getFlag(MachineInstr::MIFlag::FrameSetup) || 4547 MI->getFlag(MachineInstr::MIFlag::FrameDestroy) || 4548 isInvoke(*MI, InsideEHLabels) || skipSpillFPBP(MF, MI)) { 4549 ++MI; 4550 continue; 4551 } 4552 4553 if (MI->getOpcode() == TargetOpcode::EH_LABEL) { 4554 InsideEHLabels = !InsideEHLabels; 4555 ++MI; 4556 continue; 4557 } 4558 4559 bool AccessFP, AccessBP; 4560 // Check if fp or bp is used in MI. 4561 if (!isFPBPAccess(*MI, FP, BP, TRI, AccessFP, AccessBP)) { 4562 ++MI; 4563 continue; 4564 } 4565 4566 // Look for the range [DefMI, KillMI] in which fp or bp is defined and 4567 // used. 4568 bool FPLive = false, BPLive = false; 4569 bool SpillFP = false, SpillBP = false; 4570 auto DefMI = MI, KillMI = MI; 4571 do { 4572 SpillFP |= AccessFP; 4573 SpillBP |= AccessBP; 4574 4575 // Maintain FPLive and BPLive. 4576 if (FPLive && MI->findRegisterDefOperandIdx(FP, TRI, false, true) != -1) 4577 FPLive = false; 4578 if (FP && MI->findRegisterUseOperandIdx(FP, TRI, false) != -1) 4579 FPLive = true; 4580 if (BPLive && MI->findRegisterDefOperandIdx(BP, TRI, false, true) != -1) 4581 BPLive = false; 4582 if (BP && MI->findRegisterUseOperandIdx(BP, TRI, false) != -1) 4583 BPLive = true; 4584 4585 DefMI = MI++; 4586 } while ((MI != ME) && 4587 (FPLive || BPLive || 4588 isFPBPAccess(*MI, FP, BP, TRI, AccessFP, AccessBP))); 4589 4590 // Don't need to save/restore if FP is accessed through llvm.frameaddress. 4591 if (FPLive && !SpillBP) 4592 continue; 4593 4594 // If the bp is clobbered by a call, we should save and restore outside of 4595 // the frame setup instructions. 4596 if (KillMI->isCall() && DefMI != ME) { 4597 auto FrameSetup = std::next(DefMI); 4598 // Look for frame setup instruction toward the start of the BB. 4599 // If we reach another call instruction, it means no frame setup 4600 // instruction for the current call instruction. 4601 while (FrameSetup != ME && !TII.isFrameSetup(*FrameSetup) && 4602 !FrameSetup->isCall()) 4603 ++FrameSetup; 4604 // If a frame setup instruction is found, we need to find out the 4605 // corresponding frame destroy instruction. 4606 if (FrameSetup != ME && TII.isFrameSetup(*FrameSetup) && 4607 (TII.getFrameSize(*FrameSetup) || 4608 TII.getFrameAdjustment(*FrameSetup))) { 4609 while (!TII.isFrameInstr(*KillMI)) 4610 --KillMI; 4611 DefMI = FrameSetup; 4612 MI = DefMI; 4613 ++MI; 4614 } 4615 } 4616 4617 checkInterferedAccess(MF, DefMI, KillMI, SpillFP, SpillBP); 4618 4619 // Call target function to spill and restore FP and BP registers. 4620 saveAndRestoreFPBPUsingSP(MF, &(*DefMI), &(*KillMI), SpillFP, SpillBP); 4621 } 4622 } 4623 } 4624