1 //===-- ThreadSanitizer.cpp - race detector -------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file is a part of ThreadSanitizer, a race detector.
10 //
11 // The tool is under development, for the details about previous versions see
12 // http://code.google.com/p/data-race-test
13 //
14 // The instrumentation phase is quite simple:
15 // - Insert calls to run-time library before every memory access.
16 // - Optimizations may apply to avoid instrumenting some of the accesses.
17 // - Insert calls at function entry/exit.
18 // The rest is handled by the run-time library.
19 //===----------------------------------------------------------------------===//
20
21 #include "llvm/Transforms/Instrumentation/ThreadSanitizer.h"
22 #include "llvm/ADT/DenseMap.h"
23 #include "llvm/ADT/Optional.h"
24 #include "llvm/ADT/SmallString.h"
25 #include "llvm/ADT/SmallVector.h"
26 #include "llvm/ADT/Statistic.h"
27 #include "llvm/ADT/StringExtras.h"
28 #include "llvm/Analysis/CaptureTracking.h"
29 #include "llvm/Analysis/TargetLibraryInfo.h"
30 #include "llvm/Analysis/ValueTracking.h"
31 #include "llvm/IR/DataLayout.h"
32 #include "llvm/IR/Function.h"
33 #include "llvm/IR/IRBuilder.h"
34 #include "llvm/IR/IntrinsicInst.h"
35 #include "llvm/IR/Intrinsics.h"
36 #include "llvm/IR/LLVMContext.h"
37 #include "llvm/IR/Metadata.h"
38 #include "llvm/IR/Module.h"
39 #include "llvm/IR/Type.h"
40 #include "llvm/InitializePasses.h"
41 #include "llvm/ProfileData/InstrProf.h"
42 #include "llvm/Support/CommandLine.h"
43 #include "llvm/Support/Debug.h"
44 #include "llvm/Support/MathExtras.h"
45 #include "llvm/Support/raw_ostream.h"
46 #include "llvm/Transforms/Instrumentation.h"
47 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
48 #include "llvm/Transforms/Utils/EscapeEnumerator.h"
49 #include "llvm/Transforms/Utils/Local.h"
50 #include "llvm/Transforms/Utils/ModuleUtils.h"
51
52 using namespace llvm;
53
54 #define DEBUG_TYPE "tsan"
55
56 static cl::opt<bool> ClInstrumentMemoryAccesses(
57 "tsan-instrument-memory-accesses", cl::init(true),
58 cl::desc("Instrument memory accesses"), cl::Hidden);
59 static cl::opt<bool>
60 ClInstrumentFuncEntryExit("tsan-instrument-func-entry-exit", cl::init(true),
61 cl::desc("Instrument function entry and exit"),
62 cl::Hidden);
63 static cl::opt<bool> ClHandleCxxExceptions(
64 "tsan-handle-cxx-exceptions", cl::init(true),
65 cl::desc("Handle C++ exceptions (insert cleanup blocks for unwinding)"),
66 cl::Hidden);
67 static cl::opt<bool> ClInstrumentAtomics("tsan-instrument-atomics",
68 cl::init(true),
69 cl::desc("Instrument atomics"),
70 cl::Hidden);
71 static cl::opt<bool> ClInstrumentMemIntrinsics(
72 "tsan-instrument-memintrinsics", cl::init(true),
73 cl::desc("Instrument memintrinsics (memset/memcpy/memmove)"), cl::Hidden);
74 static cl::opt<bool> ClDistinguishVolatile(
75 "tsan-distinguish-volatile", cl::init(false),
76 cl::desc("Emit special instrumentation for accesses to volatiles"),
77 cl::Hidden);
78 static cl::opt<bool> ClInstrumentReadBeforeWrite(
79 "tsan-instrument-read-before-write", cl::init(false),
80 cl::desc("Do not eliminate read instrumentation for read-before-writes"),
81 cl::Hidden);
82 static cl::opt<bool> ClCompoundReadBeforeWrite(
83 "tsan-compound-read-before-write", cl::init(false),
84 cl::desc("Emit special compound instrumentation for reads-before-writes"),
85 cl::Hidden);
86
87 STATISTIC(NumInstrumentedReads, "Number of instrumented reads");
88 STATISTIC(NumInstrumentedWrites, "Number of instrumented writes");
89 STATISTIC(NumOmittedReadsBeforeWrite,
90 "Number of reads ignored due to following writes");
91 STATISTIC(NumAccessesWithBadSize, "Number of accesses with bad size");
92 STATISTIC(NumInstrumentedVtableWrites, "Number of vtable ptr writes");
93 STATISTIC(NumInstrumentedVtableReads, "Number of vtable ptr reads");
94 STATISTIC(NumOmittedReadsFromConstantGlobals,
95 "Number of reads from constant globals");
96 STATISTIC(NumOmittedReadsFromVtable, "Number of vtable reads");
97 STATISTIC(NumOmittedNonCaptured, "Number of accesses ignored due to capturing");
98
99 const char kTsanModuleCtorName[] = "tsan.module_ctor";
100 const char kTsanInitName[] = "__tsan_init";
101
102 namespace {
103
104 /// ThreadSanitizer: instrument the code in module to find races.
105 ///
106 /// Instantiating ThreadSanitizer inserts the tsan runtime library API function
107 /// declarations into the module if they don't exist already. Instantiating
108 /// ensures the __tsan_init function is in the list of global constructors for
109 /// the module.
110 struct ThreadSanitizer {
ThreadSanitizer__anon54301aad0111::ThreadSanitizer111 ThreadSanitizer() {
112 // Sanity check options and warn user.
113 if (ClInstrumentReadBeforeWrite && ClCompoundReadBeforeWrite) {
114 errs()
115 << "warning: Option -tsan-compound-read-before-write has no effect "
116 "when -tsan-instrument-read-before-write is set.\n";
117 }
118 }
119
120 bool sanitizeFunction(Function &F, const TargetLibraryInfo &TLI);
121
122 private:
123 // Internal Instruction wrapper that contains more information about the
124 // Instruction from prior analysis.
125 struct InstructionInfo {
126 // Instrumentation emitted for this instruction is for a compounded set of
127 // read and write operations in the same basic block.
128 static constexpr unsigned kCompoundRW = (1U << 0);
129
InstructionInfo__anon54301aad0111::ThreadSanitizer::InstructionInfo130 explicit InstructionInfo(Instruction *Inst) : Inst(Inst) {}
131
132 Instruction *Inst;
133 unsigned Flags = 0;
134 };
135
136 void initialize(Module &M);
137 bool instrumentLoadOrStore(const InstructionInfo &II, const DataLayout &DL);
138 bool instrumentAtomic(Instruction *I, const DataLayout &DL);
139 bool instrumentMemIntrinsic(Instruction *I);
140 void chooseInstructionsToInstrument(SmallVectorImpl<Instruction *> &Local,
141 SmallVectorImpl<InstructionInfo> &All,
142 const DataLayout &DL);
143 bool addrPointsToConstantData(Value *Addr);
144 int getMemoryAccessFuncIndex(Value *Addr, const DataLayout &DL);
145 void InsertRuntimeIgnores(Function &F);
146
147 Type *IntptrTy;
148 FunctionCallee TsanFuncEntry;
149 FunctionCallee TsanFuncExit;
150 FunctionCallee TsanIgnoreBegin;
151 FunctionCallee TsanIgnoreEnd;
152 // Accesses sizes are powers of two: 1, 2, 4, 8, 16.
153 static const size_t kNumberOfAccessSizes = 5;
154 FunctionCallee TsanRead[kNumberOfAccessSizes];
155 FunctionCallee TsanWrite[kNumberOfAccessSizes];
156 FunctionCallee TsanUnalignedRead[kNumberOfAccessSizes];
157 FunctionCallee TsanUnalignedWrite[kNumberOfAccessSizes];
158 FunctionCallee TsanVolatileRead[kNumberOfAccessSizes];
159 FunctionCallee TsanVolatileWrite[kNumberOfAccessSizes];
160 FunctionCallee TsanUnalignedVolatileRead[kNumberOfAccessSizes];
161 FunctionCallee TsanUnalignedVolatileWrite[kNumberOfAccessSizes];
162 FunctionCallee TsanCompoundRW[kNumberOfAccessSizes];
163 FunctionCallee TsanUnalignedCompoundRW[kNumberOfAccessSizes];
164 FunctionCallee TsanAtomicLoad[kNumberOfAccessSizes];
165 FunctionCallee TsanAtomicStore[kNumberOfAccessSizes];
166 FunctionCallee TsanAtomicRMW[AtomicRMWInst::LAST_BINOP + 1]
167 [kNumberOfAccessSizes];
168 FunctionCallee TsanAtomicCAS[kNumberOfAccessSizes];
169 FunctionCallee TsanAtomicThreadFence;
170 FunctionCallee TsanAtomicSignalFence;
171 FunctionCallee TsanVptrUpdate;
172 FunctionCallee TsanVptrLoad;
173 FunctionCallee MemmoveFn, MemcpyFn, MemsetFn;
174 };
175
176 struct ThreadSanitizerLegacyPass : FunctionPass {
ThreadSanitizerLegacyPass__anon54301aad0111::ThreadSanitizerLegacyPass177 ThreadSanitizerLegacyPass() : FunctionPass(ID) {
178 initializeThreadSanitizerLegacyPassPass(*PassRegistry::getPassRegistry());
179 }
180 StringRef getPassName() const override;
181 void getAnalysisUsage(AnalysisUsage &AU) const override;
182 bool runOnFunction(Function &F) override;
183 bool doInitialization(Module &M) override;
184 static char ID; // Pass identification, replacement for typeid.
185 private:
186 Optional<ThreadSanitizer> TSan;
187 };
188
insertModuleCtor(Module & M)189 void insertModuleCtor(Module &M) {
190 getOrCreateSanitizerCtorAndInitFunctions(
191 M, kTsanModuleCtorName, kTsanInitName, /*InitArgTypes=*/{},
192 /*InitArgs=*/{},
193 // This callback is invoked when the functions are created the first
194 // time. Hook them into the global ctors list in that case:
195 [&](Function *Ctor, FunctionCallee) { appendToGlobalCtors(M, Ctor, 0); });
196 }
197
198 } // namespace
199
run(Function & F,FunctionAnalysisManager & FAM)200 PreservedAnalyses ThreadSanitizerPass::run(Function &F,
201 FunctionAnalysisManager &FAM) {
202 ThreadSanitizer TSan;
203 if (TSan.sanitizeFunction(F, FAM.getResult<TargetLibraryAnalysis>(F)))
204 return PreservedAnalyses::none();
205 return PreservedAnalyses::all();
206 }
207
run(Module & M,ModuleAnalysisManager & MAM)208 PreservedAnalyses ThreadSanitizerPass::run(Module &M,
209 ModuleAnalysisManager &MAM) {
210 insertModuleCtor(M);
211 return PreservedAnalyses::none();
212 }
213
214 char ThreadSanitizerLegacyPass::ID = 0;
215 INITIALIZE_PASS_BEGIN(ThreadSanitizerLegacyPass, "tsan",
216 "ThreadSanitizer: detects data races.", false, false)
INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)217 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
218 INITIALIZE_PASS_END(ThreadSanitizerLegacyPass, "tsan",
219 "ThreadSanitizer: detects data races.", false, false)
220
221 StringRef ThreadSanitizerLegacyPass::getPassName() const {
222 return "ThreadSanitizerLegacyPass";
223 }
224
getAnalysisUsage(AnalysisUsage & AU) const225 void ThreadSanitizerLegacyPass::getAnalysisUsage(AnalysisUsage &AU) const {
226 AU.addRequired<TargetLibraryInfoWrapperPass>();
227 }
228
doInitialization(Module & M)229 bool ThreadSanitizerLegacyPass::doInitialization(Module &M) {
230 insertModuleCtor(M);
231 TSan.emplace();
232 return true;
233 }
234
runOnFunction(Function & F)235 bool ThreadSanitizerLegacyPass::runOnFunction(Function &F) {
236 auto &TLI = getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F);
237 TSan->sanitizeFunction(F, TLI);
238 return true;
239 }
240
createThreadSanitizerLegacyPassPass()241 FunctionPass *llvm::createThreadSanitizerLegacyPassPass() {
242 return new ThreadSanitizerLegacyPass();
243 }
244
initialize(Module & M)245 void ThreadSanitizer::initialize(Module &M) {
246 const DataLayout &DL = M.getDataLayout();
247 IntptrTy = DL.getIntPtrType(M.getContext());
248
249 IRBuilder<> IRB(M.getContext());
250 AttributeList Attr;
251 Attr = Attr.addAttribute(M.getContext(), AttributeList::FunctionIndex,
252 Attribute::NoUnwind);
253 // Initialize the callbacks.
254 TsanFuncEntry = M.getOrInsertFunction("__tsan_func_entry", Attr,
255 IRB.getVoidTy(), IRB.getInt8PtrTy());
256 TsanFuncExit =
257 M.getOrInsertFunction("__tsan_func_exit", Attr, IRB.getVoidTy());
258 TsanIgnoreBegin = M.getOrInsertFunction("__tsan_ignore_thread_begin", Attr,
259 IRB.getVoidTy());
260 TsanIgnoreEnd =
261 M.getOrInsertFunction("__tsan_ignore_thread_end", Attr, IRB.getVoidTy());
262 IntegerType *OrdTy = IRB.getInt32Ty();
263 for (size_t i = 0; i < kNumberOfAccessSizes; ++i) {
264 const unsigned ByteSize = 1U << i;
265 const unsigned BitSize = ByteSize * 8;
266 std::string ByteSizeStr = utostr(ByteSize);
267 std::string BitSizeStr = utostr(BitSize);
268 SmallString<32> ReadName("__tsan_read" + ByteSizeStr);
269 TsanRead[i] = M.getOrInsertFunction(ReadName, Attr, IRB.getVoidTy(),
270 IRB.getInt8PtrTy());
271
272 SmallString<32> WriteName("__tsan_write" + ByteSizeStr);
273 TsanWrite[i] = M.getOrInsertFunction(WriteName, Attr, IRB.getVoidTy(),
274 IRB.getInt8PtrTy());
275
276 SmallString<64> UnalignedReadName("__tsan_unaligned_read" + ByteSizeStr);
277 TsanUnalignedRead[i] = M.getOrInsertFunction(
278 UnalignedReadName, Attr, IRB.getVoidTy(), IRB.getInt8PtrTy());
279
280 SmallString<64> UnalignedWriteName("__tsan_unaligned_write" + ByteSizeStr);
281 TsanUnalignedWrite[i] = M.getOrInsertFunction(
282 UnalignedWriteName, Attr, IRB.getVoidTy(), IRB.getInt8PtrTy());
283
284 SmallString<64> VolatileReadName("__tsan_volatile_read" + ByteSizeStr);
285 TsanVolatileRead[i] = M.getOrInsertFunction(
286 VolatileReadName, Attr, IRB.getVoidTy(), IRB.getInt8PtrTy());
287
288 SmallString<64> VolatileWriteName("__tsan_volatile_write" + ByteSizeStr);
289 TsanVolatileWrite[i] = M.getOrInsertFunction(
290 VolatileWriteName, Attr, IRB.getVoidTy(), IRB.getInt8PtrTy());
291
292 SmallString<64> UnalignedVolatileReadName("__tsan_unaligned_volatile_read" +
293 ByteSizeStr);
294 TsanUnalignedVolatileRead[i] = M.getOrInsertFunction(
295 UnalignedVolatileReadName, Attr, IRB.getVoidTy(), IRB.getInt8PtrTy());
296
297 SmallString<64> UnalignedVolatileWriteName(
298 "__tsan_unaligned_volatile_write" + ByteSizeStr);
299 TsanUnalignedVolatileWrite[i] = M.getOrInsertFunction(
300 UnalignedVolatileWriteName, Attr, IRB.getVoidTy(), IRB.getInt8PtrTy());
301
302 SmallString<64> CompoundRWName("__tsan_read_write" + ByteSizeStr);
303 TsanCompoundRW[i] = M.getOrInsertFunction(
304 CompoundRWName, Attr, IRB.getVoidTy(), IRB.getInt8PtrTy());
305
306 SmallString<64> UnalignedCompoundRWName("__tsan_unaligned_read_write" +
307 ByteSizeStr);
308 TsanUnalignedCompoundRW[i] = M.getOrInsertFunction(
309 UnalignedCompoundRWName, Attr, IRB.getVoidTy(), IRB.getInt8PtrTy());
310
311 Type *Ty = Type::getIntNTy(M.getContext(), BitSize);
312 Type *PtrTy = Ty->getPointerTo();
313 SmallString<32> AtomicLoadName("__tsan_atomic" + BitSizeStr + "_load");
314 TsanAtomicLoad[i] =
315 M.getOrInsertFunction(AtomicLoadName, Attr, Ty, PtrTy, OrdTy);
316
317 SmallString<32> AtomicStoreName("__tsan_atomic" + BitSizeStr + "_store");
318 TsanAtomicStore[i] = M.getOrInsertFunction(
319 AtomicStoreName, Attr, IRB.getVoidTy(), PtrTy, Ty, OrdTy);
320
321 for (unsigned Op = AtomicRMWInst::FIRST_BINOP;
322 Op <= AtomicRMWInst::LAST_BINOP; ++Op) {
323 TsanAtomicRMW[Op][i] = nullptr;
324 const char *NamePart = nullptr;
325 if (Op == AtomicRMWInst::Xchg)
326 NamePart = "_exchange";
327 else if (Op == AtomicRMWInst::Add)
328 NamePart = "_fetch_add";
329 else if (Op == AtomicRMWInst::Sub)
330 NamePart = "_fetch_sub";
331 else if (Op == AtomicRMWInst::And)
332 NamePart = "_fetch_and";
333 else if (Op == AtomicRMWInst::Or)
334 NamePart = "_fetch_or";
335 else if (Op == AtomicRMWInst::Xor)
336 NamePart = "_fetch_xor";
337 else if (Op == AtomicRMWInst::Nand)
338 NamePart = "_fetch_nand";
339 else
340 continue;
341 SmallString<32> RMWName("__tsan_atomic" + itostr(BitSize) + NamePart);
342 TsanAtomicRMW[Op][i] =
343 M.getOrInsertFunction(RMWName, Attr, Ty, PtrTy, Ty, OrdTy);
344 }
345
346 SmallString<32> AtomicCASName("__tsan_atomic" + BitSizeStr +
347 "_compare_exchange_val");
348 TsanAtomicCAS[i] = M.getOrInsertFunction(AtomicCASName, Attr, Ty, PtrTy, Ty,
349 Ty, OrdTy, OrdTy);
350 }
351 TsanVptrUpdate =
352 M.getOrInsertFunction("__tsan_vptr_update", Attr, IRB.getVoidTy(),
353 IRB.getInt8PtrTy(), IRB.getInt8PtrTy());
354 TsanVptrLoad = M.getOrInsertFunction("__tsan_vptr_read", Attr,
355 IRB.getVoidTy(), IRB.getInt8PtrTy());
356 TsanAtomicThreadFence = M.getOrInsertFunction("__tsan_atomic_thread_fence",
357 Attr, IRB.getVoidTy(), OrdTy);
358 TsanAtomicSignalFence = M.getOrInsertFunction("__tsan_atomic_signal_fence",
359 Attr, IRB.getVoidTy(), OrdTy);
360
361 MemmoveFn =
362 M.getOrInsertFunction("memmove", Attr, IRB.getInt8PtrTy(),
363 IRB.getInt8PtrTy(), IRB.getInt8PtrTy(), IntptrTy);
364 MemcpyFn =
365 M.getOrInsertFunction("memcpy", Attr, IRB.getInt8PtrTy(),
366 IRB.getInt8PtrTy(), IRB.getInt8PtrTy(), IntptrTy);
367 MemsetFn =
368 M.getOrInsertFunction("memset", Attr, IRB.getInt8PtrTy(),
369 IRB.getInt8PtrTy(), IRB.getInt32Ty(), IntptrTy);
370 }
371
isVtableAccess(Instruction * I)372 static bool isVtableAccess(Instruction *I) {
373 if (MDNode *Tag = I->getMetadata(LLVMContext::MD_tbaa))
374 return Tag->isTBAAVtableAccess();
375 return false;
376 }
377
378 // Do not instrument known races/"benign races" that come from compiler
379 // instrumentatin. The user has no way of suppressing them.
shouldInstrumentReadWriteFromAddress(const Module * M,Value * Addr)380 static bool shouldInstrumentReadWriteFromAddress(const Module *M, Value *Addr) {
381 // Peel off GEPs and BitCasts.
382 Addr = Addr->stripInBoundsOffsets();
383
384 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(Addr)) {
385 if (GV->hasSection()) {
386 StringRef SectionName = GV->getSection();
387 // Check if the global is in the PGO counters section.
388 auto OF = Triple(M->getTargetTriple()).getObjectFormat();
389 if (SectionName.endswith(
390 getInstrProfSectionName(IPSK_cnts, OF, /*AddSegmentInfo=*/false)))
391 return false;
392 }
393
394 // Check if the global is private gcov data.
395 if (GV->getName().startswith("__llvm_gcov") ||
396 GV->getName().startswith("__llvm_gcda"))
397 return false;
398 }
399
400 // Do not instrument acesses from different address spaces; we cannot deal
401 // with them.
402 if (Addr) {
403 Type *PtrTy = cast<PointerType>(Addr->getType()->getScalarType());
404 if (PtrTy->getPointerAddressSpace() != 0)
405 return false;
406 }
407
408 return true;
409 }
410
addrPointsToConstantData(Value * Addr)411 bool ThreadSanitizer::addrPointsToConstantData(Value *Addr) {
412 // If this is a GEP, just analyze its pointer operand.
413 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Addr))
414 Addr = GEP->getPointerOperand();
415
416 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(Addr)) {
417 if (GV->isConstant()) {
418 // Reads from constant globals can not race with any writes.
419 NumOmittedReadsFromConstantGlobals++;
420 return true;
421 }
422 } else if (LoadInst *L = dyn_cast<LoadInst>(Addr)) {
423 if (isVtableAccess(L)) {
424 // Reads from a vtable pointer can not race with any writes.
425 NumOmittedReadsFromVtable++;
426 return true;
427 }
428 }
429 return false;
430 }
431
432 // Instrumenting some of the accesses may be proven redundant.
433 // Currently handled:
434 // - read-before-write (within same BB, no calls between)
435 // - not captured variables
436 //
437 // We do not handle some of the patterns that should not survive
438 // after the classic compiler optimizations.
439 // E.g. two reads from the same temp should be eliminated by CSE,
440 // two writes should be eliminated by DSE, etc.
441 //
442 // 'Local' is a vector of insns within the same BB (no calls between).
443 // 'All' is a vector of insns that will be instrumented.
chooseInstructionsToInstrument(SmallVectorImpl<Instruction * > & Local,SmallVectorImpl<InstructionInfo> & All,const DataLayout & DL)444 void ThreadSanitizer::chooseInstructionsToInstrument(
445 SmallVectorImpl<Instruction *> &Local,
446 SmallVectorImpl<InstructionInfo> &All, const DataLayout &DL) {
447 DenseMap<Value *, size_t> WriteTargets; // Map of addresses to index in All
448 // Iterate from the end.
449 for (Instruction *I : reverse(Local)) {
450 const bool IsWrite = isa<StoreInst>(*I);
451 Value *Addr = IsWrite ? cast<StoreInst>(I)->getPointerOperand()
452 : cast<LoadInst>(I)->getPointerOperand();
453
454 if (!shouldInstrumentReadWriteFromAddress(I->getModule(), Addr))
455 continue;
456
457 if (!IsWrite) {
458 const auto WriteEntry = WriteTargets.find(Addr);
459 if (!ClInstrumentReadBeforeWrite && WriteEntry != WriteTargets.end()) {
460 auto &WI = All[WriteEntry->second];
461 // If we distinguish volatile accesses and if either the read or write
462 // is volatile, do not omit any instrumentation.
463 const bool AnyVolatile =
464 ClDistinguishVolatile && (cast<LoadInst>(I)->isVolatile() ||
465 cast<StoreInst>(WI.Inst)->isVolatile());
466 if (!AnyVolatile) {
467 // We will write to this temp, so no reason to analyze the read.
468 // Mark the write instruction as compound.
469 WI.Flags |= InstructionInfo::kCompoundRW;
470 NumOmittedReadsBeforeWrite++;
471 continue;
472 }
473 }
474
475 if (addrPointsToConstantData(Addr)) {
476 // Addr points to some constant data -- it can not race with any writes.
477 continue;
478 }
479 }
480
481 if (isa<AllocaInst>(getUnderlyingObject(Addr)) &&
482 !PointerMayBeCaptured(Addr, true, true)) {
483 // The variable is addressable but not captured, so it cannot be
484 // referenced from a different thread and participate in a data race
485 // (see llvm/Analysis/CaptureTracking.h for details).
486 NumOmittedNonCaptured++;
487 continue;
488 }
489
490 // Instrument this instruction.
491 All.emplace_back(I);
492 if (IsWrite) {
493 // For read-before-write and compound instrumentation we only need one
494 // write target, and we can override any previous entry if it exists.
495 WriteTargets[Addr] = All.size() - 1;
496 }
497 }
498 Local.clear();
499 }
500
isAtomic(Instruction * I)501 static bool isAtomic(Instruction *I) {
502 // TODO: Ask TTI whether synchronization scope is between threads.
503 if (LoadInst *LI = dyn_cast<LoadInst>(I))
504 return LI->isAtomic() && LI->getSyncScopeID() != SyncScope::SingleThread;
505 if (StoreInst *SI = dyn_cast<StoreInst>(I))
506 return SI->isAtomic() && SI->getSyncScopeID() != SyncScope::SingleThread;
507 if (isa<AtomicRMWInst>(I))
508 return true;
509 if (isa<AtomicCmpXchgInst>(I))
510 return true;
511 if (isa<FenceInst>(I))
512 return true;
513 return false;
514 }
515
InsertRuntimeIgnores(Function & F)516 void ThreadSanitizer::InsertRuntimeIgnores(Function &F) {
517 IRBuilder<> IRB(F.getEntryBlock().getFirstNonPHI());
518 IRB.CreateCall(TsanIgnoreBegin);
519 EscapeEnumerator EE(F, "tsan_ignore_cleanup", ClHandleCxxExceptions);
520 while (IRBuilder<> *AtExit = EE.Next()) {
521 AtExit->CreateCall(TsanIgnoreEnd);
522 }
523 }
524
sanitizeFunction(Function & F,const TargetLibraryInfo & TLI)525 bool ThreadSanitizer::sanitizeFunction(Function &F,
526 const TargetLibraryInfo &TLI) {
527 // This is required to prevent instrumenting call to __tsan_init from within
528 // the module constructor.
529 if (F.getName() == kTsanModuleCtorName)
530 return false;
531 // Naked functions can not have prologue/epilogue
532 // (__tsan_func_entry/__tsan_func_exit) generated, so don't instrument them at
533 // all.
534 if (F.hasFnAttribute(Attribute::Naked))
535 return false;
536 initialize(*F.getParent());
537 SmallVector<InstructionInfo, 8> AllLoadsAndStores;
538 SmallVector<Instruction*, 8> LocalLoadsAndStores;
539 SmallVector<Instruction*, 8> AtomicAccesses;
540 SmallVector<Instruction*, 8> MemIntrinCalls;
541 bool Res = false;
542 bool HasCalls = false;
543 bool SanitizeFunction = F.hasFnAttribute(Attribute::SanitizeThread);
544 const DataLayout &DL = F.getParent()->getDataLayout();
545
546 // Traverse all instructions, collect loads/stores/returns, check for calls.
547 for (auto &BB : F) {
548 for (auto &Inst : BB) {
549 if (isAtomic(&Inst))
550 AtomicAccesses.push_back(&Inst);
551 else if (isa<LoadInst>(Inst) || isa<StoreInst>(Inst))
552 LocalLoadsAndStores.push_back(&Inst);
553 else if (isa<CallInst>(Inst) || isa<InvokeInst>(Inst)) {
554 if (CallInst *CI = dyn_cast<CallInst>(&Inst))
555 maybeMarkSanitizerLibraryCallNoBuiltin(CI, &TLI);
556 if (isa<MemIntrinsic>(Inst))
557 MemIntrinCalls.push_back(&Inst);
558 HasCalls = true;
559 chooseInstructionsToInstrument(LocalLoadsAndStores, AllLoadsAndStores,
560 DL);
561 }
562 }
563 chooseInstructionsToInstrument(LocalLoadsAndStores, AllLoadsAndStores, DL);
564 }
565
566 // We have collected all loads and stores.
567 // FIXME: many of these accesses do not need to be checked for races
568 // (e.g. variables that do not escape, etc).
569
570 // Instrument memory accesses only if we want to report bugs in the function.
571 if (ClInstrumentMemoryAccesses && SanitizeFunction)
572 for (const auto &II : AllLoadsAndStores) {
573 Res |= instrumentLoadOrStore(II, DL);
574 }
575
576 // Instrument atomic memory accesses in any case (they can be used to
577 // implement synchronization).
578 if (ClInstrumentAtomics)
579 for (auto Inst : AtomicAccesses) {
580 Res |= instrumentAtomic(Inst, DL);
581 }
582
583 if (ClInstrumentMemIntrinsics && SanitizeFunction)
584 for (auto Inst : MemIntrinCalls) {
585 Res |= instrumentMemIntrinsic(Inst);
586 }
587
588 if (F.hasFnAttribute("sanitize_thread_no_checking_at_run_time")) {
589 assert(!F.hasFnAttribute(Attribute::SanitizeThread));
590 if (HasCalls)
591 InsertRuntimeIgnores(F);
592 }
593
594 // Instrument function entry/exit points if there were instrumented accesses.
595 if ((Res || HasCalls) && ClInstrumentFuncEntryExit) {
596 IRBuilder<> IRB(F.getEntryBlock().getFirstNonPHI());
597 Value *ReturnAddress = IRB.CreateCall(
598 Intrinsic::getDeclaration(F.getParent(), Intrinsic::returnaddress),
599 IRB.getInt32(0));
600 IRB.CreateCall(TsanFuncEntry, ReturnAddress);
601
602 EscapeEnumerator EE(F, "tsan_cleanup", ClHandleCxxExceptions);
603 while (IRBuilder<> *AtExit = EE.Next()) {
604 AtExit->CreateCall(TsanFuncExit, {});
605 }
606 Res = true;
607 }
608 return Res;
609 }
610
instrumentLoadOrStore(const InstructionInfo & II,const DataLayout & DL)611 bool ThreadSanitizer::instrumentLoadOrStore(const InstructionInfo &II,
612 const DataLayout &DL) {
613 IRBuilder<> IRB(II.Inst);
614 const bool IsWrite = isa<StoreInst>(*II.Inst);
615 Value *Addr = IsWrite ? cast<StoreInst>(II.Inst)->getPointerOperand()
616 : cast<LoadInst>(II.Inst)->getPointerOperand();
617
618 // swifterror memory addresses are mem2reg promoted by instruction selection.
619 // As such they cannot have regular uses like an instrumentation function and
620 // it makes no sense to track them as memory.
621 if (Addr->isSwiftError())
622 return false;
623
624 int Idx = getMemoryAccessFuncIndex(Addr, DL);
625 if (Idx < 0)
626 return false;
627 if (IsWrite && isVtableAccess(II.Inst)) {
628 LLVM_DEBUG(dbgs() << " VPTR : " << *II.Inst << "\n");
629 Value *StoredValue = cast<StoreInst>(II.Inst)->getValueOperand();
630 // StoredValue may be a vector type if we are storing several vptrs at once.
631 // In this case, just take the first element of the vector since this is
632 // enough to find vptr races.
633 if (isa<VectorType>(StoredValue->getType()))
634 StoredValue = IRB.CreateExtractElement(
635 StoredValue, ConstantInt::get(IRB.getInt32Ty(), 0));
636 if (StoredValue->getType()->isIntegerTy())
637 StoredValue = IRB.CreateIntToPtr(StoredValue, IRB.getInt8PtrTy());
638 // Call TsanVptrUpdate.
639 IRB.CreateCall(TsanVptrUpdate,
640 {IRB.CreatePointerCast(Addr, IRB.getInt8PtrTy()),
641 IRB.CreatePointerCast(StoredValue, IRB.getInt8PtrTy())});
642 NumInstrumentedVtableWrites++;
643 return true;
644 }
645 if (!IsWrite && isVtableAccess(II.Inst)) {
646 IRB.CreateCall(TsanVptrLoad,
647 IRB.CreatePointerCast(Addr, IRB.getInt8PtrTy()));
648 NumInstrumentedVtableReads++;
649 return true;
650 }
651
652 const unsigned Alignment = IsWrite ? cast<StoreInst>(II.Inst)->getAlignment()
653 : cast<LoadInst>(II.Inst)->getAlignment();
654 const bool IsCompoundRW =
655 ClCompoundReadBeforeWrite && (II.Flags & InstructionInfo::kCompoundRW);
656 const bool IsVolatile = ClDistinguishVolatile &&
657 (IsWrite ? cast<StoreInst>(II.Inst)->isVolatile()
658 : cast<LoadInst>(II.Inst)->isVolatile());
659 assert((!IsVolatile || !IsCompoundRW) && "Compound volatile invalid!");
660
661 Type *OrigTy = cast<PointerType>(Addr->getType())->getElementType();
662 const uint32_t TypeSize = DL.getTypeStoreSizeInBits(OrigTy);
663 FunctionCallee OnAccessFunc = nullptr;
664 if (Alignment == 0 || Alignment >= 8 || (Alignment % (TypeSize / 8)) == 0) {
665 if (IsCompoundRW)
666 OnAccessFunc = TsanCompoundRW[Idx];
667 else if (IsVolatile)
668 OnAccessFunc = IsWrite ? TsanVolatileWrite[Idx] : TsanVolatileRead[Idx];
669 else
670 OnAccessFunc = IsWrite ? TsanWrite[Idx] : TsanRead[Idx];
671 } else {
672 if (IsCompoundRW)
673 OnAccessFunc = TsanUnalignedCompoundRW[Idx];
674 else if (IsVolatile)
675 OnAccessFunc = IsWrite ? TsanUnalignedVolatileWrite[Idx]
676 : TsanUnalignedVolatileRead[Idx];
677 else
678 OnAccessFunc = IsWrite ? TsanUnalignedWrite[Idx] : TsanUnalignedRead[Idx];
679 }
680 IRB.CreateCall(OnAccessFunc, IRB.CreatePointerCast(Addr, IRB.getInt8PtrTy()));
681 if (IsCompoundRW || IsWrite)
682 NumInstrumentedWrites++;
683 if (IsCompoundRW || !IsWrite)
684 NumInstrumentedReads++;
685 return true;
686 }
687
createOrdering(IRBuilder<> * IRB,AtomicOrdering ord)688 static ConstantInt *createOrdering(IRBuilder<> *IRB, AtomicOrdering ord) {
689 uint32_t v = 0;
690 switch (ord) {
691 case AtomicOrdering::NotAtomic:
692 llvm_unreachable("unexpected atomic ordering!");
693 case AtomicOrdering::Unordered: LLVM_FALLTHROUGH;
694 case AtomicOrdering::Monotonic: v = 0; break;
695 // Not specified yet:
696 // case AtomicOrdering::Consume: v = 1; break;
697 case AtomicOrdering::Acquire: v = 2; break;
698 case AtomicOrdering::Release: v = 3; break;
699 case AtomicOrdering::AcquireRelease: v = 4; break;
700 case AtomicOrdering::SequentiallyConsistent: v = 5; break;
701 }
702 return IRB->getInt32(v);
703 }
704
705 // If a memset intrinsic gets inlined by the code gen, we will miss races on it.
706 // So, we either need to ensure the intrinsic is not inlined, or instrument it.
707 // We do not instrument memset/memmove/memcpy intrinsics (too complicated),
708 // instead we simply replace them with regular function calls, which are then
709 // intercepted by the run-time.
710 // Since tsan is running after everyone else, the calls should not be
711 // replaced back with intrinsics. If that becomes wrong at some point,
712 // we will need to call e.g. __tsan_memset to avoid the intrinsics.
instrumentMemIntrinsic(Instruction * I)713 bool ThreadSanitizer::instrumentMemIntrinsic(Instruction *I) {
714 IRBuilder<> IRB(I);
715 if (MemSetInst *M = dyn_cast<MemSetInst>(I)) {
716 IRB.CreateCall(
717 MemsetFn,
718 {IRB.CreatePointerCast(M->getArgOperand(0), IRB.getInt8PtrTy()),
719 IRB.CreateIntCast(M->getArgOperand(1), IRB.getInt32Ty(), false),
720 IRB.CreateIntCast(M->getArgOperand(2), IntptrTy, false)});
721 I->eraseFromParent();
722 } else if (MemTransferInst *M = dyn_cast<MemTransferInst>(I)) {
723 IRB.CreateCall(
724 isa<MemCpyInst>(M) ? MemcpyFn : MemmoveFn,
725 {IRB.CreatePointerCast(M->getArgOperand(0), IRB.getInt8PtrTy()),
726 IRB.CreatePointerCast(M->getArgOperand(1), IRB.getInt8PtrTy()),
727 IRB.CreateIntCast(M->getArgOperand(2), IntptrTy, false)});
728 I->eraseFromParent();
729 }
730 return false;
731 }
732
733 // Both llvm and ThreadSanitizer atomic operations are based on C++11/C1x
734 // standards. For background see C++11 standard. A slightly older, publicly
735 // available draft of the standard (not entirely up-to-date, but close enough
736 // for casual browsing) is available here:
737 // http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2011/n3242.pdf
738 // The following page contains more background information:
739 // http://www.hpl.hp.com/personal/Hans_Boehm/c++mm/
740
instrumentAtomic(Instruction * I,const DataLayout & DL)741 bool ThreadSanitizer::instrumentAtomic(Instruction *I, const DataLayout &DL) {
742 IRBuilder<> IRB(I);
743 if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
744 Value *Addr = LI->getPointerOperand();
745 int Idx = getMemoryAccessFuncIndex(Addr, DL);
746 if (Idx < 0)
747 return false;
748 const unsigned ByteSize = 1U << Idx;
749 const unsigned BitSize = ByteSize * 8;
750 Type *Ty = Type::getIntNTy(IRB.getContext(), BitSize);
751 Type *PtrTy = Ty->getPointerTo();
752 Value *Args[] = {IRB.CreatePointerCast(Addr, PtrTy),
753 createOrdering(&IRB, LI->getOrdering())};
754 Type *OrigTy = cast<PointerType>(Addr->getType())->getElementType();
755 Value *C = IRB.CreateCall(TsanAtomicLoad[Idx], Args);
756 Value *Cast = IRB.CreateBitOrPointerCast(C, OrigTy);
757 I->replaceAllUsesWith(Cast);
758 } else if (StoreInst *SI = dyn_cast<StoreInst>(I)) {
759 Value *Addr = SI->getPointerOperand();
760 int Idx = getMemoryAccessFuncIndex(Addr, DL);
761 if (Idx < 0)
762 return false;
763 const unsigned ByteSize = 1U << Idx;
764 const unsigned BitSize = ByteSize * 8;
765 Type *Ty = Type::getIntNTy(IRB.getContext(), BitSize);
766 Type *PtrTy = Ty->getPointerTo();
767 Value *Args[] = {IRB.CreatePointerCast(Addr, PtrTy),
768 IRB.CreateBitOrPointerCast(SI->getValueOperand(), Ty),
769 createOrdering(&IRB, SI->getOrdering())};
770 CallInst *C = CallInst::Create(TsanAtomicStore[Idx], Args);
771 ReplaceInstWithInst(I, C);
772 } else if (AtomicRMWInst *RMWI = dyn_cast<AtomicRMWInst>(I)) {
773 Value *Addr = RMWI->getPointerOperand();
774 int Idx = getMemoryAccessFuncIndex(Addr, DL);
775 if (Idx < 0)
776 return false;
777 FunctionCallee F = TsanAtomicRMW[RMWI->getOperation()][Idx];
778 if (!F)
779 return false;
780 const unsigned ByteSize = 1U << Idx;
781 const unsigned BitSize = ByteSize * 8;
782 Type *Ty = Type::getIntNTy(IRB.getContext(), BitSize);
783 Type *PtrTy = Ty->getPointerTo();
784 Value *Args[] = {IRB.CreatePointerCast(Addr, PtrTy),
785 IRB.CreateIntCast(RMWI->getValOperand(), Ty, false),
786 createOrdering(&IRB, RMWI->getOrdering())};
787 CallInst *C = CallInst::Create(F, Args);
788 ReplaceInstWithInst(I, C);
789 } else if (AtomicCmpXchgInst *CASI = dyn_cast<AtomicCmpXchgInst>(I)) {
790 Value *Addr = CASI->getPointerOperand();
791 int Idx = getMemoryAccessFuncIndex(Addr, DL);
792 if (Idx < 0)
793 return false;
794 const unsigned ByteSize = 1U << Idx;
795 const unsigned BitSize = ByteSize * 8;
796 Type *Ty = Type::getIntNTy(IRB.getContext(), BitSize);
797 Type *PtrTy = Ty->getPointerTo();
798 Value *CmpOperand =
799 IRB.CreateBitOrPointerCast(CASI->getCompareOperand(), Ty);
800 Value *NewOperand =
801 IRB.CreateBitOrPointerCast(CASI->getNewValOperand(), Ty);
802 Value *Args[] = {IRB.CreatePointerCast(Addr, PtrTy),
803 CmpOperand,
804 NewOperand,
805 createOrdering(&IRB, CASI->getSuccessOrdering()),
806 createOrdering(&IRB, CASI->getFailureOrdering())};
807 CallInst *C = IRB.CreateCall(TsanAtomicCAS[Idx], Args);
808 Value *Success = IRB.CreateICmpEQ(C, CmpOperand);
809 Value *OldVal = C;
810 Type *OrigOldValTy = CASI->getNewValOperand()->getType();
811 if (Ty != OrigOldValTy) {
812 // The value is a pointer, so we need to cast the return value.
813 OldVal = IRB.CreateIntToPtr(C, OrigOldValTy);
814 }
815
816 Value *Res =
817 IRB.CreateInsertValue(UndefValue::get(CASI->getType()), OldVal, 0);
818 Res = IRB.CreateInsertValue(Res, Success, 1);
819
820 I->replaceAllUsesWith(Res);
821 I->eraseFromParent();
822 } else if (FenceInst *FI = dyn_cast<FenceInst>(I)) {
823 Value *Args[] = {createOrdering(&IRB, FI->getOrdering())};
824 FunctionCallee F = FI->getSyncScopeID() == SyncScope::SingleThread
825 ? TsanAtomicSignalFence
826 : TsanAtomicThreadFence;
827 CallInst *C = CallInst::Create(F, Args);
828 ReplaceInstWithInst(I, C);
829 }
830 return true;
831 }
832
getMemoryAccessFuncIndex(Value * Addr,const DataLayout & DL)833 int ThreadSanitizer::getMemoryAccessFuncIndex(Value *Addr,
834 const DataLayout &DL) {
835 Type *OrigPtrTy = Addr->getType();
836 Type *OrigTy = cast<PointerType>(OrigPtrTy)->getElementType();
837 assert(OrigTy->isSized());
838 uint32_t TypeSize = DL.getTypeStoreSizeInBits(OrigTy);
839 if (TypeSize != 8 && TypeSize != 16 &&
840 TypeSize != 32 && TypeSize != 64 && TypeSize != 128) {
841 NumAccessesWithBadSize++;
842 // Ignore all unusual sizes.
843 return -1;
844 }
845 size_t Idx = countTrailingZeros(TypeSize / 8);
846 assert(Idx < kNumberOfAccessSizes);
847 return Idx;
848 }
849