1//===- TargetSelectionDAG.td - Common code for DAG isels ---*- tablegen -*-===// 2// 3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4// See https://llvm.org/LICENSE.txt for license information. 5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6// 7//===----------------------------------------------------------------------===// 8// 9// This file defines the target-independent interfaces used by SelectionDAG 10// instruction selection generators. 11// 12//===----------------------------------------------------------------------===// 13 14//===----------------------------------------------------------------------===// 15// Selection DAG Type Constraint definitions. 16// 17// Note that the semantics of these constraints are hard coded into tblgen. To 18// modify or add constraints, you have to hack tblgen. 19// 20 21class SDTypeConstraint<int opnum> { 22 int OperandNum = opnum; 23} 24 25// SDTCisVT - The specified operand has exactly this VT. 26class SDTCisVT<int OpNum, ValueType vt> : SDTypeConstraint<OpNum> { 27 ValueType VT = vt; 28} 29 30class SDTCisPtrTy<int OpNum> : SDTypeConstraint<OpNum>; 31 32// SDTCisInt - The specified operand has integer type. 33class SDTCisInt<int OpNum> : SDTypeConstraint<OpNum>; 34 35// SDTCisFP - The specified operand has floating-point type. 36class SDTCisFP<int OpNum> : SDTypeConstraint<OpNum>; 37 38// SDTCisVec - The specified operand has a vector type. 39class SDTCisVec<int OpNum> : SDTypeConstraint<OpNum>; 40 41// SDTCisSameAs - The two specified operands have identical types. 42class SDTCisSameAs<int OpNum, int OtherOp> : SDTypeConstraint<OpNum> { 43 int OtherOperandNum = OtherOp; 44} 45 46// SDTCisVTSmallerThanOp - The specified operand is a VT SDNode, and its type is 47// smaller than the 'Other' operand. 48class SDTCisVTSmallerThanOp<int OpNum, int OtherOp> : SDTypeConstraint<OpNum> { 49 int OtherOperandNum = OtherOp; 50} 51 52class SDTCisOpSmallerThanOp<int SmallOp, int BigOp> : SDTypeConstraint<SmallOp>{ 53 int BigOperandNum = BigOp; 54} 55 56/// SDTCisEltOfVec - This indicates that ThisOp is a scalar type of the same 57/// type as the element type of OtherOp, which is a vector type. 58class SDTCisEltOfVec<int ThisOp, int OtherOp> 59 : SDTypeConstraint<ThisOp> { 60 int OtherOpNum = OtherOp; 61} 62 63/// SDTCisSubVecOfVec - This indicates that ThisOp is a vector type 64/// with length less that of OtherOp, which is a vector type. 65class SDTCisSubVecOfVec<int ThisOp, int OtherOp> 66 : SDTypeConstraint<ThisOp> { 67 int OtherOpNum = OtherOp; 68} 69 70// SDTCVecEltisVT - The specified operand is vector type with element type 71// of VT. 72class SDTCVecEltisVT<int OpNum, ValueType vt> : SDTypeConstraint<OpNum> { 73 ValueType VT = vt; 74} 75 76// SDTCisSameNumEltsAs - The two specified operands have identical number 77// of elements. 78class SDTCisSameNumEltsAs<int OpNum, int OtherOp> : SDTypeConstraint<OpNum> { 79 int OtherOperandNum = OtherOp; 80} 81 82// SDTCisSameSizeAs - The two specified operands have identical size. 83class SDTCisSameSizeAs<int OpNum, int OtherOp> : SDTypeConstraint<OpNum> { 84 int OtherOperandNum = OtherOp; 85} 86 87//===----------------------------------------------------------------------===// 88// Selection DAG Type Profile definitions. 89// 90// These use the constraints defined above to describe the type requirements of 91// the various nodes. These are not hard coded into tblgen, allowing targets to 92// add their own if needed. 93// 94 95// SDTypeProfile - This profile describes the type requirements of a Selection 96// DAG node. 97class SDTypeProfile<int numresults, int numoperands, 98 list<SDTypeConstraint> constraints> { 99 int NumResults = numresults; 100 int NumOperands = numoperands; 101 list<SDTypeConstraint> Constraints = constraints; 102} 103 104// Builtin profiles. 105def SDTIntLeaf: SDTypeProfile<1, 0, [SDTCisInt<0>]>; // for 'imm'. 106def SDTFPLeaf : SDTypeProfile<1, 0, [SDTCisFP<0>]>; // for 'fpimm'. 107def SDTPtrLeaf: SDTypeProfile<1, 0, [SDTCisPtrTy<0>]>; // for '&g'. 108def SDTOther : SDTypeProfile<1, 0, [SDTCisVT<0, OtherVT>]>; // for 'vt'. 109def SDTUNDEF : SDTypeProfile<1, 0, []>; // for 'undef'. 110def SDTUnaryOp : SDTypeProfile<1, 1, []>; // for bitconvert. 111 112def SDTIntBinOp : SDTypeProfile<1, 2, [ // add, and, or, xor, udiv, etc. 113 SDTCisSameAs<0, 1>, SDTCisSameAs<0, 2>, SDTCisInt<0> 114]>; 115def SDTIntShiftOp : SDTypeProfile<1, 2, [ // shl, sra, srl 116 SDTCisSameAs<0, 1>, SDTCisInt<0>, SDTCisInt<2> 117]>; 118def SDTIntShiftDOp: SDTypeProfile<1, 3, [ // fshl, fshr 119 SDTCisSameAs<0, 1>, SDTCisSameAs<0, 2>, SDTCisInt<0>, SDTCisInt<3> 120]>; 121def SDTIntSatNoShOp : SDTypeProfile<1, 2, [ // ssat with no shift 122 SDTCisSameAs<0, 1>, SDTCisInt<2> 123]>; 124def SDTIntBinHiLoOp : SDTypeProfile<2, 2, [ // mulhi, mullo, sdivrem, udivrem 125 SDTCisSameAs<0, 1>, SDTCisSameAs<0, 2>, SDTCisSameAs<0, 3>,SDTCisInt<0> 126]>; 127def SDTIntScaledBinOp : SDTypeProfile<1, 3, [ // smulfix, sdivfix, etc 128 SDTCisSameAs<0, 1>, SDTCisSameAs<0, 2>, SDTCisInt<0>, SDTCisInt<3> 129]>; 130 131def SDTFPBinOp : SDTypeProfile<1, 2, [ // fadd, fmul, etc. 132 SDTCisSameAs<0, 1>, SDTCisSameAs<0, 2>, SDTCisFP<0> 133]>; 134def SDTFPSignOp : SDTypeProfile<1, 2, [ // fcopysign. 135 SDTCisSameAs<0, 1>, SDTCisFP<0>, SDTCisFP<2> 136]>; 137def SDTFPTernaryOp : SDTypeProfile<1, 3, [ // fmadd, fnmsub, etc. 138 SDTCisSameAs<0, 1>, SDTCisSameAs<0, 2>, SDTCisSameAs<0, 3>, SDTCisFP<0> 139]>; 140def SDTIntUnaryOp : SDTypeProfile<1, 1, [ // bitreverse 141 SDTCisSameAs<0, 1>, SDTCisInt<0> 142]>; 143def SDTIntBitCountUnaryOp : SDTypeProfile<1, 1, [ // ctlz, cttz 144 SDTCisInt<0>, SDTCisInt<1> 145]>; 146def SDTIntExtendOp : SDTypeProfile<1, 1, [ // sext, zext, anyext 147 SDTCisInt<0>, SDTCisInt<1>, SDTCisOpSmallerThanOp<1, 0>, SDTCisSameNumEltsAs<0, 1> 148]>; 149def SDTIntTruncOp : SDTypeProfile<1, 1, [ // trunc 150 SDTCisInt<0>, SDTCisInt<1>, SDTCisOpSmallerThanOp<0, 1>, SDTCisSameNumEltsAs<0, 1> 151]>; 152def SDTFPUnaryOp : SDTypeProfile<1, 1, [ // fneg, fsqrt, etc 153 SDTCisSameAs<0, 1>, SDTCisFP<0> 154]>; 155def SDTFPRoundOp : SDTypeProfile<1, 1, [ // fpround 156 SDTCisFP<0>, SDTCisFP<1>, SDTCisOpSmallerThanOp<0, 1>, SDTCisSameNumEltsAs<0, 1> 157]>; 158def SDTFPExtendOp : SDTypeProfile<1, 1, [ // fpextend 159 SDTCisFP<0>, SDTCisFP<1>, SDTCisOpSmallerThanOp<1, 0>, SDTCisSameNumEltsAs<0, 1> 160]>; 161def SDTIntToFPOp : SDTypeProfile<1, 1, [ // [su]int_to_fp 162 SDTCisFP<0>, SDTCisInt<1>, SDTCisSameNumEltsAs<0, 1> 163]>; 164def SDTFPToIntOp : SDTypeProfile<1, 1, [ // fp_to_[su]int 165 SDTCisInt<0>, SDTCisFP<1>, SDTCisSameNumEltsAs<0, 1> 166]>; 167def SDTFPToIntSatOp : SDTypeProfile<1, 2, [ // fp_to_[su]int_sat 168 SDTCisInt<0>, SDTCisFP<1>, SDTCisSameNumEltsAs<0, 1>, SDTCisVT<2, OtherVT> 169]>; 170def SDTExtInreg : SDTypeProfile<1, 2, [ // sext_inreg 171 SDTCisSameAs<0, 1>, SDTCisInt<0>, SDTCisVT<2, OtherVT>, 172 SDTCisVTSmallerThanOp<2, 1> 173]>; 174def SDTExtInvec : SDTypeProfile<1, 1, [ // sext_invec 175 SDTCisInt<0>, SDTCisVec<0>, SDTCisInt<1>, SDTCisVec<1>, 176 SDTCisOpSmallerThanOp<1, 0> 177]>; 178 179def SDTSetCC : SDTypeProfile<1, 3, [ // setcc 180 SDTCisInt<0>, SDTCisSameAs<1, 2>, SDTCisVT<3, OtherVT> 181]>; 182 183def SDTSelect : SDTypeProfile<1, 3, [ // select 184 SDTCisInt<1>, SDTCisSameAs<0, 2>, SDTCisSameAs<2, 3> 185]>; 186 187def SDTVSelect : SDTypeProfile<1, 3, [ // vselect 188 SDTCisVec<0>, SDTCisInt<1>, SDTCisSameAs<0, 2>, SDTCisSameAs<2, 3>, SDTCisSameNumEltsAs<0, 1> 189]>; 190 191def SDTSelectCC : SDTypeProfile<1, 5, [ // select_cc 192 SDTCisSameAs<1, 2>, SDTCisSameAs<3, 4>, SDTCisSameAs<0, 3>, 193 SDTCisVT<5, OtherVT> 194]>; 195 196def SDTBr : SDTypeProfile<0, 1, [ // br 197 SDTCisVT<0, OtherVT> 198]>; 199 200def SDTBrCC : SDTypeProfile<0, 4, [ // brcc 201 SDTCisVT<0, OtherVT>, SDTCisSameAs<1, 2>, SDTCisVT<3, OtherVT> 202]>; 203 204def SDTBrcond : SDTypeProfile<0, 2, [ // brcond 205 SDTCisInt<0>, SDTCisVT<1, OtherVT> 206]>; 207 208def SDTBrind : SDTypeProfile<0, 1, [ // brind 209 SDTCisPtrTy<0> 210]>; 211 212def SDTCatchret : SDTypeProfile<0, 2, [ // catchret 213 SDTCisVT<0, OtherVT>, SDTCisVT<1, OtherVT> 214]>; 215 216def SDTNone : SDTypeProfile<0, 0, []>; // ret, trap 217 218def SDTUBSANTrap : SDTypeProfile<0, 1, []>; // ubsantrap 219 220def SDTLoad : SDTypeProfile<1, 1, [ // load 221 SDTCisPtrTy<1> 222]>; 223 224def SDTStore : SDTypeProfile<0, 2, [ // store 225 SDTCisPtrTy<1> 226]>; 227 228def SDTIStore : SDTypeProfile<1, 3, [ // indexed store 229 SDTCisSameAs<0, 2>, SDTCisPtrTy<0>, SDTCisPtrTy<3> 230]>; 231 232def SDTMaskedStore: SDTypeProfile<0, 4, [ // masked store 233 SDTCisVec<0>, SDTCisPtrTy<1>, SDTCisPtrTy<2>, SDTCisVec<3>, SDTCisSameNumEltsAs<0, 3> 234]>; 235 236def SDTMaskedLoad: SDTypeProfile<1, 4, [ // masked load 237 SDTCisVec<0>, SDTCisPtrTy<1>, SDTCisPtrTy<2>, SDTCisVec<3>, SDTCisSameAs<0, 4>, 238 SDTCisSameNumEltsAs<0, 3> 239]>; 240 241def SDTVecShuffle : SDTypeProfile<1, 2, [ 242 SDTCisSameAs<0, 1>, SDTCisSameAs<1, 2> 243]>; 244def SDTVecSlice : SDTypeProfile<1, 3, [ // vector splice 245 SDTCisSameAs<0, 1>, SDTCisSameAs<1, 2>, SDTCisInt<3> 246]>; 247def SDTVecExtract : SDTypeProfile<1, 2, [ // vector extract 248 SDTCisEltOfVec<0, 1>, SDTCisPtrTy<2> 249]>; 250def SDTVecInsert : SDTypeProfile<1, 3, [ // vector insert 251 SDTCisEltOfVec<2, 1>, SDTCisSameAs<0, 1>, SDTCisPtrTy<3> 252]>; 253def SDTVecReduce : SDTypeProfile<1, 1, [ // vector reduction 254 SDTCisInt<0>, SDTCisVec<1> 255]>; 256def SDTFPVecReduce : SDTypeProfile<1, 1, [ // FP vector reduction 257 SDTCisFP<0>, SDTCisVec<1> 258]>; 259 260def SDTVecReverse : SDTypeProfile<1, 1, [ // vector reverse 261 SDTCisVec<0>, SDTCisSameAs<0,1> 262]>; 263 264def SDTSubVecExtract : SDTypeProfile<1, 2, [// subvector extract 265 SDTCisSubVecOfVec<0,1>, SDTCisInt<2> 266]>; 267def SDTSubVecInsert : SDTypeProfile<1, 3, [ // subvector insert 268 SDTCisSubVecOfVec<2, 1>, SDTCisSameAs<0,1>, SDTCisInt<3> 269]>; 270 271def SDTPrefetch : SDTypeProfile<0, 4, [ // prefetch 272 SDTCisPtrTy<0>, SDTCisSameAs<1, 2>, SDTCisSameAs<1, 3>, SDTCisInt<1> 273]>; 274 275def SDTMemBarrier : SDTypeProfile<0, 5, [ // memory barrier 276 SDTCisSameAs<0,1>, SDTCisSameAs<0,2>, SDTCisSameAs<0,3>, SDTCisSameAs<0,4>, 277 SDTCisInt<0> 278]>; 279def SDTAtomicFence : SDTypeProfile<0, 2, [ 280 SDTCisSameAs<0,1>, SDTCisPtrTy<0> 281]>; 282def SDTAtomic3 : SDTypeProfile<1, 3, [ 283 SDTCisSameAs<0,2>, SDTCisSameAs<0,3>, SDTCisInt<0>, SDTCisPtrTy<1> 284]>; 285def SDTAtomic2 : SDTypeProfile<1, 2, [ 286 SDTCisSameAs<0,2>, SDTCisInt<0>, SDTCisPtrTy<1> 287]>; 288 289def SDTFPAtomic2 : SDTypeProfile<1, 2, [ 290 SDTCisSameAs<0,2>, SDTCisFP<0>, SDTCisPtrTy<1> 291]>; 292 293def SDTAtomicStore : SDTypeProfile<0, 2, [ 294 SDTCisPtrTy<0>, SDTCisInt<1> 295]>; 296def SDTAtomicLoad : SDTypeProfile<1, 1, [ 297 SDTCisInt<0>, SDTCisPtrTy<1> 298]>; 299 300def SDTConvertOp : SDTypeProfile<1, 5, [ //cvtss, su, us, uu, ff, fs, fu, sf, su 301 SDTCisVT<2, OtherVT>, SDTCisVT<3, OtherVT>, SDTCisPtrTy<4>, SDTCisPtrTy<5> 302]>; 303 304class SDCallSeqStart<list<SDTypeConstraint> constraints> : 305 SDTypeProfile<0, 2, constraints>; 306class SDCallSeqEnd<list<SDTypeConstraint> constraints> : 307 SDTypeProfile<0, 2, constraints>; 308 309//===----------------------------------------------------------------------===// 310// Selection DAG Node definitions. 311// 312class SDNode<string opcode, SDTypeProfile typeprof, 313 list<SDNodeProperty> props = [], string sdclass = "SDNode"> 314 : SDPatternOperator { 315 string Opcode = opcode; 316 string SDClass = sdclass; 317 let Properties = props; 318 SDTypeProfile TypeProfile = typeprof; 319} 320 321// Special TableGen-recognized dag nodes 322def set; 323def implicit; 324def node; 325def srcvalue; 326 327def imm : SDNode<"ISD::Constant" , SDTIntLeaf , [], "ConstantSDNode">; 328def timm : SDNode<"ISD::TargetConstant",SDTIntLeaf, [], "ConstantSDNode">; 329def fpimm : SDNode<"ISD::ConstantFP", SDTFPLeaf , [], "ConstantFPSDNode">; 330def vt : SDNode<"ISD::VALUETYPE" , SDTOther , [], "VTSDNode">; 331def bb : SDNode<"ISD::BasicBlock", SDTOther , [], "BasicBlockSDNode">; 332def cond : SDNode<"ISD::CONDCODE" , SDTOther , [], "CondCodeSDNode">; 333def undef : SDNode<"ISD::UNDEF" , SDTUNDEF , []>; 334def vscale : SDNode<"ISD::VSCALE" , SDTIntUnaryOp, []>; 335def globaladdr : SDNode<"ISD::GlobalAddress", SDTPtrLeaf, [], 336 "GlobalAddressSDNode">; 337def tglobaladdr : SDNode<"ISD::TargetGlobalAddress", SDTPtrLeaf, [], 338 "GlobalAddressSDNode">; 339def globaltlsaddr : SDNode<"ISD::GlobalTLSAddress", SDTPtrLeaf, [], 340 "GlobalAddressSDNode">; 341def tglobaltlsaddr : SDNode<"ISD::TargetGlobalTLSAddress", SDTPtrLeaf, [], 342 "GlobalAddressSDNode">; 343def constpool : SDNode<"ISD::ConstantPool", SDTPtrLeaf, [], 344 "ConstantPoolSDNode">; 345def tconstpool : SDNode<"ISD::TargetConstantPool", SDTPtrLeaf, [], 346 "ConstantPoolSDNode">; 347def jumptable : SDNode<"ISD::JumpTable", SDTPtrLeaf, [], 348 "JumpTableSDNode">; 349def tjumptable : SDNode<"ISD::TargetJumpTable", SDTPtrLeaf, [], 350 "JumpTableSDNode">; 351def frameindex : SDNode<"ISD::FrameIndex", SDTPtrLeaf, [], 352 "FrameIndexSDNode">; 353def tframeindex : SDNode<"ISD::TargetFrameIndex", SDTPtrLeaf, [], 354 "FrameIndexSDNode">; 355def externalsym : SDNode<"ISD::ExternalSymbol", SDTPtrLeaf, [], 356 "ExternalSymbolSDNode">; 357def texternalsym: SDNode<"ISD::TargetExternalSymbol", SDTPtrLeaf, [], 358 "ExternalSymbolSDNode">; 359def mcsym: SDNode<"ISD::MCSymbol", SDTPtrLeaf, [], "MCSymbolSDNode">; 360def blockaddress : SDNode<"ISD::BlockAddress", SDTPtrLeaf, [], 361 "BlockAddressSDNode">; 362def tblockaddress: SDNode<"ISD::TargetBlockAddress", SDTPtrLeaf, [], 363 "BlockAddressSDNode">; 364 365def add : SDNode<"ISD::ADD" , SDTIntBinOp , 366 [SDNPCommutative, SDNPAssociative]>; 367def sub : SDNode<"ISD::SUB" , SDTIntBinOp>; 368def mul : SDNode<"ISD::MUL" , SDTIntBinOp, 369 [SDNPCommutative, SDNPAssociative]>; 370def mulhs : SDNode<"ISD::MULHS" , SDTIntBinOp, [SDNPCommutative]>; 371def mulhu : SDNode<"ISD::MULHU" , SDTIntBinOp, [SDNPCommutative]>; 372def smullohi : SDNode<"ISD::SMUL_LOHI" , SDTIntBinHiLoOp, [SDNPCommutative]>; 373def umullohi : SDNode<"ISD::UMUL_LOHI" , SDTIntBinHiLoOp, [SDNPCommutative]>; 374def sdiv : SDNode<"ISD::SDIV" , SDTIntBinOp>; 375def udiv : SDNode<"ISD::UDIV" , SDTIntBinOp>; 376def srem : SDNode<"ISD::SREM" , SDTIntBinOp>; 377def urem : SDNode<"ISD::UREM" , SDTIntBinOp>; 378def sdivrem : SDNode<"ISD::SDIVREM" , SDTIntBinHiLoOp>; 379def udivrem : SDNode<"ISD::UDIVREM" , SDTIntBinHiLoOp>; 380def srl : SDNode<"ISD::SRL" , SDTIntShiftOp>; 381def sra : SDNode<"ISD::SRA" , SDTIntShiftOp>; 382def shl : SDNode<"ISD::SHL" , SDTIntShiftOp>; 383def rotl : SDNode<"ISD::ROTL" , SDTIntShiftOp>; 384def rotr : SDNode<"ISD::ROTR" , SDTIntShiftOp>; 385def fshl : SDNode<"ISD::FSHL" , SDTIntShiftDOp>; 386def fshr : SDNode<"ISD::FSHR" , SDTIntShiftDOp>; 387def and : SDNode<"ISD::AND" , SDTIntBinOp, 388 [SDNPCommutative, SDNPAssociative]>; 389def or : SDNode<"ISD::OR" , SDTIntBinOp, 390 [SDNPCommutative, SDNPAssociative]>; 391def xor : SDNode<"ISD::XOR" , SDTIntBinOp, 392 [SDNPCommutative, SDNPAssociative]>; 393def addc : SDNode<"ISD::ADDC" , SDTIntBinOp, 394 [SDNPCommutative, SDNPOutGlue]>; 395def adde : SDNode<"ISD::ADDE" , SDTIntBinOp, 396 [SDNPCommutative, SDNPOutGlue, SDNPInGlue]>; 397def subc : SDNode<"ISD::SUBC" , SDTIntBinOp, 398 [SDNPOutGlue]>; 399def sube : SDNode<"ISD::SUBE" , SDTIntBinOp, 400 [SDNPOutGlue, SDNPInGlue]>; 401def smin : SDNode<"ISD::SMIN" , SDTIntBinOp, 402 [SDNPCommutative, SDNPAssociative]>; 403def smax : SDNode<"ISD::SMAX" , SDTIntBinOp, 404 [SDNPCommutative, SDNPAssociative]>; 405def umin : SDNode<"ISD::UMIN" , SDTIntBinOp, 406 [SDNPCommutative, SDNPAssociative]>; 407def umax : SDNode<"ISD::UMAX" , SDTIntBinOp, 408 [SDNPCommutative, SDNPAssociative]>; 409 410def saddsat : SDNode<"ISD::SADDSAT" , SDTIntBinOp, [SDNPCommutative]>; 411def uaddsat : SDNode<"ISD::UADDSAT" , SDTIntBinOp, [SDNPCommutative]>; 412def ssubsat : SDNode<"ISD::SSUBSAT" , SDTIntBinOp>; 413def usubsat : SDNode<"ISD::USUBSAT" , SDTIntBinOp>; 414def sshlsat : SDNode<"ISD::SSHLSAT" , SDTIntBinOp>; 415def ushlsat : SDNode<"ISD::USHLSAT" , SDTIntBinOp>; 416 417def smulfix : SDNode<"ISD::SMULFIX" , SDTIntScaledBinOp, [SDNPCommutative]>; 418def smulfixsat : SDNode<"ISD::SMULFIXSAT", SDTIntScaledBinOp, [SDNPCommutative]>; 419def umulfix : SDNode<"ISD::UMULFIX" , SDTIntScaledBinOp, [SDNPCommutative]>; 420def umulfixsat : SDNode<"ISD::UMULFIXSAT", SDTIntScaledBinOp, [SDNPCommutative]>; 421def sdivfix : SDNode<"ISD::SDIVFIX" , SDTIntScaledBinOp>; 422def sdivfixsat : SDNode<"ISD::SDIVFIXSAT", SDTIntScaledBinOp>; 423def udivfix : SDNode<"ISD::UDIVFIX" , SDTIntScaledBinOp>; 424def udivfixsat : SDNode<"ISD::UDIVFIXSAT", SDTIntScaledBinOp>; 425 426def sext_inreg : SDNode<"ISD::SIGN_EXTEND_INREG", SDTExtInreg>; 427def sext_invec : SDNode<"ISD::SIGN_EXTEND_VECTOR_INREG", SDTExtInvec>; 428def zext_invec : SDNode<"ISD::ZERO_EXTEND_VECTOR_INREG", SDTExtInvec>; 429 430def abs : SDNode<"ISD::ABS" , SDTIntUnaryOp>; 431def bitreverse : SDNode<"ISD::BITREVERSE" , SDTIntUnaryOp>; 432def bswap : SDNode<"ISD::BSWAP" , SDTIntUnaryOp>; 433def ctlz : SDNode<"ISD::CTLZ" , SDTIntBitCountUnaryOp>; 434def cttz : SDNode<"ISD::CTTZ" , SDTIntBitCountUnaryOp>; 435def ctpop : SDNode<"ISD::CTPOP" , SDTIntBitCountUnaryOp>; 436def ctlz_zero_undef : SDNode<"ISD::CTLZ_ZERO_UNDEF", SDTIntBitCountUnaryOp>; 437def cttz_zero_undef : SDNode<"ISD::CTTZ_ZERO_UNDEF", SDTIntBitCountUnaryOp>; 438def sext : SDNode<"ISD::SIGN_EXTEND", SDTIntExtendOp>; 439def zext : SDNode<"ISD::ZERO_EXTEND", SDTIntExtendOp>; 440def anyext : SDNode<"ISD::ANY_EXTEND" , SDTIntExtendOp>; 441def trunc : SDNode<"ISD::TRUNCATE" , SDTIntTruncOp>; 442def bitconvert : SDNode<"ISD::BITCAST" , SDTUnaryOp>; 443def addrspacecast : SDNode<"ISD::ADDRSPACECAST", SDTUnaryOp>; 444def extractelt : SDNode<"ISD::EXTRACT_VECTOR_ELT", SDTVecExtract>; 445def insertelt : SDNode<"ISD::INSERT_VECTOR_ELT", SDTVecInsert>; 446 447def vecreduce_add : SDNode<"ISD::VECREDUCE_ADD", SDTVecReduce>; 448def vecreduce_smax : SDNode<"ISD::VECREDUCE_SMAX", SDTVecReduce>; 449def vecreduce_umax : SDNode<"ISD::VECREDUCE_UMAX", SDTVecReduce>; 450def vecreduce_smin : SDNode<"ISD::VECREDUCE_SMIN", SDTVecReduce>; 451def vecreduce_umin : SDNode<"ISD::VECREDUCE_UMIN", SDTVecReduce>; 452def vecreduce_fadd : SDNode<"ISD::VECREDUCE_FADD", SDTFPVecReduce>; 453 454def fadd : SDNode<"ISD::FADD" , SDTFPBinOp, [SDNPCommutative]>; 455def fsub : SDNode<"ISD::FSUB" , SDTFPBinOp>; 456def fmul : SDNode<"ISD::FMUL" , SDTFPBinOp, [SDNPCommutative]>; 457def fdiv : SDNode<"ISD::FDIV" , SDTFPBinOp>; 458def frem : SDNode<"ISD::FREM" , SDTFPBinOp>; 459def fma : SDNode<"ISD::FMA" , SDTFPTernaryOp, [SDNPCommutative]>; 460def fmad : SDNode<"ISD::FMAD" , SDTFPTernaryOp, [SDNPCommutative]>; 461def fabs : SDNode<"ISD::FABS" , SDTFPUnaryOp>; 462def fminnum : SDNode<"ISD::FMINNUM" , SDTFPBinOp, 463 [SDNPCommutative, SDNPAssociative]>; 464def fmaxnum : SDNode<"ISD::FMAXNUM" , SDTFPBinOp, 465 [SDNPCommutative, SDNPAssociative]>; 466def fminnum_ieee : SDNode<"ISD::FMINNUM_IEEE", SDTFPBinOp, 467 [SDNPCommutative]>; 468def fmaxnum_ieee : SDNode<"ISD::FMAXNUM_IEEE", SDTFPBinOp, 469 [SDNPCommutative]>; 470def fminimum : SDNode<"ISD::FMINIMUM" , SDTFPBinOp, 471 [SDNPCommutative, SDNPAssociative]>; 472def fmaximum : SDNode<"ISD::FMAXIMUM" , SDTFPBinOp, 473 [SDNPCommutative, SDNPAssociative]>; 474def fgetsign : SDNode<"ISD::FGETSIGN" , SDTFPToIntOp>; 475def fcanonicalize : SDNode<"ISD::FCANONICALIZE", SDTFPUnaryOp>; 476def fneg : SDNode<"ISD::FNEG" , SDTFPUnaryOp>; 477def fsqrt : SDNode<"ISD::FSQRT" , SDTFPUnaryOp>; 478def fsin : SDNode<"ISD::FSIN" , SDTFPUnaryOp>; 479def fcos : SDNode<"ISD::FCOS" , SDTFPUnaryOp>; 480def fexp2 : SDNode<"ISD::FEXP2" , SDTFPUnaryOp>; 481def fpow : SDNode<"ISD::FPOW" , SDTFPBinOp>; 482def flog2 : SDNode<"ISD::FLOG2" , SDTFPUnaryOp>; 483def frint : SDNode<"ISD::FRINT" , SDTFPUnaryOp>; 484def ftrunc : SDNode<"ISD::FTRUNC" , SDTFPUnaryOp>; 485def fceil : SDNode<"ISD::FCEIL" , SDTFPUnaryOp>; 486def ffloor : SDNode<"ISD::FFLOOR" , SDTFPUnaryOp>; 487def fnearbyint : SDNode<"ISD::FNEARBYINT" , SDTFPUnaryOp>; 488def fround : SDNode<"ISD::FROUND" , SDTFPUnaryOp>; 489def froundeven : SDNode<"ISD::FROUNDEVEN" , SDTFPUnaryOp>; 490 491def lround : SDNode<"ISD::LROUND" , SDTFPToIntOp>; 492def llround : SDNode<"ISD::LLROUND" , SDTFPToIntOp>; 493def lrint : SDNode<"ISD::LRINT" , SDTFPToIntOp>; 494def llrint : SDNode<"ISD::LLRINT" , SDTFPToIntOp>; 495 496def fpround : SDNode<"ISD::FP_ROUND" , SDTFPRoundOp>; 497def fpextend : SDNode<"ISD::FP_EXTEND" , SDTFPExtendOp>; 498def fcopysign : SDNode<"ISD::FCOPYSIGN" , SDTFPSignOp>; 499 500def sint_to_fp : SDNode<"ISD::SINT_TO_FP" , SDTIntToFPOp>; 501def uint_to_fp : SDNode<"ISD::UINT_TO_FP" , SDTIntToFPOp>; 502def fp_to_sint : SDNode<"ISD::FP_TO_SINT" , SDTFPToIntOp>; 503def fp_to_uint : SDNode<"ISD::FP_TO_UINT" , SDTFPToIntOp>; 504def fp_to_sint_sat : SDNode<"ISD::FP_TO_SINT_SAT" , SDTFPToIntSatOp>; 505def fp_to_uint_sat : SDNode<"ISD::FP_TO_UINT_SAT" , SDTFPToIntSatOp>; 506def f16_to_fp : SDNode<"ISD::FP16_TO_FP" , SDTIntToFPOp>; 507def fp_to_f16 : SDNode<"ISD::FP_TO_FP16" , SDTFPToIntOp>; 508 509def strict_fadd : SDNode<"ISD::STRICT_FADD", 510 SDTFPBinOp, [SDNPHasChain, SDNPCommutative]>; 511def strict_fsub : SDNode<"ISD::STRICT_FSUB", 512 SDTFPBinOp, [SDNPHasChain]>; 513def strict_fmul : SDNode<"ISD::STRICT_FMUL", 514 SDTFPBinOp, [SDNPHasChain, SDNPCommutative]>; 515def strict_fdiv : SDNode<"ISD::STRICT_FDIV", 516 SDTFPBinOp, [SDNPHasChain]>; 517def strict_frem : SDNode<"ISD::STRICT_FREM", 518 SDTFPBinOp, [SDNPHasChain]>; 519def strict_fma : SDNode<"ISD::STRICT_FMA", 520 SDTFPTernaryOp, [SDNPHasChain, SDNPCommutative]>; 521def strict_fsqrt : SDNode<"ISD::STRICT_FSQRT", 522 SDTFPUnaryOp, [SDNPHasChain]>; 523def strict_fsin : SDNode<"ISD::STRICT_FSIN", 524 SDTFPUnaryOp, [SDNPHasChain]>; 525def strict_fcos : SDNode<"ISD::STRICT_FCOS", 526 SDTFPUnaryOp, [SDNPHasChain]>; 527def strict_fexp2 : SDNode<"ISD::STRICT_FEXP2", 528 SDTFPUnaryOp, [SDNPHasChain]>; 529def strict_fpow : SDNode<"ISD::STRICT_FPOW", 530 SDTFPBinOp, [SDNPHasChain]>; 531def strict_flog2 : SDNode<"ISD::STRICT_FLOG2", 532 SDTFPUnaryOp, [SDNPHasChain]>; 533def strict_frint : SDNode<"ISD::STRICT_FRINT", 534 SDTFPUnaryOp, [SDNPHasChain]>; 535def strict_lrint : SDNode<"ISD::STRICT_LRINT", 536 SDTFPToIntOp, [SDNPHasChain]>; 537def strict_llrint : SDNode<"ISD::STRICT_LLRINT", 538 SDTFPToIntOp, [SDNPHasChain]>; 539def strict_fnearbyint : SDNode<"ISD::STRICT_FNEARBYINT", 540 SDTFPUnaryOp, [SDNPHasChain]>; 541def strict_fceil : SDNode<"ISD::STRICT_FCEIL", 542 SDTFPUnaryOp, [SDNPHasChain]>; 543def strict_ffloor : SDNode<"ISD::STRICT_FFLOOR", 544 SDTFPUnaryOp, [SDNPHasChain]>; 545def strict_lround : SDNode<"ISD::STRICT_LROUND", 546 SDTFPToIntOp, [SDNPHasChain]>; 547def strict_llround : SDNode<"ISD::STRICT_LLROUND", 548 SDTFPToIntOp, [SDNPHasChain]>; 549def strict_fround : SDNode<"ISD::STRICT_FROUND", 550 SDTFPUnaryOp, [SDNPHasChain]>; 551def strict_froundeven : SDNode<"ISD::STRICT_FROUNDEVEN", 552 SDTFPUnaryOp, [SDNPHasChain]>; 553def strict_ftrunc : SDNode<"ISD::STRICT_FTRUNC", 554 SDTFPUnaryOp, [SDNPHasChain]>; 555def strict_fminnum : SDNode<"ISD::STRICT_FMINNUM", 556 SDTFPBinOp, [SDNPHasChain, 557 SDNPCommutative, SDNPAssociative]>; 558def strict_fmaxnum : SDNode<"ISD::STRICT_FMAXNUM", 559 SDTFPBinOp, [SDNPHasChain, 560 SDNPCommutative, SDNPAssociative]>; 561def strict_fminimum : SDNode<"ISD::STRICT_FMINIMUM", 562 SDTFPBinOp, [SDNPHasChain, 563 SDNPCommutative, SDNPAssociative]>; 564def strict_fmaximum : SDNode<"ISD::STRICT_FMAXIMUM", 565 SDTFPBinOp, [SDNPHasChain, 566 SDNPCommutative, SDNPAssociative]>; 567def strict_fpround : SDNode<"ISD::STRICT_FP_ROUND", 568 SDTFPRoundOp, [SDNPHasChain]>; 569def strict_fpextend : SDNode<"ISD::STRICT_FP_EXTEND", 570 SDTFPExtendOp, [SDNPHasChain]>; 571def strict_fp_to_sint : SDNode<"ISD::STRICT_FP_TO_SINT", 572 SDTFPToIntOp, [SDNPHasChain]>; 573def strict_fp_to_uint : SDNode<"ISD::STRICT_FP_TO_UINT", 574 SDTFPToIntOp, [SDNPHasChain]>; 575def strict_sint_to_fp : SDNode<"ISD::STRICT_SINT_TO_FP", 576 SDTIntToFPOp, [SDNPHasChain]>; 577def strict_uint_to_fp : SDNode<"ISD::STRICT_UINT_TO_FP", 578 SDTIntToFPOp, [SDNPHasChain]>; 579def strict_fsetcc : SDNode<"ISD::STRICT_FSETCC", SDTSetCC, [SDNPHasChain]>; 580def strict_fsetccs : SDNode<"ISD::STRICT_FSETCCS", SDTSetCC, [SDNPHasChain]>; 581 582def setcc : SDNode<"ISD::SETCC" , SDTSetCC>; 583def select : SDNode<"ISD::SELECT" , SDTSelect>; 584def vselect : SDNode<"ISD::VSELECT" , SDTVSelect>; 585def selectcc : SDNode<"ISD::SELECT_CC" , SDTSelectCC>; 586 587def brcc : SDNode<"ISD::BR_CC" , SDTBrCC, [SDNPHasChain]>; 588def brcond : SDNode<"ISD::BRCOND" , SDTBrcond, [SDNPHasChain]>; 589def brind : SDNode<"ISD::BRIND" , SDTBrind, [SDNPHasChain]>; 590def br : SDNode<"ISD::BR" , SDTBr, [SDNPHasChain]>; 591def catchret : SDNode<"ISD::CATCHRET" , SDTCatchret, 592 [SDNPHasChain, SDNPSideEffect]>; 593def cleanupret : SDNode<"ISD::CLEANUPRET" , SDTNone, [SDNPHasChain]>; 594 595def trap : SDNode<"ISD::TRAP" , SDTNone, 596 [SDNPHasChain, SDNPSideEffect]>; 597def debugtrap : SDNode<"ISD::DEBUGTRAP" , SDTNone, 598 [SDNPHasChain, SDNPSideEffect]>; 599def ubsantrap : SDNode<"ISD::UBSANTRAP" , SDTUBSANTrap, 600 [SDNPHasChain, SDNPSideEffect]>; 601 602def prefetch : SDNode<"ISD::PREFETCH" , SDTPrefetch, 603 [SDNPHasChain, SDNPMayLoad, SDNPMayStore, 604 SDNPMemOperand]>; 605 606def readcyclecounter : SDNode<"ISD::READCYCLECOUNTER", SDTIntLeaf, 607 [SDNPHasChain, SDNPSideEffect]>; 608 609def atomic_fence : SDNode<"ISD::ATOMIC_FENCE" , SDTAtomicFence, 610 [SDNPHasChain, SDNPSideEffect]>; 611 612def atomic_cmp_swap : SDNode<"ISD::ATOMIC_CMP_SWAP" , SDTAtomic3, 613 [SDNPHasChain, SDNPMayStore, SDNPMayLoad, SDNPMemOperand]>; 614def atomic_load_add : SDNode<"ISD::ATOMIC_LOAD_ADD" , SDTAtomic2, 615 [SDNPHasChain, SDNPMayStore, SDNPMayLoad, SDNPMemOperand]>; 616def atomic_swap : SDNode<"ISD::ATOMIC_SWAP", SDTAtomic2, 617 [SDNPHasChain, SDNPMayStore, SDNPMayLoad, SDNPMemOperand]>; 618def atomic_load_sub : SDNode<"ISD::ATOMIC_LOAD_SUB" , SDTAtomic2, 619 [SDNPHasChain, SDNPMayStore, SDNPMayLoad, SDNPMemOperand]>; 620def atomic_load_and : SDNode<"ISD::ATOMIC_LOAD_AND" , SDTAtomic2, 621 [SDNPHasChain, SDNPMayStore, SDNPMayLoad, SDNPMemOperand]>; 622def atomic_load_clr : SDNode<"ISD::ATOMIC_LOAD_CLR" , SDTAtomic2, 623 [SDNPHasChain, SDNPMayStore, SDNPMayLoad, SDNPMemOperand]>; 624def atomic_load_or : SDNode<"ISD::ATOMIC_LOAD_OR" , SDTAtomic2, 625 [SDNPHasChain, SDNPMayStore, SDNPMayLoad, SDNPMemOperand]>; 626def atomic_load_xor : SDNode<"ISD::ATOMIC_LOAD_XOR" , SDTAtomic2, 627 [SDNPHasChain, SDNPMayStore, SDNPMayLoad, SDNPMemOperand]>; 628def atomic_load_nand: SDNode<"ISD::ATOMIC_LOAD_NAND", SDTAtomic2, 629 [SDNPHasChain, SDNPMayStore, SDNPMayLoad, SDNPMemOperand]>; 630def atomic_load_min : SDNode<"ISD::ATOMIC_LOAD_MIN", SDTAtomic2, 631 [SDNPHasChain, SDNPMayStore, SDNPMayLoad, SDNPMemOperand]>; 632def atomic_load_max : SDNode<"ISD::ATOMIC_LOAD_MAX", SDTAtomic2, 633 [SDNPHasChain, SDNPMayStore, SDNPMayLoad, SDNPMemOperand]>; 634def atomic_load_umin : SDNode<"ISD::ATOMIC_LOAD_UMIN", SDTAtomic2, 635 [SDNPHasChain, SDNPMayStore, SDNPMayLoad, SDNPMemOperand]>; 636def atomic_load_umax : SDNode<"ISD::ATOMIC_LOAD_UMAX", SDTAtomic2, 637 [SDNPHasChain, SDNPMayStore, SDNPMayLoad, SDNPMemOperand]>; 638def atomic_load_fadd : SDNode<"ISD::ATOMIC_LOAD_FADD" , SDTFPAtomic2, 639 [SDNPHasChain, SDNPMayStore, SDNPMayLoad, SDNPMemOperand]>; 640def atomic_load_fsub : SDNode<"ISD::ATOMIC_LOAD_FSUB" , SDTFPAtomic2, 641 [SDNPHasChain, SDNPMayStore, SDNPMayLoad, SDNPMemOperand]>; 642 643def atomic_load : SDNode<"ISD::ATOMIC_LOAD", SDTAtomicLoad, 644 [SDNPHasChain, SDNPMayLoad, SDNPMemOperand]>; 645def atomic_store : SDNode<"ISD::ATOMIC_STORE", SDTAtomicStore, 646 [SDNPHasChain, SDNPMayStore, SDNPMemOperand]>; 647 648def masked_st : SDNode<"ISD::MSTORE", SDTMaskedStore, 649 [SDNPHasChain, SDNPMayStore, SDNPMemOperand]>; 650def masked_ld : SDNode<"ISD::MLOAD", SDTMaskedLoad, 651 [SDNPHasChain, SDNPMayLoad, SDNPMemOperand]>; 652 653// Do not use ld, st directly. Use load, extload, sextload, zextload, store, 654// and truncst (see below). 655def ld : SDNode<"ISD::LOAD" , SDTLoad, 656 [SDNPHasChain, SDNPMayLoad, SDNPMemOperand]>; 657def st : SDNode<"ISD::STORE" , SDTStore, 658 [SDNPHasChain, SDNPMayStore, SDNPMemOperand]>; 659def ist : SDNode<"ISD::STORE" , SDTIStore, 660 [SDNPHasChain, SDNPMayStore, SDNPMemOperand]>; 661 662def vector_shuffle : SDNode<"ISD::VECTOR_SHUFFLE", SDTVecShuffle, []>; 663def vector_reverse : SDNode<"ISD::VECTOR_REVERSE", SDTVecReverse>; 664def vector_splice : SDNode<"ISD::VECTOR_SPLICE", SDTVecSlice, []>; 665def build_vector : SDNode<"ISD::BUILD_VECTOR", SDTypeProfile<1, -1, []>, []>; 666def splat_vector : SDNode<"ISD::SPLAT_VECTOR", SDTypeProfile<1, 1, []>, []>; 667def step_vector : SDNode<"ISD::STEP_VECTOR", SDTypeProfile<1, 1, 668 [SDTCisVec<0>, SDTCisInt<1>]>, []>; 669def scalar_to_vector : SDNode<"ISD::SCALAR_TO_VECTOR", SDTypeProfile<1, 1, []>, 670 []>; 671 672// vector_extract/vector_insert are deprecated. extractelt/insertelt 673// are preferred. 674def vector_extract : SDNode<"ISD::EXTRACT_VECTOR_ELT", 675 SDTypeProfile<1, 2, [SDTCisPtrTy<2>]>, []>; 676def vector_insert : SDNode<"ISD::INSERT_VECTOR_ELT", 677 SDTypeProfile<1, 3, [SDTCisSameAs<0, 1>, SDTCisPtrTy<3>]>, []>; 678def concat_vectors : SDNode<"ISD::CONCAT_VECTORS", 679 SDTypeProfile<1, 2, [SDTCisSubVecOfVec<1, 0>, SDTCisSameAs<1, 2>]>,[]>; 680 681// This operator does not do subvector type checking. The ARM 682// backend, at least, needs it. 683def vector_extract_subvec : SDNode<"ISD::EXTRACT_SUBVECTOR", 684 SDTypeProfile<1, 2, [SDTCisInt<2>, SDTCisVec<1>, SDTCisVec<0>]>, 685 []>; 686 687// This operator does subvector type checking. 688def extract_subvector : SDNode<"ISD::EXTRACT_SUBVECTOR", SDTSubVecExtract, []>; 689def insert_subvector : SDNode<"ISD::INSERT_SUBVECTOR", SDTSubVecInsert, []>; 690 691// Nodes for intrinsics, you should use the intrinsic itself and let tblgen use 692// these internally. Don't reference these directly. 693def intrinsic_void : SDNode<"ISD::INTRINSIC_VOID", 694 SDTypeProfile<0, -1, [SDTCisPtrTy<0>]>, 695 [SDNPHasChain]>; 696def intrinsic_w_chain : SDNode<"ISD::INTRINSIC_W_CHAIN", 697 SDTypeProfile<1, -1, [SDTCisPtrTy<1>]>, 698 [SDNPHasChain]>; 699def intrinsic_wo_chain : SDNode<"ISD::INTRINSIC_WO_CHAIN", 700 SDTypeProfile<1, -1, [SDTCisPtrTy<1>]>, []>; 701 702def SDT_assert : SDTypeProfile<1, 1, 703 [SDTCisInt<0>, SDTCisInt<1>, SDTCisSameAs<1, 0>]>; 704def assertsext : SDNode<"ISD::AssertSext", SDT_assert>; 705def assertzext : SDNode<"ISD::AssertZext", SDT_assert>; 706def assertalign : SDNode<"ISD::AssertAlign", SDT_assert>; 707 708 709//===----------------------------------------------------------------------===// 710// Selection DAG Condition Codes 711 712class CondCode<string fcmpName = "", string icmpName = ""> { 713 string ICmpPredicate = icmpName; 714 string FCmpPredicate = fcmpName; 715} 716 717// ISD::CondCode enums, and mapping to CmpInst::Predicate names 718def SETOEQ : CondCode<"FCMP_OEQ">; 719def SETOGT : CondCode<"FCMP_OGT">; 720def SETOGE : CondCode<"FCMP_OGE">; 721def SETOLT : CondCode<"FCMP_OLT">; 722def SETOLE : CondCode<"FCMP_OLE">; 723def SETONE : CondCode<"FCMP_ONE">; 724def SETO : CondCode<"FCMP_ORD">; 725def SETUO : CondCode<"FCMP_UNO">; 726def SETUEQ : CondCode<"FCMP_UEQ">; 727def SETUGT : CondCode<"FCMP_UGT", "ICMP_UGT">; 728def SETUGE : CondCode<"FCMP_UGE", "ICMP_UGE">; 729def SETULT : CondCode<"FCMP_ULT", "ICMP_ULT">; 730def SETULE : CondCode<"FCMP_ULE", "ICMP_ULE">; 731def SETUNE : CondCode<"FCMP_UNE">; 732def SETEQ : CondCode<"", "ICMP_EQ">; 733def SETGT : CondCode<"", "ICMP_SGT">; 734def SETGE : CondCode<"", "ICMP_SGE">; 735def SETLT : CondCode<"", "ICMP_SLT">; 736def SETLE : CondCode<"", "ICMP_SLE">; 737def SETNE : CondCode<"", "ICMP_NE">; 738 739//===----------------------------------------------------------------------===// 740// Selection DAG Node Transformation Functions. 741// 742// This mechanism allows targets to manipulate nodes in the output DAG once a 743// match has been formed. This is typically used to manipulate immediate 744// values. 745// 746class SDNodeXForm<SDNode opc, code xformFunction> { 747 SDNode Opcode = opc; 748 code XFormFunction = xformFunction; 749} 750 751def NOOP_SDNodeXForm : SDNodeXForm<imm, [{}]>; 752 753//===----------------------------------------------------------------------===// 754// Selection DAG Pattern Fragments. 755// 756// Pattern fragments are reusable chunks of dags that match specific things. 757// They can take arguments and have C++ predicates that control whether they 758// match. They are intended to make the patterns for common instructions more 759// compact and readable. 760// 761 762/// PatFrags - Represents a set of pattern fragments. Each single fragment 763/// can match something on the DAG, from a single node to multiple nested other 764/// fragments. The whole set of fragments matches if any of the single 765/// fragments match. This allows e.g. matching and "add with overflow" and 766/// a regular "add" with the same fragment set. 767/// 768class PatFrags<dag ops, list<dag> frags, code pred = [{}], 769 SDNodeXForm xform = NOOP_SDNodeXForm> : SDPatternOperator { 770 dag Operands = ops; 771 list<dag> Fragments = frags; 772 code PredicateCode = pred; 773 code GISelPredicateCode = [{}]; 774 code ImmediateCode = [{}]; 775 SDNodeXForm OperandTransform = xform; 776 777 // When this is set, the PredicateCode may refer to a constant Operands 778 // vector which contains the captured nodes of the DAG, in the order listed 779 // by the Operands field above. 780 // 781 // This is useful when Fragments involves associative / commutative 782 // operators: a single piece of code can easily refer to all operands even 783 // when re-associated / commuted variants of the fragment are matched. 784 bit PredicateCodeUsesOperands = false; 785 786 // Define a few pre-packaged predicates. This helps GlobalISel import 787 // existing rules from SelectionDAG for many common cases. 788 // They will be tested prior to the code in pred and must not be used in 789 // ImmLeaf and its subclasses. 790 791 // Is the desired pre-packaged predicate for a load? 792 bit IsLoad = ?; 793 // Is the desired pre-packaged predicate for a store? 794 bit IsStore = ?; 795 // Is the desired pre-packaged predicate for an atomic? 796 bit IsAtomic = ?; 797 798 // cast<LoadSDNode>(N)->getAddressingMode() == ISD::UNINDEXED; 799 // cast<StoreSDNode>(N)->getAddressingMode() == ISD::UNINDEXED; 800 bit IsUnindexed = ?; 801 802 // cast<LoadSDNode>(N)->getExtensionType() != ISD::NON_EXTLOAD 803 bit IsNonExtLoad = ?; 804 // cast<LoadSDNode>(N)->getExtensionType() == ISD::EXTLOAD; 805 bit IsAnyExtLoad = ?; 806 // cast<LoadSDNode>(N)->getExtensionType() == ISD::SEXTLOAD; 807 bit IsSignExtLoad = ?; 808 // cast<LoadSDNode>(N)->getExtensionType() == ISD::ZEXTLOAD; 809 bit IsZeroExtLoad = ?; 810 // !cast<StoreSDNode>(N)->isTruncatingStore(); 811 // cast<StoreSDNode>(N)->isTruncatingStore(); 812 bit IsTruncStore = ?; 813 814 // cast<MemSDNode>(N)->getAddressSpace() == 815 // If this empty, accept any address space. 816 list<int> AddressSpaces = ?; 817 818 // cast<MemSDNode>(N)->getAlignment() >= 819 // If this is empty, accept any alignment. 820 int MinAlignment = ?; 821 822 // cast<AtomicSDNode>(N)->getOrdering() == AtomicOrdering::Monotonic 823 bit IsAtomicOrderingMonotonic = ?; 824 // cast<AtomicSDNode>(N)->getOrdering() == AtomicOrdering::Acquire 825 bit IsAtomicOrderingAcquire = ?; 826 // cast<AtomicSDNode>(N)->getOrdering() == AtomicOrdering::Release 827 bit IsAtomicOrderingRelease = ?; 828 // cast<AtomicSDNode>(N)->getOrdering() == AtomicOrdering::AcquireRelease 829 bit IsAtomicOrderingAcquireRelease = ?; 830 // cast<AtomicSDNode>(N)->getOrdering() == AtomicOrdering::SequentiallyConsistent 831 bit IsAtomicOrderingSequentiallyConsistent = ?; 832 833 // isAcquireOrStronger(cast<AtomicSDNode>(N)->getOrdering()) 834 // !isAcquireOrStronger(cast<AtomicSDNode>(N)->getOrdering()) 835 bit IsAtomicOrderingAcquireOrStronger = ?; 836 837 // isReleaseOrStronger(cast<AtomicSDNode>(N)->getOrdering()) 838 // !isReleaseOrStronger(cast<AtomicSDNode>(N)->getOrdering()) 839 bit IsAtomicOrderingReleaseOrStronger = ?; 840 841 // cast<LoadSDNode>(N)->getMemoryVT() == MVT::<VT>; 842 // cast<StoreSDNode>(N)->getMemoryVT() == MVT::<VT>; 843 ValueType MemoryVT = ?; 844 // cast<LoadSDNode>(N)->getMemoryVT().getScalarType() == MVT::<VT>; 845 // cast<StoreSDNode>(N)->getMemoryVT().getScalarType() == MVT::<VT>; 846 ValueType ScalarMemoryVT = ?; 847} 848 849// PatFrag - A version of PatFrags matching only a single fragment. 850class PatFrag<dag ops, dag frag, code pred = [{}], 851 SDNodeXForm xform = NOOP_SDNodeXForm> 852 : PatFrags<ops, [frag], pred, xform>; 853 854// OutPatFrag is a pattern fragment that is used as part of an output pattern 855// (not an input pattern). These do not have predicates or transforms, but are 856// used to avoid repeated subexpressions in output patterns. 857class OutPatFrag<dag ops, dag frag> 858 : PatFrag<ops, frag, [{}], NOOP_SDNodeXForm>; 859 860// PatLeaf's are pattern fragments that have no operands. This is just a helper 861// to define immediates and other common things concisely. 862class PatLeaf<dag frag, code pred = [{}], SDNodeXForm xform = NOOP_SDNodeXForm> 863 : PatFrag<(ops), frag, pred, xform>; 864 865 866// ImmLeaf is a pattern fragment with a constraint on the immediate. The 867// constraint is a function that is run on the immediate (always with the value 868// sign extended out to an int64_t) as Imm. For example: 869// 870// def immSExt8 : ImmLeaf<i16, [{ return (char)Imm == Imm; }]>; 871// 872// this is a more convenient form to match 'imm' nodes in than PatLeaf and also 873// is preferred over using PatLeaf because it allows the code generator to 874// reason more about the constraint. 875// 876// If FastIsel should ignore all instructions that have an operand of this type, 877// the FastIselShouldIgnore flag can be set. This is an optimization to reduce 878// the code size of the generated fast instruction selector. 879class ImmLeaf<ValueType vt, code pred, SDNodeXForm xform = NOOP_SDNodeXForm, 880 SDNode ImmNode = imm> 881 : PatFrag<(ops), (vt ImmNode), [{}], xform> { 882 let ImmediateCode = pred; 883 bit FastIselShouldIgnore = false; 884 885 // Is the data type of the immediate an APInt? 886 bit IsAPInt = false; 887 888 // Is the data type of the immediate an APFloat? 889 bit IsAPFloat = false; 890} 891 892// Convenience wrapper for ImmLeaf to use timm/TargetConstant instead 893// of imm/Constant. 894class TImmLeaf<ValueType vt, code pred, SDNodeXForm xform = NOOP_SDNodeXForm, 895 SDNode ImmNode = timm> : ImmLeaf<vt, pred, xform, ImmNode>; 896 897// An ImmLeaf except that Imm is an APInt. This is useful when you need to 898// zero-extend the immediate instead of sign-extend it. 899// 900// Note that FastISel does not currently understand IntImmLeaf and will not 901// generate code for rules that make use of it. As such, it does not make sense 902// to replace ImmLeaf with IntImmLeaf. However, replacing PatLeaf with an 903// IntImmLeaf will allow GlobalISel to import the rule. 904class IntImmLeaf<ValueType vt, code pred, SDNodeXForm xform = NOOP_SDNodeXForm> 905 : ImmLeaf<vt, pred, xform> { 906 let IsAPInt = true; 907 let FastIselShouldIgnore = true; 908} 909 910// An ImmLeaf except that Imm is an APFloat. 911// 912// Note that FastISel does not currently understand FPImmLeaf and will not 913// generate code for rules that make use of it. 914class FPImmLeaf<ValueType vt, code pred, SDNodeXForm xform = NOOP_SDNodeXForm> 915 : ImmLeaf<vt, pred, xform, fpimm> { 916 let IsAPFloat = true; 917 let FastIselShouldIgnore = true; 918} 919 920// Leaf fragments. 921 922def vtInt : PatLeaf<(vt), [{ return N->getVT().isInteger(); }]>; 923def vtFP : PatLeaf<(vt), [{ return N->getVT().isFloatingPoint(); }]>; 924 925// Use ISD::isConstantSplatVectorAllOnes or ISD::isConstantSplatVectorAllZeros 926// to look for the corresponding build_vector or splat_vector. Will look through 927// bitcasts and check for either opcode, except when used as a pattern root. 928// When used as a pattern root, only fixed-length build_vector and scalable 929// splat_vector are supported. 930def immAllOnesV : SDPatternOperator; // ISD::isConstantSplatVectorAllOnes 931def immAllZerosV : SDPatternOperator; // ISD::isConstantSplatVectorAllZeros 932 933// Other helper fragments. 934def not : PatFrag<(ops node:$in), (xor node:$in, -1)>; 935def vnot : PatFrag<(ops node:$in), (xor node:$in, immAllOnesV)>; 936def ineg : PatFrag<(ops node:$in), (sub 0, node:$in)>; 937 938def zanyext : PatFrags<(ops node:$op), 939 [(zext node:$op), 940 (anyext node:$op)]>; 941 942// null_frag - The null pattern operator is used in multiclass instantiations 943// which accept an SDPatternOperator for use in matching patterns for internal 944// definitions. When expanding a pattern, if the null fragment is referenced 945// in the expansion, the pattern is discarded and it is as-if '[]' had been 946// specified. This allows multiclasses to have the isel patterns be optional. 947def null_frag : SDPatternOperator; 948 949// load fragments. 950def unindexedload : PatFrag<(ops node:$ptr), (ld node:$ptr)> { 951 let IsLoad = true; 952 let IsUnindexed = true; 953} 954def load : PatFrag<(ops node:$ptr), (unindexedload node:$ptr)> { 955 let IsLoad = true; 956 let IsNonExtLoad = true; 957} 958 959// extending load fragments. 960def extload : PatFrag<(ops node:$ptr), (unindexedload node:$ptr)> { 961 let IsLoad = true; 962 let IsAnyExtLoad = true; 963} 964def sextload : PatFrag<(ops node:$ptr), (unindexedload node:$ptr)> { 965 let IsLoad = true; 966 let IsSignExtLoad = true; 967} 968def zextload : PatFrag<(ops node:$ptr), (unindexedload node:$ptr)> { 969 let IsLoad = true; 970 let IsZeroExtLoad = true; 971} 972 973def extloadi1 : PatFrag<(ops node:$ptr), (extload node:$ptr)> { 974 let IsLoad = true; 975 let MemoryVT = i1; 976} 977def extloadi8 : PatFrag<(ops node:$ptr), (extload node:$ptr)> { 978 let IsLoad = true; 979 let MemoryVT = i8; 980} 981def extloadi16 : PatFrag<(ops node:$ptr), (extload node:$ptr)> { 982 let IsLoad = true; 983 let MemoryVT = i16; 984} 985def extloadi32 : PatFrag<(ops node:$ptr), (extload node:$ptr)> { 986 let IsLoad = true; 987 let MemoryVT = i32; 988} 989def extloadf16 : PatFrag<(ops node:$ptr), (extload node:$ptr)> { 990 let IsLoad = true; 991 let MemoryVT = f16; 992} 993def extloadf32 : PatFrag<(ops node:$ptr), (extload node:$ptr)> { 994 let IsLoad = true; 995 let MemoryVT = f32; 996} 997def extloadf64 : PatFrag<(ops node:$ptr), (extload node:$ptr)> { 998 let IsLoad = true; 999 let MemoryVT = f64; 1000} 1001 1002def sextloadi1 : PatFrag<(ops node:$ptr), (sextload node:$ptr)> { 1003 let IsLoad = true; 1004 let MemoryVT = i1; 1005} 1006def sextloadi8 : PatFrag<(ops node:$ptr), (sextload node:$ptr)> { 1007 let IsLoad = true; 1008 let MemoryVT = i8; 1009} 1010def sextloadi16 : PatFrag<(ops node:$ptr), (sextload node:$ptr)> { 1011 let IsLoad = true; 1012 let MemoryVT = i16; 1013} 1014def sextloadi32 : PatFrag<(ops node:$ptr), (sextload node:$ptr)> { 1015 let IsLoad = true; 1016 let MemoryVT = i32; 1017} 1018 1019def zextloadi1 : PatFrag<(ops node:$ptr), (zextload node:$ptr)> { 1020 let IsLoad = true; 1021 let MemoryVT = i1; 1022} 1023def zextloadi8 : PatFrag<(ops node:$ptr), (zextload node:$ptr)> { 1024 let IsLoad = true; 1025 let MemoryVT = i8; 1026} 1027def zextloadi16 : PatFrag<(ops node:$ptr), (zextload node:$ptr)> { 1028 let IsLoad = true; 1029 let MemoryVT = i16; 1030} 1031def zextloadi32 : PatFrag<(ops node:$ptr), (zextload node:$ptr)> { 1032 let IsLoad = true; 1033 let MemoryVT = i32; 1034} 1035 1036def extloadvi1 : PatFrag<(ops node:$ptr), (extload node:$ptr)> { 1037 let IsLoad = true; 1038 let ScalarMemoryVT = i1; 1039} 1040def extloadvi8 : PatFrag<(ops node:$ptr), (extload node:$ptr)> { 1041 let IsLoad = true; 1042 let ScalarMemoryVT = i8; 1043} 1044def extloadvi16 : PatFrag<(ops node:$ptr), (extload node:$ptr)> { 1045 let IsLoad = true; 1046 let ScalarMemoryVT = i16; 1047} 1048def extloadvi32 : PatFrag<(ops node:$ptr), (extload node:$ptr)> { 1049 let IsLoad = true; 1050 let ScalarMemoryVT = i32; 1051} 1052def extloadvf32 : PatFrag<(ops node:$ptr), (extload node:$ptr)> { 1053 let IsLoad = true; 1054 let ScalarMemoryVT = f32; 1055} 1056def extloadvf64 : PatFrag<(ops node:$ptr), (extload node:$ptr)> { 1057 let IsLoad = true; 1058 let ScalarMemoryVT = f64; 1059} 1060 1061def sextloadvi1 : PatFrag<(ops node:$ptr), (sextload node:$ptr)> { 1062 let IsLoad = true; 1063 let ScalarMemoryVT = i1; 1064} 1065def sextloadvi8 : PatFrag<(ops node:$ptr), (sextload node:$ptr)> { 1066 let IsLoad = true; 1067 let ScalarMemoryVT = i8; 1068} 1069def sextloadvi16 : PatFrag<(ops node:$ptr), (sextload node:$ptr)> { 1070 let IsLoad = true; 1071 let ScalarMemoryVT = i16; 1072} 1073def sextloadvi32 : PatFrag<(ops node:$ptr), (sextload node:$ptr)> { 1074 let IsLoad = true; 1075 let ScalarMemoryVT = i32; 1076} 1077 1078def zextloadvi1 : PatFrag<(ops node:$ptr), (zextload node:$ptr)> { 1079 let IsLoad = true; 1080 let ScalarMemoryVT = i1; 1081} 1082def zextloadvi8 : PatFrag<(ops node:$ptr), (zextload node:$ptr)> { 1083 let IsLoad = true; 1084 let ScalarMemoryVT = i8; 1085} 1086def zextloadvi16 : PatFrag<(ops node:$ptr), (zextload node:$ptr)> { 1087 let IsLoad = true; 1088 let ScalarMemoryVT = i16; 1089} 1090def zextloadvi32 : PatFrag<(ops node:$ptr), (zextload node:$ptr)> { 1091 let IsLoad = true; 1092 let ScalarMemoryVT = i32; 1093} 1094 1095// store fragments. 1096def unindexedstore : PatFrag<(ops node:$val, node:$ptr), 1097 (st node:$val, node:$ptr)> { 1098 let IsStore = true; 1099 let IsUnindexed = true; 1100} 1101def store : PatFrag<(ops node:$val, node:$ptr), 1102 (unindexedstore node:$val, node:$ptr)> { 1103 let IsStore = true; 1104 let IsTruncStore = false; 1105} 1106 1107// truncstore fragments. 1108def truncstore : PatFrag<(ops node:$val, node:$ptr), 1109 (unindexedstore node:$val, node:$ptr)> { 1110 let IsStore = true; 1111 let IsTruncStore = true; 1112} 1113def truncstorei8 : PatFrag<(ops node:$val, node:$ptr), 1114 (truncstore node:$val, node:$ptr)> { 1115 let IsStore = true; 1116 let MemoryVT = i8; 1117 let IsTruncStore = true; 1118} 1119def truncstorei16 : PatFrag<(ops node:$val, node:$ptr), 1120 (truncstore node:$val, node:$ptr)> { 1121 let IsStore = true; 1122 let MemoryVT = i16; 1123 let IsTruncStore = true; 1124} 1125def truncstorei32 : PatFrag<(ops node:$val, node:$ptr), 1126 (truncstore node:$val, node:$ptr)> { 1127 let IsStore = true; 1128 let MemoryVT = i32; 1129 let IsTruncStore = true; 1130} 1131def truncstoref16 : PatFrag<(ops node:$val, node:$ptr), 1132 (truncstore node:$val, node:$ptr)> { 1133 let IsStore = true; 1134 let MemoryVT = f16; 1135} 1136def truncstoref32 : PatFrag<(ops node:$val, node:$ptr), 1137 (truncstore node:$val, node:$ptr)> { 1138 let IsStore = true; 1139 let MemoryVT = f32; 1140} 1141def truncstoref64 : PatFrag<(ops node:$val, node:$ptr), 1142 (truncstore node:$val, node:$ptr)> { 1143 let IsStore = true; 1144 let MemoryVT = f64; 1145} 1146 1147def truncstorevi8 : PatFrag<(ops node:$val, node:$ptr), 1148 (truncstore node:$val, node:$ptr)> { 1149 let IsStore = true; 1150 let ScalarMemoryVT = i8; 1151} 1152 1153def truncstorevi16 : PatFrag<(ops node:$val, node:$ptr), 1154 (truncstore node:$val, node:$ptr)> { 1155 let IsStore = true; 1156 let ScalarMemoryVT = i16; 1157} 1158 1159def truncstorevi32 : PatFrag<(ops node:$val, node:$ptr), 1160 (truncstore node:$val, node:$ptr)> { 1161 let IsStore = true; 1162 let ScalarMemoryVT = i32; 1163} 1164 1165// indexed store fragments. 1166def istore : PatFrag<(ops node:$val, node:$base, node:$offset), 1167 (ist node:$val, node:$base, node:$offset)> { 1168 let IsStore = true; 1169 let IsTruncStore = false; 1170} 1171 1172def pre_store : PatFrag<(ops node:$val, node:$base, node:$offset), 1173 (istore node:$val, node:$base, node:$offset), [{ 1174 ISD::MemIndexedMode AM = cast<StoreSDNode>(N)->getAddressingMode(); 1175 return AM == ISD::PRE_INC || AM == ISD::PRE_DEC; 1176}]>; 1177 1178def itruncstore : PatFrag<(ops node:$val, node:$base, node:$offset), 1179 (ist node:$val, node:$base, node:$offset)> { 1180 let IsStore = true; 1181 let IsTruncStore = true; 1182} 1183def pre_truncst : PatFrag<(ops node:$val, node:$base, node:$offset), 1184 (itruncstore node:$val, node:$base, node:$offset), [{ 1185 ISD::MemIndexedMode AM = cast<StoreSDNode>(N)->getAddressingMode(); 1186 return AM == ISD::PRE_INC || AM == ISD::PRE_DEC; 1187}]>; 1188def pre_truncsti1 : PatFrag<(ops node:$val, node:$base, node:$offset), 1189 (pre_truncst node:$val, node:$base, node:$offset)> { 1190 let IsStore = true; 1191 let MemoryVT = i1; 1192} 1193def pre_truncsti8 : PatFrag<(ops node:$val, node:$base, node:$offset), 1194 (pre_truncst node:$val, node:$base, node:$offset)> { 1195 let IsStore = true; 1196 let MemoryVT = i8; 1197} 1198def pre_truncsti16 : PatFrag<(ops node:$val, node:$base, node:$offset), 1199 (pre_truncst node:$val, node:$base, node:$offset)> { 1200 let IsStore = true; 1201 let MemoryVT = i16; 1202} 1203def pre_truncsti32 : PatFrag<(ops node:$val, node:$base, node:$offset), 1204 (pre_truncst node:$val, node:$base, node:$offset)> { 1205 let IsStore = true; 1206 let MemoryVT = i32; 1207} 1208def pre_truncstf32 : PatFrag<(ops node:$val, node:$base, node:$offset), 1209 (pre_truncst node:$val, node:$base, node:$offset)> { 1210 let IsStore = true; 1211 let MemoryVT = f32; 1212} 1213def pre_truncstvi8 : PatFrag<(ops node:$val, node:$base, node:$offset), 1214 (pre_truncst node:$val, node:$base, node:$offset)> { 1215 let IsStore = true; 1216 let ScalarMemoryVT = i8; 1217} 1218def pre_truncstvi16 : PatFrag<(ops node:$val, node:$base, node:$offset), 1219 (pre_truncst node:$val, node:$base, node:$offset)> { 1220 let IsStore = true; 1221 let ScalarMemoryVT = i16; 1222} 1223 1224def post_store : PatFrag<(ops node:$val, node:$ptr, node:$offset), 1225 (istore node:$val, node:$ptr, node:$offset), [{ 1226 ISD::MemIndexedMode AM = cast<StoreSDNode>(N)->getAddressingMode(); 1227 return AM == ISD::POST_INC || AM == ISD::POST_DEC; 1228}]>; 1229 1230def post_truncst : PatFrag<(ops node:$val, node:$base, node:$offset), 1231 (itruncstore node:$val, node:$base, node:$offset), [{ 1232 ISD::MemIndexedMode AM = cast<StoreSDNode>(N)->getAddressingMode(); 1233 return AM == ISD::POST_INC || AM == ISD::POST_DEC; 1234}]>; 1235def post_truncsti1 : PatFrag<(ops node:$val, node:$base, node:$offset), 1236 (post_truncst node:$val, node:$base, node:$offset)> { 1237 let IsStore = true; 1238 let MemoryVT = i1; 1239} 1240def post_truncsti8 : PatFrag<(ops node:$val, node:$base, node:$offset), 1241 (post_truncst node:$val, node:$base, node:$offset)> { 1242 let IsStore = true; 1243 let MemoryVT = i8; 1244} 1245def post_truncsti16 : PatFrag<(ops node:$val, node:$base, node:$offset), 1246 (post_truncst node:$val, node:$base, node:$offset)> { 1247 let IsStore = true; 1248 let MemoryVT = i16; 1249} 1250def post_truncsti32 : PatFrag<(ops node:$val, node:$base, node:$offset), 1251 (post_truncst node:$val, node:$base, node:$offset)> { 1252 let IsStore = true; 1253 let MemoryVT = i32; 1254} 1255def post_truncstf32 : PatFrag<(ops node:$val, node:$base, node:$offset), 1256 (post_truncst node:$val, node:$base, node:$offset)> { 1257 let IsStore = true; 1258 let MemoryVT = f32; 1259} 1260def post_truncstvi8 : PatFrag<(ops node:$val, node:$base, node:$offset), 1261 (post_truncst node:$val, node:$base, node:$offset)> { 1262 let IsStore = true; 1263 let ScalarMemoryVT = i8; 1264} 1265def post_truncstvi16 : PatFrag<(ops node:$val, node:$base, node:$offset), 1266 (post_truncst node:$val, node:$base, node:$offset)> { 1267 let IsStore = true; 1268 let ScalarMemoryVT = i16; 1269} 1270 1271// TODO: Split these into volatile and unordered flavors to enable 1272// selectively legal optimizations for each. (See D66309) 1273def simple_load : PatFrag<(ops node:$ptr), 1274 (load node:$ptr), [{ 1275 return cast<LoadSDNode>(N)->isSimple(); 1276}]>; 1277def simple_store : PatFrag<(ops node:$val, node:$ptr), 1278 (store node:$val, node:$ptr), [{ 1279 return cast<StoreSDNode>(N)->isSimple(); 1280}]>; 1281 1282// nontemporal store fragments. 1283def nontemporalstore : PatFrag<(ops node:$val, node:$ptr), 1284 (store node:$val, node:$ptr), [{ 1285 return cast<StoreSDNode>(N)->isNonTemporal(); 1286}]>; 1287 1288def alignednontemporalstore : PatFrag<(ops node:$val, node:$ptr), 1289 (nontemporalstore node:$val, node:$ptr), [{ 1290 StoreSDNode *St = cast<StoreSDNode>(N); 1291 return St->getAlignment() >= St->getMemoryVT().getStoreSize(); 1292}]>; 1293 1294def unalignednontemporalstore : PatFrag<(ops node:$val, node:$ptr), 1295 (nontemporalstore node:$val, node:$ptr), [{ 1296 StoreSDNode *St = cast<StoreSDNode>(N); 1297 return St->getAlignment() < St->getMemoryVT().getStoreSize(); 1298}]>; 1299 1300// nontemporal load fragments. 1301def nontemporalload : PatFrag<(ops node:$ptr), 1302 (load node:$ptr), [{ 1303 return cast<LoadSDNode>(N)->isNonTemporal(); 1304}]>; 1305 1306def alignednontemporalload : PatFrag<(ops node:$ptr), 1307 (nontemporalload node:$ptr), [{ 1308 LoadSDNode *Ld = cast<LoadSDNode>(N); 1309 return Ld->getAlignment() >= Ld->getMemoryVT().getStoreSize(); 1310}]>; 1311 1312// setcc convenience fragments. 1313def setoeq : PatFrag<(ops node:$lhs, node:$rhs), 1314 (setcc node:$lhs, node:$rhs, SETOEQ)>; 1315def setogt : PatFrag<(ops node:$lhs, node:$rhs), 1316 (setcc node:$lhs, node:$rhs, SETOGT)>; 1317def setoge : PatFrag<(ops node:$lhs, node:$rhs), 1318 (setcc node:$lhs, node:$rhs, SETOGE)>; 1319def setolt : PatFrag<(ops node:$lhs, node:$rhs), 1320 (setcc node:$lhs, node:$rhs, SETOLT)>; 1321def setole : PatFrag<(ops node:$lhs, node:$rhs), 1322 (setcc node:$lhs, node:$rhs, SETOLE)>; 1323def setone : PatFrag<(ops node:$lhs, node:$rhs), 1324 (setcc node:$lhs, node:$rhs, SETONE)>; 1325def seto : PatFrag<(ops node:$lhs, node:$rhs), 1326 (setcc node:$lhs, node:$rhs, SETO)>; 1327def setuo : PatFrag<(ops node:$lhs, node:$rhs), 1328 (setcc node:$lhs, node:$rhs, SETUO)>; 1329def setueq : PatFrag<(ops node:$lhs, node:$rhs), 1330 (setcc node:$lhs, node:$rhs, SETUEQ)>; 1331def setugt : PatFrag<(ops node:$lhs, node:$rhs), 1332 (setcc node:$lhs, node:$rhs, SETUGT)>; 1333def setuge : PatFrag<(ops node:$lhs, node:$rhs), 1334 (setcc node:$lhs, node:$rhs, SETUGE)>; 1335def setult : PatFrag<(ops node:$lhs, node:$rhs), 1336 (setcc node:$lhs, node:$rhs, SETULT)>; 1337def setule : PatFrag<(ops node:$lhs, node:$rhs), 1338 (setcc node:$lhs, node:$rhs, SETULE)>; 1339def setune : PatFrag<(ops node:$lhs, node:$rhs), 1340 (setcc node:$lhs, node:$rhs, SETUNE)>; 1341def seteq : PatFrag<(ops node:$lhs, node:$rhs), 1342 (setcc node:$lhs, node:$rhs, SETEQ)>; 1343def setgt : PatFrag<(ops node:$lhs, node:$rhs), 1344 (setcc node:$lhs, node:$rhs, SETGT)>; 1345def setge : PatFrag<(ops node:$lhs, node:$rhs), 1346 (setcc node:$lhs, node:$rhs, SETGE)>; 1347def setlt : PatFrag<(ops node:$lhs, node:$rhs), 1348 (setcc node:$lhs, node:$rhs, SETLT)>; 1349def setle : PatFrag<(ops node:$lhs, node:$rhs), 1350 (setcc node:$lhs, node:$rhs, SETLE)>; 1351def setne : PatFrag<(ops node:$lhs, node:$rhs), 1352 (setcc node:$lhs, node:$rhs, SETNE)>; 1353 1354// We don't have strict FP extended loads as single DAG nodes, but we can 1355// still provide convenience fragments to match those operations. 1356def strict_extloadf32 : PatFrag<(ops node:$ptr), 1357 (strict_fpextend (f32 (load node:$ptr)))>; 1358def strict_extloadf64 : PatFrag<(ops node:$ptr), 1359 (strict_fpextend (f64 (load node:$ptr)))>; 1360 1361// Convenience fragments to match both strict and non-strict fp operations 1362def any_fadd : PatFrags<(ops node:$lhs, node:$rhs), 1363 [(strict_fadd node:$lhs, node:$rhs), 1364 (fadd node:$lhs, node:$rhs)]>; 1365def any_fsub : PatFrags<(ops node:$lhs, node:$rhs), 1366 [(strict_fsub node:$lhs, node:$rhs), 1367 (fsub node:$lhs, node:$rhs)]>; 1368def any_fmul : PatFrags<(ops node:$lhs, node:$rhs), 1369 [(strict_fmul node:$lhs, node:$rhs), 1370 (fmul node:$lhs, node:$rhs)]>; 1371def any_fdiv : PatFrags<(ops node:$lhs, node:$rhs), 1372 [(strict_fdiv node:$lhs, node:$rhs), 1373 (fdiv node:$lhs, node:$rhs)]>; 1374def any_frem : PatFrags<(ops node:$lhs, node:$rhs), 1375 [(strict_frem node:$lhs, node:$rhs), 1376 (frem node:$lhs, node:$rhs)]>; 1377def any_fma : PatFrags<(ops node:$src1, node:$src2, node:$src3), 1378 [(strict_fma node:$src1, node:$src2, node:$src3), 1379 (fma node:$src1, node:$src2, node:$src3)]>; 1380def any_fsqrt : PatFrags<(ops node:$src), 1381 [(strict_fsqrt node:$src), 1382 (fsqrt node:$src)]>; 1383def any_fsin : PatFrags<(ops node:$src), 1384 [(strict_fsin node:$src), 1385 (fsin node:$src)]>; 1386def any_fcos : PatFrags<(ops node:$src), 1387 [(strict_fcos node:$src), 1388 (fcos node:$src)]>; 1389def any_fexp2 : PatFrags<(ops node:$src), 1390 [(strict_fexp2 node:$src), 1391 (fexp2 node:$src)]>; 1392def any_fpow : PatFrags<(ops node:$lhs, node:$rhs), 1393 [(strict_fpow node:$lhs, node:$rhs), 1394 (fpow node:$lhs, node:$rhs)]>; 1395def any_flog2 : PatFrags<(ops node:$src), 1396 [(strict_flog2 node:$src), 1397 (flog2 node:$src)]>; 1398def any_frint : PatFrags<(ops node:$src), 1399 [(strict_frint node:$src), 1400 (frint node:$src)]>; 1401def any_lrint : PatFrags<(ops node:$src), 1402 [(strict_lrint node:$src), 1403 (lrint node:$src)]>; 1404def any_llrint : PatFrags<(ops node:$src), 1405 [(strict_llrint node:$src), 1406 (llrint node:$src)]>; 1407def any_fnearbyint : PatFrags<(ops node:$src), 1408 [(strict_fnearbyint node:$src), 1409 (fnearbyint node:$src)]>; 1410def any_fceil : PatFrags<(ops node:$src), 1411 [(strict_fceil node:$src), 1412 (fceil node:$src)]>; 1413def any_ffloor : PatFrags<(ops node:$src), 1414 [(strict_ffloor node:$src), 1415 (ffloor node:$src)]>; 1416def any_lround : PatFrags<(ops node:$src), 1417 [(strict_lround node:$src), 1418 (lround node:$src)]>; 1419def any_llround : PatFrags<(ops node:$src), 1420 [(strict_llround node:$src), 1421 (llround node:$src)]>; 1422def any_fround : PatFrags<(ops node:$src), 1423 [(strict_fround node:$src), 1424 (fround node:$src)]>; 1425def any_froundeven : PatFrags<(ops node:$src), 1426 [(strict_froundeven node:$src), 1427 (froundeven node:$src)]>; 1428def any_ftrunc : PatFrags<(ops node:$src), 1429 [(strict_ftrunc node:$src), 1430 (ftrunc node:$src)]>; 1431def any_fmaxnum : PatFrags<(ops node:$lhs, node:$rhs), 1432 [(strict_fmaxnum node:$lhs, node:$rhs), 1433 (fmaxnum node:$lhs, node:$rhs)]>; 1434def any_fminnum : PatFrags<(ops node:$lhs, node:$rhs), 1435 [(strict_fminnum node:$lhs, node:$rhs), 1436 (fminnum node:$lhs, node:$rhs)]>; 1437def any_fmaximum : PatFrags<(ops node:$lhs, node:$rhs), 1438 [(strict_fmaximum node:$lhs, node:$rhs), 1439 (fmaximum node:$lhs, node:$rhs)]>; 1440def any_fminimum : PatFrags<(ops node:$lhs, node:$rhs), 1441 [(strict_fminimum node:$lhs, node:$rhs), 1442 (fminimum node:$lhs, node:$rhs)]>; 1443def any_fpround : PatFrags<(ops node:$src), 1444 [(strict_fpround node:$src), 1445 (fpround node:$src)]>; 1446def any_fpextend : PatFrags<(ops node:$src), 1447 [(strict_fpextend node:$src), 1448 (fpextend node:$src)]>; 1449def any_extloadf32 : PatFrags<(ops node:$ptr), 1450 [(strict_extloadf32 node:$ptr), 1451 (extloadf32 node:$ptr)]>; 1452def any_extloadf64 : PatFrags<(ops node:$ptr), 1453 [(strict_extloadf64 node:$ptr), 1454 (extloadf64 node:$ptr)]>; 1455def any_fp_to_sint : PatFrags<(ops node:$src), 1456 [(strict_fp_to_sint node:$src), 1457 (fp_to_sint node:$src)]>; 1458def any_fp_to_uint : PatFrags<(ops node:$src), 1459 [(strict_fp_to_uint node:$src), 1460 (fp_to_uint node:$src)]>; 1461def any_sint_to_fp : PatFrags<(ops node:$src), 1462 [(strict_sint_to_fp node:$src), 1463 (sint_to_fp node:$src)]>; 1464def any_uint_to_fp : PatFrags<(ops node:$src), 1465 [(strict_uint_to_fp node:$src), 1466 (uint_to_fp node:$src)]>; 1467def any_fsetcc : PatFrags<(ops node:$lhs, node:$rhs, node:$pred), 1468 [(strict_fsetcc node:$lhs, node:$rhs, node:$pred), 1469 (setcc node:$lhs, node:$rhs, node:$pred)]>; 1470def any_fsetccs : PatFrags<(ops node:$lhs, node:$rhs, node:$pred), 1471 [(strict_fsetccs node:$lhs, node:$rhs, node:$pred), 1472 (setcc node:$lhs, node:$rhs, node:$pred)]>; 1473 1474multiclass binary_atomic_op_ord<SDNode atomic_op> { 1475 def NAME#_monotonic : PatFrag<(ops node:$ptr, node:$val), 1476 (!cast<SDPatternOperator>(NAME) node:$ptr, node:$val)> { 1477 let IsAtomic = true; 1478 let IsAtomicOrderingMonotonic = true; 1479 } 1480 def NAME#_acquire : PatFrag<(ops node:$ptr, node:$val), 1481 (!cast<SDPatternOperator>(NAME) node:$ptr, node:$val)> { 1482 let IsAtomic = true; 1483 let IsAtomicOrderingAcquire = true; 1484 } 1485 def NAME#_release : PatFrag<(ops node:$ptr, node:$val), 1486 (!cast<SDPatternOperator>(NAME) node:$ptr, node:$val)> { 1487 let IsAtomic = true; 1488 let IsAtomicOrderingRelease = true; 1489 } 1490 def NAME#_acq_rel : PatFrag<(ops node:$ptr, node:$val), 1491 (!cast<SDPatternOperator>(NAME) node:$ptr, node:$val)> { 1492 let IsAtomic = true; 1493 let IsAtomicOrderingAcquireRelease = true; 1494 } 1495 def NAME#_seq_cst : PatFrag<(ops node:$ptr, node:$val), 1496 (!cast<SDPatternOperator>(NAME) node:$ptr, node:$val)> { 1497 let IsAtomic = true; 1498 let IsAtomicOrderingSequentiallyConsistent = true; 1499 } 1500} 1501 1502multiclass ternary_atomic_op_ord<SDNode atomic_op> { 1503 def NAME#_monotonic : PatFrag<(ops node:$ptr, node:$cmp, node:$val), 1504 (!cast<SDPatternOperator>(NAME) node:$ptr, node:$cmp, node:$val)> { 1505 let IsAtomic = true; 1506 let IsAtomicOrderingMonotonic = true; 1507 } 1508 def NAME#_acquire : PatFrag<(ops node:$ptr, node:$cmp, node:$val), 1509 (!cast<SDPatternOperator>(NAME) node:$ptr, node:$cmp, node:$val)> { 1510 let IsAtomic = true; 1511 let IsAtomicOrderingAcquire = true; 1512 } 1513 def NAME#_release : PatFrag<(ops node:$ptr, node:$cmp, node:$val), 1514 (!cast<SDPatternOperator>(NAME) node:$ptr, node:$cmp, node:$val)> { 1515 let IsAtomic = true; 1516 let IsAtomicOrderingRelease = true; 1517 } 1518 def NAME#_acq_rel : PatFrag<(ops node:$ptr, node:$cmp, node:$val), 1519 (!cast<SDPatternOperator>(NAME) node:$ptr, node:$cmp, node:$val)> { 1520 let IsAtomic = true; 1521 let IsAtomicOrderingAcquireRelease = true; 1522 } 1523 def NAME#_seq_cst : PatFrag<(ops node:$ptr, node:$cmp, node:$val), 1524 (!cast<SDPatternOperator>(NAME) node:$ptr, node:$cmp, node:$val)> { 1525 let IsAtomic = true; 1526 let IsAtomicOrderingSequentiallyConsistent = true; 1527 } 1528} 1529 1530multiclass binary_atomic_op<SDNode atomic_op, bit IsInt = 1> { 1531 def _8 : PatFrag<(ops node:$ptr, node:$val), 1532 (atomic_op node:$ptr, node:$val)> { 1533 let IsAtomic = true; 1534 let MemoryVT = !if(IsInt, i8, ?); 1535 } 1536 def _16 : PatFrag<(ops node:$ptr, node:$val), 1537 (atomic_op node:$ptr, node:$val)> { 1538 let IsAtomic = true; 1539 let MemoryVT = !if(IsInt, i16, f16); 1540 } 1541 def _32 : PatFrag<(ops node:$ptr, node:$val), 1542 (atomic_op node:$ptr, node:$val)> { 1543 let IsAtomic = true; 1544 let MemoryVT = !if(IsInt, i32, f32); 1545 } 1546 def _64 : PatFrag<(ops node:$ptr, node:$val), 1547 (atomic_op node:$ptr, node:$val)> { 1548 let IsAtomic = true; 1549 let MemoryVT = !if(IsInt, i64, f64); 1550 } 1551 1552 defm NAME#_8 : binary_atomic_op_ord<atomic_op>; 1553 defm NAME#_16 : binary_atomic_op_ord<atomic_op>; 1554 defm NAME#_32 : binary_atomic_op_ord<atomic_op>; 1555 defm NAME#_64 : binary_atomic_op_ord<atomic_op>; 1556} 1557 1558multiclass ternary_atomic_op<SDNode atomic_op> { 1559 def _8 : PatFrag<(ops node:$ptr, node:$cmp, node:$val), 1560 (atomic_op node:$ptr, node:$cmp, node:$val)> { 1561 let IsAtomic = true; 1562 let MemoryVT = i8; 1563 } 1564 def _16 : PatFrag<(ops node:$ptr, node:$cmp, node:$val), 1565 (atomic_op node:$ptr, node:$cmp, node:$val)> { 1566 let IsAtomic = true; 1567 let MemoryVT = i16; 1568 } 1569 def _32 : PatFrag<(ops node:$ptr, node:$cmp, node:$val), 1570 (atomic_op node:$ptr, node:$cmp, node:$val)> { 1571 let IsAtomic = true; 1572 let MemoryVT = i32; 1573 } 1574 def _64 : PatFrag<(ops node:$ptr, node:$cmp, node:$val), 1575 (atomic_op node:$ptr, node:$cmp, node:$val)> { 1576 let IsAtomic = true; 1577 let MemoryVT = i64; 1578 } 1579 1580 defm NAME#_8 : ternary_atomic_op_ord<atomic_op>; 1581 defm NAME#_16 : ternary_atomic_op_ord<atomic_op>; 1582 defm NAME#_32 : ternary_atomic_op_ord<atomic_op>; 1583 defm NAME#_64 : ternary_atomic_op_ord<atomic_op>; 1584} 1585 1586defm atomic_load_add : binary_atomic_op<atomic_load_add>; 1587defm atomic_swap : binary_atomic_op<atomic_swap>; 1588defm atomic_load_sub : binary_atomic_op<atomic_load_sub>; 1589defm atomic_load_and : binary_atomic_op<atomic_load_and>; 1590defm atomic_load_clr : binary_atomic_op<atomic_load_clr>; 1591defm atomic_load_or : binary_atomic_op<atomic_load_or>; 1592defm atomic_load_xor : binary_atomic_op<atomic_load_xor>; 1593defm atomic_load_nand : binary_atomic_op<atomic_load_nand>; 1594defm atomic_load_min : binary_atomic_op<atomic_load_min>; 1595defm atomic_load_max : binary_atomic_op<atomic_load_max>; 1596defm atomic_load_umin : binary_atomic_op<atomic_load_umin>; 1597defm atomic_load_umax : binary_atomic_op<atomic_load_umax>; 1598defm atomic_store : binary_atomic_op<atomic_store>; 1599defm atomic_cmp_swap : ternary_atomic_op<atomic_cmp_swap>; 1600 1601def atomic_load_8 : 1602 PatFrag<(ops node:$ptr), 1603 (atomic_load node:$ptr)> { 1604 let IsAtomic = true; 1605 let MemoryVT = i8; 1606} 1607def atomic_load_16 : 1608 PatFrag<(ops node:$ptr), 1609 (atomic_load node:$ptr)> { 1610 let IsAtomic = true; 1611 let MemoryVT = i16; 1612} 1613def atomic_load_32 : 1614 PatFrag<(ops node:$ptr), 1615 (atomic_load node:$ptr)> { 1616 let IsAtomic = true; 1617 let MemoryVT = i32; 1618} 1619def atomic_load_64 : 1620 PatFrag<(ops node:$ptr), 1621 (atomic_load node:$ptr)> { 1622 let IsAtomic = true; 1623 let MemoryVT = i64; 1624} 1625 1626//===----------------------------------------------------------------------===// 1627// Selection DAG Pattern Support. 1628// 1629// Patterns are what are actually matched against by the target-flavored 1630// instruction selection DAG. Instructions defined by the target implicitly 1631// define patterns in most cases, but patterns can also be explicitly added when 1632// an operation is defined by a sequence of instructions (e.g. loading a large 1633// immediate value on RISC targets that do not support immediates as large as 1634// their GPRs). 1635// 1636 1637class Pattern<dag patternToMatch, list<dag> resultInstrs> { 1638 dag PatternToMatch = patternToMatch; 1639 list<dag> ResultInstrs = resultInstrs; 1640 list<Predicate> Predicates = []; // See class Instruction in Target.td. 1641 int AddedComplexity = 0; // See class Instruction in Target.td. 1642} 1643 1644// Pat - A simple (but common) form of a pattern, which produces a simple result 1645// not needing a full list. 1646class Pat<dag pattern, dag result> : Pattern<pattern, [result]>; 1647 1648//===----------------------------------------------------------------------===// 1649// Complex pattern definitions. 1650// 1651 1652// Complex patterns, e.g. X86 addressing mode, requires pattern matching code 1653// in C++. NumOperands is the number of operands returned by the select function; 1654// SelectFunc is the name of the function used to pattern match the max. pattern; 1655// RootNodes are the list of possible root nodes of the sub-dags to match. 1656// e.g. X86 addressing mode - def addr : ComplexPattern<4, "SelectAddr", [add]>; 1657// 1658class ComplexPattern<ValueType ty, int numops, string fn, 1659 list<SDNode> roots = [], list<SDNodeProperty> props = [], 1660 int complexity = -1> { 1661 ValueType Ty = ty; 1662 int NumOperands = numops; 1663 string SelectFunc = fn; 1664 list<SDNode> RootNodes = roots; 1665 list<SDNodeProperty> Properties = props; 1666 int Complexity = complexity; 1667} 1668