1 //===-- SystemZTargetMachine.cpp - Define TargetMachine for SystemZ -------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "SystemZTargetMachine.h" 10 #include "MCTargetDesc/SystemZMCTargetDesc.h" 11 #include "SystemZ.h" 12 #include "SystemZMachineFunctionInfo.h" 13 #include "SystemZMachineScheduler.h" 14 #include "SystemZTargetObjectFile.h" 15 #include "SystemZTargetTransformInfo.h" 16 #include "TargetInfo/SystemZTargetInfo.h" 17 #include "llvm/ADT/StringRef.h" 18 #include "llvm/Analysis/TargetTransformInfo.h" 19 #include "llvm/CodeGen/Passes.h" 20 #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h" 21 #include "llvm/CodeGen/TargetPassConfig.h" 22 #include "llvm/IR/DataLayout.h" 23 #include "llvm/MC/TargetRegistry.h" 24 #include "llvm/Support/CodeGen.h" 25 #include "llvm/Target/TargetLoweringObjectFile.h" 26 #include "llvm/Transforms/Scalar.h" 27 #include <memory> 28 #include <optional> 29 #include <string> 30 31 using namespace llvm; 32 33 static cl::opt<bool> EnableMachineCombinerPass( 34 "systemz-machine-combiner", 35 cl::desc("Enable the machine combiner pass"), 36 cl::init(true), cl::Hidden); 37 38 // NOLINTNEXTLINE(readability-identifier-naming) 39 extern "C" LLVM_EXTERNAL_VISIBILITY void LLVMInitializeSystemZTarget() { 40 // Register the target. 41 RegisterTargetMachine<SystemZTargetMachine> X(getTheSystemZTarget()); 42 auto &PR = *PassRegistry::getPassRegistry(); 43 initializeSystemZElimComparePass(PR); 44 initializeSystemZShortenInstPass(PR); 45 initializeSystemZLongBranchPass(PR); 46 initializeSystemZLDCleanupPass(PR); 47 initializeSystemZShortenInstPass(PR); 48 initializeSystemZPostRewritePass(PR); 49 initializeSystemZTDCPassPass(PR); 50 initializeSystemZDAGToDAGISelLegacyPass(PR); 51 } 52 53 static std::string computeDataLayout(const Triple &TT) { 54 std::string Ret; 55 56 // Big endian. 57 Ret += "E"; 58 59 // Data mangling. 60 Ret += DataLayout::getManglingComponent(TT); 61 62 // Special features for z/OS. 63 if (TT.isOSzOS()) { 64 if (TT.isArch64Bit()) { 65 // Custom address space for ptr32. 66 Ret += "-p1:32:32"; 67 } 68 } 69 70 // Make sure that global data has at least 16 bits of alignment by 71 // default, so that we can refer to it using LARL. We don't have any 72 // special requirements for stack variables though. 73 Ret += "-i1:8:16-i8:8:16"; 74 75 // 64-bit integers are naturally aligned. 76 Ret += "-i64:64"; 77 78 // 128-bit floats are aligned only to 64 bits. 79 Ret += "-f128:64"; 80 81 // The DataLayout string always holds a vector alignment of 64 bits, see 82 // comment in clang/lib/Basic/Targets/SystemZ.h. 83 Ret += "-v128:64"; 84 85 // We prefer 16 bits of aligned for all globals; see above. 86 Ret += "-a:8:16"; 87 88 // Integer registers are 32 or 64 bits. 89 Ret += "-n32:64"; 90 91 return Ret; 92 } 93 94 static std::unique_ptr<TargetLoweringObjectFile> createTLOF(const Triple &TT) { 95 if (TT.isOSzOS()) 96 return std::make_unique<TargetLoweringObjectFileGOFF>(); 97 98 // Note: Some times run with -triple s390x-unknown. 99 // In this case, default to ELF unless z/OS specifically provided. 100 return std::make_unique<SystemZELFTargetObjectFile>(); 101 } 102 103 static Reloc::Model getEffectiveRelocModel(std::optional<Reloc::Model> RM) { 104 // Static code is suitable for use in a dynamic executable; there is no 105 // separate DynamicNoPIC model. 106 if (!RM || *RM == Reloc::DynamicNoPIC) 107 return Reloc::Static; 108 return *RM; 109 } 110 111 // For SystemZ we define the models as follows: 112 // 113 // Small: BRASL can call any function and will use a stub if necessary. 114 // Locally-binding symbols will always be in range of LARL. 115 // 116 // Medium: BRASL can call any function and will use a stub if necessary. 117 // GOT slots and locally-defined text will always be in range 118 // of LARL, but other symbols might not be. 119 // 120 // Large: Equivalent to Medium for now. 121 // 122 // Kernel: Equivalent to Medium for now. 123 // 124 // This means that any PIC module smaller than 4GB meets the 125 // requirements of Small, so Small seems like the best default there. 126 // 127 // All symbols bind locally in a non-PIC module, so the choice is less 128 // obvious. There are two cases: 129 // 130 // - When creating an executable, PLTs and copy relocations allow 131 // us to treat external symbols as part of the executable. 132 // Any executable smaller than 4GB meets the requirements of Small, 133 // so that seems like the best default. 134 // 135 // - When creating JIT code, stubs will be in range of BRASL if the 136 // image is less than 4GB in size. GOT entries will likewise be 137 // in range of LARL. However, the JIT environment has no equivalent 138 // of copy relocs, so locally-binding data symbols might not be in 139 // the range of LARL. We need the Medium model in that case. 140 static CodeModel::Model 141 getEffectiveSystemZCodeModel(std::optional<CodeModel::Model> CM, 142 Reloc::Model RM, bool JIT) { 143 if (CM) { 144 if (*CM == CodeModel::Tiny) 145 report_fatal_error("Target does not support the tiny CodeModel", false); 146 if (*CM == CodeModel::Kernel) 147 report_fatal_error("Target does not support the kernel CodeModel", false); 148 return *CM; 149 } 150 if (JIT) 151 return RM == Reloc::PIC_ ? CodeModel::Small : CodeModel::Medium; 152 return CodeModel::Small; 153 } 154 155 SystemZTargetMachine::SystemZTargetMachine(const Target &T, const Triple &TT, 156 StringRef CPU, StringRef FS, 157 const TargetOptions &Options, 158 std::optional<Reloc::Model> RM, 159 std::optional<CodeModel::Model> CM, 160 CodeGenOptLevel OL, bool JIT) 161 : CodeGenTargetMachineImpl( 162 T, computeDataLayout(TT), TT, CPU, FS, Options, 163 getEffectiveRelocModel(RM), 164 getEffectiveSystemZCodeModel(CM, getEffectiveRelocModel(RM), JIT), 165 OL), 166 TLOF(createTLOF(getTargetTriple())) { 167 initAsmInfo(); 168 } 169 170 SystemZTargetMachine::~SystemZTargetMachine() = default; 171 172 const SystemZSubtarget * 173 SystemZTargetMachine::getSubtargetImpl(const Function &F) const { 174 Attribute CPUAttr = F.getFnAttribute("target-cpu"); 175 Attribute TuneAttr = F.getFnAttribute("tune-cpu"); 176 Attribute FSAttr = F.getFnAttribute("target-features"); 177 178 std::string CPU = 179 CPUAttr.isValid() ? CPUAttr.getValueAsString().str() : TargetCPU; 180 std::string TuneCPU = 181 TuneAttr.isValid() ? TuneAttr.getValueAsString().str() : CPU; 182 std::string FS = 183 FSAttr.isValid() ? FSAttr.getValueAsString().str() : TargetFS; 184 185 // FIXME: This is related to the code below to reset the target options, 186 // we need to know whether the soft float and backchain flags are set on the 187 // function, so we can enable them as subtarget features. 188 bool SoftFloat = F.getFnAttribute("use-soft-float").getValueAsBool(); 189 if (SoftFloat) 190 FS += FS.empty() ? "+soft-float" : ",+soft-float"; 191 bool BackChain = F.hasFnAttribute("backchain"); 192 if (BackChain) 193 FS += FS.empty() ? "+backchain" : ",+backchain"; 194 195 auto &I = SubtargetMap[CPU + TuneCPU + FS]; 196 if (!I) { 197 // This needs to be done before we create a new subtarget since any 198 // creation will depend on the TM and the code generation flags on the 199 // function that reside in TargetOptions. 200 resetTargetOptions(F); 201 I = std::make_unique<SystemZSubtarget>(TargetTriple, CPU, TuneCPU, FS, 202 *this); 203 } 204 205 return I.get(); 206 } 207 208 namespace { 209 210 /// SystemZ Code Generator Pass Configuration Options. 211 class SystemZPassConfig : public TargetPassConfig { 212 public: 213 SystemZPassConfig(SystemZTargetMachine &TM, PassManagerBase &PM) 214 : TargetPassConfig(TM, PM) {} 215 216 SystemZTargetMachine &getSystemZTargetMachine() const { 217 return getTM<SystemZTargetMachine>(); 218 } 219 220 ScheduleDAGInstrs * 221 createPostMachineScheduler(MachineSchedContext *C) const override { 222 return new ScheduleDAGMI(C, 223 std::make_unique<SystemZPostRASchedStrategy>(C), 224 /*RemoveKillFlags=*/true); 225 } 226 227 void addIRPasses() override; 228 bool addInstSelector() override; 229 bool addILPOpts() override; 230 void addPreRegAlloc() override; 231 void addPostRewrite() override; 232 void addPostRegAlloc() override; 233 void addPreSched2() override; 234 void addPreEmitPass() override; 235 }; 236 237 } // end anonymous namespace 238 239 void SystemZPassConfig::addIRPasses() { 240 if (getOptLevel() != CodeGenOptLevel::None) { 241 addPass(createSystemZTDCPass()); 242 addPass(createLoopDataPrefetchPass()); 243 } 244 245 addPass(createAtomicExpandLegacyPass()); 246 247 TargetPassConfig::addIRPasses(); 248 } 249 250 bool SystemZPassConfig::addInstSelector() { 251 addPass(createSystemZISelDag(getSystemZTargetMachine(), getOptLevel())); 252 253 if (getOptLevel() != CodeGenOptLevel::None) 254 addPass(createSystemZLDCleanupPass(getSystemZTargetMachine())); 255 256 return false; 257 } 258 259 bool SystemZPassConfig::addILPOpts() { 260 addPass(&EarlyIfConverterLegacyID); 261 262 if (EnableMachineCombinerPass) 263 addPass(&MachineCombinerID); 264 265 return true; 266 } 267 268 void SystemZPassConfig::addPreRegAlloc() { 269 addPass(createSystemZCopyPhysRegsPass(getSystemZTargetMachine())); 270 } 271 272 void SystemZPassConfig::addPostRewrite() { 273 addPass(createSystemZPostRewritePass(getSystemZTargetMachine())); 274 } 275 276 void SystemZPassConfig::addPostRegAlloc() { 277 // PostRewrite needs to be run at -O0 also (in which case addPostRewrite() 278 // is not called). 279 if (getOptLevel() == CodeGenOptLevel::None) 280 addPass(createSystemZPostRewritePass(getSystemZTargetMachine())); 281 } 282 283 void SystemZPassConfig::addPreSched2() { 284 if (getOptLevel() != CodeGenOptLevel::None) 285 addPass(&IfConverterID); 286 } 287 288 void SystemZPassConfig::addPreEmitPass() { 289 // Do instruction shortening before compare elimination because some 290 // vector instructions will be shortened into opcodes that compare 291 // elimination recognizes. 292 if (getOptLevel() != CodeGenOptLevel::None) 293 addPass(createSystemZShortenInstPass(getSystemZTargetMachine())); 294 295 // We eliminate comparisons here rather than earlier because some 296 // transformations can change the set of available CC values and we 297 // generally want those transformations to have priority. This is 298 // especially true in the commonest case where the result of the comparison 299 // is used by a single in-range branch instruction, since we will then 300 // be able to fuse the compare and the branch instead. 301 // 302 // For example, two-address NILF can sometimes be converted into 303 // three-address RISBLG. NILF produces a CC value that indicates whether 304 // the low word is zero, but RISBLG does not modify CC at all. On the 305 // other hand, 64-bit ANDs like NILL can sometimes be converted to RISBG. 306 // The CC value produced by NILL isn't useful for our purposes, but the 307 // value produced by RISBG can be used for any comparison with zero 308 // (not just equality). So there are some transformations that lose 309 // CC values (while still being worthwhile) and others that happen to make 310 // the CC result more useful than it was originally. 311 // 312 // Another reason is that we only want to use BRANCH ON COUNT in cases 313 // where we know that the count register is not going to be spilled. 314 // 315 // Doing it so late makes it more likely that a register will be reused 316 // between the comparison and the branch, but it isn't clear whether 317 // preventing that would be a win or not. 318 if (getOptLevel() != CodeGenOptLevel::None) 319 addPass(createSystemZElimComparePass(getSystemZTargetMachine())); 320 addPass(createSystemZLongBranchPass(getSystemZTargetMachine())); 321 322 // Do final scheduling after all other optimizations, to get an 323 // optimal input for the decoder (branch relaxation must happen 324 // after block placement). 325 if (getOptLevel() != CodeGenOptLevel::None) 326 addPass(&PostMachineSchedulerID); 327 } 328 329 TargetPassConfig *SystemZTargetMachine::createPassConfig(PassManagerBase &PM) { 330 return new SystemZPassConfig(*this, PM); 331 } 332 333 TargetTransformInfo 334 SystemZTargetMachine::getTargetTransformInfo(const Function &F) const { 335 return TargetTransformInfo(SystemZTTIImpl(this, F)); 336 } 337 338 MachineFunctionInfo *SystemZTargetMachine::createMachineFunctionInfo( 339 BumpPtrAllocator &Allocator, const Function &F, 340 const TargetSubtargetInfo *STI) const { 341 return SystemZMachineFunctionInfo::create<SystemZMachineFunctionInfo>( 342 Allocator, F, STI); 343 } 344