1 //===-- StringRef.cpp - Lightweight String References ---------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8
9 #include "llvm/ADT/StringRef.h"
10 #include "llvm/ADT/APFloat.h"
11 #include "llvm/ADT/APInt.h"
12 #include "llvm/ADT/Hashing.h"
13 #include "llvm/ADT/StringExtras.h"
14 #include "llvm/ADT/edit_distance.h"
15 #include "llvm/Support/Error.h"
16 #include <bitset>
17
18 using namespace llvm;
19
20 // MSVC emits references to this into the translation units which reference it.
21 #ifndef _MSC_VER
22 constexpr size_t StringRef::npos;
23 #endif
24
25 // strncasecmp() is not available on non-POSIX systems, so define an
26 // alternative function here.
ascii_strncasecmp(const char * LHS,const char * RHS,size_t Length)27 static int ascii_strncasecmp(const char *LHS, const char *RHS, size_t Length) {
28 for (size_t I = 0; I < Length; ++I) {
29 unsigned char LHC = toLower(LHS[I]);
30 unsigned char RHC = toLower(RHS[I]);
31 if (LHC != RHC)
32 return LHC < RHC ? -1 : 1;
33 }
34 return 0;
35 }
36
37 /// compare_lower - Compare strings, ignoring case.
compare_lower(StringRef RHS) const38 int StringRef::compare_lower(StringRef RHS) const {
39 if (int Res = ascii_strncasecmp(Data, RHS.Data, std::min(Length, RHS.Length)))
40 return Res;
41 if (Length == RHS.Length)
42 return 0;
43 return Length < RHS.Length ? -1 : 1;
44 }
45
46 /// Check if this string starts with the given \p Prefix, ignoring case.
startswith_lower(StringRef Prefix) const47 bool StringRef::startswith_lower(StringRef Prefix) const {
48 return Length >= Prefix.Length &&
49 ascii_strncasecmp(Data, Prefix.Data, Prefix.Length) == 0;
50 }
51
52 /// Check if this string ends with the given \p Suffix, ignoring case.
endswith_lower(StringRef Suffix) const53 bool StringRef::endswith_lower(StringRef Suffix) const {
54 return Length >= Suffix.Length &&
55 ascii_strncasecmp(end() - Suffix.Length, Suffix.Data, Suffix.Length) == 0;
56 }
57
find_lower(char C,size_t From) const58 size_t StringRef::find_lower(char C, size_t From) const {
59 char L = toLower(C);
60 return find_if([L](char D) { return toLower(D) == L; }, From);
61 }
62
63 /// compare_numeric - Compare strings, handle embedded numbers.
compare_numeric(StringRef RHS) const64 int StringRef::compare_numeric(StringRef RHS) const {
65 for (size_t I = 0, E = std::min(Length, RHS.Length); I != E; ++I) {
66 // Check for sequences of digits.
67 if (isDigit(Data[I]) && isDigit(RHS.Data[I])) {
68 // The longer sequence of numbers is considered larger.
69 // This doesn't really handle prefixed zeros well.
70 size_t J;
71 for (J = I + 1; J != E + 1; ++J) {
72 bool ld = J < Length && isDigit(Data[J]);
73 bool rd = J < RHS.Length && isDigit(RHS.Data[J]);
74 if (ld != rd)
75 return rd ? -1 : 1;
76 if (!rd)
77 break;
78 }
79 // The two number sequences have the same length (J-I), just memcmp them.
80 if (int Res = compareMemory(Data + I, RHS.Data + I, J - I))
81 return Res < 0 ? -1 : 1;
82 // Identical number sequences, continue search after the numbers.
83 I = J - 1;
84 continue;
85 }
86 if (Data[I] != RHS.Data[I])
87 return (unsigned char)Data[I] < (unsigned char)RHS.Data[I] ? -1 : 1;
88 }
89 if (Length == RHS.Length)
90 return 0;
91 return Length < RHS.Length ? -1 : 1;
92 }
93
94 // Compute the edit distance between the two given strings.
edit_distance(llvm::StringRef Other,bool AllowReplacements,unsigned MaxEditDistance) const95 unsigned StringRef::edit_distance(llvm::StringRef Other,
96 bool AllowReplacements,
97 unsigned MaxEditDistance) const {
98 return llvm::ComputeEditDistance(
99 makeArrayRef(data(), size()),
100 makeArrayRef(Other.data(), Other.size()),
101 AllowReplacements, MaxEditDistance);
102 }
103
104 //===----------------------------------------------------------------------===//
105 // String Operations
106 //===----------------------------------------------------------------------===//
107
lower() const108 std::string StringRef::lower() const {
109 return std::string(map_iterator(begin(), toLower),
110 map_iterator(end(), toLower));
111 }
112
upper() const113 std::string StringRef::upper() const {
114 return std::string(map_iterator(begin(), toUpper),
115 map_iterator(end(), toUpper));
116 }
117
118 //===----------------------------------------------------------------------===//
119 // String Searching
120 //===----------------------------------------------------------------------===//
121
122
123 /// find - Search for the first string \arg Str in the string.
124 ///
125 /// \return - The index of the first occurrence of \arg Str, or npos if not
126 /// found.
find(StringRef Str,size_t From) const127 size_t StringRef::find(StringRef Str, size_t From) const {
128 if (From > Length)
129 return npos;
130
131 const char *Start = Data + From;
132 size_t Size = Length - From;
133
134 const char *Needle = Str.data();
135 size_t N = Str.size();
136 if (N == 0)
137 return From;
138 if (Size < N)
139 return npos;
140 if (N == 1) {
141 const char *Ptr = (const char *)::memchr(Start, Needle[0], Size);
142 return Ptr == nullptr ? npos : Ptr - Data;
143 }
144
145 const char *Stop = Start + (Size - N + 1);
146
147 // For short haystacks or unsupported needles fall back to the naive algorithm
148 if (Size < 16 || N > 255) {
149 do {
150 if (std::memcmp(Start, Needle, N) == 0)
151 return Start - Data;
152 ++Start;
153 } while (Start < Stop);
154 return npos;
155 }
156
157 // Build the bad char heuristic table, with uint8_t to reduce cache thrashing.
158 uint8_t BadCharSkip[256];
159 std::memset(BadCharSkip, N, 256);
160 for (unsigned i = 0; i != N-1; ++i)
161 BadCharSkip[(uint8_t)Str[i]] = N-1-i;
162
163 do {
164 uint8_t Last = Start[N - 1];
165 if (LLVM_UNLIKELY(Last == (uint8_t)Needle[N - 1]))
166 if (std::memcmp(Start, Needle, N - 1) == 0)
167 return Start - Data;
168
169 // Otherwise skip the appropriate number of bytes.
170 Start += BadCharSkip[Last];
171 } while (Start < Stop);
172
173 return npos;
174 }
175
find_lower(StringRef Str,size_t From) const176 size_t StringRef::find_lower(StringRef Str, size_t From) const {
177 StringRef This = substr(From);
178 while (This.size() >= Str.size()) {
179 if (This.startswith_lower(Str))
180 return From;
181 This = This.drop_front();
182 ++From;
183 }
184 return npos;
185 }
186
rfind_lower(char C,size_t From) const187 size_t StringRef::rfind_lower(char C, size_t From) const {
188 From = std::min(From, Length);
189 size_t i = From;
190 while (i != 0) {
191 --i;
192 if (toLower(Data[i]) == toLower(C))
193 return i;
194 }
195 return npos;
196 }
197
198 /// rfind - Search for the last string \arg Str in the string.
199 ///
200 /// \return - The index of the last occurrence of \arg Str, or npos if not
201 /// found.
rfind(StringRef Str) const202 size_t StringRef::rfind(StringRef Str) const {
203 size_t N = Str.size();
204 if (N > Length)
205 return npos;
206 for (size_t i = Length - N + 1, e = 0; i != e;) {
207 --i;
208 if (substr(i, N).equals(Str))
209 return i;
210 }
211 return npos;
212 }
213
rfind_lower(StringRef Str) const214 size_t StringRef::rfind_lower(StringRef Str) const {
215 size_t N = Str.size();
216 if (N > Length)
217 return npos;
218 for (size_t i = Length - N + 1, e = 0; i != e;) {
219 --i;
220 if (substr(i, N).equals_lower(Str))
221 return i;
222 }
223 return npos;
224 }
225
226 /// find_first_of - Find the first character in the string that is in \arg
227 /// Chars, or npos if not found.
228 ///
229 /// Note: O(size() + Chars.size())
find_first_of(StringRef Chars,size_t From) const230 StringRef::size_type StringRef::find_first_of(StringRef Chars,
231 size_t From) const {
232 std::bitset<1 << CHAR_BIT> CharBits;
233 for (size_type i = 0; i != Chars.size(); ++i)
234 CharBits.set((unsigned char)Chars[i]);
235
236 for (size_type i = std::min(From, Length), e = Length; i != e; ++i)
237 if (CharBits.test((unsigned char)Data[i]))
238 return i;
239 return npos;
240 }
241
242 /// find_first_not_of - Find the first character in the string that is not
243 /// \arg C or npos if not found.
find_first_not_of(char C,size_t From) const244 StringRef::size_type StringRef::find_first_not_of(char C, size_t From) const {
245 for (size_type i = std::min(From, Length), e = Length; i != e; ++i)
246 if (Data[i] != C)
247 return i;
248 return npos;
249 }
250
251 /// find_first_not_of - Find the first character in the string that is not
252 /// in the string \arg Chars, or npos if not found.
253 ///
254 /// Note: O(size() + Chars.size())
find_first_not_of(StringRef Chars,size_t From) const255 StringRef::size_type StringRef::find_first_not_of(StringRef Chars,
256 size_t From) const {
257 std::bitset<1 << CHAR_BIT> CharBits;
258 for (size_type i = 0; i != Chars.size(); ++i)
259 CharBits.set((unsigned char)Chars[i]);
260
261 for (size_type i = std::min(From, Length), e = Length; i != e; ++i)
262 if (!CharBits.test((unsigned char)Data[i]))
263 return i;
264 return npos;
265 }
266
267 /// find_last_of - Find the last character in the string that is in \arg C,
268 /// or npos if not found.
269 ///
270 /// Note: O(size() + Chars.size())
find_last_of(StringRef Chars,size_t From) const271 StringRef::size_type StringRef::find_last_of(StringRef Chars,
272 size_t From) const {
273 std::bitset<1 << CHAR_BIT> CharBits;
274 for (size_type i = 0; i != Chars.size(); ++i)
275 CharBits.set((unsigned char)Chars[i]);
276
277 for (size_type i = std::min(From, Length) - 1, e = -1; i != e; --i)
278 if (CharBits.test((unsigned char)Data[i]))
279 return i;
280 return npos;
281 }
282
283 /// find_last_not_of - Find the last character in the string that is not
284 /// \arg C, or npos if not found.
find_last_not_of(char C,size_t From) const285 StringRef::size_type StringRef::find_last_not_of(char C, size_t From) const {
286 for (size_type i = std::min(From, Length) - 1, e = -1; i != e; --i)
287 if (Data[i] != C)
288 return i;
289 return npos;
290 }
291
292 /// find_last_not_of - Find the last character in the string that is not in
293 /// \arg Chars, or npos if not found.
294 ///
295 /// Note: O(size() + Chars.size())
find_last_not_of(StringRef Chars,size_t From) const296 StringRef::size_type StringRef::find_last_not_of(StringRef Chars,
297 size_t From) const {
298 std::bitset<1 << CHAR_BIT> CharBits;
299 for (size_type i = 0, e = Chars.size(); i != e; ++i)
300 CharBits.set((unsigned char)Chars[i]);
301
302 for (size_type i = std::min(From, Length) - 1, e = -1; i != e; --i)
303 if (!CharBits.test((unsigned char)Data[i]))
304 return i;
305 return npos;
306 }
307
split(SmallVectorImpl<StringRef> & A,StringRef Separator,int MaxSplit,bool KeepEmpty) const308 void StringRef::split(SmallVectorImpl<StringRef> &A,
309 StringRef Separator, int MaxSplit,
310 bool KeepEmpty) const {
311 StringRef S = *this;
312
313 // Count down from MaxSplit. When MaxSplit is -1, this will just split
314 // "forever". This doesn't support splitting more than 2^31 times
315 // intentionally; if we ever want that we can make MaxSplit a 64-bit integer
316 // but that seems unlikely to be useful.
317 while (MaxSplit-- != 0) {
318 size_t Idx = S.find(Separator);
319 if (Idx == npos)
320 break;
321
322 // Push this split.
323 if (KeepEmpty || Idx > 0)
324 A.push_back(S.slice(0, Idx));
325
326 // Jump forward.
327 S = S.slice(Idx + Separator.size(), npos);
328 }
329
330 // Push the tail.
331 if (KeepEmpty || !S.empty())
332 A.push_back(S);
333 }
334
split(SmallVectorImpl<StringRef> & A,char Separator,int MaxSplit,bool KeepEmpty) const335 void StringRef::split(SmallVectorImpl<StringRef> &A, char Separator,
336 int MaxSplit, bool KeepEmpty) const {
337 StringRef S = *this;
338
339 // Count down from MaxSplit. When MaxSplit is -1, this will just split
340 // "forever". This doesn't support splitting more than 2^31 times
341 // intentionally; if we ever want that we can make MaxSplit a 64-bit integer
342 // but that seems unlikely to be useful.
343 while (MaxSplit-- != 0) {
344 size_t Idx = S.find(Separator);
345 if (Idx == npos)
346 break;
347
348 // Push this split.
349 if (KeepEmpty || Idx > 0)
350 A.push_back(S.slice(0, Idx));
351
352 // Jump forward.
353 S = S.slice(Idx + 1, npos);
354 }
355
356 // Push the tail.
357 if (KeepEmpty || !S.empty())
358 A.push_back(S);
359 }
360
361 //===----------------------------------------------------------------------===//
362 // Helpful Algorithms
363 //===----------------------------------------------------------------------===//
364
365 /// count - Return the number of non-overlapped occurrences of \arg Str in
366 /// the string.
count(StringRef Str) const367 size_t StringRef::count(StringRef Str) const {
368 size_t Count = 0;
369 size_t N = Str.size();
370 if (!N || N > Length)
371 return 0;
372 for (size_t i = 0, e = Length - N + 1; i < e;) {
373 if (substr(i, N).equals(Str)) {
374 ++Count;
375 i += N;
376 }
377 else
378 ++i;
379 }
380 return Count;
381 }
382
GetAutoSenseRadix(StringRef & Str)383 static unsigned GetAutoSenseRadix(StringRef &Str) {
384 if (Str.empty())
385 return 10;
386
387 if (Str.startswith("0x") || Str.startswith("0X")) {
388 Str = Str.substr(2);
389 return 16;
390 }
391
392 if (Str.startswith("0b") || Str.startswith("0B")) {
393 Str = Str.substr(2);
394 return 2;
395 }
396
397 if (Str.startswith("0o")) {
398 Str = Str.substr(2);
399 return 8;
400 }
401
402 if (Str[0] == '0' && Str.size() > 1 && isDigit(Str[1])) {
403 Str = Str.substr(1);
404 return 8;
405 }
406
407 return 10;
408 }
409
consumeUnsignedInteger(StringRef & Str,unsigned Radix,unsigned long long & Result)410 bool llvm::consumeUnsignedInteger(StringRef &Str, unsigned Radix,
411 unsigned long long &Result) {
412 // Autosense radix if not specified.
413 if (Radix == 0)
414 Radix = GetAutoSenseRadix(Str);
415
416 // Empty strings (after the radix autosense) are invalid.
417 if (Str.empty()) return true;
418
419 // Parse all the bytes of the string given this radix. Watch for overflow.
420 StringRef Str2 = Str;
421 Result = 0;
422 while (!Str2.empty()) {
423 unsigned CharVal;
424 if (Str2[0] >= '0' && Str2[0] <= '9')
425 CharVal = Str2[0] - '0';
426 else if (Str2[0] >= 'a' && Str2[0] <= 'z')
427 CharVal = Str2[0] - 'a' + 10;
428 else if (Str2[0] >= 'A' && Str2[0] <= 'Z')
429 CharVal = Str2[0] - 'A' + 10;
430 else
431 break;
432
433 // If the parsed value is larger than the integer radix, we cannot
434 // consume any more characters.
435 if (CharVal >= Radix)
436 break;
437
438 // Add in this character.
439 unsigned long long PrevResult = Result;
440 Result = Result * Radix + CharVal;
441
442 // Check for overflow by shifting back and seeing if bits were lost.
443 if (Result / Radix < PrevResult)
444 return true;
445
446 Str2 = Str2.substr(1);
447 }
448
449 // We consider the operation a failure if no characters were consumed
450 // successfully.
451 if (Str.size() == Str2.size())
452 return true;
453
454 Str = Str2;
455 return false;
456 }
457
consumeSignedInteger(StringRef & Str,unsigned Radix,long long & Result)458 bool llvm::consumeSignedInteger(StringRef &Str, unsigned Radix,
459 long long &Result) {
460 unsigned long long ULLVal;
461
462 // Handle positive strings first.
463 if (Str.empty() || Str.front() != '-') {
464 if (consumeUnsignedInteger(Str, Radix, ULLVal) ||
465 // Check for value so large it overflows a signed value.
466 (long long)ULLVal < 0)
467 return true;
468 Result = ULLVal;
469 return false;
470 }
471
472 // Get the positive part of the value.
473 StringRef Str2 = Str.drop_front(1);
474 if (consumeUnsignedInteger(Str2, Radix, ULLVal) ||
475 // Reject values so large they'd overflow as negative signed, but allow
476 // "-0". This negates the unsigned so that the negative isn't undefined
477 // on signed overflow.
478 (long long)-ULLVal > 0)
479 return true;
480
481 Str = Str2;
482 Result = -ULLVal;
483 return false;
484 }
485
486 /// GetAsUnsignedInteger - Workhorse method that converts a integer character
487 /// sequence of radix up to 36 to an unsigned long long value.
getAsUnsignedInteger(StringRef Str,unsigned Radix,unsigned long long & Result)488 bool llvm::getAsUnsignedInteger(StringRef Str, unsigned Radix,
489 unsigned long long &Result) {
490 if (consumeUnsignedInteger(Str, Radix, Result))
491 return true;
492
493 // For getAsUnsignedInteger, we require the whole string to be consumed or
494 // else we consider it a failure.
495 return !Str.empty();
496 }
497
getAsSignedInteger(StringRef Str,unsigned Radix,long long & Result)498 bool llvm::getAsSignedInteger(StringRef Str, unsigned Radix,
499 long long &Result) {
500 if (consumeSignedInteger(Str, Radix, Result))
501 return true;
502
503 // For getAsSignedInteger, we require the whole string to be consumed or else
504 // we consider it a failure.
505 return !Str.empty();
506 }
507
getAsInteger(unsigned Radix,APInt & Result) const508 bool StringRef::getAsInteger(unsigned Radix, APInt &Result) const {
509 StringRef Str = *this;
510
511 // Autosense radix if not specified.
512 if (Radix == 0)
513 Radix = GetAutoSenseRadix(Str);
514
515 assert(Radix > 1 && Radix <= 36);
516
517 // Empty strings (after the radix autosense) are invalid.
518 if (Str.empty()) return true;
519
520 // Skip leading zeroes. This can be a significant improvement if
521 // it means we don't need > 64 bits.
522 while (!Str.empty() && Str.front() == '0')
523 Str = Str.substr(1);
524
525 // If it was nothing but zeroes....
526 if (Str.empty()) {
527 Result = APInt(64, 0);
528 return false;
529 }
530
531 // (Over-)estimate the required number of bits.
532 unsigned Log2Radix = 0;
533 while ((1U << Log2Radix) < Radix) Log2Radix++;
534 bool IsPowerOf2Radix = ((1U << Log2Radix) == Radix);
535
536 unsigned BitWidth = Log2Radix * Str.size();
537 if (BitWidth < Result.getBitWidth())
538 BitWidth = Result.getBitWidth(); // don't shrink the result
539 else if (BitWidth > Result.getBitWidth())
540 Result = Result.zext(BitWidth);
541
542 APInt RadixAP, CharAP; // unused unless !IsPowerOf2Radix
543 if (!IsPowerOf2Radix) {
544 // These must have the same bit-width as Result.
545 RadixAP = APInt(BitWidth, Radix);
546 CharAP = APInt(BitWidth, 0);
547 }
548
549 // Parse all the bytes of the string given this radix.
550 Result = 0;
551 while (!Str.empty()) {
552 unsigned CharVal;
553 if (Str[0] >= '0' && Str[0] <= '9')
554 CharVal = Str[0]-'0';
555 else if (Str[0] >= 'a' && Str[0] <= 'z')
556 CharVal = Str[0]-'a'+10;
557 else if (Str[0] >= 'A' && Str[0] <= 'Z')
558 CharVal = Str[0]-'A'+10;
559 else
560 return true;
561
562 // If the parsed value is larger than the integer radix, the string is
563 // invalid.
564 if (CharVal >= Radix)
565 return true;
566
567 // Add in this character.
568 if (IsPowerOf2Radix) {
569 Result <<= Log2Radix;
570 Result |= CharVal;
571 } else {
572 Result *= RadixAP;
573 CharAP = CharVal;
574 Result += CharAP;
575 }
576
577 Str = Str.substr(1);
578 }
579
580 return false;
581 }
582
getAsDouble(double & Result,bool AllowInexact) const583 bool StringRef::getAsDouble(double &Result, bool AllowInexact) const {
584 APFloat F(0.0);
585 auto StatusOrErr = F.convertFromString(*this, APFloat::rmNearestTiesToEven);
586 if (errorToBool(StatusOrErr.takeError()))
587 return true;
588
589 APFloat::opStatus Status = *StatusOrErr;
590 if (Status != APFloat::opOK) {
591 if (!AllowInexact || !(Status & APFloat::opInexact))
592 return true;
593 }
594
595 Result = F.convertToDouble();
596 return false;
597 }
598
599 // Implementation of StringRef hashing.
hash_value(StringRef S)600 hash_code llvm::hash_value(StringRef S) {
601 return hash_combine_range(S.begin(), S.end());
602 }
603