xref: /minix3/external/bsd/llvm/dist/llvm/lib/Transforms/Utils/SimplifyIndVar.cpp (revision 0a6a1f1d05b60e214de2f05a7310ddd1f0e590e7)
1 //===-- SimplifyIndVar.cpp - Induction variable simplification ------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements induction variable simplification. It does
11 // not define any actual pass or policy, but provides a single function to
12 // simplify a loop's induction variables based on ScalarEvolution.
13 //
14 //===----------------------------------------------------------------------===//
15 
16 #include "llvm/Transforms/Utils/SimplifyIndVar.h"
17 #include "llvm/ADT/STLExtras.h"
18 #include "llvm/ADT/SmallVector.h"
19 #include "llvm/ADT/Statistic.h"
20 #include "llvm/Analysis/IVUsers.h"
21 #include "llvm/Analysis/LoopInfo.h"
22 #include "llvm/Analysis/LoopPass.h"
23 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
24 #include "llvm/IR/DataLayout.h"
25 #include "llvm/IR/Dominators.h"
26 #include "llvm/IR/IRBuilder.h"
27 #include "llvm/IR/Instructions.h"
28 #include "llvm/IR/IntrinsicInst.h"
29 #include "llvm/Support/CommandLine.h"
30 #include "llvm/Support/Debug.h"
31 #include "llvm/Support/raw_ostream.h"
32 
33 using namespace llvm;
34 
35 #define DEBUG_TYPE "indvars"
36 
37 STATISTIC(NumElimIdentity, "Number of IV identities eliminated");
38 STATISTIC(NumElimOperand,  "Number of IV operands folded into a use");
39 STATISTIC(NumElimRem     , "Number of IV remainder operations eliminated");
40 STATISTIC(NumElimCmp     , "Number of IV comparisons eliminated");
41 
42 namespace {
43   /// This is a utility for simplifying induction variables
44   /// based on ScalarEvolution. It is the primary instrument of the
45   /// IndvarSimplify pass, but it may also be directly invoked to cleanup after
46   /// other loop passes that preserve SCEV.
47   class SimplifyIndvar {
48     Loop             *L;
49     LoopInfo         *LI;
50     ScalarEvolution  *SE;
51     const DataLayout *DL; // May be NULL
52 
53     SmallVectorImpl<WeakVH> &DeadInsts;
54 
55     bool Changed;
56 
57   public:
SimplifyIndvar(Loop * Loop,ScalarEvolution * SE,LPPassManager * LPM,SmallVectorImpl<WeakVH> & Dead,IVUsers * IVU=nullptr)58     SimplifyIndvar(Loop *Loop, ScalarEvolution *SE, LPPassManager *LPM,
59                    SmallVectorImpl<WeakVH> &Dead, IVUsers *IVU = nullptr) :
60       L(Loop),
61       LI(LPM->getAnalysisIfAvailable<LoopInfo>()),
62       SE(SE),
63       DeadInsts(Dead),
64       Changed(false) {
65       DataLayoutPass *DLP = LPM->getAnalysisIfAvailable<DataLayoutPass>();
66       DL = DLP ? &DLP->getDataLayout() : nullptr;
67       assert(LI && "IV simplification requires LoopInfo");
68     }
69 
hasChanged() const70     bool hasChanged() const { return Changed; }
71 
72     /// Iteratively perform simplification on a worklist of users of the
73     /// specified induction variable. This is the top-level driver that applies
74     /// all simplicitions to users of an IV.
75     void simplifyUsers(PHINode *CurrIV, IVVisitor *V = nullptr);
76 
77     Value *foldIVUser(Instruction *UseInst, Instruction *IVOperand);
78 
79     bool eliminateIVUser(Instruction *UseInst, Instruction *IVOperand);
80     void eliminateIVComparison(ICmpInst *ICmp, Value *IVOperand);
81     void eliminateIVRemainder(BinaryOperator *Rem, Value *IVOperand,
82                               bool IsSigned);
83     bool strengthenOverflowingOperation(BinaryOperator *OBO, Value *IVOperand);
84 
85     Instruction *splitOverflowIntrinsic(Instruction *IVUser,
86                                         const DominatorTree *DT);
87   };
88 }
89 
90 /// Fold an IV operand into its use.  This removes increments of an
91 /// aligned IV when used by a instruction that ignores the low bits.
92 ///
93 /// IVOperand is guaranteed SCEVable, but UseInst may not be.
94 ///
95 /// Return the operand of IVOperand for this induction variable if IVOperand can
96 /// be folded (in case more folding opportunities have been exposed).
97 /// Otherwise return null.
foldIVUser(Instruction * UseInst,Instruction * IVOperand)98 Value *SimplifyIndvar::foldIVUser(Instruction *UseInst, Instruction *IVOperand) {
99   Value *IVSrc = nullptr;
100   unsigned OperIdx = 0;
101   const SCEV *FoldedExpr = nullptr;
102   switch (UseInst->getOpcode()) {
103   default:
104     return nullptr;
105   case Instruction::UDiv:
106   case Instruction::LShr:
107     // We're only interested in the case where we know something about
108     // the numerator and have a constant denominator.
109     if (IVOperand != UseInst->getOperand(OperIdx) ||
110         !isa<ConstantInt>(UseInst->getOperand(1)))
111       return nullptr;
112 
113     // Attempt to fold a binary operator with constant operand.
114     // e.g. ((I + 1) >> 2) => I >> 2
115     if (!isa<BinaryOperator>(IVOperand)
116         || !isa<ConstantInt>(IVOperand->getOperand(1)))
117       return nullptr;
118 
119     IVSrc = IVOperand->getOperand(0);
120     // IVSrc must be the (SCEVable) IV, since the other operand is const.
121     assert(SE->isSCEVable(IVSrc->getType()) && "Expect SCEVable IV operand");
122 
123     ConstantInt *D = cast<ConstantInt>(UseInst->getOperand(1));
124     if (UseInst->getOpcode() == Instruction::LShr) {
125       // Get a constant for the divisor. See createSCEV.
126       uint32_t BitWidth = cast<IntegerType>(UseInst->getType())->getBitWidth();
127       if (D->getValue().uge(BitWidth))
128         return nullptr;
129 
130       D = ConstantInt::get(UseInst->getContext(),
131                            APInt::getOneBitSet(BitWidth, D->getZExtValue()));
132     }
133     FoldedExpr = SE->getUDivExpr(SE->getSCEV(IVSrc), SE->getSCEV(D));
134   }
135   // We have something that might fold it's operand. Compare SCEVs.
136   if (!SE->isSCEVable(UseInst->getType()))
137     return nullptr;
138 
139   // Bypass the operand if SCEV can prove it has no effect.
140   if (SE->getSCEV(UseInst) != FoldedExpr)
141     return nullptr;
142 
143   DEBUG(dbgs() << "INDVARS: Eliminated IV operand: " << *IVOperand
144         << " -> " << *UseInst << '\n');
145 
146   UseInst->setOperand(OperIdx, IVSrc);
147   assert(SE->getSCEV(UseInst) == FoldedExpr && "bad SCEV with folded oper");
148 
149   ++NumElimOperand;
150   Changed = true;
151   if (IVOperand->use_empty())
152     DeadInsts.push_back(IVOperand);
153   return IVSrc;
154 }
155 
156 /// SimplifyIVUsers helper for eliminating useless
157 /// comparisons against an induction variable.
eliminateIVComparison(ICmpInst * ICmp,Value * IVOperand)158 void SimplifyIndvar::eliminateIVComparison(ICmpInst *ICmp, Value *IVOperand) {
159   unsigned IVOperIdx = 0;
160   ICmpInst::Predicate Pred = ICmp->getPredicate();
161   if (IVOperand != ICmp->getOperand(0)) {
162     // Swapped
163     assert(IVOperand == ICmp->getOperand(1) && "Can't find IVOperand");
164     IVOperIdx = 1;
165     Pred = ICmpInst::getSwappedPredicate(Pred);
166   }
167 
168   // Get the SCEVs for the ICmp operands.
169   const SCEV *S = SE->getSCEV(ICmp->getOperand(IVOperIdx));
170   const SCEV *X = SE->getSCEV(ICmp->getOperand(1 - IVOperIdx));
171 
172   // Simplify unnecessary loops away.
173   const Loop *ICmpLoop = LI->getLoopFor(ICmp->getParent());
174   S = SE->getSCEVAtScope(S, ICmpLoop);
175   X = SE->getSCEVAtScope(X, ICmpLoop);
176 
177   // If the condition is always true or always false, replace it with
178   // a constant value.
179   if (SE->isKnownPredicate(Pred, S, X))
180     ICmp->replaceAllUsesWith(ConstantInt::getTrue(ICmp->getContext()));
181   else if (SE->isKnownPredicate(ICmpInst::getInversePredicate(Pred), S, X))
182     ICmp->replaceAllUsesWith(ConstantInt::getFalse(ICmp->getContext()));
183   else
184     return;
185 
186   DEBUG(dbgs() << "INDVARS: Eliminated comparison: " << *ICmp << '\n');
187   ++NumElimCmp;
188   Changed = true;
189   DeadInsts.push_back(ICmp);
190 }
191 
192 /// SimplifyIVUsers helper for eliminating useless
193 /// remainder operations operating on an induction variable.
eliminateIVRemainder(BinaryOperator * Rem,Value * IVOperand,bool IsSigned)194 void SimplifyIndvar::eliminateIVRemainder(BinaryOperator *Rem,
195                                       Value *IVOperand,
196                                       bool IsSigned) {
197   // We're only interested in the case where we know something about
198   // the numerator.
199   if (IVOperand != Rem->getOperand(0))
200     return;
201 
202   // Get the SCEVs for the ICmp operands.
203   const SCEV *S = SE->getSCEV(Rem->getOperand(0));
204   const SCEV *X = SE->getSCEV(Rem->getOperand(1));
205 
206   // Simplify unnecessary loops away.
207   const Loop *ICmpLoop = LI->getLoopFor(Rem->getParent());
208   S = SE->getSCEVAtScope(S, ICmpLoop);
209   X = SE->getSCEVAtScope(X, ICmpLoop);
210 
211   // i % n  -->  i  if i is in [0,n).
212   if ((!IsSigned || SE->isKnownNonNegative(S)) &&
213       SE->isKnownPredicate(IsSigned ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT,
214                            S, X))
215     Rem->replaceAllUsesWith(Rem->getOperand(0));
216   else {
217     // (i+1) % n  -->  (i+1)==n?0:(i+1)  if i is in [0,n).
218     const SCEV *LessOne =
219       SE->getMinusSCEV(S, SE->getConstant(S->getType(), 1));
220     if (IsSigned && !SE->isKnownNonNegative(LessOne))
221       return;
222 
223     if (!SE->isKnownPredicate(IsSigned ?
224                               ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT,
225                               LessOne, X))
226       return;
227 
228     ICmpInst *ICmp = new ICmpInst(Rem, ICmpInst::ICMP_EQ,
229                                   Rem->getOperand(0), Rem->getOperand(1));
230     SelectInst *Sel =
231       SelectInst::Create(ICmp,
232                          ConstantInt::get(Rem->getType(), 0),
233                          Rem->getOperand(0), "tmp", Rem);
234     Rem->replaceAllUsesWith(Sel);
235   }
236 
237   DEBUG(dbgs() << "INDVARS: Simplified rem: " << *Rem << '\n');
238   ++NumElimRem;
239   Changed = true;
240   DeadInsts.push_back(Rem);
241 }
242 
243 /// Eliminate an operation that consumes a simple IV and has
244 /// no observable side-effect given the range of IV values.
245 /// IVOperand is guaranteed SCEVable, but UseInst may not be.
eliminateIVUser(Instruction * UseInst,Instruction * IVOperand)246 bool SimplifyIndvar::eliminateIVUser(Instruction *UseInst,
247                                      Instruction *IVOperand) {
248   if (ICmpInst *ICmp = dyn_cast<ICmpInst>(UseInst)) {
249     eliminateIVComparison(ICmp, IVOperand);
250     return true;
251   }
252   if (BinaryOperator *Rem = dyn_cast<BinaryOperator>(UseInst)) {
253     bool IsSigned = Rem->getOpcode() == Instruction::SRem;
254     if (IsSigned || Rem->getOpcode() == Instruction::URem) {
255       eliminateIVRemainder(Rem, IVOperand, IsSigned);
256       return true;
257     }
258   }
259 
260   // Eliminate any operation that SCEV can prove is an identity function.
261   if (!SE->isSCEVable(UseInst->getType()) ||
262       (UseInst->getType() != IVOperand->getType()) ||
263       (SE->getSCEV(UseInst) != SE->getSCEV(IVOperand)))
264     return false;
265 
266   DEBUG(dbgs() << "INDVARS: Eliminated identity: " << *UseInst << '\n');
267 
268   UseInst->replaceAllUsesWith(IVOperand);
269   ++NumElimIdentity;
270   Changed = true;
271   DeadInsts.push_back(UseInst);
272   return true;
273 }
274 
275 /// Annotate BO with nsw / nuw if it provably does not signed-overflow /
276 /// unsigned-overflow.  Returns true if anything changed, false otherwise.
strengthenOverflowingOperation(BinaryOperator * BO,Value * IVOperand)277 bool SimplifyIndvar::strengthenOverflowingOperation(BinaryOperator *BO,
278                                                     Value *IVOperand) {
279 
280   // Currently we only handle instructions of the form "add <indvar> <value>"
281   unsigned Op = BO->getOpcode();
282   if (Op != Instruction::Add)
283     return false;
284 
285   // If BO is already both nuw and nsw then there is nothing left to do
286   if (BO->hasNoUnsignedWrap() && BO->hasNoSignedWrap())
287     return false;
288 
289   IntegerType *IT = cast<IntegerType>(IVOperand->getType());
290   Value *OtherOperand = nullptr;
291   if (BO->getOperand(0) == IVOperand) {
292     OtherOperand = BO->getOperand(1);
293   } else {
294     assert(BO->getOperand(1) == IVOperand && "only other use!");
295     OtherOperand = BO->getOperand(0);
296   }
297 
298   bool Changed = false;
299   const SCEV *OtherOpSCEV = SE->getSCEV(OtherOperand);
300   if (OtherOpSCEV == SE->getCouldNotCompute())
301     return false;
302 
303   const SCEV *IVOpSCEV = SE->getSCEV(IVOperand);
304   const SCEV *ZeroSCEV = SE->getConstant(IVOpSCEV->getType(), 0);
305 
306   if (!BO->hasNoSignedWrap()) {
307     // Upgrade the add to an "add nsw" if we can prove that it will never
308     // sign-overflow or sign-underflow.
309 
310     const SCEV *SignedMax =
311       SE->getConstant(APInt::getSignedMaxValue(IT->getBitWidth()));
312     const SCEV *SignedMin =
313       SE->getConstant(APInt::getSignedMinValue(IT->getBitWidth()));
314 
315     // The addition "IVOperand + OtherOp" does not sign-overflow if the result
316     // is sign-representable in 2's complement in the given bit-width.
317     //
318     // If OtherOp is SLT 0, then for an IVOperand in [SignedMin - OtherOp,
319     // SignedMax], "IVOperand + OtherOp" is in [SignedMin, SignedMax + OtherOp].
320     // Everything in [SignedMin, SignedMax + OtherOp] is representable since
321     // SignedMax + OtherOp is at least -1.
322     //
323     // If OtherOp is SGE 0, then for an IVOperand in [SignedMin, SignedMax -
324     // OtherOp], "IVOperand + OtherOp" is in [SignedMin + OtherOp, SignedMax].
325     // Everything in [SignedMin + OtherOp, SignedMax] is representable since
326     // SignedMin + OtherOp is at most -1.
327     //
328     // It follows that for all values of IVOperand in [SignedMin - smin(0,
329     // OtherOp), SignedMax - smax(0, OtherOp)] the result of the add is
330     // representable (i.e. there is no sign-overflow).
331 
332     const SCEV *UpperDelta = SE->getSMaxExpr(ZeroSCEV, OtherOpSCEV);
333     const SCEV *UpperLimit = SE->getMinusSCEV(SignedMax, UpperDelta);
334 
335     bool NeverSignedOverflows =
336       SE->isKnownPredicate(ICmpInst::ICMP_SLE, IVOpSCEV, UpperLimit);
337 
338     if (NeverSignedOverflows) {
339       const SCEV *LowerDelta = SE->getSMinExpr(ZeroSCEV, OtherOpSCEV);
340       const SCEV *LowerLimit = SE->getMinusSCEV(SignedMin, LowerDelta);
341 
342       bool NeverSignedUnderflows =
343         SE->isKnownPredicate(ICmpInst::ICMP_SGE, IVOpSCEV, LowerLimit);
344       if (NeverSignedUnderflows) {
345         BO->setHasNoSignedWrap(true);
346         Changed = true;
347       }
348     }
349   }
350 
351   if (!BO->hasNoUnsignedWrap()) {
352     // Upgrade the add computing "IVOperand + OtherOp" to an "add nuw" if we can
353     // prove that it will never unsigned-overflow (i.e. the result will always
354     // be representable in the given bit-width).
355     //
356     // "IVOperand + OtherOp" is unsigned-representable in 2's complement iff it
357     // does not produce a carry.  "IVOperand + OtherOp" produces no carry iff
358     // IVOperand ULE (UnsignedMax - OtherOp).
359 
360     const SCEV *UnsignedMax =
361       SE->getConstant(APInt::getMaxValue(IT->getBitWidth()));
362     const SCEV *UpperLimit = SE->getMinusSCEV(UnsignedMax, OtherOpSCEV);
363 
364     bool NeverUnsignedOverflows =
365         SE->isKnownPredicate(ICmpInst::ICMP_ULE, IVOpSCEV, UpperLimit);
366 
367     if (NeverUnsignedOverflows) {
368       BO->setHasNoUnsignedWrap(true);
369       Changed = true;
370     }
371   }
372 
373   return Changed;
374 }
375 
376 /// \brief Split sadd.with.overflow into add + sadd.with.overflow to allow
377 /// analysis and optimization.
378 ///
379 /// \return A new value representing the non-overflowing add if possible,
380 /// otherwise return the original value.
splitOverflowIntrinsic(Instruction * IVUser,const DominatorTree * DT)381 Instruction *SimplifyIndvar::splitOverflowIntrinsic(Instruction *IVUser,
382                                                     const DominatorTree *DT) {
383   IntrinsicInst *II = dyn_cast<IntrinsicInst>(IVUser);
384   if (!II || II->getIntrinsicID() != Intrinsic::sadd_with_overflow)
385     return IVUser;
386 
387   // Find a branch guarded by the overflow check.
388   BranchInst *Branch = nullptr;
389   Instruction *AddVal = nullptr;
390   for (User *U : II->users()) {
391     if (ExtractValueInst *ExtractInst = dyn_cast<ExtractValueInst>(U)) {
392       if (ExtractInst->getNumIndices() != 1)
393         continue;
394       if (ExtractInst->getIndices()[0] == 0)
395         AddVal = ExtractInst;
396       else if (ExtractInst->getIndices()[0] == 1 && ExtractInst->hasOneUse())
397         Branch = dyn_cast<BranchInst>(ExtractInst->user_back());
398     }
399   }
400   if (!AddVal || !Branch)
401     return IVUser;
402 
403   BasicBlock *ContinueBB = Branch->getSuccessor(1);
404   if (std::next(pred_begin(ContinueBB)) != pred_end(ContinueBB))
405     return IVUser;
406 
407   // Check if all users of the add are provably NSW.
408   bool AllNSW = true;
409   for (Use &U : AddVal->uses()) {
410     if (Instruction *UseInst = dyn_cast<Instruction>(U.getUser())) {
411       BasicBlock *UseBB = UseInst->getParent();
412       if (PHINode *PHI = dyn_cast<PHINode>(UseInst))
413         UseBB = PHI->getIncomingBlock(U);
414       if (!DT->dominates(ContinueBB, UseBB)) {
415         AllNSW = false;
416         break;
417       }
418     }
419   }
420   if (!AllNSW)
421     return IVUser;
422 
423   // Go for it...
424   IRBuilder<> Builder(IVUser);
425   Instruction *AddInst = dyn_cast<Instruction>(
426     Builder.CreateNSWAdd(II->getOperand(0), II->getOperand(1)));
427 
428   // The caller expects the new add to have the same form as the intrinsic. The
429   // IV operand position must be the same.
430   assert((AddInst->getOpcode() == Instruction::Add &&
431           AddInst->getOperand(0) == II->getOperand(0)) &&
432          "Bad add instruction created from overflow intrinsic.");
433 
434   AddVal->replaceAllUsesWith(AddInst);
435   DeadInsts.push_back(AddVal);
436   return AddInst;
437 }
438 
439 /// Add all uses of Def to the current IV's worklist.
pushIVUsers(Instruction * Def,SmallPtrSet<Instruction *,16> & Simplified,SmallVectorImpl<std::pair<Instruction *,Instruction * >> & SimpleIVUsers)440 static void pushIVUsers(
441   Instruction *Def,
442   SmallPtrSet<Instruction*,16> &Simplified,
443   SmallVectorImpl< std::pair<Instruction*,Instruction*> > &SimpleIVUsers) {
444 
445   for (User *U : Def->users()) {
446     Instruction *UI = cast<Instruction>(U);
447 
448     // Avoid infinite or exponential worklist processing.
449     // Also ensure unique worklist users.
450     // If Def is a LoopPhi, it may not be in the Simplified set, so check for
451     // self edges first.
452     if (UI != Def && Simplified.insert(UI).second)
453       SimpleIVUsers.push_back(std::make_pair(UI, Def));
454   }
455 }
456 
457 /// Return true if this instruction generates a simple SCEV
458 /// expression in terms of that IV.
459 ///
460 /// This is similar to IVUsers' isInteresting() but processes each instruction
461 /// non-recursively when the operand is already known to be a simpleIVUser.
462 ///
isSimpleIVUser(Instruction * I,const Loop * L,ScalarEvolution * SE)463 static bool isSimpleIVUser(Instruction *I, const Loop *L, ScalarEvolution *SE) {
464   if (!SE->isSCEVable(I->getType()))
465     return false;
466 
467   // Get the symbolic expression for this instruction.
468   const SCEV *S = SE->getSCEV(I);
469 
470   // Only consider affine recurrences.
471   const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S);
472   if (AR && AR->getLoop() == L)
473     return true;
474 
475   return false;
476 }
477 
478 /// Iteratively perform simplification on a worklist of users
479 /// of the specified induction variable. Each successive simplification may push
480 /// more users which may themselves be candidates for simplification.
481 ///
482 /// This algorithm does not require IVUsers analysis. Instead, it simplifies
483 /// instructions in-place during analysis. Rather than rewriting induction
484 /// variables bottom-up from their users, it transforms a chain of IVUsers
485 /// top-down, updating the IR only when it encouters a clear optimization
486 /// opportunitiy.
487 ///
488 /// Once DisableIVRewrite is default, LSR will be the only client of IVUsers.
489 ///
simplifyUsers(PHINode * CurrIV,IVVisitor * V)490 void SimplifyIndvar::simplifyUsers(PHINode *CurrIV, IVVisitor *V) {
491   if (!SE->isSCEVable(CurrIV->getType()))
492     return;
493 
494   // Instructions processed by SimplifyIndvar for CurrIV.
495   SmallPtrSet<Instruction*,16> Simplified;
496 
497   // Use-def pairs if IV users waiting to be processed for CurrIV.
498   SmallVector<std::pair<Instruction*, Instruction*>, 8> SimpleIVUsers;
499 
500   // Push users of the current LoopPhi. In rare cases, pushIVUsers may be
501   // called multiple times for the same LoopPhi. This is the proper thing to
502   // do for loop header phis that use each other.
503   pushIVUsers(CurrIV, Simplified, SimpleIVUsers);
504 
505   while (!SimpleIVUsers.empty()) {
506     std::pair<Instruction*, Instruction*> UseOper =
507       SimpleIVUsers.pop_back_val();
508     Instruction *UseInst = UseOper.first;
509 
510     // Bypass back edges to avoid extra work.
511     if (UseInst == CurrIV) continue;
512 
513     if (V && V->shouldSplitOverflowInstrinsics()) {
514       UseInst = splitOverflowIntrinsic(UseInst, V->getDomTree());
515       if (!UseInst)
516         continue;
517     }
518 
519     Instruction *IVOperand = UseOper.second;
520     for (unsigned N = 0; IVOperand; ++N) {
521       assert(N <= Simplified.size() && "runaway iteration");
522 
523       Value *NewOper = foldIVUser(UseOper.first, IVOperand);
524       if (!NewOper)
525         break; // done folding
526       IVOperand = dyn_cast<Instruction>(NewOper);
527     }
528     if (!IVOperand)
529       continue;
530 
531     if (eliminateIVUser(UseOper.first, IVOperand)) {
532       pushIVUsers(IVOperand, Simplified, SimpleIVUsers);
533       continue;
534     }
535 
536     if (BinaryOperator *BO = dyn_cast<BinaryOperator>(UseOper.first)) {
537       if (isa<OverflowingBinaryOperator>(BO) &&
538           strengthenOverflowingOperation(BO, IVOperand)) {
539         // re-queue uses of the now modified binary operator and fall
540         // through to the checks that remain.
541         pushIVUsers(IVOperand, Simplified, SimpleIVUsers);
542       }
543     }
544 
545     CastInst *Cast = dyn_cast<CastInst>(UseOper.first);
546     if (V && Cast) {
547       V->visitCast(Cast);
548       continue;
549     }
550     if (isSimpleIVUser(UseOper.first, L, SE)) {
551       pushIVUsers(UseOper.first, Simplified, SimpleIVUsers);
552     }
553   }
554 }
555 
556 namespace llvm {
557 
anchor()558 void IVVisitor::anchor() { }
559 
560 /// Simplify instructions that use this induction variable
561 /// by using ScalarEvolution to analyze the IV's recurrence.
simplifyUsersOfIV(PHINode * CurrIV,ScalarEvolution * SE,LPPassManager * LPM,SmallVectorImpl<WeakVH> & Dead,IVVisitor * V)562 bool simplifyUsersOfIV(PHINode *CurrIV, ScalarEvolution *SE, LPPassManager *LPM,
563                        SmallVectorImpl<WeakVH> &Dead, IVVisitor *V)
564 {
565   LoopInfo *LI = &LPM->getAnalysis<LoopInfo>();
566   SimplifyIndvar SIV(LI->getLoopFor(CurrIV->getParent()), SE, LPM, Dead);
567   SIV.simplifyUsers(CurrIV, V);
568   return SIV.hasChanged();
569 }
570 
571 /// Simplify users of induction variables within this
572 /// loop. This does not actually change or add IVs.
simplifyLoopIVs(Loop * L,ScalarEvolution * SE,LPPassManager * LPM,SmallVectorImpl<WeakVH> & Dead)573 bool simplifyLoopIVs(Loop *L, ScalarEvolution *SE, LPPassManager *LPM,
574                      SmallVectorImpl<WeakVH> &Dead) {
575   bool Changed = false;
576   for (BasicBlock::iterator I = L->getHeader()->begin(); isa<PHINode>(I); ++I) {
577     Changed |= simplifyUsersOfIV(cast<PHINode>(I), SE, LPM, Dead);
578   }
579   return Changed;
580 }
581 
582 } // namespace llvm
583