xref: /llvm-project/mlir/unittests/Analysis/Presburger/SimplexTest.cpp (revision 1a0e67d73023e7ad9e7e79f66afb43a6f2561d04)
1 //===- SimplexTest.cpp - Tests for Simplex --------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "Parser.h"
10 #include "Utils.h"
11 
12 #include "mlir/Analysis/Presburger/Simplex.h"
13 #include "mlir/IR/MLIRContext.h"
14 
15 #include <gmock/gmock.h>
16 #include <gtest/gtest.h>
17 #include <optional>
18 
19 using namespace mlir;
20 using namespace presburger;
21 
22 /// Convenience functions to pass literals to Simplex.
addInequality(SimplexBase & simplex,ArrayRef<int64_t> coeffs)23 void addInequality(SimplexBase &simplex, ArrayRef<int64_t> coeffs) {
24   simplex.addInequality(getDynamicAPIntVec(coeffs));
25 }
addEquality(SimplexBase & simplex,ArrayRef<int64_t> coeffs)26 void addEquality(SimplexBase &simplex, ArrayRef<int64_t> coeffs) {
27   simplex.addEquality(getDynamicAPIntVec(coeffs));
28 }
isRedundantInequality(Simplex & simplex,ArrayRef<int64_t> coeffs)29 bool isRedundantInequality(Simplex &simplex, ArrayRef<int64_t> coeffs) {
30   return simplex.isRedundantInequality(getDynamicAPIntVec(coeffs));
31 }
isRedundantInequality(LexSimplex & simplex,ArrayRef<int64_t> coeffs)32 bool isRedundantInequality(LexSimplex &simplex, ArrayRef<int64_t> coeffs) {
33   return simplex.isRedundantInequality(getDynamicAPIntVec(coeffs));
34 }
isRedundantEquality(Simplex & simplex,ArrayRef<int64_t> coeffs)35 bool isRedundantEquality(Simplex &simplex, ArrayRef<int64_t> coeffs) {
36   return simplex.isRedundantEquality(getDynamicAPIntVec(coeffs));
37 }
isSeparateInequality(LexSimplex & simplex,ArrayRef<int64_t> coeffs)38 bool isSeparateInequality(LexSimplex &simplex, ArrayRef<int64_t> coeffs) {
39   return simplex.isSeparateInequality(getDynamicAPIntVec(coeffs));
40 }
41 
findIneqType(Simplex & simplex,ArrayRef<int64_t> coeffs)42 Simplex::IneqType findIneqType(Simplex &simplex, ArrayRef<int64_t> coeffs) {
43   return simplex.findIneqType(getDynamicAPIntVec(coeffs));
44 }
45 
46 /// Take a snapshot, add constraints making the set empty, and rollback.
47 /// The set should not be empty after rolling back. We add additional
48 /// constraints after the set is already empty and roll back the addition
49 /// of these. The set should be marked non-empty only once we rollback
50 /// past the addition of the first constraint that made it empty.
TEST(SimplexTest,emptyRollback)51 TEST(SimplexTest, emptyRollback) {
52   Simplex simplex(2);
53   // (u - v) >= 0
54   addInequality(simplex, {1, -1, 0});
55   ASSERT_FALSE(simplex.isEmpty());
56 
57   unsigned snapshot = simplex.getSnapshot();
58   // (u - v) <= -1
59   addInequality(simplex, {-1, 1, -1});
60   ASSERT_TRUE(simplex.isEmpty());
61 
62   unsigned snapshot2 = simplex.getSnapshot();
63   // (u - v) <= -3
64   addInequality(simplex, {-1, 1, -3});
65   ASSERT_TRUE(simplex.isEmpty());
66 
67   simplex.rollback(snapshot2);
68   ASSERT_TRUE(simplex.isEmpty());
69 
70   simplex.rollback(snapshot);
71   ASSERT_FALSE(simplex.isEmpty());
72 }
73 
74 /// Check that the set gets marked as empty when we add contradictory
75 /// constraints.
TEST(SimplexTest,addEquality_separate)76 TEST(SimplexTest, addEquality_separate) {
77   Simplex simplex(1);
78   addInequality(simplex, {1, -1}); // x >= 1.
79   ASSERT_FALSE(simplex.isEmpty());
80   addEquality(simplex, {1, 0}); // x == 0.
81   EXPECT_TRUE(simplex.isEmpty());
82 }
83 
expectInequalityMakesSetEmpty(Simplex & simplex,ArrayRef<int64_t> coeffs,bool expect)84 void expectInequalityMakesSetEmpty(Simplex &simplex, ArrayRef<int64_t> coeffs,
85                                    bool expect) {
86   ASSERT_FALSE(simplex.isEmpty());
87   unsigned snapshot = simplex.getSnapshot();
88   addInequality(simplex, coeffs);
89   EXPECT_EQ(simplex.isEmpty(), expect);
90   simplex.rollback(snapshot);
91 }
92 
TEST(SimplexTest,addInequality_rollback)93 TEST(SimplexTest, addInequality_rollback) {
94   Simplex simplex(3);
95   SmallVector<int64_t, 4> coeffs[]{{1, 0, 0, 0},   // u >= 0.
96                                    {-1, 0, 0, 0},  // u <= 0.
97                                    {1, -1, 1, 0},  // u - v + w >= 0.
98                                    {1, 1, -1, 0}}; // u + v - w >= 0.
99   // The above constraints force u = 0 and v = w.
100   // The constraints below violate v = w.
101   SmallVector<int64_t, 4> checkCoeffs[]{{0, 1, -1, -1},  // v - w >= 1.
102                                         {0, -1, 1, -1}}; // v - w <= -1.
103 
104   for (int run = 0; run < 4; run++) {
105     unsigned snapshot = simplex.getSnapshot();
106 
107     expectInequalityMakesSetEmpty(simplex, checkCoeffs[0], false);
108     expectInequalityMakesSetEmpty(simplex, checkCoeffs[1], false);
109 
110     for (int i = 0; i < 4; i++)
111       addInequality(simplex, coeffs[(run + i) % 4]);
112 
113     expectInequalityMakesSetEmpty(simplex, checkCoeffs[0], true);
114     expectInequalityMakesSetEmpty(simplex, checkCoeffs[1], true);
115 
116     simplex.rollback(snapshot);
117     EXPECT_EQ(simplex.getNumConstraints(), 0u);
118 
119     expectInequalityMakesSetEmpty(simplex, checkCoeffs[0], false);
120     expectInequalityMakesSetEmpty(simplex, checkCoeffs[1], false);
121   }
122 }
123 
simplexFromConstraints(unsigned nDim,ArrayRef<SmallVector<int64_t,8>> ineqs,ArrayRef<SmallVector<int64_t,8>> eqs)124 Simplex simplexFromConstraints(unsigned nDim,
125                                ArrayRef<SmallVector<int64_t, 8>> ineqs,
126                                ArrayRef<SmallVector<int64_t, 8>> eqs) {
127   Simplex simplex(nDim);
128   for (const auto &ineq : ineqs)
129     addInequality(simplex, ineq);
130   for (const auto &eq : eqs)
131     addEquality(simplex, eq);
132   return simplex;
133 }
134 
TEST(SimplexTest,isUnbounded)135 TEST(SimplexTest, isUnbounded) {
136   EXPECT_FALSE(simplexFromConstraints(
137                    2, {{1, 1, 0}, {-1, -1, 0}, {1, -1, 5}, {-1, 1, -5}}, {})
138                    .isUnbounded());
139 
140   EXPECT_TRUE(
141       simplexFromConstraints(2, {{1, 1, 0}, {1, -1, 5}, {-1, 1, -5}}, {})
142           .isUnbounded());
143 
144   EXPECT_TRUE(
145       simplexFromConstraints(2, {{-1, -1, 0}, {1, -1, 5}, {-1, 1, -5}}, {})
146           .isUnbounded());
147 
148   EXPECT_TRUE(simplexFromConstraints(2, {}, {}).isUnbounded());
149 
150   EXPECT_FALSE(simplexFromConstraints(3,
151                                       {
152                                           {2, 0, 0, -1},
153                                           {-2, 0, 0, 1},
154                                           {0, 2, 0, -1},
155                                           {0, -2, 0, 1},
156                                           {0, 0, 2, -1},
157                                           {0, 0, -2, 1},
158                                       },
159                                       {})
160                    .isUnbounded());
161 
162   EXPECT_TRUE(simplexFromConstraints(3,
163                                      {
164                                          {2, 0, 0, -1},
165                                          {-2, 0, 0, 1},
166                                          {0, 2, 0, -1},
167                                          {0, -2, 0, 1},
168                                          {0, 0, -2, 1},
169                                      },
170                                      {})
171                   .isUnbounded());
172 
173   EXPECT_TRUE(simplexFromConstraints(3,
174                                      {
175                                          {2, 0, 0, -1},
176                                          {-2, 0, 0, 1},
177                                          {0, 2, 0, -1},
178                                          {0, -2, 0, 1},
179                                          {0, 0, 2, -1},
180                                      },
181                                      {})
182                   .isUnbounded());
183 
184   // Bounded set with equalities.
185   EXPECT_FALSE(simplexFromConstraints(2,
186                                       {{1, 1, 1},    // x + y >= -1.
187                                        {-1, -1, 1}}, // x + y <=  1.
188                                       {{1, -1, 0}}   // x = y.
189                                       )
190                    .isUnbounded());
191 
192   // Unbounded set with equalities.
193   EXPECT_TRUE(simplexFromConstraints(3,
194                                      {{1, 1, 1, 1},     // x + y + z >= -1.
195                                       {-1, -1, -1, 1}}, // x + y + z <=  1.
196                                      {{1, -1, -1, 0}}   // x = y + z.
197                                      )
198                   .isUnbounded());
199 
200   // Rational empty set.
201   EXPECT_FALSE(simplexFromConstraints(3,
202                                       {
203                                           {2, 0, 0, -1},
204                                           {-2, 0, 0, 1},
205                                           {0, 2, 2, -1},
206                                           {0, -2, -2, 1},
207                                           {3, 3, 3, -4},
208                                       },
209                                       {})
210                    .isUnbounded());
211 }
212 
TEST(SimplexTest,getSamplePointIfIntegral)213 TEST(SimplexTest, getSamplePointIfIntegral) {
214   // Empty set.
215   EXPECT_FALSE(simplexFromConstraints(3,
216                                       {
217                                           {2, 0, 0, -1},
218                                           {-2, 0, 0, 1},
219                                           {0, 2, 2, -1},
220                                           {0, -2, -2, 1},
221                                           {3, 3, 3, -4},
222                                       },
223                                       {})
224                    .getSamplePointIfIntegral()
225                    .has_value());
226 
227   auto maybeSample = simplexFromConstraints(2,
228                                             {// x = y - 2.
229                                              {1, -1, 2},
230                                              {-1, 1, -2},
231                                              // x + y = 2.
232                                              {1, 1, -2},
233                                              {-1, -1, 2}},
234                                             {})
235                          .getSamplePointIfIntegral();
236 
237   EXPECT_TRUE(maybeSample.has_value());
238   EXPECT_THAT(*maybeSample, testing::ElementsAre(0, 2));
239 
240   auto maybeSample2 = simplexFromConstraints(2,
241                                              {
242                                                  {1, 0, 0},  // x >= 0.
243                                                  {-1, 0, 0}, // x <= 0.
244                                              },
245                                              {
246                                                  {0, 1, -2} // y = 2.
247                                              })
248                           .getSamplePointIfIntegral();
249   EXPECT_TRUE(maybeSample2.has_value());
250   EXPECT_THAT(*maybeSample2, testing::ElementsAre(0, 2));
251 
252   EXPECT_FALSE(simplexFromConstraints(1,
253                                       {// 2x = 1. (no integer solutions)
254                                        {2, -1},
255                                        {-2, +1}},
256                                       {})
257                    .getSamplePointIfIntegral()
258                    .has_value());
259 }
260 
261 /// Some basic sanity checks involving zero or one variables.
TEST(SimplexTest,isMarkedRedundant_no_var_ge_zero)262 TEST(SimplexTest, isMarkedRedundant_no_var_ge_zero) {
263   Simplex simplex(0);
264   addInequality(simplex, {0}); // 0 >= 0.
265 
266   simplex.detectRedundant();
267   ASSERT_FALSE(simplex.isEmpty());
268   EXPECT_TRUE(simplex.isMarkedRedundant(0));
269 }
270 
TEST(SimplexTest,isMarkedRedundant_no_var_eq)271 TEST(SimplexTest, isMarkedRedundant_no_var_eq) {
272   Simplex simplex(0);
273   addEquality(simplex, {0}); // 0 == 0.
274   simplex.detectRedundant();
275   ASSERT_FALSE(simplex.isEmpty());
276   EXPECT_TRUE(simplex.isMarkedRedundant(0));
277 }
278 
TEST(SimplexTest,isMarkedRedundant_pos_var_eq)279 TEST(SimplexTest, isMarkedRedundant_pos_var_eq) {
280   Simplex simplex(1);
281   addEquality(simplex, {1, 0}); // x == 0.
282 
283   simplex.detectRedundant();
284   ASSERT_FALSE(simplex.isEmpty());
285   EXPECT_FALSE(simplex.isMarkedRedundant(0));
286 }
287 
TEST(SimplexTest,isMarkedRedundant_zero_var_eq)288 TEST(SimplexTest, isMarkedRedundant_zero_var_eq) {
289   Simplex simplex(1);
290   addEquality(simplex, {0, 0}); // 0x == 0.
291   simplex.detectRedundant();
292   ASSERT_FALSE(simplex.isEmpty());
293   EXPECT_TRUE(simplex.isMarkedRedundant(0));
294 }
295 
TEST(SimplexTest,isMarkedRedundant_neg_var_eq)296 TEST(SimplexTest, isMarkedRedundant_neg_var_eq) {
297   Simplex simplex(1);
298   addEquality(simplex, {-1, 0}); // -x == 0.
299   simplex.detectRedundant();
300   ASSERT_FALSE(simplex.isEmpty());
301   EXPECT_FALSE(simplex.isMarkedRedundant(0));
302 }
303 
TEST(SimplexTest,isMarkedRedundant_pos_var_ge)304 TEST(SimplexTest, isMarkedRedundant_pos_var_ge) {
305   Simplex simplex(1);
306   addInequality(simplex, {1, 0}); // x >= 0.
307   simplex.detectRedundant();
308   ASSERT_FALSE(simplex.isEmpty());
309   EXPECT_FALSE(simplex.isMarkedRedundant(0));
310 }
311 
TEST(SimplexTest,isMarkedRedundant_zero_var_ge)312 TEST(SimplexTest, isMarkedRedundant_zero_var_ge) {
313   Simplex simplex(1);
314   addInequality(simplex, {0, 0}); // 0x >= 0.
315   simplex.detectRedundant();
316   ASSERT_FALSE(simplex.isEmpty());
317   EXPECT_TRUE(simplex.isMarkedRedundant(0));
318 }
319 
TEST(SimplexTest,isMarkedRedundant_neg_var_ge)320 TEST(SimplexTest, isMarkedRedundant_neg_var_ge) {
321   Simplex simplex(1);
322   addInequality(simplex, {-1, 0}); // x <= 0.
323   simplex.detectRedundant();
324   ASSERT_FALSE(simplex.isEmpty());
325   EXPECT_FALSE(simplex.isMarkedRedundant(0));
326 }
327 
328 /// None of the constraints are redundant. Slightly more complicated test
329 /// involving an equality.
TEST(SimplexTest,isMarkedRedundant_no_redundant)330 TEST(SimplexTest, isMarkedRedundant_no_redundant) {
331   Simplex simplex(3);
332 
333   addEquality(simplex, {-1, 0, 1, 0});     // u = w.
334   addInequality(simplex, {-1, 16, 0, 15}); // 15 - (u - 16v) >= 0.
335   addInequality(simplex, {1, -16, 0, 0});  //      (u - 16v) >= 0.
336 
337   simplex.detectRedundant();
338   ASSERT_FALSE(simplex.isEmpty());
339 
340   for (unsigned i = 0; i < simplex.getNumConstraints(); ++i)
341     EXPECT_FALSE(simplex.isMarkedRedundant(i)) << "i = " << i << "\n";
342 }
343 
TEST(SimplexTest,isMarkedRedundant_repeated_constraints)344 TEST(SimplexTest, isMarkedRedundant_repeated_constraints) {
345   Simplex simplex(3);
346 
347   // [4] to [7] are repeats of [0] to [3].
348   addInequality(simplex, {0, -1, 0, 1}); // [0]: y <= 1.
349   addInequality(simplex, {-1, 0, 8, 7}); // [1]: 8z >= x - 7.
350   addInequality(simplex, {1, 0, -8, 0}); // [2]: 8z <= x.
351   addInequality(simplex, {0, 1, 0, 0});  // [3]: y >= 0.
352   addInequality(simplex, {-1, 0, 8, 7}); // [4]: 8z >= 7 - x.
353   addInequality(simplex, {1, 0, -8, 0}); // [5]: 8z <= x.
354   addInequality(simplex, {0, 1, 0, 0});  // [6]: y >= 0.
355   addInequality(simplex, {0, -1, 0, 1}); // [7]: y <= 1.
356 
357   simplex.detectRedundant();
358   ASSERT_FALSE(simplex.isEmpty());
359 
360   EXPECT_EQ(simplex.isMarkedRedundant(0), true);
361   EXPECT_EQ(simplex.isMarkedRedundant(1), true);
362   EXPECT_EQ(simplex.isMarkedRedundant(2), true);
363   EXPECT_EQ(simplex.isMarkedRedundant(3), true);
364   EXPECT_EQ(simplex.isMarkedRedundant(4), false);
365   EXPECT_EQ(simplex.isMarkedRedundant(5), false);
366   EXPECT_EQ(simplex.isMarkedRedundant(6), false);
367   EXPECT_EQ(simplex.isMarkedRedundant(7), false);
368 }
369 
TEST(SimplexTest,isMarkedRedundant)370 TEST(SimplexTest, isMarkedRedundant) {
371   Simplex simplex(3);
372   addInequality(simplex, {0, -1, 0, 1}); // [0]: y <= 1.
373   addInequality(simplex, {1, 0, 0, -1}); // [1]: x >= 1.
374   addInequality(simplex, {-1, 0, 0, 2}); // [2]: x <= 2.
375   addInequality(simplex, {-1, 0, 2, 7}); // [3]: 2z >= x - 7.
376   addInequality(simplex, {1, 0, -2, 0}); // [4]: 2z <= x.
377   addInequality(simplex, {0, 1, 0, 0});  // [5]: y >= 0.
378   addInequality(simplex, {0, 1, -2, 1}); // [6]: y >= 2z - 1.
379   addInequality(simplex, {-1, 1, 0, 1}); // [7]: y >= x - 1.
380 
381   simplex.detectRedundant();
382   ASSERT_FALSE(simplex.isEmpty());
383 
384   // [0], [1], [3], [4], [7] together imply [2], [5], [6] must hold.
385   //
386   // From [7], [0]: x <= y + 1 <= 2, so we have [2].
387   // From [7], [1]: y >= x - 1 >= 0, so we have [5].
388   // From [4], [7]: 2z - 1 <= x - 1 <= y, so we have [6].
389   EXPECT_FALSE(simplex.isMarkedRedundant(0));
390   EXPECT_FALSE(simplex.isMarkedRedundant(1));
391   EXPECT_TRUE(simplex.isMarkedRedundant(2));
392   EXPECT_FALSE(simplex.isMarkedRedundant(3));
393   EXPECT_FALSE(simplex.isMarkedRedundant(4));
394   EXPECT_TRUE(simplex.isMarkedRedundant(5));
395   EXPECT_TRUE(simplex.isMarkedRedundant(6));
396   EXPECT_FALSE(simplex.isMarkedRedundant(7));
397 }
398 
TEST(SimplexTest,isMarkedRedundantTiledLoopNestConstraints)399 TEST(SimplexTest, isMarkedRedundantTiledLoopNestConstraints) {
400   Simplex simplex(3);                     // Variables are x, y, N.
401   addInequality(simplex, {1, 0, 0, 0});   // [0]: x >= 0.
402   addInequality(simplex, {-32, 0, 1, -1}); // [1]: 32x <= N - 1.
403   addInequality(simplex, {0, 1, 0, 0});    // [2]: y >= 0.
404   addInequality(simplex, {-32, 1, 0, 0});  // [3]: y >= 32x.
405   addInequality(simplex, {32, -1, 0, 31}); // [4]: y <= 32x + 31.
406   addInequality(simplex, {0, -1, 1, -1});  // [5]: y <= N - 1.
407   // [3] and [0] imply [2], as we have y >= 32x >= 0.
408   // [3] and [5] imply [1], as we have 32x <= y <= N - 1.
409   simplex.detectRedundant();
410   EXPECT_FALSE(simplex.isMarkedRedundant(0));
411   EXPECT_TRUE(simplex.isMarkedRedundant(1));
412   EXPECT_TRUE(simplex.isMarkedRedundant(2));
413   EXPECT_FALSE(simplex.isMarkedRedundant(3));
414   EXPECT_FALSE(simplex.isMarkedRedundant(4));
415   EXPECT_FALSE(simplex.isMarkedRedundant(5));
416 }
417 
TEST(SimplexTest,pivotRedundantRegressionTest)418 TEST(SimplexTest, pivotRedundantRegressionTest) {
419   Simplex simplex(2);
420   addInequality(simplex, {-1, 0, -1}); // x <= -1.
421   unsigned snapshot = simplex.getSnapshot();
422 
423   addInequality(simplex, {-1, 0, -2}); // x <= -2.
424   addInequality(simplex, {-3, 0, -6});
425 
426   // This first marks x <= -1 as redundant. Then it performs some more pivots
427   // to check if the other constraints are redundant. Pivot must update the
428   // non-redundant rows as well, otherwise these pivots result in an incorrect
429   // tableau state. In particular, after the rollback below, some rows that are
430   // NOT marked redundant will have an incorrect state.
431   simplex.detectRedundant();
432 
433   // After the rollback, the only remaining constraint is x <= -1.
434   // The maximum value of x should be -1.
435   simplex.rollback(snapshot);
436   MaybeOptimum<Fraction> maxX = simplex.computeOptimum(
437       Simplex::Direction::Up, getDynamicAPIntVec({1, 0, 0}));
438   EXPECT_TRUE(maxX.isBounded() && *maxX == Fraction(-1, 1));
439 }
440 
TEST(SimplexTest,addInequality_already_redundant)441 TEST(SimplexTest, addInequality_already_redundant) {
442   Simplex simplex(1);
443   addInequality(simplex, {1, -1}); // x >= 1.
444   addInequality(simplex, {1, 0});  // x >= 0.
445   simplex.detectRedundant();
446   ASSERT_FALSE(simplex.isEmpty());
447   EXPECT_FALSE(simplex.isMarkedRedundant(0));
448   EXPECT_TRUE(simplex.isMarkedRedundant(1));
449 }
450 
TEST(SimplexTest,appendVariable)451 TEST(SimplexTest, appendVariable) {
452   Simplex simplex(1);
453 
454   unsigned snapshot1 = simplex.getSnapshot();
455   simplex.appendVariable();
456   simplex.appendVariable(0);
457   EXPECT_EQ(simplex.getNumVariables(), 2u);
458 
459   int64_t yMin = 2, yMax = 5;
460   addInequality(simplex, {0, 1, -yMin}); // y >= 2.
461   addInequality(simplex, {0, -1, yMax}); // y <= 5.
462 
463   unsigned snapshot2 = simplex.getSnapshot();
464   simplex.appendVariable(2);
465   EXPECT_EQ(simplex.getNumVariables(), 4u);
466   simplex.rollback(snapshot2);
467 
468   EXPECT_EQ(simplex.getNumVariables(), 2u);
469   EXPECT_EQ(simplex.getNumConstraints(), 2u);
470   EXPECT_EQ(simplex.computeIntegerBounds(getDynamicAPIntVec({0, 1, 0})),
471             std::make_pair(MaybeOptimum<DynamicAPInt>(DynamicAPInt(yMin)),
472                            MaybeOptimum<DynamicAPInt>(DynamicAPInt(yMax))));
473 
474   simplex.rollback(snapshot1);
475   EXPECT_EQ(simplex.getNumVariables(), 1u);
476   EXPECT_EQ(simplex.getNumConstraints(), 0u);
477 }
478 
TEST(SimplexTest,isRedundantInequality)479 TEST(SimplexTest, isRedundantInequality) {
480   Simplex simplex(2);
481   addInequality(simplex, {0, -1, 2}); // y <= 2.
482   addInequality(simplex, {1, 0, 0});  // x >= 0.
483   addEquality(simplex, {-1, 1, 0});   // y = x.
484 
485   EXPECT_TRUE(isRedundantInequality(simplex, {-1, 0, 2})); // x <= 2.
486   EXPECT_TRUE(isRedundantInequality(simplex, {0, 1, 0}));  // y >= 0.
487 
488   EXPECT_FALSE(isRedundantInequality(simplex, {-1, 0, -1})); // x <= -1.
489   EXPECT_FALSE(isRedundantInequality(simplex, {0, 1, -2}));  // y >= 2.
490   EXPECT_FALSE(isRedundantInequality(simplex, {0, 1, -1}));  // y >= 1.
491 }
492 
TEST(SimplexTest,ineqType)493 TEST(SimplexTest, ineqType) {
494   Simplex simplex(2);
495   addInequality(simplex, {0, -1, 2}); // y <= 2.
496   addInequality(simplex, {1, 0, 0});  // x >= 0.
497   addEquality(simplex, {-1, 1, 0});   // y = x.
498 
499   EXPECT_EQ(findIneqType(simplex, {-1, 0, 2}),
500             Simplex::IneqType::Redundant); // x <= 2.
501   EXPECT_EQ(findIneqType(simplex, {0, 1, 0}),
502             Simplex::IneqType::Redundant); // y >= 0.
503 
504   EXPECT_EQ(findIneqType(simplex, {0, 1, -1}),
505             Simplex::IneqType::Cut); // y >= 1.
506   EXPECT_EQ(findIneqType(simplex, {-1, 0, 1}),
507             Simplex::IneqType::Cut); // x <= 1.
508   EXPECT_EQ(findIneqType(simplex, {0, 1, -2}),
509             Simplex::IneqType::Cut); // y >= 2.
510 
511   EXPECT_EQ(findIneqType(simplex, {-1, 0, -1}),
512             Simplex::IneqType::Separate); // x <= -1.
513 }
514 
TEST(SimplexTest,isRedundantEquality)515 TEST(SimplexTest, isRedundantEquality) {
516   Simplex simplex(2);
517   addInequality(simplex, {0, -1, 2}); // y <= 2.
518   addInequality(simplex, {1, 0, 0});  // x >= 0.
519   addEquality(simplex, {-1, 1, 0});   // y = x.
520 
521   EXPECT_TRUE(isRedundantEquality(simplex, {-1, 1, 0})); // y = x.
522   EXPECT_TRUE(isRedundantEquality(simplex, {1, -1, 0})); // x = y.
523 
524   EXPECT_FALSE(isRedundantEquality(simplex, {0, 1, -1})); // y = 1.
525 
526   addEquality(simplex, {0, -1, 2}); // y = 2.
527 
528   EXPECT_TRUE(isRedundantEquality(simplex, {-1, 0, 2})); // x = 2.
529 }
530 
TEST(SimplexTest,IsRationalSubsetOf)531 TEST(SimplexTest, IsRationalSubsetOf) {
532   IntegerPolyhedron univ = parseIntegerPolyhedron("(x) : ()");
533   IntegerPolyhedron empty =
534       parseIntegerPolyhedron("(x) : (x + 0 >= 0, -x - 1 >= 0)");
535   IntegerPolyhedron s1 = parseIntegerPolyhedron("(x) : ( x >= 0, -x + 4 >= 0)");
536   IntegerPolyhedron s2 =
537       parseIntegerPolyhedron("(x) : (x - 1 >= 0, -x + 3 >= 0)");
538 
539   Simplex simUniv(univ);
540   Simplex simEmpty(empty);
541   Simplex sim1(s1);
542   Simplex sim2(s2);
543 
544   EXPECT_TRUE(simUniv.isRationalSubsetOf(univ));
545   EXPECT_TRUE(simEmpty.isRationalSubsetOf(empty));
546   EXPECT_TRUE(sim1.isRationalSubsetOf(s1));
547   EXPECT_TRUE(sim2.isRationalSubsetOf(s2));
548 
549   EXPECT_TRUE(simEmpty.isRationalSubsetOf(univ));
550   EXPECT_TRUE(simEmpty.isRationalSubsetOf(s1));
551   EXPECT_TRUE(simEmpty.isRationalSubsetOf(s2));
552   EXPECT_TRUE(simEmpty.isRationalSubsetOf(empty));
553 
554   EXPECT_TRUE(simUniv.isRationalSubsetOf(univ));
555   EXPECT_FALSE(simUniv.isRationalSubsetOf(s1));
556   EXPECT_FALSE(simUniv.isRationalSubsetOf(s2));
557   EXPECT_FALSE(simUniv.isRationalSubsetOf(empty));
558 
559   EXPECT_TRUE(sim1.isRationalSubsetOf(univ));
560   EXPECT_TRUE(sim1.isRationalSubsetOf(s1));
561   EXPECT_FALSE(sim1.isRationalSubsetOf(s2));
562   EXPECT_FALSE(sim1.isRationalSubsetOf(empty));
563 
564   EXPECT_TRUE(sim2.isRationalSubsetOf(univ));
565   EXPECT_TRUE(sim2.isRationalSubsetOf(s1));
566   EXPECT_TRUE(sim2.isRationalSubsetOf(s2));
567   EXPECT_FALSE(sim2.isRationalSubsetOf(empty));
568 }
569 
TEST(SimplexTest,addDivisionVariable)570 TEST(SimplexTest, addDivisionVariable) {
571   Simplex simplex(/*nVar=*/1);
572   simplex.addDivisionVariable(getDynamicAPIntVec({1, 0}), DynamicAPInt(2));
573   addInequality(simplex, {1, 0, -3}); // x >= 3.
574   addInequality(simplex, {-1, 0, 9}); // x <= 9.
575   std::optional<SmallVector<DynamicAPInt, 8>> sample =
576       simplex.findIntegerSample();
577   ASSERT_TRUE(sample.has_value());
578   EXPECT_EQ((*sample)[0] / 2, (*sample)[1]);
579 }
580 
TEST(SimplexTest,LexIneqType)581 TEST(SimplexTest, LexIneqType) {
582   LexSimplex simplex(/*nVar=*/1);
583   addInequality(simplex, {2, -1}); // x >= 1/2.
584 
585   // Redundant inequality x >= 2/3.
586   EXPECT_TRUE(isRedundantInequality(simplex, {3, -2}));
587   EXPECT_FALSE(isSeparateInequality(simplex, {3, -2}));
588 
589   // Separate inequality x <= 2/3.
590   EXPECT_FALSE(isRedundantInequality(simplex, {-3, 2}));
591   EXPECT_TRUE(isSeparateInequality(simplex, {-3, 2}));
592 
593   // Cut inequality x <= 1.
594   EXPECT_FALSE(isRedundantInequality(simplex, {-1, 1}));
595   EXPECT_FALSE(isSeparateInequality(simplex, {-1, 1}));
596 }
597