xref: /llvm-project/clang/lib/Sema/SemaCXXScopeSpec.cpp (revision 46d750be2e19220c318bc907dfaf6c61d3a0de92)
1 //===--- SemaCXXScopeSpec.cpp - Semantic Analysis for C++ scope specifiers-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements C++ semantic analysis for scope specifiers.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "TypeLocBuilder.h"
14 #include "clang/AST/ASTContext.h"
15 #include "clang/AST/DeclTemplate.h"
16 #include "clang/AST/ExprCXX.h"
17 #include "clang/AST/NestedNameSpecifier.h"
18 #include "clang/Basic/PartialDiagnostic.h"
19 #include "clang/Sema/DeclSpec.h"
20 #include "clang/Sema/Lookup.h"
21 #include "clang/Sema/Template.h"
22 #include "llvm/ADT/STLExtras.h"
23 using namespace clang;
24 
25 /// Find the current instantiation that associated with the given type.
26 static CXXRecordDecl *getCurrentInstantiationOf(QualType T,
27                                                 DeclContext *CurContext) {
28   if (T.isNull())
29     return nullptr;
30 
31   const Type *Ty = T->getCanonicalTypeInternal().getTypePtr();
32   if (const RecordType *RecordTy = dyn_cast<RecordType>(Ty)) {
33     CXXRecordDecl *Record = cast<CXXRecordDecl>(RecordTy->getDecl());
34     if (!Record->isDependentContext() ||
35         Record->isCurrentInstantiation(CurContext))
36       return Record;
37 
38     return nullptr;
39   } else if (isa<InjectedClassNameType>(Ty))
40     return cast<InjectedClassNameType>(Ty)->getDecl();
41   else
42     return nullptr;
43 }
44 
45 DeclContext *Sema::computeDeclContext(QualType T) {
46   if (!T->isDependentType())
47     if (const TagType *Tag = T->getAs<TagType>())
48       return Tag->getDecl();
49 
50   return ::getCurrentInstantiationOf(T, CurContext);
51 }
52 
53 DeclContext *Sema::computeDeclContext(const CXXScopeSpec &SS,
54                                       bool EnteringContext) {
55   if (!SS.isSet() || SS.isInvalid())
56     return nullptr;
57 
58   NestedNameSpecifier *NNS = SS.getScopeRep();
59   if (NNS->isDependent()) {
60     // If this nested-name-specifier refers to the current
61     // instantiation, return its DeclContext.
62     if (CXXRecordDecl *Record = getCurrentInstantiationOf(NNS))
63       return Record;
64 
65     if (EnteringContext) {
66       const Type *NNSType = NNS->getAsType();
67       if (!NNSType) {
68         return nullptr;
69       }
70 
71       // Look through type alias templates, per C++0x [temp.dep.type]p1.
72       NNSType = Context.getCanonicalType(NNSType);
73       if (const TemplateSpecializationType *SpecType
74             = NNSType->getAs<TemplateSpecializationType>()) {
75         // We are entering the context of the nested name specifier, so try to
76         // match the nested name specifier to either a primary class template
77         // or a class template partial specialization.
78         if (ClassTemplateDecl *ClassTemplate
79               = dyn_cast_or_null<ClassTemplateDecl>(
80                             SpecType->getTemplateName().getAsTemplateDecl())) {
81           QualType ContextType =
82               Context.getCanonicalType(QualType(SpecType, 0));
83 
84           // FIXME: The fallback on the search of partial
85           // specialization using ContextType should be eventually removed since
86           // it doesn't handle the case of constrained template parameters
87           // correctly. Currently removing this fallback would change the
88           // diagnostic output for invalid code in a number of tests.
89           ClassTemplatePartialSpecializationDecl *PartialSpec = nullptr;
90           ArrayRef<TemplateParameterList *> TemplateParamLists =
91               SS.getTemplateParamLists();
92           if (!TemplateParamLists.empty()) {
93             unsigned Depth = ClassTemplate->getTemplateParameters()->getDepth();
94             auto L = find_if(TemplateParamLists,
95                              [Depth](TemplateParameterList *TPL) {
96                                return TPL->getDepth() == Depth;
97                              });
98             if (L != TemplateParamLists.end()) {
99               void *Pos = nullptr;
100               PartialSpec = ClassTemplate->findPartialSpecialization(
101                   SpecType->template_arguments(), *L, Pos);
102             }
103           } else {
104             PartialSpec = ClassTemplate->findPartialSpecialization(ContextType);
105           }
106 
107           if (PartialSpec) {
108             // A declaration of the partial specialization must be visible.
109             // We can always recover here, because this only happens when we're
110             // entering the context, and that can't happen in a SFINAE context.
111             assert(!isSFINAEContext() && "partial specialization scope "
112                                          "specifier in SFINAE context?");
113             if (PartialSpec->hasDefinition() &&
114                 !hasReachableDefinition(PartialSpec))
115               diagnoseMissingImport(SS.getLastQualifierNameLoc(), PartialSpec,
116                                     MissingImportKind::PartialSpecialization,
117                                     true);
118             return PartialSpec;
119           }
120 
121           // If the type of the nested name specifier is the same as the
122           // injected class name of the named class template, we're entering
123           // into that class template definition.
124           QualType Injected =
125               ClassTemplate->getInjectedClassNameSpecialization();
126           if (Context.hasSameType(Injected, ContextType))
127             return ClassTemplate->getTemplatedDecl();
128         }
129       } else if (const RecordType *RecordT = NNSType->getAs<RecordType>()) {
130         // The nested name specifier refers to a member of a class template.
131         return RecordT->getDecl();
132       }
133     }
134 
135     return nullptr;
136   }
137 
138   switch (NNS->getKind()) {
139   case NestedNameSpecifier::Identifier:
140     llvm_unreachable("Dependent nested-name-specifier has no DeclContext");
141 
142   case NestedNameSpecifier::Namespace:
143     return NNS->getAsNamespace();
144 
145   case NestedNameSpecifier::NamespaceAlias:
146     return NNS->getAsNamespaceAlias()->getNamespace();
147 
148   case NestedNameSpecifier::TypeSpec:
149   case NestedNameSpecifier::TypeSpecWithTemplate: {
150     const TagType *Tag = NNS->getAsType()->getAs<TagType>();
151     assert(Tag && "Non-tag type in nested-name-specifier");
152     return Tag->getDecl();
153   }
154 
155   case NestedNameSpecifier::Global:
156     return Context.getTranslationUnitDecl();
157 
158   case NestedNameSpecifier::Super:
159     return NNS->getAsRecordDecl();
160   }
161 
162   llvm_unreachable("Invalid NestedNameSpecifier::Kind!");
163 }
164 
165 bool Sema::isDependentScopeSpecifier(const CXXScopeSpec &SS) {
166   if (!SS.isSet() || SS.isInvalid())
167     return false;
168 
169   return SS.getScopeRep()->isDependent();
170 }
171 
172 CXXRecordDecl *Sema::getCurrentInstantiationOf(NestedNameSpecifier *NNS) {
173   assert(getLangOpts().CPlusPlus && "Only callable in C++");
174   assert(NNS->isDependent() && "Only dependent nested-name-specifier allowed");
175 
176   if (!NNS->getAsType())
177     return nullptr;
178 
179   QualType T = QualType(NNS->getAsType(), 0);
180   return ::getCurrentInstantiationOf(T, CurContext);
181 }
182 
183 /// Require that the context specified by SS be complete.
184 ///
185 /// If SS refers to a type, this routine checks whether the type is
186 /// complete enough (or can be made complete enough) for name lookup
187 /// into the DeclContext. A type that is not yet completed can be
188 /// considered "complete enough" if it is a class/struct/union/enum
189 /// that is currently being defined. Or, if we have a type that names
190 /// a class template specialization that is not a complete type, we
191 /// will attempt to instantiate that class template.
192 bool Sema::RequireCompleteDeclContext(CXXScopeSpec &SS,
193                                       DeclContext *DC) {
194   assert(DC && "given null context");
195 
196   TagDecl *tag = dyn_cast<TagDecl>(DC);
197 
198   // If this is a dependent type, then we consider it complete.
199   // FIXME: This is wrong; we should require a (visible) definition to
200   // exist in this case too.
201   if (!tag || tag->isDependentContext())
202     return false;
203 
204   // Grab the tag definition, if there is one.
205   QualType type = Context.getTypeDeclType(tag);
206   tag = type->getAsTagDecl();
207 
208   // If we're currently defining this type, then lookup into the
209   // type is okay: don't complain that it isn't complete yet.
210   if (tag->isBeingDefined())
211     return false;
212 
213   SourceLocation loc = SS.getLastQualifierNameLoc();
214   if (loc.isInvalid()) loc = SS.getRange().getBegin();
215 
216   // The type must be complete.
217   if (RequireCompleteType(loc, type, diag::err_incomplete_nested_name_spec,
218                           SS.getRange())) {
219     SS.SetInvalid(SS.getRange());
220     return true;
221   }
222 
223   if (auto *EnumD = dyn_cast<EnumDecl>(tag))
224     // Fixed enum types and scoped enum instantiations are complete, but they
225     // aren't valid as scopes until we see or instantiate their definition.
226     return RequireCompleteEnumDecl(EnumD, loc, &SS);
227 
228   return false;
229 }
230 
231 /// Require that the EnumDecl is completed with its enumerators defined or
232 /// instantiated. SS, if provided, is the ScopeRef parsed.
233 ///
234 bool Sema::RequireCompleteEnumDecl(EnumDecl *EnumD, SourceLocation L,
235                                    CXXScopeSpec *SS) {
236   if (EnumD->isCompleteDefinition()) {
237     // If we know about the definition but it is not visible, complain.
238     NamedDecl *SuggestedDef = nullptr;
239     if (!hasReachableDefinition(EnumD, &SuggestedDef,
240                                 /*OnlyNeedComplete*/ false)) {
241       // If the user is going to see an error here, recover by making the
242       // definition visible.
243       bool TreatAsComplete = !isSFINAEContext();
244       diagnoseMissingImport(L, SuggestedDef, MissingImportKind::Definition,
245                             /*Recover*/ TreatAsComplete);
246       return !TreatAsComplete;
247     }
248     return false;
249   }
250 
251   // Try to instantiate the definition, if this is a specialization of an
252   // enumeration temploid.
253   if (EnumDecl *Pattern = EnumD->getInstantiatedFromMemberEnum()) {
254     MemberSpecializationInfo *MSI = EnumD->getMemberSpecializationInfo();
255     if (MSI->getTemplateSpecializationKind() != TSK_ExplicitSpecialization) {
256       if (InstantiateEnum(L, EnumD, Pattern,
257                           getTemplateInstantiationArgs(EnumD),
258                           TSK_ImplicitInstantiation)) {
259         if (SS)
260           SS->SetInvalid(SS->getRange());
261         return true;
262       }
263       return false;
264     }
265   }
266 
267   if (SS) {
268     Diag(L, diag::err_incomplete_nested_name_spec)
269         << QualType(EnumD->getTypeForDecl(), 0) << SS->getRange();
270     SS->SetInvalid(SS->getRange());
271   } else {
272     Diag(L, diag::err_incomplete_enum) << QualType(EnumD->getTypeForDecl(), 0);
273     Diag(EnumD->getLocation(), diag::note_declared_at);
274   }
275 
276   return true;
277 }
278 
279 bool Sema::ActOnCXXGlobalScopeSpecifier(SourceLocation CCLoc,
280                                         CXXScopeSpec &SS) {
281   SS.MakeGlobal(Context, CCLoc);
282   return false;
283 }
284 
285 bool Sema::ActOnSuperScopeSpecifier(SourceLocation SuperLoc,
286                                     SourceLocation ColonColonLoc,
287                                     CXXScopeSpec &SS) {
288   if (getCurLambda()) {
289     Diag(SuperLoc, diag::err_super_in_lambda_unsupported);
290     return true;
291   }
292 
293   CXXRecordDecl *RD = nullptr;
294   for (Scope *S = getCurScope(); S; S = S->getParent()) {
295     if (S->isFunctionScope()) {
296       if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(S->getEntity()))
297         RD = MD->getParent();
298       break;
299     }
300     if (S->isClassScope()) {
301       RD = cast<CXXRecordDecl>(S->getEntity());
302       break;
303     }
304   }
305 
306   if (!RD) {
307     Diag(SuperLoc, diag::err_invalid_super_scope);
308     return true;
309   } else if (RD->getNumBases() == 0) {
310     Diag(SuperLoc, diag::err_no_base_classes) << RD->getName();
311     return true;
312   }
313 
314   SS.MakeSuper(Context, RD, SuperLoc, ColonColonLoc);
315   return false;
316 }
317 
318 bool Sema::isAcceptableNestedNameSpecifier(const NamedDecl *SD,
319                                            bool *IsExtension) {
320   if (!SD)
321     return false;
322 
323   SD = SD->getUnderlyingDecl();
324 
325   // Namespace and namespace aliases are fine.
326   if (isa<NamespaceDecl>(SD))
327     return true;
328 
329   if (!isa<TypeDecl>(SD))
330     return false;
331 
332   // Determine whether we have a class (or, in C++11, an enum) or
333   // a typedef thereof. If so, build the nested-name-specifier.
334   QualType T = Context.getTypeDeclType(cast<TypeDecl>(SD));
335   if (T->isDependentType())
336     return true;
337   if (const TypedefNameDecl *TD = dyn_cast<TypedefNameDecl>(SD)) {
338     if (TD->getUnderlyingType()->isRecordType())
339       return true;
340     if (TD->getUnderlyingType()->isEnumeralType()) {
341       if (Context.getLangOpts().CPlusPlus11)
342         return true;
343       if (IsExtension)
344         *IsExtension = true;
345     }
346   } else if (isa<RecordDecl>(SD)) {
347     return true;
348   } else if (isa<EnumDecl>(SD)) {
349     if (Context.getLangOpts().CPlusPlus11)
350       return true;
351     if (IsExtension)
352       *IsExtension = true;
353   }
354 
355   return false;
356 }
357 
358 NamedDecl *Sema::FindFirstQualifierInScope(Scope *S, NestedNameSpecifier *NNS) {
359   if (!S || !NNS)
360     return nullptr;
361 
362   while (NNS->getPrefix())
363     NNS = NNS->getPrefix();
364 
365   if (NNS->getKind() != NestedNameSpecifier::Identifier)
366     return nullptr;
367 
368   LookupResult Found(*this, NNS->getAsIdentifier(), SourceLocation(),
369                      LookupNestedNameSpecifierName);
370   LookupName(Found, S);
371   assert(!Found.isAmbiguous() && "Cannot handle ambiguities here yet");
372 
373   if (!Found.isSingleResult())
374     return nullptr;
375 
376   NamedDecl *Result = Found.getFoundDecl();
377   if (isAcceptableNestedNameSpecifier(Result))
378     return Result;
379 
380   return nullptr;
381 }
382 
383 namespace {
384 
385 // Callback to only accept typo corrections that can be a valid C++ member
386 // initializer: either a non-static field member or a base class.
387 class NestedNameSpecifierValidatorCCC final
388     : public CorrectionCandidateCallback {
389 public:
390   explicit NestedNameSpecifierValidatorCCC(Sema &SRef)
391       : SRef(SRef) {}
392 
393   bool ValidateCandidate(const TypoCorrection &candidate) override {
394     return SRef.isAcceptableNestedNameSpecifier(candidate.getCorrectionDecl());
395   }
396 
397   std::unique_ptr<CorrectionCandidateCallback> clone() override {
398     return std::make_unique<NestedNameSpecifierValidatorCCC>(*this);
399   }
400 
401  private:
402   Sema &SRef;
403 };
404 
405 }
406 
407 bool Sema::BuildCXXNestedNameSpecifier(Scope *S, NestedNameSpecInfo &IdInfo,
408                                        bool EnteringContext, CXXScopeSpec &SS,
409                                        NamedDecl *ScopeLookupResult,
410                                        bool ErrorRecoveryLookup,
411                                        bool *IsCorrectedToColon,
412                                        bool OnlyNamespace) {
413   if (IdInfo.Identifier->isEditorPlaceholder())
414     return true;
415   LookupResult Found(*this, IdInfo.Identifier, IdInfo.IdentifierLoc,
416                      OnlyNamespace ? LookupNamespaceName
417                                    : LookupNestedNameSpecifierName);
418   QualType ObjectType = GetTypeFromParser(IdInfo.ObjectType);
419 
420   // Determine where to perform name lookup
421   DeclContext *LookupCtx = nullptr;
422   bool isDependent = false;
423   if (IsCorrectedToColon)
424     *IsCorrectedToColon = false;
425   if (!ObjectType.isNull()) {
426     // This nested-name-specifier occurs in a member access expression, e.g.,
427     // x->B::f, and we are looking into the type of the object.
428     assert(!SS.isSet() && "ObjectType and scope specifier cannot coexist");
429     LookupCtx = computeDeclContext(ObjectType);
430     isDependent = ObjectType->isDependentType();
431   } else if (SS.isSet()) {
432     // This nested-name-specifier occurs after another nested-name-specifier,
433     // so look into the context associated with the prior nested-name-specifier.
434     LookupCtx = computeDeclContext(SS, EnteringContext);
435     isDependent = isDependentScopeSpecifier(SS);
436     Found.setContextRange(SS.getRange());
437   }
438 
439   bool ObjectTypeSearchedInScope = false;
440   if (LookupCtx) {
441     // Perform "qualified" name lookup into the declaration context we
442     // computed, which is either the type of the base of a member access
443     // expression or the declaration context associated with a prior
444     // nested-name-specifier.
445 
446     // The declaration context must be complete.
447     if (!LookupCtx->isDependentContext() &&
448         RequireCompleteDeclContext(SS, LookupCtx))
449       return true;
450 
451     LookupQualifiedName(Found, LookupCtx);
452 
453     if (!ObjectType.isNull() && Found.empty()) {
454       // C++ [basic.lookup.classref]p4:
455       //   If the id-expression in a class member access is a qualified-id of
456       //   the form
457       //
458       //        class-name-or-namespace-name::...
459       //
460       //   the class-name-or-namespace-name following the . or -> operator is
461       //   looked up both in the context of the entire postfix-expression and in
462       //   the scope of the class of the object expression. If the name is found
463       //   only in the scope of the class of the object expression, the name
464       //   shall refer to a class-name. If the name is found only in the
465       //   context of the entire postfix-expression, the name shall refer to a
466       //   class-name or namespace-name. [...]
467       //
468       // Qualified name lookup into a class will not find a namespace-name,
469       // so we do not need to diagnose that case specifically. However,
470       // this qualified name lookup may find nothing. In that case, perform
471       // unqualified name lookup in the given scope (if available) or
472       // reconstruct the result from when name lookup was performed at template
473       // definition time.
474       if (S)
475         LookupName(Found, S);
476       else if (ScopeLookupResult)
477         Found.addDecl(ScopeLookupResult);
478 
479       ObjectTypeSearchedInScope = true;
480     }
481   } else if (!isDependent) {
482     // Perform unqualified name lookup in the current scope.
483     LookupName(Found, S);
484   }
485 
486   if (Found.isAmbiguous())
487     return true;
488 
489   // If we performed lookup into a dependent context and did not find anything,
490   // that's fine: just build a dependent nested-name-specifier.
491   if (Found.empty() && isDependent &&
492       !(LookupCtx && LookupCtx->isRecord() &&
493         (!cast<CXXRecordDecl>(LookupCtx)->hasDefinition() ||
494          !cast<CXXRecordDecl>(LookupCtx)->hasAnyDependentBases()))) {
495     // Don't speculate if we're just trying to improve error recovery.
496     if (ErrorRecoveryLookup)
497       return true;
498 
499     // We were not able to compute the declaration context for a dependent
500     // base object type or prior nested-name-specifier, so this
501     // nested-name-specifier refers to an unknown specialization. Just build
502     // a dependent nested-name-specifier.
503     SS.Extend(Context, IdInfo.Identifier, IdInfo.IdentifierLoc, IdInfo.CCLoc);
504     return false;
505   }
506 
507   if (Found.empty() && !ErrorRecoveryLookup) {
508     // If identifier is not found as class-name-or-namespace-name, but is found
509     // as other entity, don't look for typos.
510     LookupResult R(*this, Found.getLookupNameInfo(), LookupOrdinaryName);
511     if (LookupCtx)
512       LookupQualifiedName(R, LookupCtx);
513     else if (S && !isDependent)
514       LookupName(R, S);
515     if (!R.empty()) {
516       // Don't diagnose problems with this speculative lookup.
517       R.suppressDiagnostics();
518       // The identifier is found in ordinary lookup. If correction to colon is
519       // allowed, suggest replacement to ':'.
520       if (IsCorrectedToColon) {
521         *IsCorrectedToColon = true;
522         Diag(IdInfo.CCLoc, diag::err_nested_name_spec_is_not_class)
523             << IdInfo.Identifier << getLangOpts().CPlusPlus
524             << FixItHint::CreateReplacement(IdInfo.CCLoc, ":");
525         if (NamedDecl *ND = R.getAsSingle<NamedDecl>())
526           Diag(ND->getLocation(), diag::note_declared_at);
527         return true;
528       }
529       // Replacement '::' -> ':' is not allowed, just issue respective error.
530       Diag(R.getNameLoc(), OnlyNamespace
531                                ? unsigned(diag::err_expected_namespace_name)
532                                : unsigned(diag::err_expected_class_or_namespace))
533           << IdInfo.Identifier << getLangOpts().CPlusPlus;
534       if (NamedDecl *ND = R.getAsSingle<NamedDecl>())
535         Diag(ND->getLocation(), diag::note_entity_declared_at)
536             << IdInfo.Identifier;
537       return true;
538     }
539   }
540 
541   if (Found.empty() && !ErrorRecoveryLookup && !getLangOpts().MSVCCompat) {
542     // We haven't found anything, and we're not recovering from a
543     // different kind of error, so look for typos.
544     DeclarationName Name = Found.getLookupName();
545     Found.clear();
546     NestedNameSpecifierValidatorCCC CCC(*this);
547     if (TypoCorrection Corrected = CorrectTypo(
548             Found.getLookupNameInfo(), Found.getLookupKind(), S, &SS, CCC,
549             CTK_ErrorRecovery, LookupCtx, EnteringContext)) {
550       if (LookupCtx) {
551         bool DroppedSpecifier =
552             Corrected.WillReplaceSpecifier() &&
553             Name.getAsString() == Corrected.getAsString(getLangOpts());
554         if (DroppedSpecifier)
555           SS.clear();
556         diagnoseTypo(Corrected, PDiag(diag::err_no_member_suggest)
557                                   << Name << LookupCtx << DroppedSpecifier
558                                   << SS.getRange());
559       } else
560         diagnoseTypo(Corrected, PDiag(diag::err_undeclared_var_use_suggest)
561                                   << Name);
562 
563       if (Corrected.getCorrectionSpecifier())
564         SS.MakeTrivial(Context, Corrected.getCorrectionSpecifier(),
565                        SourceRange(Found.getNameLoc()));
566 
567       if (NamedDecl *ND = Corrected.getFoundDecl())
568         Found.addDecl(ND);
569       Found.setLookupName(Corrected.getCorrection());
570     } else {
571       Found.setLookupName(IdInfo.Identifier);
572     }
573   }
574 
575   NamedDecl *SD =
576       Found.isSingleResult() ? Found.getRepresentativeDecl() : nullptr;
577   bool IsExtension = false;
578   bool AcceptSpec = isAcceptableNestedNameSpecifier(SD, &IsExtension);
579   if (!AcceptSpec && IsExtension) {
580     AcceptSpec = true;
581     Diag(IdInfo.IdentifierLoc, diag::ext_nested_name_spec_is_enum);
582   }
583   if (AcceptSpec) {
584     if (!ObjectType.isNull() && !ObjectTypeSearchedInScope &&
585         !getLangOpts().CPlusPlus11) {
586       // C++03 [basic.lookup.classref]p4:
587       //   [...] If the name is found in both contexts, the
588       //   class-name-or-namespace-name shall refer to the same entity.
589       //
590       // We already found the name in the scope of the object. Now, look
591       // into the current scope (the scope of the postfix-expression) to
592       // see if we can find the same name there. As above, if there is no
593       // scope, reconstruct the result from the template instantiation itself.
594       //
595       // Note that C++11 does *not* perform this redundant lookup.
596       NamedDecl *OuterDecl;
597       if (S) {
598         LookupResult FoundOuter(*this, IdInfo.Identifier, IdInfo.IdentifierLoc,
599                                 LookupNestedNameSpecifierName);
600         LookupName(FoundOuter, S);
601         OuterDecl = FoundOuter.getAsSingle<NamedDecl>();
602       } else
603         OuterDecl = ScopeLookupResult;
604 
605       if (isAcceptableNestedNameSpecifier(OuterDecl) &&
606           OuterDecl->getCanonicalDecl() != SD->getCanonicalDecl() &&
607           (!isa<TypeDecl>(OuterDecl) || !isa<TypeDecl>(SD) ||
608            !Context.hasSameType(
609                             Context.getTypeDeclType(cast<TypeDecl>(OuterDecl)),
610                                Context.getTypeDeclType(cast<TypeDecl>(SD))))) {
611         if (ErrorRecoveryLookup)
612           return true;
613 
614          Diag(IdInfo.IdentifierLoc,
615               diag::err_nested_name_member_ref_lookup_ambiguous)
616            << IdInfo.Identifier;
617          Diag(SD->getLocation(), diag::note_ambig_member_ref_object_type)
618            << ObjectType;
619          Diag(OuterDecl->getLocation(), diag::note_ambig_member_ref_scope);
620 
621          // Fall through so that we'll pick the name we found in the object
622          // type, since that's probably what the user wanted anyway.
623        }
624     }
625 
626     if (auto *TD = dyn_cast_or_null<TypedefNameDecl>(SD))
627       MarkAnyDeclReferenced(TD->getLocation(), TD, /*OdrUse=*/false);
628 
629     // If we're just performing this lookup for error-recovery purposes,
630     // don't extend the nested-name-specifier. Just return now.
631     if (ErrorRecoveryLookup)
632       return false;
633 
634     // The use of a nested name specifier may trigger deprecation warnings.
635     DiagnoseUseOfDecl(SD, IdInfo.CCLoc);
636 
637     if (NamespaceDecl *Namespace = dyn_cast<NamespaceDecl>(SD)) {
638       SS.Extend(Context, Namespace, IdInfo.IdentifierLoc, IdInfo.CCLoc);
639       return false;
640     }
641 
642     if (NamespaceAliasDecl *Alias = dyn_cast<NamespaceAliasDecl>(SD)) {
643       SS.Extend(Context, Alias, IdInfo.IdentifierLoc, IdInfo.CCLoc);
644       return false;
645     }
646 
647     QualType T =
648         Context.getTypeDeclType(cast<TypeDecl>(SD->getUnderlyingDecl()));
649 
650     if (T->isEnumeralType())
651       Diag(IdInfo.IdentifierLoc, diag::warn_cxx98_compat_enum_nested_name_spec);
652 
653     TypeLocBuilder TLB;
654     if (const auto *USD = dyn_cast<UsingShadowDecl>(SD)) {
655       T = Context.getUsingType(USD, T);
656       TLB.pushTypeSpec(T).setNameLoc(IdInfo.IdentifierLoc);
657     } else if (isa<InjectedClassNameType>(T)) {
658       InjectedClassNameTypeLoc InjectedTL
659         = TLB.push<InjectedClassNameTypeLoc>(T);
660       InjectedTL.setNameLoc(IdInfo.IdentifierLoc);
661     } else if (isa<RecordType>(T)) {
662       RecordTypeLoc RecordTL = TLB.push<RecordTypeLoc>(T);
663       RecordTL.setNameLoc(IdInfo.IdentifierLoc);
664     } else if (isa<TypedefType>(T)) {
665       TypedefTypeLoc TypedefTL = TLB.push<TypedefTypeLoc>(T);
666       TypedefTL.setNameLoc(IdInfo.IdentifierLoc);
667     } else if (isa<EnumType>(T)) {
668       EnumTypeLoc EnumTL = TLB.push<EnumTypeLoc>(T);
669       EnumTL.setNameLoc(IdInfo.IdentifierLoc);
670     } else if (isa<TemplateTypeParmType>(T)) {
671       TemplateTypeParmTypeLoc TemplateTypeTL
672         = TLB.push<TemplateTypeParmTypeLoc>(T);
673       TemplateTypeTL.setNameLoc(IdInfo.IdentifierLoc);
674     } else if (isa<UnresolvedUsingType>(T)) {
675       UnresolvedUsingTypeLoc UnresolvedTL
676         = TLB.push<UnresolvedUsingTypeLoc>(T);
677       UnresolvedTL.setNameLoc(IdInfo.IdentifierLoc);
678     } else if (isa<SubstTemplateTypeParmType>(T)) {
679       SubstTemplateTypeParmTypeLoc TL
680         = TLB.push<SubstTemplateTypeParmTypeLoc>(T);
681       TL.setNameLoc(IdInfo.IdentifierLoc);
682     } else if (isa<SubstTemplateTypeParmPackType>(T)) {
683       SubstTemplateTypeParmPackTypeLoc TL
684         = TLB.push<SubstTemplateTypeParmPackTypeLoc>(T);
685       TL.setNameLoc(IdInfo.IdentifierLoc);
686     } else {
687       llvm_unreachable("Unhandled TypeDecl node in nested-name-specifier");
688     }
689 
690     SS.Extend(Context, SourceLocation(), TLB.getTypeLocInContext(Context, T),
691               IdInfo.CCLoc);
692     return false;
693   }
694 
695   // Otherwise, we have an error case.  If we don't want diagnostics, just
696   // return an error now.
697   if (ErrorRecoveryLookup)
698     return true;
699 
700   // If we didn't find anything during our lookup, try again with
701   // ordinary name lookup, which can help us produce better error
702   // messages.
703   if (Found.empty()) {
704     Found.clear(LookupOrdinaryName);
705     LookupName(Found, S);
706   }
707 
708   // In Microsoft mode, if we are within a templated function and we can't
709   // resolve Identifier, then extend the SS with Identifier. This will have
710   // the effect of resolving Identifier during template instantiation.
711   // The goal is to be able to resolve a function call whose
712   // nested-name-specifier is located inside a dependent base class.
713   // Example:
714   //
715   // class C {
716   // public:
717   //    static void foo2() {  }
718   // };
719   // template <class T> class A { public: typedef C D; };
720   //
721   // template <class T> class B : public A<T> {
722   // public:
723   //   void foo() { D::foo2(); }
724   // };
725   if (getLangOpts().MSVCCompat) {
726     DeclContext *DC = LookupCtx ? LookupCtx : CurContext;
727     if (DC->isDependentContext() && DC->isFunctionOrMethod()) {
728       CXXRecordDecl *ContainingClass = dyn_cast<CXXRecordDecl>(DC->getParent());
729       if (ContainingClass && ContainingClass->hasAnyDependentBases()) {
730         Diag(IdInfo.IdentifierLoc,
731              diag::ext_undeclared_unqual_id_with_dependent_base)
732             << IdInfo.Identifier << ContainingClass;
733         // Fake up a nested-name-specifier that starts with the
734         // injected-class-name of the enclosing class.
735         QualType T = Context.getTypeDeclType(ContainingClass);
736         TypeLocBuilder TLB;
737         TLB.pushTrivial(Context, T, IdInfo.IdentifierLoc);
738         SS.Extend(Context, /*TemplateKWLoc=*/SourceLocation(),
739                   TLB.getTypeLocInContext(Context, T), IdInfo.IdentifierLoc);
740         // Add the identifier to form a dependent name.
741         SS.Extend(Context, IdInfo.Identifier, IdInfo.IdentifierLoc,
742                   IdInfo.CCLoc);
743         return false;
744       }
745     }
746   }
747 
748   if (!Found.empty()) {
749     if (TypeDecl *TD = Found.getAsSingle<TypeDecl>()) {
750       Diag(IdInfo.IdentifierLoc, diag::err_expected_class_or_namespace)
751           << Context.getTypeDeclType(TD) << getLangOpts().CPlusPlus;
752     } else if (Found.getAsSingle<TemplateDecl>()) {
753       ParsedType SuggestedType;
754       DiagnoseUnknownTypeName(IdInfo.Identifier, IdInfo.IdentifierLoc, S, &SS,
755                               SuggestedType);
756     } else {
757       Diag(IdInfo.IdentifierLoc, diag::err_expected_class_or_namespace)
758           << IdInfo.Identifier << getLangOpts().CPlusPlus;
759       if (NamedDecl *ND = Found.getAsSingle<NamedDecl>())
760         Diag(ND->getLocation(), diag::note_entity_declared_at)
761             << IdInfo.Identifier;
762     }
763   } else if (SS.isSet())
764     Diag(IdInfo.IdentifierLoc, diag::err_no_member) << IdInfo.Identifier
765         << LookupCtx << SS.getRange();
766   else
767     Diag(IdInfo.IdentifierLoc, diag::err_undeclared_var_use)
768         << IdInfo.Identifier;
769 
770   return true;
771 }
772 
773 bool Sema::ActOnCXXNestedNameSpecifier(Scope *S, NestedNameSpecInfo &IdInfo,
774                                        bool EnteringContext, CXXScopeSpec &SS,
775                                        bool *IsCorrectedToColon,
776                                        bool OnlyNamespace) {
777   if (SS.isInvalid())
778     return true;
779 
780   return BuildCXXNestedNameSpecifier(S, IdInfo, EnteringContext, SS,
781                                      /*ScopeLookupResult=*/nullptr, false,
782                                      IsCorrectedToColon, OnlyNamespace);
783 }
784 
785 bool Sema::ActOnCXXNestedNameSpecifierDecltype(CXXScopeSpec &SS,
786                                                const DeclSpec &DS,
787                                                SourceLocation ColonColonLoc) {
788   if (SS.isInvalid() || DS.getTypeSpecType() == DeclSpec::TST_error)
789     return true;
790 
791   assert(DS.getTypeSpecType() == DeclSpec::TST_decltype);
792 
793   QualType T = BuildDecltypeType(DS.getRepAsExpr());
794   if (T.isNull())
795     return true;
796 
797   if (!T->isDependentType() && !T->getAs<TagType>()) {
798     Diag(DS.getTypeSpecTypeLoc(), diag::err_expected_class_or_namespace)
799       << T << getLangOpts().CPlusPlus;
800     return true;
801   }
802 
803   TypeLocBuilder TLB;
804   DecltypeTypeLoc DecltypeTL = TLB.push<DecltypeTypeLoc>(T);
805   DecltypeTL.setDecltypeLoc(DS.getTypeSpecTypeLoc());
806   DecltypeTL.setRParenLoc(DS.getTypeofParensRange().getEnd());
807   SS.Extend(Context, SourceLocation(), TLB.getTypeLocInContext(Context, T),
808             ColonColonLoc);
809   return false;
810 }
811 
812 bool Sema::ActOnCXXNestedNameSpecifierIndexedPack(CXXScopeSpec &SS,
813                                                   const DeclSpec &DS,
814                                                   SourceLocation ColonColonLoc,
815                                                   QualType Type) {
816   if (SS.isInvalid() || DS.getTypeSpecType() == DeclSpec::TST_error)
817     return true;
818 
819   assert(DS.getTypeSpecType() == DeclSpec::TST_typename_pack_indexing);
820 
821   if (Type.isNull())
822     return true;
823 
824   TypeLocBuilder TLB;
825   TLB.pushTrivial(getASTContext(),
826                   cast<PackIndexingType>(Type.getTypePtr())->getPattern(),
827                   DS.getBeginLoc());
828   PackIndexingTypeLoc PIT = TLB.push<PackIndexingTypeLoc>(Type);
829   PIT.setEllipsisLoc(DS.getEllipsisLoc());
830   SS.Extend(Context, SourceLocation(), TLB.getTypeLocInContext(Context, Type),
831             ColonColonLoc);
832   return false;
833 }
834 
835 bool Sema::IsInvalidUnlessNestedName(Scope *S, CXXScopeSpec &SS,
836                                      NestedNameSpecInfo &IdInfo,
837                                      bool EnteringContext) {
838   if (SS.isInvalid())
839     return false;
840 
841   return !BuildCXXNestedNameSpecifier(S, IdInfo, EnteringContext, SS,
842                                       /*ScopeLookupResult=*/nullptr, true);
843 }
844 
845 bool Sema::ActOnCXXNestedNameSpecifier(Scope *S,
846                                        CXXScopeSpec &SS,
847                                        SourceLocation TemplateKWLoc,
848                                        TemplateTy OpaqueTemplate,
849                                        SourceLocation TemplateNameLoc,
850                                        SourceLocation LAngleLoc,
851                                        ASTTemplateArgsPtr TemplateArgsIn,
852                                        SourceLocation RAngleLoc,
853                                        SourceLocation CCLoc,
854                                        bool EnteringContext) {
855   if (SS.isInvalid())
856     return true;
857 
858   TemplateName Template = OpaqueTemplate.get();
859 
860   // Translate the parser's template argument list in our AST format.
861   TemplateArgumentListInfo TemplateArgs(LAngleLoc, RAngleLoc);
862   translateTemplateArguments(TemplateArgsIn, TemplateArgs);
863 
864   DependentTemplateName *DTN = Template.getAsDependentTemplateName();
865   if (DTN && DTN->isIdentifier()) {
866     // Handle a dependent template specialization for which we cannot resolve
867     // the template name.
868     assert(DTN->getQualifier() == SS.getScopeRep());
869     QualType T = Context.getDependentTemplateSpecializationType(
870         ElaboratedTypeKeyword::None, DTN->getQualifier(), DTN->getIdentifier(),
871         TemplateArgs.arguments());
872 
873     // Create source-location information for this type.
874     TypeLocBuilder Builder;
875     DependentTemplateSpecializationTypeLoc SpecTL
876       = Builder.push<DependentTemplateSpecializationTypeLoc>(T);
877     SpecTL.setElaboratedKeywordLoc(SourceLocation());
878     SpecTL.setQualifierLoc(SS.getWithLocInContext(Context));
879     SpecTL.setTemplateKeywordLoc(TemplateKWLoc);
880     SpecTL.setTemplateNameLoc(TemplateNameLoc);
881     SpecTL.setLAngleLoc(LAngleLoc);
882     SpecTL.setRAngleLoc(RAngleLoc);
883     for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I)
884       SpecTL.setArgLocInfo(I, TemplateArgs[I].getLocInfo());
885 
886     SS.Extend(Context, TemplateKWLoc, Builder.getTypeLocInContext(Context, T),
887               CCLoc);
888     return false;
889   }
890 
891   // If we assumed an undeclared identifier was a template name, try to
892   // typo-correct it now.
893   if (Template.getAsAssumedTemplateName() &&
894       resolveAssumedTemplateNameAsType(S, Template, TemplateNameLoc))
895     return true;
896 
897   TemplateDecl *TD = Template.getAsTemplateDecl();
898   if (Template.getAsOverloadedTemplate() || DTN ||
899       isa<FunctionTemplateDecl>(TD) || isa<VarTemplateDecl>(TD)) {
900     SourceRange R(TemplateNameLoc, RAngleLoc);
901     if (SS.getRange().isValid())
902       R.setBegin(SS.getRange().getBegin());
903 
904     Diag(CCLoc, diag::err_non_type_template_in_nested_name_specifier)
905         << isa_and_nonnull<VarTemplateDecl>(TD) << Template << R;
906     NoteAllFoundTemplates(Template);
907     return true;
908   }
909 
910   // We were able to resolve the template name to an actual template.
911   // Build an appropriate nested-name-specifier.
912   QualType T = CheckTemplateIdType(Template, TemplateNameLoc, TemplateArgs);
913   if (T.isNull())
914     return true;
915 
916   // Alias template specializations can produce types which are not valid
917   // nested name specifiers.
918   if (!T->isDependentType() && !T->getAs<TagType>()) {
919     Diag(TemplateNameLoc, diag::err_nested_name_spec_non_tag) << T;
920     NoteAllFoundTemplates(Template);
921     return true;
922   }
923 
924   // Provide source-location information for the template specialization type.
925   TypeLocBuilder Builder;
926   TemplateSpecializationTypeLoc SpecTL
927     = Builder.push<TemplateSpecializationTypeLoc>(T);
928   SpecTL.setTemplateKeywordLoc(TemplateKWLoc);
929   SpecTL.setTemplateNameLoc(TemplateNameLoc);
930   SpecTL.setLAngleLoc(LAngleLoc);
931   SpecTL.setRAngleLoc(RAngleLoc);
932   for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I)
933     SpecTL.setArgLocInfo(I, TemplateArgs[I].getLocInfo());
934 
935 
936   SS.Extend(Context, TemplateKWLoc, Builder.getTypeLocInContext(Context, T),
937             CCLoc);
938   return false;
939 }
940 
941 namespace {
942   /// A structure that stores a nested-name-specifier annotation,
943   /// including both the nested-name-specifier
944   struct NestedNameSpecifierAnnotation {
945     NestedNameSpecifier *NNS;
946   };
947 }
948 
949 void *Sema::SaveNestedNameSpecifierAnnotation(CXXScopeSpec &SS) {
950   if (SS.isEmpty() || SS.isInvalid())
951     return nullptr;
952 
953   void *Mem = Context.Allocate(
954       (sizeof(NestedNameSpecifierAnnotation) + SS.location_size()),
955       alignof(NestedNameSpecifierAnnotation));
956   NestedNameSpecifierAnnotation *Annotation
957     = new (Mem) NestedNameSpecifierAnnotation;
958   Annotation->NNS = SS.getScopeRep();
959   memcpy(Annotation + 1, SS.location_data(), SS.location_size());
960   return Annotation;
961 }
962 
963 void Sema::RestoreNestedNameSpecifierAnnotation(void *AnnotationPtr,
964                                                 SourceRange AnnotationRange,
965                                                 CXXScopeSpec &SS) {
966   if (!AnnotationPtr) {
967     SS.SetInvalid(AnnotationRange);
968     return;
969   }
970 
971   NestedNameSpecifierAnnotation *Annotation
972     = static_cast<NestedNameSpecifierAnnotation *>(AnnotationPtr);
973   SS.Adopt(NestedNameSpecifierLoc(Annotation->NNS, Annotation + 1));
974 }
975 
976 bool Sema::ShouldEnterDeclaratorScope(Scope *S, const CXXScopeSpec &SS) {
977   assert(SS.isSet() && "Parser passed invalid CXXScopeSpec.");
978 
979   // Don't enter a declarator context when the current context is an Objective-C
980   // declaration.
981   if (isa<ObjCContainerDecl>(CurContext) || isa<ObjCMethodDecl>(CurContext))
982     return false;
983 
984   NestedNameSpecifier *Qualifier = SS.getScopeRep();
985 
986   // There are only two places a well-formed program may qualify a
987   // declarator: first, when defining a namespace or class member
988   // out-of-line, and second, when naming an explicitly-qualified
989   // friend function.  The latter case is governed by
990   // C++03 [basic.lookup.unqual]p10:
991   //   In a friend declaration naming a member function, a name used
992   //   in the function declarator and not part of a template-argument
993   //   in a template-id is first looked up in the scope of the member
994   //   function's class. If it is not found, or if the name is part of
995   //   a template-argument in a template-id, the look up is as
996   //   described for unqualified names in the definition of the class
997   //   granting friendship.
998   // i.e. we don't push a scope unless it's a class member.
999 
1000   switch (Qualifier->getKind()) {
1001   case NestedNameSpecifier::Global:
1002   case NestedNameSpecifier::Namespace:
1003   case NestedNameSpecifier::NamespaceAlias:
1004     // These are always namespace scopes.  We never want to enter a
1005     // namespace scope from anything but a file context.
1006     return CurContext->getRedeclContext()->isFileContext();
1007 
1008   case NestedNameSpecifier::Identifier:
1009   case NestedNameSpecifier::TypeSpec:
1010   case NestedNameSpecifier::TypeSpecWithTemplate:
1011   case NestedNameSpecifier::Super:
1012     // These are never namespace scopes.
1013     return true;
1014   }
1015 
1016   llvm_unreachable("Invalid NestedNameSpecifier::Kind!");
1017 }
1018 
1019 bool Sema::ActOnCXXEnterDeclaratorScope(Scope *S, CXXScopeSpec &SS) {
1020   assert(SS.isSet() && "Parser passed invalid CXXScopeSpec.");
1021 
1022   if (SS.isInvalid()) return true;
1023 
1024   DeclContext *DC = computeDeclContext(SS, true);
1025   if (!DC) return true;
1026 
1027   // Before we enter a declarator's context, we need to make sure that
1028   // it is a complete declaration context.
1029   if (!DC->isDependentContext() && RequireCompleteDeclContext(SS, DC))
1030     return true;
1031 
1032   EnterDeclaratorContext(S, DC);
1033 
1034   // Rebuild the nested name specifier for the new scope.
1035   if (DC->isDependentContext())
1036     RebuildNestedNameSpecifierInCurrentInstantiation(SS);
1037 
1038   return false;
1039 }
1040 
1041 void Sema::ActOnCXXExitDeclaratorScope(Scope *S, const CXXScopeSpec &SS) {
1042   assert(SS.isSet() && "Parser passed invalid CXXScopeSpec.");
1043   if (SS.isInvalid())
1044     return;
1045   assert(!SS.isInvalid() && computeDeclContext(SS, true) &&
1046          "exiting declarator scope we never really entered");
1047   ExitDeclaratorContext(S);
1048 }
1049