xref: /netbsd-src/external/apache2/llvm/dist/clang/lib/Sema/SemaCUDA.cpp (revision e038c9c4676b0f19b1b7dd08a940c6ed64a6d5ae)
1 //===--- SemaCUDA.cpp - Semantic Analysis for CUDA constructs -------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 /// \file
9 /// This file implements semantic analysis for CUDA constructs.
10 ///
11 //===----------------------------------------------------------------------===//
12 
13 #include "clang/AST/ASTContext.h"
14 #include "clang/AST/Decl.h"
15 #include "clang/AST/ExprCXX.h"
16 #include "clang/Basic/Cuda.h"
17 #include "clang/Basic/TargetInfo.h"
18 #include "clang/Lex/Preprocessor.h"
19 #include "clang/Sema/Lookup.h"
20 #include "clang/Sema/ScopeInfo.h"
21 #include "clang/Sema/Sema.h"
22 #include "clang/Sema/SemaDiagnostic.h"
23 #include "clang/Sema/SemaInternal.h"
24 #include "clang/Sema/Template.h"
25 #include "llvm/ADT/Optional.h"
26 #include "llvm/ADT/SmallVector.h"
27 using namespace clang;
28 
hasExplicitAttr(const VarDecl * D)29 template <typename AttrT> static bool hasExplicitAttr(const VarDecl *D) {
30   if (!D)
31     return false;
32   if (auto *A = D->getAttr<AttrT>())
33     return !A->isImplicit();
34   return false;
35 }
36 
PushForceCUDAHostDevice()37 void Sema::PushForceCUDAHostDevice() {
38   assert(getLangOpts().CUDA && "Should only be called during CUDA compilation");
39   ForceCUDAHostDeviceDepth++;
40 }
41 
PopForceCUDAHostDevice()42 bool Sema::PopForceCUDAHostDevice() {
43   assert(getLangOpts().CUDA && "Should only be called during CUDA compilation");
44   if (ForceCUDAHostDeviceDepth == 0)
45     return false;
46   ForceCUDAHostDeviceDepth--;
47   return true;
48 }
49 
ActOnCUDAExecConfigExpr(Scope * S,SourceLocation LLLLoc,MultiExprArg ExecConfig,SourceLocation GGGLoc)50 ExprResult Sema::ActOnCUDAExecConfigExpr(Scope *S, SourceLocation LLLLoc,
51                                          MultiExprArg ExecConfig,
52                                          SourceLocation GGGLoc) {
53   FunctionDecl *ConfigDecl = Context.getcudaConfigureCallDecl();
54   if (!ConfigDecl)
55     return ExprError(Diag(LLLLoc, diag::err_undeclared_var_use)
56                      << getCudaConfigureFuncName());
57   QualType ConfigQTy = ConfigDecl->getType();
58 
59   DeclRefExpr *ConfigDR = new (Context)
60       DeclRefExpr(Context, ConfigDecl, false, ConfigQTy, VK_LValue, LLLLoc);
61   MarkFunctionReferenced(LLLLoc, ConfigDecl);
62 
63   return BuildCallExpr(S, ConfigDR, LLLLoc, ExecConfig, GGGLoc, nullptr,
64                        /*IsExecConfig=*/true);
65 }
66 
67 Sema::CUDAFunctionTarget
IdentifyCUDATarget(const ParsedAttributesView & Attrs)68 Sema::IdentifyCUDATarget(const ParsedAttributesView &Attrs) {
69   bool HasHostAttr = false;
70   bool HasDeviceAttr = false;
71   bool HasGlobalAttr = false;
72   bool HasInvalidTargetAttr = false;
73   for (const ParsedAttr &AL : Attrs) {
74     switch (AL.getKind()) {
75     case ParsedAttr::AT_CUDAGlobal:
76       HasGlobalAttr = true;
77       break;
78     case ParsedAttr::AT_CUDAHost:
79       HasHostAttr = true;
80       break;
81     case ParsedAttr::AT_CUDADevice:
82       HasDeviceAttr = true;
83       break;
84     case ParsedAttr::AT_CUDAInvalidTarget:
85       HasInvalidTargetAttr = true;
86       break;
87     default:
88       break;
89     }
90   }
91 
92   if (HasInvalidTargetAttr)
93     return CFT_InvalidTarget;
94 
95   if (HasGlobalAttr)
96     return CFT_Global;
97 
98   if (HasHostAttr && HasDeviceAttr)
99     return CFT_HostDevice;
100 
101   if (HasDeviceAttr)
102     return CFT_Device;
103 
104   return CFT_Host;
105 }
106 
107 template <typename A>
hasAttr(const FunctionDecl * D,bool IgnoreImplicitAttr)108 static bool hasAttr(const FunctionDecl *D, bool IgnoreImplicitAttr) {
109   return D->hasAttrs() && llvm::any_of(D->getAttrs(), [&](Attr *Attribute) {
110            return isa<A>(Attribute) &&
111                   !(IgnoreImplicitAttr && Attribute->isImplicit());
112          });
113 }
114 
115 /// IdentifyCUDATarget - Determine the CUDA compilation target for this function
IdentifyCUDATarget(const FunctionDecl * D,bool IgnoreImplicitHDAttr)116 Sema::CUDAFunctionTarget Sema::IdentifyCUDATarget(const FunctionDecl *D,
117                                                   bool IgnoreImplicitHDAttr) {
118   // Code that lives outside a function is run on the host.
119   if (D == nullptr)
120     return CFT_Host;
121 
122   if (D->hasAttr<CUDAInvalidTargetAttr>())
123     return CFT_InvalidTarget;
124 
125   if (D->hasAttr<CUDAGlobalAttr>())
126     return CFT_Global;
127 
128   if (hasAttr<CUDADeviceAttr>(D, IgnoreImplicitHDAttr)) {
129     if (hasAttr<CUDAHostAttr>(D, IgnoreImplicitHDAttr))
130       return CFT_HostDevice;
131     return CFT_Device;
132   } else if (hasAttr<CUDAHostAttr>(D, IgnoreImplicitHDAttr)) {
133     return CFT_Host;
134   } else if ((D->isImplicit() || !D->isUserProvided()) &&
135              !IgnoreImplicitHDAttr) {
136     // Some implicit declarations (like intrinsic functions) are not marked.
137     // Set the most lenient target on them for maximal flexibility.
138     return CFT_HostDevice;
139   }
140 
141   return CFT_Host;
142 }
143 
144 /// IdentifyTarget - Determine the CUDA compilation target for this variable.
IdentifyCUDATarget(const VarDecl * Var)145 Sema::CUDAVariableTarget Sema::IdentifyCUDATarget(const VarDecl *Var) {
146   if (Var->hasAttr<HIPManagedAttr>())
147     return CVT_Unified;
148   if (Var->isConstexpr() && !hasExplicitAttr<CUDAConstantAttr>(Var))
149     return CVT_Both;
150   if (Var->hasAttr<CUDADeviceAttr>() || Var->hasAttr<CUDAConstantAttr>() ||
151       Var->hasAttr<CUDASharedAttr>() ||
152       Var->getType()->isCUDADeviceBuiltinSurfaceType() ||
153       Var->getType()->isCUDADeviceBuiltinTextureType())
154     return CVT_Device;
155   // Function-scope static variable without explicit device or constant
156   // attribute are emitted
157   //  - on both sides in host device functions
158   //  - on device side in device or global functions
159   if (auto *FD = dyn_cast<FunctionDecl>(Var->getDeclContext())) {
160     switch (IdentifyCUDATarget(FD)) {
161     case CFT_HostDevice:
162       return CVT_Both;
163     case CFT_Device:
164     case CFT_Global:
165       return CVT_Device;
166     default:
167       return CVT_Host;
168     }
169   }
170   return CVT_Host;
171 }
172 
173 // * CUDA Call preference table
174 //
175 // F - from,
176 // T - to
177 // Ph - preference in host mode
178 // Pd - preference in device mode
179 // H  - handled in (x)
180 // Preferences: N:native, SS:same side, HD:host-device, WS:wrong side, --:never.
181 //
182 // | F  | T  | Ph  | Pd  |  H  |
183 // |----+----+-----+-----+-----+
184 // | d  | d  | N   | N   | (c) |
185 // | d  | g  | --  | --  | (a) |
186 // | d  | h  | --  | --  | (e) |
187 // | d  | hd | HD  | HD  | (b) |
188 // | g  | d  | N   | N   | (c) |
189 // | g  | g  | --  | --  | (a) |
190 // | g  | h  | --  | --  | (e) |
191 // | g  | hd | HD  | HD  | (b) |
192 // | h  | d  | --  | --  | (e) |
193 // | h  | g  | N   | N   | (c) |
194 // | h  | h  | N   | N   | (c) |
195 // | h  | hd | HD  | HD  | (b) |
196 // | hd | d  | WS  | SS  | (d) |
197 // | hd | g  | SS  | --  |(d/a)|
198 // | hd | h  | SS  | WS  | (d) |
199 // | hd | hd | HD  | HD  | (b) |
200 
201 Sema::CUDAFunctionPreference
IdentifyCUDAPreference(const FunctionDecl * Caller,const FunctionDecl * Callee)202 Sema::IdentifyCUDAPreference(const FunctionDecl *Caller,
203                              const FunctionDecl *Callee) {
204   assert(Callee && "Callee must be valid.");
205   CUDAFunctionTarget CallerTarget = IdentifyCUDATarget(Caller);
206   CUDAFunctionTarget CalleeTarget = IdentifyCUDATarget(Callee);
207 
208   // If one of the targets is invalid, the check always fails, no matter what
209   // the other target is.
210   if (CallerTarget == CFT_InvalidTarget || CalleeTarget == CFT_InvalidTarget)
211     return CFP_Never;
212 
213   // (a) Can't call global from some contexts until we support CUDA's
214   // dynamic parallelism.
215   if (CalleeTarget == CFT_Global &&
216       (CallerTarget == CFT_Global || CallerTarget == CFT_Device))
217     return CFP_Never;
218 
219   // (b) Calling HostDevice is OK for everyone.
220   if (CalleeTarget == CFT_HostDevice)
221     return CFP_HostDevice;
222 
223   // (c) Best case scenarios
224   if (CalleeTarget == CallerTarget ||
225       (CallerTarget == CFT_Host && CalleeTarget == CFT_Global) ||
226       (CallerTarget == CFT_Global && CalleeTarget == CFT_Device))
227     return CFP_Native;
228 
229   // (d) HostDevice behavior depends on compilation mode.
230   if (CallerTarget == CFT_HostDevice) {
231     // It's OK to call a compilation-mode matching function from an HD one.
232     if ((getLangOpts().CUDAIsDevice && CalleeTarget == CFT_Device) ||
233         (!getLangOpts().CUDAIsDevice &&
234          (CalleeTarget == CFT_Host || CalleeTarget == CFT_Global)))
235       return CFP_SameSide;
236 
237     // Calls from HD to non-mode-matching functions (i.e., to host functions
238     // when compiling in device mode or to device functions when compiling in
239     // host mode) are allowed at the sema level, but eventually rejected if
240     // they're ever codegened.  TODO: Reject said calls earlier.
241     return CFP_WrongSide;
242   }
243 
244   // (e) Calling across device/host boundary is not something you should do.
245   if ((CallerTarget == CFT_Host && CalleeTarget == CFT_Device) ||
246       (CallerTarget == CFT_Device && CalleeTarget == CFT_Host) ||
247       (CallerTarget == CFT_Global && CalleeTarget == CFT_Host))
248     return CFP_Never;
249 
250   llvm_unreachable("All cases should've been handled by now.");
251 }
252 
hasImplicitAttr(const FunctionDecl * D)253 template <typename AttrT> static bool hasImplicitAttr(const FunctionDecl *D) {
254   if (!D)
255     return false;
256   if (auto *A = D->getAttr<AttrT>())
257     return A->isImplicit();
258   return D->isImplicit();
259 }
260 
isCUDAImplicitHostDeviceFunction(const FunctionDecl * D)261 bool Sema::isCUDAImplicitHostDeviceFunction(const FunctionDecl *D) {
262   bool IsImplicitDevAttr = hasImplicitAttr<CUDADeviceAttr>(D);
263   bool IsImplicitHostAttr = hasImplicitAttr<CUDAHostAttr>(D);
264   return IsImplicitDevAttr && IsImplicitHostAttr;
265 }
266 
EraseUnwantedCUDAMatches(const FunctionDecl * Caller,SmallVectorImpl<std::pair<DeclAccessPair,FunctionDecl * >> & Matches)267 void Sema::EraseUnwantedCUDAMatches(
268     const FunctionDecl *Caller,
269     SmallVectorImpl<std::pair<DeclAccessPair, FunctionDecl *>> &Matches) {
270   if (Matches.size() <= 1)
271     return;
272 
273   using Pair = std::pair<DeclAccessPair, FunctionDecl*>;
274 
275   // Gets the CUDA function preference for a call from Caller to Match.
276   auto GetCFP = [&](const Pair &Match) {
277     return IdentifyCUDAPreference(Caller, Match.second);
278   };
279 
280   // Find the best call preference among the functions in Matches.
281   CUDAFunctionPreference BestCFP = GetCFP(*std::max_element(
282       Matches.begin(), Matches.end(),
283       [&](const Pair &M1, const Pair &M2) { return GetCFP(M1) < GetCFP(M2); }));
284 
285   // Erase all functions with lower priority.
286   llvm::erase_if(Matches,
287                  [&](const Pair &Match) { return GetCFP(Match) < BestCFP; });
288 }
289 
290 /// When an implicitly-declared special member has to invoke more than one
291 /// base/field special member, conflicts may occur in the targets of these
292 /// members. For example, if one base's member __host__ and another's is
293 /// __device__, it's a conflict.
294 /// This function figures out if the given targets \param Target1 and
295 /// \param Target2 conflict, and if they do not it fills in
296 /// \param ResolvedTarget with a target that resolves for both calls.
297 /// \return true if there's a conflict, false otherwise.
298 static bool
resolveCalleeCUDATargetConflict(Sema::CUDAFunctionTarget Target1,Sema::CUDAFunctionTarget Target2,Sema::CUDAFunctionTarget * ResolvedTarget)299 resolveCalleeCUDATargetConflict(Sema::CUDAFunctionTarget Target1,
300                                 Sema::CUDAFunctionTarget Target2,
301                                 Sema::CUDAFunctionTarget *ResolvedTarget) {
302   // Only free functions and static member functions may be global.
303   assert(Target1 != Sema::CFT_Global);
304   assert(Target2 != Sema::CFT_Global);
305 
306   if (Target1 == Sema::CFT_HostDevice) {
307     *ResolvedTarget = Target2;
308   } else if (Target2 == Sema::CFT_HostDevice) {
309     *ResolvedTarget = Target1;
310   } else if (Target1 != Target2) {
311     return true;
312   } else {
313     *ResolvedTarget = Target1;
314   }
315 
316   return false;
317 }
318 
inferCUDATargetForImplicitSpecialMember(CXXRecordDecl * ClassDecl,CXXSpecialMember CSM,CXXMethodDecl * MemberDecl,bool ConstRHS,bool Diagnose)319 bool Sema::inferCUDATargetForImplicitSpecialMember(CXXRecordDecl *ClassDecl,
320                                                    CXXSpecialMember CSM,
321                                                    CXXMethodDecl *MemberDecl,
322                                                    bool ConstRHS,
323                                                    bool Diagnose) {
324   // If the defaulted special member is defined lexically outside of its
325   // owning class, or the special member already has explicit device or host
326   // attributes, do not infer.
327   bool InClass = MemberDecl->getLexicalParent() == MemberDecl->getParent();
328   bool HasH = MemberDecl->hasAttr<CUDAHostAttr>();
329   bool HasD = MemberDecl->hasAttr<CUDADeviceAttr>();
330   bool HasExplicitAttr =
331       (HasD && !MemberDecl->getAttr<CUDADeviceAttr>()->isImplicit()) ||
332       (HasH && !MemberDecl->getAttr<CUDAHostAttr>()->isImplicit());
333   if (!InClass || HasExplicitAttr)
334     return false;
335 
336   llvm::Optional<CUDAFunctionTarget> InferredTarget;
337 
338   // We're going to invoke special member lookup; mark that these special
339   // members are called from this one, and not from its caller.
340   ContextRAII MethodContext(*this, MemberDecl);
341 
342   // Look for special members in base classes that should be invoked from here.
343   // Infer the target of this member base on the ones it should call.
344   // Skip direct and indirect virtual bases for abstract classes.
345   llvm::SmallVector<const CXXBaseSpecifier *, 16> Bases;
346   for (const auto &B : ClassDecl->bases()) {
347     if (!B.isVirtual()) {
348       Bases.push_back(&B);
349     }
350   }
351 
352   if (!ClassDecl->isAbstract()) {
353     for (const auto &VB : ClassDecl->vbases()) {
354       Bases.push_back(&VB);
355     }
356   }
357 
358   for (const auto *B : Bases) {
359     const RecordType *BaseType = B->getType()->getAs<RecordType>();
360     if (!BaseType) {
361       continue;
362     }
363 
364     CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(BaseType->getDecl());
365     Sema::SpecialMemberOverloadResult SMOR =
366         LookupSpecialMember(BaseClassDecl, CSM,
367                             /* ConstArg */ ConstRHS,
368                             /* VolatileArg */ false,
369                             /* RValueThis */ false,
370                             /* ConstThis */ false,
371                             /* VolatileThis */ false);
372 
373     if (!SMOR.getMethod())
374       continue;
375 
376     CUDAFunctionTarget BaseMethodTarget = IdentifyCUDATarget(SMOR.getMethod());
377     if (!InferredTarget.hasValue()) {
378       InferredTarget = BaseMethodTarget;
379     } else {
380       bool ResolutionError = resolveCalleeCUDATargetConflict(
381           InferredTarget.getValue(), BaseMethodTarget,
382           InferredTarget.getPointer());
383       if (ResolutionError) {
384         if (Diagnose) {
385           Diag(ClassDecl->getLocation(),
386                diag::note_implicit_member_target_infer_collision)
387               << (unsigned)CSM << InferredTarget.getValue() << BaseMethodTarget;
388         }
389         MemberDecl->addAttr(CUDAInvalidTargetAttr::CreateImplicit(Context));
390         return true;
391       }
392     }
393   }
394 
395   // Same as for bases, but now for special members of fields.
396   for (const auto *F : ClassDecl->fields()) {
397     if (F->isInvalidDecl()) {
398       continue;
399     }
400 
401     const RecordType *FieldType =
402         Context.getBaseElementType(F->getType())->getAs<RecordType>();
403     if (!FieldType) {
404       continue;
405     }
406 
407     CXXRecordDecl *FieldRecDecl = cast<CXXRecordDecl>(FieldType->getDecl());
408     Sema::SpecialMemberOverloadResult SMOR =
409         LookupSpecialMember(FieldRecDecl, CSM,
410                             /* ConstArg */ ConstRHS && !F->isMutable(),
411                             /* VolatileArg */ false,
412                             /* RValueThis */ false,
413                             /* ConstThis */ false,
414                             /* VolatileThis */ false);
415 
416     if (!SMOR.getMethod())
417       continue;
418 
419     CUDAFunctionTarget FieldMethodTarget =
420         IdentifyCUDATarget(SMOR.getMethod());
421     if (!InferredTarget.hasValue()) {
422       InferredTarget = FieldMethodTarget;
423     } else {
424       bool ResolutionError = resolveCalleeCUDATargetConflict(
425           InferredTarget.getValue(), FieldMethodTarget,
426           InferredTarget.getPointer());
427       if (ResolutionError) {
428         if (Diagnose) {
429           Diag(ClassDecl->getLocation(),
430                diag::note_implicit_member_target_infer_collision)
431               << (unsigned)CSM << InferredTarget.getValue()
432               << FieldMethodTarget;
433         }
434         MemberDecl->addAttr(CUDAInvalidTargetAttr::CreateImplicit(Context));
435         return true;
436       }
437     }
438   }
439 
440 
441   // If no target was inferred, mark this member as __host__ __device__;
442   // it's the least restrictive option that can be invoked from any target.
443   bool NeedsH = true, NeedsD = true;
444   if (InferredTarget.hasValue()) {
445     if (InferredTarget.getValue() == CFT_Device)
446       NeedsH = false;
447     else if (InferredTarget.getValue() == CFT_Host)
448       NeedsD = false;
449   }
450 
451   // We either setting attributes first time, or the inferred ones must match
452   // previously set ones.
453   if (NeedsD && !HasD)
454     MemberDecl->addAttr(CUDADeviceAttr::CreateImplicit(Context));
455   if (NeedsH && !HasH)
456     MemberDecl->addAttr(CUDAHostAttr::CreateImplicit(Context));
457 
458   return false;
459 }
460 
isEmptyCudaConstructor(SourceLocation Loc,CXXConstructorDecl * CD)461 bool Sema::isEmptyCudaConstructor(SourceLocation Loc, CXXConstructorDecl *CD) {
462   if (!CD->isDefined() && CD->isTemplateInstantiation())
463     InstantiateFunctionDefinition(Loc, CD->getFirstDecl());
464 
465   // (E.2.3.1, CUDA 7.5) A constructor for a class type is considered
466   // empty at a point in the translation unit, if it is either a
467   // trivial constructor
468   if (CD->isTrivial())
469     return true;
470 
471   // ... or it satisfies all of the following conditions:
472   // The constructor function has been defined.
473   // The constructor function has no parameters,
474   // and the function body is an empty compound statement.
475   if (!(CD->hasTrivialBody() && CD->getNumParams() == 0))
476     return false;
477 
478   // Its class has no virtual functions and no virtual base classes.
479   if (CD->getParent()->isDynamicClass())
480     return false;
481 
482   // Union ctor does not call ctors of its data members.
483   if (CD->getParent()->isUnion())
484     return true;
485 
486   // The only form of initializer allowed is an empty constructor.
487   // This will recursively check all base classes and member initializers
488   if (!llvm::all_of(CD->inits(), [&](const CXXCtorInitializer *CI) {
489         if (const CXXConstructExpr *CE =
490                 dyn_cast<CXXConstructExpr>(CI->getInit()))
491           return isEmptyCudaConstructor(Loc, CE->getConstructor());
492         return false;
493       }))
494     return false;
495 
496   return true;
497 }
498 
isEmptyCudaDestructor(SourceLocation Loc,CXXDestructorDecl * DD)499 bool Sema::isEmptyCudaDestructor(SourceLocation Loc, CXXDestructorDecl *DD) {
500   // No destructor -> no problem.
501   if (!DD)
502     return true;
503 
504   if (!DD->isDefined() && DD->isTemplateInstantiation())
505     InstantiateFunctionDefinition(Loc, DD->getFirstDecl());
506 
507   // (E.2.3.1, CUDA 7.5) A destructor for a class type is considered
508   // empty at a point in the translation unit, if it is either a
509   // trivial constructor
510   if (DD->isTrivial())
511     return true;
512 
513   // ... or it satisfies all of the following conditions:
514   // The destructor function has been defined.
515   // and the function body is an empty compound statement.
516   if (!DD->hasTrivialBody())
517     return false;
518 
519   const CXXRecordDecl *ClassDecl = DD->getParent();
520 
521   // Its class has no virtual functions and no virtual base classes.
522   if (ClassDecl->isDynamicClass())
523     return false;
524 
525   // Union does not have base class and union dtor does not call dtors of its
526   // data members.
527   if (DD->getParent()->isUnion())
528     return true;
529 
530   // Only empty destructors are allowed. This will recursively check
531   // destructors for all base classes...
532   if (!llvm::all_of(ClassDecl->bases(), [&](const CXXBaseSpecifier &BS) {
533         if (CXXRecordDecl *RD = BS.getType()->getAsCXXRecordDecl())
534           return isEmptyCudaDestructor(Loc, RD->getDestructor());
535         return true;
536       }))
537     return false;
538 
539   // ... and member fields.
540   if (!llvm::all_of(ClassDecl->fields(), [&](const FieldDecl *Field) {
541         if (CXXRecordDecl *RD = Field->getType()
542                                     ->getBaseElementTypeUnsafe()
543                                     ->getAsCXXRecordDecl())
544           return isEmptyCudaDestructor(Loc, RD->getDestructor());
545         return true;
546       }))
547     return false;
548 
549   return true;
550 }
551 
checkAllowedCUDAInitializer(VarDecl * VD)552 void Sema::checkAllowedCUDAInitializer(VarDecl *VD) {
553   if (VD->isInvalidDecl() || !VD->hasInit() || !VD->hasGlobalStorage())
554     return;
555   const Expr *Init = VD->getInit();
556   if (VD->hasAttr<CUDADeviceAttr>() || VD->hasAttr<CUDAConstantAttr>() ||
557       VD->hasAttr<CUDASharedAttr>()) {
558     if (LangOpts.GPUAllowDeviceInit)
559       return;
560     bool AllowedInit = false;
561     if (const CXXConstructExpr *CE = dyn_cast<CXXConstructExpr>(Init))
562       AllowedInit =
563           isEmptyCudaConstructor(VD->getLocation(), CE->getConstructor());
564     // We'll allow constant initializers even if it's a non-empty
565     // constructor according to CUDA rules. This deviates from NVCC,
566     // but allows us to handle things like constexpr constructors.
567     if (!AllowedInit &&
568         (VD->hasAttr<CUDADeviceAttr>() || VD->hasAttr<CUDAConstantAttr>())) {
569       auto *Init = VD->getInit();
570       // isConstantInitializer cannot be called with dependent value, therefore
571       // we skip checking dependent value here. This is OK since
572       // checkAllowedCUDAInitializer is called again when the template is
573       // instantiated.
574       AllowedInit =
575           VD->getType()->isDependentType() || Init->isValueDependent() ||
576           Init->isConstantInitializer(Context,
577                                       VD->getType()->isReferenceType());
578     }
579 
580     // Also make sure that destructor, if there is one, is empty.
581     if (AllowedInit)
582       if (CXXRecordDecl *RD = VD->getType()->getAsCXXRecordDecl())
583         AllowedInit =
584             isEmptyCudaDestructor(VD->getLocation(), RD->getDestructor());
585 
586     if (!AllowedInit) {
587       Diag(VD->getLocation(), VD->hasAttr<CUDASharedAttr>()
588                                   ? diag::err_shared_var_init
589                                   : diag::err_dynamic_var_init)
590           << Init->getSourceRange();
591       VD->setInvalidDecl();
592     }
593   } else {
594     // This is a host-side global variable.  Check that the initializer is
595     // callable from the host side.
596     const FunctionDecl *InitFn = nullptr;
597     if (const CXXConstructExpr *CE = dyn_cast<CXXConstructExpr>(Init)) {
598       InitFn = CE->getConstructor();
599     } else if (const CallExpr *CE = dyn_cast<CallExpr>(Init)) {
600       InitFn = CE->getDirectCallee();
601     }
602     if (InitFn) {
603       CUDAFunctionTarget InitFnTarget = IdentifyCUDATarget(InitFn);
604       if (InitFnTarget != CFT_Host && InitFnTarget != CFT_HostDevice) {
605         Diag(VD->getLocation(), diag::err_ref_bad_target_global_initializer)
606             << InitFnTarget << InitFn;
607         Diag(InitFn->getLocation(), diag::note_previous_decl) << InitFn;
608         VD->setInvalidDecl();
609       }
610     }
611   }
612 }
613 
614 // With -fcuda-host-device-constexpr, an unattributed constexpr function is
615 // treated as implicitly __host__ __device__, unless:
616 //  * it is a variadic function (device-side variadic functions are not
617 //    allowed), or
618 //  * a __device__ function with this signature was already declared, in which
619 //    case in which case we output an error, unless the __device__ decl is in a
620 //    system header, in which case we leave the constexpr function unattributed.
621 //
622 // In addition, all function decls are treated as __host__ __device__ when
623 // ForceCUDAHostDeviceDepth > 0 (corresponding to code within a
624 //   #pragma clang force_cuda_host_device_begin/end
625 // pair).
maybeAddCUDAHostDeviceAttrs(FunctionDecl * NewD,const LookupResult & Previous)626 void Sema::maybeAddCUDAHostDeviceAttrs(FunctionDecl *NewD,
627                                        const LookupResult &Previous) {
628   assert(getLangOpts().CUDA && "Should only be called during CUDA compilation");
629 
630   if (ForceCUDAHostDeviceDepth > 0) {
631     if (!NewD->hasAttr<CUDAHostAttr>())
632       NewD->addAttr(CUDAHostAttr::CreateImplicit(Context));
633     if (!NewD->hasAttr<CUDADeviceAttr>())
634       NewD->addAttr(CUDADeviceAttr::CreateImplicit(Context));
635     return;
636   }
637 
638   if (!getLangOpts().CUDAHostDeviceConstexpr || !NewD->isConstexpr() ||
639       NewD->isVariadic() || NewD->hasAttr<CUDAHostAttr>() ||
640       NewD->hasAttr<CUDADeviceAttr>() || NewD->hasAttr<CUDAGlobalAttr>())
641     return;
642 
643   // Is D a __device__ function with the same signature as NewD, ignoring CUDA
644   // attributes?
645   auto IsMatchingDeviceFn = [&](NamedDecl *D) {
646     if (UsingShadowDecl *Using = dyn_cast<UsingShadowDecl>(D))
647       D = Using->getTargetDecl();
648     FunctionDecl *OldD = D->getAsFunction();
649     return OldD && OldD->hasAttr<CUDADeviceAttr>() &&
650            !OldD->hasAttr<CUDAHostAttr>() &&
651            !IsOverload(NewD, OldD, /* UseMemberUsingDeclRules = */ false,
652                        /* ConsiderCudaAttrs = */ false);
653   };
654   auto It = llvm::find_if(Previous, IsMatchingDeviceFn);
655   if (It != Previous.end()) {
656     // We found a __device__ function with the same name and signature as NewD
657     // (ignoring CUDA attrs).  This is an error unless that function is defined
658     // in a system header, in which case we simply return without making NewD
659     // host+device.
660     NamedDecl *Match = *It;
661     if (!getSourceManager().isInSystemHeader(Match->getLocation())) {
662       Diag(NewD->getLocation(),
663            diag::err_cuda_unattributed_constexpr_cannot_overload_device)
664           << NewD;
665       Diag(Match->getLocation(),
666            diag::note_cuda_conflicting_device_function_declared_here);
667     }
668     return;
669   }
670 
671   NewD->addAttr(CUDAHostAttr::CreateImplicit(Context));
672   NewD->addAttr(CUDADeviceAttr::CreateImplicit(Context));
673 }
674 
MaybeAddCUDAConstantAttr(VarDecl * VD)675 void Sema::MaybeAddCUDAConstantAttr(VarDecl *VD) {
676   if (getLangOpts().CUDAIsDevice && VD->isConstexpr() &&
677       (VD->isFileVarDecl() || VD->isStaticDataMember()) &&
678       !VD->hasAttr<CUDAConstantAttr>()) {
679     VD->addAttr(CUDAConstantAttr::CreateImplicit(getASTContext()));
680   }
681 }
682 
CUDADiagIfDeviceCode(SourceLocation Loc,unsigned DiagID)683 Sema::SemaDiagnosticBuilder Sema::CUDADiagIfDeviceCode(SourceLocation Loc,
684                                                        unsigned DiagID) {
685   assert(getLangOpts().CUDA && "Should only be called during CUDA compilation");
686   SemaDiagnosticBuilder::Kind DiagKind = [&] {
687     if (!isa<FunctionDecl>(CurContext))
688       return SemaDiagnosticBuilder::K_Nop;
689     switch (CurrentCUDATarget()) {
690     case CFT_Global:
691     case CFT_Device:
692       return SemaDiagnosticBuilder::K_Immediate;
693     case CFT_HostDevice:
694       // An HD function counts as host code if we're compiling for host, and
695       // device code if we're compiling for device.  Defer any errors in device
696       // mode until the function is known-emitted.
697       if (!getLangOpts().CUDAIsDevice)
698         return SemaDiagnosticBuilder::K_Nop;
699       if (IsLastErrorImmediate && Diags.getDiagnosticIDs()->isBuiltinNote(DiagID))
700         return SemaDiagnosticBuilder::K_Immediate;
701       return (getEmissionStatus(cast<FunctionDecl>(CurContext)) ==
702               FunctionEmissionStatus::Emitted)
703                  ? SemaDiagnosticBuilder::K_ImmediateWithCallStack
704                  : SemaDiagnosticBuilder::K_Deferred;
705     default:
706       return SemaDiagnosticBuilder::K_Nop;
707     }
708   }();
709   return SemaDiagnosticBuilder(DiagKind, Loc, DiagID,
710                                dyn_cast<FunctionDecl>(CurContext), *this);
711 }
712 
CUDADiagIfHostCode(SourceLocation Loc,unsigned DiagID)713 Sema::SemaDiagnosticBuilder Sema::CUDADiagIfHostCode(SourceLocation Loc,
714                                                      unsigned DiagID) {
715   assert(getLangOpts().CUDA && "Should only be called during CUDA compilation");
716   SemaDiagnosticBuilder::Kind DiagKind = [&] {
717     if (!isa<FunctionDecl>(CurContext))
718       return SemaDiagnosticBuilder::K_Nop;
719     switch (CurrentCUDATarget()) {
720     case CFT_Host:
721       return SemaDiagnosticBuilder::K_Immediate;
722     case CFT_HostDevice:
723       // An HD function counts as host code if we're compiling for host, and
724       // device code if we're compiling for device.  Defer any errors in device
725       // mode until the function is known-emitted.
726       if (getLangOpts().CUDAIsDevice)
727         return SemaDiagnosticBuilder::K_Nop;
728       if (IsLastErrorImmediate && Diags.getDiagnosticIDs()->isBuiltinNote(DiagID))
729         return SemaDiagnosticBuilder::K_Immediate;
730       return (getEmissionStatus(cast<FunctionDecl>(CurContext)) ==
731               FunctionEmissionStatus::Emitted)
732                  ? SemaDiagnosticBuilder::K_ImmediateWithCallStack
733                  : SemaDiagnosticBuilder::K_Deferred;
734     default:
735       return SemaDiagnosticBuilder::K_Nop;
736     }
737   }();
738   return SemaDiagnosticBuilder(DiagKind, Loc, DiagID,
739                                dyn_cast<FunctionDecl>(CurContext), *this);
740 }
741 
CheckCUDACall(SourceLocation Loc,FunctionDecl * Callee)742 bool Sema::CheckCUDACall(SourceLocation Loc, FunctionDecl *Callee) {
743   assert(getLangOpts().CUDA && "Should only be called during CUDA compilation");
744   assert(Callee && "Callee may not be null.");
745 
746   auto &ExprEvalCtx = ExprEvalContexts.back();
747   if (ExprEvalCtx.isUnevaluated() || ExprEvalCtx.isConstantEvaluated())
748     return true;
749 
750   // FIXME: Is bailing out early correct here?  Should we instead assume that
751   // the caller is a global initializer?
752   FunctionDecl *Caller = dyn_cast<FunctionDecl>(CurContext);
753   if (!Caller)
754     return true;
755 
756   // If the caller is known-emitted, mark the callee as known-emitted.
757   // Otherwise, mark the call in our call graph so we can traverse it later.
758   bool CallerKnownEmitted =
759       getEmissionStatus(Caller) == FunctionEmissionStatus::Emitted;
760   SemaDiagnosticBuilder::Kind DiagKind = [this, Caller, Callee,
761                                           CallerKnownEmitted] {
762     switch (IdentifyCUDAPreference(Caller, Callee)) {
763     case CFP_Never:
764     case CFP_WrongSide:
765       assert(Caller && "Never/wrongSide calls require a non-null caller");
766       // If we know the caller will be emitted, we know this wrong-side call
767       // will be emitted, so it's an immediate error.  Otherwise, defer the
768       // error until we know the caller is emitted.
769       return CallerKnownEmitted
770                  ? SemaDiagnosticBuilder::K_ImmediateWithCallStack
771                  : SemaDiagnosticBuilder::K_Deferred;
772     default:
773       return SemaDiagnosticBuilder::K_Nop;
774     }
775   }();
776 
777   if (DiagKind == SemaDiagnosticBuilder::K_Nop)
778     return true;
779 
780   // Avoid emitting this error twice for the same location.  Using a hashtable
781   // like this is unfortunate, but because we must continue parsing as normal
782   // after encountering a deferred error, it's otherwise very tricky for us to
783   // ensure that we only emit this deferred error once.
784   if (!LocsWithCUDACallDiags.insert({Caller, Loc}).second)
785     return true;
786 
787   SemaDiagnosticBuilder(DiagKind, Loc, diag::err_ref_bad_target, Caller, *this)
788       << IdentifyCUDATarget(Callee) << /*function*/ 0 << Callee
789       << IdentifyCUDATarget(Caller);
790   if (!Callee->getBuiltinID())
791     SemaDiagnosticBuilder(DiagKind, Callee->getLocation(),
792                           diag::note_previous_decl, Caller, *this)
793         << Callee;
794   return DiagKind != SemaDiagnosticBuilder::K_Immediate &&
795          DiagKind != SemaDiagnosticBuilder::K_ImmediateWithCallStack;
796 }
797 
798 // Check the wrong-sided reference capture of lambda for CUDA/HIP.
799 // A lambda function may capture a stack variable by reference when it is
800 // defined and uses the capture by reference when the lambda is called. When
801 // the capture and use happen on different sides, the capture is invalid and
802 // should be diagnosed.
CUDACheckLambdaCapture(CXXMethodDecl * Callee,const sema::Capture & Capture)803 void Sema::CUDACheckLambdaCapture(CXXMethodDecl *Callee,
804                                   const sema::Capture &Capture) {
805   // In host compilation we only need to check lambda functions emitted on host
806   // side. In such lambda functions, a reference capture is invalid only
807   // if the lambda structure is populated by a device function or kernel then
808   // is passed to and called by a host function. However that is impossible,
809   // since a device function or kernel can only call a device function, also a
810   // kernel cannot pass a lambda back to a host function since we cannot
811   // define a kernel argument type which can hold the lambda before the lambda
812   // itself is defined.
813   if (!LangOpts.CUDAIsDevice)
814     return;
815 
816   // File-scope lambda can only do init captures for global variables, which
817   // results in passing by value for these global variables.
818   FunctionDecl *Caller = dyn_cast<FunctionDecl>(CurContext);
819   if (!Caller)
820     return;
821 
822   // In device compilation, we only need to check lambda functions which are
823   // emitted on device side. For such lambdas, a reference capture is invalid
824   // only if the lambda structure is populated by a host function then passed
825   // to and called in a device function or kernel.
826   bool CalleeIsDevice = Callee->hasAttr<CUDADeviceAttr>();
827   bool CallerIsHost =
828       !Caller->hasAttr<CUDAGlobalAttr>() && !Caller->hasAttr<CUDADeviceAttr>();
829   bool ShouldCheck = CalleeIsDevice && CallerIsHost;
830   if (!ShouldCheck || !Capture.isReferenceCapture())
831     return;
832   auto DiagKind = SemaDiagnosticBuilder::K_Deferred;
833   if (Capture.isVariableCapture()) {
834     SemaDiagnosticBuilder(DiagKind, Capture.getLocation(),
835                           diag::err_capture_bad_target, Callee, *this)
836         << Capture.getVariable();
837   } else if (Capture.isThisCapture()) {
838     SemaDiagnosticBuilder(DiagKind, Capture.getLocation(),
839                           diag::err_capture_bad_target_this_ptr, Callee, *this);
840   }
841   return;
842 }
843 
CUDASetLambdaAttrs(CXXMethodDecl * Method)844 void Sema::CUDASetLambdaAttrs(CXXMethodDecl *Method) {
845   assert(getLangOpts().CUDA && "Should only be called during CUDA compilation");
846   if (Method->hasAttr<CUDAHostAttr>() || Method->hasAttr<CUDADeviceAttr>())
847     return;
848   Method->addAttr(CUDADeviceAttr::CreateImplicit(Context));
849   Method->addAttr(CUDAHostAttr::CreateImplicit(Context));
850 }
851 
checkCUDATargetOverload(FunctionDecl * NewFD,const LookupResult & Previous)852 void Sema::checkCUDATargetOverload(FunctionDecl *NewFD,
853                                    const LookupResult &Previous) {
854   assert(getLangOpts().CUDA && "Should only be called during CUDA compilation");
855   CUDAFunctionTarget NewTarget = IdentifyCUDATarget(NewFD);
856   for (NamedDecl *OldND : Previous) {
857     FunctionDecl *OldFD = OldND->getAsFunction();
858     if (!OldFD)
859       continue;
860 
861     CUDAFunctionTarget OldTarget = IdentifyCUDATarget(OldFD);
862     // Don't allow HD and global functions to overload other functions with the
863     // same signature.  We allow overloading based on CUDA attributes so that
864     // functions can have different implementations on the host and device, but
865     // HD/global functions "exist" in some sense on both the host and device, so
866     // should have the same implementation on both sides.
867     if (NewTarget != OldTarget &&
868         ((NewTarget == CFT_HostDevice) || (OldTarget == CFT_HostDevice) ||
869          (NewTarget == CFT_Global) || (OldTarget == CFT_Global)) &&
870         !IsOverload(NewFD, OldFD, /* UseMemberUsingDeclRules = */ false,
871                     /* ConsiderCudaAttrs = */ false)) {
872       Diag(NewFD->getLocation(), diag::err_cuda_ovl_target)
873           << NewTarget << NewFD->getDeclName() << OldTarget << OldFD;
874       Diag(OldFD->getLocation(), diag::note_previous_declaration);
875       NewFD->setInvalidDecl();
876       break;
877     }
878   }
879 }
880 
881 template <typename AttrTy>
copyAttrIfPresent(Sema & S,FunctionDecl * FD,const FunctionDecl & TemplateFD)882 static void copyAttrIfPresent(Sema &S, FunctionDecl *FD,
883                               const FunctionDecl &TemplateFD) {
884   if (AttrTy *Attribute = TemplateFD.getAttr<AttrTy>()) {
885     AttrTy *Clone = Attribute->clone(S.Context);
886     Clone->setInherited(true);
887     FD->addAttr(Clone);
888   }
889 }
890 
inheritCUDATargetAttrs(FunctionDecl * FD,const FunctionTemplateDecl & TD)891 void Sema::inheritCUDATargetAttrs(FunctionDecl *FD,
892                                   const FunctionTemplateDecl &TD) {
893   const FunctionDecl &TemplateFD = *TD.getTemplatedDecl();
894   copyAttrIfPresent<CUDAGlobalAttr>(*this, FD, TemplateFD);
895   copyAttrIfPresent<CUDAHostAttr>(*this, FD, TemplateFD);
896   copyAttrIfPresent<CUDADeviceAttr>(*this, FD, TemplateFD);
897 }
898 
getCudaConfigureFuncName() const899 std::string Sema::getCudaConfigureFuncName() const {
900   if (getLangOpts().HIP)
901     return getLangOpts().HIPUseNewLaunchAPI ? "__hipPushCallConfiguration"
902                                             : "hipConfigureCall";
903 
904   // New CUDA kernel launch sequence.
905   if (CudaFeatureEnabled(Context.getTargetInfo().getSDKVersion(),
906                          CudaFeature::CUDA_USES_NEW_LAUNCH))
907     return "__cudaPushCallConfiguration";
908 
909   // Legacy CUDA kernel configuration call
910   return "cudaConfigureCall";
911 }
912