xref: /llvm-project/clang/include/clang/StaticAnalyzer/Core/PathSensitive/SValBuilder.h (revision 23377890d022eb1fa9cb42eba5c4f72a1f8ac38d)
1 // SValBuilder.h - Construction of SVals from evaluating expressions -*- C++ -*-
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 //  This file defines SValBuilder, a class that defines the interface for
10 //  "symbolical evaluators" which construct an SVal from an expression.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #ifndef LLVM_CLANG_STATICANALYZER_CORE_PATHSENSITIVE_SVALBUILDER_H
15 #define LLVM_CLANG_STATICANALYZER_CORE_PATHSENSITIVE_SVALBUILDER_H
16 
17 #include "clang/AST/ASTContext.h"
18 #include "clang/AST/DeclarationName.h"
19 #include "clang/AST/Expr.h"
20 #include "clang/AST/ExprObjC.h"
21 #include "clang/AST/Type.h"
22 #include "clang/Basic/LLVM.h"
23 #include "clang/Basic/LangOptions.h"
24 #include "clang/StaticAnalyzer/Core/PathSensitive/BasicValueFactory.h"
25 #include "clang/StaticAnalyzer/Core/PathSensitive/MemRegion.h"
26 #include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState_Fwd.h"
27 #include "clang/StaticAnalyzer/Core/PathSensitive/SVals.h"
28 #include "clang/StaticAnalyzer/Core/PathSensitive/SymExpr.h"
29 #include "clang/StaticAnalyzer/Core/PathSensitive/SymbolManager.h"
30 #include "llvm/ADT/ImmutableList.h"
31 #include <cstdint>
32 #include <optional>
33 
34 namespace clang {
35 
36 class AnalyzerOptions;
37 class BlockDecl;
38 class CXXBoolLiteralExpr;
39 class CXXMethodDecl;
40 class CXXRecordDecl;
41 class DeclaratorDecl;
42 class FunctionDecl;
43 class LocationContext;
44 class StackFrameContext;
45 class Stmt;
46 
47 namespace ento {
48 
49 class ConditionTruthVal;
50 class ProgramStateManager;
51 class StoreRef;
52 
53 class SValBuilder {
54   virtual void anchor();
55 
56 protected:
57   ASTContext &Context;
58 
59   /// Manager of APSInt values.
60   BasicValueFactory BasicVals;
61 
62   /// Manages the creation of symbols.
63   SymbolManager SymMgr;
64 
65   /// Manages the creation of memory regions.
66   MemRegionManager MemMgr;
67 
68   ProgramStateManager &StateMgr;
69 
70   const AnalyzerOptions &AnOpts;
71 
72   /// The scalar type to use for array indices.
73   const QualType ArrayIndexTy;
74 
75   /// The width of the scalar type used for array indices.
76   const unsigned ArrayIndexWidth;
77 
78 public:
79   SValBuilder(llvm::BumpPtrAllocator &alloc, ASTContext &context,
80               ProgramStateManager &stateMgr);
81 
82   virtual ~SValBuilder() = default;
83 
84   SVal evalCast(SVal V, QualType CastTy, QualType OriginalTy);
85 
86   // Handles casts of type CK_IntegralCast.
87   SVal evalIntegralCast(ProgramStateRef state, SVal val, QualType castTy,
88                         QualType originalType);
89 
90   SVal evalMinus(NonLoc val);
91   SVal evalComplement(NonLoc val);
92 
93   /// Create a new value which represents a binary expression with two non-
94   /// location operands.
95   virtual SVal evalBinOpNN(ProgramStateRef state, BinaryOperator::Opcode op,
96                            NonLoc lhs, NonLoc rhs, QualType resultTy) = 0;
97 
98   /// Create a new value which represents a binary expression with two memory
99   /// location operands.
100   virtual SVal evalBinOpLL(ProgramStateRef state, BinaryOperator::Opcode op,
101                            Loc lhs, Loc rhs, QualType resultTy) = 0;
102 
103   /// Create a new value which represents a binary expression with a memory
104   /// location and non-location operands. For example, this would be used to
105   /// evaluate a pointer arithmetic operation.
106   virtual SVal evalBinOpLN(ProgramStateRef state, BinaryOperator::Opcode op,
107                            Loc lhs, NonLoc rhs, QualType resultTy) = 0;
108 
109   /// Evaluates a given SVal. If the SVal has only one possible (integer) value,
110   /// that value is returned. Otherwise, returns NULL.
111   virtual const llvm::APSInt *getKnownValue(ProgramStateRef state, SVal val) = 0;
112 
113   /// Tries to get the minimal possible (integer) value of a given SVal. This
114   /// always returns the value of a ConcreteInt, but may return NULL if the
115   /// value is symbolic and the constraint manager cannot provide a useful
116   /// answer.
117   virtual const llvm::APSInt *getMinValue(ProgramStateRef state, SVal val) = 0;
118 
119   /// Tries to get the maximal possible (integer) value of a given SVal. This
120   /// always returns the value of a ConcreteInt, but may return NULL if the
121   /// value is symbolic and the constraint manager cannot provide a useful
122   /// answer.
123   virtual const llvm::APSInt *getMaxValue(ProgramStateRef state, SVal val) = 0;
124 
125   /// Simplify symbolic expressions within a given SVal. Return an SVal
126   /// that represents the same value, but is hopefully easier to work with
127   /// than the original SVal.
128   virtual SVal simplifySVal(ProgramStateRef State, SVal Val) = 0;
129 
130   /// Constructs a symbolic expression for two non-location values.
131   SVal makeSymExprValNN(BinaryOperator::Opcode op,
132                         NonLoc lhs, NonLoc rhs, QualType resultTy);
133 
134   SVal evalUnaryOp(ProgramStateRef state, UnaryOperator::Opcode opc,
135                  SVal operand, QualType type);
136 
137   SVal evalBinOp(ProgramStateRef state, BinaryOperator::Opcode op,
138                  SVal lhs, SVal rhs, QualType type);
139 
140   /// \return Whether values in \p lhs and \p rhs are equal at \p state.
141   ConditionTruthVal areEqual(ProgramStateRef state, SVal lhs, SVal rhs);
142 
143   SVal evalEQ(ProgramStateRef state, SVal lhs, SVal rhs);
144 
145   DefinedOrUnknownSVal evalEQ(ProgramStateRef state, DefinedOrUnknownSVal lhs,
146                               DefinedOrUnknownSVal rhs);
147 
148   ASTContext &getContext() { return Context; }
149   const ASTContext &getContext() const { return Context; }
150 
151   ProgramStateManager &getStateManager() { return StateMgr; }
152 
153   QualType getConditionType() const {
154     return Context.getLangOpts().CPlusPlus ? Context.BoolTy : Context.IntTy;
155   }
156 
157   QualType getArrayIndexType() const {
158     return ArrayIndexTy;
159   }
160 
161   BasicValueFactory &getBasicValueFactory() { return BasicVals; }
162   const BasicValueFactory &getBasicValueFactory() const { return BasicVals; }
163 
164   SymbolManager &getSymbolManager() { return SymMgr; }
165   const SymbolManager &getSymbolManager() const { return SymMgr; }
166 
167   MemRegionManager &getRegionManager() { return MemMgr; }
168   const MemRegionManager &getRegionManager() const { return MemMgr; }
169 
170   const AnalyzerOptions &getAnalyzerOptions() const { return AnOpts; }
171 
172   // Forwarding methods to SymbolManager.
173 
174   const SymbolConjured* conjureSymbol(const Stmt *stmt,
175                                       const LocationContext *LCtx,
176                                       QualType type,
177                                       unsigned visitCount,
178                                       const void *symbolTag = nullptr) {
179     return SymMgr.conjureSymbol(stmt, LCtx, type, visitCount, symbolTag);
180   }
181 
182   const SymbolConjured* conjureSymbol(const Expr *expr,
183                                       const LocationContext *LCtx,
184                                       unsigned visitCount,
185                                       const void *symbolTag = nullptr) {
186     return SymMgr.conjureSymbol(expr, LCtx, visitCount, symbolTag);
187   }
188 
189   /// Construct an SVal representing '0' for the specified type.
190   DefinedOrUnknownSVal makeZeroVal(QualType type);
191 
192   /// Make a unique symbol for value of region.
193   DefinedOrUnknownSVal getRegionValueSymbolVal(const TypedValueRegion *region);
194 
195   /// Create a new symbol with a unique 'name'.
196   ///
197   /// We resort to conjured symbols when we cannot construct a derived symbol.
198   /// The advantage of symbols derived/built from other symbols is that we
199   /// preserve the relation between related(or even equivalent) expressions, so
200   /// conjured symbols should be used sparingly.
201   DefinedOrUnknownSVal conjureSymbolVal(const void *symbolTag,
202                                         const Expr *expr,
203                                         const LocationContext *LCtx,
204                                         unsigned count);
205   DefinedOrUnknownSVal conjureSymbolVal(const void *symbolTag, const Stmt *S,
206                                         const LocationContext *LCtx,
207                                         QualType type, unsigned count);
208   DefinedOrUnknownSVal conjureSymbolVal(const Stmt *stmt,
209                                         const LocationContext *LCtx,
210                                         QualType type,
211                                         unsigned visitCount);
212 
213   /// Conjure a symbol representing heap allocated memory region.
214   ///
215   /// Note, the expression should represent a location.
216   DefinedSVal getConjuredHeapSymbolVal(const Expr *E,
217                                        const LocationContext *LCtx,
218                                        unsigned Count);
219 
220   /// Conjure a symbol representing heap allocated memory region.
221   ///
222   /// Note, now, the expression *doesn't* need to represent a location.
223   /// But the type need to!
224   DefinedSVal getConjuredHeapSymbolVal(const Expr *E,
225                                        const LocationContext *LCtx,
226                                        QualType type, unsigned Count);
227 
228   /// Create an SVal representing the result of an alloca()-like call, that is,
229   /// an AllocaRegion on the stack.
230   ///
231   /// After calling this function, it's a good idea to set the extent of the
232   /// returned AllocaRegion.
233   loc::MemRegionVal getAllocaRegionVal(const Expr *E,
234                                        const LocationContext *LCtx,
235                                        unsigned Count);
236 
237   DefinedOrUnknownSVal getDerivedRegionValueSymbolVal(
238       SymbolRef parentSymbol, const TypedValueRegion *region);
239 
240   DefinedSVal getMetadataSymbolVal(const void *symbolTag,
241                                    const MemRegion *region,
242                                    const Expr *expr, QualType type,
243                                    const LocationContext *LCtx,
244                                    unsigned count);
245 
246   DefinedSVal getMemberPointer(const NamedDecl *ND);
247 
248   DefinedSVal getFunctionPointer(const FunctionDecl *func);
249 
250   DefinedSVal getBlockPointer(const BlockDecl *block, CanQualType locTy,
251                               const LocationContext *locContext,
252                               unsigned blockCount);
253 
254   /// Returns the value of \p E, if it can be determined in a non-path-sensitive
255   /// manner.
256   ///
257   /// If \p E is not a constant or cannot be modeled, returns \c std::nullopt.
258   std::optional<SVal> getConstantVal(const Expr *E);
259 
260   NonLoc makeCompoundVal(QualType type, llvm::ImmutableList<SVal> vals) {
261     return nonloc::CompoundVal(BasicVals.getCompoundValData(type, vals));
262   }
263 
264   NonLoc makeLazyCompoundVal(const StoreRef &store,
265                              const TypedValueRegion *region) {
266     return nonloc::LazyCompoundVal(
267         BasicVals.getLazyCompoundValData(store, region));
268   }
269 
270   NonLoc makePointerToMember(const DeclaratorDecl *DD) {
271     return nonloc::PointerToMember(DD);
272   }
273 
274   NonLoc makePointerToMember(const PointerToMemberData *PTMD) {
275     return nonloc::PointerToMember(PTMD);
276   }
277 
278   NonLoc makeZeroArrayIndex() {
279     return nonloc::ConcreteInt(BasicVals.getValue(0, ArrayIndexTy));
280   }
281 
282   NonLoc makeArrayIndex(uint64_t idx) {
283     return nonloc::ConcreteInt(BasicVals.getValue(idx, ArrayIndexTy));
284   }
285 
286   SVal convertToArrayIndex(SVal val);
287 
288   nonloc::ConcreteInt makeIntVal(const IntegerLiteral* integer) {
289     return nonloc::ConcreteInt(
290         BasicVals.getValue(integer->getValue(),
291                      integer->getType()->isUnsignedIntegerOrEnumerationType()));
292   }
293 
294   nonloc::ConcreteInt makeBoolVal(const ObjCBoolLiteralExpr *boolean) {
295     return makeTruthVal(boolean->getValue(), boolean->getType());
296   }
297 
298   nonloc::ConcreteInt makeBoolVal(const CXXBoolLiteralExpr *boolean);
299 
300   nonloc::ConcreteInt makeIntVal(const llvm::APSInt& integer) {
301     return nonloc::ConcreteInt(BasicVals.getValue(integer));
302   }
303 
304   loc::ConcreteInt makeIntLocVal(const llvm::APSInt &integer) {
305     return loc::ConcreteInt(BasicVals.getValue(integer));
306   }
307 
308   NonLoc makeIntVal(const llvm::APInt& integer, bool isUnsigned) {
309     return nonloc::ConcreteInt(BasicVals.getValue(integer, isUnsigned));
310   }
311 
312   DefinedSVal makeIntVal(uint64_t integer, QualType type) {
313     if (Loc::isLocType(type))
314       return loc::ConcreteInt(BasicVals.getValue(integer, type));
315 
316     return nonloc::ConcreteInt(BasicVals.getValue(integer, type));
317   }
318 
319   NonLoc makeIntVal(uint64_t integer, bool isUnsigned) {
320     return nonloc::ConcreteInt(BasicVals.getIntValue(integer, isUnsigned));
321   }
322 
323   NonLoc makeIntValWithWidth(QualType ptrType, uint64_t integer) {
324     return nonloc::ConcreteInt(BasicVals.getValue(integer, ptrType));
325   }
326 
327   NonLoc makeLocAsInteger(Loc loc, unsigned bits) {
328     return nonloc::LocAsInteger(BasicVals.getPersistentSValWithData(loc, bits));
329   }
330 
331   nonloc::SymbolVal makeNonLoc(const SymExpr *lhs, BinaryOperator::Opcode op,
332                                APSIntPtr rhs, QualType type);
333 
334   nonloc::SymbolVal makeNonLoc(APSIntPtr rhs, BinaryOperator::Opcode op,
335                                const SymExpr *lhs, QualType type);
336 
337   nonloc::SymbolVal makeNonLoc(const SymExpr *lhs, BinaryOperator::Opcode op,
338                                const SymExpr *rhs, QualType type);
339 
340   NonLoc makeNonLoc(const SymExpr *operand, UnaryOperator::Opcode op,
341                     QualType type);
342 
343   /// Create a NonLoc value for cast.
344   nonloc::SymbolVal makeNonLoc(const SymExpr *operand, QualType fromTy,
345                                QualType toTy);
346 
347   nonloc::ConcreteInt makeTruthVal(bool b, QualType type) {
348     return nonloc::ConcreteInt(BasicVals.getTruthValue(b, type));
349   }
350 
351   nonloc::ConcreteInt makeTruthVal(bool b) {
352     return nonloc::ConcreteInt(BasicVals.getTruthValue(b));
353   }
354 
355   /// Create NULL pointer, with proper pointer bit-width for given address
356   /// space.
357   /// \param type pointer type.
358   loc::ConcreteInt makeNullWithType(QualType type) {
359     // We cannot use the `isAnyPointerType()`.
360     assert((type->isPointerType() || type->isObjCObjectPointerType() ||
361             type->isBlockPointerType() || type->isNullPtrType() ||
362             type->isReferenceType()) &&
363            "makeNullWithType must use pointer type");
364 
365     // The `sizeof(T&)` is `sizeof(T)`, thus we replace the reference with a
366     // pointer. Here we assume that references are actually implemented by
367     // pointers under-the-hood.
368     type = type->isReferenceType()
369                ? Context.getPointerType(type->getPointeeType())
370                : type;
371     return loc::ConcreteInt(BasicVals.getZeroWithTypeSize(type));
372   }
373 
374   loc::MemRegionVal makeLoc(SymbolRef sym) {
375     return loc::MemRegionVal(MemMgr.getSymbolicRegion(sym));
376   }
377 
378   loc::MemRegionVal makeLoc(const MemRegion *region) {
379     return loc::MemRegionVal(region);
380   }
381 
382   loc::GotoLabel makeLoc(const AddrLabelExpr *expr) {
383     return loc::GotoLabel(expr->getLabel());
384   }
385 
386   loc::ConcreteInt makeLoc(const llvm::APSInt &integer) {
387     return loc::ConcreteInt(BasicVals.getValue(integer));
388   }
389 
390   /// Return MemRegionVal on success cast, otherwise return std::nullopt.
391   std::optional<loc::MemRegionVal>
392   getCastedMemRegionVal(const MemRegion *region, QualType type);
393 
394   /// Make an SVal that represents the given symbol. This follows the convention
395   /// of representing Loc-type symbols (symbolic pointers and references)
396   /// as Loc values wrapping the symbol rather than as plain symbol values.
397   DefinedSVal makeSymbolVal(SymbolRef Sym) {
398     if (Loc::isLocType(Sym->getType()))
399       return makeLoc(Sym);
400     return nonloc::SymbolVal(Sym);
401   }
402 
403   /// Return a memory region for the 'this' object reference.
404   loc::MemRegionVal getCXXThis(const CXXMethodDecl *D,
405                                const StackFrameContext *SFC);
406 
407   /// Return a memory region for the 'this' object reference.
408   loc::MemRegionVal getCXXThis(const CXXRecordDecl *D,
409                                const StackFrameContext *SFC);
410 };
411 
412 SValBuilder* createSimpleSValBuilder(llvm::BumpPtrAllocator &alloc,
413                                      ASTContext &context,
414                                      ProgramStateManager &stateMgr);
415 
416 } // namespace ento
417 
418 } // namespace clang
419 
420 #endif // LLVM_CLANG_STATICANALYZER_CORE_PATHSENSITIVE_SVALBUILDER_H
421