xref: /llvm-project/llvm/lib/Transforms/Utils/SSAUpdater.cpp (revision 6292a808b3524d9ba6f4ce55bc5b9e547b088dd8)
1 //===- SSAUpdater.cpp - Unstructured SSA Update Tool ----------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the SSAUpdater class.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/Transforms/Utils/SSAUpdater.h"
14 #include "llvm/ADT/DenseMap.h"
15 #include "llvm/ADT/STLExtras.h"
16 #include "llvm/ADT/SmallVector.h"
17 #include "llvm/ADT/TinyPtrVector.h"
18 #include "llvm/Analysis/InstructionSimplify.h"
19 #include "llvm/IR/BasicBlock.h"
20 #include "llvm/IR/CFG.h"
21 #include "llvm/IR/Constants.h"
22 #include "llvm/IR/DebugInfo.h"
23 #include "llvm/IR/DebugLoc.h"
24 #include "llvm/IR/Instruction.h"
25 #include "llvm/IR/Instructions.h"
26 #include "llvm/IR/Use.h"
27 #include "llvm/IR/Value.h"
28 #include "llvm/Support/Casting.h"
29 #include "llvm/Support/Debug.h"
30 #include "llvm/Support/raw_ostream.h"
31 #include "llvm/Transforms/Utils/SSAUpdaterImpl.h"
32 #include <cassert>
33 #include <utility>
34 
35 using namespace llvm;
36 
37 #define DEBUG_TYPE "ssaupdater"
38 
39 using AvailableValsTy = DenseMap<BasicBlock *, Value *>;
40 
41 static AvailableValsTy &getAvailableVals(void *AV) {
42   return *static_cast<AvailableValsTy*>(AV);
43 }
44 
45 SSAUpdater::SSAUpdater(SmallVectorImpl<PHINode *> *NewPHI)
46   : InsertedPHIs(NewPHI) {}
47 
48 SSAUpdater::~SSAUpdater() {
49   delete static_cast<AvailableValsTy*>(AV);
50 }
51 
52 void SSAUpdater::Initialize(Type *Ty, StringRef Name) {
53   if (!AV)
54     AV = new AvailableValsTy();
55   else
56     getAvailableVals(AV).clear();
57   ProtoType = Ty;
58   ProtoName = std::string(Name);
59 }
60 
61 bool SSAUpdater::HasValueForBlock(BasicBlock *BB) const {
62   return getAvailableVals(AV).count(BB);
63 }
64 
65 Value *SSAUpdater::FindValueForBlock(BasicBlock *BB) const {
66   return getAvailableVals(AV).lookup(BB);
67 }
68 
69 void SSAUpdater::AddAvailableValue(BasicBlock *BB, Value *V) {
70   assert(ProtoType && "Need to initialize SSAUpdater");
71   assert(ProtoType == V->getType() &&
72          "All rewritten values must have the same type");
73   getAvailableVals(AV)[BB] = V;
74 }
75 
76 static bool IsEquivalentPHI(PHINode *PHI,
77                         SmallDenseMap<BasicBlock *, Value *, 8> &ValueMapping) {
78   unsigned PHINumValues = PHI->getNumIncomingValues();
79   if (PHINumValues != ValueMapping.size())
80     return false;
81 
82   // Scan the phi to see if it matches.
83   for (unsigned i = 0, e = PHINumValues; i != e; ++i)
84     if (ValueMapping[PHI->getIncomingBlock(i)] !=
85         PHI->getIncomingValue(i)) {
86       return false;
87     }
88 
89   return true;
90 }
91 
92 Value *SSAUpdater::GetValueAtEndOfBlock(BasicBlock *BB) {
93   Value *Res = GetValueAtEndOfBlockInternal(BB);
94   return Res;
95 }
96 
97 Value *SSAUpdater::GetValueInMiddleOfBlock(BasicBlock *BB) {
98   // If there is no definition of the renamed variable in this block, just use
99   // GetValueAtEndOfBlock to do our work.
100   if (!HasValueForBlock(BB))
101     return GetValueAtEndOfBlock(BB);
102 
103   // Otherwise, we have the hard case.  Get the live-in values for each
104   // predecessor.
105   SmallVector<std::pair<BasicBlock *, Value *>, 8> PredValues;
106   Value *SingularValue = nullptr;
107 
108   // We can get our predecessor info by walking the pred_iterator list, but it
109   // is relatively slow.  If we already have PHI nodes in this block, walk one
110   // of them to get the predecessor list instead.
111   if (PHINode *SomePhi = dyn_cast<PHINode>(BB->begin())) {
112     for (unsigned i = 0, e = SomePhi->getNumIncomingValues(); i != e; ++i) {
113       BasicBlock *PredBB = SomePhi->getIncomingBlock(i);
114       Value *PredVal = GetValueAtEndOfBlock(PredBB);
115       PredValues.push_back(std::make_pair(PredBB, PredVal));
116 
117       // Compute SingularValue.
118       if (i == 0)
119         SingularValue = PredVal;
120       else if (PredVal != SingularValue)
121         SingularValue = nullptr;
122     }
123   } else {
124     bool isFirstPred = true;
125     for (BasicBlock *PredBB : predecessors(BB)) {
126       Value *PredVal = GetValueAtEndOfBlock(PredBB);
127       PredValues.push_back(std::make_pair(PredBB, PredVal));
128 
129       // Compute SingularValue.
130       if (isFirstPred) {
131         SingularValue = PredVal;
132         isFirstPred = false;
133       } else if (PredVal != SingularValue)
134         SingularValue = nullptr;
135     }
136   }
137 
138   // If there are no predecessors, just return poison.
139   if (PredValues.empty())
140     return PoisonValue::get(ProtoType);
141 
142   // Otherwise, if all the merged values are the same, just use it.
143   if (SingularValue)
144     return SingularValue;
145 
146   // Otherwise, we do need a PHI: check to see if we already have one available
147   // in this block that produces the right value.
148   if (isa<PHINode>(BB->begin())) {
149     SmallDenseMap<BasicBlock *, Value *, 8> ValueMapping(PredValues.begin(),
150                                                          PredValues.end());
151     for (PHINode &SomePHI : BB->phis()) {
152       if (IsEquivalentPHI(&SomePHI, ValueMapping))
153         return &SomePHI;
154     }
155   }
156 
157   // Ok, we have no way out, insert a new one now.
158   PHINode *InsertedPHI =
159       PHINode::Create(ProtoType, PredValues.size(), ProtoName);
160   InsertedPHI->insertBefore(BB->begin());
161 
162   // Fill in all the predecessors of the PHI.
163   for (const auto &PredValue : PredValues)
164     InsertedPHI->addIncoming(PredValue.second, PredValue.first);
165 
166   // See if the PHI node can be merged to a single value.  This can happen in
167   // loop cases when we get a PHI of itself and one other value.
168   if (Value *V =
169           simplifyInstruction(InsertedPHI, BB->getDataLayout())) {
170     InsertedPHI->eraseFromParent();
171     return V;
172   }
173 
174   // Set the DebugLoc of the inserted PHI, if available.
175   DebugLoc DL;
176   if (BasicBlock::iterator It = BB->getFirstNonPHIIt(); It != BB->end())
177     DL = It->getDebugLoc();
178   InsertedPHI->setDebugLoc(DL);
179 
180   // If the client wants to know about all new instructions, tell it.
181   if (InsertedPHIs) InsertedPHIs->push_back(InsertedPHI);
182 
183   LLVM_DEBUG(dbgs() << "  Inserted PHI: " << *InsertedPHI << "\n");
184   return InsertedPHI;
185 }
186 
187 void SSAUpdater::RewriteUse(Use &U) {
188   Instruction *User = cast<Instruction>(U.getUser());
189 
190   Value *V;
191   if (PHINode *UserPN = dyn_cast<PHINode>(User))
192     V = GetValueAtEndOfBlock(UserPN->getIncomingBlock(U));
193   else
194     V = GetValueInMiddleOfBlock(User->getParent());
195 
196   U.set(V);
197 }
198 
199 void SSAUpdater::UpdateDebugValues(Instruction *I) {
200   SmallVector<DbgValueInst *, 4> DbgValues;
201   SmallVector<DbgVariableRecord *, 4> DbgVariableRecords;
202   llvm::findDbgValues(DbgValues, I, &DbgVariableRecords);
203   for (auto &DbgValue : DbgValues) {
204     if (DbgValue->getParent() == I->getParent())
205       continue;
206     UpdateDebugValue(I, DbgValue);
207   }
208   for (auto &DVR : DbgVariableRecords) {
209     if (DVR->getParent() == I->getParent())
210       continue;
211     UpdateDebugValue(I, DVR);
212   }
213 }
214 
215 void SSAUpdater::UpdateDebugValues(Instruction *I,
216                                    SmallVectorImpl<DbgValueInst *> &DbgValues) {
217   for (auto &DbgValue : DbgValues) {
218     UpdateDebugValue(I, DbgValue);
219   }
220 }
221 
222 void SSAUpdater::UpdateDebugValues(
223     Instruction *I, SmallVectorImpl<DbgVariableRecord *> &DbgVariableRecords) {
224   for (auto &DVR : DbgVariableRecords) {
225     UpdateDebugValue(I, DVR);
226   }
227 }
228 
229 void SSAUpdater::UpdateDebugValue(Instruction *I, DbgValueInst *DbgValue) {
230   BasicBlock *UserBB = DbgValue->getParent();
231   if (HasValueForBlock(UserBB)) {
232     Value *NewVal = GetValueAtEndOfBlock(UserBB);
233     DbgValue->replaceVariableLocationOp(I, NewVal);
234   } else
235     DbgValue->setKillLocation();
236 }
237 
238 void SSAUpdater::UpdateDebugValue(Instruction *I, DbgVariableRecord *DVR) {
239   BasicBlock *UserBB = DVR->getParent();
240   if (HasValueForBlock(UserBB)) {
241     Value *NewVal = GetValueAtEndOfBlock(UserBB);
242     DVR->replaceVariableLocationOp(I, NewVal);
243   } else
244     DVR->setKillLocation();
245 }
246 
247 void SSAUpdater::RewriteUseAfterInsertions(Use &U) {
248   Instruction *User = cast<Instruction>(U.getUser());
249 
250   Value *V;
251   if (PHINode *UserPN = dyn_cast<PHINode>(User))
252     V = GetValueAtEndOfBlock(UserPN->getIncomingBlock(U));
253   else
254     V = GetValueAtEndOfBlock(User->getParent());
255 
256   U.set(V);
257 }
258 
259 namespace llvm {
260 
261 template<>
262 class SSAUpdaterTraits<SSAUpdater> {
263 public:
264   using BlkT = BasicBlock;
265   using ValT = Value *;
266   using PhiT = PHINode;
267   using BlkSucc_iterator = succ_iterator;
268 
269   static BlkSucc_iterator BlkSucc_begin(BlkT *BB) { return succ_begin(BB); }
270   static BlkSucc_iterator BlkSucc_end(BlkT *BB) { return succ_end(BB); }
271 
272   class PHI_iterator {
273   private:
274     PHINode *PHI;
275     unsigned idx;
276 
277   public:
278     explicit PHI_iterator(PHINode *P) // begin iterator
279       : PHI(P), idx(0) {}
280     PHI_iterator(PHINode *P, bool) // end iterator
281       : PHI(P), idx(PHI->getNumIncomingValues()) {}
282 
283     PHI_iterator &operator++() { ++idx; return *this; }
284     bool operator==(const PHI_iterator& x) const { return idx == x.idx; }
285     bool operator!=(const PHI_iterator& x) const { return !operator==(x); }
286 
287     Value *getIncomingValue() { return PHI->getIncomingValue(idx); }
288     BasicBlock *getIncomingBlock() { return PHI->getIncomingBlock(idx); }
289   };
290 
291   static PHI_iterator PHI_begin(PhiT *PHI) { return PHI_iterator(PHI); }
292   static PHI_iterator PHI_end(PhiT *PHI) {
293     return PHI_iterator(PHI, true);
294   }
295 
296   /// FindPredecessorBlocks - Put the predecessors of Info->BB into the Preds
297   /// vector, set Info->NumPreds, and allocate space in Info->Preds.
298   static void FindPredecessorBlocks(BasicBlock *BB,
299                                     SmallVectorImpl<BasicBlock *> *Preds) {
300     // We can get our predecessor info by walking the pred_iterator list,
301     // but it is relatively slow.  If we already have PHI nodes in this
302     // block, walk one of them to get the predecessor list instead.
303     if (PHINode *SomePhi = dyn_cast<PHINode>(BB->begin()))
304       append_range(*Preds, SomePhi->blocks());
305     else
306       append_range(*Preds, predecessors(BB));
307   }
308 
309   /// GetPoisonVal - Get a poison value of the same type as the value
310   /// being handled.
311   static Value *GetPoisonVal(BasicBlock *BB, SSAUpdater *Updater) {
312     return PoisonValue::get(Updater->ProtoType);
313   }
314 
315   /// CreateEmptyPHI - Create a new PHI instruction in the specified block.
316   /// Reserve space for the operands but do not fill them in yet.
317   static Value *CreateEmptyPHI(BasicBlock *BB, unsigned NumPreds,
318                                SSAUpdater *Updater) {
319     PHINode *PHI =
320         PHINode::Create(Updater->ProtoType, NumPreds, Updater->ProtoName);
321     PHI->insertBefore(BB->begin());
322     return PHI;
323   }
324 
325   /// AddPHIOperand - Add the specified value as an operand of the PHI for
326   /// the specified predecessor block.
327   static void AddPHIOperand(PHINode *PHI, Value *Val, BasicBlock *Pred) {
328     PHI->addIncoming(Val, Pred);
329   }
330 
331   /// ValueIsPHI - Check if a value is a PHI.
332   static PHINode *ValueIsPHI(Value *Val, SSAUpdater *Updater) {
333     return dyn_cast<PHINode>(Val);
334   }
335 
336   /// ValueIsNewPHI - Like ValueIsPHI but also check if the PHI has no source
337   /// operands, i.e., it was just added.
338   static PHINode *ValueIsNewPHI(Value *Val, SSAUpdater *Updater) {
339     PHINode *PHI = ValueIsPHI(Val, Updater);
340     if (PHI && PHI->getNumIncomingValues() == 0)
341       return PHI;
342     return nullptr;
343   }
344 
345   /// GetPHIValue - For the specified PHI instruction, return the value
346   /// that it defines.
347   static Value *GetPHIValue(PHINode *PHI) {
348     return PHI;
349   }
350 };
351 
352 } // end namespace llvm
353 
354 /// Check to see if AvailableVals has an entry for the specified BB and if so,
355 /// return it.  If not, construct SSA form by first calculating the required
356 /// placement of PHIs and then inserting new PHIs where needed.
357 Value *SSAUpdater::GetValueAtEndOfBlockInternal(BasicBlock *BB) {
358   AvailableValsTy &AvailableVals = getAvailableVals(AV);
359   if (Value *V = AvailableVals[BB])
360     return V;
361 
362   SSAUpdaterImpl<SSAUpdater> Impl(this, &AvailableVals, InsertedPHIs);
363   return Impl.GetValue(BB);
364 }
365 
366 //===----------------------------------------------------------------------===//
367 // LoadAndStorePromoter Implementation
368 //===----------------------------------------------------------------------===//
369 
370 LoadAndStorePromoter::
371 LoadAndStorePromoter(ArrayRef<const Instruction *> Insts,
372                      SSAUpdater &S, StringRef BaseName) : SSA(S) {
373   if (Insts.empty()) return;
374 
375   const Value *SomeVal;
376   if (const LoadInst *LI = dyn_cast<LoadInst>(Insts[0]))
377     SomeVal = LI;
378   else
379     SomeVal = cast<StoreInst>(Insts[0])->getOperand(0);
380 
381   if (BaseName.empty())
382     BaseName = SomeVal->getName();
383   SSA.Initialize(SomeVal->getType(), BaseName);
384 }
385 
386 void LoadAndStorePromoter::run(const SmallVectorImpl<Instruction *> &Insts) {
387   // First step: bucket up uses of the alloca by the block they occur in.
388   // This is important because we have to handle multiple defs/uses in a block
389   // ourselves: SSAUpdater is purely for cross-block references.
390   DenseMap<BasicBlock *, TinyPtrVector<Instruction *>> UsesByBlock;
391 
392   for (Instruction *User : Insts)
393     UsesByBlock[User->getParent()].push_back(User);
394 
395   // Okay, now we can iterate over all the blocks in the function with uses,
396   // processing them.  Keep track of which loads are loading a live-in value.
397   // Walk the uses in the use-list order to be determinstic.
398   SmallVector<LoadInst *, 32> LiveInLoads;
399   DenseMap<Value *, Value *> ReplacedLoads;
400 
401   for (Instruction *User : Insts) {
402     BasicBlock *BB = User->getParent();
403     TinyPtrVector<Instruction *> &BlockUses = UsesByBlock[BB];
404 
405     // If this block has already been processed, ignore this repeat use.
406     if (BlockUses.empty()) continue;
407 
408     // Okay, this is the first use in the block.  If this block just has a
409     // single user in it, we can rewrite it trivially.
410     if (BlockUses.size() == 1) {
411       // If it is a store, it is a trivial def of the value in the block.
412       if (StoreInst *SI = dyn_cast<StoreInst>(User)) {
413         updateDebugInfo(SI);
414         SSA.AddAvailableValue(BB, SI->getOperand(0));
415       } else if (auto *AI = dyn_cast<AllocaInst>(User)) {
416         // We treat AllocaInst as a store of an getValueToUseForAlloca value.
417         SSA.AddAvailableValue(BB, getValueToUseForAlloca(AI));
418       } else {
419         // Otherwise it is a load, queue it to rewrite as a live-in load.
420         LiveInLoads.push_back(cast<LoadInst>(User));
421       }
422       BlockUses.clear();
423       continue;
424     }
425 
426     // Otherwise, check to see if this block is all loads.
427     bool HasStore = false;
428     for (Instruction *I : BlockUses) {
429       if (isa<StoreInst>(I) || isa<AllocaInst>(I)) {
430         HasStore = true;
431         break;
432       }
433     }
434 
435     // If so, we can queue them all as live in loads.
436     if (!HasStore) {
437       for (Instruction *I : BlockUses)
438         LiveInLoads.push_back(cast<LoadInst>(I));
439       BlockUses.clear();
440       continue;
441     }
442 
443     // Sort all of the interesting instructions in the block so that we don't
444     // have to scan a large block just to find a few instructions.
445     llvm::sort(
446         BlockUses.begin(), BlockUses.end(),
447         [](Instruction *A, Instruction *B) { return A->comesBefore(B); });
448 
449     // Otherwise, we have mixed loads and stores (or just a bunch of stores).
450     // Since SSAUpdater is purely for cross-block values, we need to determine
451     // the order of these instructions in the block.  If the first use in the
452     // block is a load, then it uses the live in value.  The last store defines
453     // the live out value.
454     Value *StoredValue = nullptr;
455     for (Instruction *I : BlockUses) {
456       if (LoadInst *L = dyn_cast<LoadInst>(I)) {
457         // If we haven't seen a store yet, this is a live in use, otherwise
458         // use the stored value.
459         if (StoredValue) {
460           replaceLoadWithValue(L, StoredValue);
461           L->replaceAllUsesWith(StoredValue);
462           ReplacedLoads[L] = StoredValue;
463         } else {
464           LiveInLoads.push_back(L);
465         }
466         continue;
467       }
468 
469       if (StoreInst *SI = dyn_cast<StoreInst>(I)) {
470         updateDebugInfo(SI);
471 
472         // Remember that this is the active value in the block.
473         StoredValue = SI->getOperand(0);
474       } else if (auto *AI = dyn_cast<AllocaInst>(I)) {
475         // Check if this an alloca, in which case we treat it as a store of
476         // getValueToUseForAlloca.
477         StoredValue = getValueToUseForAlloca(AI);
478       }
479     }
480 
481     // The last stored value that happened is the live-out for the block.
482     assert(StoredValue && "Already checked that there is a store in block");
483     SSA.AddAvailableValue(BB, StoredValue);
484     BlockUses.clear();
485   }
486 
487   // Okay, now we rewrite all loads that use live-in values in the loop,
488   // inserting PHI nodes as necessary.
489   for (LoadInst *ALoad : LiveInLoads) {
490     Value *NewVal = SSA.GetValueInMiddleOfBlock(ALoad->getParent());
491     replaceLoadWithValue(ALoad, NewVal);
492 
493     // Avoid assertions in unreachable code.
494     if (NewVal == ALoad) NewVal = PoisonValue::get(NewVal->getType());
495     ALoad->replaceAllUsesWith(NewVal);
496     ReplacedLoads[ALoad] = NewVal;
497   }
498 
499   // Allow the client to do stuff before we start nuking things.
500   doExtraRewritesBeforeFinalDeletion();
501 
502   // Now that everything is rewritten, delete the old instructions from the
503   // function.  They should all be dead now.
504   for (Instruction *User : Insts) {
505     if (!shouldDelete(User))
506       continue;
507 
508     // If this is a load that still has uses, then the load must have been added
509     // as a live value in the SSAUpdate data structure for a block (e.g. because
510     // the loaded value was stored later).  In this case, we need to recursively
511     // propagate the updates until we get to the real value.
512     if (!User->use_empty()) {
513       Value *NewVal = ReplacedLoads[User];
514       assert(NewVal && "not a replaced load?");
515 
516       // Propagate down to the ultimate replacee.  The intermediately loads
517       // could theoretically already have been deleted, so we don't want to
518       // dereference the Value*'s.
519       DenseMap<Value*, Value*>::iterator RLI = ReplacedLoads.find(NewVal);
520       while (RLI != ReplacedLoads.end()) {
521         NewVal = RLI->second;
522         RLI = ReplacedLoads.find(NewVal);
523       }
524 
525       replaceLoadWithValue(cast<LoadInst>(User), NewVal);
526       User->replaceAllUsesWith(NewVal);
527     }
528 
529     instructionDeleted(User);
530     User->eraseFromParent();
531   }
532 }
533