1 //===- SIInstrInfo.cpp - SI Instruction Information ----------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 /// \file 10 /// SI Implementation of TargetInstrInfo. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "SIInstrInfo.h" 15 #include "AMDGPU.h" 16 #include "AMDGPUInstrInfo.h" 17 #include "GCNHazardRecognizer.h" 18 #include "GCNSubtarget.h" 19 #include "SIMachineFunctionInfo.h" 20 #include "Utils/AMDGPUBaseInfo.h" 21 #include "llvm/Analysis/ValueTracking.h" 22 #include "llvm/CodeGen/GlobalISel/GenericMachineInstrs.h" 23 #include "llvm/CodeGen/LiveIntervals.h" 24 #include "llvm/CodeGen/LiveVariables.h" 25 #include "llvm/CodeGen/MachineDominators.h" 26 #include "llvm/CodeGen/MachineFrameInfo.h" 27 #include "llvm/CodeGen/MachineScheduler.h" 28 #include "llvm/CodeGen/RegisterScavenging.h" 29 #include "llvm/CodeGen/ScheduleDAG.h" 30 #include "llvm/IR/DiagnosticInfo.h" 31 #include "llvm/IR/IntrinsicsAMDGPU.h" 32 #include "llvm/MC/MCContext.h" 33 #include "llvm/Support/CommandLine.h" 34 #include "llvm/Target/TargetMachine.h" 35 36 using namespace llvm; 37 38 #define DEBUG_TYPE "si-instr-info" 39 40 #define GET_INSTRINFO_CTOR_DTOR 41 #include "AMDGPUGenInstrInfo.inc" 42 43 namespace llvm::AMDGPU { 44 #define GET_D16ImageDimIntrinsics_IMPL 45 #define GET_ImageDimIntrinsicTable_IMPL 46 #define GET_RsrcIntrinsics_IMPL 47 #include "AMDGPUGenSearchableTables.inc" 48 } // namespace llvm::AMDGPU 49 50 // Must be at least 4 to be able to branch over minimum unconditional branch 51 // code. This is only for making it possible to write reasonably small tests for 52 // long branches. 53 static cl::opt<unsigned> 54 BranchOffsetBits("amdgpu-s-branch-bits", cl::ReallyHidden, cl::init(16), 55 cl::desc("Restrict range of branch instructions (DEBUG)")); 56 57 static cl::opt<bool> Fix16BitCopies( 58 "amdgpu-fix-16-bit-physreg-copies", 59 cl::desc("Fix copies between 32 and 16 bit registers by extending to 32 bit"), 60 cl::init(true), 61 cl::ReallyHidden); 62 63 SIInstrInfo::SIInstrInfo(const GCNSubtarget &ST) 64 : AMDGPUGenInstrInfo(AMDGPU::ADJCALLSTACKUP, AMDGPU::ADJCALLSTACKDOWN), 65 RI(ST), ST(ST) { 66 SchedModel.init(&ST); 67 } 68 69 //===----------------------------------------------------------------------===// 70 // TargetInstrInfo callbacks 71 //===----------------------------------------------------------------------===// 72 73 static unsigned getNumOperandsNoGlue(SDNode *Node) { 74 unsigned N = Node->getNumOperands(); 75 while (N && Node->getOperand(N - 1).getValueType() == MVT::Glue) 76 --N; 77 return N; 78 } 79 80 /// Returns true if both nodes have the same value for the given 81 /// operand \p Op, or if both nodes do not have this operand. 82 static bool nodesHaveSameOperandValue(SDNode *N0, SDNode* N1, unsigned OpName) { 83 unsigned Opc0 = N0->getMachineOpcode(); 84 unsigned Opc1 = N1->getMachineOpcode(); 85 86 int Op0Idx = AMDGPU::getNamedOperandIdx(Opc0, OpName); 87 int Op1Idx = AMDGPU::getNamedOperandIdx(Opc1, OpName); 88 89 if (Op0Idx == -1 && Op1Idx == -1) 90 return true; 91 92 93 if ((Op0Idx == -1 && Op1Idx != -1) || 94 (Op1Idx == -1 && Op0Idx != -1)) 95 return false; 96 97 // getNamedOperandIdx returns the index for the MachineInstr's operands, 98 // which includes the result as the first operand. We are indexing into the 99 // MachineSDNode's operands, so we need to skip the result operand to get 100 // the real index. 101 --Op0Idx; 102 --Op1Idx; 103 104 return N0->getOperand(Op0Idx) == N1->getOperand(Op1Idx); 105 } 106 107 static bool canRemat(const MachineInstr &MI) { 108 109 if (SIInstrInfo::isVOP1(MI) || SIInstrInfo::isVOP2(MI) || 110 SIInstrInfo::isVOP3(MI) || SIInstrInfo::isSDWA(MI) || 111 SIInstrInfo::isSALU(MI)) 112 return true; 113 114 if (SIInstrInfo::isSMRD(MI)) { 115 return !MI.memoperands_empty() && 116 llvm::all_of(MI.memoperands(), [](const MachineMemOperand *MMO) { 117 return MMO->isLoad() && MMO->isInvariant(); 118 }); 119 } 120 121 return false; 122 } 123 124 bool SIInstrInfo::isReallyTriviallyReMaterializable( 125 const MachineInstr &MI) const { 126 127 if (canRemat(MI)) { 128 // Normally VALU use of exec would block the rematerialization, but that 129 // is OK in this case to have an implicit exec read as all VALU do. 130 // We really want all of the generic logic for this except for this. 131 132 // Another potential implicit use is mode register. The core logic of 133 // the RA will not attempt rematerialization if mode is set anywhere 134 // in the function, otherwise it is safe since mode is not changed. 135 136 // There is difference to generic method which does not allow 137 // rematerialization if there are virtual register uses. We allow this, 138 // therefore this method includes SOP instructions as well. 139 if (!MI.hasImplicitDef() && 140 MI.getNumImplicitOperands() == MI.getDesc().implicit_uses().size() && 141 !MI.mayRaiseFPException()) 142 return true; 143 } 144 145 return TargetInstrInfo::isReallyTriviallyReMaterializable(MI); 146 } 147 148 // Returns true if the scalar result of a VALU instruction depends on exec. 149 static bool resultDependsOnExec(const MachineInstr &MI) { 150 // Ignore comparisons which are only used masked with exec. 151 // This allows some hoisting/sinking of VALU comparisons. 152 if (MI.isCompare()) { 153 const MachineRegisterInfo &MRI = MI.getParent()->getParent()->getRegInfo(); 154 Register DstReg = MI.getOperand(0).getReg(); 155 if (!DstReg.isVirtual()) 156 return true; 157 for (MachineInstr &Use : MRI.use_nodbg_instructions(DstReg)) { 158 switch (Use.getOpcode()) { 159 case AMDGPU::S_AND_SAVEEXEC_B32: 160 case AMDGPU::S_AND_SAVEEXEC_B64: 161 break; 162 case AMDGPU::S_AND_B32: 163 case AMDGPU::S_AND_B64: 164 if (!Use.readsRegister(AMDGPU::EXEC, /*TRI=*/nullptr)) 165 return true; 166 break; 167 default: 168 return true; 169 } 170 } 171 return false; 172 } 173 174 switch (MI.getOpcode()) { 175 default: 176 break; 177 case AMDGPU::V_READFIRSTLANE_B32: 178 return true; 179 } 180 181 return false; 182 } 183 184 bool SIInstrInfo::isIgnorableUse(const MachineOperand &MO) const { 185 // Any implicit use of exec by VALU is not a real register read. 186 return MO.getReg() == AMDGPU::EXEC && MO.isImplicit() && 187 isVALU(*MO.getParent()) && !resultDependsOnExec(*MO.getParent()); 188 } 189 190 bool SIInstrInfo::isSafeToSink(MachineInstr &MI, 191 MachineBasicBlock *SuccToSinkTo, 192 MachineCycleInfo *CI) const { 193 // Allow sinking if MI edits lane mask (divergent i1 in sgpr). 194 if (MI.getOpcode() == AMDGPU::SI_IF_BREAK) 195 return true; 196 197 MachineRegisterInfo &MRI = MI.getMF()->getRegInfo(); 198 // Check if sinking of MI would create temporal divergent use. 199 for (auto Op : MI.uses()) { 200 if (Op.isReg() && Op.getReg().isVirtual() && 201 RI.isSGPRClass(MRI.getRegClass(Op.getReg()))) { 202 MachineInstr *SgprDef = MRI.getVRegDef(Op.getReg()); 203 204 // SgprDef defined inside cycle 205 MachineCycle *FromCycle = CI->getCycle(SgprDef->getParent()); 206 if (FromCycle == nullptr) 207 continue; 208 209 MachineCycle *ToCycle = CI->getCycle(SuccToSinkTo); 210 // Check if there is a FromCycle that contains SgprDef's basic block but 211 // does not contain SuccToSinkTo and also has divergent exit condition. 212 while (FromCycle && !FromCycle->contains(ToCycle)) { 213 SmallVector<MachineBasicBlock *, 1> ExitingBlocks; 214 FromCycle->getExitingBlocks(ExitingBlocks); 215 216 // FromCycle has divergent exit condition. 217 for (MachineBasicBlock *ExitingBlock : ExitingBlocks) { 218 if (hasDivergentBranch(ExitingBlock)) 219 return false; 220 } 221 222 FromCycle = FromCycle->getParentCycle(); 223 } 224 } 225 } 226 227 return true; 228 } 229 230 bool SIInstrInfo::areLoadsFromSameBasePtr(SDNode *Load0, SDNode *Load1, 231 int64_t &Offset0, 232 int64_t &Offset1) const { 233 if (!Load0->isMachineOpcode() || !Load1->isMachineOpcode()) 234 return false; 235 236 unsigned Opc0 = Load0->getMachineOpcode(); 237 unsigned Opc1 = Load1->getMachineOpcode(); 238 239 // Make sure both are actually loads. 240 if (!get(Opc0).mayLoad() || !get(Opc1).mayLoad()) 241 return false; 242 243 // A mayLoad instruction without a def is not a load. Likely a prefetch. 244 if (!get(Opc0).getNumDefs() || !get(Opc1).getNumDefs()) 245 return false; 246 247 if (isDS(Opc0) && isDS(Opc1)) { 248 249 // FIXME: Handle this case: 250 if (getNumOperandsNoGlue(Load0) != getNumOperandsNoGlue(Load1)) 251 return false; 252 253 // Check base reg. 254 if (Load0->getOperand(0) != Load1->getOperand(0)) 255 return false; 256 257 // Skip read2 / write2 variants for simplicity. 258 // TODO: We should report true if the used offsets are adjacent (excluded 259 // st64 versions). 260 int Offset0Idx = AMDGPU::getNamedOperandIdx(Opc0, AMDGPU::OpName::offset); 261 int Offset1Idx = AMDGPU::getNamedOperandIdx(Opc1, AMDGPU::OpName::offset); 262 if (Offset0Idx == -1 || Offset1Idx == -1) 263 return false; 264 265 // XXX - be careful of dataless loads 266 // getNamedOperandIdx returns the index for MachineInstrs. Since they 267 // include the output in the operand list, but SDNodes don't, we need to 268 // subtract the index by one. 269 Offset0Idx -= get(Opc0).NumDefs; 270 Offset1Idx -= get(Opc1).NumDefs; 271 Offset0 = Load0->getConstantOperandVal(Offset0Idx); 272 Offset1 = Load1->getConstantOperandVal(Offset1Idx); 273 return true; 274 } 275 276 if (isSMRD(Opc0) && isSMRD(Opc1)) { 277 // Skip time and cache invalidation instructions. 278 if (!AMDGPU::hasNamedOperand(Opc0, AMDGPU::OpName::sbase) || 279 !AMDGPU::hasNamedOperand(Opc1, AMDGPU::OpName::sbase)) 280 return false; 281 282 unsigned NumOps = getNumOperandsNoGlue(Load0); 283 if (NumOps != getNumOperandsNoGlue(Load1)) 284 return false; 285 286 // Check base reg. 287 if (Load0->getOperand(0) != Load1->getOperand(0)) 288 return false; 289 290 // Match register offsets, if both register and immediate offsets present. 291 assert(NumOps == 4 || NumOps == 5); 292 if (NumOps == 5 && Load0->getOperand(1) != Load1->getOperand(1)) 293 return false; 294 295 const ConstantSDNode *Load0Offset = 296 dyn_cast<ConstantSDNode>(Load0->getOperand(NumOps - 3)); 297 const ConstantSDNode *Load1Offset = 298 dyn_cast<ConstantSDNode>(Load1->getOperand(NumOps - 3)); 299 300 if (!Load0Offset || !Load1Offset) 301 return false; 302 303 Offset0 = Load0Offset->getZExtValue(); 304 Offset1 = Load1Offset->getZExtValue(); 305 return true; 306 } 307 308 // MUBUF and MTBUF can access the same addresses. 309 if ((isMUBUF(Opc0) || isMTBUF(Opc0)) && (isMUBUF(Opc1) || isMTBUF(Opc1))) { 310 311 // MUBUF and MTBUF have vaddr at different indices. 312 if (!nodesHaveSameOperandValue(Load0, Load1, AMDGPU::OpName::soffset) || 313 !nodesHaveSameOperandValue(Load0, Load1, AMDGPU::OpName::vaddr) || 314 !nodesHaveSameOperandValue(Load0, Load1, AMDGPU::OpName::srsrc)) 315 return false; 316 317 int OffIdx0 = AMDGPU::getNamedOperandIdx(Opc0, AMDGPU::OpName::offset); 318 int OffIdx1 = AMDGPU::getNamedOperandIdx(Opc1, AMDGPU::OpName::offset); 319 320 if (OffIdx0 == -1 || OffIdx1 == -1) 321 return false; 322 323 // getNamedOperandIdx returns the index for MachineInstrs. Since they 324 // include the output in the operand list, but SDNodes don't, we need to 325 // subtract the index by one. 326 OffIdx0 -= get(Opc0).NumDefs; 327 OffIdx1 -= get(Opc1).NumDefs; 328 329 SDValue Off0 = Load0->getOperand(OffIdx0); 330 SDValue Off1 = Load1->getOperand(OffIdx1); 331 332 // The offset might be a FrameIndexSDNode. 333 if (!isa<ConstantSDNode>(Off0) || !isa<ConstantSDNode>(Off1)) 334 return false; 335 336 Offset0 = Off0->getAsZExtVal(); 337 Offset1 = Off1->getAsZExtVal(); 338 return true; 339 } 340 341 return false; 342 } 343 344 static bool isStride64(unsigned Opc) { 345 switch (Opc) { 346 case AMDGPU::DS_READ2ST64_B32: 347 case AMDGPU::DS_READ2ST64_B64: 348 case AMDGPU::DS_WRITE2ST64_B32: 349 case AMDGPU::DS_WRITE2ST64_B64: 350 return true; 351 default: 352 return false; 353 } 354 } 355 356 bool SIInstrInfo::getMemOperandsWithOffsetWidth( 357 const MachineInstr &LdSt, SmallVectorImpl<const MachineOperand *> &BaseOps, 358 int64_t &Offset, bool &OffsetIsScalable, LocationSize &Width, 359 const TargetRegisterInfo *TRI) const { 360 if (!LdSt.mayLoadOrStore()) 361 return false; 362 363 unsigned Opc = LdSt.getOpcode(); 364 OffsetIsScalable = false; 365 const MachineOperand *BaseOp, *OffsetOp; 366 int DataOpIdx; 367 368 if (isDS(LdSt)) { 369 BaseOp = getNamedOperand(LdSt, AMDGPU::OpName::addr); 370 OffsetOp = getNamedOperand(LdSt, AMDGPU::OpName::offset); 371 if (OffsetOp) { 372 // Normal, single offset LDS instruction. 373 if (!BaseOp) { 374 // DS_CONSUME/DS_APPEND use M0 for the base address. 375 // TODO: find the implicit use operand for M0 and use that as BaseOp? 376 return false; 377 } 378 BaseOps.push_back(BaseOp); 379 Offset = OffsetOp->getImm(); 380 // Get appropriate operand, and compute width accordingly. 381 DataOpIdx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::vdst); 382 if (DataOpIdx == -1) 383 DataOpIdx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::data0); 384 Width = getOpSize(LdSt, DataOpIdx); 385 } else { 386 // The 2 offset instructions use offset0 and offset1 instead. We can treat 387 // these as a load with a single offset if the 2 offsets are consecutive. 388 // We will use this for some partially aligned loads. 389 const MachineOperand *Offset0Op = 390 getNamedOperand(LdSt, AMDGPU::OpName::offset0); 391 const MachineOperand *Offset1Op = 392 getNamedOperand(LdSt, AMDGPU::OpName::offset1); 393 394 unsigned Offset0 = Offset0Op->getImm() & 0xff; 395 unsigned Offset1 = Offset1Op->getImm() & 0xff; 396 if (Offset0 + 1 != Offset1) 397 return false; 398 399 // Each of these offsets is in element sized units, so we need to convert 400 // to bytes of the individual reads. 401 402 unsigned EltSize; 403 if (LdSt.mayLoad()) 404 EltSize = TRI->getRegSizeInBits(*getOpRegClass(LdSt, 0)) / 16; 405 else { 406 assert(LdSt.mayStore()); 407 int Data0Idx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::data0); 408 EltSize = TRI->getRegSizeInBits(*getOpRegClass(LdSt, Data0Idx)) / 8; 409 } 410 411 if (isStride64(Opc)) 412 EltSize *= 64; 413 414 BaseOps.push_back(BaseOp); 415 Offset = EltSize * Offset0; 416 // Get appropriate operand(s), and compute width accordingly. 417 DataOpIdx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::vdst); 418 if (DataOpIdx == -1) { 419 DataOpIdx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::data0); 420 Width = getOpSize(LdSt, DataOpIdx); 421 DataOpIdx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::data1); 422 Width = Width.getValue() + getOpSize(LdSt, DataOpIdx); 423 } else { 424 Width = getOpSize(LdSt, DataOpIdx); 425 } 426 } 427 return true; 428 } 429 430 if (isMUBUF(LdSt) || isMTBUF(LdSt)) { 431 const MachineOperand *RSrc = getNamedOperand(LdSt, AMDGPU::OpName::srsrc); 432 if (!RSrc) // e.g. BUFFER_WBINVL1_VOL 433 return false; 434 BaseOps.push_back(RSrc); 435 BaseOp = getNamedOperand(LdSt, AMDGPU::OpName::vaddr); 436 if (BaseOp && !BaseOp->isFI()) 437 BaseOps.push_back(BaseOp); 438 const MachineOperand *OffsetImm = 439 getNamedOperand(LdSt, AMDGPU::OpName::offset); 440 Offset = OffsetImm->getImm(); 441 const MachineOperand *SOffset = 442 getNamedOperand(LdSt, AMDGPU::OpName::soffset); 443 if (SOffset) { 444 if (SOffset->isReg()) 445 BaseOps.push_back(SOffset); 446 else 447 Offset += SOffset->getImm(); 448 } 449 // Get appropriate operand, and compute width accordingly. 450 DataOpIdx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::vdst); 451 if (DataOpIdx == -1) 452 DataOpIdx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::vdata); 453 if (DataOpIdx == -1) // LDS DMA 454 return false; 455 Width = getOpSize(LdSt, DataOpIdx); 456 return true; 457 } 458 459 if (isImage(LdSt)) { 460 auto RsrcOpName = 461 isMIMG(LdSt) ? AMDGPU::OpName::srsrc : AMDGPU::OpName::rsrc; 462 int SRsrcIdx = AMDGPU::getNamedOperandIdx(Opc, RsrcOpName); 463 BaseOps.push_back(&LdSt.getOperand(SRsrcIdx)); 464 int VAddr0Idx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::vaddr0); 465 if (VAddr0Idx >= 0) { 466 // GFX10 possible NSA encoding. 467 for (int I = VAddr0Idx; I < SRsrcIdx; ++I) 468 BaseOps.push_back(&LdSt.getOperand(I)); 469 } else { 470 BaseOps.push_back(getNamedOperand(LdSt, AMDGPU::OpName::vaddr)); 471 } 472 Offset = 0; 473 // Get appropriate operand, and compute width accordingly. 474 DataOpIdx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::vdata); 475 if (DataOpIdx == -1) 476 return false; // no return sampler 477 Width = getOpSize(LdSt, DataOpIdx); 478 return true; 479 } 480 481 if (isSMRD(LdSt)) { 482 BaseOp = getNamedOperand(LdSt, AMDGPU::OpName::sbase); 483 if (!BaseOp) // e.g. S_MEMTIME 484 return false; 485 BaseOps.push_back(BaseOp); 486 OffsetOp = getNamedOperand(LdSt, AMDGPU::OpName::offset); 487 Offset = OffsetOp ? OffsetOp->getImm() : 0; 488 // Get appropriate operand, and compute width accordingly. 489 DataOpIdx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::sdst); 490 if (DataOpIdx == -1) 491 return false; 492 Width = getOpSize(LdSt, DataOpIdx); 493 return true; 494 } 495 496 if (isFLAT(LdSt)) { 497 // Instructions have either vaddr or saddr or both or none. 498 BaseOp = getNamedOperand(LdSt, AMDGPU::OpName::vaddr); 499 if (BaseOp) 500 BaseOps.push_back(BaseOp); 501 BaseOp = getNamedOperand(LdSt, AMDGPU::OpName::saddr); 502 if (BaseOp) 503 BaseOps.push_back(BaseOp); 504 Offset = getNamedOperand(LdSt, AMDGPU::OpName::offset)->getImm(); 505 // Get appropriate operand, and compute width accordingly. 506 DataOpIdx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::vdst); 507 if (DataOpIdx == -1) 508 DataOpIdx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::vdata); 509 if (DataOpIdx == -1) // LDS DMA 510 return false; 511 Width = getOpSize(LdSt, DataOpIdx); 512 return true; 513 } 514 515 return false; 516 } 517 518 static bool memOpsHaveSameBasePtr(const MachineInstr &MI1, 519 ArrayRef<const MachineOperand *> BaseOps1, 520 const MachineInstr &MI2, 521 ArrayRef<const MachineOperand *> BaseOps2) { 522 // Only examine the first "base" operand of each instruction, on the 523 // assumption that it represents the real base address of the memory access. 524 // Other operands are typically offsets or indices from this base address. 525 if (BaseOps1.front()->isIdenticalTo(*BaseOps2.front())) 526 return true; 527 528 if (!MI1.hasOneMemOperand() || !MI2.hasOneMemOperand()) 529 return false; 530 531 auto *MO1 = *MI1.memoperands_begin(); 532 auto *MO2 = *MI2.memoperands_begin(); 533 if (MO1->getAddrSpace() != MO2->getAddrSpace()) 534 return false; 535 536 const auto *Base1 = MO1->getValue(); 537 const auto *Base2 = MO2->getValue(); 538 if (!Base1 || !Base2) 539 return false; 540 Base1 = getUnderlyingObject(Base1); 541 Base2 = getUnderlyingObject(Base2); 542 543 if (isa<UndefValue>(Base1) || isa<UndefValue>(Base2)) 544 return false; 545 546 return Base1 == Base2; 547 } 548 549 bool SIInstrInfo::shouldClusterMemOps(ArrayRef<const MachineOperand *> BaseOps1, 550 int64_t Offset1, bool OffsetIsScalable1, 551 ArrayRef<const MachineOperand *> BaseOps2, 552 int64_t Offset2, bool OffsetIsScalable2, 553 unsigned ClusterSize, 554 unsigned NumBytes) const { 555 // If the mem ops (to be clustered) do not have the same base ptr, then they 556 // should not be clustered 557 unsigned MaxMemoryClusterDWords = DefaultMemoryClusterDWordsLimit; 558 if (!BaseOps1.empty() && !BaseOps2.empty()) { 559 const MachineInstr &FirstLdSt = *BaseOps1.front()->getParent(); 560 const MachineInstr &SecondLdSt = *BaseOps2.front()->getParent(); 561 if (!memOpsHaveSameBasePtr(FirstLdSt, BaseOps1, SecondLdSt, BaseOps2)) 562 return false; 563 564 const SIMachineFunctionInfo *MFI = 565 FirstLdSt.getMF()->getInfo<SIMachineFunctionInfo>(); 566 MaxMemoryClusterDWords = MFI->getMaxMemoryClusterDWords(); 567 } else if (!BaseOps1.empty() || !BaseOps2.empty()) { 568 // If only one base op is empty, they do not have the same base ptr 569 return false; 570 } 571 572 // In order to avoid register pressure, on an average, the number of DWORDS 573 // loaded together by all clustered mem ops should not exceed 574 // MaxMemoryClusterDWords. This is an empirical value based on certain 575 // observations and performance related experiments. 576 // The good thing about this heuristic is - it avoids clustering of too many 577 // sub-word loads, and also avoids clustering of wide loads. Below is the 578 // brief summary of how the heuristic behaves for various `LoadSize` when 579 // MaxMemoryClusterDWords is 8. 580 // 581 // (1) 1 <= LoadSize <= 4: cluster at max 8 mem ops 582 // (2) 5 <= LoadSize <= 8: cluster at max 4 mem ops 583 // (3) 9 <= LoadSize <= 12: cluster at max 2 mem ops 584 // (4) 13 <= LoadSize <= 16: cluster at max 2 mem ops 585 // (5) LoadSize >= 17: do not cluster 586 const unsigned LoadSize = NumBytes / ClusterSize; 587 const unsigned NumDWords = ((LoadSize + 3) / 4) * ClusterSize; 588 return NumDWords <= MaxMemoryClusterDWords; 589 } 590 591 // FIXME: This behaves strangely. If, for example, you have 32 load + stores, 592 // the first 16 loads will be interleaved with the stores, and the next 16 will 593 // be clustered as expected. It should really split into 2 16 store batches. 594 // 595 // Loads are clustered until this returns false, rather than trying to schedule 596 // groups of stores. This also means we have to deal with saying different 597 // address space loads should be clustered, and ones which might cause bank 598 // conflicts. 599 // 600 // This might be deprecated so it might not be worth that much effort to fix. 601 bool SIInstrInfo::shouldScheduleLoadsNear(SDNode *Load0, SDNode *Load1, 602 int64_t Offset0, int64_t Offset1, 603 unsigned NumLoads) const { 604 assert(Offset1 > Offset0 && 605 "Second offset should be larger than first offset!"); 606 // If we have less than 16 loads in a row, and the offsets are within 64 607 // bytes, then schedule together. 608 609 // A cacheline is 64 bytes (for global memory). 610 return (NumLoads <= 16 && (Offset1 - Offset0) < 64); 611 } 612 613 static void reportIllegalCopy(const SIInstrInfo *TII, MachineBasicBlock &MBB, 614 MachineBasicBlock::iterator MI, 615 const DebugLoc &DL, MCRegister DestReg, 616 MCRegister SrcReg, bool KillSrc, 617 const char *Msg = "illegal VGPR to SGPR copy") { 618 MachineFunction *MF = MBB.getParent(); 619 DiagnosticInfoUnsupported IllegalCopy(MF->getFunction(), Msg, DL, DS_Error); 620 LLVMContext &C = MF->getFunction().getContext(); 621 C.diagnose(IllegalCopy); 622 623 BuildMI(MBB, MI, DL, TII->get(AMDGPU::SI_ILLEGAL_COPY), DestReg) 624 .addReg(SrcReg, getKillRegState(KillSrc)); 625 } 626 627 /// Handle copying from SGPR to AGPR, or from AGPR to AGPR on GFX908. It is not 628 /// possible to have a direct copy in these cases on GFX908, so an intermediate 629 /// VGPR copy is required. 630 static void indirectCopyToAGPR(const SIInstrInfo &TII, 631 MachineBasicBlock &MBB, 632 MachineBasicBlock::iterator MI, 633 const DebugLoc &DL, MCRegister DestReg, 634 MCRegister SrcReg, bool KillSrc, 635 RegScavenger &RS, bool RegsOverlap, 636 Register ImpDefSuperReg = Register(), 637 Register ImpUseSuperReg = Register()) { 638 assert((TII.getSubtarget().hasMAIInsts() && 639 !TII.getSubtarget().hasGFX90AInsts()) && 640 "Expected GFX908 subtarget."); 641 642 assert((AMDGPU::SReg_32RegClass.contains(SrcReg) || 643 AMDGPU::AGPR_32RegClass.contains(SrcReg)) && 644 "Source register of the copy should be either an SGPR or an AGPR."); 645 646 assert(AMDGPU::AGPR_32RegClass.contains(DestReg) && 647 "Destination register of the copy should be an AGPR."); 648 649 const SIRegisterInfo &RI = TII.getRegisterInfo(); 650 651 // First try to find defining accvgpr_write to avoid temporary registers. 652 // In the case of copies of overlapping AGPRs, we conservatively do not 653 // reuse previous accvgpr_writes. Otherwise, we may incorrectly pick up 654 // an accvgpr_write used for this same copy due to implicit-defs 655 if (!RegsOverlap) { 656 for (auto Def = MI, E = MBB.begin(); Def != E; ) { 657 --Def; 658 659 if (!Def->modifiesRegister(SrcReg, &RI)) 660 continue; 661 662 if (Def->getOpcode() != AMDGPU::V_ACCVGPR_WRITE_B32_e64 || 663 Def->getOperand(0).getReg() != SrcReg) 664 break; 665 666 MachineOperand &DefOp = Def->getOperand(1); 667 assert(DefOp.isReg() || DefOp.isImm()); 668 669 if (DefOp.isReg()) { 670 bool SafeToPropagate = true; 671 // Check that register source operand is not clobbered before MI. 672 // Immediate operands are always safe to propagate. 673 for (auto I = Def; I != MI && SafeToPropagate; ++I) 674 if (I->modifiesRegister(DefOp.getReg(), &RI)) 675 SafeToPropagate = false; 676 677 if (!SafeToPropagate) 678 break; 679 680 DefOp.setIsKill(false); 681 } 682 683 MachineInstrBuilder Builder = 684 BuildMI(MBB, MI, DL, TII.get(AMDGPU::V_ACCVGPR_WRITE_B32_e64), DestReg) 685 .add(DefOp); 686 if (ImpDefSuperReg) 687 Builder.addReg(ImpDefSuperReg, RegState::Define | RegState::Implicit); 688 689 if (ImpUseSuperReg) { 690 Builder.addReg(ImpUseSuperReg, 691 getKillRegState(KillSrc) | RegState::Implicit); 692 } 693 694 return; 695 } 696 } 697 698 RS.enterBasicBlockEnd(MBB); 699 RS.backward(std::next(MI)); 700 701 // Ideally we want to have three registers for a long reg_sequence copy 702 // to hide 2 waitstates between v_mov_b32 and accvgpr_write. 703 unsigned MaxVGPRs = RI.getRegPressureLimit(&AMDGPU::VGPR_32RegClass, 704 *MBB.getParent()); 705 706 // Registers in the sequence are allocated contiguously so we can just 707 // use register number to pick one of three round-robin temps. 708 unsigned RegNo = (DestReg - AMDGPU::AGPR0) % 3; 709 Register Tmp = 710 MBB.getParent()->getInfo<SIMachineFunctionInfo>()->getVGPRForAGPRCopy(); 711 assert(MBB.getParent()->getRegInfo().isReserved(Tmp) && 712 "VGPR used for an intermediate copy should have been reserved."); 713 714 // Only loop through if there are any free registers left. We don't want to 715 // spill. 716 while (RegNo--) { 717 Register Tmp2 = RS.scavengeRegisterBackwards(AMDGPU::VGPR_32RegClass, MI, 718 /* RestoreAfter */ false, 0, 719 /* AllowSpill */ false); 720 if (!Tmp2 || RI.getHWRegIndex(Tmp2) >= MaxVGPRs) 721 break; 722 Tmp = Tmp2; 723 RS.setRegUsed(Tmp); 724 } 725 726 // Insert copy to temporary VGPR. 727 unsigned TmpCopyOp = AMDGPU::V_MOV_B32_e32; 728 if (AMDGPU::AGPR_32RegClass.contains(SrcReg)) { 729 TmpCopyOp = AMDGPU::V_ACCVGPR_READ_B32_e64; 730 } else { 731 assert(AMDGPU::SReg_32RegClass.contains(SrcReg)); 732 } 733 734 MachineInstrBuilder UseBuilder = BuildMI(MBB, MI, DL, TII.get(TmpCopyOp), Tmp) 735 .addReg(SrcReg, getKillRegState(KillSrc)); 736 if (ImpUseSuperReg) { 737 UseBuilder.addReg(ImpUseSuperReg, 738 getKillRegState(KillSrc) | RegState::Implicit); 739 } 740 741 MachineInstrBuilder DefBuilder 742 = BuildMI(MBB, MI, DL, TII.get(AMDGPU::V_ACCVGPR_WRITE_B32_e64), DestReg) 743 .addReg(Tmp, RegState::Kill); 744 745 if (ImpDefSuperReg) 746 DefBuilder.addReg(ImpDefSuperReg, RegState::Define | RegState::Implicit); 747 } 748 749 static void expandSGPRCopy(const SIInstrInfo &TII, MachineBasicBlock &MBB, 750 MachineBasicBlock::iterator MI, const DebugLoc &DL, 751 MCRegister DestReg, MCRegister SrcReg, bool KillSrc, 752 const TargetRegisterClass *RC, bool Forward) { 753 const SIRegisterInfo &RI = TII.getRegisterInfo(); 754 ArrayRef<int16_t> BaseIndices = RI.getRegSplitParts(RC, 4); 755 MachineBasicBlock::iterator I = MI; 756 MachineInstr *FirstMI = nullptr, *LastMI = nullptr; 757 758 for (unsigned Idx = 0; Idx < BaseIndices.size(); ++Idx) { 759 int16_t SubIdx = BaseIndices[Idx]; 760 Register DestSubReg = RI.getSubReg(DestReg, SubIdx); 761 Register SrcSubReg = RI.getSubReg(SrcReg, SubIdx); 762 assert(DestSubReg && SrcSubReg && "Failed to find subregs!"); 763 unsigned Opcode = AMDGPU::S_MOV_B32; 764 765 // Is SGPR aligned? If so try to combine with next. 766 bool AlignedDest = ((DestSubReg - AMDGPU::SGPR0) % 2) == 0; 767 bool AlignedSrc = ((SrcSubReg - AMDGPU::SGPR0) % 2) == 0; 768 if (AlignedDest && AlignedSrc && (Idx + 1 < BaseIndices.size())) { 769 // Can use SGPR64 copy 770 unsigned Channel = RI.getChannelFromSubReg(SubIdx); 771 SubIdx = RI.getSubRegFromChannel(Channel, 2); 772 DestSubReg = RI.getSubReg(DestReg, SubIdx); 773 SrcSubReg = RI.getSubReg(SrcReg, SubIdx); 774 assert(DestSubReg && SrcSubReg && "Failed to find subregs!"); 775 Opcode = AMDGPU::S_MOV_B64; 776 Idx++; 777 } 778 779 LastMI = BuildMI(MBB, I, DL, TII.get(Opcode), DestSubReg) 780 .addReg(SrcSubReg) 781 .addReg(SrcReg, RegState::Implicit); 782 783 if (!FirstMI) 784 FirstMI = LastMI; 785 786 if (!Forward) 787 I--; 788 } 789 790 assert(FirstMI && LastMI); 791 if (!Forward) 792 std::swap(FirstMI, LastMI); 793 794 FirstMI->addOperand( 795 MachineOperand::CreateReg(DestReg, true /*IsDef*/, true /*IsImp*/)); 796 797 if (KillSrc) 798 LastMI->addRegisterKilled(SrcReg, &RI); 799 } 800 801 void SIInstrInfo::copyPhysReg(MachineBasicBlock &MBB, 802 MachineBasicBlock::iterator MI, 803 const DebugLoc &DL, MCRegister DestReg, 804 MCRegister SrcReg, bool KillSrc, 805 bool RenamableDest, bool RenamableSrc) const { 806 const TargetRegisterClass *RC = RI.getPhysRegBaseClass(DestReg); 807 unsigned Size = RI.getRegSizeInBits(*RC); 808 const TargetRegisterClass *SrcRC = RI.getPhysRegBaseClass(SrcReg); 809 unsigned SrcSize = RI.getRegSizeInBits(*SrcRC); 810 811 // The rest of copyPhysReg assumes Src and Dst size are the same size. 812 // TODO-GFX11_16BIT If all true 16 bit instruction patterns are completed can 813 // we remove Fix16BitCopies and this code block? 814 if (Fix16BitCopies) { 815 if (((Size == 16) != (SrcSize == 16))) { 816 // Non-VGPR Src and Dst will later be expanded back to 32 bits. 817 assert(ST.hasTrue16BitInsts()); 818 MCRegister &RegToFix = (Size == 32) ? DestReg : SrcReg; 819 MCRegister SubReg = RI.getSubReg(RegToFix, AMDGPU::lo16); 820 RegToFix = SubReg; 821 822 if (DestReg == SrcReg) { 823 // Identity copy. Insert empty bundle since ExpandPostRA expects an 824 // instruction here. 825 BuildMI(MBB, MI, DL, get(AMDGPU::BUNDLE)); 826 return; 827 } 828 RC = RI.getPhysRegBaseClass(DestReg); 829 Size = RI.getRegSizeInBits(*RC); 830 SrcRC = RI.getPhysRegBaseClass(SrcReg); 831 SrcSize = RI.getRegSizeInBits(*SrcRC); 832 } 833 } 834 835 if (RC == &AMDGPU::VGPR_32RegClass) { 836 assert(AMDGPU::VGPR_32RegClass.contains(SrcReg) || 837 AMDGPU::SReg_32RegClass.contains(SrcReg) || 838 AMDGPU::AGPR_32RegClass.contains(SrcReg)); 839 unsigned Opc = AMDGPU::AGPR_32RegClass.contains(SrcReg) ? 840 AMDGPU::V_ACCVGPR_READ_B32_e64 : AMDGPU::V_MOV_B32_e32; 841 BuildMI(MBB, MI, DL, get(Opc), DestReg) 842 .addReg(SrcReg, getKillRegState(KillSrc)); 843 return; 844 } 845 846 if (RC == &AMDGPU::SReg_32_XM0RegClass || 847 RC == &AMDGPU::SReg_32RegClass) { 848 if (SrcReg == AMDGPU::SCC) { 849 BuildMI(MBB, MI, DL, get(AMDGPU::S_CSELECT_B32), DestReg) 850 .addImm(1) 851 .addImm(0); 852 return; 853 } 854 855 if (DestReg == AMDGPU::VCC_LO) { 856 if (AMDGPU::SReg_32RegClass.contains(SrcReg)) { 857 BuildMI(MBB, MI, DL, get(AMDGPU::S_MOV_B32), AMDGPU::VCC_LO) 858 .addReg(SrcReg, getKillRegState(KillSrc)); 859 } else { 860 // FIXME: Hack until VReg_1 removed. 861 assert(AMDGPU::VGPR_32RegClass.contains(SrcReg)); 862 BuildMI(MBB, MI, DL, get(AMDGPU::V_CMP_NE_U32_e32)) 863 .addImm(0) 864 .addReg(SrcReg, getKillRegState(KillSrc)); 865 } 866 867 return; 868 } 869 870 if (!AMDGPU::SReg_32RegClass.contains(SrcReg)) { 871 reportIllegalCopy(this, MBB, MI, DL, DestReg, SrcReg, KillSrc); 872 return; 873 } 874 875 BuildMI(MBB, MI, DL, get(AMDGPU::S_MOV_B32), DestReg) 876 .addReg(SrcReg, getKillRegState(KillSrc)); 877 return; 878 } 879 880 if (RC == &AMDGPU::SReg_64RegClass) { 881 if (SrcReg == AMDGPU::SCC) { 882 BuildMI(MBB, MI, DL, get(AMDGPU::S_CSELECT_B64), DestReg) 883 .addImm(1) 884 .addImm(0); 885 return; 886 } 887 888 if (DestReg == AMDGPU::VCC) { 889 if (AMDGPU::SReg_64RegClass.contains(SrcReg)) { 890 BuildMI(MBB, MI, DL, get(AMDGPU::S_MOV_B64), AMDGPU::VCC) 891 .addReg(SrcReg, getKillRegState(KillSrc)); 892 } else { 893 // FIXME: Hack until VReg_1 removed. 894 assert(AMDGPU::VGPR_32RegClass.contains(SrcReg)); 895 BuildMI(MBB, MI, DL, get(AMDGPU::V_CMP_NE_U32_e32)) 896 .addImm(0) 897 .addReg(SrcReg, getKillRegState(KillSrc)); 898 } 899 900 return; 901 } 902 903 if (!AMDGPU::SReg_64RegClass.contains(SrcReg)) { 904 reportIllegalCopy(this, MBB, MI, DL, DestReg, SrcReg, KillSrc); 905 return; 906 } 907 908 BuildMI(MBB, MI, DL, get(AMDGPU::S_MOV_B64), DestReg) 909 .addReg(SrcReg, getKillRegState(KillSrc)); 910 return; 911 } 912 913 if (DestReg == AMDGPU::SCC) { 914 // Copying 64-bit or 32-bit sources to SCC barely makes sense, 915 // but SelectionDAG emits such copies for i1 sources. 916 if (AMDGPU::SReg_64RegClass.contains(SrcReg)) { 917 // This copy can only be produced by patterns 918 // with explicit SCC, which are known to be enabled 919 // only for subtargets with S_CMP_LG_U64 present. 920 assert(ST.hasScalarCompareEq64()); 921 BuildMI(MBB, MI, DL, get(AMDGPU::S_CMP_LG_U64)) 922 .addReg(SrcReg, getKillRegState(KillSrc)) 923 .addImm(0); 924 } else { 925 assert(AMDGPU::SReg_32RegClass.contains(SrcReg)); 926 BuildMI(MBB, MI, DL, get(AMDGPU::S_CMP_LG_U32)) 927 .addReg(SrcReg, getKillRegState(KillSrc)) 928 .addImm(0); 929 } 930 931 return; 932 } 933 934 if (RC == &AMDGPU::AGPR_32RegClass) { 935 if (AMDGPU::VGPR_32RegClass.contains(SrcReg) || 936 (ST.hasGFX90AInsts() && AMDGPU::SReg_32RegClass.contains(SrcReg))) { 937 BuildMI(MBB, MI, DL, get(AMDGPU::V_ACCVGPR_WRITE_B32_e64), DestReg) 938 .addReg(SrcReg, getKillRegState(KillSrc)); 939 return; 940 } 941 942 if (AMDGPU::AGPR_32RegClass.contains(SrcReg) && ST.hasGFX90AInsts()) { 943 BuildMI(MBB, MI, DL, get(AMDGPU::V_ACCVGPR_MOV_B32), DestReg) 944 .addReg(SrcReg, getKillRegState(KillSrc)); 945 return; 946 } 947 948 // FIXME: Pass should maintain scavenger to avoid scan through the block on 949 // every AGPR spill. 950 RegScavenger RS; 951 const bool Overlap = RI.regsOverlap(SrcReg, DestReg); 952 indirectCopyToAGPR(*this, MBB, MI, DL, DestReg, SrcReg, KillSrc, RS, Overlap); 953 return; 954 } 955 956 if (Size == 16) { 957 assert(AMDGPU::VGPR_16RegClass.contains(SrcReg) || 958 AMDGPU::SReg_LO16RegClass.contains(SrcReg) || 959 AMDGPU::AGPR_LO16RegClass.contains(SrcReg)); 960 961 bool IsSGPRDst = AMDGPU::SReg_LO16RegClass.contains(DestReg); 962 bool IsSGPRSrc = AMDGPU::SReg_LO16RegClass.contains(SrcReg); 963 bool IsAGPRDst = AMDGPU::AGPR_LO16RegClass.contains(DestReg); 964 bool IsAGPRSrc = AMDGPU::AGPR_LO16RegClass.contains(SrcReg); 965 bool DstLow = !AMDGPU::isHi16Reg(DestReg, RI); 966 bool SrcLow = !AMDGPU::isHi16Reg(SrcReg, RI); 967 MCRegister NewDestReg = RI.get32BitRegister(DestReg); 968 MCRegister NewSrcReg = RI.get32BitRegister(SrcReg); 969 970 if (IsSGPRDst) { 971 if (!IsSGPRSrc) { 972 reportIllegalCopy(this, MBB, MI, DL, DestReg, SrcReg, KillSrc); 973 return; 974 } 975 976 BuildMI(MBB, MI, DL, get(AMDGPU::S_MOV_B32), NewDestReg) 977 .addReg(NewSrcReg, getKillRegState(KillSrc)); 978 return; 979 } 980 981 if (IsAGPRDst || IsAGPRSrc) { 982 if (!DstLow || !SrcLow) { 983 reportIllegalCopy(this, MBB, MI, DL, DestReg, SrcReg, KillSrc, 984 "Cannot use hi16 subreg with an AGPR!"); 985 } 986 987 copyPhysReg(MBB, MI, DL, NewDestReg, NewSrcReg, KillSrc); 988 return; 989 } 990 991 if (ST.hasTrue16BitInsts()) { 992 if (IsSGPRSrc) { 993 assert(SrcLow); 994 SrcReg = NewSrcReg; 995 } 996 // Use the smaller instruction encoding if possible. 997 if (AMDGPU::VGPR_16_Lo128RegClass.contains(DestReg) && 998 (IsSGPRSrc || AMDGPU::VGPR_16_Lo128RegClass.contains(SrcReg))) { 999 BuildMI(MBB, MI, DL, get(AMDGPU::V_MOV_B16_t16_e32), DestReg) 1000 .addReg(SrcReg); 1001 } else { 1002 BuildMI(MBB, MI, DL, get(AMDGPU::V_MOV_B16_t16_e64), DestReg) 1003 .addImm(0) // src0_modifiers 1004 .addReg(SrcReg) 1005 .addImm(0); // op_sel 1006 } 1007 return; 1008 } 1009 1010 if (IsSGPRSrc && !ST.hasSDWAScalar()) { 1011 if (!DstLow || !SrcLow) { 1012 reportIllegalCopy(this, MBB, MI, DL, DestReg, SrcReg, KillSrc, 1013 "Cannot use hi16 subreg on VI!"); 1014 } 1015 1016 BuildMI(MBB, MI, DL, get(AMDGPU::V_MOV_B32_e32), NewDestReg) 1017 .addReg(NewSrcReg, getKillRegState(KillSrc)); 1018 return; 1019 } 1020 1021 auto MIB = BuildMI(MBB, MI, DL, get(AMDGPU::V_MOV_B32_sdwa), NewDestReg) 1022 .addImm(0) // src0_modifiers 1023 .addReg(NewSrcReg) 1024 .addImm(0) // clamp 1025 .addImm(DstLow ? AMDGPU::SDWA::SdwaSel::WORD_0 1026 : AMDGPU::SDWA::SdwaSel::WORD_1) 1027 .addImm(AMDGPU::SDWA::DstUnused::UNUSED_PRESERVE) 1028 .addImm(SrcLow ? AMDGPU::SDWA::SdwaSel::WORD_0 1029 : AMDGPU::SDWA::SdwaSel::WORD_1) 1030 .addReg(NewDestReg, RegState::Implicit | RegState::Undef); 1031 // First implicit operand is $exec. 1032 MIB->tieOperands(0, MIB->getNumOperands() - 1); 1033 return; 1034 } 1035 1036 if (RC == RI.getVGPR64Class() && (SrcRC == RC || RI.isSGPRClass(SrcRC))) { 1037 if (ST.hasMovB64()) { 1038 BuildMI(MBB, MI, DL, get(AMDGPU::V_MOV_B64_e32), DestReg) 1039 .addReg(SrcReg, getKillRegState(KillSrc)); 1040 return; 1041 } 1042 if (ST.hasPkMovB32()) { 1043 BuildMI(MBB, MI, DL, get(AMDGPU::V_PK_MOV_B32), DestReg) 1044 .addImm(SISrcMods::OP_SEL_1) 1045 .addReg(SrcReg) 1046 .addImm(SISrcMods::OP_SEL_0 | SISrcMods::OP_SEL_1) 1047 .addReg(SrcReg) 1048 .addImm(0) // op_sel_lo 1049 .addImm(0) // op_sel_hi 1050 .addImm(0) // neg_lo 1051 .addImm(0) // neg_hi 1052 .addImm(0) // clamp 1053 .addReg(SrcReg, getKillRegState(KillSrc) | RegState::Implicit); 1054 return; 1055 } 1056 } 1057 1058 const bool Forward = RI.getHWRegIndex(DestReg) <= RI.getHWRegIndex(SrcReg); 1059 if (RI.isSGPRClass(RC)) { 1060 if (!RI.isSGPRClass(SrcRC)) { 1061 reportIllegalCopy(this, MBB, MI, DL, DestReg, SrcReg, KillSrc); 1062 return; 1063 } 1064 const bool CanKillSuperReg = KillSrc && !RI.regsOverlap(SrcReg, DestReg); 1065 expandSGPRCopy(*this, MBB, MI, DL, DestReg, SrcReg, CanKillSuperReg, RC, 1066 Forward); 1067 return; 1068 } 1069 1070 unsigned EltSize = 4; 1071 unsigned Opcode = AMDGPU::V_MOV_B32_e32; 1072 if (RI.isAGPRClass(RC)) { 1073 if (ST.hasGFX90AInsts() && RI.isAGPRClass(SrcRC)) 1074 Opcode = AMDGPU::V_ACCVGPR_MOV_B32; 1075 else if (RI.hasVGPRs(SrcRC) || 1076 (ST.hasGFX90AInsts() && RI.isSGPRClass(SrcRC))) 1077 Opcode = AMDGPU::V_ACCVGPR_WRITE_B32_e64; 1078 else 1079 Opcode = AMDGPU::INSTRUCTION_LIST_END; 1080 } else if (RI.hasVGPRs(RC) && RI.isAGPRClass(SrcRC)) { 1081 Opcode = AMDGPU::V_ACCVGPR_READ_B32_e64; 1082 } else if ((Size % 64 == 0) && RI.hasVGPRs(RC) && 1083 (RI.isProperlyAlignedRC(*RC) && 1084 (SrcRC == RC || RI.isSGPRClass(SrcRC)))) { 1085 // TODO: In 96-bit case, could do a 64-bit mov and then a 32-bit mov. 1086 if (ST.hasMovB64()) { 1087 Opcode = AMDGPU::V_MOV_B64_e32; 1088 EltSize = 8; 1089 } else if (ST.hasPkMovB32()) { 1090 Opcode = AMDGPU::V_PK_MOV_B32; 1091 EltSize = 8; 1092 } 1093 } 1094 1095 // For the cases where we need an intermediate instruction/temporary register 1096 // (destination is an AGPR), we need a scavenger. 1097 // 1098 // FIXME: The pass should maintain this for us so we don't have to re-scan the 1099 // whole block for every handled copy. 1100 std::unique_ptr<RegScavenger> RS; 1101 if (Opcode == AMDGPU::INSTRUCTION_LIST_END) 1102 RS = std::make_unique<RegScavenger>(); 1103 1104 ArrayRef<int16_t> SubIndices = RI.getRegSplitParts(RC, EltSize); 1105 1106 // If there is an overlap, we can't kill the super-register on the last 1107 // instruction, since it will also kill the components made live by this def. 1108 const bool Overlap = RI.regsOverlap(SrcReg, DestReg); 1109 const bool CanKillSuperReg = KillSrc && !Overlap; 1110 1111 for (unsigned Idx = 0; Idx < SubIndices.size(); ++Idx) { 1112 unsigned SubIdx; 1113 if (Forward) 1114 SubIdx = SubIndices[Idx]; 1115 else 1116 SubIdx = SubIndices[SubIndices.size() - Idx - 1]; 1117 Register DestSubReg = RI.getSubReg(DestReg, SubIdx); 1118 Register SrcSubReg = RI.getSubReg(SrcReg, SubIdx); 1119 assert(DestSubReg && SrcSubReg && "Failed to find subregs!"); 1120 1121 bool IsFirstSubreg = Idx == 0; 1122 bool UseKill = CanKillSuperReg && Idx == SubIndices.size() - 1; 1123 1124 if (Opcode == AMDGPU::INSTRUCTION_LIST_END) { 1125 Register ImpDefSuper = IsFirstSubreg ? Register(DestReg) : Register(); 1126 Register ImpUseSuper = SrcReg; 1127 indirectCopyToAGPR(*this, MBB, MI, DL, DestSubReg, SrcSubReg, UseKill, 1128 *RS, Overlap, ImpDefSuper, ImpUseSuper); 1129 } else if (Opcode == AMDGPU::V_PK_MOV_B32) { 1130 MachineInstrBuilder MIB = 1131 BuildMI(MBB, MI, DL, get(AMDGPU::V_PK_MOV_B32), DestSubReg) 1132 .addImm(SISrcMods::OP_SEL_1) 1133 .addReg(SrcSubReg) 1134 .addImm(SISrcMods::OP_SEL_0 | SISrcMods::OP_SEL_1) 1135 .addReg(SrcSubReg) 1136 .addImm(0) // op_sel_lo 1137 .addImm(0) // op_sel_hi 1138 .addImm(0) // neg_lo 1139 .addImm(0) // neg_hi 1140 .addImm(0) // clamp 1141 .addReg(SrcReg, getKillRegState(UseKill) | RegState::Implicit); 1142 if (IsFirstSubreg) 1143 MIB.addReg(DestReg, RegState::Define | RegState::Implicit); 1144 } else { 1145 MachineInstrBuilder Builder = 1146 BuildMI(MBB, MI, DL, get(Opcode), DestSubReg).addReg(SrcSubReg); 1147 if (IsFirstSubreg) 1148 Builder.addReg(DestReg, RegState::Define | RegState::Implicit); 1149 1150 Builder.addReg(SrcReg, getKillRegState(UseKill) | RegState::Implicit); 1151 } 1152 } 1153 } 1154 1155 int SIInstrInfo::commuteOpcode(unsigned Opcode) const { 1156 int NewOpc; 1157 1158 // Try to map original to commuted opcode 1159 NewOpc = AMDGPU::getCommuteRev(Opcode); 1160 if (NewOpc != -1) 1161 // Check if the commuted (REV) opcode exists on the target. 1162 return pseudoToMCOpcode(NewOpc) != -1 ? NewOpc : -1; 1163 1164 // Try to map commuted to original opcode 1165 NewOpc = AMDGPU::getCommuteOrig(Opcode); 1166 if (NewOpc != -1) 1167 // Check if the original (non-REV) opcode exists on the target. 1168 return pseudoToMCOpcode(NewOpc) != -1 ? NewOpc : -1; 1169 1170 return Opcode; 1171 } 1172 1173 void SIInstrInfo::materializeImmediate(MachineBasicBlock &MBB, 1174 MachineBasicBlock::iterator MI, 1175 const DebugLoc &DL, Register DestReg, 1176 int64_t Value) const { 1177 MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo(); 1178 const TargetRegisterClass *RegClass = MRI.getRegClass(DestReg); 1179 if (RegClass == &AMDGPU::SReg_32RegClass || 1180 RegClass == &AMDGPU::SGPR_32RegClass || 1181 RegClass == &AMDGPU::SReg_32_XM0RegClass || 1182 RegClass == &AMDGPU::SReg_32_XM0_XEXECRegClass) { 1183 BuildMI(MBB, MI, DL, get(AMDGPU::S_MOV_B32), DestReg) 1184 .addImm(Value); 1185 return; 1186 } 1187 1188 if (RegClass == &AMDGPU::SReg_64RegClass || 1189 RegClass == &AMDGPU::SGPR_64RegClass || 1190 RegClass == &AMDGPU::SReg_64_XEXECRegClass) { 1191 BuildMI(MBB, MI, DL, get(AMDGPU::S_MOV_B64), DestReg) 1192 .addImm(Value); 1193 return; 1194 } 1195 1196 if (RegClass == &AMDGPU::VGPR_32RegClass) { 1197 BuildMI(MBB, MI, DL, get(AMDGPU::V_MOV_B32_e32), DestReg) 1198 .addImm(Value); 1199 return; 1200 } 1201 if (RegClass->hasSuperClassEq(&AMDGPU::VReg_64RegClass)) { 1202 BuildMI(MBB, MI, DL, get(AMDGPU::V_MOV_B64_PSEUDO), DestReg) 1203 .addImm(Value); 1204 return; 1205 } 1206 1207 unsigned EltSize = 4; 1208 unsigned Opcode = AMDGPU::V_MOV_B32_e32; 1209 if (RI.isSGPRClass(RegClass)) { 1210 if (RI.getRegSizeInBits(*RegClass) > 32) { 1211 Opcode = AMDGPU::S_MOV_B64; 1212 EltSize = 8; 1213 } else { 1214 Opcode = AMDGPU::S_MOV_B32; 1215 EltSize = 4; 1216 } 1217 } 1218 1219 ArrayRef<int16_t> SubIndices = RI.getRegSplitParts(RegClass, EltSize); 1220 for (unsigned Idx = 0; Idx < SubIndices.size(); ++Idx) { 1221 int64_t IdxValue = Idx == 0 ? Value : 0; 1222 1223 MachineInstrBuilder Builder = BuildMI(MBB, MI, DL, 1224 get(Opcode), RI.getSubReg(DestReg, SubIndices[Idx])); 1225 Builder.addImm(IdxValue); 1226 } 1227 } 1228 1229 const TargetRegisterClass * 1230 SIInstrInfo::getPreferredSelectRegClass(unsigned Size) const { 1231 return &AMDGPU::VGPR_32RegClass; 1232 } 1233 1234 void SIInstrInfo::insertVectorSelect(MachineBasicBlock &MBB, 1235 MachineBasicBlock::iterator I, 1236 const DebugLoc &DL, Register DstReg, 1237 ArrayRef<MachineOperand> Cond, 1238 Register TrueReg, 1239 Register FalseReg) const { 1240 MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo(); 1241 const TargetRegisterClass *BoolXExecRC = RI.getWaveMaskRegClass(); 1242 assert(MRI.getRegClass(DstReg) == &AMDGPU::VGPR_32RegClass && 1243 "Not a VGPR32 reg"); 1244 1245 if (Cond.size() == 1) { 1246 Register SReg = MRI.createVirtualRegister(BoolXExecRC); 1247 BuildMI(MBB, I, DL, get(AMDGPU::COPY), SReg) 1248 .add(Cond[0]); 1249 BuildMI(MBB, I, DL, get(AMDGPU::V_CNDMASK_B32_e64), DstReg) 1250 .addImm(0) 1251 .addReg(FalseReg) 1252 .addImm(0) 1253 .addReg(TrueReg) 1254 .addReg(SReg); 1255 } else if (Cond.size() == 2) { 1256 assert(Cond[0].isImm() && "Cond[0] is not an immediate"); 1257 switch (Cond[0].getImm()) { 1258 case SIInstrInfo::SCC_TRUE: { 1259 Register SReg = MRI.createVirtualRegister(BoolXExecRC); 1260 BuildMI(MBB, I, DL, get(ST.isWave32() ? AMDGPU::S_CSELECT_B32 1261 : AMDGPU::S_CSELECT_B64), SReg) 1262 .addImm(1) 1263 .addImm(0); 1264 BuildMI(MBB, I, DL, get(AMDGPU::V_CNDMASK_B32_e64), DstReg) 1265 .addImm(0) 1266 .addReg(FalseReg) 1267 .addImm(0) 1268 .addReg(TrueReg) 1269 .addReg(SReg); 1270 break; 1271 } 1272 case SIInstrInfo::SCC_FALSE: { 1273 Register SReg = MRI.createVirtualRegister(BoolXExecRC); 1274 BuildMI(MBB, I, DL, get(ST.isWave32() ? AMDGPU::S_CSELECT_B32 1275 : AMDGPU::S_CSELECT_B64), SReg) 1276 .addImm(0) 1277 .addImm(1); 1278 BuildMI(MBB, I, DL, get(AMDGPU::V_CNDMASK_B32_e64), DstReg) 1279 .addImm(0) 1280 .addReg(FalseReg) 1281 .addImm(0) 1282 .addReg(TrueReg) 1283 .addReg(SReg); 1284 break; 1285 } 1286 case SIInstrInfo::VCCNZ: { 1287 MachineOperand RegOp = Cond[1]; 1288 RegOp.setImplicit(false); 1289 Register SReg = MRI.createVirtualRegister(BoolXExecRC); 1290 BuildMI(MBB, I, DL, get(AMDGPU::COPY), SReg) 1291 .add(RegOp); 1292 BuildMI(MBB, I, DL, get(AMDGPU::V_CNDMASK_B32_e64), DstReg) 1293 .addImm(0) 1294 .addReg(FalseReg) 1295 .addImm(0) 1296 .addReg(TrueReg) 1297 .addReg(SReg); 1298 break; 1299 } 1300 case SIInstrInfo::VCCZ: { 1301 MachineOperand RegOp = Cond[1]; 1302 RegOp.setImplicit(false); 1303 Register SReg = MRI.createVirtualRegister(BoolXExecRC); 1304 BuildMI(MBB, I, DL, get(AMDGPU::COPY), SReg) 1305 .add(RegOp); 1306 BuildMI(MBB, I, DL, get(AMDGPU::V_CNDMASK_B32_e64), DstReg) 1307 .addImm(0) 1308 .addReg(TrueReg) 1309 .addImm(0) 1310 .addReg(FalseReg) 1311 .addReg(SReg); 1312 break; 1313 } 1314 case SIInstrInfo::EXECNZ: { 1315 Register SReg = MRI.createVirtualRegister(BoolXExecRC); 1316 Register SReg2 = MRI.createVirtualRegister(RI.getBoolRC()); 1317 BuildMI(MBB, I, DL, get(ST.isWave32() ? AMDGPU::S_OR_SAVEEXEC_B32 1318 : AMDGPU::S_OR_SAVEEXEC_B64), SReg2) 1319 .addImm(0); 1320 BuildMI(MBB, I, DL, get(ST.isWave32() ? AMDGPU::S_CSELECT_B32 1321 : AMDGPU::S_CSELECT_B64), SReg) 1322 .addImm(1) 1323 .addImm(0); 1324 BuildMI(MBB, I, DL, get(AMDGPU::V_CNDMASK_B32_e64), DstReg) 1325 .addImm(0) 1326 .addReg(FalseReg) 1327 .addImm(0) 1328 .addReg(TrueReg) 1329 .addReg(SReg); 1330 break; 1331 } 1332 case SIInstrInfo::EXECZ: { 1333 Register SReg = MRI.createVirtualRegister(BoolXExecRC); 1334 Register SReg2 = MRI.createVirtualRegister(RI.getBoolRC()); 1335 BuildMI(MBB, I, DL, get(ST.isWave32() ? AMDGPU::S_OR_SAVEEXEC_B32 1336 : AMDGPU::S_OR_SAVEEXEC_B64), SReg2) 1337 .addImm(0); 1338 BuildMI(MBB, I, DL, get(ST.isWave32() ? AMDGPU::S_CSELECT_B32 1339 : AMDGPU::S_CSELECT_B64), SReg) 1340 .addImm(0) 1341 .addImm(1); 1342 BuildMI(MBB, I, DL, get(AMDGPU::V_CNDMASK_B32_e64), DstReg) 1343 .addImm(0) 1344 .addReg(FalseReg) 1345 .addImm(0) 1346 .addReg(TrueReg) 1347 .addReg(SReg); 1348 llvm_unreachable("Unhandled branch predicate EXECZ"); 1349 break; 1350 } 1351 default: 1352 llvm_unreachable("invalid branch predicate"); 1353 } 1354 } else { 1355 llvm_unreachable("Can only handle Cond size 1 or 2"); 1356 } 1357 } 1358 1359 Register SIInstrInfo::insertEQ(MachineBasicBlock *MBB, 1360 MachineBasicBlock::iterator I, 1361 const DebugLoc &DL, 1362 Register SrcReg, int Value) const { 1363 MachineRegisterInfo &MRI = MBB->getParent()->getRegInfo(); 1364 Register Reg = MRI.createVirtualRegister(RI.getBoolRC()); 1365 BuildMI(*MBB, I, DL, get(AMDGPU::V_CMP_EQ_I32_e64), Reg) 1366 .addImm(Value) 1367 .addReg(SrcReg); 1368 1369 return Reg; 1370 } 1371 1372 Register SIInstrInfo::insertNE(MachineBasicBlock *MBB, 1373 MachineBasicBlock::iterator I, 1374 const DebugLoc &DL, 1375 Register SrcReg, int Value) const { 1376 MachineRegisterInfo &MRI = MBB->getParent()->getRegInfo(); 1377 Register Reg = MRI.createVirtualRegister(RI.getBoolRC()); 1378 BuildMI(*MBB, I, DL, get(AMDGPU::V_CMP_NE_I32_e64), Reg) 1379 .addImm(Value) 1380 .addReg(SrcReg); 1381 1382 return Reg; 1383 } 1384 1385 unsigned SIInstrInfo::getMovOpcode(const TargetRegisterClass *DstRC) const { 1386 1387 if (RI.isAGPRClass(DstRC)) 1388 return AMDGPU::COPY; 1389 if (RI.getRegSizeInBits(*DstRC) == 16) { 1390 // Assume hi bits are unneeded. Only _e64 true16 instructions are legal 1391 // before RA. 1392 return RI.isSGPRClass(DstRC) ? AMDGPU::COPY : AMDGPU::V_MOV_B16_t16_e64; 1393 } 1394 if (RI.getRegSizeInBits(*DstRC) == 32) 1395 return RI.isSGPRClass(DstRC) ? AMDGPU::S_MOV_B32 : AMDGPU::V_MOV_B32_e32; 1396 if (RI.getRegSizeInBits(*DstRC) == 64 && RI.isSGPRClass(DstRC)) 1397 return AMDGPU::S_MOV_B64; 1398 if (RI.getRegSizeInBits(*DstRC) == 64 && !RI.isSGPRClass(DstRC)) 1399 return AMDGPU::V_MOV_B64_PSEUDO; 1400 return AMDGPU::COPY; 1401 } 1402 1403 const MCInstrDesc & 1404 SIInstrInfo::getIndirectGPRIDXPseudo(unsigned VecSize, 1405 bool IsIndirectSrc) const { 1406 if (IsIndirectSrc) { 1407 if (VecSize <= 32) // 4 bytes 1408 return get(AMDGPU::V_INDIRECT_REG_READ_GPR_IDX_B32_V1); 1409 if (VecSize <= 64) // 8 bytes 1410 return get(AMDGPU::V_INDIRECT_REG_READ_GPR_IDX_B32_V2); 1411 if (VecSize <= 96) // 12 bytes 1412 return get(AMDGPU::V_INDIRECT_REG_READ_GPR_IDX_B32_V3); 1413 if (VecSize <= 128) // 16 bytes 1414 return get(AMDGPU::V_INDIRECT_REG_READ_GPR_IDX_B32_V4); 1415 if (VecSize <= 160) // 20 bytes 1416 return get(AMDGPU::V_INDIRECT_REG_READ_GPR_IDX_B32_V5); 1417 if (VecSize <= 256) // 32 bytes 1418 return get(AMDGPU::V_INDIRECT_REG_READ_GPR_IDX_B32_V8); 1419 if (VecSize <= 288) // 36 bytes 1420 return get(AMDGPU::V_INDIRECT_REG_READ_GPR_IDX_B32_V9); 1421 if (VecSize <= 320) // 40 bytes 1422 return get(AMDGPU::V_INDIRECT_REG_READ_GPR_IDX_B32_V10); 1423 if (VecSize <= 352) // 44 bytes 1424 return get(AMDGPU::V_INDIRECT_REG_READ_GPR_IDX_B32_V11); 1425 if (VecSize <= 384) // 48 bytes 1426 return get(AMDGPU::V_INDIRECT_REG_READ_GPR_IDX_B32_V12); 1427 if (VecSize <= 512) // 64 bytes 1428 return get(AMDGPU::V_INDIRECT_REG_READ_GPR_IDX_B32_V16); 1429 if (VecSize <= 1024) // 128 bytes 1430 return get(AMDGPU::V_INDIRECT_REG_READ_GPR_IDX_B32_V32); 1431 1432 llvm_unreachable("unsupported size for IndirectRegReadGPRIDX pseudos"); 1433 } 1434 1435 if (VecSize <= 32) // 4 bytes 1436 return get(AMDGPU::V_INDIRECT_REG_WRITE_GPR_IDX_B32_V1); 1437 if (VecSize <= 64) // 8 bytes 1438 return get(AMDGPU::V_INDIRECT_REG_WRITE_GPR_IDX_B32_V2); 1439 if (VecSize <= 96) // 12 bytes 1440 return get(AMDGPU::V_INDIRECT_REG_WRITE_GPR_IDX_B32_V3); 1441 if (VecSize <= 128) // 16 bytes 1442 return get(AMDGPU::V_INDIRECT_REG_WRITE_GPR_IDX_B32_V4); 1443 if (VecSize <= 160) // 20 bytes 1444 return get(AMDGPU::V_INDIRECT_REG_WRITE_GPR_IDX_B32_V5); 1445 if (VecSize <= 256) // 32 bytes 1446 return get(AMDGPU::V_INDIRECT_REG_WRITE_GPR_IDX_B32_V8); 1447 if (VecSize <= 288) // 36 bytes 1448 return get(AMDGPU::V_INDIRECT_REG_WRITE_GPR_IDX_B32_V9); 1449 if (VecSize <= 320) // 40 bytes 1450 return get(AMDGPU::V_INDIRECT_REG_WRITE_GPR_IDX_B32_V10); 1451 if (VecSize <= 352) // 44 bytes 1452 return get(AMDGPU::V_INDIRECT_REG_WRITE_GPR_IDX_B32_V11); 1453 if (VecSize <= 384) // 48 bytes 1454 return get(AMDGPU::V_INDIRECT_REG_WRITE_GPR_IDX_B32_V12); 1455 if (VecSize <= 512) // 64 bytes 1456 return get(AMDGPU::V_INDIRECT_REG_WRITE_GPR_IDX_B32_V16); 1457 if (VecSize <= 1024) // 128 bytes 1458 return get(AMDGPU::V_INDIRECT_REG_WRITE_GPR_IDX_B32_V32); 1459 1460 llvm_unreachable("unsupported size for IndirectRegWriteGPRIDX pseudos"); 1461 } 1462 1463 static unsigned getIndirectVGPRWriteMovRelPseudoOpc(unsigned VecSize) { 1464 if (VecSize <= 32) // 4 bytes 1465 return AMDGPU::V_INDIRECT_REG_WRITE_MOVREL_B32_V1; 1466 if (VecSize <= 64) // 8 bytes 1467 return AMDGPU::V_INDIRECT_REG_WRITE_MOVREL_B32_V2; 1468 if (VecSize <= 96) // 12 bytes 1469 return AMDGPU::V_INDIRECT_REG_WRITE_MOVREL_B32_V3; 1470 if (VecSize <= 128) // 16 bytes 1471 return AMDGPU::V_INDIRECT_REG_WRITE_MOVREL_B32_V4; 1472 if (VecSize <= 160) // 20 bytes 1473 return AMDGPU::V_INDIRECT_REG_WRITE_MOVREL_B32_V5; 1474 if (VecSize <= 256) // 32 bytes 1475 return AMDGPU::V_INDIRECT_REG_WRITE_MOVREL_B32_V8; 1476 if (VecSize <= 288) // 36 bytes 1477 return AMDGPU::V_INDIRECT_REG_WRITE_MOVREL_B32_V9; 1478 if (VecSize <= 320) // 40 bytes 1479 return AMDGPU::V_INDIRECT_REG_WRITE_MOVREL_B32_V10; 1480 if (VecSize <= 352) // 44 bytes 1481 return AMDGPU::V_INDIRECT_REG_WRITE_MOVREL_B32_V11; 1482 if (VecSize <= 384) // 48 bytes 1483 return AMDGPU::V_INDIRECT_REG_WRITE_MOVREL_B32_V12; 1484 if (VecSize <= 512) // 64 bytes 1485 return AMDGPU::V_INDIRECT_REG_WRITE_MOVREL_B32_V16; 1486 if (VecSize <= 1024) // 128 bytes 1487 return AMDGPU::V_INDIRECT_REG_WRITE_MOVREL_B32_V32; 1488 1489 llvm_unreachable("unsupported size for IndirectRegWrite pseudos"); 1490 } 1491 1492 static unsigned getIndirectSGPRWriteMovRelPseudo32(unsigned VecSize) { 1493 if (VecSize <= 32) // 4 bytes 1494 return AMDGPU::S_INDIRECT_REG_WRITE_MOVREL_B32_V1; 1495 if (VecSize <= 64) // 8 bytes 1496 return AMDGPU::S_INDIRECT_REG_WRITE_MOVREL_B32_V2; 1497 if (VecSize <= 96) // 12 bytes 1498 return AMDGPU::S_INDIRECT_REG_WRITE_MOVREL_B32_V3; 1499 if (VecSize <= 128) // 16 bytes 1500 return AMDGPU::S_INDIRECT_REG_WRITE_MOVREL_B32_V4; 1501 if (VecSize <= 160) // 20 bytes 1502 return AMDGPU::S_INDIRECT_REG_WRITE_MOVREL_B32_V5; 1503 if (VecSize <= 256) // 32 bytes 1504 return AMDGPU::S_INDIRECT_REG_WRITE_MOVREL_B32_V8; 1505 if (VecSize <= 288) // 36 bytes 1506 return AMDGPU::S_INDIRECT_REG_WRITE_MOVREL_B32_V9; 1507 if (VecSize <= 320) // 40 bytes 1508 return AMDGPU::S_INDIRECT_REG_WRITE_MOVREL_B32_V10; 1509 if (VecSize <= 352) // 44 bytes 1510 return AMDGPU::S_INDIRECT_REG_WRITE_MOVREL_B32_V11; 1511 if (VecSize <= 384) // 48 bytes 1512 return AMDGPU::S_INDIRECT_REG_WRITE_MOVREL_B32_V12; 1513 if (VecSize <= 512) // 64 bytes 1514 return AMDGPU::S_INDIRECT_REG_WRITE_MOVREL_B32_V16; 1515 if (VecSize <= 1024) // 128 bytes 1516 return AMDGPU::S_INDIRECT_REG_WRITE_MOVREL_B32_V32; 1517 1518 llvm_unreachable("unsupported size for IndirectRegWrite pseudos"); 1519 } 1520 1521 static unsigned getIndirectSGPRWriteMovRelPseudo64(unsigned VecSize) { 1522 if (VecSize <= 64) // 8 bytes 1523 return AMDGPU::S_INDIRECT_REG_WRITE_MOVREL_B64_V1; 1524 if (VecSize <= 128) // 16 bytes 1525 return AMDGPU::S_INDIRECT_REG_WRITE_MOVREL_B64_V2; 1526 if (VecSize <= 256) // 32 bytes 1527 return AMDGPU::S_INDIRECT_REG_WRITE_MOVREL_B64_V4; 1528 if (VecSize <= 512) // 64 bytes 1529 return AMDGPU::S_INDIRECT_REG_WRITE_MOVREL_B64_V8; 1530 if (VecSize <= 1024) // 128 bytes 1531 return AMDGPU::S_INDIRECT_REG_WRITE_MOVREL_B64_V16; 1532 1533 llvm_unreachable("unsupported size for IndirectRegWrite pseudos"); 1534 } 1535 1536 const MCInstrDesc & 1537 SIInstrInfo::getIndirectRegWriteMovRelPseudo(unsigned VecSize, unsigned EltSize, 1538 bool IsSGPR) const { 1539 if (IsSGPR) { 1540 switch (EltSize) { 1541 case 32: 1542 return get(getIndirectSGPRWriteMovRelPseudo32(VecSize)); 1543 case 64: 1544 return get(getIndirectSGPRWriteMovRelPseudo64(VecSize)); 1545 default: 1546 llvm_unreachable("invalid reg indexing elt size"); 1547 } 1548 } 1549 1550 assert(EltSize == 32 && "invalid reg indexing elt size"); 1551 return get(getIndirectVGPRWriteMovRelPseudoOpc(VecSize)); 1552 } 1553 1554 static unsigned getSGPRSpillSaveOpcode(unsigned Size) { 1555 switch (Size) { 1556 case 4: 1557 return AMDGPU::SI_SPILL_S32_SAVE; 1558 case 8: 1559 return AMDGPU::SI_SPILL_S64_SAVE; 1560 case 12: 1561 return AMDGPU::SI_SPILL_S96_SAVE; 1562 case 16: 1563 return AMDGPU::SI_SPILL_S128_SAVE; 1564 case 20: 1565 return AMDGPU::SI_SPILL_S160_SAVE; 1566 case 24: 1567 return AMDGPU::SI_SPILL_S192_SAVE; 1568 case 28: 1569 return AMDGPU::SI_SPILL_S224_SAVE; 1570 case 32: 1571 return AMDGPU::SI_SPILL_S256_SAVE; 1572 case 36: 1573 return AMDGPU::SI_SPILL_S288_SAVE; 1574 case 40: 1575 return AMDGPU::SI_SPILL_S320_SAVE; 1576 case 44: 1577 return AMDGPU::SI_SPILL_S352_SAVE; 1578 case 48: 1579 return AMDGPU::SI_SPILL_S384_SAVE; 1580 case 64: 1581 return AMDGPU::SI_SPILL_S512_SAVE; 1582 case 128: 1583 return AMDGPU::SI_SPILL_S1024_SAVE; 1584 default: 1585 llvm_unreachable("unknown register size"); 1586 } 1587 } 1588 1589 static unsigned getVGPRSpillSaveOpcode(unsigned Size) { 1590 switch (Size) { 1591 case 4: 1592 return AMDGPU::SI_SPILL_V32_SAVE; 1593 case 8: 1594 return AMDGPU::SI_SPILL_V64_SAVE; 1595 case 12: 1596 return AMDGPU::SI_SPILL_V96_SAVE; 1597 case 16: 1598 return AMDGPU::SI_SPILL_V128_SAVE; 1599 case 20: 1600 return AMDGPU::SI_SPILL_V160_SAVE; 1601 case 24: 1602 return AMDGPU::SI_SPILL_V192_SAVE; 1603 case 28: 1604 return AMDGPU::SI_SPILL_V224_SAVE; 1605 case 32: 1606 return AMDGPU::SI_SPILL_V256_SAVE; 1607 case 36: 1608 return AMDGPU::SI_SPILL_V288_SAVE; 1609 case 40: 1610 return AMDGPU::SI_SPILL_V320_SAVE; 1611 case 44: 1612 return AMDGPU::SI_SPILL_V352_SAVE; 1613 case 48: 1614 return AMDGPU::SI_SPILL_V384_SAVE; 1615 case 64: 1616 return AMDGPU::SI_SPILL_V512_SAVE; 1617 case 128: 1618 return AMDGPU::SI_SPILL_V1024_SAVE; 1619 default: 1620 llvm_unreachable("unknown register size"); 1621 } 1622 } 1623 1624 static unsigned getAGPRSpillSaveOpcode(unsigned Size) { 1625 switch (Size) { 1626 case 4: 1627 return AMDGPU::SI_SPILL_A32_SAVE; 1628 case 8: 1629 return AMDGPU::SI_SPILL_A64_SAVE; 1630 case 12: 1631 return AMDGPU::SI_SPILL_A96_SAVE; 1632 case 16: 1633 return AMDGPU::SI_SPILL_A128_SAVE; 1634 case 20: 1635 return AMDGPU::SI_SPILL_A160_SAVE; 1636 case 24: 1637 return AMDGPU::SI_SPILL_A192_SAVE; 1638 case 28: 1639 return AMDGPU::SI_SPILL_A224_SAVE; 1640 case 32: 1641 return AMDGPU::SI_SPILL_A256_SAVE; 1642 case 36: 1643 return AMDGPU::SI_SPILL_A288_SAVE; 1644 case 40: 1645 return AMDGPU::SI_SPILL_A320_SAVE; 1646 case 44: 1647 return AMDGPU::SI_SPILL_A352_SAVE; 1648 case 48: 1649 return AMDGPU::SI_SPILL_A384_SAVE; 1650 case 64: 1651 return AMDGPU::SI_SPILL_A512_SAVE; 1652 case 128: 1653 return AMDGPU::SI_SPILL_A1024_SAVE; 1654 default: 1655 llvm_unreachable("unknown register size"); 1656 } 1657 } 1658 1659 static unsigned getAVSpillSaveOpcode(unsigned Size) { 1660 switch (Size) { 1661 case 4: 1662 return AMDGPU::SI_SPILL_AV32_SAVE; 1663 case 8: 1664 return AMDGPU::SI_SPILL_AV64_SAVE; 1665 case 12: 1666 return AMDGPU::SI_SPILL_AV96_SAVE; 1667 case 16: 1668 return AMDGPU::SI_SPILL_AV128_SAVE; 1669 case 20: 1670 return AMDGPU::SI_SPILL_AV160_SAVE; 1671 case 24: 1672 return AMDGPU::SI_SPILL_AV192_SAVE; 1673 case 28: 1674 return AMDGPU::SI_SPILL_AV224_SAVE; 1675 case 32: 1676 return AMDGPU::SI_SPILL_AV256_SAVE; 1677 case 36: 1678 return AMDGPU::SI_SPILL_AV288_SAVE; 1679 case 40: 1680 return AMDGPU::SI_SPILL_AV320_SAVE; 1681 case 44: 1682 return AMDGPU::SI_SPILL_AV352_SAVE; 1683 case 48: 1684 return AMDGPU::SI_SPILL_AV384_SAVE; 1685 case 64: 1686 return AMDGPU::SI_SPILL_AV512_SAVE; 1687 case 128: 1688 return AMDGPU::SI_SPILL_AV1024_SAVE; 1689 default: 1690 llvm_unreachable("unknown register size"); 1691 } 1692 } 1693 1694 static unsigned getWWMRegSpillSaveOpcode(unsigned Size, 1695 bool IsVectorSuperClass) { 1696 // Currently, there is only 32-bit WWM register spills needed. 1697 if (Size != 4) 1698 llvm_unreachable("unknown wwm register spill size"); 1699 1700 if (IsVectorSuperClass) 1701 return AMDGPU::SI_SPILL_WWM_AV32_SAVE; 1702 1703 return AMDGPU::SI_SPILL_WWM_V32_SAVE; 1704 } 1705 1706 static unsigned getVectorRegSpillSaveOpcode(Register Reg, 1707 const TargetRegisterClass *RC, 1708 unsigned Size, 1709 const SIRegisterInfo &TRI, 1710 const SIMachineFunctionInfo &MFI) { 1711 bool IsVectorSuperClass = TRI.isVectorSuperClass(RC); 1712 1713 // Choose the right opcode if spilling a WWM register. 1714 if (MFI.checkFlag(Reg, AMDGPU::VirtRegFlag::WWM_REG)) 1715 return getWWMRegSpillSaveOpcode(Size, IsVectorSuperClass); 1716 1717 if (IsVectorSuperClass) 1718 return getAVSpillSaveOpcode(Size); 1719 1720 return TRI.isAGPRClass(RC) ? getAGPRSpillSaveOpcode(Size) 1721 : getVGPRSpillSaveOpcode(Size); 1722 } 1723 1724 void SIInstrInfo::storeRegToStackSlot( 1725 MachineBasicBlock &MBB, MachineBasicBlock::iterator MI, Register SrcReg, 1726 bool isKill, int FrameIndex, const TargetRegisterClass *RC, 1727 const TargetRegisterInfo *TRI, Register VReg, 1728 MachineInstr::MIFlag Flags) const { 1729 MachineFunction *MF = MBB.getParent(); 1730 SIMachineFunctionInfo *MFI = MF->getInfo<SIMachineFunctionInfo>(); 1731 MachineFrameInfo &FrameInfo = MF->getFrameInfo(); 1732 const DebugLoc &DL = MBB.findDebugLoc(MI); 1733 1734 MachinePointerInfo PtrInfo 1735 = MachinePointerInfo::getFixedStack(*MF, FrameIndex); 1736 MachineMemOperand *MMO = MF->getMachineMemOperand( 1737 PtrInfo, MachineMemOperand::MOStore, FrameInfo.getObjectSize(FrameIndex), 1738 FrameInfo.getObjectAlign(FrameIndex)); 1739 unsigned SpillSize = TRI->getSpillSize(*RC); 1740 1741 MachineRegisterInfo &MRI = MF->getRegInfo(); 1742 if (RI.isSGPRClass(RC)) { 1743 MFI->setHasSpilledSGPRs(); 1744 assert(SrcReg != AMDGPU::M0 && "m0 should not be spilled"); 1745 assert(SrcReg != AMDGPU::EXEC_LO && SrcReg != AMDGPU::EXEC_HI && 1746 SrcReg != AMDGPU::EXEC && "exec should not be spilled"); 1747 1748 // We are only allowed to create one new instruction when spilling 1749 // registers, so we need to use pseudo instruction for spilling SGPRs. 1750 const MCInstrDesc &OpDesc = get(getSGPRSpillSaveOpcode(SpillSize)); 1751 1752 // The SGPR spill/restore instructions only work on number sgprs, so we need 1753 // to make sure we are using the correct register class. 1754 if (SrcReg.isVirtual() && SpillSize == 4) { 1755 MRI.constrainRegClass(SrcReg, &AMDGPU::SReg_32_XM0_XEXECRegClass); 1756 } 1757 1758 BuildMI(MBB, MI, DL, OpDesc) 1759 .addReg(SrcReg, getKillRegState(isKill)) // data 1760 .addFrameIndex(FrameIndex) // addr 1761 .addMemOperand(MMO) 1762 .addReg(MFI->getStackPtrOffsetReg(), RegState::Implicit); 1763 1764 if (RI.spillSGPRToVGPR()) 1765 FrameInfo.setStackID(FrameIndex, TargetStackID::SGPRSpill); 1766 return; 1767 } 1768 1769 unsigned Opcode = getVectorRegSpillSaveOpcode(VReg ? VReg : SrcReg, RC, 1770 SpillSize, RI, *MFI); 1771 MFI->setHasSpilledVGPRs(); 1772 1773 BuildMI(MBB, MI, DL, get(Opcode)) 1774 .addReg(SrcReg, getKillRegState(isKill)) // data 1775 .addFrameIndex(FrameIndex) // addr 1776 .addReg(MFI->getStackPtrOffsetReg()) // scratch_offset 1777 .addImm(0) // offset 1778 .addMemOperand(MMO); 1779 } 1780 1781 static unsigned getSGPRSpillRestoreOpcode(unsigned Size) { 1782 switch (Size) { 1783 case 4: 1784 return AMDGPU::SI_SPILL_S32_RESTORE; 1785 case 8: 1786 return AMDGPU::SI_SPILL_S64_RESTORE; 1787 case 12: 1788 return AMDGPU::SI_SPILL_S96_RESTORE; 1789 case 16: 1790 return AMDGPU::SI_SPILL_S128_RESTORE; 1791 case 20: 1792 return AMDGPU::SI_SPILL_S160_RESTORE; 1793 case 24: 1794 return AMDGPU::SI_SPILL_S192_RESTORE; 1795 case 28: 1796 return AMDGPU::SI_SPILL_S224_RESTORE; 1797 case 32: 1798 return AMDGPU::SI_SPILL_S256_RESTORE; 1799 case 36: 1800 return AMDGPU::SI_SPILL_S288_RESTORE; 1801 case 40: 1802 return AMDGPU::SI_SPILL_S320_RESTORE; 1803 case 44: 1804 return AMDGPU::SI_SPILL_S352_RESTORE; 1805 case 48: 1806 return AMDGPU::SI_SPILL_S384_RESTORE; 1807 case 64: 1808 return AMDGPU::SI_SPILL_S512_RESTORE; 1809 case 128: 1810 return AMDGPU::SI_SPILL_S1024_RESTORE; 1811 default: 1812 llvm_unreachable("unknown register size"); 1813 } 1814 } 1815 1816 static unsigned getVGPRSpillRestoreOpcode(unsigned Size) { 1817 switch (Size) { 1818 case 4: 1819 return AMDGPU::SI_SPILL_V32_RESTORE; 1820 case 8: 1821 return AMDGPU::SI_SPILL_V64_RESTORE; 1822 case 12: 1823 return AMDGPU::SI_SPILL_V96_RESTORE; 1824 case 16: 1825 return AMDGPU::SI_SPILL_V128_RESTORE; 1826 case 20: 1827 return AMDGPU::SI_SPILL_V160_RESTORE; 1828 case 24: 1829 return AMDGPU::SI_SPILL_V192_RESTORE; 1830 case 28: 1831 return AMDGPU::SI_SPILL_V224_RESTORE; 1832 case 32: 1833 return AMDGPU::SI_SPILL_V256_RESTORE; 1834 case 36: 1835 return AMDGPU::SI_SPILL_V288_RESTORE; 1836 case 40: 1837 return AMDGPU::SI_SPILL_V320_RESTORE; 1838 case 44: 1839 return AMDGPU::SI_SPILL_V352_RESTORE; 1840 case 48: 1841 return AMDGPU::SI_SPILL_V384_RESTORE; 1842 case 64: 1843 return AMDGPU::SI_SPILL_V512_RESTORE; 1844 case 128: 1845 return AMDGPU::SI_SPILL_V1024_RESTORE; 1846 default: 1847 llvm_unreachable("unknown register size"); 1848 } 1849 } 1850 1851 static unsigned getAGPRSpillRestoreOpcode(unsigned Size) { 1852 switch (Size) { 1853 case 4: 1854 return AMDGPU::SI_SPILL_A32_RESTORE; 1855 case 8: 1856 return AMDGPU::SI_SPILL_A64_RESTORE; 1857 case 12: 1858 return AMDGPU::SI_SPILL_A96_RESTORE; 1859 case 16: 1860 return AMDGPU::SI_SPILL_A128_RESTORE; 1861 case 20: 1862 return AMDGPU::SI_SPILL_A160_RESTORE; 1863 case 24: 1864 return AMDGPU::SI_SPILL_A192_RESTORE; 1865 case 28: 1866 return AMDGPU::SI_SPILL_A224_RESTORE; 1867 case 32: 1868 return AMDGPU::SI_SPILL_A256_RESTORE; 1869 case 36: 1870 return AMDGPU::SI_SPILL_A288_RESTORE; 1871 case 40: 1872 return AMDGPU::SI_SPILL_A320_RESTORE; 1873 case 44: 1874 return AMDGPU::SI_SPILL_A352_RESTORE; 1875 case 48: 1876 return AMDGPU::SI_SPILL_A384_RESTORE; 1877 case 64: 1878 return AMDGPU::SI_SPILL_A512_RESTORE; 1879 case 128: 1880 return AMDGPU::SI_SPILL_A1024_RESTORE; 1881 default: 1882 llvm_unreachable("unknown register size"); 1883 } 1884 } 1885 1886 static unsigned getAVSpillRestoreOpcode(unsigned Size) { 1887 switch (Size) { 1888 case 4: 1889 return AMDGPU::SI_SPILL_AV32_RESTORE; 1890 case 8: 1891 return AMDGPU::SI_SPILL_AV64_RESTORE; 1892 case 12: 1893 return AMDGPU::SI_SPILL_AV96_RESTORE; 1894 case 16: 1895 return AMDGPU::SI_SPILL_AV128_RESTORE; 1896 case 20: 1897 return AMDGPU::SI_SPILL_AV160_RESTORE; 1898 case 24: 1899 return AMDGPU::SI_SPILL_AV192_RESTORE; 1900 case 28: 1901 return AMDGPU::SI_SPILL_AV224_RESTORE; 1902 case 32: 1903 return AMDGPU::SI_SPILL_AV256_RESTORE; 1904 case 36: 1905 return AMDGPU::SI_SPILL_AV288_RESTORE; 1906 case 40: 1907 return AMDGPU::SI_SPILL_AV320_RESTORE; 1908 case 44: 1909 return AMDGPU::SI_SPILL_AV352_RESTORE; 1910 case 48: 1911 return AMDGPU::SI_SPILL_AV384_RESTORE; 1912 case 64: 1913 return AMDGPU::SI_SPILL_AV512_RESTORE; 1914 case 128: 1915 return AMDGPU::SI_SPILL_AV1024_RESTORE; 1916 default: 1917 llvm_unreachable("unknown register size"); 1918 } 1919 } 1920 1921 static unsigned getWWMRegSpillRestoreOpcode(unsigned Size, 1922 bool IsVectorSuperClass) { 1923 // Currently, there is only 32-bit WWM register spills needed. 1924 if (Size != 4) 1925 llvm_unreachable("unknown wwm register spill size"); 1926 1927 if (IsVectorSuperClass) 1928 return AMDGPU::SI_SPILL_WWM_AV32_RESTORE; 1929 1930 return AMDGPU::SI_SPILL_WWM_V32_RESTORE; 1931 } 1932 1933 static unsigned 1934 getVectorRegSpillRestoreOpcode(Register Reg, const TargetRegisterClass *RC, 1935 unsigned Size, const SIRegisterInfo &TRI, 1936 const SIMachineFunctionInfo &MFI) { 1937 bool IsVectorSuperClass = TRI.isVectorSuperClass(RC); 1938 1939 // Choose the right opcode if restoring a WWM register. 1940 if (MFI.checkFlag(Reg, AMDGPU::VirtRegFlag::WWM_REG)) 1941 return getWWMRegSpillRestoreOpcode(Size, IsVectorSuperClass); 1942 1943 if (IsVectorSuperClass) 1944 return getAVSpillRestoreOpcode(Size); 1945 1946 return TRI.isAGPRClass(RC) ? getAGPRSpillRestoreOpcode(Size) 1947 : getVGPRSpillRestoreOpcode(Size); 1948 } 1949 1950 void SIInstrInfo::loadRegFromStackSlot(MachineBasicBlock &MBB, 1951 MachineBasicBlock::iterator MI, 1952 Register DestReg, int FrameIndex, 1953 const TargetRegisterClass *RC, 1954 const TargetRegisterInfo *TRI, 1955 Register VReg, 1956 MachineInstr::MIFlag Flags) const { 1957 MachineFunction *MF = MBB.getParent(); 1958 SIMachineFunctionInfo *MFI = MF->getInfo<SIMachineFunctionInfo>(); 1959 MachineFrameInfo &FrameInfo = MF->getFrameInfo(); 1960 const DebugLoc &DL = MBB.findDebugLoc(MI); 1961 unsigned SpillSize = TRI->getSpillSize(*RC); 1962 1963 MachinePointerInfo PtrInfo 1964 = MachinePointerInfo::getFixedStack(*MF, FrameIndex); 1965 1966 MachineMemOperand *MMO = MF->getMachineMemOperand( 1967 PtrInfo, MachineMemOperand::MOLoad, FrameInfo.getObjectSize(FrameIndex), 1968 FrameInfo.getObjectAlign(FrameIndex)); 1969 1970 if (RI.isSGPRClass(RC)) { 1971 MFI->setHasSpilledSGPRs(); 1972 assert(DestReg != AMDGPU::M0 && "m0 should not be reloaded into"); 1973 assert(DestReg != AMDGPU::EXEC_LO && DestReg != AMDGPU::EXEC_HI && 1974 DestReg != AMDGPU::EXEC && "exec should not be spilled"); 1975 1976 // FIXME: Maybe this should not include a memoperand because it will be 1977 // lowered to non-memory instructions. 1978 const MCInstrDesc &OpDesc = get(getSGPRSpillRestoreOpcode(SpillSize)); 1979 if (DestReg.isVirtual() && SpillSize == 4) { 1980 MachineRegisterInfo &MRI = MF->getRegInfo(); 1981 MRI.constrainRegClass(DestReg, &AMDGPU::SReg_32_XM0_XEXECRegClass); 1982 } 1983 1984 if (RI.spillSGPRToVGPR()) 1985 FrameInfo.setStackID(FrameIndex, TargetStackID::SGPRSpill); 1986 BuildMI(MBB, MI, DL, OpDesc, DestReg) 1987 .addFrameIndex(FrameIndex) // addr 1988 .addMemOperand(MMO) 1989 .addReg(MFI->getStackPtrOffsetReg(), RegState::Implicit); 1990 1991 return; 1992 } 1993 1994 unsigned Opcode = getVectorRegSpillRestoreOpcode(VReg ? VReg : DestReg, RC, 1995 SpillSize, RI, *MFI); 1996 BuildMI(MBB, MI, DL, get(Opcode), DestReg) 1997 .addFrameIndex(FrameIndex) // vaddr 1998 .addReg(MFI->getStackPtrOffsetReg()) // scratch_offset 1999 .addImm(0) // offset 2000 .addMemOperand(MMO); 2001 } 2002 2003 void SIInstrInfo::insertNoop(MachineBasicBlock &MBB, 2004 MachineBasicBlock::iterator MI) const { 2005 insertNoops(MBB, MI, 1); 2006 } 2007 2008 void SIInstrInfo::insertNoops(MachineBasicBlock &MBB, 2009 MachineBasicBlock::iterator MI, 2010 unsigned Quantity) const { 2011 DebugLoc DL = MBB.findDebugLoc(MI); 2012 while (Quantity > 0) { 2013 unsigned Arg = std::min(Quantity, 8u); 2014 Quantity -= Arg; 2015 BuildMI(MBB, MI, DL, get(AMDGPU::S_NOP)).addImm(Arg - 1); 2016 } 2017 } 2018 2019 void SIInstrInfo::insertReturn(MachineBasicBlock &MBB) const { 2020 auto *MF = MBB.getParent(); 2021 SIMachineFunctionInfo *Info = MF->getInfo<SIMachineFunctionInfo>(); 2022 2023 assert(Info->isEntryFunction()); 2024 2025 if (MBB.succ_empty()) { 2026 bool HasNoTerminator = MBB.getFirstTerminator() == MBB.end(); 2027 if (HasNoTerminator) { 2028 if (Info->returnsVoid()) { 2029 BuildMI(MBB, MBB.end(), DebugLoc(), get(AMDGPU::S_ENDPGM)).addImm(0); 2030 } else { 2031 BuildMI(MBB, MBB.end(), DebugLoc(), get(AMDGPU::SI_RETURN_TO_EPILOG)); 2032 } 2033 } 2034 } 2035 } 2036 2037 MachineBasicBlock *SIInstrInfo::insertSimulatedTrap(MachineRegisterInfo &MRI, 2038 MachineBasicBlock &MBB, 2039 MachineInstr &MI, 2040 const DebugLoc &DL) const { 2041 MachineFunction *MF = MBB.getParent(); 2042 constexpr unsigned DoorbellIDMask = 0x3ff; 2043 constexpr unsigned ECQueueWaveAbort = 0x400; 2044 2045 MachineBasicBlock *TrapBB = &MBB; 2046 MachineBasicBlock *ContBB = &MBB; 2047 MachineBasicBlock *HaltLoopBB = MF->CreateMachineBasicBlock(); 2048 2049 if (!MBB.succ_empty() || std::next(MI.getIterator()) != MBB.end()) { 2050 ContBB = MBB.splitAt(MI, /*UpdateLiveIns=*/false); 2051 TrapBB = MF->CreateMachineBasicBlock(); 2052 BuildMI(MBB, MI, DL, get(AMDGPU::S_CBRANCH_EXECNZ)).addMBB(TrapBB); 2053 MF->push_back(TrapBB); 2054 MBB.addSuccessor(TrapBB); 2055 } 2056 2057 // Start with a `s_trap 2`, if we're in PRIV=1 and we need the workaround this 2058 // will be a nop. 2059 BuildMI(*TrapBB, TrapBB->end(), DL, get(AMDGPU::S_TRAP)) 2060 .addImm(static_cast<unsigned>(GCNSubtarget::TrapID::LLVMAMDHSATrap)); 2061 Register DoorbellReg = MRI.createVirtualRegister(&AMDGPU::SReg_32RegClass); 2062 BuildMI(*TrapBB, TrapBB->end(), DL, get(AMDGPU::S_SENDMSG_RTN_B32), 2063 DoorbellReg) 2064 .addImm(AMDGPU::SendMsg::ID_RTN_GET_DOORBELL); 2065 BuildMI(*TrapBB, TrapBB->end(), DL, get(AMDGPU::S_MOV_B32), AMDGPU::TTMP2) 2066 .addUse(AMDGPU::M0); 2067 Register DoorbellRegMasked = 2068 MRI.createVirtualRegister(&AMDGPU::SReg_32RegClass); 2069 BuildMI(*TrapBB, TrapBB->end(), DL, get(AMDGPU::S_AND_B32), DoorbellRegMasked) 2070 .addUse(DoorbellReg) 2071 .addImm(DoorbellIDMask); 2072 Register SetWaveAbortBit = 2073 MRI.createVirtualRegister(&AMDGPU::SReg_32RegClass); 2074 BuildMI(*TrapBB, TrapBB->end(), DL, get(AMDGPU::S_OR_B32), SetWaveAbortBit) 2075 .addUse(DoorbellRegMasked) 2076 .addImm(ECQueueWaveAbort); 2077 BuildMI(*TrapBB, TrapBB->end(), DL, get(AMDGPU::S_MOV_B32), AMDGPU::M0) 2078 .addUse(SetWaveAbortBit); 2079 BuildMI(*TrapBB, TrapBB->end(), DL, get(AMDGPU::S_SENDMSG)) 2080 .addImm(AMDGPU::SendMsg::ID_INTERRUPT); 2081 BuildMI(*TrapBB, TrapBB->end(), DL, get(AMDGPU::S_MOV_B32), AMDGPU::M0) 2082 .addUse(AMDGPU::TTMP2); 2083 BuildMI(*TrapBB, TrapBB->end(), DL, get(AMDGPU::S_BRANCH)).addMBB(HaltLoopBB); 2084 TrapBB->addSuccessor(HaltLoopBB); 2085 2086 BuildMI(*HaltLoopBB, HaltLoopBB->end(), DL, get(AMDGPU::S_SETHALT)).addImm(5); 2087 BuildMI(*HaltLoopBB, HaltLoopBB->end(), DL, get(AMDGPU::S_BRANCH)) 2088 .addMBB(HaltLoopBB); 2089 MF->push_back(HaltLoopBB); 2090 HaltLoopBB->addSuccessor(HaltLoopBB); 2091 2092 return ContBB; 2093 } 2094 2095 unsigned SIInstrInfo::getNumWaitStates(const MachineInstr &MI) { 2096 switch (MI.getOpcode()) { 2097 default: 2098 if (MI.isMetaInstruction()) 2099 return 0; 2100 return 1; // FIXME: Do wait states equal cycles? 2101 2102 case AMDGPU::S_NOP: 2103 return MI.getOperand(0).getImm() + 1; 2104 // SI_RETURN_TO_EPILOG is a fallthrough to code outside of the function. The 2105 // hazard, even if one exist, won't really be visible. Should we handle it? 2106 } 2107 } 2108 2109 bool SIInstrInfo::expandPostRAPseudo(MachineInstr &MI) const { 2110 MachineBasicBlock &MBB = *MI.getParent(); 2111 DebugLoc DL = MBB.findDebugLoc(MI); 2112 switch (MI.getOpcode()) { 2113 default: return TargetInstrInfo::expandPostRAPseudo(MI); 2114 case AMDGPU::S_MOV_B64_term: 2115 // This is only a terminator to get the correct spill code placement during 2116 // register allocation. 2117 MI.setDesc(get(AMDGPU::S_MOV_B64)); 2118 break; 2119 2120 case AMDGPU::S_MOV_B32_term: 2121 // This is only a terminator to get the correct spill code placement during 2122 // register allocation. 2123 MI.setDesc(get(AMDGPU::S_MOV_B32)); 2124 break; 2125 2126 case AMDGPU::S_XOR_B64_term: 2127 // This is only a terminator to get the correct spill code placement during 2128 // register allocation. 2129 MI.setDesc(get(AMDGPU::S_XOR_B64)); 2130 break; 2131 2132 case AMDGPU::S_XOR_B32_term: 2133 // This is only a terminator to get the correct spill code placement during 2134 // register allocation. 2135 MI.setDesc(get(AMDGPU::S_XOR_B32)); 2136 break; 2137 case AMDGPU::S_OR_B64_term: 2138 // This is only a terminator to get the correct spill code placement during 2139 // register allocation. 2140 MI.setDesc(get(AMDGPU::S_OR_B64)); 2141 break; 2142 case AMDGPU::S_OR_B32_term: 2143 // This is only a terminator to get the correct spill code placement during 2144 // register allocation. 2145 MI.setDesc(get(AMDGPU::S_OR_B32)); 2146 break; 2147 2148 case AMDGPU::S_ANDN2_B64_term: 2149 // This is only a terminator to get the correct spill code placement during 2150 // register allocation. 2151 MI.setDesc(get(AMDGPU::S_ANDN2_B64)); 2152 break; 2153 2154 case AMDGPU::S_ANDN2_B32_term: 2155 // This is only a terminator to get the correct spill code placement during 2156 // register allocation. 2157 MI.setDesc(get(AMDGPU::S_ANDN2_B32)); 2158 break; 2159 2160 case AMDGPU::S_AND_B64_term: 2161 // This is only a terminator to get the correct spill code placement during 2162 // register allocation. 2163 MI.setDesc(get(AMDGPU::S_AND_B64)); 2164 break; 2165 2166 case AMDGPU::S_AND_B32_term: 2167 // This is only a terminator to get the correct spill code placement during 2168 // register allocation. 2169 MI.setDesc(get(AMDGPU::S_AND_B32)); 2170 break; 2171 2172 case AMDGPU::S_AND_SAVEEXEC_B64_term: 2173 // This is only a terminator to get the correct spill code placement during 2174 // register allocation. 2175 MI.setDesc(get(AMDGPU::S_AND_SAVEEXEC_B64)); 2176 break; 2177 2178 case AMDGPU::S_AND_SAVEEXEC_B32_term: 2179 // This is only a terminator to get the correct spill code placement during 2180 // register allocation. 2181 MI.setDesc(get(AMDGPU::S_AND_SAVEEXEC_B32)); 2182 break; 2183 2184 case AMDGPU::SI_SPILL_S32_TO_VGPR: 2185 MI.setDesc(get(AMDGPU::V_WRITELANE_B32)); 2186 break; 2187 2188 case AMDGPU::SI_RESTORE_S32_FROM_VGPR: 2189 MI.setDesc(get(AMDGPU::V_READLANE_B32)); 2190 break; 2191 2192 case AMDGPU::V_MOV_B64_PSEUDO: { 2193 Register Dst = MI.getOperand(0).getReg(); 2194 Register DstLo = RI.getSubReg(Dst, AMDGPU::sub0); 2195 Register DstHi = RI.getSubReg(Dst, AMDGPU::sub1); 2196 2197 const MachineOperand &SrcOp = MI.getOperand(1); 2198 // FIXME: Will this work for 64-bit floating point immediates? 2199 assert(!SrcOp.isFPImm()); 2200 if (ST.hasMovB64()) { 2201 MI.setDesc(get(AMDGPU::V_MOV_B64_e32)); 2202 if (SrcOp.isReg() || isInlineConstant(MI, 1) || 2203 isUInt<32>(SrcOp.getImm())) 2204 break; 2205 } 2206 if (SrcOp.isImm()) { 2207 APInt Imm(64, SrcOp.getImm()); 2208 APInt Lo(32, Imm.getLoBits(32).getZExtValue()); 2209 APInt Hi(32, Imm.getHiBits(32).getZExtValue()); 2210 if (ST.hasPkMovB32() && Lo == Hi && isInlineConstant(Lo)) { 2211 BuildMI(MBB, MI, DL, get(AMDGPU::V_PK_MOV_B32), Dst) 2212 .addImm(SISrcMods::OP_SEL_1) 2213 .addImm(Lo.getSExtValue()) 2214 .addImm(SISrcMods::OP_SEL_1) 2215 .addImm(Lo.getSExtValue()) 2216 .addImm(0) // op_sel_lo 2217 .addImm(0) // op_sel_hi 2218 .addImm(0) // neg_lo 2219 .addImm(0) // neg_hi 2220 .addImm(0); // clamp 2221 } else { 2222 BuildMI(MBB, MI, DL, get(AMDGPU::V_MOV_B32_e32), DstLo) 2223 .addImm(Lo.getSExtValue()) 2224 .addReg(Dst, RegState::Implicit | RegState::Define); 2225 BuildMI(MBB, MI, DL, get(AMDGPU::V_MOV_B32_e32), DstHi) 2226 .addImm(Hi.getSExtValue()) 2227 .addReg(Dst, RegState::Implicit | RegState::Define); 2228 } 2229 } else { 2230 assert(SrcOp.isReg()); 2231 if (ST.hasPkMovB32() && 2232 !RI.isAGPR(MBB.getParent()->getRegInfo(), SrcOp.getReg())) { 2233 BuildMI(MBB, MI, DL, get(AMDGPU::V_PK_MOV_B32), Dst) 2234 .addImm(SISrcMods::OP_SEL_1) // src0_mod 2235 .addReg(SrcOp.getReg()) 2236 .addImm(SISrcMods::OP_SEL_0 | SISrcMods::OP_SEL_1) // src1_mod 2237 .addReg(SrcOp.getReg()) 2238 .addImm(0) // op_sel_lo 2239 .addImm(0) // op_sel_hi 2240 .addImm(0) // neg_lo 2241 .addImm(0) // neg_hi 2242 .addImm(0); // clamp 2243 } else { 2244 BuildMI(MBB, MI, DL, get(AMDGPU::V_MOV_B32_e32), DstLo) 2245 .addReg(RI.getSubReg(SrcOp.getReg(), AMDGPU::sub0)) 2246 .addReg(Dst, RegState::Implicit | RegState::Define); 2247 BuildMI(MBB, MI, DL, get(AMDGPU::V_MOV_B32_e32), DstHi) 2248 .addReg(RI.getSubReg(SrcOp.getReg(), AMDGPU::sub1)) 2249 .addReg(Dst, RegState::Implicit | RegState::Define); 2250 } 2251 } 2252 MI.eraseFromParent(); 2253 break; 2254 } 2255 case AMDGPU::V_MOV_B64_DPP_PSEUDO: { 2256 expandMovDPP64(MI); 2257 break; 2258 } 2259 case AMDGPU::S_MOV_B64_IMM_PSEUDO: { 2260 const MachineOperand &SrcOp = MI.getOperand(1); 2261 assert(!SrcOp.isFPImm()); 2262 APInt Imm(64, SrcOp.getImm()); 2263 if (Imm.isIntN(32) || isInlineConstant(Imm)) { 2264 MI.setDesc(get(AMDGPU::S_MOV_B64)); 2265 break; 2266 } 2267 2268 Register Dst = MI.getOperand(0).getReg(); 2269 Register DstLo = RI.getSubReg(Dst, AMDGPU::sub0); 2270 Register DstHi = RI.getSubReg(Dst, AMDGPU::sub1); 2271 2272 APInt Lo(32, Imm.getLoBits(32).getZExtValue()); 2273 APInt Hi(32, Imm.getHiBits(32).getZExtValue()); 2274 BuildMI(MBB, MI, DL, get(AMDGPU::S_MOV_B32), DstLo) 2275 .addImm(Lo.getSExtValue()) 2276 .addReg(Dst, RegState::Implicit | RegState::Define); 2277 BuildMI(MBB, MI, DL, get(AMDGPU::S_MOV_B32), DstHi) 2278 .addImm(Hi.getSExtValue()) 2279 .addReg(Dst, RegState::Implicit | RegState::Define); 2280 MI.eraseFromParent(); 2281 break; 2282 } 2283 case AMDGPU::V_SET_INACTIVE_B32: { 2284 // Lower V_SET_INACTIVE_B32 to V_CNDMASK_B32. 2285 Register DstReg = MI.getOperand(0).getReg(); 2286 BuildMI(MBB, MI, DL, get(AMDGPU::V_CNDMASK_B32_e64), DstReg) 2287 .add(MI.getOperand(3)) 2288 .add(MI.getOperand(4)) 2289 .add(MI.getOperand(1)) 2290 .add(MI.getOperand(2)) 2291 .add(MI.getOperand(5)); 2292 MI.eraseFromParent(); 2293 break; 2294 } 2295 case AMDGPU::V_INDIRECT_REG_WRITE_MOVREL_B32_V1: 2296 case AMDGPU::V_INDIRECT_REG_WRITE_MOVREL_B32_V2: 2297 case AMDGPU::V_INDIRECT_REG_WRITE_MOVREL_B32_V3: 2298 case AMDGPU::V_INDIRECT_REG_WRITE_MOVREL_B32_V4: 2299 case AMDGPU::V_INDIRECT_REG_WRITE_MOVREL_B32_V5: 2300 case AMDGPU::V_INDIRECT_REG_WRITE_MOVREL_B32_V8: 2301 case AMDGPU::V_INDIRECT_REG_WRITE_MOVREL_B32_V9: 2302 case AMDGPU::V_INDIRECT_REG_WRITE_MOVREL_B32_V10: 2303 case AMDGPU::V_INDIRECT_REG_WRITE_MOVREL_B32_V11: 2304 case AMDGPU::V_INDIRECT_REG_WRITE_MOVREL_B32_V12: 2305 case AMDGPU::V_INDIRECT_REG_WRITE_MOVREL_B32_V16: 2306 case AMDGPU::V_INDIRECT_REG_WRITE_MOVREL_B32_V32: 2307 case AMDGPU::S_INDIRECT_REG_WRITE_MOVREL_B32_V1: 2308 case AMDGPU::S_INDIRECT_REG_WRITE_MOVREL_B32_V2: 2309 case AMDGPU::S_INDIRECT_REG_WRITE_MOVREL_B32_V3: 2310 case AMDGPU::S_INDIRECT_REG_WRITE_MOVREL_B32_V4: 2311 case AMDGPU::S_INDIRECT_REG_WRITE_MOVREL_B32_V5: 2312 case AMDGPU::S_INDIRECT_REG_WRITE_MOVREL_B32_V8: 2313 case AMDGPU::S_INDIRECT_REG_WRITE_MOVREL_B32_V9: 2314 case AMDGPU::S_INDIRECT_REG_WRITE_MOVREL_B32_V10: 2315 case AMDGPU::S_INDIRECT_REG_WRITE_MOVREL_B32_V11: 2316 case AMDGPU::S_INDIRECT_REG_WRITE_MOVREL_B32_V12: 2317 case AMDGPU::S_INDIRECT_REG_WRITE_MOVREL_B32_V16: 2318 case AMDGPU::S_INDIRECT_REG_WRITE_MOVREL_B32_V32: 2319 case AMDGPU::S_INDIRECT_REG_WRITE_MOVREL_B64_V1: 2320 case AMDGPU::S_INDIRECT_REG_WRITE_MOVREL_B64_V2: 2321 case AMDGPU::S_INDIRECT_REG_WRITE_MOVREL_B64_V4: 2322 case AMDGPU::S_INDIRECT_REG_WRITE_MOVREL_B64_V8: 2323 case AMDGPU::S_INDIRECT_REG_WRITE_MOVREL_B64_V16: { 2324 const TargetRegisterClass *EltRC = getOpRegClass(MI, 2); 2325 2326 unsigned Opc; 2327 if (RI.hasVGPRs(EltRC)) { 2328 Opc = AMDGPU::V_MOVRELD_B32_e32; 2329 } else { 2330 Opc = RI.getRegSizeInBits(*EltRC) == 64 ? AMDGPU::S_MOVRELD_B64 2331 : AMDGPU::S_MOVRELD_B32; 2332 } 2333 2334 const MCInstrDesc &OpDesc = get(Opc); 2335 Register VecReg = MI.getOperand(0).getReg(); 2336 bool IsUndef = MI.getOperand(1).isUndef(); 2337 unsigned SubReg = MI.getOperand(3).getImm(); 2338 assert(VecReg == MI.getOperand(1).getReg()); 2339 2340 MachineInstrBuilder MIB = 2341 BuildMI(MBB, MI, DL, OpDesc) 2342 .addReg(RI.getSubReg(VecReg, SubReg), RegState::Undef) 2343 .add(MI.getOperand(2)) 2344 .addReg(VecReg, RegState::ImplicitDefine) 2345 .addReg(VecReg, RegState::Implicit | (IsUndef ? RegState::Undef : 0)); 2346 2347 const int ImpDefIdx = 2348 OpDesc.getNumOperands() + OpDesc.implicit_uses().size(); 2349 const int ImpUseIdx = ImpDefIdx + 1; 2350 MIB->tieOperands(ImpDefIdx, ImpUseIdx); 2351 MI.eraseFromParent(); 2352 break; 2353 } 2354 case AMDGPU::V_INDIRECT_REG_WRITE_GPR_IDX_B32_V1: 2355 case AMDGPU::V_INDIRECT_REG_WRITE_GPR_IDX_B32_V2: 2356 case AMDGPU::V_INDIRECT_REG_WRITE_GPR_IDX_B32_V3: 2357 case AMDGPU::V_INDIRECT_REG_WRITE_GPR_IDX_B32_V4: 2358 case AMDGPU::V_INDIRECT_REG_WRITE_GPR_IDX_B32_V5: 2359 case AMDGPU::V_INDIRECT_REG_WRITE_GPR_IDX_B32_V8: 2360 case AMDGPU::V_INDIRECT_REG_WRITE_GPR_IDX_B32_V9: 2361 case AMDGPU::V_INDIRECT_REG_WRITE_GPR_IDX_B32_V10: 2362 case AMDGPU::V_INDIRECT_REG_WRITE_GPR_IDX_B32_V11: 2363 case AMDGPU::V_INDIRECT_REG_WRITE_GPR_IDX_B32_V12: 2364 case AMDGPU::V_INDIRECT_REG_WRITE_GPR_IDX_B32_V16: 2365 case AMDGPU::V_INDIRECT_REG_WRITE_GPR_IDX_B32_V32: { 2366 assert(ST.useVGPRIndexMode()); 2367 Register VecReg = MI.getOperand(0).getReg(); 2368 bool IsUndef = MI.getOperand(1).isUndef(); 2369 Register Idx = MI.getOperand(3).getReg(); 2370 Register SubReg = MI.getOperand(4).getImm(); 2371 2372 MachineInstr *SetOn = BuildMI(MBB, MI, DL, get(AMDGPU::S_SET_GPR_IDX_ON)) 2373 .addReg(Idx) 2374 .addImm(AMDGPU::VGPRIndexMode::DST_ENABLE); 2375 SetOn->getOperand(3).setIsUndef(); 2376 2377 const MCInstrDesc &OpDesc = get(AMDGPU::V_MOV_B32_indirect_write); 2378 MachineInstrBuilder MIB = 2379 BuildMI(MBB, MI, DL, OpDesc) 2380 .addReg(RI.getSubReg(VecReg, SubReg), RegState::Undef) 2381 .add(MI.getOperand(2)) 2382 .addReg(VecReg, RegState::ImplicitDefine) 2383 .addReg(VecReg, 2384 RegState::Implicit | (IsUndef ? RegState::Undef : 0)); 2385 2386 const int ImpDefIdx = 2387 OpDesc.getNumOperands() + OpDesc.implicit_uses().size(); 2388 const int ImpUseIdx = ImpDefIdx + 1; 2389 MIB->tieOperands(ImpDefIdx, ImpUseIdx); 2390 2391 MachineInstr *SetOff = BuildMI(MBB, MI, DL, get(AMDGPU::S_SET_GPR_IDX_OFF)); 2392 2393 finalizeBundle(MBB, SetOn->getIterator(), std::next(SetOff->getIterator())); 2394 2395 MI.eraseFromParent(); 2396 break; 2397 } 2398 case AMDGPU::V_INDIRECT_REG_READ_GPR_IDX_B32_V1: 2399 case AMDGPU::V_INDIRECT_REG_READ_GPR_IDX_B32_V2: 2400 case AMDGPU::V_INDIRECT_REG_READ_GPR_IDX_B32_V3: 2401 case AMDGPU::V_INDIRECT_REG_READ_GPR_IDX_B32_V4: 2402 case AMDGPU::V_INDIRECT_REG_READ_GPR_IDX_B32_V5: 2403 case AMDGPU::V_INDIRECT_REG_READ_GPR_IDX_B32_V8: 2404 case AMDGPU::V_INDIRECT_REG_READ_GPR_IDX_B32_V9: 2405 case AMDGPU::V_INDIRECT_REG_READ_GPR_IDX_B32_V10: 2406 case AMDGPU::V_INDIRECT_REG_READ_GPR_IDX_B32_V11: 2407 case AMDGPU::V_INDIRECT_REG_READ_GPR_IDX_B32_V12: 2408 case AMDGPU::V_INDIRECT_REG_READ_GPR_IDX_B32_V16: 2409 case AMDGPU::V_INDIRECT_REG_READ_GPR_IDX_B32_V32: { 2410 assert(ST.useVGPRIndexMode()); 2411 Register Dst = MI.getOperand(0).getReg(); 2412 Register VecReg = MI.getOperand(1).getReg(); 2413 bool IsUndef = MI.getOperand(1).isUndef(); 2414 Register Idx = MI.getOperand(2).getReg(); 2415 Register SubReg = MI.getOperand(3).getImm(); 2416 2417 MachineInstr *SetOn = BuildMI(MBB, MI, DL, get(AMDGPU::S_SET_GPR_IDX_ON)) 2418 .addReg(Idx) 2419 .addImm(AMDGPU::VGPRIndexMode::SRC0_ENABLE); 2420 SetOn->getOperand(3).setIsUndef(); 2421 2422 BuildMI(MBB, MI, DL, get(AMDGPU::V_MOV_B32_indirect_read)) 2423 .addDef(Dst) 2424 .addReg(RI.getSubReg(VecReg, SubReg), RegState::Undef) 2425 .addReg(VecReg, RegState::Implicit | (IsUndef ? RegState::Undef : 0)); 2426 2427 MachineInstr *SetOff = BuildMI(MBB, MI, DL, get(AMDGPU::S_SET_GPR_IDX_OFF)); 2428 2429 finalizeBundle(MBB, SetOn->getIterator(), std::next(SetOff->getIterator())); 2430 2431 MI.eraseFromParent(); 2432 break; 2433 } 2434 case AMDGPU::SI_PC_ADD_REL_OFFSET: { 2435 MachineFunction &MF = *MBB.getParent(); 2436 Register Reg = MI.getOperand(0).getReg(); 2437 Register RegLo = RI.getSubReg(Reg, AMDGPU::sub0); 2438 Register RegHi = RI.getSubReg(Reg, AMDGPU::sub1); 2439 MachineOperand OpLo = MI.getOperand(1); 2440 MachineOperand OpHi = MI.getOperand(2); 2441 2442 // Create a bundle so these instructions won't be re-ordered by the 2443 // post-RA scheduler. 2444 MIBundleBuilder Bundler(MBB, MI); 2445 Bundler.append(BuildMI(MF, DL, get(AMDGPU::S_GETPC_B64), Reg)); 2446 2447 // What we want here is an offset from the value returned by s_getpc (which 2448 // is the address of the s_add_u32 instruction) to the global variable, but 2449 // since the encoding of $symbol starts 4 bytes after the start of the 2450 // s_add_u32 instruction, we end up with an offset that is 4 bytes too 2451 // small. This requires us to add 4 to the global variable offset in order 2452 // to compute the correct address. Similarly for the s_addc_u32 instruction, 2453 // the encoding of $symbol starts 12 bytes after the start of the s_add_u32 2454 // instruction. 2455 2456 int64_t Adjust = 0; 2457 if (ST.hasGetPCZeroExtension()) { 2458 // Fix up hardware that does not sign-extend the 48-bit PC value by 2459 // inserting: s_sext_i32_i16 reghi, reghi 2460 Bundler.append( 2461 BuildMI(MF, DL, get(AMDGPU::S_SEXT_I32_I16), RegHi).addReg(RegHi)); 2462 Adjust += 4; 2463 } 2464 2465 if (OpLo.isGlobal()) 2466 OpLo.setOffset(OpLo.getOffset() + Adjust + 4); 2467 Bundler.append( 2468 BuildMI(MF, DL, get(AMDGPU::S_ADD_U32), RegLo).addReg(RegLo).add(OpLo)); 2469 2470 if (OpHi.isGlobal()) 2471 OpHi.setOffset(OpHi.getOffset() + Adjust + 12); 2472 Bundler.append(BuildMI(MF, DL, get(AMDGPU::S_ADDC_U32), RegHi) 2473 .addReg(RegHi) 2474 .add(OpHi)); 2475 2476 finalizeBundle(MBB, Bundler.begin()); 2477 2478 MI.eraseFromParent(); 2479 break; 2480 } 2481 case AMDGPU::ENTER_STRICT_WWM: { 2482 // This only gets its own opcode so that SIPreAllocateWWMRegs can tell when 2483 // Whole Wave Mode is entered. 2484 MI.setDesc(get(ST.isWave32() ? AMDGPU::S_OR_SAVEEXEC_B32 2485 : AMDGPU::S_OR_SAVEEXEC_B64)); 2486 break; 2487 } 2488 case AMDGPU::ENTER_STRICT_WQM: { 2489 // This only gets its own opcode so that SIPreAllocateWWMRegs can tell when 2490 // STRICT_WQM is entered. 2491 const unsigned Exec = ST.isWave32() ? AMDGPU::EXEC_LO : AMDGPU::EXEC; 2492 const unsigned WQMOp = ST.isWave32() ? AMDGPU::S_WQM_B32 : AMDGPU::S_WQM_B64; 2493 const unsigned MovOp = ST.isWave32() ? AMDGPU::S_MOV_B32 : AMDGPU::S_MOV_B64; 2494 BuildMI(MBB, MI, DL, get(MovOp), MI.getOperand(0).getReg()).addReg(Exec); 2495 BuildMI(MBB, MI, DL, get(WQMOp), Exec).addReg(Exec); 2496 2497 MI.eraseFromParent(); 2498 break; 2499 } 2500 case AMDGPU::EXIT_STRICT_WWM: 2501 case AMDGPU::EXIT_STRICT_WQM: { 2502 // This only gets its own opcode so that SIPreAllocateWWMRegs can tell when 2503 // WWM/STICT_WQM is exited. 2504 MI.setDesc(get(ST.isWave32() ? AMDGPU::S_MOV_B32 : AMDGPU::S_MOV_B64)); 2505 break; 2506 } 2507 case AMDGPU::SI_RETURN: { 2508 const MachineFunction *MF = MBB.getParent(); 2509 const GCNSubtarget &ST = MF->getSubtarget<GCNSubtarget>(); 2510 const SIRegisterInfo *TRI = ST.getRegisterInfo(); 2511 // Hiding the return address use with SI_RETURN may lead to extra kills in 2512 // the function and missing live-ins. We are fine in practice because callee 2513 // saved register handling ensures the register value is restored before 2514 // RET, but we need the undef flag here to appease the MachineVerifier 2515 // liveness checks. 2516 MachineInstrBuilder MIB = 2517 BuildMI(MBB, MI, DL, get(AMDGPU::S_SETPC_B64_return)) 2518 .addReg(TRI->getReturnAddressReg(*MF), RegState::Undef); 2519 2520 MIB.copyImplicitOps(MI); 2521 MI.eraseFromParent(); 2522 break; 2523 } 2524 2525 case AMDGPU::S_MUL_U64_U32_PSEUDO: 2526 case AMDGPU::S_MUL_I64_I32_PSEUDO: 2527 MI.setDesc(get(AMDGPU::S_MUL_U64)); 2528 break; 2529 2530 case AMDGPU::S_GETPC_B64_pseudo: 2531 MI.setDesc(get(AMDGPU::S_GETPC_B64)); 2532 if (ST.hasGetPCZeroExtension()) { 2533 Register Dst = MI.getOperand(0).getReg(); 2534 Register DstHi = RI.getSubReg(Dst, AMDGPU::sub1); 2535 // Fix up hardware that does not sign-extend the 48-bit PC value by 2536 // inserting: s_sext_i32_i16 dsthi, dsthi 2537 BuildMI(MBB, std::next(MI.getIterator()), DL, get(AMDGPU::S_SEXT_I32_I16), 2538 DstHi) 2539 .addReg(DstHi); 2540 } 2541 break; 2542 } 2543 return true; 2544 } 2545 2546 void SIInstrInfo::reMaterialize(MachineBasicBlock &MBB, 2547 MachineBasicBlock::iterator I, Register DestReg, 2548 unsigned SubIdx, const MachineInstr &Orig, 2549 const TargetRegisterInfo &RI) const { 2550 2551 // Try shrinking the instruction to remat only the part needed for current 2552 // context. 2553 // TODO: Handle more cases. 2554 unsigned Opcode = Orig.getOpcode(); 2555 switch (Opcode) { 2556 case AMDGPU::S_LOAD_DWORDX16_IMM: 2557 case AMDGPU::S_LOAD_DWORDX8_IMM: { 2558 if (SubIdx != 0) 2559 break; 2560 2561 if (I == MBB.end()) 2562 break; 2563 2564 if (I->isBundled()) 2565 break; 2566 2567 // Look for a single use of the register that is also a subreg. 2568 Register RegToFind = Orig.getOperand(0).getReg(); 2569 MachineOperand *UseMO = nullptr; 2570 for (auto &CandMO : I->operands()) { 2571 if (!CandMO.isReg() || CandMO.getReg() != RegToFind || CandMO.isDef()) 2572 continue; 2573 if (UseMO) { 2574 UseMO = nullptr; 2575 break; 2576 } 2577 UseMO = &CandMO; 2578 } 2579 if (!UseMO || UseMO->getSubReg() == AMDGPU::NoSubRegister) 2580 break; 2581 2582 unsigned Offset = RI.getSubRegIdxOffset(UseMO->getSubReg()); 2583 unsigned SubregSize = RI.getSubRegIdxSize(UseMO->getSubReg()); 2584 2585 MachineFunction *MF = MBB.getParent(); 2586 MachineRegisterInfo &MRI = MF->getRegInfo(); 2587 assert(MRI.use_nodbg_empty(DestReg) && "DestReg should have no users yet."); 2588 2589 unsigned NewOpcode = -1; 2590 if (SubregSize == 256) 2591 NewOpcode = AMDGPU::S_LOAD_DWORDX8_IMM; 2592 else if (SubregSize == 128) 2593 NewOpcode = AMDGPU::S_LOAD_DWORDX4_IMM; 2594 else 2595 break; 2596 2597 const MCInstrDesc &TID = get(NewOpcode); 2598 const TargetRegisterClass *NewRC = 2599 RI.getAllocatableClass(getRegClass(TID, 0, &RI, *MF)); 2600 MRI.setRegClass(DestReg, NewRC); 2601 2602 UseMO->setReg(DestReg); 2603 UseMO->setSubReg(AMDGPU::NoSubRegister); 2604 2605 // Use a smaller load with the desired size, possibly with updated offset. 2606 MachineInstr *MI = MF->CloneMachineInstr(&Orig); 2607 MI->setDesc(TID); 2608 MI->getOperand(0).setReg(DestReg); 2609 MI->getOperand(0).setSubReg(AMDGPU::NoSubRegister); 2610 if (Offset) { 2611 MachineOperand *OffsetMO = getNamedOperand(*MI, AMDGPU::OpName::offset); 2612 int64_t FinalOffset = OffsetMO->getImm() + Offset / 8; 2613 OffsetMO->setImm(FinalOffset); 2614 } 2615 SmallVector<MachineMemOperand *> NewMMOs; 2616 for (const MachineMemOperand *MemOp : Orig.memoperands()) 2617 NewMMOs.push_back(MF->getMachineMemOperand(MemOp, MemOp->getPointerInfo(), 2618 SubregSize / 8)); 2619 MI->setMemRefs(*MF, NewMMOs); 2620 2621 MBB.insert(I, MI); 2622 return; 2623 } 2624 2625 default: 2626 break; 2627 } 2628 2629 TargetInstrInfo::reMaterialize(MBB, I, DestReg, SubIdx, Orig, RI); 2630 } 2631 2632 std::pair<MachineInstr*, MachineInstr*> 2633 SIInstrInfo::expandMovDPP64(MachineInstr &MI) const { 2634 assert (MI.getOpcode() == AMDGPU::V_MOV_B64_DPP_PSEUDO); 2635 2636 if (ST.hasMovB64() && 2637 AMDGPU::isLegalDPALU_DPPControl( 2638 getNamedOperand(MI, AMDGPU::OpName::dpp_ctrl)->getImm())) { 2639 MI.setDesc(get(AMDGPU::V_MOV_B64_dpp)); 2640 return std::pair(&MI, nullptr); 2641 } 2642 2643 MachineBasicBlock &MBB = *MI.getParent(); 2644 DebugLoc DL = MBB.findDebugLoc(MI); 2645 MachineFunction *MF = MBB.getParent(); 2646 MachineRegisterInfo &MRI = MF->getRegInfo(); 2647 Register Dst = MI.getOperand(0).getReg(); 2648 unsigned Part = 0; 2649 MachineInstr *Split[2]; 2650 2651 for (auto Sub : { AMDGPU::sub0, AMDGPU::sub1 }) { 2652 auto MovDPP = BuildMI(MBB, MI, DL, get(AMDGPU::V_MOV_B32_dpp)); 2653 if (Dst.isPhysical()) { 2654 MovDPP.addDef(RI.getSubReg(Dst, Sub)); 2655 } else { 2656 assert(MRI.isSSA()); 2657 auto Tmp = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass); 2658 MovDPP.addDef(Tmp); 2659 } 2660 2661 for (unsigned I = 1; I <= 2; ++I) { // old and src operands. 2662 const MachineOperand &SrcOp = MI.getOperand(I); 2663 assert(!SrcOp.isFPImm()); 2664 if (SrcOp.isImm()) { 2665 APInt Imm(64, SrcOp.getImm()); 2666 Imm.ashrInPlace(Part * 32); 2667 MovDPP.addImm(Imm.getLoBits(32).getZExtValue()); 2668 } else { 2669 assert(SrcOp.isReg()); 2670 Register Src = SrcOp.getReg(); 2671 if (Src.isPhysical()) 2672 MovDPP.addReg(RI.getSubReg(Src, Sub)); 2673 else 2674 MovDPP.addReg(Src, SrcOp.isUndef() ? RegState::Undef : 0, Sub); 2675 } 2676 } 2677 2678 for (const MachineOperand &MO : llvm::drop_begin(MI.explicit_operands(), 3)) 2679 MovDPP.addImm(MO.getImm()); 2680 2681 Split[Part] = MovDPP; 2682 ++Part; 2683 } 2684 2685 if (Dst.isVirtual()) 2686 BuildMI(MBB, MI, DL, get(AMDGPU::REG_SEQUENCE), Dst) 2687 .addReg(Split[0]->getOperand(0).getReg()) 2688 .addImm(AMDGPU::sub0) 2689 .addReg(Split[1]->getOperand(0).getReg()) 2690 .addImm(AMDGPU::sub1); 2691 2692 MI.eraseFromParent(); 2693 return std::pair(Split[0], Split[1]); 2694 } 2695 2696 std::optional<DestSourcePair> 2697 SIInstrInfo::isCopyInstrImpl(const MachineInstr &MI) const { 2698 if (MI.getOpcode() == AMDGPU::WWM_COPY) 2699 return DestSourcePair{MI.getOperand(0), MI.getOperand(1)}; 2700 2701 return std::nullopt; 2702 } 2703 2704 bool SIInstrInfo::swapSourceModifiers(MachineInstr &MI, 2705 MachineOperand &Src0, 2706 unsigned Src0OpName, 2707 MachineOperand &Src1, 2708 unsigned Src1OpName) const { 2709 MachineOperand *Src0Mods = getNamedOperand(MI, Src0OpName); 2710 if (!Src0Mods) 2711 return false; 2712 2713 MachineOperand *Src1Mods = getNamedOperand(MI, Src1OpName); 2714 assert(Src1Mods && 2715 "All commutable instructions have both src0 and src1 modifiers"); 2716 2717 int Src0ModsVal = Src0Mods->getImm(); 2718 int Src1ModsVal = Src1Mods->getImm(); 2719 2720 Src1Mods->setImm(Src0ModsVal); 2721 Src0Mods->setImm(Src1ModsVal); 2722 return true; 2723 } 2724 2725 static MachineInstr *swapRegAndNonRegOperand(MachineInstr &MI, 2726 MachineOperand &RegOp, 2727 MachineOperand &NonRegOp) { 2728 Register Reg = RegOp.getReg(); 2729 unsigned SubReg = RegOp.getSubReg(); 2730 bool IsKill = RegOp.isKill(); 2731 bool IsDead = RegOp.isDead(); 2732 bool IsUndef = RegOp.isUndef(); 2733 bool IsDebug = RegOp.isDebug(); 2734 2735 if (NonRegOp.isImm()) 2736 RegOp.ChangeToImmediate(NonRegOp.getImm()); 2737 else if (NonRegOp.isFI()) 2738 RegOp.ChangeToFrameIndex(NonRegOp.getIndex()); 2739 else if (NonRegOp.isGlobal()) { 2740 RegOp.ChangeToGA(NonRegOp.getGlobal(), NonRegOp.getOffset(), 2741 NonRegOp.getTargetFlags()); 2742 } else 2743 return nullptr; 2744 2745 // Make sure we don't reinterpret a subreg index in the target flags. 2746 RegOp.setTargetFlags(NonRegOp.getTargetFlags()); 2747 2748 NonRegOp.ChangeToRegister(Reg, false, false, IsKill, IsDead, IsUndef, IsDebug); 2749 NonRegOp.setSubReg(SubReg); 2750 2751 return &MI; 2752 } 2753 2754 static MachineInstr *swapImmOperands(MachineInstr &MI, 2755 MachineOperand &NonRegOp1, 2756 MachineOperand &NonRegOp2) { 2757 unsigned TargetFlags = NonRegOp1.getTargetFlags(); 2758 int64_t NonRegVal = NonRegOp1.getImm(); 2759 2760 NonRegOp1.setImm(NonRegOp2.getImm()); 2761 NonRegOp2.setImm(NonRegVal); 2762 NonRegOp1.setTargetFlags(NonRegOp2.getTargetFlags()); 2763 NonRegOp2.setTargetFlags(TargetFlags); 2764 return &MI; 2765 } 2766 2767 bool SIInstrInfo::isLegalToSwap(const MachineInstr &MI, unsigned OpIdx0, 2768 const MachineOperand *MO0, unsigned OpIdx1, 2769 const MachineOperand *MO1) const { 2770 const MCInstrDesc &InstDesc = MI.getDesc(); 2771 const MCOperandInfo &OpInfo0 = InstDesc.operands()[OpIdx0]; 2772 const MCOperandInfo &OpInfo1 = InstDesc.operands()[OpIdx1]; 2773 const TargetRegisterClass *DefinedRC1 = 2774 OpInfo1.RegClass != -1 ? RI.getRegClass(OpInfo1.RegClass) : nullptr; 2775 const TargetRegisterClass *DefinedRC0 = 2776 OpInfo1.RegClass != -1 ? RI.getRegClass(OpInfo0.RegClass) : nullptr; 2777 2778 unsigned Opc = MI.getOpcode(); 2779 int Src0Idx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src0); 2780 2781 // Swap doesn't breach constant bus or literal limits 2782 // It may move literal to position other than src0, this is not allowed 2783 // pre-gfx10 However, most test cases need literals in Src0 for VOP 2784 // FIXME: After gfx9, literal can be in place other than Src0 2785 if (isVALU(MI)) { 2786 if ((int)OpIdx0 == Src0Idx && !MO0->isReg() && 2787 !isInlineConstant(*MO0, OpInfo1)) 2788 return false; 2789 if ((int)OpIdx1 == Src0Idx && !MO1->isReg() && 2790 !isInlineConstant(*MO1, OpInfo0)) 2791 return false; 2792 } 2793 2794 if ((int)OpIdx1 != Src0Idx && MO0->isReg()) { 2795 if (!DefinedRC1) 2796 return OpInfo1.OperandType == MCOI::OPERAND_UNKNOWN; 2797 return isLegalRegOperand(MI, OpIdx1, *MO0); 2798 } 2799 if ((int)OpIdx0 != Src0Idx && MO1->isReg()) { 2800 if (!DefinedRC0) 2801 return OpInfo0.OperandType == MCOI::OPERAND_UNKNOWN; 2802 return isLegalRegOperand(MI, OpIdx0, *MO1); 2803 } 2804 2805 // No need to check 64-bit literals since swapping does not bring new 2806 // 64-bit literals into current instruction to fold to 32-bit 2807 2808 return isImmOperandLegal(MI, OpIdx1, *MO0); 2809 } 2810 2811 MachineInstr *SIInstrInfo::commuteInstructionImpl(MachineInstr &MI, bool NewMI, 2812 unsigned Src0Idx, 2813 unsigned Src1Idx) const { 2814 assert(!NewMI && "this should never be used"); 2815 2816 unsigned Opc = MI.getOpcode(); 2817 int CommutedOpcode = commuteOpcode(Opc); 2818 if (CommutedOpcode == -1) 2819 return nullptr; 2820 2821 if (Src0Idx > Src1Idx) 2822 std::swap(Src0Idx, Src1Idx); 2823 2824 assert(AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src0) == 2825 static_cast<int>(Src0Idx) && 2826 AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src1) == 2827 static_cast<int>(Src1Idx) && 2828 "inconsistency with findCommutedOpIndices"); 2829 2830 MachineOperand &Src0 = MI.getOperand(Src0Idx); 2831 MachineOperand &Src1 = MI.getOperand(Src1Idx); 2832 if (!isLegalToSwap(MI, Src0Idx, &Src0, Src1Idx, &Src1)) { 2833 return nullptr; 2834 } 2835 MachineInstr *CommutedMI = nullptr; 2836 if (Src0.isReg() && Src1.isReg()) { 2837 // Be sure to copy the source modifiers to the right place. 2838 CommutedMI = 2839 TargetInstrInfo::commuteInstructionImpl(MI, NewMI, Src0Idx, Src1Idx); 2840 } else if (Src0.isReg() && !Src1.isReg()) { 2841 CommutedMI = swapRegAndNonRegOperand(MI, Src0, Src1); 2842 } else if (!Src0.isReg() && Src1.isReg()) { 2843 CommutedMI = swapRegAndNonRegOperand(MI, Src1, Src0); 2844 } else if (Src0.isImm() && Src1.isImm()) { 2845 CommutedMI = swapImmOperands(MI, Src0, Src1); 2846 } else { 2847 // FIXME: Found two non registers to commute. This does happen. 2848 return nullptr; 2849 } 2850 2851 if (CommutedMI) { 2852 swapSourceModifiers(MI, Src0, AMDGPU::OpName::src0_modifiers, 2853 Src1, AMDGPU::OpName::src1_modifiers); 2854 2855 swapSourceModifiers(MI, Src0, AMDGPU::OpName::src0_sel, Src1, 2856 AMDGPU::OpName::src1_sel); 2857 2858 CommutedMI->setDesc(get(CommutedOpcode)); 2859 } 2860 2861 return CommutedMI; 2862 } 2863 2864 // This needs to be implemented because the source modifiers may be inserted 2865 // between the true commutable operands, and the base 2866 // TargetInstrInfo::commuteInstruction uses it. 2867 bool SIInstrInfo::findCommutedOpIndices(const MachineInstr &MI, 2868 unsigned &SrcOpIdx0, 2869 unsigned &SrcOpIdx1) const { 2870 return findCommutedOpIndices(MI.getDesc(), SrcOpIdx0, SrcOpIdx1); 2871 } 2872 2873 bool SIInstrInfo::findCommutedOpIndices(const MCInstrDesc &Desc, 2874 unsigned &SrcOpIdx0, 2875 unsigned &SrcOpIdx1) const { 2876 if (!Desc.isCommutable()) 2877 return false; 2878 2879 unsigned Opc = Desc.getOpcode(); 2880 int Src0Idx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src0); 2881 if (Src0Idx == -1) 2882 return false; 2883 2884 int Src1Idx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src1); 2885 if (Src1Idx == -1) 2886 return false; 2887 2888 return fixCommutedOpIndices(SrcOpIdx0, SrcOpIdx1, Src0Idx, Src1Idx); 2889 } 2890 2891 bool SIInstrInfo::isBranchOffsetInRange(unsigned BranchOp, 2892 int64_t BrOffset) const { 2893 // BranchRelaxation should never have to check s_setpc_b64 because its dest 2894 // block is unanalyzable. 2895 assert(BranchOp != AMDGPU::S_SETPC_B64); 2896 2897 // Convert to dwords. 2898 BrOffset /= 4; 2899 2900 // The branch instructions do PC += signext(SIMM16 * 4) + 4, so the offset is 2901 // from the next instruction. 2902 BrOffset -= 1; 2903 2904 return isIntN(BranchOffsetBits, BrOffset); 2905 } 2906 2907 MachineBasicBlock * 2908 SIInstrInfo::getBranchDestBlock(const MachineInstr &MI) const { 2909 return MI.getOperand(0).getMBB(); 2910 } 2911 2912 bool SIInstrInfo::hasDivergentBranch(const MachineBasicBlock *MBB) const { 2913 for (const MachineInstr &MI : MBB->terminators()) { 2914 if (MI.getOpcode() == AMDGPU::SI_IF || MI.getOpcode() == AMDGPU::SI_ELSE || 2915 MI.getOpcode() == AMDGPU::SI_LOOP) 2916 return true; 2917 } 2918 return false; 2919 } 2920 2921 void SIInstrInfo::insertIndirectBranch(MachineBasicBlock &MBB, 2922 MachineBasicBlock &DestBB, 2923 MachineBasicBlock &RestoreBB, 2924 const DebugLoc &DL, int64_t BrOffset, 2925 RegScavenger *RS) const { 2926 assert(RS && "RegScavenger required for long branching"); 2927 assert(MBB.empty() && 2928 "new block should be inserted for expanding unconditional branch"); 2929 assert(MBB.pred_size() == 1); 2930 assert(RestoreBB.empty() && 2931 "restore block should be inserted for restoring clobbered registers"); 2932 2933 MachineFunction *MF = MBB.getParent(); 2934 MachineRegisterInfo &MRI = MF->getRegInfo(); 2935 const SIMachineFunctionInfo *MFI = MF->getInfo<SIMachineFunctionInfo>(); 2936 2937 // FIXME: Virtual register workaround for RegScavenger not working with empty 2938 // blocks. 2939 Register PCReg = MRI.createVirtualRegister(&AMDGPU::SReg_64RegClass); 2940 2941 auto I = MBB.end(); 2942 2943 // Note: as this is used after hazard recognizer we need to apply some hazard 2944 // workarounds directly. 2945 const bool FlushSGPRWrites = (ST.isWave64() && ST.hasVALUMaskWriteHazard()) || 2946 ST.hasVALUReadSGPRHazard(); 2947 auto ApplyHazardWorkarounds = [this, &MBB, &I, &DL, FlushSGPRWrites]() { 2948 if (FlushSGPRWrites) 2949 BuildMI(MBB, I, DL, get(AMDGPU::S_WAITCNT_DEPCTR)) 2950 .addImm(AMDGPU::DepCtr::encodeFieldSaSdst(0)); 2951 }; 2952 2953 // We need to compute the offset relative to the instruction immediately after 2954 // s_getpc_b64. Insert pc arithmetic code before last terminator. 2955 MachineInstr *GetPC = BuildMI(MBB, I, DL, get(AMDGPU::S_GETPC_B64), PCReg); 2956 ApplyHazardWorkarounds(); 2957 2958 auto &MCCtx = MF->getContext(); 2959 MCSymbol *PostGetPCLabel = 2960 MCCtx.createTempSymbol("post_getpc", /*AlwaysAddSuffix=*/true); 2961 GetPC->setPostInstrSymbol(*MF, PostGetPCLabel); 2962 2963 MCSymbol *OffsetLo = 2964 MCCtx.createTempSymbol("offset_lo", /*AlwaysAddSuffix=*/true); 2965 MCSymbol *OffsetHi = 2966 MCCtx.createTempSymbol("offset_hi", /*AlwaysAddSuffix=*/true); 2967 BuildMI(MBB, I, DL, get(AMDGPU::S_ADD_U32)) 2968 .addReg(PCReg, RegState::Define, AMDGPU::sub0) 2969 .addReg(PCReg, 0, AMDGPU::sub0) 2970 .addSym(OffsetLo, MO_FAR_BRANCH_OFFSET); 2971 BuildMI(MBB, I, DL, get(AMDGPU::S_ADDC_U32)) 2972 .addReg(PCReg, RegState::Define, AMDGPU::sub1) 2973 .addReg(PCReg, 0, AMDGPU::sub1) 2974 .addSym(OffsetHi, MO_FAR_BRANCH_OFFSET); 2975 ApplyHazardWorkarounds(); 2976 2977 // Insert the indirect branch after the other terminator. 2978 BuildMI(&MBB, DL, get(AMDGPU::S_SETPC_B64)) 2979 .addReg(PCReg); 2980 2981 // If a spill is needed for the pc register pair, we need to insert a spill 2982 // restore block right before the destination block, and insert a short branch 2983 // into the old destination block's fallthrough predecessor. 2984 // e.g.: 2985 // 2986 // s_cbranch_scc0 skip_long_branch: 2987 // 2988 // long_branch_bb: 2989 // spill s[8:9] 2990 // s_getpc_b64 s[8:9] 2991 // s_add_u32 s8, s8, restore_bb 2992 // s_addc_u32 s9, s9, 0 2993 // s_setpc_b64 s[8:9] 2994 // 2995 // skip_long_branch: 2996 // foo; 2997 // 2998 // ..... 2999 // 3000 // dest_bb_fallthrough_predecessor: 3001 // bar; 3002 // s_branch dest_bb 3003 // 3004 // restore_bb: 3005 // restore s[8:9] 3006 // fallthrough dest_bb 3007 /// 3008 // dest_bb: 3009 // buzz; 3010 3011 Register LongBranchReservedReg = MFI->getLongBranchReservedReg(); 3012 Register Scav; 3013 3014 // If we've previously reserved a register for long branches 3015 // avoid running the scavenger and just use those registers 3016 if (LongBranchReservedReg) { 3017 RS->enterBasicBlock(MBB); 3018 Scav = LongBranchReservedReg; 3019 } else { 3020 RS->enterBasicBlockEnd(MBB); 3021 Scav = RS->scavengeRegisterBackwards( 3022 AMDGPU::SReg_64RegClass, MachineBasicBlock::iterator(GetPC), 3023 /* RestoreAfter */ false, 0, /* AllowSpill */ false); 3024 } 3025 if (Scav) { 3026 RS->setRegUsed(Scav); 3027 MRI.replaceRegWith(PCReg, Scav); 3028 MRI.clearVirtRegs(); 3029 } else { 3030 // As SGPR needs VGPR to be spilled, we reuse the slot of temporary VGPR for 3031 // SGPR spill. 3032 const GCNSubtarget &ST = MF->getSubtarget<GCNSubtarget>(); 3033 const SIRegisterInfo *TRI = ST.getRegisterInfo(); 3034 TRI->spillEmergencySGPR(GetPC, RestoreBB, AMDGPU::SGPR0_SGPR1, RS); 3035 MRI.replaceRegWith(PCReg, AMDGPU::SGPR0_SGPR1); 3036 MRI.clearVirtRegs(); 3037 } 3038 3039 MCSymbol *DestLabel = Scav ? DestBB.getSymbol() : RestoreBB.getSymbol(); 3040 // Now, the distance could be defined. 3041 auto *Offset = MCBinaryExpr::createSub( 3042 MCSymbolRefExpr::create(DestLabel, MCCtx), 3043 MCSymbolRefExpr::create(PostGetPCLabel, MCCtx), MCCtx); 3044 // Add offset assignments. 3045 auto *Mask = MCConstantExpr::create(0xFFFFFFFFULL, MCCtx); 3046 OffsetLo->setVariableValue(MCBinaryExpr::createAnd(Offset, Mask, MCCtx)); 3047 auto *ShAmt = MCConstantExpr::create(32, MCCtx); 3048 OffsetHi->setVariableValue(MCBinaryExpr::createAShr(Offset, ShAmt, MCCtx)); 3049 } 3050 3051 unsigned SIInstrInfo::getBranchOpcode(SIInstrInfo::BranchPredicate Cond) { 3052 switch (Cond) { 3053 case SIInstrInfo::SCC_TRUE: 3054 return AMDGPU::S_CBRANCH_SCC1; 3055 case SIInstrInfo::SCC_FALSE: 3056 return AMDGPU::S_CBRANCH_SCC0; 3057 case SIInstrInfo::VCCNZ: 3058 return AMDGPU::S_CBRANCH_VCCNZ; 3059 case SIInstrInfo::VCCZ: 3060 return AMDGPU::S_CBRANCH_VCCZ; 3061 case SIInstrInfo::EXECNZ: 3062 return AMDGPU::S_CBRANCH_EXECNZ; 3063 case SIInstrInfo::EXECZ: 3064 return AMDGPU::S_CBRANCH_EXECZ; 3065 default: 3066 llvm_unreachable("invalid branch predicate"); 3067 } 3068 } 3069 3070 SIInstrInfo::BranchPredicate SIInstrInfo::getBranchPredicate(unsigned Opcode) { 3071 switch (Opcode) { 3072 case AMDGPU::S_CBRANCH_SCC0: 3073 return SCC_FALSE; 3074 case AMDGPU::S_CBRANCH_SCC1: 3075 return SCC_TRUE; 3076 case AMDGPU::S_CBRANCH_VCCNZ: 3077 return VCCNZ; 3078 case AMDGPU::S_CBRANCH_VCCZ: 3079 return VCCZ; 3080 case AMDGPU::S_CBRANCH_EXECNZ: 3081 return EXECNZ; 3082 case AMDGPU::S_CBRANCH_EXECZ: 3083 return EXECZ; 3084 default: 3085 return INVALID_BR; 3086 } 3087 } 3088 3089 bool SIInstrInfo::analyzeBranchImpl(MachineBasicBlock &MBB, 3090 MachineBasicBlock::iterator I, 3091 MachineBasicBlock *&TBB, 3092 MachineBasicBlock *&FBB, 3093 SmallVectorImpl<MachineOperand> &Cond, 3094 bool AllowModify) const { 3095 if (I->getOpcode() == AMDGPU::S_BRANCH) { 3096 // Unconditional Branch 3097 TBB = I->getOperand(0).getMBB(); 3098 return false; 3099 } 3100 3101 BranchPredicate Pred = getBranchPredicate(I->getOpcode()); 3102 if (Pred == INVALID_BR) 3103 return true; 3104 3105 MachineBasicBlock *CondBB = I->getOperand(0).getMBB(); 3106 Cond.push_back(MachineOperand::CreateImm(Pred)); 3107 Cond.push_back(I->getOperand(1)); // Save the branch register. 3108 3109 ++I; 3110 3111 if (I == MBB.end()) { 3112 // Conditional branch followed by fall-through. 3113 TBB = CondBB; 3114 return false; 3115 } 3116 3117 if (I->getOpcode() == AMDGPU::S_BRANCH) { 3118 TBB = CondBB; 3119 FBB = I->getOperand(0).getMBB(); 3120 return false; 3121 } 3122 3123 return true; 3124 } 3125 3126 bool SIInstrInfo::analyzeBranch(MachineBasicBlock &MBB, MachineBasicBlock *&TBB, 3127 MachineBasicBlock *&FBB, 3128 SmallVectorImpl<MachineOperand> &Cond, 3129 bool AllowModify) const { 3130 MachineBasicBlock::iterator I = MBB.getFirstTerminator(); 3131 auto E = MBB.end(); 3132 if (I == E) 3133 return false; 3134 3135 // Skip over the instructions that are artificially terminators for special 3136 // exec management. 3137 while (I != E && !I->isBranch() && !I->isReturn()) { 3138 switch (I->getOpcode()) { 3139 case AMDGPU::S_MOV_B64_term: 3140 case AMDGPU::S_XOR_B64_term: 3141 case AMDGPU::S_OR_B64_term: 3142 case AMDGPU::S_ANDN2_B64_term: 3143 case AMDGPU::S_AND_B64_term: 3144 case AMDGPU::S_AND_SAVEEXEC_B64_term: 3145 case AMDGPU::S_MOV_B32_term: 3146 case AMDGPU::S_XOR_B32_term: 3147 case AMDGPU::S_OR_B32_term: 3148 case AMDGPU::S_ANDN2_B32_term: 3149 case AMDGPU::S_AND_B32_term: 3150 case AMDGPU::S_AND_SAVEEXEC_B32_term: 3151 break; 3152 case AMDGPU::SI_IF: 3153 case AMDGPU::SI_ELSE: 3154 case AMDGPU::SI_KILL_I1_TERMINATOR: 3155 case AMDGPU::SI_KILL_F32_COND_IMM_TERMINATOR: 3156 // FIXME: It's messy that these need to be considered here at all. 3157 return true; 3158 default: 3159 llvm_unreachable("unexpected non-branch terminator inst"); 3160 } 3161 3162 ++I; 3163 } 3164 3165 if (I == E) 3166 return false; 3167 3168 return analyzeBranchImpl(MBB, I, TBB, FBB, Cond, AllowModify); 3169 } 3170 3171 unsigned SIInstrInfo::removeBranch(MachineBasicBlock &MBB, 3172 int *BytesRemoved) const { 3173 unsigned Count = 0; 3174 unsigned RemovedSize = 0; 3175 for (MachineInstr &MI : llvm::make_early_inc_range(MBB.terminators())) { 3176 // Skip over artificial terminators when removing instructions. 3177 if (MI.isBranch() || MI.isReturn()) { 3178 RemovedSize += getInstSizeInBytes(MI); 3179 MI.eraseFromParent(); 3180 ++Count; 3181 } 3182 } 3183 3184 if (BytesRemoved) 3185 *BytesRemoved = RemovedSize; 3186 3187 return Count; 3188 } 3189 3190 // Copy the flags onto the implicit condition register operand. 3191 static void preserveCondRegFlags(MachineOperand &CondReg, 3192 const MachineOperand &OrigCond) { 3193 CondReg.setIsUndef(OrigCond.isUndef()); 3194 CondReg.setIsKill(OrigCond.isKill()); 3195 } 3196 3197 unsigned SIInstrInfo::insertBranch(MachineBasicBlock &MBB, 3198 MachineBasicBlock *TBB, 3199 MachineBasicBlock *FBB, 3200 ArrayRef<MachineOperand> Cond, 3201 const DebugLoc &DL, 3202 int *BytesAdded) const { 3203 if (!FBB && Cond.empty()) { 3204 BuildMI(&MBB, DL, get(AMDGPU::S_BRANCH)) 3205 .addMBB(TBB); 3206 if (BytesAdded) 3207 *BytesAdded = ST.hasOffset3fBug() ? 8 : 4; 3208 return 1; 3209 } 3210 3211 assert(TBB && Cond[0].isImm()); 3212 3213 unsigned Opcode 3214 = getBranchOpcode(static_cast<BranchPredicate>(Cond[0].getImm())); 3215 3216 if (!FBB) { 3217 MachineInstr *CondBr = 3218 BuildMI(&MBB, DL, get(Opcode)) 3219 .addMBB(TBB); 3220 3221 // Copy the flags onto the implicit condition register operand. 3222 preserveCondRegFlags(CondBr->getOperand(1), Cond[1]); 3223 fixImplicitOperands(*CondBr); 3224 3225 if (BytesAdded) 3226 *BytesAdded = ST.hasOffset3fBug() ? 8 : 4; 3227 return 1; 3228 } 3229 3230 assert(TBB && FBB); 3231 3232 MachineInstr *CondBr = 3233 BuildMI(&MBB, DL, get(Opcode)) 3234 .addMBB(TBB); 3235 fixImplicitOperands(*CondBr); 3236 BuildMI(&MBB, DL, get(AMDGPU::S_BRANCH)) 3237 .addMBB(FBB); 3238 3239 MachineOperand &CondReg = CondBr->getOperand(1); 3240 CondReg.setIsUndef(Cond[1].isUndef()); 3241 CondReg.setIsKill(Cond[1].isKill()); 3242 3243 if (BytesAdded) 3244 *BytesAdded = ST.hasOffset3fBug() ? 16 : 8; 3245 3246 return 2; 3247 } 3248 3249 bool SIInstrInfo::reverseBranchCondition( 3250 SmallVectorImpl<MachineOperand> &Cond) const { 3251 if (Cond.size() != 2) { 3252 return true; 3253 } 3254 3255 if (Cond[0].isImm()) { 3256 Cond[0].setImm(-Cond[0].getImm()); 3257 return false; 3258 } 3259 3260 return true; 3261 } 3262 3263 bool SIInstrInfo::canInsertSelect(const MachineBasicBlock &MBB, 3264 ArrayRef<MachineOperand> Cond, 3265 Register DstReg, Register TrueReg, 3266 Register FalseReg, int &CondCycles, 3267 int &TrueCycles, int &FalseCycles) const { 3268 switch (Cond[0].getImm()) { 3269 case VCCNZ: 3270 case VCCZ: { 3271 const MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo(); 3272 const TargetRegisterClass *RC = MRI.getRegClass(TrueReg); 3273 if (MRI.getRegClass(FalseReg) != RC) 3274 return false; 3275 3276 int NumInsts = AMDGPU::getRegBitWidth(*RC) / 32; 3277 CondCycles = TrueCycles = FalseCycles = NumInsts; // ??? 3278 3279 // Limit to equal cost for branch vs. N v_cndmask_b32s. 3280 return RI.hasVGPRs(RC) && NumInsts <= 6; 3281 } 3282 case SCC_TRUE: 3283 case SCC_FALSE: { 3284 // FIXME: We could insert for VGPRs if we could replace the original compare 3285 // with a vector one. 3286 const MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo(); 3287 const TargetRegisterClass *RC = MRI.getRegClass(TrueReg); 3288 if (MRI.getRegClass(FalseReg) != RC) 3289 return false; 3290 3291 int NumInsts = AMDGPU::getRegBitWidth(*RC) / 32; 3292 3293 // Multiples of 8 can do s_cselect_b64 3294 if (NumInsts % 2 == 0) 3295 NumInsts /= 2; 3296 3297 CondCycles = TrueCycles = FalseCycles = NumInsts; // ??? 3298 return RI.isSGPRClass(RC); 3299 } 3300 default: 3301 return false; 3302 } 3303 } 3304 3305 void SIInstrInfo::insertSelect(MachineBasicBlock &MBB, 3306 MachineBasicBlock::iterator I, const DebugLoc &DL, 3307 Register DstReg, ArrayRef<MachineOperand> Cond, 3308 Register TrueReg, Register FalseReg) const { 3309 BranchPredicate Pred = static_cast<BranchPredicate>(Cond[0].getImm()); 3310 if (Pred == VCCZ || Pred == SCC_FALSE) { 3311 Pred = static_cast<BranchPredicate>(-Pred); 3312 std::swap(TrueReg, FalseReg); 3313 } 3314 3315 MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo(); 3316 const TargetRegisterClass *DstRC = MRI.getRegClass(DstReg); 3317 unsigned DstSize = RI.getRegSizeInBits(*DstRC); 3318 3319 if (DstSize == 32) { 3320 MachineInstr *Select; 3321 if (Pred == SCC_TRUE) { 3322 Select = BuildMI(MBB, I, DL, get(AMDGPU::S_CSELECT_B32), DstReg) 3323 .addReg(TrueReg) 3324 .addReg(FalseReg); 3325 } else { 3326 // Instruction's operands are backwards from what is expected. 3327 Select = BuildMI(MBB, I, DL, get(AMDGPU::V_CNDMASK_B32_e32), DstReg) 3328 .addReg(FalseReg) 3329 .addReg(TrueReg); 3330 } 3331 3332 preserveCondRegFlags(Select->getOperand(3), Cond[1]); 3333 return; 3334 } 3335 3336 if (DstSize == 64 && Pred == SCC_TRUE) { 3337 MachineInstr *Select = 3338 BuildMI(MBB, I, DL, get(AMDGPU::S_CSELECT_B64), DstReg) 3339 .addReg(TrueReg) 3340 .addReg(FalseReg); 3341 3342 preserveCondRegFlags(Select->getOperand(3), Cond[1]); 3343 return; 3344 } 3345 3346 static const int16_t Sub0_15[] = { 3347 AMDGPU::sub0, AMDGPU::sub1, AMDGPU::sub2, AMDGPU::sub3, 3348 AMDGPU::sub4, AMDGPU::sub5, AMDGPU::sub6, AMDGPU::sub7, 3349 AMDGPU::sub8, AMDGPU::sub9, AMDGPU::sub10, AMDGPU::sub11, 3350 AMDGPU::sub12, AMDGPU::sub13, AMDGPU::sub14, AMDGPU::sub15, 3351 }; 3352 3353 static const int16_t Sub0_15_64[] = { 3354 AMDGPU::sub0_sub1, AMDGPU::sub2_sub3, 3355 AMDGPU::sub4_sub5, AMDGPU::sub6_sub7, 3356 AMDGPU::sub8_sub9, AMDGPU::sub10_sub11, 3357 AMDGPU::sub12_sub13, AMDGPU::sub14_sub15, 3358 }; 3359 3360 unsigned SelOp = AMDGPU::V_CNDMASK_B32_e32; 3361 const TargetRegisterClass *EltRC = &AMDGPU::VGPR_32RegClass; 3362 const int16_t *SubIndices = Sub0_15; 3363 int NElts = DstSize / 32; 3364 3365 // 64-bit select is only available for SALU. 3366 // TODO: Split 96-bit into 64-bit and 32-bit, not 3x 32-bit. 3367 if (Pred == SCC_TRUE) { 3368 if (NElts % 2) { 3369 SelOp = AMDGPU::S_CSELECT_B32; 3370 EltRC = &AMDGPU::SGPR_32RegClass; 3371 } else { 3372 SelOp = AMDGPU::S_CSELECT_B64; 3373 EltRC = &AMDGPU::SGPR_64RegClass; 3374 SubIndices = Sub0_15_64; 3375 NElts /= 2; 3376 } 3377 } 3378 3379 MachineInstrBuilder MIB = BuildMI( 3380 MBB, I, DL, get(AMDGPU::REG_SEQUENCE), DstReg); 3381 3382 I = MIB->getIterator(); 3383 3384 SmallVector<Register, 8> Regs; 3385 for (int Idx = 0; Idx != NElts; ++Idx) { 3386 Register DstElt = MRI.createVirtualRegister(EltRC); 3387 Regs.push_back(DstElt); 3388 3389 unsigned SubIdx = SubIndices[Idx]; 3390 3391 MachineInstr *Select; 3392 if (SelOp == AMDGPU::V_CNDMASK_B32_e32) { 3393 Select = 3394 BuildMI(MBB, I, DL, get(SelOp), DstElt) 3395 .addReg(FalseReg, 0, SubIdx) 3396 .addReg(TrueReg, 0, SubIdx); 3397 } else { 3398 Select = 3399 BuildMI(MBB, I, DL, get(SelOp), DstElt) 3400 .addReg(TrueReg, 0, SubIdx) 3401 .addReg(FalseReg, 0, SubIdx); 3402 } 3403 3404 preserveCondRegFlags(Select->getOperand(3), Cond[1]); 3405 fixImplicitOperands(*Select); 3406 3407 MIB.addReg(DstElt) 3408 .addImm(SubIdx); 3409 } 3410 } 3411 3412 bool SIInstrInfo::isFoldableCopy(const MachineInstr &MI) { 3413 switch (MI.getOpcode()) { 3414 case AMDGPU::V_MOV_B16_t16_e32: 3415 case AMDGPU::V_MOV_B16_t16_e64: 3416 case AMDGPU::V_MOV_B32_e32: 3417 case AMDGPU::V_MOV_B32_e64: 3418 case AMDGPU::V_MOV_B64_PSEUDO: 3419 case AMDGPU::V_MOV_B64_e32: 3420 case AMDGPU::V_MOV_B64_e64: 3421 case AMDGPU::S_MOV_B32: 3422 case AMDGPU::S_MOV_B64: 3423 case AMDGPU::S_MOV_B64_IMM_PSEUDO: 3424 case AMDGPU::COPY: 3425 case AMDGPU::WWM_COPY: 3426 case AMDGPU::V_ACCVGPR_WRITE_B32_e64: 3427 case AMDGPU::V_ACCVGPR_READ_B32_e64: 3428 case AMDGPU::V_ACCVGPR_MOV_B32: 3429 return true; 3430 default: 3431 return false; 3432 } 3433 } 3434 3435 static constexpr unsigned ModifierOpNames[] = { 3436 AMDGPU::OpName::src0_modifiers, AMDGPU::OpName::src1_modifiers, 3437 AMDGPU::OpName::src2_modifiers, AMDGPU::OpName::clamp, 3438 AMDGPU::OpName::omod, AMDGPU::OpName::op_sel}; 3439 3440 void SIInstrInfo::removeModOperands(MachineInstr &MI) const { 3441 unsigned Opc = MI.getOpcode(); 3442 for (unsigned Name : reverse(ModifierOpNames)) { 3443 int Idx = AMDGPU::getNamedOperandIdx(Opc, Name); 3444 if (Idx >= 0) 3445 MI.removeOperand(Idx); 3446 } 3447 } 3448 3449 bool SIInstrInfo::foldImmediate(MachineInstr &UseMI, MachineInstr &DefMI, 3450 Register Reg, MachineRegisterInfo *MRI) const { 3451 if (!MRI->hasOneNonDBGUse(Reg)) 3452 return false; 3453 3454 switch (DefMI.getOpcode()) { 3455 default: 3456 return false; 3457 case AMDGPU::V_MOV_B64_e32: 3458 case AMDGPU::S_MOV_B64: 3459 case AMDGPU::V_MOV_B64_PSEUDO: 3460 case AMDGPU::S_MOV_B64_IMM_PSEUDO: 3461 case AMDGPU::V_MOV_B32_e32: 3462 case AMDGPU::S_MOV_B32: 3463 case AMDGPU::V_ACCVGPR_WRITE_B32_e64: 3464 break; 3465 } 3466 3467 const MachineOperand *ImmOp = getNamedOperand(DefMI, AMDGPU::OpName::src0); 3468 assert(ImmOp); 3469 // FIXME: We could handle FrameIndex values here. 3470 if (!ImmOp->isImm()) 3471 return false; 3472 3473 auto getImmFor = [ImmOp](const MachineOperand &UseOp) -> int64_t { 3474 int64_t Imm = ImmOp->getImm(); 3475 switch (UseOp.getSubReg()) { 3476 default: 3477 return Imm; 3478 case AMDGPU::sub0: 3479 return Lo_32(Imm); 3480 case AMDGPU::sub1: 3481 return Hi_32(Imm); 3482 case AMDGPU::lo16: 3483 return SignExtend64<16>(Imm); 3484 case AMDGPU::hi16: 3485 return SignExtend64<16>(Imm >> 16); 3486 case AMDGPU::sub1_lo16: 3487 return SignExtend64<16>(Imm >> 32); 3488 case AMDGPU::sub1_hi16: 3489 return SignExtend64<16>(Imm >> 48); 3490 } 3491 }; 3492 3493 assert(!DefMI.getOperand(0).getSubReg() && "Expected SSA form"); 3494 3495 unsigned Opc = UseMI.getOpcode(); 3496 if (Opc == AMDGPU::COPY) { 3497 assert(!UseMI.getOperand(0).getSubReg() && "Expected SSA form"); 3498 3499 Register DstReg = UseMI.getOperand(0).getReg(); 3500 unsigned OpSize = getOpSize(UseMI, 0); 3501 bool Is16Bit = OpSize == 2; 3502 bool Is64Bit = OpSize == 8; 3503 bool isVGPRCopy = RI.isVGPR(*MRI, DstReg); 3504 unsigned NewOpc = isVGPRCopy ? Is64Bit ? AMDGPU::V_MOV_B64_PSEUDO 3505 : AMDGPU::V_MOV_B32_e32 3506 : Is64Bit ? AMDGPU::S_MOV_B64_IMM_PSEUDO 3507 : AMDGPU::S_MOV_B32; 3508 APInt Imm(Is64Bit ? 64 : 32, getImmFor(UseMI.getOperand(1)), 3509 /*isSigned=*/true, /*implicitTrunc=*/true); 3510 3511 if (RI.isAGPR(*MRI, DstReg)) { 3512 if (Is64Bit || !isInlineConstant(Imm)) 3513 return false; 3514 NewOpc = AMDGPU::V_ACCVGPR_WRITE_B32_e64; 3515 } 3516 3517 if (Is16Bit) { 3518 if (isVGPRCopy) 3519 return false; // Do not clobber vgpr_hi16 3520 3521 if (DstReg.isVirtual() && UseMI.getOperand(0).getSubReg() != AMDGPU::lo16) 3522 return false; 3523 3524 UseMI.getOperand(0).setSubReg(0); 3525 if (DstReg.isPhysical()) { 3526 DstReg = RI.get32BitRegister(DstReg); 3527 UseMI.getOperand(0).setReg(DstReg); 3528 } 3529 assert(UseMI.getOperand(1).getReg().isVirtual()); 3530 } 3531 3532 const MCInstrDesc &NewMCID = get(NewOpc); 3533 if (DstReg.isPhysical() && 3534 !RI.getRegClass(NewMCID.operands()[0].RegClass)->contains(DstReg)) 3535 return false; 3536 3537 UseMI.setDesc(NewMCID); 3538 UseMI.getOperand(1).ChangeToImmediate(Imm.getSExtValue()); 3539 UseMI.addImplicitDefUseOperands(*UseMI.getParent()->getParent()); 3540 return true; 3541 } 3542 3543 if (Opc == AMDGPU::V_MAD_F32_e64 || Opc == AMDGPU::V_MAC_F32_e64 || 3544 Opc == AMDGPU::V_MAD_F16_e64 || Opc == AMDGPU::V_MAC_F16_e64 || 3545 Opc == AMDGPU::V_FMA_F32_e64 || Opc == AMDGPU::V_FMAC_F32_e64 || 3546 Opc == AMDGPU::V_FMA_F16_e64 || Opc == AMDGPU::V_FMAC_F16_e64 || 3547 Opc == AMDGPU::V_FMAC_F16_fake16_e64) { 3548 // Don't fold if we are using source or output modifiers. The new VOP2 3549 // instructions don't have them. 3550 if (hasAnyModifiersSet(UseMI)) 3551 return false; 3552 3553 // If this is a free constant, there's no reason to do this. 3554 // TODO: We could fold this here instead of letting SIFoldOperands do it 3555 // later. 3556 MachineOperand *Src0 = getNamedOperand(UseMI, AMDGPU::OpName::src0); 3557 3558 // Any src operand can be used for the legality check. 3559 if (isInlineConstant(UseMI, *Src0, *ImmOp)) 3560 return false; 3561 3562 bool IsF32 = Opc == AMDGPU::V_MAD_F32_e64 || Opc == AMDGPU::V_MAC_F32_e64 || 3563 Opc == AMDGPU::V_FMA_F32_e64 || Opc == AMDGPU::V_FMAC_F32_e64; 3564 bool IsFMA = 3565 Opc == AMDGPU::V_FMA_F32_e64 || Opc == AMDGPU::V_FMAC_F32_e64 || 3566 Opc == AMDGPU::V_FMA_F16_e64 || Opc == AMDGPU::V_FMAC_F16_e64 || 3567 Opc == AMDGPU::V_FMAC_F16_fake16_e64; 3568 MachineOperand *Src1 = getNamedOperand(UseMI, AMDGPU::OpName::src1); 3569 MachineOperand *Src2 = getNamedOperand(UseMI, AMDGPU::OpName::src2); 3570 3571 // Multiplied part is the constant: Use v_madmk_{f16, f32}. 3572 if ((Src0->isReg() && Src0->getReg() == Reg) || 3573 (Src1->isReg() && Src1->getReg() == Reg)) { 3574 MachineOperand *RegSrc = 3575 Src1->isReg() && Src1->getReg() == Reg ? Src0 : Src1; 3576 if (!RegSrc->isReg()) 3577 return false; 3578 if (RI.isSGPRClass(MRI->getRegClass(RegSrc->getReg())) && 3579 ST.getConstantBusLimit(Opc) < 2) 3580 return false; 3581 3582 if (!Src2->isReg() || RI.isSGPRClass(MRI->getRegClass(Src2->getReg()))) 3583 return false; 3584 3585 // If src2 is also a literal constant then we have to choose which one to 3586 // fold. In general it is better to choose madak so that the other literal 3587 // can be materialized in an sgpr instead of a vgpr: 3588 // s_mov_b32 s0, literal 3589 // v_madak_f32 v0, s0, v0, literal 3590 // Instead of: 3591 // v_mov_b32 v1, literal 3592 // v_madmk_f32 v0, v0, literal, v1 3593 MachineInstr *Def = MRI->getUniqueVRegDef(Src2->getReg()); 3594 if (Def && Def->isMoveImmediate() && 3595 !isInlineConstant(Def->getOperand(1))) 3596 return false; 3597 3598 unsigned NewOpc = 3599 IsFMA ? (IsF32 ? AMDGPU::V_FMAMK_F32 3600 : ST.hasTrue16BitInsts() ? AMDGPU::V_FMAMK_F16_fake16 3601 : AMDGPU::V_FMAMK_F16) 3602 : (IsF32 ? AMDGPU::V_MADMK_F32 : AMDGPU::V_MADMK_F16); 3603 if (pseudoToMCOpcode(NewOpc) == -1) 3604 return false; 3605 3606 // V_FMAMK_F16_fake16 takes VGPR_32_Lo128 operands, so the rewrite 3607 // would also require restricting their register classes. For now 3608 // just bail out. 3609 if (NewOpc == AMDGPU::V_FMAMK_F16_fake16) 3610 return false; 3611 3612 const int64_t Imm = getImmFor(RegSrc == Src1 ? *Src0 : *Src1); 3613 3614 // FIXME: This would be a lot easier if we could return a new instruction 3615 // instead of having to modify in place. 3616 3617 Register SrcReg = RegSrc->getReg(); 3618 unsigned SrcSubReg = RegSrc->getSubReg(); 3619 Src0->setReg(SrcReg); 3620 Src0->setSubReg(SrcSubReg); 3621 Src0->setIsKill(RegSrc->isKill()); 3622 3623 if (Opc == AMDGPU::V_MAC_F32_e64 || Opc == AMDGPU::V_MAC_F16_e64 || 3624 Opc == AMDGPU::V_FMAC_F32_e64 || 3625 Opc == AMDGPU::V_FMAC_F16_fake16_e64 || Opc == AMDGPU::V_FMAC_F16_e64) 3626 UseMI.untieRegOperand( 3627 AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src2)); 3628 3629 Src1->ChangeToImmediate(Imm); 3630 3631 removeModOperands(UseMI); 3632 UseMI.setDesc(get(NewOpc)); 3633 3634 bool DeleteDef = MRI->use_nodbg_empty(Reg); 3635 if (DeleteDef) 3636 DefMI.eraseFromParent(); 3637 3638 return true; 3639 } 3640 3641 // Added part is the constant: Use v_madak_{f16, f32}. 3642 if (Src2->isReg() && Src2->getReg() == Reg) { 3643 if (ST.getConstantBusLimit(Opc) < 2) { 3644 // Not allowed to use constant bus for another operand. 3645 // We can however allow an inline immediate as src0. 3646 bool Src0Inlined = false; 3647 if (Src0->isReg()) { 3648 // Try to inline constant if possible. 3649 // If the Def moves immediate and the use is single 3650 // We are saving VGPR here. 3651 MachineInstr *Def = MRI->getUniqueVRegDef(Src0->getReg()); 3652 if (Def && Def->isMoveImmediate() && 3653 isInlineConstant(Def->getOperand(1)) && 3654 MRI->hasOneUse(Src0->getReg())) { 3655 Src0->ChangeToImmediate(Def->getOperand(1).getImm()); 3656 Src0Inlined = true; 3657 } else if (ST.getConstantBusLimit(Opc) <= 1 && 3658 RI.isSGPRReg(*MRI, Src0->getReg())) { 3659 return false; 3660 } 3661 // VGPR is okay as Src0 - fallthrough 3662 } 3663 3664 if (Src1->isReg() && !Src0Inlined) { 3665 // We have one slot for inlinable constant so far - try to fill it 3666 MachineInstr *Def = MRI->getUniqueVRegDef(Src1->getReg()); 3667 if (Def && Def->isMoveImmediate() && 3668 isInlineConstant(Def->getOperand(1)) && 3669 MRI->hasOneUse(Src1->getReg()) && commuteInstruction(UseMI)) 3670 Src0->ChangeToImmediate(Def->getOperand(1).getImm()); 3671 else if (RI.isSGPRReg(*MRI, Src1->getReg())) 3672 return false; 3673 // VGPR is okay as Src1 - fallthrough 3674 } 3675 } 3676 3677 unsigned NewOpc = 3678 IsFMA ? (IsF32 ? AMDGPU::V_FMAAK_F32 3679 : ST.hasTrue16BitInsts() ? AMDGPU::V_FMAAK_F16_fake16 3680 : AMDGPU::V_FMAAK_F16) 3681 : (IsF32 ? AMDGPU::V_MADAK_F32 : AMDGPU::V_MADAK_F16); 3682 if (pseudoToMCOpcode(NewOpc) == -1) 3683 return false; 3684 3685 // V_FMAAK_F16_fake16 takes VGPR_32_Lo128 operands, so the rewrite 3686 // would also require restricting their register classes. For now 3687 // just bail out. 3688 if (NewOpc == AMDGPU::V_FMAAK_F16_fake16) 3689 return false; 3690 3691 // FIXME: This would be a lot easier if we could return a new instruction 3692 // instead of having to modify in place. 3693 3694 if (Opc == AMDGPU::V_MAC_F32_e64 || Opc == AMDGPU::V_MAC_F16_e64 || 3695 Opc == AMDGPU::V_FMAC_F32_e64 || 3696 Opc == AMDGPU::V_FMAC_F16_fake16_e64 || Opc == AMDGPU::V_FMAC_F16_e64) 3697 UseMI.untieRegOperand( 3698 AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src2)); 3699 3700 // ChangingToImmediate adds Src2 back to the instruction. 3701 Src2->ChangeToImmediate(getImmFor(*Src2)); 3702 3703 // These come before src2. 3704 removeModOperands(UseMI); 3705 UseMI.setDesc(get(NewOpc)); 3706 // It might happen that UseMI was commuted 3707 // and we now have SGPR as SRC1. If so 2 inlined 3708 // constant and SGPR are illegal. 3709 legalizeOperands(UseMI); 3710 3711 bool DeleteDef = MRI->use_nodbg_empty(Reg); 3712 if (DeleteDef) 3713 DefMI.eraseFromParent(); 3714 3715 return true; 3716 } 3717 } 3718 3719 return false; 3720 } 3721 3722 static bool 3723 memOpsHaveSameBaseOperands(ArrayRef<const MachineOperand *> BaseOps1, 3724 ArrayRef<const MachineOperand *> BaseOps2) { 3725 if (BaseOps1.size() != BaseOps2.size()) 3726 return false; 3727 for (size_t I = 0, E = BaseOps1.size(); I < E; ++I) { 3728 if (!BaseOps1[I]->isIdenticalTo(*BaseOps2[I])) 3729 return false; 3730 } 3731 return true; 3732 } 3733 3734 static bool offsetsDoNotOverlap(LocationSize WidthA, int OffsetA, 3735 LocationSize WidthB, int OffsetB) { 3736 int LowOffset = OffsetA < OffsetB ? OffsetA : OffsetB; 3737 int HighOffset = OffsetA < OffsetB ? OffsetB : OffsetA; 3738 LocationSize LowWidth = (LowOffset == OffsetA) ? WidthA : WidthB; 3739 return LowWidth.hasValue() && 3740 LowOffset + (int)LowWidth.getValue() <= HighOffset; 3741 } 3742 3743 bool SIInstrInfo::checkInstOffsetsDoNotOverlap(const MachineInstr &MIa, 3744 const MachineInstr &MIb) const { 3745 SmallVector<const MachineOperand *, 4> BaseOps0, BaseOps1; 3746 int64_t Offset0, Offset1; 3747 LocationSize Dummy0 = 0, Dummy1 = 0; 3748 bool Offset0IsScalable, Offset1IsScalable; 3749 if (!getMemOperandsWithOffsetWidth(MIa, BaseOps0, Offset0, Offset0IsScalable, 3750 Dummy0, &RI) || 3751 !getMemOperandsWithOffsetWidth(MIb, BaseOps1, Offset1, Offset1IsScalable, 3752 Dummy1, &RI)) 3753 return false; 3754 3755 if (!memOpsHaveSameBaseOperands(BaseOps0, BaseOps1)) 3756 return false; 3757 3758 if (!MIa.hasOneMemOperand() || !MIb.hasOneMemOperand()) { 3759 // FIXME: Handle ds_read2 / ds_write2. 3760 return false; 3761 } 3762 LocationSize Width0 = MIa.memoperands().front()->getSize(); 3763 LocationSize Width1 = MIb.memoperands().front()->getSize(); 3764 return offsetsDoNotOverlap(Width0, Offset0, Width1, Offset1); 3765 } 3766 3767 bool SIInstrInfo::areMemAccessesTriviallyDisjoint(const MachineInstr &MIa, 3768 const MachineInstr &MIb) const { 3769 assert(MIa.mayLoadOrStore() && 3770 "MIa must load from or modify a memory location"); 3771 assert(MIb.mayLoadOrStore() && 3772 "MIb must load from or modify a memory location"); 3773 3774 if (MIa.hasUnmodeledSideEffects() || MIb.hasUnmodeledSideEffects()) 3775 return false; 3776 3777 // XXX - Can we relax this between address spaces? 3778 if (MIa.hasOrderedMemoryRef() || MIb.hasOrderedMemoryRef()) 3779 return false; 3780 3781 if (isLDSDMA(MIa) || isLDSDMA(MIb)) 3782 return false; 3783 3784 // TODO: Should we check the address space from the MachineMemOperand? That 3785 // would allow us to distinguish objects we know don't alias based on the 3786 // underlying address space, even if it was lowered to a different one, 3787 // e.g. private accesses lowered to use MUBUF instructions on a scratch 3788 // buffer. 3789 if (isDS(MIa)) { 3790 if (isDS(MIb)) 3791 return checkInstOffsetsDoNotOverlap(MIa, MIb); 3792 3793 return !isFLAT(MIb) || isSegmentSpecificFLAT(MIb); 3794 } 3795 3796 if (isMUBUF(MIa) || isMTBUF(MIa)) { 3797 if (isMUBUF(MIb) || isMTBUF(MIb)) 3798 return checkInstOffsetsDoNotOverlap(MIa, MIb); 3799 3800 if (isFLAT(MIb)) 3801 return isFLATScratch(MIb); 3802 3803 return !isSMRD(MIb); 3804 } 3805 3806 if (isSMRD(MIa)) { 3807 if (isSMRD(MIb)) 3808 return checkInstOffsetsDoNotOverlap(MIa, MIb); 3809 3810 if (isFLAT(MIb)) 3811 return isFLATScratch(MIb); 3812 3813 return !isMUBUF(MIb) && !isMTBUF(MIb); 3814 } 3815 3816 if (isFLAT(MIa)) { 3817 if (isFLAT(MIb)) { 3818 if ((isFLATScratch(MIa) && isFLATGlobal(MIb)) || 3819 (isFLATGlobal(MIa) && isFLATScratch(MIb))) 3820 return true; 3821 3822 return checkInstOffsetsDoNotOverlap(MIa, MIb); 3823 } 3824 3825 return false; 3826 } 3827 3828 return false; 3829 } 3830 3831 static bool getFoldableImm(Register Reg, const MachineRegisterInfo &MRI, 3832 int64_t &Imm, MachineInstr **DefMI = nullptr) { 3833 if (Reg.isPhysical()) 3834 return false; 3835 auto *Def = MRI.getUniqueVRegDef(Reg); 3836 if (Def && SIInstrInfo::isFoldableCopy(*Def) && Def->getOperand(1).isImm()) { 3837 Imm = Def->getOperand(1).getImm(); 3838 if (DefMI) 3839 *DefMI = Def; 3840 return true; 3841 } 3842 return false; 3843 } 3844 3845 static bool getFoldableImm(const MachineOperand *MO, int64_t &Imm, 3846 MachineInstr **DefMI = nullptr) { 3847 if (!MO->isReg()) 3848 return false; 3849 const MachineFunction *MF = MO->getParent()->getParent()->getParent(); 3850 const MachineRegisterInfo &MRI = MF->getRegInfo(); 3851 return getFoldableImm(MO->getReg(), MRI, Imm, DefMI); 3852 } 3853 3854 static void updateLiveVariables(LiveVariables *LV, MachineInstr &MI, 3855 MachineInstr &NewMI) { 3856 if (LV) { 3857 unsigned NumOps = MI.getNumOperands(); 3858 for (unsigned I = 1; I < NumOps; ++I) { 3859 MachineOperand &Op = MI.getOperand(I); 3860 if (Op.isReg() && Op.isKill()) 3861 LV->replaceKillInstruction(Op.getReg(), MI, NewMI); 3862 } 3863 } 3864 } 3865 3866 static unsigned getNewFMAInst(const GCNSubtarget &ST, unsigned Opc) { 3867 switch (Opc) { 3868 case AMDGPU::V_MAC_F16_e32: 3869 case AMDGPU::V_MAC_F16_e64: 3870 return AMDGPU::V_MAD_F16_e64; 3871 case AMDGPU::V_MAC_F32_e32: 3872 case AMDGPU::V_MAC_F32_e64: 3873 return AMDGPU::V_MAD_F32_e64; 3874 case AMDGPU::V_MAC_LEGACY_F32_e32: 3875 case AMDGPU::V_MAC_LEGACY_F32_e64: 3876 return AMDGPU::V_MAD_LEGACY_F32_e64; 3877 case AMDGPU::V_FMAC_LEGACY_F32_e32: 3878 case AMDGPU::V_FMAC_LEGACY_F32_e64: 3879 return AMDGPU::V_FMA_LEGACY_F32_e64; 3880 case AMDGPU::V_FMAC_F16_e32: 3881 case AMDGPU::V_FMAC_F16_e64: 3882 case AMDGPU::V_FMAC_F16_fake16_e64: 3883 return ST.hasTrue16BitInsts() ? AMDGPU::V_FMA_F16_gfx9_fake16_e64 3884 : AMDGPU::V_FMA_F16_gfx9_e64; 3885 case AMDGPU::V_FMAC_F32_e32: 3886 case AMDGPU::V_FMAC_F32_e64: 3887 return AMDGPU::V_FMA_F32_e64; 3888 case AMDGPU::V_FMAC_F64_e32: 3889 case AMDGPU::V_FMAC_F64_e64: 3890 return AMDGPU::V_FMA_F64_e64; 3891 default: 3892 llvm_unreachable("invalid instruction"); 3893 } 3894 } 3895 3896 MachineInstr *SIInstrInfo::convertToThreeAddress(MachineInstr &MI, 3897 LiveVariables *LV, 3898 LiveIntervals *LIS) const { 3899 MachineBasicBlock &MBB = *MI.getParent(); 3900 unsigned Opc = MI.getOpcode(); 3901 3902 // Handle MFMA. 3903 int NewMFMAOpc = AMDGPU::getMFMAEarlyClobberOp(Opc); 3904 if (NewMFMAOpc != -1) { 3905 MachineInstrBuilder MIB = 3906 BuildMI(MBB, MI, MI.getDebugLoc(), get(NewMFMAOpc)); 3907 for (unsigned I = 0, E = MI.getNumOperands(); I != E; ++I) 3908 MIB.add(MI.getOperand(I)); 3909 updateLiveVariables(LV, MI, *MIB); 3910 if (LIS) { 3911 LIS->ReplaceMachineInstrInMaps(MI, *MIB); 3912 // SlotIndex of defs needs to be updated when converting to early-clobber 3913 MachineOperand &Def = MIB->getOperand(0); 3914 if (Def.isEarlyClobber() && Def.isReg() && 3915 LIS->hasInterval(Def.getReg())) { 3916 SlotIndex OldIndex = LIS->getInstructionIndex(*MIB).getRegSlot(false); 3917 SlotIndex NewIndex = LIS->getInstructionIndex(*MIB).getRegSlot(true); 3918 auto &LI = LIS->getInterval(Def.getReg()); 3919 auto UpdateDefIndex = [&](LiveRange &LR) { 3920 auto *S = LR.find(OldIndex); 3921 if (S != LR.end() && S->start == OldIndex) { 3922 assert(S->valno && S->valno->def == OldIndex); 3923 S->start = NewIndex; 3924 S->valno->def = NewIndex; 3925 } 3926 }; 3927 UpdateDefIndex(LI); 3928 for (auto &SR : LI.subranges()) 3929 UpdateDefIndex(SR); 3930 } 3931 } 3932 return MIB; 3933 } 3934 3935 if (SIInstrInfo::isWMMA(MI)) { 3936 unsigned NewOpc = AMDGPU::mapWMMA2AddrTo3AddrOpcode(MI.getOpcode()); 3937 MachineInstrBuilder MIB = BuildMI(MBB, MI, MI.getDebugLoc(), get(NewOpc)) 3938 .setMIFlags(MI.getFlags()); 3939 for (unsigned I = 0, E = MI.getNumOperands(); I != E; ++I) 3940 MIB->addOperand(MI.getOperand(I)); 3941 3942 updateLiveVariables(LV, MI, *MIB); 3943 if (LIS) 3944 LIS->ReplaceMachineInstrInMaps(MI, *MIB); 3945 3946 return MIB; 3947 } 3948 3949 assert( 3950 Opc != AMDGPU::V_FMAC_F16_fake16_e32 && 3951 "V_FMAC_F16_fake16_e32 is not supported and not expected to be present " 3952 "pre-RA"); 3953 3954 // Handle MAC/FMAC. 3955 bool IsF16 = Opc == AMDGPU::V_MAC_F16_e32 || Opc == AMDGPU::V_MAC_F16_e64 || 3956 Opc == AMDGPU::V_FMAC_F16_e32 || Opc == AMDGPU::V_FMAC_F16_e64 || 3957 Opc == AMDGPU::V_FMAC_F16_fake16_e64; 3958 bool IsFMA = Opc == AMDGPU::V_FMAC_F32_e32 || Opc == AMDGPU::V_FMAC_F32_e64 || 3959 Opc == AMDGPU::V_FMAC_LEGACY_F32_e32 || 3960 Opc == AMDGPU::V_FMAC_LEGACY_F32_e64 || 3961 Opc == AMDGPU::V_FMAC_F16_e32 || Opc == AMDGPU::V_FMAC_F16_e64 || 3962 Opc == AMDGPU::V_FMAC_F16_fake16_e64 || 3963 Opc == AMDGPU::V_FMAC_F64_e32 || Opc == AMDGPU::V_FMAC_F64_e64; 3964 bool IsF64 = Opc == AMDGPU::V_FMAC_F64_e32 || Opc == AMDGPU::V_FMAC_F64_e64; 3965 bool IsLegacy = Opc == AMDGPU::V_MAC_LEGACY_F32_e32 || 3966 Opc == AMDGPU::V_MAC_LEGACY_F32_e64 || 3967 Opc == AMDGPU::V_FMAC_LEGACY_F32_e32 || 3968 Opc == AMDGPU::V_FMAC_LEGACY_F32_e64; 3969 bool Src0Literal = false; 3970 3971 switch (Opc) { 3972 default: 3973 return nullptr; 3974 case AMDGPU::V_MAC_F16_e64: 3975 case AMDGPU::V_FMAC_F16_e64: 3976 case AMDGPU::V_FMAC_F16_fake16_e64: 3977 case AMDGPU::V_MAC_F32_e64: 3978 case AMDGPU::V_MAC_LEGACY_F32_e64: 3979 case AMDGPU::V_FMAC_F32_e64: 3980 case AMDGPU::V_FMAC_LEGACY_F32_e64: 3981 case AMDGPU::V_FMAC_F64_e64: 3982 break; 3983 case AMDGPU::V_MAC_F16_e32: 3984 case AMDGPU::V_FMAC_F16_e32: 3985 case AMDGPU::V_MAC_F32_e32: 3986 case AMDGPU::V_MAC_LEGACY_F32_e32: 3987 case AMDGPU::V_FMAC_F32_e32: 3988 case AMDGPU::V_FMAC_LEGACY_F32_e32: 3989 case AMDGPU::V_FMAC_F64_e32: { 3990 int Src0Idx = AMDGPU::getNamedOperandIdx(MI.getOpcode(), 3991 AMDGPU::OpName::src0); 3992 const MachineOperand *Src0 = &MI.getOperand(Src0Idx); 3993 if (!Src0->isReg() && !Src0->isImm()) 3994 return nullptr; 3995 3996 if (Src0->isImm() && !isInlineConstant(MI, Src0Idx, *Src0)) 3997 Src0Literal = true; 3998 3999 break; 4000 } 4001 } 4002 4003 MachineInstrBuilder MIB; 4004 const MachineOperand *Dst = getNamedOperand(MI, AMDGPU::OpName::vdst); 4005 const MachineOperand *Src0 = getNamedOperand(MI, AMDGPU::OpName::src0); 4006 const MachineOperand *Src0Mods = 4007 getNamedOperand(MI, AMDGPU::OpName::src0_modifiers); 4008 const MachineOperand *Src1 = getNamedOperand(MI, AMDGPU::OpName::src1); 4009 const MachineOperand *Src1Mods = 4010 getNamedOperand(MI, AMDGPU::OpName::src1_modifiers); 4011 const MachineOperand *Src2 = getNamedOperand(MI, AMDGPU::OpName::src2); 4012 const MachineOperand *Src2Mods = 4013 getNamedOperand(MI, AMDGPU::OpName::src2_modifiers); 4014 const MachineOperand *Clamp = getNamedOperand(MI, AMDGPU::OpName::clamp); 4015 const MachineOperand *Omod = getNamedOperand(MI, AMDGPU::OpName::omod); 4016 const MachineOperand *OpSel = getNamedOperand(MI, AMDGPU::OpName::op_sel); 4017 4018 if (!Src0Mods && !Src1Mods && !Src2Mods && !Clamp && !Omod && !IsF64 && 4019 !IsLegacy && 4020 // If we have an SGPR input, we will violate the constant bus restriction. 4021 (ST.getConstantBusLimit(Opc) > 1 || !Src0->isReg() || 4022 !RI.isSGPRReg(MBB.getParent()->getRegInfo(), Src0->getReg()))) { 4023 MachineInstr *DefMI; 4024 const auto killDef = [&]() -> void { 4025 MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo(); 4026 // The only user is the instruction which will be killed. 4027 Register DefReg = DefMI->getOperand(0).getReg(); 4028 4029 if (MRI.hasOneNonDBGUse(DefReg)) { 4030 // We cannot just remove the DefMI here, calling pass will crash. 4031 DefMI->setDesc(get(AMDGPU::IMPLICIT_DEF)); 4032 DefMI->getOperand(0).setIsDead(true); 4033 for (unsigned I = DefMI->getNumOperands() - 1; I != 0; --I) 4034 DefMI->removeOperand(I); 4035 if (LV) 4036 LV->getVarInfo(DefReg).AliveBlocks.clear(); 4037 } 4038 4039 if (LIS) { 4040 LiveInterval &DefLI = LIS->getInterval(DefReg); 4041 4042 // We cannot delete the original instruction here, so hack out the use 4043 // in the original instruction with a dummy register so we can use 4044 // shrinkToUses to deal with any multi-use edge cases. Other targets do 4045 // not have the complexity of deleting a use to consider here. 4046 Register DummyReg = MRI.cloneVirtualRegister(DefReg); 4047 for (MachineOperand &MIOp : MI.uses()) { 4048 if (MIOp.isReg() && MIOp.getReg() == DefReg) { 4049 MIOp.setIsUndef(true); 4050 MIOp.setReg(DummyReg); 4051 } 4052 } 4053 4054 LIS->shrinkToUses(&DefLI); 4055 } 4056 }; 4057 4058 int64_t Imm; 4059 if (!Src0Literal && getFoldableImm(Src2, Imm, &DefMI)) { 4060 unsigned NewOpc = 4061 IsFMA ? (IsF16 ? (ST.hasTrue16BitInsts() ? AMDGPU::V_FMAAK_F16_fake16 4062 : AMDGPU::V_FMAAK_F16) 4063 : AMDGPU::V_FMAAK_F32) 4064 : (IsF16 ? AMDGPU::V_MADAK_F16 : AMDGPU::V_MADAK_F32); 4065 if (pseudoToMCOpcode(NewOpc) != -1) { 4066 MIB = BuildMI(MBB, MI, MI.getDebugLoc(), get(NewOpc)) 4067 .add(*Dst) 4068 .add(*Src0) 4069 .add(*Src1) 4070 .addImm(Imm) 4071 .setMIFlags(MI.getFlags()); 4072 updateLiveVariables(LV, MI, *MIB); 4073 if (LIS) 4074 LIS->ReplaceMachineInstrInMaps(MI, *MIB); 4075 killDef(); 4076 return MIB; 4077 } 4078 } 4079 unsigned NewOpc = 4080 IsFMA ? (IsF16 ? (ST.hasTrue16BitInsts() ? AMDGPU::V_FMAMK_F16_fake16 4081 : AMDGPU::V_FMAMK_F16) 4082 : AMDGPU::V_FMAMK_F32) 4083 : (IsF16 ? AMDGPU::V_MADMK_F16 : AMDGPU::V_MADMK_F32); 4084 if (!Src0Literal && getFoldableImm(Src1, Imm, &DefMI)) { 4085 if (pseudoToMCOpcode(NewOpc) != -1) { 4086 MIB = BuildMI(MBB, MI, MI.getDebugLoc(), get(NewOpc)) 4087 .add(*Dst) 4088 .add(*Src0) 4089 .addImm(Imm) 4090 .add(*Src2) 4091 .setMIFlags(MI.getFlags()); 4092 updateLiveVariables(LV, MI, *MIB); 4093 4094 if (LIS) 4095 LIS->ReplaceMachineInstrInMaps(MI, *MIB); 4096 killDef(); 4097 return MIB; 4098 } 4099 } 4100 if (Src0Literal || getFoldableImm(Src0, Imm, &DefMI)) { 4101 if (Src0Literal) { 4102 Imm = Src0->getImm(); 4103 DefMI = nullptr; 4104 } 4105 if (pseudoToMCOpcode(NewOpc) != -1 && 4106 isOperandLegal( 4107 MI, AMDGPU::getNamedOperandIdx(NewOpc, AMDGPU::OpName::src0), 4108 Src1)) { 4109 MIB = BuildMI(MBB, MI, MI.getDebugLoc(), get(NewOpc)) 4110 .add(*Dst) 4111 .add(*Src1) 4112 .addImm(Imm) 4113 .add(*Src2) 4114 .setMIFlags(MI.getFlags()); 4115 updateLiveVariables(LV, MI, *MIB); 4116 4117 if (LIS) 4118 LIS->ReplaceMachineInstrInMaps(MI, *MIB); 4119 if (DefMI) 4120 killDef(); 4121 return MIB; 4122 } 4123 } 4124 } 4125 4126 // VOP2 mac/fmac with a literal operand cannot be converted to VOP3 mad/fma 4127 // if VOP3 does not allow a literal operand. 4128 if (Src0Literal && !ST.hasVOP3Literal()) 4129 return nullptr; 4130 4131 unsigned NewOpc = getNewFMAInst(ST, Opc); 4132 4133 if (pseudoToMCOpcode(NewOpc) == -1) 4134 return nullptr; 4135 4136 MIB = BuildMI(MBB, MI, MI.getDebugLoc(), get(NewOpc)) 4137 .add(*Dst) 4138 .addImm(Src0Mods ? Src0Mods->getImm() : 0) 4139 .add(*Src0) 4140 .addImm(Src1Mods ? Src1Mods->getImm() : 0) 4141 .add(*Src1) 4142 .addImm(Src2Mods ? Src2Mods->getImm() : 0) 4143 .add(*Src2) 4144 .addImm(Clamp ? Clamp->getImm() : 0) 4145 .addImm(Omod ? Omod->getImm() : 0) 4146 .setMIFlags(MI.getFlags()); 4147 if (AMDGPU::hasNamedOperand(NewOpc, AMDGPU::OpName::op_sel)) 4148 MIB.addImm(OpSel ? OpSel->getImm() : 0); 4149 updateLiveVariables(LV, MI, *MIB); 4150 if (LIS) 4151 LIS->ReplaceMachineInstrInMaps(MI, *MIB); 4152 return MIB; 4153 } 4154 4155 // It's not generally safe to move VALU instructions across these since it will 4156 // start using the register as a base index rather than directly. 4157 // XXX - Why isn't hasSideEffects sufficient for these? 4158 static bool changesVGPRIndexingMode(const MachineInstr &MI) { 4159 switch (MI.getOpcode()) { 4160 case AMDGPU::S_SET_GPR_IDX_ON: 4161 case AMDGPU::S_SET_GPR_IDX_MODE: 4162 case AMDGPU::S_SET_GPR_IDX_OFF: 4163 return true; 4164 default: 4165 return false; 4166 } 4167 } 4168 4169 bool SIInstrInfo::isSchedulingBoundary(const MachineInstr &MI, 4170 const MachineBasicBlock *MBB, 4171 const MachineFunction &MF) const { 4172 // Skipping the check for SP writes in the base implementation. The reason it 4173 // was added was apparently due to compile time concerns. 4174 // 4175 // TODO: Do we really want this barrier? It triggers unnecessary hazard nops 4176 // but is probably avoidable. 4177 4178 // Copied from base implementation. 4179 // Terminators and labels can't be scheduled around. 4180 if (MI.isTerminator() || MI.isPosition()) 4181 return true; 4182 4183 // INLINEASM_BR can jump to another block 4184 if (MI.getOpcode() == TargetOpcode::INLINEASM_BR) 4185 return true; 4186 4187 if (MI.getOpcode() == AMDGPU::SCHED_BARRIER && MI.getOperand(0).getImm() == 0) 4188 return true; 4189 4190 // Target-independent instructions do not have an implicit-use of EXEC, even 4191 // when they operate on VGPRs. Treating EXEC modifications as scheduling 4192 // boundaries prevents incorrect movements of such instructions. 4193 return MI.modifiesRegister(AMDGPU::EXEC, &RI) || 4194 MI.getOpcode() == AMDGPU::S_SETREG_IMM32_B32 || 4195 MI.getOpcode() == AMDGPU::S_SETREG_B32 || 4196 MI.getOpcode() == AMDGPU::S_SETPRIO || 4197 changesVGPRIndexingMode(MI); 4198 } 4199 4200 bool SIInstrInfo::isAlwaysGDS(uint16_t Opcode) const { 4201 return Opcode == AMDGPU::DS_ORDERED_COUNT || isGWS(Opcode); 4202 } 4203 4204 bool SIInstrInfo::modifiesModeRegister(const MachineInstr &MI) { 4205 // Skip the full operand and register alias search modifiesRegister 4206 // does. There's only a handful of instructions that touch this, it's only an 4207 // implicit def, and doesn't alias any other registers. 4208 return is_contained(MI.getDesc().implicit_defs(), AMDGPU::MODE); 4209 } 4210 4211 bool SIInstrInfo::hasUnwantedEffectsWhenEXECEmpty(const MachineInstr &MI) const { 4212 unsigned Opcode = MI.getOpcode(); 4213 4214 if (MI.mayStore() && isSMRD(MI)) 4215 return true; // scalar store or atomic 4216 4217 // This will terminate the function when other lanes may need to continue. 4218 if (MI.isReturn()) 4219 return true; 4220 4221 // These instructions cause shader I/O that may cause hardware lockups 4222 // when executed with an empty EXEC mask. 4223 // 4224 // Note: exp with VM = DONE = 0 is automatically skipped by hardware when 4225 // EXEC = 0, but checking for that case here seems not worth it 4226 // given the typical code patterns. 4227 if (Opcode == AMDGPU::S_SENDMSG || Opcode == AMDGPU::S_SENDMSGHALT || 4228 isEXP(Opcode) || Opcode == AMDGPU::DS_ORDERED_COUNT || 4229 Opcode == AMDGPU::S_TRAP || Opcode == AMDGPU::S_WAIT_EVENT) 4230 return true; 4231 4232 if (MI.isCall() || MI.isInlineAsm()) 4233 return true; // conservative assumption 4234 4235 // Assume that barrier interactions are only intended with active lanes. 4236 if (isBarrier(Opcode)) 4237 return true; 4238 4239 // A mode change is a scalar operation that influences vector instructions. 4240 if (modifiesModeRegister(MI)) 4241 return true; 4242 4243 // These are like SALU instructions in terms of effects, so it's questionable 4244 // whether we should return true for those. 4245 // 4246 // However, executing them with EXEC = 0 causes them to operate on undefined 4247 // data, which we avoid by returning true here. 4248 if (Opcode == AMDGPU::V_READFIRSTLANE_B32 || 4249 Opcode == AMDGPU::V_READLANE_B32 || Opcode == AMDGPU::V_WRITELANE_B32 || 4250 Opcode == AMDGPU::SI_RESTORE_S32_FROM_VGPR || 4251 Opcode == AMDGPU::SI_SPILL_S32_TO_VGPR) 4252 return true; 4253 4254 return false; 4255 } 4256 4257 bool SIInstrInfo::mayReadEXEC(const MachineRegisterInfo &MRI, 4258 const MachineInstr &MI) const { 4259 if (MI.isMetaInstruction()) 4260 return false; 4261 4262 // This won't read exec if this is an SGPR->SGPR copy. 4263 if (MI.isCopyLike()) { 4264 if (!RI.isSGPRReg(MRI, MI.getOperand(0).getReg())) 4265 return true; 4266 4267 // Make sure this isn't copying exec as a normal operand 4268 return MI.readsRegister(AMDGPU::EXEC, &RI); 4269 } 4270 4271 // Make a conservative assumption about the callee. 4272 if (MI.isCall()) 4273 return true; 4274 4275 // Be conservative with any unhandled generic opcodes. 4276 if (!isTargetSpecificOpcode(MI.getOpcode())) 4277 return true; 4278 4279 return !isSALU(MI) || MI.readsRegister(AMDGPU::EXEC, &RI); 4280 } 4281 4282 bool SIInstrInfo::isInlineConstant(const APInt &Imm) const { 4283 switch (Imm.getBitWidth()) { 4284 case 1: // This likely will be a condition code mask. 4285 return true; 4286 4287 case 32: 4288 return AMDGPU::isInlinableLiteral32(Imm.getSExtValue(), 4289 ST.hasInv2PiInlineImm()); 4290 case 64: 4291 return AMDGPU::isInlinableLiteral64(Imm.getSExtValue(), 4292 ST.hasInv2PiInlineImm()); 4293 case 16: 4294 return ST.has16BitInsts() && 4295 AMDGPU::isInlinableLiteralI16(Imm.getSExtValue(), 4296 ST.hasInv2PiInlineImm()); 4297 default: 4298 llvm_unreachable("invalid bitwidth"); 4299 } 4300 } 4301 4302 bool SIInstrInfo::isInlineConstant(const APFloat &Imm) const { 4303 APInt IntImm = Imm.bitcastToAPInt(); 4304 int64_t IntImmVal = IntImm.getSExtValue(); 4305 bool HasInv2Pi = ST.hasInv2PiInlineImm(); 4306 switch (APFloat::SemanticsToEnum(Imm.getSemantics())) { 4307 default: 4308 llvm_unreachable("invalid fltSemantics"); 4309 case APFloatBase::S_IEEEsingle: 4310 case APFloatBase::S_IEEEdouble: 4311 return isInlineConstant(IntImm); 4312 case APFloatBase::S_BFloat: 4313 return ST.has16BitInsts() && 4314 AMDGPU::isInlinableLiteralBF16(IntImmVal, HasInv2Pi); 4315 case APFloatBase::S_IEEEhalf: 4316 return ST.has16BitInsts() && 4317 AMDGPU::isInlinableLiteralFP16(IntImmVal, HasInv2Pi); 4318 } 4319 } 4320 4321 bool SIInstrInfo::isInlineConstant(const MachineOperand &MO, 4322 uint8_t OperandType) const { 4323 assert(!MO.isReg() && "isInlineConstant called on register operand!"); 4324 if (!MO.isImm()) 4325 return false; 4326 4327 // MachineOperand provides no way to tell the true operand size, since it only 4328 // records a 64-bit value. We need to know the size to determine if a 32-bit 4329 // floating point immediate bit pattern is legal for an integer immediate. It 4330 // would be for any 32-bit integer operand, but would not be for a 64-bit one. 4331 4332 int64_t Imm = MO.getImm(); 4333 switch (OperandType) { 4334 case AMDGPU::OPERAND_REG_IMM_INT32: 4335 case AMDGPU::OPERAND_REG_IMM_FP32: 4336 case AMDGPU::OPERAND_REG_IMM_FP32_DEFERRED: 4337 case AMDGPU::OPERAND_REG_INLINE_C_INT32: 4338 case AMDGPU::OPERAND_REG_INLINE_C_FP32: 4339 case AMDGPU::OPERAND_REG_IMM_V2FP32: 4340 case AMDGPU::OPERAND_REG_INLINE_C_V2FP32: 4341 case AMDGPU::OPERAND_REG_IMM_V2INT32: 4342 case AMDGPU::OPERAND_REG_INLINE_C_V2INT32: 4343 case AMDGPU::OPERAND_REG_INLINE_AC_INT32: 4344 case AMDGPU::OPERAND_REG_INLINE_AC_FP32: 4345 case AMDGPU::OPERAND_INLINE_SPLIT_BARRIER_INT32: { 4346 int32_t Trunc = static_cast<int32_t>(Imm); 4347 return AMDGPU::isInlinableLiteral32(Trunc, ST.hasInv2PiInlineImm()); 4348 } 4349 case AMDGPU::OPERAND_REG_IMM_INT64: 4350 case AMDGPU::OPERAND_REG_IMM_FP64: 4351 case AMDGPU::OPERAND_REG_INLINE_C_INT64: 4352 case AMDGPU::OPERAND_REG_INLINE_C_FP64: 4353 case AMDGPU::OPERAND_REG_INLINE_AC_FP64: 4354 return AMDGPU::isInlinableLiteral64(MO.getImm(), 4355 ST.hasInv2PiInlineImm()); 4356 case AMDGPU::OPERAND_REG_IMM_INT16: 4357 case AMDGPU::OPERAND_REG_INLINE_C_INT16: 4358 case AMDGPU::OPERAND_REG_INLINE_AC_INT16: 4359 // We would expect inline immediates to not be concerned with an integer/fp 4360 // distinction. However, in the case of 16-bit integer operations, the 4361 // "floating point" values appear to not work. It seems read the low 16-bits 4362 // of 32-bit immediates, which happens to always work for the integer 4363 // values. 4364 // 4365 // See llvm bugzilla 46302. 4366 // 4367 // TODO: Theoretically we could use op-sel to use the high bits of the 4368 // 32-bit FP values. 4369 return AMDGPU::isInlinableIntLiteral(Imm); 4370 case AMDGPU::OPERAND_REG_IMM_V2INT16: 4371 case AMDGPU::OPERAND_REG_INLINE_C_V2INT16: 4372 case AMDGPU::OPERAND_REG_INLINE_AC_V2INT16: 4373 return AMDGPU::isInlinableLiteralV2I16(Imm); 4374 case AMDGPU::OPERAND_REG_IMM_V2FP16: 4375 case AMDGPU::OPERAND_REG_INLINE_C_V2FP16: 4376 case AMDGPU::OPERAND_REG_INLINE_AC_V2FP16: 4377 return AMDGPU::isInlinableLiteralV2F16(Imm); 4378 case AMDGPU::OPERAND_REG_IMM_V2BF16: 4379 case AMDGPU::OPERAND_REG_INLINE_C_V2BF16: 4380 case AMDGPU::OPERAND_REG_INLINE_AC_V2BF16: 4381 return AMDGPU::isInlinableLiteralV2BF16(Imm); 4382 case AMDGPU::OPERAND_REG_IMM_FP16: 4383 case AMDGPU::OPERAND_REG_IMM_FP16_DEFERRED: 4384 case AMDGPU::OPERAND_REG_INLINE_C_FP16: 4385 case AMDGPU::OPERAND_REG_INLINE_AC_FP16: { 4386 if (isInt<16>(Imm) || isUInt<16>(Imm)) { 4387 // A few special case instructions have 16-bit operands on subtargets 4388 // where 16-bit instructions are not legal. 4389 // TODO: Do the 32-bit immediates work? We shouldn't really need to handle 4390 // constants in these cases 4391 int16_t Trunc = static_cast<int16_t>(Imm); 4392 return ST.has16BitInsts() && 4393 AMDGPU::isInlinableLiteralFP16(Trunc, ST.hasInv2PiInlineImm()); 4394 } 4395 4396 return false; 4397 } 4398 case AMDGPU::OPERAND_REG_IMM_BF16: 4399 case AMDGPU::OPERAND_REG_IMM_BF16_DEFERRED: 4400 case AMDGPU::OPERAND_REG_INLINE_C_BF16: 4401 case AMDGPU::OPERAND_REG_INLINE_AC_BF16: { 4402 if (isInt<16>(Imm) || isUInt<16>(Imm)) { 4403 int16_t Trunc = static_cast<int16_t>(Imm); 4404 return ST.has16BitInsts() && 4405 AMDGPU::isInlinableLiteralBF16(Trunc, ST.hasInv2PiInlineImm()); 4406 } 4407 return false; 4408 } 4409 case AMDGPU::OPERAND_KIMM32: 4410 case AMDGPU::OPERAND_KIMM16: 4411 return false; 4412 case AMDGPU::OPERAND_INPUT_MODS: 4413 case MCOI::OPERAND_IMMEDIATE: 4414 // Always embedded in the instruction for free. 4415 return true; 4416 case MCOI::OPERAND_UNKNOWN: 4417 case MCOI::OPERAND_REGISTER: 4418 case MCOI::OPERAND_PCREL: 4419 case MCOI::OPERAND_GENERIC_0: 4420 case MCOI::OPERAND_GENERIC_1: 4421 case MCOI::OPERAND_GENERIC_2: 4422 case MCOI::OPERAND_GENERIC_3: 4423 case MCOI::OPERAND_GENERIC_4: 4424 case MCOI::OPERAND_GENERIC_5: 4425 // Just ignore anything else. 4426 return true; 4427 default: 4428 llvm_unreachable("invalid operand type"); 4429 } 4430 } 4431 4432 static bool compareMachineOp(const MachineOperand &Op0, 4433 const MachineOperand &Op1) { 4434 if (Op0.getType() != Op1.getType()) 4435 return false; 4436 4437 switch (Op0.getType()) { 4438 case MachineOperand::MO_Register: 4439 return Op0.getReg() == Op1.getReg(); 4440 case MachineOperand::MO_Immediate: 4441 return Op0.getImm() == Op1.getImm(); 4442 default: 4443 llvm_unreachable("Didn't expect to be comparing these operand types"); 4444 } 4445 } 4446 4447 bool SIInstrInfo::isImmOperandLegal(const MachineInstr &MI, unsigned OpNo, 4448 const MachineOperand &MO) const { 4449 const MCInstrDesc &InstDesc = MI.getDesc(); 4450 const MCOperandInfo &OpInfo = InstDesc.operands()[OpNo]; 4451 4452 assert(MO.isImm() || MO.isTargetIndex() || MO.isFI() || MO.isGlobal()); 4453 4454 if (OpInfo.OperandType == MCOI::OPERAND_IMMEDIATE) 4455 return true; 4456 4457 if (OpInfo.RegClass < 0) 4458 return false; 4459 4460 if (MO.isImm() && isInlineConstant(MO, OpInfo)) { 4461 if (isMAI(MI) && ST.hasMFMAInlineLiteralBug() && 4462 OpNo ==(unsigned)AMDGPU::getNamedOperandIdx(MI.getOpcode(), 4463 AMDGPU::OpName::src2)) 4464 return false; 4465 return RI.opCanUseInlineConstant(OpInfo.OperandType); 4466 } 4467 4468 if (!RI.opCanUseLiteralConstant(OpInfo.OperandType)) 4469 return false; 4470 4471 if (!isVOP3(MI) || !AMDGPU::isSISrcOperand(InstDesc, OpNo)) 4472 return true; 4473 4474 return ST.hasVOP3Literal(); 4475 } 4476 4477 bool SIInstrInfo::hasVALU32BitEncoding(unsigned Opcode) const { 4478 // GFX90A does not have V_MUL_LEGACY_F32_e32. 4479 if (Opcode == AMDGPU::V_MUL_LEGACY_F32_e64 && ST.hasGFX90AInsts()) 4480 return false; 4481 4482 int Op32 = AMDGPU::getVOPe32(Opcode); 4483 if (Op32 == -1) 4484 return false; 4485 4486 return pseudoToMCOpcode(Op32) != -1; 4487 } 4488 4489 bool SIInstrInfo::hasModifiers(unsigned Opcode) const { 4490 // The src0_modifier operand is present on all instructions 4491 // that have modifiers. 4492 4493 return AMDGPU::hasNamedOperand(Opcode, AMDGPU::OpName::src0_modifiers); 4494 } 4495 4496 bool SIInstrInfo::hasModifiersSet(const MachineInstr &MI, 4497 unsigned OpName) const { 4498 const MachineOperand *Mods = getNamedOperand(MI, OpName); 4499 return Mods && Mods->getImm(); 4500 } 4501 4502 bool SIInstrInfo::hasAnyModifiersSet(const MachineInstr &MI) const { 4503 return any_of(ModifierOpNames, 4504 [&](unsigned Name) { return hasModifiersSet(MI, Name); }); 4505 } 4506 4507 bool SIInstrInfo::canShrink(const MachineInstr &MI, 4508 const MachineRegisterInfo &MRI) const { 4509 const MachineOperand *Src2 = getNamedOperand(MI, AMDGPU::OpName::src2); 4510 // Can't shrink instruction with three operands. 4511 if (Src2) { 4512 switch (MI.getOpcode()) { 4513 default: return false; 4514 4515 case AMDGPU::V_ADDC_U32_e64: 4516 case AMDGPU::V_SUBB_U32_e64: 4517 case AMDGPU::V_SUBBREV_U32_e64: { 4518 const MachineOperand *Src1 4519 = getNamedOperand(MI, AMDGPU::OpName::src1); 4520 if (!Src1->isReg() || !RI.isVGPR(MRI, Src1->getReg())) 4521 return false; 4522 // Additional verification is needed for sdst/src2. 4523 return true; 4524 } 4525 case AMDGPU::V_MAC_F16_e64: 4526 case AMDGPU::V_MAC_F32_e64: 4527 case AMDGPU::V_MAC_LEGACY_F32_e64: 4528 case AMDGPU::V_FMAC_F16_e64: 4529 case AMDGPU::V_FMAC_F16_fake16_e64: 4530 case AMDGPU::V_FMAC_F32_e64: 4531 case AMDGPU::V_FMAC_F64_e64: 4532 case AMDGPU::V_FMAC_LEGACY_F32_e64: 4533 if (!Src2->isReg() || !RI.isVGPR(MRI, Src2->getReg()) || 4534 hasModifiersSet(MI, AMDGPU::OpName::src2_modifiers)) 4535 return false; 4536 break; 4537 4538 case AMDGPU::V_CNDMASK_B32_e64: 4539 break; 4540 } 4541 } 4542 4543 const MachineOperand *Src1 = getNamedOperand(MI, AMDGPU::OpName::src1); 4544 if (Src1 && (!Src1->isReg() || !RI.isVGPR(MRI, Src1->getReg()) || 4545 hasModifiersSet(MI, AMDGPU::OpName::src1_modifiers))) 4546 return false; 4547 4548 // We don't need to check src0, all input types are legal, so just make sure 4549 // src0 isn't using any modifiers. 4550 if (hasModifiersSet(MI, AMDGPU::OpName::src0_modifiers)) 4551 return false; 4552 4553 // Can it be shrunk to a valid 32 bit opcode? 4554 if (!hasVALU32BitEncoding(MI.getOpcode())) 4555 return false; 4556 4557 // Check output modifiers 4558 return !hasModifiersSet(MI, AMDGPU::OpName::omod) && 4559 !hasModifiersSet(MI, AMDGPU::OpName::clamp) && 4560 !hasModifiersSet(MI, AMDGPU::OpName::byte_sel) && 4561 // TODO: Can we avoid checking bound_ctrl/fi here? 4562 // They are only used by permlane*_swap special case. 4563 !hasModifiersSet(MI, AMDGPU::OpName::bound_ctrl) && 4564 !hasModifiersSet(MI, AMDGPU::OpName::fi); 4565 } 4566 4567 // Set VCC operand with all flags from \p Orig, except for setting it as 4568 // implicit. 4569 static void copyFlagsToImplicitVCC(MachineInstr &MI, 4570 const MachineOperand &Orig) { 4571 4572 for (MachineOperand &Use : MI.implicit_operands()) { 4573 if (Use.isUse() && 4574 (Use.getReg() == AMDGPU::VCC || Use.getReg() == AMDGPU::VCC_LO)) { 4575 Use.setIsUndef(Orig.isUndef()); 4576 Use.setIsKill(Orig.isKill()); 4577 return; 4578 } 4579 } 4580 } 4581 4582 MachineInstr *SIInstrInfo::buildShrunkInst(MachineInstr &MI, 4583 unsigned Op32) const { 4584 MachineBasicBlock *MBB = MI.getParent(); 4585 4586 const MCInstrDesc &Op32Desc = get(Op32); 4587 MachineInstrBuilder Inst32 = 4588 BuildMI(*MBB, MI, MI.getDebugLoc(), Op32Desc) 4589 .setMIFlags(MI.getFlags()); 4590 4591 // Add the dst operand if the 32-bit encoding also has an explicit $vdst. 4592 // For VOPC instructions, this is replaced by an implicit def of vcc. 4593 4594 // We assume the defs of the shrunk opcode are in the same order, and the 4595 // shrunk opcode loses the last def (SGPR def, in the VOP3->VOPC case). 4596 for (int I = 0, E = Op32Desc.getNumDefs(); I != E; ++I) 4597 Inst32.add(MI.getOperand(I)); 4598 4599 const MachineOperand *Src2 = getNamedOperand(MI, AMDGPU::OpName::src2); 4600 4601 int Idx = MI.getNumExplicitDefs(); 4602 for (const MachineOperand &Use : MI.explicit_uses()) { 4603 int OpTy = MI.getDesc().operands()[Idx++].OperandType; 4604 if (OpTy == AMDGPU::OPERAND_INPUT_MODS || OpTy == MCOI::OPERAND_IMMEDIATE) 4605 continue; 4606 4607 if (&Use == Src2) { 4608 if (AMDGPU::getNamedOperandIdx(Op32, AMDGPU::OpName::src2) == -1) { 4609 // In the case of V_CNDMASK_B32_e32, the explicit operand src2 is 4610 // replaced with an implicit read of vcc or vcc_lo. The implicit read 4611 // of vcc was already added during the initial BuildMI, but we 4612 // 1) may need to change vcc to vcc_lo to preserve the original register 4613 // 2) have to preserve the original flags. 4614 copyFlagsToImplicitVCC(*Inst32, *Src2); 4615 continue; 4616 } 4617 } 4618 4619 Inst32.add(Use); 4620 } 4621 4622 // FIXME: Losing implicit operands 4623 fixImplicitOperands(*Inst32); 4624 return Inst32; 4625 } 4626 4627 bool SIInstrInfo::usesConstantBus(const MachineRegisterInfo &MRI, 4628 const MachineOperand &MO, 4629 const MCOperandInfo &OpInfo) const { 4630 // Literal constants use the constant bus. 4631 if (!MO.isReg()) 4632 return !isInlineConstant(MO, OpInfo); 4633 4634 if (!MO.isUse()) 4635 return false; 4636 4637 if (MO.getReg().isVirtual()) 4638 return RI.isSGPRClass(MRI.getRegClass(MO.getReg())); 4639 4640 // Null is free 4641 if (MO.getReg() == AMDGPU::SGPR_NULL || MO.getReg() == AMDGPU::SGPR_NULL64) 4642 return false; 4643 4644 // SGPRs use the constant bus 4645 if (MO.isImplicit()) { 4646 return MO.getReg() == AMDGPU::M0 || MO.getReg() == AMDGPU::VCC || 4647 MO.getReg() == AMDGPU::VCC_LO; 4648 } 4649 return AMDGPU::SReg_32RegClass.contains(MO.getReg()) || 4650 AMDGPU::SReg_64RegClass.contains(MO.getReg()); 4651 } 4652 4653 static Register findImplicitSGPRRead(const MachineInstr &MI) { 4654 for (const MachineOperand &MO : MI.implicit_operands()) { 4655 // We only care about reads. 4656 if (MO.isDef()) 4657 continue; 4658 4659 switch (MO.getReg()) { 4660 case AMDGPU::VCC: 4661 case AMDGPU::VCC_LO: 4662 case AMDGPU::VCC_HI: 4663 case AMDGPU::M0: 4664 case AMDGPU::FLAT_SCR: 4665 return MO.getReg(); 4666 4667 default: 4668 break; 4669 } 4670 } 4671 4672 return Register(); 4673 } 4674 4675 static bool shouldReadExec(const MachineInstr &MI) { 4676 if (SIInstrInfo::isVALU(MI)) { 4677 switch (MI.getOpcode()) { 4678 case AMDGPU::V_READLANE_B32: 4679 case AMDGPU::SI_RESTORE_S32_FROM_VGPR: 4680 case AMDGPU::V_WRITELANE_B32: 4681 case AMDGPU::SI_SPILL_S32_TO_VGPR: 4682 return false; 4683 } 4684 4685 return true; 4686 } 4687 4688 if (MI.isPreISelOpcode() || 4689 SIInstrInfo::isGenericOpcode(MI.getOpcode()) || 4690 SIInstrInfo::isSALU(MI) || 4691 SIInstrInfo::isSMRD(MI)) 4692 return false; 4693 4694 return true; 4695 } 4696 4697 static bool isRegOrFI(const MachineOperand &MO) { 4698 return MO.isReg() || MO.isFI(); 4699 } 4700 4701 static bool isSubRegOf(const SIRegisterInfo &TRI, 4702 const MachineOperand &SuperVec, 4703 const MachineOperand &SubReg) { 4704 if (SubReg.getReg().isPhysical()) 4705 return TRI.isSubRegister(SuperVec.getReg(), SubReg.getReg()); 4706 4707 return SubReg.getSubReg() != AMDGPU::NoSubRegister && 4708 SubReg.getReg() == SuperVec.getReg(); 4709 } 4710 4711 // Verify the illegal copy from vector register to SGPR for generic opcode COPY 4712 bool SIInstrInfo::verifyCopy(const MachineInstr &MI, 4713 const MachineRegisterInfo &MRI, 4714 StringRef &ErrInfo) const { 4715 Register DstReg = MI.getOperand(0).getReg(); 4716 Register SrcReg = MI.getOperand(1).getReg(); 4717 // This is a check for copy from vector register to SGPR 4718 if (RI.isVectorRegister(MRI, SrcReg) && RI.isSGPRReg(MRI, DstReg)) { 4719 ErrInfo = "illegal copy from vector register to SGPR"; 4720 return false; 4721 } 4722 return true; 4723 } 4724 4725 bool SIInstrInfo::verifyInstruction(const MachineInstr &MI, 4726 StringRef &ErrInfo) const { 4727 uint16_t Opcode = MI.getOpcode(); 4728 const MachineFunction *MF = MI.getParent()->getParent(); 4729 const MachineRegisterInfo &MRI = MF->getRegInfo(); 4730 4731 // FIXME: At this point the COPY verify is done only for non-ssa forms. 4732 // Find a better property to recognize the point where instruction selection 4733 // is just done. 4734 // We can only enforce this check after SIFixSGPRCopies pass so that the 4735 // illegal copies are legalized and thereafter we don't expect a pass 4736 // inserting similar copies. 4737 if (!MRI.isSSA() && MI.isCopy()) 4738 return verifyCopy(MI, MRI, ErrInfo); 4739 4740 if (SIInstrInfo::isGenericOpcode(MI.getOpcode())) 4741 return true; 4742 4743 int Src0Idx = AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::src0); 4744 int Src1Idx = AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::src1); 4745 int Src2Idx = AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::src2); 4746 int Src3Idx = -1; 4747 if (Src0Idx == -1) { 4748 // VOPD V_DUAL_* instructions use different operand names. 4749 Src0Idx = AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::src0X); 4750 Src1Idx = AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::vsrc1X); 4751 Src2Idx = AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::src0Y); 4752 Src3Idx = AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::vsrc1Y); 4753 } 4754 4755 // Make sure the number of operands is correct. 4756 const MCInstrDesc &Desc = get(Opcode); 4757 if (!Desc.isVariadic() && 4758 Desc.getNumOperands() != MI.getNumExplicitOperands()) { 4759 ErrInfo = "Instruction has wrong number of operands."; 4760 return false; 4761 } 4762 4763 if (MI.isInlineAsm()) { 4764 // Verify register classes for inlineasm constraints. 4765 for (unsigned I = InlineAsm::MIOp_FirstOperand, E = MI.getNumOperands(); 4766 I != E; ++I) { 4767 const TargetRegisterClass *RC = MI.getRegClassConstraint(I, this, &RI); 4768 if (!RC) 4769 continue; 4770 4771 const MachineOperand &Op = MI.getOperand(I); 4772 if (!Op.isReg()) 4773 continue; 4774 4775 Register Reg = Op.getReg(); 4776 if (!Reg.isVirtual() && !RC->contains(Reg)) { 4777 ErrInfo = "inlineasm operand has incorrect register class."; 4778 return false; 4779 } 4780 } 4781 4782 return true; 4783 } 4784 4785 if (isImage(MI) && MI.memoperands_empty() && MI.mayLoadOrStore()) { 4786 ErrInfo = "missing memory operand from image instruction."; 4787 return false; 4788 } 4789 4790 // Make sure the register classes are correct. 4791 for (int i = 0, e = Desc.getNumOperands(); i != e; ++i) { 4792 const MachineOperand &MO = MI.getOperand(i); 4793 if (MO.isFPImm()) { 4794 ErrInfo = "FPImm Machine Operands are not supported. ISel should bitcast " 4795 "all fp values to integers."; 4796 return false; 4797 } 4798 4799 int RegClass = Desc.operands()[i].RegClass; 4800 4801 switch (Desc.operands()[i].OperandType) { 4802 case MCOI::OPERAND_REGISTER: 4803 if (MI.getOperand(i).isImm() || MI.getOperand(i).isGlobal()) { 4804 ErrInfo = "Illegal immediate value for operand."; 4805 return false; 4806 } 4807 break; 4808 case AMDGPU::OPERAND_REG_IMM_INT32: 4809 case AMDGPU::OPERAND_REG_IMM_FP32: 4810 case AMDGPU::OPERAND_REG_IMM_FP32_DEFERRED: 4811 case AMDGPU::OPERAND_REG_IMM_V2FP32: 4812 break; 4813 case AMDGPU::OPERAND_REG_INLINE_C_INT32: 4814 case AMDGPU::OPERAND_REG_INLINE_C_FP32: 4815 case AMDGPU::OPERAND_REG_INLINE_C_INT64: 4816 case AMDGPU::OPERAND_REG_INLINE_C_FP64: 4817 case AMDGPU::OPERAND_REG_INLINE_C_INT16: 4818 case AMDGPU::OPERAND_REG_INLINE_C_FP16: 4819 case AMDGPU::OPERAND_REG_INLINE_AC_INT32: 4820 case AMDGPU::OPERAND_REG_INLINE_AC_FP32: 4821 case AMDGPU::OPERAND_REG_INLINE_AC_INT16: 4822 case AMDGPU::OPERAND_REG_INLINE_AC_FP16: 4823 case AMDGPU::OPERAND_REG_INLINE_AC_FP64: { 4824 if (!MO.isReg() && (!MO.isImm() || !isInlineConstant(MI, i))) { 4825 ErrInfo = "Illegal immediate value for operand."; 4826 return false; 4827 } 4828 break; 4829 } 4830 case AMDGPU::OPERAND_INLINE_SPLIT_BARRIER_INT32: 4831 if (!MI.getOperand(i).isImm() || !isInlineConstant(MI, i)) { 4832 ErrInfo = "Expected inline constant for operand."; 4833 return false; 4834 } 4835 break; 4836 case MCOI::OPERAND_IMMEDIATE: 4837 case AMDGPU::OPERAND_KIMM32: 4838 // Check if this operand is an immediate. 4839 // FrameIndex operands will be replaced by immediates, so they are 4840 // allowed. 4841 if (!MI.getOperand(i).isImm() && !MI.getOperand(i).isFI()) { 4842 ErrInfo = "Expected immediate, but got non-immediate"; 4843 return false; 4844 } 4845 [[fallthrough]]; 4846 default: 4847 continue; 4848 } 4849 4850 if (!MO.isReg()) 4851 continue; 4852 Register Reg = MO.getReg(); 4853 if (!Reg) 4854 continue; 4855 4856 // FIXME: Ideally we would have separate instruction definitions with the 4857 // aligned register constraint. 4858 // FIXME: We do not verify inline asm operands, but custom inline asm 4859 // verification is broken anyway 4860 if (ST.needsAlignedVGPRs()) { 4861 const TargetRegisterClass *RC = RI.getRegClassForReg(MRI, Reg); 4862 if (RI.hasVectorRegisters(RC) && MO.getSubReg()) { 4863 if (const TargetRegisterClass *SubRC = 4864 RI.getSubRegisterClass(RC, MO.getSubReg())) { 4865 RC = RI.getCompatibleSubRegClass(RC, SubRC, MO.getSubReg()); 4866 if (RC) 4867 RC = SubRC; 4868 } 4869 } 4870 4871 // Check that this is the aligned version of the class. 4872 if (!RC || !RI.isProperlyAlignedRC(*RC)) { 4873 ErrInfo = "Subtarget requires even aligned vector registers"; 4874 return false; 4875 } 4876 } 4877 4878 if (RegClass != -1) { 4879 if (Reg.isVirtual()) 4880 continue; 4881 4882 const TargetRegisterClass *RC = RI.getRegClass(RegClass); 4883 if (!RC->contains(Reg)) { 4884 ErrInfo = "Operand has incorrect register class."; 4885 return false; 4886 } 4887 } 4888 } 4889 4890 // Verify SDWA 4891 if (isSDWA(MI)) { 4892 if (!ST.hasSDWA()) { 4893 ErrInfo = "SDWA is not supported on this target"; 4894 return false; 4895 } 4896 4897 int DstIdx = AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::vdst); 4898 4899 for (int OpIdx : {DstIdx, Src0Idx, Src1Idx, Src2Idx}) { 4900 if (OpIdx == -1) 4901 continue; 4902 const MachineOperand &MO = MI.getOperand(OpIdx); 4903 4904 if (!ST.hasSDWAScalar()) { 4905 // Only VGPRS on VI 4906 if (!MO.isReg() || !RI.hasVGPRs(RI.getRegClassForReg(MRI, MO.getReg()))) { 4907 ErrInfo = "Only VGPRs allowed as operands in SDWA instructions on VI"; 4908 return false; 4909 } 4910 } else { 4911 // No immediates on GFX9 4912 if (!MO.isReg()) { 4913 ErrInfo = 4914 "Only reg allowed as operands in SDWA instructions on GFX9+"; 4915 return false; 4916 } 4917 } 4918 } 4919 4920 if (!ST.hasSDWAOmod()) { 4921 // No omod allowed on VI 4922 const MachineOperand *OMod = getNamedOperand(MI, AMDGPU::OpName::omod); 4923 if (OMod != nullptr && 4924 (!OMod->isImm() || OMod->getImm() != 0)) { 4925 ErrInfo = "OMod not allowed in SDWA instructions on VI"; 4926 return false; 4927 } 4928 } 4929 4930 if (Opcode == AMDGPU::V_CVT_F32_FP8_sdwa || 4931 Opcode == AMDGPU::V_CVT_F32_BF8_sdwa || 4932 Opcode == AMDGPU::V_CVT_PK_F32_FP8_sdwa || 4933 Opcode == AMDGPU::V_CVT_PK_F32_BF8_sdwa) { 4934 const MachineOperand *Src0ModsMO = 4935 getNamedOperand(MI, AMDGPU::OpName::src0_modifiers); 4936 unsigned Mods = Src0ModsMO->getImm(); 4937 if (Mods & SISrcMods::ABS || Mods & SISrcMods::NEG || 4938 Mods & SISrcMods::SEXT) { 4939 ErrInfo = "sext, abs and neg are not allowed on this instruction"; 4940 return false; 4941 } 4942 } 4943 4944 uint16_t BasicOpcode = AMDGPU::getBasicFromSDWAOp(Opcode); 4945 if (isVOPC(BasicOpcode)) { 4946 if (!ST.hasSDWASdst() && DstIdx != -1) { 4947 // Only vcc allowed as dst on VI for VOPC 4948 const MachineOperand &Dst = MI.getOperand(DstIdx); 4949 if (!Dst.isReg() || Dst.getReg() != AMDGPU::VCC) { 4950 ErrInfo = "Only VCC allowed as dst in SDWA instructions on VI"; 4951 return false; 4952 } 4953 } else if (!ST.hasSDWAOutModsVOPC()) { 4954 // No clamp allowed on GFX9 for VOPC 4955 const MachineOperand *Clamp = getNamedOperand(MI, AMDGPU::OpName::clamp); 4956 if (Clamp && (!Clamp->isImm() || Clamp->getImm() != 0)) { 4957 ErrInfo = "Clamp not allowed in VOPC SDWA instructions on VI"; 4958 return false; 4959 } 4960 4961 // No omod allowed on GFX9 for VOPC 4962 const MachineOperand *OMod = getNamedOperand(MI, AMDGPU::OpName::omod); 4963 if (OMod && (!OMod->isImm() || OMod->getImm() != 0)) { 4964 ErrInfo = "OMod not allowed in VOPC SDWA instructions on VI"; 4965 return false; 4966 } 4967 } 4968 } 4969 4970 const MachineOperand *DstUnused = getNamedOperand(MI, AMDGPU::OpName::dst_unused); 4971 if (DstUnused && DstUnused->isImm() && 4972 DstUnused->getImm() == AMDGPU::SDWA::UNUSED_PRESERVE) { 4973 const MachineOperand &Dst = MI.getOperand(DstIdx); 4974 if (!Dst.isReg() || !Dst.isTied()) { 4975 ErrInfo = "Dst register should have tied register"; 4976 return false; 4977 } 4978 4979 const MachineOperand &TiedMO = 4980 MI.getOperand(MI.findTiedOperandIdx(DstIdx)); 4981 if (!TiedMO.isReg() || !TiedMO.isImplicit() || !TiedMO.isUse()) { 4982 ErrInfo = 4983 "Dst register should be tied to implicit use of preserved register"; 4984 return false; 4985 } 4986 if (TiedMO.getReg().isPhysical() && Dst.getReg() != TiedMO.getReg()) { 4987 ErrInfo = "Dst register should use same physical register as preserved"; 4988 return false; 4989 } 4990 } 4991 } 4992 4993 // Verify MIMG / VIMAGE / VSAMPLE 4994 if (isImage(MI.getOpcode()) && !MI.mayStore()) { 4995 // Ensure that the return type used is large enough for all the options 4996 // being used TFE/LWE require an extra result register. 4997 const MachineOperand *DMask = getNamedOperand(MI, AMDGPU::OpName::dmask); 4998 if (DMask) { 4999 uint64_t DMaskImm = DMask->getImm(); 5000 uint32_t RegCount = 5001 isGather4(MI.getOpcode()) ? 4 : llvm::popcount(DMaskImm); 5002 const MachineOperand *TFE = getNamedOperand(MI, AMDGPU::OpName::tfe); 5003 const MachineOperand *LWE = getNamedOperand(MI, AMDGPU::OpName::lwe); 5004 const MachineOperand *D16 = getNamedOperand(MI, AMDGPU::OpName::d16); 5005 5006 // Adjust for packed 16 bit values 5007 if (D16 && D16->getImm() && !ST.hasUnpackedD16VMem()) 5008 RegCount = divideCeil(RegCount, 2); 5009 5010 // Adjust if using LWE or TFE 5011 if ((LWE && LWE->getImm()) || (TFE && TFE->getImm())) 5012 RegCount += 1; 5013 5014 const uint32_t DstIdx = 5015 AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::vdata); 5016 const MachineOperand &Dst = MI.getOperand(DstIdx); 5017 if (Dst.isReg()) { 5018 const TargetRegisterClass *DstRC = getOpRegClass(MI, DstIdx); 5019 uint32_t DstSize = RI.getRegSizeInBits(*DstRC) / 32; 5020 if (RegCount > DstSize) { 5021 ErrInfo = "Image instruction returns too many registers for dst " 5022 "register class"; 5023 return false; 5024 } 5025 } 5026 } 5027 } 5028 5029 // Verify VOP*. Ignore multiple sgpr operands on writelane. 5030 if (isVALU(MI) && Desc.getOpcode() != AMDGPU::V_WRITELANE_B32) { 5031 unsigned ConstantBusCount = 0; 5032 bool UsesLiteral = false; 5033 const MachineOperand *LiteralVal = nullptr; 5034 5035 int ImmIdx = AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::imm); 5036 if (ImmIdx != -1) { 5037 ++ConstantBusCount; 5038 UsesLiteral = true; 5039 LiteralVal = &MI.getOperand(ImmIdx); 5040 } 5041 5042 SmallVector<Register, 2> SGPRsUsed; 5043 Register SGPRUsed; 5044 5045 // Only look at the true operands. Only a real operand can use the constant 5046 // bus, and we don't want to check pseudo-operands like the source modifier 5047 // flags. 5048 for (int OpIdx : {Src0Idx, Src1Idx, Src2Idx, Src3Idx}) { 5049 if (OpIdx == -1) 5050 continue; 5051 const MachineOperand &MO = MI.getOperand(OpIdx); 5052 if (usesConstantBus(MRI, MO, MI.getDesc().operands()[OpIdx])) { 5053 if (MO.isReg()) { 5054 SGPRUsed = MO.getReg(); 5055 if (!llvm::is_contained(SGPRsUsed, SGPRUsed)) { 5056 ++ConstantBusCount; 5057 SGPRsUsed.push_back(SGPRUsed); 5058 } 5059 } else if (!MO.isFI()) { // Treat FI like a register. 5060 if (!UsesLiteral) { 5061 ++ConstantBusCount; 5062 UsesLiteral = true; 5063 LiteralVal = &MO; 5064 } else if (!MO.isIdenticalTo(*LiteralVal)) { 5065 assert(isVOP2(MI) || isVOP3(MI)); 5066 ErrInfo = "VOP2/VOP3 instruction uses more than one literal"; 5067 return false; 5068 } 5069 } 5070 } 5071 } 5072 5073 SGPRUsed = findImplicitSGPRRead(MI); 5074 if (SGPRUsed) { 5075 // Implicit uses may safely overlap true operands 5076 if (llvm::all_of(SGPRsUsed, [this, SGPRUsed](unsigned SGPR) { 5077 return !RI.regsOverlap(SGPRUsed, SGPR); 5078 })) { 5079 ++ConstantBusCount; 5080 SGPRsUsed.push_back(SGPRUsed); 5081 } 5082 } 5083 5084 // v_writelane_b32 is an exception from constant bus restriction: 5085 // vsrc0 can be sgpr, const or m0 and lane select sgpr, m0 or inline-const 5086 if (ConstantBusCount > ST.getConstantBusLimit(Opcode) && 5087 Opcode != AMDGPU::V_WRITELANE_B32) { 5088 ErrInfo = "VOP* instruction violates constant bus restriction"; 5089 return false; 5090 } 5091 5092 if (isVOP3(MI) && UsesLiteral && !ST.hasVOP3Literal()) { 5093 ErrInfo = "VOP3 instruction uses literal"; 5094 return false; 5095 } 5096 } 5097 5098 // Special case for writelane - this can break the multiple constant bus rule, 5099 // but still can't use more than one SGPR register 5100 if (Desc.getOpcode() == AMDGPU::V_WRITELANE_B32) { 5101 unsigned SGPRCount = 0; 5102 Register SGPRUsed; 5103 5104 for (int OpIdx : {Src0Idx, Src1Idx}) { 5105 if (OpIdx == -1) 5106 break; 5107 5108 const MachineOperand &MO = MI.getOperand(OpIdx); 5109 5110 if (usesConstantBus(MRI, MO, MI.getDesc().operands()[OpIdx])) { 5111 if (MO.isReg() && MO.getReg() != AMDGPU::M0) { 5112 if (MO.getReg() != SGPRUsed) 5113 ++SGPRCount; 5114 SGPRUsed = MO.getReg(); 5115 } 5116 } 5117 if (SGPRCount > ST.getConstantBusLimit(Opcode)) { 5118 ErrInfo = "WRITELANE instruction violates constant bus restriction"; 5119 return false; 5120 } 5121 } 5122 } 5123 5124 // Verify misc. restrictions on specific instructions. 5125 if (Desc.getOpcode() == AMDGPU::V_DIV_SCALE_F32_e64 || 5126 Desc.getOpcode() == AMDGPU::V_DIV_SCALE_F64_e64) { 5127 const MachineOperand &Src0 = MI.getOperand(Src0Idx); 5128 const MachineOperand &Src1 = MI.getOperand(Src1Idx); 5129 const MachineOperand &Src2 = MI.getOperand(Src2Idx); 5130 if (Src0.isReg() && Src1.isReg() && Src2.isReg()) { 5131 if (!compareMachineOp(Src0, Src1) && 5132 !compareMachineOp(Src0, Src2)) { 5133 ErrInfo = "v_div_scale_{f32|f64} require src0 = src1 or src2"; 5134 return false; 5135 } 5136 } 5137 if ((getNamedOperand(MI, AMDGPU::OpName::src0_modifiers)->getImm() & 5138 SISrcMods::ABS) || 5139 (getNamedOperand(MI, AMDGPU::OpName::src1_modifiers)->getImm() & 5140 SISrcMods::ABS) || 5141 (getNamedOperand(MI, AMDGPU::OpName::src2_modifiers)->getImm() & 5142 SISrcMods::ABS)) { 5143 ErrInfo = "ABS not allowed in VOP3B instructions"; 5144 return false; 5145 } 5146 } 5147 5148 if (isSOP2(MI) || isSOPC(MI)) { 5149 const MachineOperand &Src0 = MI.getOperand(Src0Idx); 5150 const MachineOperand &Src1 = MI.getOperand(Src1Idx); 5151 5152 if (!isRegOrFI(Src0) && !isRegOrFI(Src1) && 5153 !isInlineConstant(Src0, Desc.operands()[Src0Idx]) && 5154 !isInlineConstant(Src1, Desc.operands()[Src1Idx]) && 5155 !Src0.isIdenticalTo(Src1)) { 5156 ErrInfo = "SOP2/SOPC instruction requires too many immediate constants"; 5157 return false; 5158 } 5159 } 5160 5161 if (isSOPK(MI)) { 5162 const auto *Op = getNamedOperand(MI, AMDGPU::OpName::simm16); 5163 if (Desc.isBranch()) { 5164 if (!Op->isMBB()) { 5165 ErrInfo = "invalid branch target for SOPK instruction"; 5166 return false; 5167 } 5168 } else { 5169 uint64_t Imm = Op->getImm(); 5170 if (sopkIsZext(Opcode)) { 5171 if (!isUInt<16>(Imm)) { 5172 ErrInfo = "invalid immediate for SOPK instruction"; 5173 return false; 5174 } 5175 } else { 5176 if (!isInt<16>(Imm)) { 5177 ErrInfo = "invalid immediate for SOPK instruction"; 5178 return false; 5179 } 5180 } 5181 } 5182 } 5183 5184 if (Desc.getOpcode() == AMDGPU::V_MOVRELS_B32_e32 || 5185 Desc.getOpcode() == AMDGPU::V_MOVRELS_B32_e64 || 5186 Desc.getOpcode() == AMDGPU::V_MOVRELD_B32_e32 || 5187 Desc.getOpcode() == AMDGPU::V_MOVRELD_B32_e64) { 5188 const bool IsDst = Desc.getOpcode() == AMDGPU::V_MOVRELD_B32_e32 || 5189 Desc.getOpcode() == AMDGPU::V_MOVRELD_B32_e64; 5190 5191 const unsigned StaticNumOps = 5192 Desc.getNumOperands() + Desc.implicit_uses().size(); 5193 const unsigned NumImplicitOps = IsDst ? 2 : 1; 5194 5195 // Allow additional implicit operands. This allows a fixup done by the post 5196 // RA scheduler where the main implicit operand is killed and implicit-defs 5197 // are added for sub-registers that remain live after this instruction. 5198 if (MI.getNumOperands() < StaticNumOps + NumImplicitOps) { 5199 ErrInfo = "missing implicit register operands"; 5200 return false; 5201 } 5202 5203 const MachineOperand *Dst = getNamedOperand(MI, AMDGPU::OpName::vdst); 5204 if (IsDst) { 5205 if (!Dst->isUse()) { 5206 ErrInfo = "v_movreld_b32 vdst should be a use operand"; 5207 return false; 5208 } 5209 5210 unsigned UseOpIdx; 5211 if (!MI.isRegTiedToUseOperand(StaticNumOps, &UseOpIdx) || 5212 UseOpIdx != StaticNumOps + 1) { 5213 ErrInfo = "movrel implicit operands should be tied"; 5214 return false; 5215 } 5216 } 5217 5218 const MachineOperand &Src0 = MI.getOperand(Src0Idx); 5219 const MachineOperand &ImpUse 5220 = MI.getOperand(StaticNumOps + NumImplicitOps - 1); 5221 if (!ImpUse.isReg() || !ImpUse.isUse() || 5222 !isSubRegOf(RI, ImpUse, IsDst ? *Dst : Src0)) { 5223 ErrInfo = "src0 should be subreg of implicit vector use"; 5224 return false; 5225 } 5226 } 5227 5228 // Make sure we aren't losing exec uses in the td files. This mostly requires 5229 // being careful when using let Uses to try to add other use registers. 5230 if (shouldReadExec(MI)) { 5231 if (!MI.hasRegisterImplicitUseOperand(AMDGPU::EXEC)) { 5232 ErrInfo = "VALU instruction does not implicitly read exec mask"; 5233 return false; 5234 } 5235 } 5236 5237 if (isSMRD(MI)) { 5238 if (MI.mayStore() && 5239 ST.getGeneration() == AMDGPUSubtarget::VOLCANIC_ISLANDS) { 5240 // The register offset form of scalar stores may only use m0 as the 5241 // soffset register. 5242 const MachineOperand *Soff = getNamedOperand(MI, AMDGPU::OpName::soffset); 5243 if (Soff && Soff->getReg() != AMDGPU::M0) { 5244 ErrInfo = "scalar stores must use m0 as offset register"; 5245 return false; 5246 } 5247 } 5248 } 5249 5250 if (isFLAT(MI) && !ST.hasFlatInstOffsets()) { 5251 const MachineOperand *Offset = getNamedOperand(MI, AMDGPU::OpName::offset); 5252 if (Offset->getImm() != 0) { 5253 ErrInfo = "subtarget does not support offsets in flat instructions"; 5254 return false; 5255 } 5256 } 5257 5258 if (isDS(MI) && !ST.hasGDS()) { 5259 const MachineOperand *GDSOp = getNamedOperand(MI, AMDGPU::OpName::gds); 5260 if (GDSOp && GDSOp->getImm() != 0) { 5261 ErrInfo = "GDS is not supported on this subtarget"; 5262 return false; 5263 } 5264 } 5265 5266 if (isImage(MI)) { 5267 const MachineOperand *DimOp = getNamedOperand(MI, AMDGPU::OpName::dim); 5268 if (DimOp) { 5269 int VAddr0Idx = AMDGPU::getNamedOperandIdx(Opcode, 5270 AMDGPU::OpName::vaddr0); 5271 int RSrcOpName = 5272 isMIMG(MI) ? AMDGPU::OpName::srsrc : AMDGPU::OpName::rsrc; 5273 int RsrcIdx = AMDGPU::getNamedOperandIdx(Opcode, RSrcOpName); 5274 const AMDGPU::MIMGInfo *Info = AMDGPU::getMIMGInfo(Opcode); 5275 const AMDGPU::MIMGBaseOpcodeInfo *BaseOpcode = 5276 AMDGPU::getMIMGBaseOpcodeInfo(Info->BaseOpcode); 5277 const AMDGPU::MIMGDimInfo *Dim = 5278 AMDGPU::getMIMGDimInfoByEncoding(DimOp->getImm()); 5279 5280 if (!Dim) { 5281 ErrInfo = "dim is out of range"; 5282 return false; 5283 } 5284 5285 bool IsA16 = false; 5286 if (ST.hasR128A16()) { 5287 const MachineOperand *R128A16 = getNamedOperand(MI, AMDGPU::OpName::r128); 5288 IsA16 = R128A16->getImm() != 0; 5289 } else if (ST.hasA16()) { 5290 const MachineOperand *A16 = getNamedOperand(MI, AMDGPU::OpName::a16); 5291 IsA16 = A16->getImm() != 0; 5292 } 5293 5294 bool IsNSA = RsrcIdx - VAddr0Idx > 1; 5295 5296 unsigned AddrWords = 5297 AMDGPU::getAddrSizeMIMGOp(BaseOpcode, Dim, IsA16, ST.hasG16()); 5298 5299 unsigned VAddrWords; 5300 if (IsNSA) { 5301 VAddrWords = RsrcIdx - VAddr0Idx; 5302 if (ST.hasPartialNSAEncoding() && 5303 AddrWords > ST.getNSAMaxSize(isVSAMPLE(MI))) { 5304 unsigned LastVAddrIdx = RsrcIdx - 1; 5305 VAddrWords += getOpSize(MI, LastVAddrIdx) / 4 - 1; 5306 } 5307 } else { 5308 VAddrWords = getOpSize(MI, VAddr0Idx) / 4; 5309 if (AddrWords > 12) 5310 AddrWords = 16; 5311 } 5312 5313 if (VAddrWords != AddrWords) { 5314 LLVM_DEBUG(dbgs() << "bad vaddr size, expected " << AddrWords 5315 << " but got " << VAddrWords << "\n"); 5316 ErrInfo = "bad vaddr size"; 5317 return false; 5318 } 5319 } 5320 } 5321 5322 const MachineOperand *DppCt = getNamedOperand(MI, AMDGPU::OpName::dpp_ctrl); 5323 if (DppCt) { 5324 using namespace AMDGPU::DPP; 5325 5326 unsigned DC = DppCt->getImm(); 5327 if (DC == DppCtrl::DPP_UNUSED1 || DC == DppCtrl::DPP_UNUSED2 || 5328 DC == DppCtrl::DPP_UNUSED3 || DC > DppCtrl::DPP_LAST || 5329 (DC >= DppCtrl::DPP_UNUSED4_FIRST && DC <= DppCtrl::DPP_UNUSED4_LAST) || 5330 (DC >= DppCtrl::DPP_UNUSED5_FIRST && DC <= DppCtrl::DPP_UNUSED5_LAST) || 5331 (DC >= DppCtrl::DPP_UNUSED6_FIRST && DC <= DppCtrl::DPP_UNUSED6_LAST) || 5332 (DC >= DppCtrl::DPP_UNUSED7_FIRST && DC <= DppCtrl::DPP_UNUSED7_LAST) || 5333 (DC >= DppCtrl::DPP_UNUSED8_FIRST && DC <= DppCtrl::DPP_UNUSED8_LAST)) { 5334 ErrInfo = "Invalid dpp_ctrl value"; 5335 return false; 5336 } 5337 if (DC >= DppCtrl::WAVE_SHL1 && DC <= DppCtrl::WAVE_ROR1 && 5338 ST.getGeneration() >= AMDGPUSubtarget::GFX10) { 5339 ErrInfo = "Invalid dpp_ctrl value: " 5340 "wavefront shifts are not supported on GFX10+"; 5341 return false; 5342 } 5343 if (DC >= DppCtrl::BCAST15 && DC <= DppCtrl::BCAST31 && 5344 ST.getGeneration() >= AMDGPUSubtarget::GFX10) { 5345 ErrInfo = "Invalid dpp_ctrl value: " 5346 "broadcasts are not supported on GFX10+"; 5347 return false; 5348 } 5349 if (DC >= DppCtrl::ROW_SHARE_FIRST && DC <= DppCtrl::ROW_XMASK_LAST && 5350 ST.getGeneration() < AMDGPUSubtarget::GFX10) { 5351 if (DC >= DppCtrl::ROW_NEWBCAST_FIRST && 5352 DC <= DppCtrl::ROW_NEWBCAST_LAST && 5353 !ST.hasGFX90AInsts()) { 5354 ErrInfo = "Invalid dpp_ctrl value: " 5355 "row_newbroadcast/row_share is not supported before " 5356 "GFX90A/GFX10"; 5357 return false; 5358 } 5359 if (DC > DppCtrl::ROW_NEWBCAST_LAST || !ST.hasGFX90AInsts()) { 5360 ErrInfo = "Invalid dpp_ctrl value: " 5361 "row_share and row_xmask are not supported before GFX10"; 5362 return false; 5363 } 5364 } 5365 5366 if (Opcode != AMDGPU::V_MOV_B64_DPP_PSEUDO && 5367 !AMDGPU::isLegalDPALU_DPPControl(DC) && AMDGPU::isDPALU_DPP(Desc)) { 5368 ErrInfo = "Invalid dpp_ctrl value: " 5369 "DP ALU dpp only support row_newbcast"; 5370 return false; 5371 } 5372 } 5373 5374 if ((MI.mayStore() || MI.mayLoad()) && !isVGPRSpill(MI)) { 5375 const MachineOperand *Dst = getNamedOperand(MI, AMDGPU::OpName::vdst); 5376 uint16_t DataNameIdx = isDS(Opcode) ? AMDGPU::OpName::data0 5377 : AMDGPU::OpName::vdata; 5378 const MachineOperand *Data = getNamedOperand(MI, DataNameIdx); 5379 const MachineOperand *Data2 = getNamedOperand(MI, AMDGPU::OpName::data1); 5380 if (Data && !Data->isReg()) 5381 Data = nullptr; 5382 5383 if (ST.hasGFX90AInsts()) { 5384 if (Dst && Data && 5385 (RI.isAGPR(MRI, Dst->getReg()) != RI.isAGPR(MRI, Data->getReg()))) { 5386 ErrInfo = "Invalid register class: " 5387 "vdata and vdst should be both VGPR or AGPR"; 5388 return false; 5389 } 5390 if (Data && Data2 && 5391 (RI.isAGPR(MRI, Data->getReg()) != RI.isAGPR(MRI, Data2->getReg()))) { 5392 ErrInfo = "Invalid register class: " 5393 "both data operands should be VGPR or AGPR"; 5394 return false; 5395 } 5396 } else { 5397 if ((Dst && RI.isAGPR(MRI, Dst->getReg())) || 5398 (Data && RI.isAGPR(MRI, Data->getReg())) || 5399 (Data2 && RI.isAGPR(MRI, Data2->getReg()))) { 5400 ErrInfo = "Invalid register class: " 5401 "agpr loads and stores not supported on this GPU"; 5402 return false; 5403 } 5404 } 5405 } 5406 5407 if (ST.needsAlignedVGPRs()) { 5408 const auto isAlignedReg = [&MI, &MRI, this](unsigned OpName) -> bool { 5409 const MachineOperand *Op = getNamedOperand(MI, OpName); 5410 if (!Op) 5411 return true; 5412 Register Reg = Op->getReg(); 5413 if (Reg.isPhysical()) 5414 return !(RI.getHWRegIndex(Reg) & 1); 5415 const TargetRegisterClass &RC = *MRI.getRegClass(Reg); 5416 return RI.getRegSizeInBits(RC) > 32 && RI.isProperlyAlignedRC(RC) && 5417 !(RI.getChannelFromSubReg(Op->getSubReg()) & 1); 5418 }; 5419 5420 if (MI.getOpcode() == AMDGPU::DS_GWS_INIT || 5421 MI.getOpcode() == AMDGPU::DS_GWS_SEMA_BR || 5422 MI.getOpcode() == AMDGPU::DS_GWS_BARRIER) { 5423 5424 if (!isAlignedReg(AMDGPU::OpName::data0)) { 5425 ErrInfo = "Subtarget requires even aligned vector registers " 5426 "for DS_GWS instructions"; 5427 return false; 5428 } 5429 } 5430 5431 if (isMIMG(MI)) { 5432 if (!isAlignedReg(AMDGPU::OpName::vaddr)) { 5433 ErrInfo = "Subtarget requires even aligned vector registers " 5434 "for vaddr operand of image instructions"; 5435 return false; 5436 } 5437 } 5438 } 5439 5440 if (MI.getOpcode() == AMDGPU::V_ACCVGPR_WRITE_B32_e64 && 5441 !ST.hasGFX90AInsts()) { 5442 const MachineOperand *Src = getNamedOperand(MI, AMDGPU::OpName::src0); 5443 if (Src->isReg() && RI.isSGPRReg(MRI, Src->getReg())) { 5444 ErrInfo = "Invalid register class: " 5445 "v_accvgpr_write with an SGPR is not supported on this GPU"; 5446 return false; 5447 } 5448 } 5449 5450 if (Desc.getOpcode() == AMDGPU::G_AMDGPU_WAVE_ADDRESS) { 5451 const MachineOperand &SrcOp = MI.getOperand(1); 5452 if (!SrcOp.isReg() || SrcOp.getReg().isVirtual()) { 5453 ErrInfo = "pseudo expects only physical SGPRs"; 5454 return false; 5455 } 5456 } 5457 5458 return true; 5459 } 5460 5461 // It is more readable to list mapped opcodes on the same line. 5462 // clang-format off 5463 5464 unsigned SIInstrInfo::getVALUOp(const MachineInstr &MI) const { 5465 switch (MI.getOpcode()) { 5466 default: return AMDGPU::INSTRUCTION_LIST_END; 5467 case AMDGPU::REG_SEQUENCE: return AMDGPU::REG_SEQUENCE; 5468 case AMDGPU::COPY: return AMDGPU::COPY; 5469 case AMDGPU::PHI: return AMDGPU::PHI; 5470 case AMDGPU::INSERT_SUBREG: return AMDGPU::INSERT_SUBREG; 5471 case AMDGPU::WQM: return AMDGPU::WQM; 5472 case AMDGPU::SOFT_WQM: return AMDGPU::SOFT_WQM; 5473 case AMDGPU::STRICT_WWM: return AMDGPU::STRICT_WWM; 5474 case AMDGPU::STRICT_WQM: return AMDGPU::STRICT_WQM; 5475 case AMDGPU::S_MOV_B32: { 5476 const MachineRegisterInfo &MRI = MI.getParent()->getParent()->getRegInfo(); 5477 return MI.getOperand(1).isReg() || 5478 RI.isAGPR(MRI, MI.getOperand(0).getReg()) ? 5479 AMDGPU::COPY : AMDGPU::V_MOV_B32_e32; 5480 } 5481 case AMDGPU::S_ADD_I32: 5482 return ST.hasAddNoCarry() ? AMDGPU::V_ADD_U32_e64 : AMDGPU::V_ADD_CO_U32_e32; 5483 case AMDGPU::S_ADDC_U32: 5484 return AMDGPU::V_ADDC_U32_e32; 5485 case AMDGPU::S_SUB_I32: 5486 return ST.hasAddNoCarry() ? AMDGPU::V_SUB_U32_e64 : AMDGPU::V_SUB_CO_U32_e32; 5487 // FIXME: These are not consistently handled, and selected when the carry is 5488 // used. 5489 case AMDGPU::S_ADD_U32: 5490 return AMDGPU::V_ADD_CO_U32_e32; 5491 case AMDGPU::S_SUB_U32: 5492 return AMDGPU::V_SUB_CO_U32_e32; 5493 case AMDGPU::S_SUBB_U32: return AMDGPU::V_SUBB_U32_e32; 5494 case AMDGPU::S_MUL_I32: return AMDGPU::V_MUL_LO_U32_e64; 5495 case AMDGPU::S_MUL_HI_U32: return AMDGPU::V_MUL_HI_U32_e64; 5496 case AMDGPU::S_MUL_HI_I32: return AMDGPU::V_MUL_HI_I32_e64; 5497 case AMDGPU::S_AND_B32: return AMDGPU::V_AND_B32_e64; 5498 case AMDGPU::S_OR_B32: return AMDGPU::V_OR_B32_e64; 5499 case AMDGPU::S_XOR_B32: return AMDGPU::V_XOR_B32_e64; 5500 case AMDGPU::S_XNOR_B32: 5501 return ST.hasDLInsts() ? AMDGPU::V_XNOR_B32_e64 : AMDGPU::INSTRUCTION_LIST_END; 5502 case AMDGPU::S_MIN_I32: return AMDGPU::V_MIN_I32_e64; 5503 case AMDGPU::S_MIN_U32: return AMDGPU::V_MIN_U32_e64; 5504 case AMDGPU::S_MAX_I32: return AMDGPU::V_MAX_I32_e64; 5505 case AMDGPU::S_MAX_U32: return AMDGPU::V_MAX_U32_e64; 5506 case AMDGPU::S_ASHR_I32: return AMDGPU::V_ASHR_I32_e32; 5507 case AMDGPU::S_ASHR_I64: return AMDGPU::V_ASHR_I64_e64; 5508 case AMDGPU::S_LSHL_B32: return AMDGPU::V_LSHL_B32_e32; 5509 case AMDGPU::S_LSHL_B64: return AMDGPU::V_LSHL_B64_e64; 5510 case AMDGPU::S_LSHR_B32: return AMDGPU::V_LSHR_B32_e32; 5511 case AMDGPU::S_LSHR_B64: return AMDGPU::V_LSHR_B64_e64; 5512 case AMDGPU::S_SEXT_I32_I8: return AMDGPU::V_BFE_I32_e64; 5513 case AMDGPU::S_SEXT_I32_I16: return AMDGPU::V_BFE_I32_e64; 5514 case AMDGPU::S_BFE_U32: return AMDGPU::V_BFE_U32_e64; 5515 case AMDGPU::S_BFE_I32: return AMDGPU::V_BFE_I32_e64; 5516 case AMDGPU::S_BFM_B32: return AMDGPU::V_BFM_B32_e64; 5517 case AMDGPU::S_BREV_B32: return AMDGPU::V_BFREV_B32_e32; 5518 case AMDGPU::S_NOT_B32: return AMDGPU::V_NOT_B32_e32; 5519 case AMDGPU::S_NOT_B64: return AMDGPU::V_NOT_B32_e32; 5520 case AMDGPU::S_CMP_EQ_I32: return AMDGPU::V_CMP_EQ_I32_e64; 5521 case AMDGPU::S_CMP_LG_I32: return AMDGPU::V_CMP_NE_I32_e64; 5522 case AMDGPU::S_CMP_GT_I32: return AMDGPU::V_CMP_GT_I32_e64; 5523 case AMDGPU::S_CMP_GE_I32: return AMDGPU::V_CMP_GE_I32_e64; 5524 case AMDGPU::S_CMP_LT_I32: return AMDGPU::V_CMP_LT_I32_e64; 5525 case AMDGPU::S_CMP_LE_I32: return AMDGPU::V_CMP_LE_I32_e64; 5526 case AMDGPU::S_CMP_EQ_U32: return AMDGPU::V_CMP_EQ_U32_e64; 5527 case AMDGPU::S_CMP_LG_U32: return AMDGPU::V_CMP_NE_U32_e64; 5528 case AMDGPU::S_CMP_GT_U32: return AMDGPU::V_CMP_GT_U32_e64; 5529 case AMDGPU::S_CMP_GE_U32: return AMDGPU::V_CMP_GE_U32_e64; 5530 case AMDGPU::S_CMP_LT_U32: return AMDGPU::V_CMP_LT_U32_e64; 5531 case AMDGPU::S_CMP_LE_U32: return AMDGPU::V_CMP_LE_U32_e64; 5532 case AMDGPU::S_CMP_EQ_U64: return AMDGPU::V_CMP_EQ_U64_e64; 5533 case AMDGPU::S_CMP_LG_U64: return AMDGPU::V_CMP_NE_U64_e64; 5534 case AMDGPU::S_BCNT1_I32_B32: return AMDGPU::V_BCNT_U32_B32_e64; 5535 case AMDGPU::S_FF1_I32_B32: return AMDGPU::V_FFBL_B32_e32; 5536 case AMDGPU::S_FLBIT_I32_B32: return AMDGPU::V_FFBH_U32_e32; 5537 case AMDGPU::S_FLBIT_I32: return AMDGPU::V_FFBH_I32_e64; 5538 case AMDGPU::S_CBRANCH_SCC0: return AMDGPU::S_CBRANCH_VCCZ; 5539 case AMDGPU::S_CBRANCH_SCC1: return AMDGPU::S_CBRANCH_VCCNZ; 5540 case AMDGPU::S_CVT_F32_I32: return AMDGPU::V_CVT_F32_I32_e64; 5541 case AMDGPU::S_CVT_F32_U32: return AMDGPU::V_CVT_F32_U32_e64; 5542 case AMDGPU::S_CVT_I32_F32: return AMDGPU::V_CVT_I32_F32_e64; 5543 case AMDGPU::S_CVT_U32_F32: return AMDGPU::V_CVT_U32_F32_e64; 5544 case AMDGPU::S_CVT_F32_F16: 5545 case AMDGPU::S_CVT_HI_F32_F16: 5546 return ST.useRealTrue16Insts() ? AMDGPU::V_CVT_F32_F16_t16_e64 5547 : AMDGPU::V_CVT_F32_F16_fake16_e64; 5548 case AMDGPU::S_CVT_F16_F32: 5549 return ST.useRealTrue16Insts() ? AMDGPU::V_CVT_F16_F32_t16_e64 5550 : AMDGPU::V_CVT_F16_F32_fake16_e64; 5551 case AMDGPU::S_CEIL_F32: return AMDGPU::V_CEIL_F32_e64; 5552 case AMDGPU::S_FLOOR_F32: return AMDGPU::V_FLOOR_F32_e64; 5553 case AMDGPU::S_TRUNC_F32: return AMDGPU::V_TRUNC_F32_e64; 5554 case AMDGPU::S_RNDNE_F32: return AMDGPU::V_RNDNE_F32_e64; 5555 case AMDGPU::S_CEIL_F16: 5556 return ST.useRealTrue16Insts() ? AMDGPU::V_CEIL_F16_t16_e64 5557 : AMDGPU::V_CEIL_F16_fake16_e64; 5558 case AMDGPU::S_FLOOR_F16: 5559 return ST.useRealTrue16Insts() ? AMDGPU::V_FLOOR_F16_t16_e64 5560 : AMDGPU::V_FLOOR_F16_fake16_e64; 5561 case AMDGPU::S_TRUNC_F16: 5562 return AMDGPU::V_TRUNC_F16_fake16_e64; 5563 case AMDGPU::S_RNDNE_F16: 5564 return AMDGPU::V_RNDNE_F16_fake16_e64; 5565 case AMDGPU::S_ADD_F32: return AMDGPU::V_ADD_F32_e64; 5566 case AMDGPU::S_SUB_F32: return AMDGPU::V_SUB_F32_e64; 5567 case AMDGPU::S_MIN_F32: return AMDGPU::V_MIN_F32_e64; 5568 case AMDGPU::S_MAX_F32: return AMDGPU::V_MAX_F32_e64; 5569 case AMDGPU::S_MINIMUM_F32: return AMDGPU::V_MINIMUM_F32_e64; 5570 case AMDGPU::S_MAXIMUM_F32: return AMDGPU::V_MAXIMUM_F32_e64; 5571 case AMDGPU::S_MUL_F32: return AMDGPU::V_MUL_F32_e64; 5572 case AMDGPU::S_ADD_F16: return AMDGPU::V_ADD_F16_fake16_e64; 5573 case AMDGPU::S_SUB_F16: return AMDGPU::V_SUB_F16_fake16_e64; 5574 case AMDGPU::S_MIN_F16: return AMDGPU::V_MIN_F16_fake16_e64; 5575 case AMDGPU::S_MAX_F16: return AMDGPU::V_MAX_F16_fake16_e64; 5576 case AMDGPU::S_MINIMUM_F16: 5577 return ST.useRealTrue16Insts() ? AMDGPU::V_MINIMUM_F16_t16_e64 5578 : AMDGPU::V_MINIMUM_F16_fake16_e64; 5579 case AMDGPU::S_MAXIMUM_F16: 5580 return ST.useRealTrue16Insts() ? AMDGPU::V_MAXIMUM_F16_t16_e64 5581 : AMDGPU::V_MAXIMUM_F16_fake16_e64; 5582 case AMDGPU::S_MUL_F16: return AMDGPU::V_MUL_F16_fake16_e64; 5583 case AMDGPU::S_CVT_PK_RTZ_F16_F32: return AMDGPU::V_CVT_PKRTZ_F16_F32_e64; 5584 case AMDGPU::S_FMAC_F32: return AMDGPU::V_FMAC_F32_e64; 5585 case AMDGPU::S_FMAC_F16: return AMDGPU::V_FMAC_F16_fake16_e64; 5586 case AMDGPU::S_FMAMK_F32: return AMDGPU::V_FMAMK_F32; 5587 case AMDGPU::S_FMAAK_F32: return AMDGPU::V_FMAAK_F32; 5588 case AMDGPU::S_CMP_LT_F32: return AMDGPU::V_CMP_LT_F32_e64; 5589 case AMDGPU::S_CMP_EQ_F32: return AMDGPU::V_CMP_EQ_F32_e64; 5590 case AMDGPU::S_CMP_LE_F32: return AMDGPU::V_CMP_LE_F32_e64; 5591 case AMDGPU::S_CMP_GT_F32: return AMDGPU::V_CMP_GT_F32_e64; 5592 case AMDGPU::S_CMP_LG_F32: return AMDGPU::V_CMP_LG_F32_e64; 5593 case AMDGPU::S_CMP_GE_F32: return AMDGPU::V_CMP_GE_F32_e64; 5594 case AMDGPU::S_CMP_O_F32: return AMDGPU::V_CMP_O_F32_e64; 5595 case AMDGPU::S_CMP_U_F32: return AMDGPU::V_CMP_U_F32_e64; 5596 case AMDGPU::S_CMP_NGE_F32: return AMDGPU::V_CMP_NGE_F32_e64; 5597 case AMDGPU::S_CMP_NLG_F32: return AMDGPU::V_CMP_NLG_F32_e64; 5598 case AMDGPU::S_CMP_NGT_F32: return AMDGPU::V_CMP_NGT_F32_e64; 5599 case AMDGPU::S_CMP_NLE_F32: return AMDGPU::V_CMP_NLE_F32_e64; 5600 case AMDGPU::S_CMP_NEQ_F32: return AMDGPU::V_CMP_NEQ_F32_e64; 5601 case AMDGPU::S_CMP_NLT_F32: return AMDGPU::V_CMP_NLT_F32_e64; 5602 case AMDGPU::S_CMP_LT_F16: 5603 return ST.useRealTrue16Insts() ? AMDGPU::V_CMP_LT_F16_t16_e64 5604 : AMDGPU::V_CMP_LT_F16_fake16_e64; 5605 case AMDGPU::S_CMP_EQ_F16: 5606 return ST.useRealTrue16Insts() ? AMDGPU::V_CMP_EQ_F16_t16_e64 5607 : AMDGPU::V_CMP_EQ_F16_fake16_e64; 5608 case AMDGPU::S_CMP_LE_F16: 5609 return ST.useRealTrue16Insts() ? AMDGPU::V_CMP_LE_F16_t16_e64 5610 : AMDGPU::V_CMP_LE_F16_fake16_e64; 5611 case AMDGPU::S_CMP_GT_F16: 5612 return ST.useRealTrue16Insts() ? AMDGPU::V_CMP_GT_F16_t16_e64 5613 : AMDGPU::V_CMP_GT_F16_fake16_e64; 5614 case AMDGPU::S_CMP_LG_F16: 5615 return ST.useRealTrue16Insts() ? AMDGPU::V_CMP_LG_F16_t16_e64 5616 : AMDGPU::V_CMP_LG_F16_fake16_e64; 5617 case AMDGPU::S_CMP_GE_F16: 5618 return ST.useRealTrue16Insts() ? AMDGPU::V_CMP_GE_F16_t16_e64 5619 : AMDGPU::V_CMP_GE_F16_fake16_e64; 5620 case AMDGPU::S_CMP_O_F16: 5621 return ST.useRealTrue16Insts() ? AMDGPU::V_CMP_O_F16_t16_e64 5622 : AMDGPU::V_CMP_O_F16_fake16_e64; 5623 case AMDGPU::S_CMP_U_F16: 5624 return ST.useRealTrue16Insts() ? AMDGPU::V_CMP_U_F16_t16_e64 5625 : AMDGPU::V_CMP_U_F16_fake16_e64; 5626 case AMDGPU::S_CMP_NGE_F16: 5627 return ST.useRealTrue16Insts() ? AMDGPU::V_CMP_NGE_F16_t16_e64 5628 : AMDGPU::V_CMP_NGE_F16_fake16_e64; 5629 case AMDGPU::S_CMP_NLG_F16: 5630 return ST.useRealTrue16Insts() ? AMDGPU::V_CMP_NLG_F16_t16_e64 5631 : AMDGPU::V_CMP_NLG_F16_fake16_e64; 5632 case AMDGPU::S_CMP_NGT_F16: 5633 return ST.useRealTrue16Insts() ? AMDGPU::V_CMP_NGT_F16_t16_e64 5634 : AMDGPU::V_CMP_NGT_F16_fake16_e64; 5635 case AMDGPU::S_CMP_NLE_F16: 5636 return ST.useRealTrue16Insts() ? AMDGPU::V_CMP_NLE_F16_t16_e64 5637 : AMDGPU::V_CMP_NLE_F16_fake16_e64; 5638 case AMDGPU::S_CMP_NEQ_F16: 5639 return ST.useRealTrue16Insts() ? AMDGPU::V_CMP_NEQ_F16_t16_e64 5640 : AMDGPU::V_CMP_NEQ_F16_fake16_e64; 5641 case AMDGPU::S_CMP_NLT_F16: 5642 return ST.useRealTrue16Insts() ? AMDGPU::V_CMP_NLT_F16_t16_e64 5643 : AMDGPU::V_CMP_NLT_F16_fake16_e64; 5644 case AMDGPU::V_S_EXP_F32_e64: return AMDGPU::V_EXP_F32_e64; 5645 case AMDGPU::V_S_EXP_F16_e64: return AMDGPU::V_EXP_F16_fake16_e64; 5646 case AMDGPU::V_S_LOG_F32_e64: return AMDGPU::V_LOG_F32_e64; 5647 case AMDGPU::V_S_LOG_F16_e64: return AMDGPU::V_LOG_F16_fake16_e64; 5648 case AMDGPU::V_S_RCP_F32_e64: return AMDGPU::V_RCP_F32_e64; 5649 case AMDGPU::V_S_RCP_F16_e64: return AMDGPU::V_RCP_F16_fake16_e64; 5650 case AMDGPU::V_S_RSQ_F32_e64: return AMDGPU::V_RSQ_F32_e64; 5651 case AMDGPU::V_S_RSQ_F16_e64: return AMDGPU::V_RSQ_F16_fake16_e64; 5652 case AMDGPU::V_S_SQRT_F32_e64: return AMDGPU::V_SQRT_F32_e64; 5653 case AMDGPU::V_S_SQRT_F16_e64: return AMDGPU::V_SQRT_F16_fake16_e64; 5654 } 5655 llvm_unreachable( 5656 "Unexpected scalar opcode without corresponding vector one!"); 5657 } 5658 5659 // clang-format on 5660 5661 void SIInstrInfo::insertScratchExecCopy(MachineFunction &MF, 5662 MachineBasicBlock &MBB, 5663 MachineBasicBlock::iterator MBBI, 5664 const DebugLoc &DL, Register Reg, 5665 bool IsSCCLive, 5666 SlotIndexes *Indexes) const { 5667 const GCNSubtarget &ST = MF.getSubtarget<GCNSubtarget>(); 5668 const SIInstrInfo *TII = ST.getInstrInfo(); 5669 bool IsWave32 = ST.isWave32(); 5670 if (IsSCCLive) { 5671 // Insert two move instructions, one to save the original value of EXEC and 5672 // the other to turn on all bits in EXEC. This is required as we can't use 5673 // the single instruction S_OR_SAVEEXEC that clobbers SCC. 5674 unsigned MovOpc = IsWave32 ? AMDGPU::S_MOV_B32 : AMDGPU::S_MOV_B64; 5675 MCRegister Exec = IsWave32 ? AMDGPU::EXEC_LO : AMDGPU::EXEC; 5676 auto StoreExecMI = BuildMI(MBB, MBBI, DL, TII->get(MovOpc), Reg) 5677 .addReg(Exec, RegState::Kill); 5678 auto FlipExecMI = BuildMI(MBB, MBBI, DL, TII->get(MovOpc), Exec).addImm(-1); 5679 if (Indexes) { 5680 Indexes->insertMachineInstrInMaps(*StoreExecMI); 5681 Indexes->insertMachineInstrInMaps(*FlipExecMI); 5682 } 5683 } else { 5684 const unsigned OrSaveExec = 5685 IsWave32 ? AMDGPU::S_OR_SAVEEXEC_B32 : AMDGPU::S_OR_SAVEEXEC_B64; 5686 auto SaveExec = 5687 BuildMI(MBB, MBBI, DL, TII->get(OrSaveExec), Reg).addImm(-1); 5688 SaveExec->getOperand(3).setIsDead(); // Mark SCC as dead. 5689 if (Indexes) 5690 Indexes->insertMachineInstrInMaps(*SaveExec); 5691 } 5692 } 5693 5694 void SIInstrInfo::restoreExec(MachineFunction &MF, MachineBasicBlock &MBB, 5695 MachineBasicBlock::iterator MBBI, 5696 const DebugLoc &DL, Register Reg, 5697 SlotIndexes *Indexes) const { 5698 unsigned ExecMov = isWave32() ? AMDGPU::S_MOV_B32 : AMDGPU::S_MOV_B64; 5699 MCRegister Exec = isWave32() ? AMDGPU::EXEC_LO : AMDGPU::EXEC; 5700 auto ExecRestoreMI = 5701 BuildMI(MBB, MBBI, DL, get(ExecMov), Exec).addReg(Reg, RegState::Kill); 5702 if (Indexes) 5703 Indexes->insertMachineInstrInMaps(*ExecRestoreMI); 5704 } 5705 5706 static const TargetRegisterClass * 5707 adjustAllocatableRegClass(const GCNSubtarget &ST, const SIRegisterInfo &RI, 5708 const MachineRegisterInfo &MRI, 5709 const MCInstrDesc &TID, unsigned RCID, 5710 bool IsAllocatable) { 5711 if ((IsAllocatable || !ST.hasGFX90AInsts() || !MRI.reservedRegsFrozen()) && 5712 (((TID.mayLoad() || TID.mayStore()) && 5713 !(TID.TSFlags & SIInstrFlags::Spill)) || 5714 (TID.TSFlags & (SIInstrFlags::DS | SIInstrFlags::MIMG)))) { 5715 switch (RCID) { 5716 case AMDGPU::AV_32RegClassID: 5717 RCID = AMDGPU::VGPR_32RegClassID; 5718 break; 5719 case AMDGPU::AV_64RegClassID: 5720 RCID = AMDGPU::VReg_64RegClassID; 5721 break; 5722 case AMDGPU::AV_96RegClassID: 5723 RCID = AMDGPU::VReg_96RegClassID; 5724 break; 5725 case AMDGPU::AV_128RegClassID: 5726 RCID = AMDGPU::VReg_128RegClassID; 5727 break; 5728 case AMDGPU::AV_160RegClassID: 5729 RCID = AMDGPU::VReg_160RegClassID; 5730 break; 5731 case AMDGPU::AV_512RegClassID: 5732 RCID = AMDGPU::VReg_512RegClassID; 5733 break; 5734 default: 5735 break; 5736 } 5737 } 5738 5739 return RI.getProperlyAlignedRC(RI.getRegClass(RCID)); 5740 } 5741 5742 const TargetRegisterClass *SIInstrInfo::getRegClass(const MCInstrDesc &TID, 5743 unsigned OpNum, const TargetRegisterInfo *TRI, 5744 const MachineFunction &MF) 5745 const { 5746 if (OpNum >= TID.getNumOperands()) 5747 return nullptr; 5748 auto RegClass = TID.operands()[OpNum].RegClass; 5749 bool IsAllocatable = false; 5750 if (TID.TSFlags & (SIInstrFlags::DS | SIInstrFlags::FLAT)) { 5751 // vdst and vdata should be both VGPR or AGPR, same for the DS instructions 5752 // with two data operands. Request register class constrained to VGPR only 5753 // of both operands present as Machine Copy Propagation can not check this 5754 // constraint and possibly other passes too. 5755 // 5756 // The check is limited to FLAT and DS because atomics in non-flat encoding 5757 // have their vdst and vdata tied to be the same register. 5758 const int VDstIdx = AMDGPU::getNamedOperandIdx(TID.Opcode, 5759 AMDGPU::OpName::vdst); 5760 const int DataIdx = AMDGPU::getNamedOperandIdx(TID.Opcode, 5761 (TID.TSFlags & SIInstrFlags::DS) ? AMDGPU::OpName::data0 5762 : AMDGPU::OpName::vdata); 5763 if (DataIdx != -1) { 5764 IsAllocatable = VDstIdx != -1 || AMDGPU::hasNamedOperand( 5765 TID.Opcode, AMDGPU::OpName::data1); 5766 } 5767 } 5768 return adjustAllocatableRegClass(ST, RI, MF.getRegInfo(), TID, RegClass, 5769 IsAllocatable); 5770 } 5771 5772 const TargetRegisterClass *SIInstrInfo::getOpRegClass(const MachineInstr &MI, 5773 unsigned OpNo) const { 5774 const MachineRegisterInfo &MRI = MI.getParent()->getParent()->getRegInfo(); 5775 const MCInstrDesc &Desc = get(MI.getOpcode()); 5776 if (MI.isVariadic() || OpNo >= Desc.getNumOperands() || 5777 Desc.operands()[OpNo].RegClass == -1) { 5778 Register Reg = MI.getOperand(OpNo).getReg(); 5779 5780 if (Reg.isVirtual()) 5781 return MRI.getRegClass(Reg); 5782 return RI.getPhysRegBaseClass(Reg); 5783 } 5784 5785 unsigned RCID = Desc.operands()[OpNo].RegClass; 5786 return adjustAllocatableRegClass(ST, RI, MRI, Desc, RCID, true); 5787 } 5788 5789 void SIInstrInfo::legalizeOpWithMove(MachineInstr &MI, unsigned OpIdx) const { 5790 MachineBasicBlock::iterator I = MI; 5791 MachineBasicBlock *MBB = MI.getParent(); 5792 MachineOperand &MO = MI.getOperand(OpIdx); 5793 MachineRegisterInfo &MRI = MBB->getParent()->getRegInfo(); 5794 unsigned RCID = get(MI.getOpcode()).operands()[OpIdx].RegClass; 5795 const TargetRegisterClass *RC = RI.getRegClass(RCID); 5796 unsigned Size = RI.getRegSizeInBits(*RC); 5797 unsigned Opcode = (Size == 64) ? AMDGPU::V_MOV_B64_PSEUDO 5798 : Size == 16 ? AMDGPU::V_MOV_B16_t16_e64 5799 : AMDGPU::V_MOV_B32_e32; 5800 if (MO.isReg()) 5801 Opcode = AMDGPU::COPY; 5802 else if (RI.isSGPRClass(RC)) 5803 Opcode = (Size == 64) ? AMDGPU::S_MOV_B64 : AMDGPU::S_MOV_B32; 5804 5805 const TargetRegisterClass *VRC = RI.getEquivalentVGPRClass(RC); 5806 Register Reg = MRI.createVirtualRegister(VRC); 5807 DebugLoc DL = MBB->findDebugLoc(I); 5808 BuildMI(*MI.getParent(), I, DL, get(Opcode), Reg).add(MO); 5809 MO.ChangeToRegister(Reg, false); 5810 } 5811 5812 unsigned SIInstrInfo::buildExtractSubReg( 5813 MachineBasicBlock::iterator MI, MachineRegisterInfo &MRI, 5814 const MachineOperand &SuperReg, const TargetRegisterClass *SuperRC, 5815 unsigned SubIdx, const TargetRegisterClass *SubRC) const { 5816 if (!SuperReg.getReg().isVirtual()) 5817 return RI.getSubReg(SuperReg.getReg(), SubIdx); 5818 5819 MachineBasicBlock *MBB = MI->getParent(); 5820 DebugLoc DL = MI->getDebugLoc(); 5821 Register SubReg = MRI.createVirtualRegister(SubRC); 5822 5823 unsigned NewSubIdx = RI.composeSubRegIndices(SuperReg.getSubReg(), SubIdx); 5824 BuildMI(*MBB, MI, DL, get(TargetOpcode::COPY), SubReg) 5825 .addReg(SuperReg.getReg(), 0, NewSubIdx); 5826 return SubReg; 5827 } 5828 5829 MachineOperand SIInstrInfo::buildExtractSubRegOrImm( 5830 MachineBasicBlock::iterator MII, MachineRegisterInfo &MRI, 5831 const MachineOperand &Op, const TargetRegisterClass *SuperRC, 5832 unsigned SubIdx, const TargetRegisterClass *SubRC) const { 5833 if (Op.isImm()) { 5834 if (SubIdx == AMDGPU::sub0) 5835 return MachineOperand::CreateImm(static_cast<int32_t>(Op.getImm())); 5836 if (SubIdx == AMDGPU::sub1) 5837 return MachineOperand::CreateImm(static_cast<int32_t>(Op.getImm() >> 32)); 5838 5839 llvm_unreachable("Unhandled register index for immediate"); 5840 } 5841 5842 unsigned SubReg = buildExtractSubReg(MII, MRI, Op, SuperRC, 5843 SubIdx, SubRC); 5844 return MachineOperand::CreateReg(SubReg, false); 5845 } 5846 5847 // Change the order of operands from (0, 1, 2) to (0, 2, 1) 5848 void SIInstrInfo::swapOperands(MachineInstr &Inst) const { 5849 assert(Inst.getNumExplicitOperands() == 3); 5850 MachineOperand Op1 = Inst.getOperand(1); 5851 Inst.removeOperand(1); 5852 Inst.addOperand(Op1); 5853 } 5854 5855 bool SIInstrInfo::isLegalRegOperand(const MachineRegisterInfo &MRI, 5856 const MCOperandInfo &OpInfo, 5857 const MachineOperand &MO) const { 5858 if (!MO.isReg()) 5859 return false; 5860 5861 Register Reg = MO.getReg(); 5862 5863 const TargetRegisterClass *DRC = RI.getRegClass(OpInfo.RegClass); 5864 if (Reg.isPhysical()) 5865 return DRC->contains(Reg); 5866 5867 const TargetRegisterClass *RC = MRI.getRegClass(Reg); 5868 5869 if (MO.getSubReg()) { 5870 const MachineFunction *MF = MO.getParent()->getParent()->getParent(); 5871 const TargetRegisterClass *SuperRC = RI.getLargestLegalSuperClass(RC, *MF); 5872 if (!SuperRC) 5873 return false; 5874 5875 DRC = RI.getMatchingSuperRegClass(SuperRC, DRC, MO.getSubReg()); 5876 if (!DRC) 5877 return false; 5878 } 5879 return RC->hasSuperClassEq(DRC); 5880 } 5881 5882 bool SIInstrInfo::isLegalRegOperand(const MachineInstr &MI, unsigned OpIdx, 5883 const MachineOperand &MO) const { 5884 const MachineRegisterInfo &MRI = MI.getParent()->getParent()->getRegInfo(); 5885 const MCOperandInfo OpInfo = MI.getDesc().operands()[OpIdx]; 5886 unsigned Opc = MI.getOpcode(); 5887 5888 if (!isLegalRegOperand(MRI, OpInfo, MO)) 5889 return false; 5890 5891 // check Accumulate GPR operand 5892 bool IsAGPR = RI.isAGPR(MRI, MO.getReg()); 5893 if (IsAGPR && !ST.hasMAIInsts()) 5894 return false; 5895 if (IsAGPR && (!ST.hasGFX90AInsts() || !MRI.reservedRegsFrozen()) && 5896 (MI.mayLoad() || MI.mayStore() || isDS(Opc) || isMIMG(Opc))) 5897 return false; 5898 // Atomics should have both vdst and vdata either vgpr or agpr. 5899 const int VDstIdx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::vdst); 5900 const int DataIdx = AMDGPU::getNamedOperandIdx( 5901 Opc, isDS(Opc) ? AMDGPU::OpName::data0 : AMDGPU::OpName::vdata); 5902 if ((int)OpIdx == VDstIdx && DataIdx != -1 && 5903 MI.getOperand(DataIdx).isReg() && 5904 RI.isAGPR(MRI, MI.getOperand(DataIdx).getReg()) != IsAGPR) 5905 return false; 5906 if ((int)OpIdx == DataIdx) { 5907 if (VDstIdx != -1 && 5908 RI.isAGPR(MRI, MI.getOperand(VDstIdx).getReg()) != IsAGPR) 5909 return false; 5910 // DS instructions with 2 src operands also must have tied RC. 5911 const int Data1Idx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::data1); 5912 if (Data1Idx != -1 && MI.getOperand(Data1Idx).isReg() && 5913 RI.isAGPR(MRI, MI.getOperand(Data1Idx).getReg()) != IsAGPR) 5914 return false; 5915 } 5916 5917 // Check V_ACCVGPR_WRITE_B32_e64 5918 if (Opc == AMDGPU::V_ACCVGPR_WRITE_B32_e64 && !ST.hasGFX90AInsts() && 5919 (int)OpIdx == AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src0) && 5920 RI.isSGPRReg(MRI, MO.getReg())) 5921 return false; 5922 return true; 5923 } 5924 5925 bool SIInstrInfo::isLegalVSrcOperand(const MachineRegisterInfo &MRI, 5926 const MCOperandInfo &OpInfo, 5927 const MachineOperand &MO) const { 5928 if (MO.isReg()) 5929 return isLegalRegOperand(MRI, OpInfo, MO); 5930 5931 // Handle non-register types that are treated like immediates. 5932 assert(MO.isImm() || MO.isTargetIndex() || MO.isFI() || MO.isGlobal()); 5933 return true; 5934 } 5935 5936 bool SIInstrInfo::isOperandLegal(const MachineInstr &MI, unsigned OpIdx, 5937 const MachineOperand *MO) const { 5938 const MachineFunction &MF = *MI.getParent()->getParent(); 5939 const MachineRegisterInfo &MRI = MF.getRegInfo(); 5940 const MCInstrDesc &InstDesc = MI.getDesc(); 5941 const MCOperandInfo &OpInfo = InstDesc.operands()[OpIdx]; 5942 const TargetRegisterClass *DefinedRC = 5943 OpInfo.RegClass != -1 ? RI.getRegClass(OpInfo.RegClass) : nullptr; 5944 if (!MO) 5945 MO = &MI.getOperand(OpIdx); 5946 5947 int ConstantBusLimit = ST.getConstantBusLimit(MI.getOpcode()); 5948 int LiteralLimit = !isVOP3(MI) || ST.hasVOP3Literal() ? 1 : 0; 5949 if (isVALU(MI) && usesConstantBus(MRI, *MO, OpInfo)) { 5950 if (!MO->isReg() && !isInlineConstant(*MO, OpInfo) && !LiteralLimit--) 5951 return false; 5952 5953 SmallDenseSet<RegSubRegPair> SGPRsUsed; 5954 if (MO->isReg()) 5955 SGPRsUsed.insert(RegSubRegPair(MO->getReg(), MO->getSubReg())); 5956 5957 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) { 5958 if (i == OpIdx) 5959 continue; 5960 const MachineOperand &Op = MI.getOperand(i); 5961 if (Op.isReg()) { 5962 RegSubRegPair SGPR(Op.getReg(), Op.getSubReg()); 5963 if (!SGPRsUsed.count(SGPR) && 5964 // FIXME: This can access off the end of the operands() array. 5965 usesConstantBus(MRI, Op, InstDesc.operands().begin()[i])) { 5966 if (--ConstantBusLimit <= 0) 5967 return false; 5968 SGPRsUsed.insert(SGPR); 5969 } 5970 } else if (AMDGPU::isSISrcOperand(InstDesc, i) && 5971 !isInlineConstant(Op, InstDesc.operands()[i])) { 5972 if (!LiteralLimit--) 5973 return false; 5974 if (--ConstantBusLimit <= 0) 5975 return false; 5976 } 5977 } 5978 } else if (ST.hasNoF16PseudoScalarTransInlineConstants() && !MO->isReg() && 5979 isF16PseudoScalarTrans(MI.getOpcode()) && 5980 isInlineConstant(*MO, OpInfo)) { 5981 return false; 5982 } 5983 5984 if (MO->isReg()) { 5985 if (!DefinedRC) 5986 return OpInfo.OperandType == MCOI::OPERAND_UNKNOWN; 5987 return isLegalRegOperand(MI, OpIdx, *MO); 5988 } 5989 5990 if (MO->isImm()) { 5991 uint64_t Imm = MO->getImm(); 5992 bool Is64BitFPOp = OpInfo.OperandType == AMDGPU::OPERAND_REG_IMM_FP64; 5993 bool Is64BitOp = Is64BitFPOp || 5994 OpInfo.OperandType == AMDGPU::OPERAND_REG_IMM_INT64 || 5995 OpInfo.OperandType == AMDGPU::OPERAND_REG_IMM_V2INT32 || 5996 OpInfo.OperandType == AMDGPU::OPERAND_REG_IMM_V2FP32; 5997 if (Is64BitOp && 5998 !AMDGPU::isInlinableLiteral64(Imm, ST.hasInv2PiInlineImm())) { 5999 if (!AMDGPU::isValid32BitLiteral(Imm, Is64BitFPOp)) 6000 return false; 6001 6002 // FIXME: We can use sign extended 64-bit literals, but only for signed 6003 // operands. At the moment we do not know if an operand is signed. 6004 // Such operand will be encoded as its low 32 bits and then either 6005 // correctly sign extended or incorrectly zero extended by HW. 6006 if (!Is64BitFPOp && (int32_t)Imm < 0) 6007 return false; 6008 } 6009 } 6010 6011 // Handle non-register types that are treated like immediates. 6012 assert(MO->isImm() || MO->isTargetIndex() || MO->isFI() || MO->isGlobal()); 6013 6014 if (!DefinedRC) { 6015 // This operand expects an immediate. 6016 return true; 6017 } 6018 6019 return isImmOperandLegal(MI, OpIdx, *MO); 6020 } 6021 6022 void SIInstrInfo::legalizeOperandsVOP2(MachineRegisterInfo &MRI, 6023 MachineInstr &MI) const { 6024 unsigned Opc = MI.getOpcode(); 6025 const MCInstrDesc &InstrDesc = get(Opc); 6026 6027 int Src0Idx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src0); 6028 MachineOperand &Src0 = MI.getOperand(Src0Idx); 6029 6030 int Src1Idx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src1); 6031 MachineOperand &Src1 = MI.getOperand(Src1Idx); 6032 6033 // If there is an implicit SGPR use such as VCC use for v_addc_u32/v_subb_u32 6034 // we need to only have one constant bus use before GFX10. 6035 bool HasImplicitSGPR = findImplicitSGPRRead(MI); 6036 if (HasImplicitSGPR && ST.getConstantBusLimit(Opc) <= 1 && Src0.isReg() && 6037 RI.isSGPRReg(MRI, Src0.getReg())) 6038 legalizeOpWithMove(MI, Src0Idx); 6039 6040 // Special case: V_WRITELANE_B32 accepts only immediate or SGPR operands for 6041 // both the value to write (src0) and lane select (src1). Fix up non-SGPR 6042 // src0/src1 with V_READFIRSTLANE. 6043 if (Opc == AMDGPU::V_WRITELANE_B32) { 6044 const DebugLoc &DL = MI.getDebugLoc(); 6045 if (Src0.isReg() && RI.isVGPR(MRI, Src0.getReg())) { 6046 Register Reg = MRI.createVirtualRegister(&AMDGPU::SReg_32_XM0RegClass); 6047 BuildMI(*MI.getParent(), MI, DL, get(AMDGPU::V_READFIRSTLANE_B32), Reg) 6048 .add(Src0); 6049 Src0.ChangeToRegister(Reg, false); 6050 } 6051 if (Src1.isReg() && RI.isVGPR(MRI, Src1.getReg())) { 6052 Register Reg = MRI.createVirtualRegister(&AMDGPU::SReg_32_XM0RegClass); 6053 const DebugLoc &DL = MI.getDebugLoc(); 6054 BuildMI(*MI.getParent(), MI, DL, get(AMDGPU::V_READFIRSTLANE_B32), Reg) 6055 .add(Src1); 6056 Src1.ChangeToRegister(Reg, false); 6057 } 6058 return; 6059 } 6060 6061 // No VOP2 instructions support AGPRs. 6062 if (Src0.isReg() && RI.isAGPR(MRI, Src0.getReg())) 6063 legalizeOpWithMove(MI, Src0Idx); 6064 6065 if (Src1.isReg() && RI.isAGPR(MRI, Src1.getReg())) 6066 legalizeOpWithMove(MI, Src1Idx); 6067 6068 // Special case: V_FMAC_F32 and V_FMAC_F16 have src2. 6069 if (Opc == AMDGPU::V_FMAC_F32_e32 || Opc == AMDGPU::V_FMAC_F16_e32) { 6070 int Src2Idx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src2); 6071 if (!RI.isVGPR(MRI, MI.getOperand(Src2Idx).getReg())) 6072 legalizeOpWithMove(MI, Src2Idx); 6073 } 6074 6075 // VOP2 src0 instructions support all operand types, so we don't need to check 6076 // their legality. If src1 is already legal, we don't need to do anything. 6077 if (isLegalRegOperand(MRI, InstrDesc.operands()[Src1Idx], Src1)) 6078 return; 6079 6080 // Special case: V_READLANE_B32 accepts only immediate or SGPR operands for 6081 // lane select. Fix up using V_READFIRSTLANE, since we assume that the lane 6082 // select is uniform. 6083 if (Opc == AMDGPU::V_READLANE_B32 && Src1.isReg() && 6084 RI.isVGPR(MRI, Src1.getReg())) { 6085 Register Reg = MRI.createVirtualRegister(&AMDGPU::SReg_32_XM0RegClass); 6086 const DebugLoc &DL = MI.getDebugLoc(); 6087 BuildMI(*MI.getParent(), MI, DL, get(AMDGPU::V_READFIRSTLANE_B32), Reg) 6088 .add(Src1); 6089 Src1.ChangeToRegister(Reg, false); 6090 return; 6091 } 6092 6093 // We do not use commuteInstruction here because it is too aggressive and will 6094 // commute if it is possible. We only want to commute here if it improves 6095 // legality. This can be called a fairly large number of times so don't waste 6096 // compile time pointlessly swapping and checking legality again. 6097 if (HasImplicitSGPR || !MI.isCommutable()) { 6098 legalizeOpWithMove(MI, Src1Idx); 6099 return; 6100 } 6101 6102 // If src0 can be used as src1, commuting will make the operands legal. 6103 // Otherwise we have to give up and insert a move. 6104 // 6105 // TODO: Other immediate-like operand kinds could be commuted if there was a 6106 // MachineOperand::ChangeTo* for them. 6107 if ((!Src1.isImm() && !Src1.isReg()) || 6108 !isLegalRegOperand(MRI, InstrDesc.operands()[Src1Idx], Src0)) { 6109 legalizeOpWithMove(MI, Src1Idx); 6110 return; 6111 } 6112 6113 int CommutedOpc = commuteOpcode(MI); 6114 if (CommutedOpc == -1) { 6115 legalizeOpWithMove(MI, Src1Idx); 6116 return; 6117 } 6118 6119 MI.setDesc(get(CommutedOpc)); 6120 6121 Register Src0Reg = Src0.getReg(); 6122 unsigned Src0SubReg = Src0.getSubReg(); 6123 bool Src0Kill = Src0.isKill(); 6124 6125 if (Src1.isImm()) 6126 Src0.ChangeToImmediate(Src1.getImm()); 6127 else if (Src1.isReg()) { 6128 Src0.ChangeToRegister(Src1.getReg(), false, false, Src1.isKill()); 6129 Src0.setSubReg(Src1.getSubReg()); 6130 } else 6131 llvm_unreachable("Should only have register or immediate operands"); 6132 6133 Src1.ChangeToRegister(Src0Reg, false, false, Src0Kill); 6134 Src1.setSubReg(Src0SubReg); 6135 fixImplicitOperands(MI); 6136 } 6137 6138 // Legalize VOP3 operands. All operand types are supported for any operand 6139 // but only one literal constant and only starting from GFX10. 6140 void SIInstrInfo::legalizeOperandsVOP3(MachineRegisterInfo &MRI, 6141 MachineInstr &MI) const { 6142 unsigned Opc = MI.getOpcode(); 6143 6144 int VOP3Idx[3] = { 6145 AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src0), 6146 AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src1), 6147 AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src2) 6148 }; 6149 6150 if (Opc == AMDGPU::V_PERMLANE16_B32_e64 || 6151 Opc == AMDGPU::V_PERMLANEX16_B32_e64) { 6152 // src1 and src2 must be scalar 6153 MachineOperand &Src1 = MI.getOperand(VOP3Idx[1]); 6154 MachineOperand &Src2 = MI.getOperand(VOP3Idx[2]); 6155 const DebugLoc &DL = MI.getDebugLoc(); 6156 if (Src1.isReg() && !RI.isSGPRClass(MRI.getRegClass(Src1.getReg()))) { 6157 Register Reg = MRI.createVirtualRegister(&AMDGPU::SReg_32_XM0RegClass); 6158 BuildMI(*MI.getParent(), MI, DL, get(AMDGPU::V_READFIRSTLANE_B32), Reg) 6159 .add(Src1); 6160 Src1.ChangeToRegister(Reg, false); 6161 } 6162 if (Src2.isReg() && !RI.isSGPRClass(MRI.getRegClass(Src2.getReg()))) { 6163 Register Reg = MRI.createVirtualRegister(&AMDGPU::SReg_32_XM0RegClass); 6164 BuildMI(*MI.getParent(), MI, DL, get(AMDGPU::V_READFIRSTLANE_B32), Reg) 6165 .add(Src2); 6166 Src2.ChangeToRegister(Reg, false); 6167 } 6168 } 6169 6170 // Find the one SGPR operand we are allowed to use. 6171 int ConstantBusLimit = ST.getConstantBusLimit(Opc); 6172 int LiteralLimit = ST.hasVOP3Literal() ? 1 : 0; 6173 SmallDenseSet<unsigned> SGPRsUsed; 6174 Register SGPRReg = findUsedSGPR(MI, VOP3Idx); 6175 if (SGPRReg) { 6176 SGPRsUsed.insert(SGPRReg); 6177 --ConstantBusLimit; 6178 } 6179 6180 for (int Idx : VOP3Idx) { 6181 if (Idx == -1) 6182 break; 6183 MachineOperand &MO = MI.getOperand(Idx); 6184 6185 if (!MO.isReg()) { 6186 if (isInlineConstant(MO, get(Opc).operands()[Idx])) 6187 continue; 6188 6189 if (LiteralLimit > 0 && ConstantBusLimit > 0) { 6190 --LiteralLimit; 6191 --ConstantBusLimit; 6192 continue; 6193 } 6194 6195 --LiteralLimit; 6196 --ConstantBusLimit; 6197 legalizeOpWithMove(MI, Idx); 6198 continue; 6199 } 6200 6201 if (RI.hasAGPRs(RI.getRegClassForReg(MRI, MO.getReg())) && 6202 !isOperandLegal(MI, Idx, &MO)) { 6203 legalizeOpWithMove(MI, Idx); 6204 continue; 6205 } 6206 6207 if (!RI.isSGPRClass(RI.getRegClassForReg(MRI, MO.getReg()))) 6208 continue; // VGPRs are legal 6209 6210 // We can use one SGPR in each VOP3 instruction prior to GFX10 6211 // and two starting from GFX10. 6212 if (SGPRsUsed.count(MO.getReg())) 6213 continue; 6214 if (ConstantBusLimit > 0) { 6215 SGPRsUsed.insert(MO.getReg()); 6216 --ConstantBusLimit; 6217 continue; 6218 } 6219 6220 // If we make it this far, then the operand is not legal and we must 6221 // legalize it. 6222 legalizeOpWithMove(MI, Idx); 6223 } 6224 6225 // Special case: V_FMAC_F32 and V_FMAC_F16 have src2 tied to vdst. 6226 if ((Opc == AMDGPU::V_FMAC_F32_e64 || Opc == AMDGPU::V_FMAC_F16_e64) && 6227 !RI.isVGPR(MRI, MI.getOperand(VOP3Idx[2]).getReg())) 6228 legalizeOpWithMove(MI, VOP3Idx[2]); 6229 } 6230 6231 Register SIInstrInfo::readlaneVGPRToSGPR( 6232 Register SrcReg, MachineInstr &UseMI, MachineRegisterInfo &MRI, 6233 const TargetRegisterClass *DstRC /*=nullptr*/) const { 6234 const TargetRegisterClass *VRC = MRI.getRegClass(SrcReg); 6235 const TargetRegisterClass *SRC = RI.getEquivalentSGPRClass(VRC); 6236 if (DstRC) 6237 SRC = RI.getCommonSubClass(SRC, DstRC); 6238 6239 Register DstReg = MRI.createVirtualRegister(SRC); 6240 unsigned SubRegs = RI.getRegSizeInBits(*VRC) / 32; 6241 6242 if (RI.hasAGPRs(VRC)) { 6243 VRC = RI.getEquivalentVGPRClass(VRC); 6244 Register NewSrcReg = MRI.createVirtualRegister(VRC); 6245 BuildMI(*UseMI.getParent(), UseMI, UseMI.getDebugLoc(), 6246 get(TargetOpcode::COPY), NewSrcReg) 6247 .addReg(SrcReg); 6248 SrcReg = NewSrcReg; 6249 } 6250 6251 if (SubRegs == 1) { 6252 BuildMI(*UseMI.getParent(), UseMI, UseMI.getDebugLoc(), 6253 get(AMDGPU::V_READFIRSTLANE_B32), DstReg) 6254 .addReg(SrcReg); 6255 return DstReg; 6256 } 6257 6258 SmallVector<Register, 8> SRegs; 6259 for (unsigned i = 0; i < SubRegs; ++i) { 6260 Register SGPR = MRI.createVirtualRegister(&AMDGPU::SGPR_32RegClass); 6261 BuildMI(*UseMI.getParent(), UseMI, UseMI.getDebugLoc(), 6262 get(AMDGPU::V_READFIRSTLANE_B32), SGPR) 6263 .addReg(SrcReg, 0, RI.getSubRegFromChannel(i)); 6264 SRegs.push_back(SGPR); 6265 } 6266 6267 MachineInstrBuilder MIB = 6268 BuildMI(*UseMI.getParent(), UseMI, UseMI.getDebugLoc(), 6269 get(AMDGPU::REG_SEQUENCE), DstReg); 6270 for (unsigned i = 0; i < SubRegs; ++i) { 6271 MIB.addReg(SRegs[i]); 6272 MIB.addImm(RI.getSubRegFromChannel(i)); 6273 } 6274 return DstReg; 6275 } 6276 6277 void SIInstrInfo::legalizeOperandsSMRD(MachineRegisterInfo &MRI, 6278 MachineInstr &MI) const { 6279 6280 // If the pointer is store in VGPRs, then we need to move them to 6281 // SGPRs using v_readfirstlane. This is safe because we only select 6282 // loads with uniform pointers to SMRD instruction so we know the 6283 // pointer value is uniform. 6284 MachineOperand *SBase = getNamedOperand(MI, AMDGPU::OpName::sbase); 6285 if (SBase && !RI.isSGPRClass(MRI.getRegClass(SBase->getReg()))) { 6286 Register SGPR = readlaneVGPRToSGPR(SBase->getReg(), MI, MRI); 6287 SBase->setReg(SGPR); 6288 } 6289 MachineOperand *SOff = getNamedOperand(MI, AMDGPU::OpName::soffset); 6290 if (SOff && !RI.isSGPRReg(MRI, SOff->getReg())) { 6291 Register SGPR = readlaneVGPRToSGPR(SOff->getReg(), MI, MRI); 6292 SOff->setReg(SGPR); 6293 } 6294 } 6295 6296 bool SIInstrInfo::moveFlatAddrToVGPR(MachineInstr &Inst) const { 6297 unsigned Opc = Inst.getOpcode(); 6298 int OldSAddrIdx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::saddr); 6299 if (OldSAddrIdx < 0) 6300 return false; 6301 6302 assert(isSegmentSpecificFLAT(Inst)); 6303 6304 int NewOpc = AMDGPU::getGlobalVaddrOp(Opc); 6305 if (NewOpc < 0) 6306 NewOpc = AMDGPU::getFlatScratchInstSVfromSS(Opc); 6307 if (NewOpc < 0) 6308 return false; 6309 6310 MachineRegisterInfo &MRI = Inst.getMF()->getRegInfo(); 6311 MachineOperand &SAddr = Inst.getOperand(OldSAddrIdx); 6312 if (RI.isSGPRReg(MRI, SAddr.getReg())) 6313 return false; 6314 6315 int NewVAddrIdx = AMDGPU::getNamedOperandIdx(NewOpc, AMDGPU::OpName::vaddr); 6316 if (NewVAddrIdx < 0) 6317 return false; 6318 6319 int OldVAddrIdx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::vaddr); 6320 6321 // Check vaddr, it shall be zero or absent. 6322 MachineInstr *VAddrDef = nullptr; 6323 if (OldVAddrIdx >= 0) { 6324 MachineOperand &VAddr = Inst.getOperand(OldVAddrIdx); 6325 VAddrDef = MRI.getUniqueVRegDef(VAddr.getReg()); 6326 if (!VAddrDef || VAddrDef->getOpcode() != AMDGPU::V_MOV_B32_e32 || 6327 !VAddrDef->getOperand(1).isImm() || 6328 VAddrDef->getOperand(1).getImm() != 0) 6329 return false; 6330 } 6331 6332 const MCInstrDesc &NewDesc = get(NewOpc); 6333 Inst.setDesc(NewDesc); 6334 6335 // Callers expect iterator to be valid after this call, so modify the 6336 // instruction in place. 6337 if (OldVAddrIdx == NewVAddrIdx) { 6338 MachineOperand &NewVAddr = Inst.getOperand(NewVAddrIdx); 6339 // Clear use list from the old vaddr holding a zero register. 6340 MRI.removeRegOperandFromUseList(&NewVAddr); 6341 MRI.moveOperands(&NewVAddr, &SAddr, 1); 6342 Inst.removeOperand(OldSAddrIdx); 6343 // Update the use list with the pointer we have just moved from vaddr to 6344 // saddr position. Otherwise new vaddr will be missing from the use list. 6345 MRI.removeRegOperandFromUseList(&NewVAddr); 6346 MRI.addRegOperandToUseList(&NewVAddr); 6347 } else { 6348 assert(OldSAddrIdx == NewVAddrIdx); 6349 6350 if (OldVAddrIdx >= 0) { 6351 int NewVDstIn = AMDGPU::getNamedOperandIdx(NewOpc, 6352 AMDGPU::OpName::vdst_in); 6353 6354 // removeOperand doesn't try to fixup tied operand indexes at it goes, so 6355 // it asserts. Untie the operands for now and retie them afterwards. 6356 if (NewVDstIn != -1) { 6357 int OldVDstIn = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::vdst_in); 6358 Inst.untieRegOperand(OldVDstIn); 6359 } 6360 6361 Inst.removeOperand(OldVAddrIdx); 6362 6363 if (NewVDstIn != -1) { 6364 int NewVDst = AMDGPU::getNamedOperandIdx(NewOpc, AMDGPU::OpName::vdst); 6365 Inst.tieOperands(NewVDst, NewVDstIn); 6366 } 6367 } 6368 } 6369 6370 if (VAddrDef && MRI.use_nodbg_empty(VAddrDef->getOperand(0).getReg())) 6371 VAddrDef->eraseFromParent(); 6372 6373 return true; 6374 } 6375 6376 // FIXME: Remove this when SelectionDAG is obsoleted. 6377 void SIInstrInfo::legalizeOperandsFLAT(MachineRegisterInfo &MRI, 6378 MachineInstr &MI) const { 6379 if (!isSegmentSpecificFLAT(MI)) 6380 return; 6381 6382 // Fixup SGPR operands in VGPRs. We only select these when the DAG divergence 6383 // thinks they are uniform, so a readfirstlane should be valid. 6384 MachineOperand *SAddr = getNamedOperand(MI, AMDGPU::OpName::saddr); 6385 if (!SAddr || RI.isSGPRClass(MRI.getRegClass(SAddr->getReg()))) 6386 return; 6387 6388 if (moveFlatAddrToVGPR(MI)) 6389 return; 6390 6391 const TargetRegisterClass *DeclaredRC = getRegClass( 6392 MI.getDesc(), SAddr->getOperandNo(), &RI, *MI.getParent()->getParent()); 6393 6394 Register ToSGPR = readlaneVGPRToSGPR(SAddr->getReg(), MI, MRI, DeclaredRC); 6395 SAddr->setReg(ToSGPR); 6396 } 6397 6398 void SIInstrInfo::legalizeGenericOperand(MachineBasicBlock &InsertMBB, 6399 MachineBasicBlock::iterator I, 6400 const TargetRegisterClass *DstRC, 6401 MachineOperand &Op, 6402 MachineRegisterInfo &MRI, 6403 const DebugLoc &DL) const { 6404 Register OpReg = Op.getReg(); 6405 unsigned OpSubReg = Op.getSubReg(); 6406 6407 const TargetRegisterClass *OpRC = RI.getSubClassWithSubReg( 6408 RI.getRegClassForReg(MRI, OpReg), OpSubReg); 6409 6410 // Check if operand is already the correct register class. 6411 if (DstRC == OpRC) 6412 return; 6413 6414 Register DstReg = MRI.createVirtualRegister(DstRC); 6415 auto Copy = 6416 BuildMI(InsertMBB, I, DL, get(AMDGPU::COPY), DstReg).addReg(OpReg); 6417 Op.setReg(DstReg); 6418 6419 MachineInstr *Def = MRI.getVRegDef(OpReg); 6420 if (!Def) 6421 return; 6422 6423 // Try to eliminate the copy if it is copying an immediate value. 6424 if (Def->isMoveImmediate() && DstRC != &AMDGPU::VReg_1RegClass) 6425 foldImmediate(*Copy, *Def, OpReg, &MRI); 6426 6427 bool ImpDef = Def->isImplicitDef(); 6428 while (!ImpDef && Def && Def->isCopy()) { 6429 if (Def->getOperand(1).getReg().isPhysical()) 6430 break; 6431 Def = MRI.getUniqueVRegDef(Def->getOperand(1).getReg()); 6432 ImpDef = Def && Def->isImplicitDef(); 6433 } 6434 if (!RI.isSGPRClass(DstRC) && !Copy->readsRegister(AMDGPU::EXEC, &RI) && 6435 !ImpDef) 6436 Copy.addReg(AMDGPU::EXEC, RegState::Implicit); 6437 } 6438 6439 // Emit the actual waterfall loop, executing the wrapped instruction for each 6440 // unique value of \p ScalarOps across all lanes. In the best case we execute 1 6441 // iteration, in the worst case we execute 64 (once per lane). 6442 static void 6443 emitLoadScalarOpsFromVGPRLoop(const SIInstrInfo &TII, 6444 MachineRegisterInfo &MRI, 6445 MachineBasicBlock &LoopBB, 6446 MachineBasicBlock &BodyBB, 6447 const DebugLoc &DL, 6448 ArrayRef<MachineOperand *> ScalarOps) { 6449 MachineFunction &MF = *LoopBB.getParent(); 6450 const GCNSubtarget &ST = MF.getSubtarget<GCNSubtarget>(); 6451 const SIRegisterInfo *TRI = ST.getRegisterInfo(); 6452 unsigned Exec = ST.isWave32() ? AMDGPU::EXEC_LO : AMDGPU::EXEC; 6453 unsigned SaveExecOpc = 6454 ST.isWave32() ? AMDGPU::S_AND_SAVEEXEC_B32 : AMDGPU::S_AND_SAVEEXEC_B64; 6455 unsigned XorTermOpc = 6456 ST.isWave32() ? AMDGPU::S_XOR_B32_term : AMDGPU::S_XOR_B64_term; 6457 unsigned AndOpc = 6458 ST.isWave32() ? AMDGPU::S_AND_B32 : AMDGPU::S_AND_B64; 6459 const auto *BoolXExecRC = TRI->getWaveMaskRegClass(); 6460 6461 MachineBasicBlock::iterator I = LoopBB.begin(); 6462 Register CondReg; 6463 6464 for (MachineOperand *ScalarOp : ScalarOps) { 6465 unsigned RegSize = TRI->getRegSizeInBits(ScalarOp->getReg(), MRI); 6466 unsigned NumSubRegs = RegSize / 32; 6467 Register VScalarOp = ScalarOp->getReg(); 6468 6469 if (NumSubRegs == 1) { 6470 Register CurReg = MRI.createVirtualRegister(&AMDGPU::SGPR_32RegClass); 6471 6472 BuildMI(LoopBB, I, DL, TII.get(AMDGPU::V_READFIRSTLANE_B32), CurReg) 6473 .addReg(VScalarOp); 6474 6475 Register NewCondReg = MRI.createVirtualRegister(BoolXExecRC); 6476 6477 BuildMI(LoopBB, I, DL, TII.get(AMDGPU::V_CMP_EQ_U32_e64), NewCondReg) 6478 .addReg(CurReg) 6479 .addReg(VScalarOp); 6480 6481 // Combine the comparison results with AND. 6482 if (!CondReg) // First. 6483 CondReg = NewCondReg; 6484 else { // If not the first, we create an AND. 6485 Register AndReg = MRI.createVirtualRegister(BoolXExecRC); 6486 BuildMI(LoopBB, I, DL, TII.get(AndOpc), AndReg) 6487 .addReg(CondReg) 6488 .addReg(NewCondReg); 6489 CondReg = AndReg; 6490 } 6491 6492 // Update ScalarOp operand to use the SGPR ScalarOp. 6493 ScalarOp->setReg(CurReg); 6494 ScalarOp->setIsKill(); 6495 } else { 6496 SmallVector<Register, 8> ReadlanePieces; 6497 unsigned VScalarOpUndef = getUndefRegState(ScalarOp->isUndef()); 6498 assert(NumSubRegs % 2 == 0 && NumSubRegs <= 32 && 6499 "Unhandled register size"); 6500 6501 for (unsigned Idx = 0; Idx < NumSubRegs; Idx += 2) { 6502 Register CurRegLo = MRI.createVirtualRegister(&AMDGPU::SGPR_32RegClass); 6503 Register CurRegHi = MRI.createVirtualRegister(&AMDGPU::SGPR_32RegClass); 6504 6505 // Read the next variant <- also loop target. 6506 BuildMI(LoopBB, I, DL, TII.get(AMDGPU::V_READFIRSTLANE_B32), CurRegLo) 6507 .addReg(VScalarOp, VScalarOpUndef, TRI->getSubRegFromChannel(Idx)); 6508 6509 // Read the next variant <- also loop target. 6510 BuildMI(LoopBB, I, DL, TII.get(AMDGPU::V_READFIRSTLANE_B32), CurRegHi) 6511 .addReg(VScalarOp, VScalarOpUndef, 6512 TRI->getSubRegFromChannel(Idx + 1)); 6513 6514 ReadlanePieces.push_back(CurRegLo); 6515 ReadlanePieces.push_back(CurRegHi); 6516 6517 // Comparison is to be done as 64-bit. 6518 Register CurReg = MRI.createVirtualRegister(&AMDGPU::SGPR_64RegClass); 6519 BuildMI(LoopBB, I, DL, TII.get(AMDGPU::REG_SEQUENCE), CurReg) 6520 .addReg(CurRegLo) 6521 .addImm(AMDGPU::sub0) 6522 .addReg(CurRegHi) 6523 .addImm(AMDGPU::sub1); 6524 6525 Register NewCondReg = MRI.createVirtualRegister(BoolXExecRC); 6526 auto Cmp = BuildMI(LoopBB, I, DL, TII.get(AMDGPU::V_CMP_EQ_U64_e64), 6527 NewCondReg) 6528 .addReg(CurReg); 6529 if (NumSubRegs <= 2) 6530 Cmp.addReg(VScalarOp); 6531 else 6532 Cmp.addReg(VScalarOp, VScalarOpUndef, 6533 TRI->getSubRegFromChannel(Idx, 2)); 6534 6535 // Combine the comparison results with AND. 6536 if (!CondReg) // First. 6537 CondReg = NewCondReg; 6538 else { // If not the first, we create an AND. 6539 Register AndReg = MRI.createVirtualRegister(BoolXExecRC); 6540 BuildMI(LoopBB, I, DL, TII.get(AndOpc), AndReg) 6541 .addReg(CondReg) 6542 .addReg(NewCondReg); 6543 CondReg = AndReg; 6544 } 6545 } // End for loop. 6546 6547 const auto *SScalarOpRC = 6548 TRI->getEquivalentSGPRClass(MRI.getRegClass(VScalarOp)); 6549 Register SScalarOp = MRI.createVirtualRegister(SScalarOpRC); 6550 6551 // Build scalar ScalarOp. 6552 auto Merge = 6553 BuildMI(LoopBB, I, DL, TII.get(AMDGPU::REG_SEQUENCE), SScalarOp); 6554 unsigned Channel = 0; 6555 for (Register Piece : ReadlanePieces) { 6556 Merge.addReg(Piece).addImm(TRI->getSubRegFromChannel(Channel++)); 6557 } 6558 6559 // Update ScalarOp operand to use the SGPR ScalarOp. 6560 ScalarOp->setReg(SScalarOp); 6561 ScalarOp->setIsKill(); 6562 } 6563 } 6564 6565 Register SaveExec = MRI.createVirtualRegister(BoolXExecRC); 6566 MRI.setSimpleHint(SaveExec, CondReg); 6567 6568 // Update EXEC to matching lanes, saving original to SaveExec. 6569 BuildMI(LoopBB, I, DL, TII.get(SaveExecOpc), SaveExec) 6570 .addReg(CondReg, RegState::Kill); 6571 6572 // The original instruction is here; we insert the terminators after it. 6573 I = BodyBB.end(); 6574 6575 // Update EXEC, switch all done bits to 0 and all todo bits to 1. 6576 BuildMI(BodyBB, I, DL, TII.get(XorTermOpc), Exec) 6577 .addReg(Exec) 6578 .addReg(SaveExec); 6579 6580 BuildMI(BodyBB, I, DL, TII.get(AMDGPU::SI_WATERFALL_LOOP)).addMBB(&LoopBB); 6581 } 6582 6583 // Build a waterfall loop around \p MI, replacing the VGPR \p ScalarOp register 6584 // with SGPRs by iterating over all unique values across all lanes. 6585 // Returns the loop basic block that now contains \p MI. 6586 static MachineBasicBlock * 6587 loadMBUFScalarOperandsFromVGPR(const SIInstrInfo &TII, MachineInstr &MI, 6588 ArrayRef<MachineOperand *> ScalarOps, 6589 MachineDominatorTree *MDT, 6590 MachineBasicBlock::iterator Begin = nullptr, 6591 MachineBasicBlock::iterator End = nullptr) { 6592 MachineBasicBlock &MBB = *MI.getParent(); 6593 MachineFunction &MF = *MBB.getParent(); 6594 const GCNSubtarget &ST = MF.getSubtarget<GCNSubtarget>(); 6595 const SIRegisterInfo *TRI = ST.getRegisterInfo(); 6596 MachineRegisterInfo &MRI = MF.getRegInfo(); 6597 if (!Begin.isValid()) 6598 Begin = &MI; 6599 if (!End.isValid()) { 6600 End = &MI; 6601 ++End; 6602 } 6603 const DebugLoc &DL = MI.getDebugLoc(); 6604 unsigned Exec = ST.isWave32() ? AMDGPU::EXEC_LO : AMDGPU::EXEC; 6605 unsigned MovExecOpc = ST.isWave32() ? AMDGPU::S_MOV_B32 : AMDGPU::S_MOV_B64; 6606 const auto *BoolXExecRC = TRI->getWaveMaskRegClass(); 6607 6608 // Save SCC. Waterfall Loop may overwrite SCC. 6609 Register SaveSCCReg; 6610 6611 // FIXME: We should maintain SCC liveness while doing the FixSGPRCopies walk 6612 // rather than unlimited scan everywhere 6613 bool SCCNotDead = 6614 MBB.computeRegisterLiveness(TRI, AMDGPU::SCC, MI, 6615 std::numeric_limits<unsigned>::max()) != 6616 MachineBasicBlock::LQR_Dead; 6617 if (SCCNotDead) { 6618 SaveSCCReg = MRI.createVirtualRegister(&AMDGPU::SReg_32RegClass); 6619 BuildMI(MBB, Begin, DL, TII.get(AMDGPU::S_CSELECT_B32), SaveSCCReg) 6620 .addImm(1) 6621 .addImm(0); 6622 } 6623 6624 Register SaveExec = MRI.createVirtualRegister(BoolXExecRC); 6625 6626 // Save the EXEC mask 6627 BuildMI(MBB, Begin, DL, TII.get(MovExecOpc), SaveExec).addReg(Exec); 6628 6629 // Killed uses in the instruction we are waterfalling around will be 6630 // incorrect due to the added control-flow. 6631 MachineBasicBlock::iterator AfterMI = MI; 6632 ++AfterMI; 6633 for (auto I = Begin; I != AfterMI; I++) { 6634 for (auto &MO : I->all_uses()) 6635 MRI.clearKillFlags(MO.getReg()); 6636 } 6637 6638 // To insert the loop we need to split the block. Move everything after this 6639 // point to a new block, and insert a new empty block between the two. 6640 MachineBasicBlock *LoopBB = MF.CreateMachineBasicBlock(); 6641 MachineBasicBlock *BodyBB = MF.CreateMachineBasicBlock(); 6642 MachineBasicBlock *RemainderBB = MF.CreateMachineBasicBlock(); 6643 MachineFunction::iterator MBBI(MBB); 6644 ++MBBI; 6645 6646 MF.insert(MBBI, LoopBB); 6647 MF.insert(MBBI, BodyBB); 6648 MF.insert(MBBI, RemainderBB); 6649 6650 LoopBB->addSuccessor(BodyBB); 6651 BodyBB->addSuccessor(LoopBB); 6652 BodyBB->addSuccessor(RemainderBB); 6653 6654 // Move Begin to MI to the BodyBB, and the remainder of the block to 6655 // RemainderBB. 6656 RemainderBB->transferSuccessorsAndUpdatePHIs(&MBB); 6657 RemainderBB->splice(RemainderBB->begin(), &MBB, End, MBB.end()); 6658 BodyBB->splice(BodyBB->begin(), &MBB, Begin, MBB.end()); 6659 6660 MBB.addSuccessor(LoopBB); 6661 6662 // Update dominators. We know that MBB immediately dominates LoopBB, that 6663 // LoopBB immediately dominates BodyBB, and BodyBB immediately dominates 6664 // RemainderBB. RemainderBB immediately dominates all of the successors 6665 // transferred to it from MBB that MBB used to properly dominate. 6666 if (MDT) { 6667 MDT->addNewBlock(LoopBB, &MBB); 6668 MDT->addNewBlock(BodyBB, LoopBB); 6669 MDT->addNewBlock(RemainderBB, BodyBB); 6670 for (auto &Succ : RemainderBB->successors()) { 6671 if (MDT->properlyDominates(&MBB, Succ)) { 6672 MDT->changeImmediateDominator(Succ, RemainderBB); 6673 } 6674 } 6675 } 6676 6677 emitLoadScalarOpsFromVGPRLoop(TII, MRI, *LoopBB, *BodyBB, DL, ScalarOps); 6678 6679 MachineBasicBlock::iterator First = RemainderBB->begin(); 6680 // Restore SCC 6681 if (SCCNotDead) { 6682 BuildMI(*RemainderBB, First, DL, TII.get(AMDGPU::S_CMP_LG_U32)) 6683 .addReg(SaveSCCReg, RegState::Kill) 6684 .addImm(0); 6685 } 6686 6687 // Restore the EXEC mask 6688 BuildMI(*RemainderBB, First, DL, TII.get(MovExecOpc), Exec).addReg(SaveExec); 6689 return BodyBB; 6690 } 6691 6692 // Extract pointer from Rsrc and return a zero-value Rsrc replacement. 6693 static std::tuple<unsigned, unsigned> 6694 extractRsrcPtr(const SIInstrInfo &TII, MachineInstr &MI, MachineOperand &Rsrc) { 6695 MachineBasicBlock &MBB = *MI.getParent(); 6696 MachineFunction &MF = *MBB.getParent(); 6697 MachineRegisterInfo &MRI = MF.getRegInfo(); 6698 6699 // Extract the ptr from the resource descriptor. 6700 unsigned RsrcPtr = 6701 TII.buildExtractSubReg(MI, MRI, Rsrc, &AMDGPU::VReg_128RegClass, 6702 AMDGPU::sub0_sub1, &AMDGPU::VReg_64RegClass); 6703 6704 // Create an empty resource descriptor 6705 Register Zero64 = MRI.createVirtualRegister(&AMDGPU::SReg_64RegClass); 6706 Register SRsrcFormatLo = MRI.createVirtualRegister(&AMDGPU::SGPR_32RegClass); 6707 Register SRsrcFormatHi = MRI.createVirtualRegister(&AMDGPU::SGPR_32RegClass); 6708 Register NewSRsrc = MRI.createVirtualRegister(&AMDGPU::SGPR_128RegClass); 6709 uint64_t RsrcDataFormat = TII.getDefaultRsrcDataFormat(); 6710 6711 // Zero64 = 0 6712 BuildMI(MBB, MI, MI.getDebugLoc(), TII.get(AMDGPU::S_MOV_B64), Zero64) 6713 .addImm(0); 6714 6715 // SRsrcFormatLo = RSRC_DATA_FORMAT{31-0} 6716 BuildMI(MBB, MI, MI.getDebugLoc(), TII.get(AMDGPU::S_MOV_B32), SRsrcFormatLo) 6717 .addImm(Lo_32(RsrcDataFormat)); 6718 6719 // SRsrcFormatHi = RSRC_DATA_FORMAT{63-32} 6720 BuildMI(MBB, MI, MI.getDebugLoc(), TII.get(AMDGPU::S_MOV_B32), SRsrcFormatHi) 6721 .addImm(Hi_32(RsrcDataFormat)); 6722 6723 // NewSRsrc = {Zero64, SRsrcFormat} 6724 BuildMI(MBB, MI, MI.getDebugLoc(), TII.get(AMDGPU::REG_SEQUENCE), NewSRsrc) 6725 .addReg(Zero64) 6726 .addImm(AMDGPU::sub0_sub1) 6727 .addReg(SRsrcFormatLo) 6728 .addImm(AMDGPU::sub2) 6729 .addReg(SRsrcFormatHi) 6730 .addImm(AMDGPU::sub3); 6731 6732 return std::tuple(RsrcPtr, NewSRsrc); 6733 } 6734 6735 MachineBasicBlock * 6736 SIInstrInfo::legalizeOperands(MachineInstr &MI, 6737 MachineDominatorTree *MDT) const { 6738 MachineFunction &MF = *MI.getParent()->getParent(); 6739 MachineRegisterInfo &MRI = MF.getRegInfo(); 6740 MachineBasicBlock *CreatedBB = nullptr; 6741 6742 // Legalize VOP2 6743 if (isVOP2(MI) || isVOPC(MI)) { 6744 legalizeOperandsVOP2(MRI, MI); 6745 return CreatedBB; 6746 } 6747 6748 // Legalize VOP3 6749 if (isVOP3(MI)) { 6750 legalizeOperandsVOP3(MRI, MI); 6751 return CreatedBB; 6752 } 6753 6754 // Legalize SMRD 6755 if (isSMRD(MI)) { 6756 legalizeOperandsSMRD(MRI, MI); 6757 return CreatedBB; 6758 } 6759 6760 // Legalize FLAT 6761 if (isFLAT(MI)) { 6762 legalizeOperandsFLAT(MRI, MI); 6763 return CreatedBB; 6764 } 6765 6766 // Legalize REG_SEQUENCE and PHI 6767 // The register class of the operands much be the same type as the register 6768 // class of the output. 6769 if (MI.getOpcode() == AMDGPU::PHI) { 6770 const TargetRegisterClass *RC = nullptr, *SRC = nullptr, *VRC = nullptr; 6771 for (unsigned i = 1, e = MI.getNumOperands(); i != e; i += 2) { 6772 if (!MI.getOperand(i).isReg() || !MI.getOperand(i).getReg().isVirtual()) 6773 continue; 6774 const TargetRegisterClass *OpRC = 6775 MRI.getRegClass(MI.getOperand(i).getReg()); 6776 if (RI.hasVectorRegisters(OpRC)) { 6777 VRC = OpRC; 6778 } else { 6779 SRC = OpRC; 6780 } 6781 } 6782 6783 // If any of the operands are VGPR registers, then they all most be 6784 // otherwise we will create illegal VGPR->SGPR copies when legalizing 6785 // them. 6786 if (VRC || !RI.isSGPRClass(getOpRegClass(MI, 0))) { 6787 if (!VRC) { 6788 assert(SRC); 6789 if (getOpRegClass(MI, 0) == &AMDGPU::VReg_1RegClass) { 6790 VRC = &AMDGPU::VReg_1RegClass; 6791 } else 6792 VRC = RI.isAGPRClass(getOpRegClass(MI, 0)) 6793 ? RI.getEquivalentAGPRClass(SRC) 6794 : RI.getEquivalentVGPRClass(SRC); 6795 } else { 6796 VRC = RI.isAGPRClass(getOpRegClass(MI, 0)) 6797 ? RI.getEquivalentAGPRClass(VRC) 6798 : RI.getEquivalentVGPRClass(VRC); 6799 } 6800 RC = VRC; 6801 } else { 6802 RC = SRC; 6803 } 6804 6805 // Update all the operands so they have the same type. 6806 for (unsigned I = 1, E = MI.getNumOperands(); I != E; I += 2) { 6807 MachineOperand &Op = MI.getOperand(I); 6808 if (!Op.isReg() || !Op.getReg().isVirtual()) 6809 continue; 6810 6811 // MI is a PHI instruction. 6812 MachineBasicBlock *InsertBB = MI.getOperand(I + 1).getMBB(); 6813 MachineBasicBlock::iterator Insert = InsertBB->getFirstTerminator(); 6814 6815 // Avoid creating no-op copies with the same src and dst reg class. These 6816 // confuse some of the machine passes. 6817 legalizeGenericOperand(*InsertBB, Insert, RC, Op, MRI, MI.getDebugLoc()); 6818 } 6819 } 6820 6821 // REG_SEQUENCE doesn't really require operand legalization, but if one has a 6822 // VGPR dest type and SGPR sources, insert copies so all operands are 6823 // VGPRs. This seems to help operand folding / the register coalescer. 6824 if (MI.getOpcode() == AMDGPU::REG_SEQUENCE) { 6825 MachineBasicBlock *MBB = MI.getParent(); 6826 const TargetRegisterClass *DstRC = getOpRegClass(MI, 0); 6827 if (RI.hasVGPRs(DstRC)) { 6828 // Update all the operands so they are VGPR register classes. These may 6829 // not be the same register class because REG_SEQUENCE supports mixing 6830 // subregister index types e.g. sub0_sub1 + sub2 + sub3 6831 for (unsigned I = 1, E = MI.getNumOperands(); I != E; I += 2) { 6832 MachineOperand &Op = MI.getOperand(I); 6833 if (!Op.isReg() || !Op.getReg().isVirtual()) 6834 continue; 6835 6836 const TargetRegisterClass *OpRC = MRI.getRegClass(Op.getReg()); 6837 const TargetRegisterClass *VRC = RI.getEquivalentVGPRClass(OpRC); 6838 if (VRC == OpRC) 6839 continue; 6840 6841 legalizeGenericOperand(*MBB, MI, VRC, Op, MRI, MI.getDebugLoc()); 6842 Op.setIsKill(); 6843 } 6844 } 6845 6846 return CreatedBB; 6847 } 6848 6849 // Legalize INSERT_SUBREG 6850 // src0 must have the same register class as dst 6851 if (MI.getOpcode() == AMDGPU::INSERT_SUBREG) { 6852 Register Dst = MI.getOperand(0).getReg(); 6853 Register Src0 = MI.getOperand(1).getReg(); 6854 const TargetRegisterClass *DstRC = MRI.getRegClass(Dst); 6855 const TargetRegisterClass *Src0RC = MRI.getRegClass(Src0); 6856 if (DstRC != Src0RC) { 6857 MachineBasicBlock *MBB = MI.getParent(); 6858 MachineOperand &Op = MI.getOperand(1); 6859 legalizeGenericOperand(*MBB, MI, DstRC, Op, MRI, MI.getDebugLoc()); 6860 } 6861 return CreatedBB; 6862 } 6863 6864 // Legalize SI_INIT_M0 6865 if (MI.getOpcode() == AMDGPU::SI_INIT_M0) { 6866 MachineOperand &Src = MI.getOperand(0); 6867 if (Src.isReg() && RI.hasVectorRegisters(MRI.getRegClass(Src.getReg()))) 6868 Src.setReg(readlaneVGPRToSGPR(Src.getReg(), MI, MRI)); 6869 return CreatedBB; 6870 } 6871 6872 // Legalize S_BITREPLICATE, S_QUADMASK and S_WQM 6873 if (MI.getOpcode() == AMDGPU::S_BITREPLICATE_B64_B32 || 6874 MI.getOpcode() == AMDGPU::S_QUADMASK_B32 || 6875 MI.getOpcode() == AMDGPU::S_QUADMASK_B64 || 6876 MI.getOpcode() == AMDGPU::S_WQM_B32 || 6877 MI.getOpcode() == AMDGPU::S_WQM_B64 || 6878 MI.getOpcode() == AMDGPU::S_INVERSE_BALLOT_U32 || 6879 MI.getOpcode() == AMDGPU::S_INVERSE_BALLOT_U64) { 6880 MachineOperand &Src = MI.getOperand(1); 6881 if (Src.isReg() && RI.hasVectorRegisters(MRI.getRegClass(Src.getReg()))) 6882 Src.setReg(readlaneVGPRToSGPR(Src.getReg(), MI, MRI)); 6883 return CreatedBB; 6884 } 6885 6886 // Legalize MIMG/VIMAGE/VSAMPLE and MUBUF/MTBUF for shaders. 6887 // 6888 // Shaders only generate MUBUF/MTBUF instructions via intrinsics or via 6889 // scratch memory access. In both cases, the legalization never involves 6890 // conversion to the addr64 form. 6891 if (isImage(MI) || (AMDGPU::isGraphics(MF.getFunction().getCallingConv()) && 6892 (isMUBUF(MI) || isMTBUF(MI)))) { 6893 int RSrcOpName = (isVIMAGE(MI) || isVSAMPLE(MI)) ? AMDGPU::OpName::rsrc 6894 : AMDGPU::OpName::srsrc; 6895 MachineOperand *SRsrc = getNamedOperand(MI, RSrcOpName); 6896 if (SRsrc && !RI.isSGPRClass(MRI.getRegClass(SRsrc->getReg()))) 6897 CreatedBB = loadMBUFScalarOperandsFromVGPR(*this, MI, {SRsrc}, MDT); 6898 6899 int SampOpName = isMIMG(MI) ? AMDGPU::OpName::ssamp : AMDGPU::OpName::samp; 6900 MachineOperand *SSamp = getNamedOperand(MI, SampOpName); 6901 if (SSamp && !RI.isSGPRClass(MRI.getRegClass(SSamp->getReg()))) 6902 CreatedBB = loadMBUFScalarOperandsFromVGPR(*this, MI, {SSamp}, MDT); 6903 6904 return CreatedBB; 6905 } 6906 6907 // Legalize SI_CALL 6908 if (MI.getOpcode() == AMDGPU::SI_CALL_ISEL) { 6909 MachineOperand *Dest = &MI.getOperand(0); 6910 if (!RI.isSGPRClass(MRI.getRegClass(Dest->getReg()))) { 6911 // Move everything between ADJCALLSTACKUP and ADJCALLSTACKDOWN and 6912 // following copies, we also need to move copies from and to physical 6913 // registers into the loop block. 6914 unsigned FrameSetupOpcode = getCallFrameSetupOpcode(); 6915 unsigned FrameDestroyOpcode = getCallFrameDestroyOpcode(); 6916 6917 // Also move the copies to physical registers into the loop block 6918 MachineBasicBlock &MBB = *MI.getParent(); 6919 MachineBasicBlock::iterator Start(&MI); 6920 while (Start->getOpcode() != FrameSetupOpcode) 6921 --Start; 6922 MachineBasicBlock::iterator End(&MI); 6923 while (End->getOpcode() != FrameDestroyOpcode) 6924 ++End; 6925 // Also include following copies of the return value 6926 ++End; 6927 while (End != MBB.end() && End->isCopy() && End->getOperand(1).isReg() && 6928 MI.definesRegister(End->getOperand(1).getReg(), /*TRI=*/nullptr)) 6929 ++End; 6930 CreatedBB = 6931 loadMBUFScalarOperandsFromVGPR(*this, MI, {Dest}, MDT, Start, End); 6932 } 6933 } 6934 6935 // Legalize s_sleep_var. 6936 if (MI.getOpcode() == AMDGPU::S_SLEEP_VAR) { 6937 const DebugLoc &DL = MI.getDebugLoc(); 6938 Register Reg = MRI.createVirtualRegister(&AMDGPU::SReg_32_XM0RegClass); 6939 int Src0Idx = 6940 AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::src0); 6941 MachineOperand &Src0 = MI.getOperand(Src0Idx); 6942 BuildMI(*MI.getParent(), MI, DL, get(AMDGPU::V_READFIRSTLANE_B32), Reg) 6943 .add(Src0); 6944 Src0.ChangeToRegister(Reg, false); 6945 return nullptr; 6946 } 6947 6948 // Legalize MUBUF instructions. 6949 bool isSoffsetLegal = true; 6950 int SoffsetIdx = 6951 AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::soffset); 6952 if (SoffsetIdx != -1) { 6953 MachineOperand *Soffset = &MI.getOperand(SoffsetIdx); 6954 if (Soffset->isReg() && Soffset->getReg().isVirtual() && 6955 !RI.isSGPRClass(MRI.getRegClass(Soffset->getReg()))) { 6956 isSoffsetLegal = false; 6957 } 6958 } 6959 6960 bool isRsrcLegal = true; 6961 int RsrcIdx = 6962 AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::srsrc); 6963 if (RsrcIdx != -1) { 6964 MachineOperand *Rsrc = &MI.getOperand(RsrcIdx); 6965 if (Rsrc->isReg() && !RI.isSGPRReg(MRI, Rsrc->getReg())) 6966 isRsrcLegal = false; 6967 } 6968 6969 // The operands are legal. 6970 if (isRsrcLegal && isSoffsetLegal) 6971 return CreatedBB; 6972 6973 if (!isRsrcLegal) { 6974 // Legalize a VGPR Rsrc 6975 // 6976 // If the instruction is _ADDR64, we can avoid a waterfall by extracting 6977 // the base pointer from the VGPR Rsrc, adding it to the VAddr, then using 6978 // a zero-value SRsrc. 6979 // 6980 // If the instruction is _OFFSET (both idxen and offen disabled), and we 6981 // support ADDR64 instructions, we can convert to ADDR64 and do the same as 6982 // above. 6983 // 6984 // Otherwise we are on non-ADDR64 hardware, and/or we have 6985 // idxen/offen/bothen and we fall back to a waterfall loop. 6986 6987 MachineOperand *Rsrc = &MI.getOperand(RsrcIdx); 6988 MachineBasicBlock &MBB = *MI.getParent(); 6989 6990 MachineOperand *VAddr = getNamedOperand(MI, AMDGPU::OpName::vaddr); 6991 if (VAddr && AMDGPU::getIfAddr64Inst(MI.getOpcode()) != -1) { 6992 // This is already an ADDR64 instruction so we need to add the pointer 6993 // extracted from the resource descriptor to the current value of VAddr. 6994 Register NewVAddrLo = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass); 6995 Register NewVAddrHi = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass); 6996 Register NewVAddr = MRI.createVirtualRegister(&AMDGPU::VReg_64RegClass); 6997 6998 const auto *BoolXExecRC = RI.getWaveMaskRegClass(); 6999 Register CondReg0 = MRI.createVirtualRegister(BoolXExecRC); 7000 Register CondReg1 = MRI.createVirtualRegister(BoolXExecRC); 7001 7002 unsigned RsrcPtr, NewSRsrc; 7003 std::tie(RsrcPtr, NewSRsrc) = extractRsrcPtr(*this, MI, *Rsrc); 7004 7005 // NewVaddrLo = RsrcPtr:sub0 + VAddr:sub0 7006 const DebugLoc &DL = MI.getDebugLoc(); 7007 BuildMI(MBB, MI, DL, get(AMDGPU::V_ADD_CO_U32_e64), NewVAddrLo) 7008 .addDef(CondReg0) 7009 .addReg(RsrcPtr, 0, AMDGPU::sub0) 7010 .addReg(VAddr->getReg(), 0, AMDGPU::sub0) 7011 .addImm(0); 7012 7013 // NewVaddrHi = RsrcPtr:sub1 + VAddr:sub1 7014 BuildMI(MBB, MI, DL, get(AMDGPU::V_ADDC_U32_e64), NewVAddrHi) 7015 .addDef(CondReg1, RegState::Dead) 7016 .addReg(RsrcPtr, 0, AMDGPU::sub1) 7017 .addReg(VAddr->getReg(), 0, AMDGPU::sub1) 7018 .addReg(CondReg0, RegState::Kill) 7019 .addImm(0); 7020 7021 // NewVaddr = {NewVaddrHi, NewVaddrLo} 7022 BuildMI(MBB, MI, MI.getDebugLoc(), get(AMDGPU::REG_SEQUENCE), NewVAddr) 7023 .addReg(NewVAddrLo) 7024 .addImm(AMDGPU::sub0) 7025 .addReg(NewVAddrHi) 7026 .addImm(AMDGPU::sub1); 7027 7028 VAddr->setReg(NewVAddr); 7029 Rsrc->setReg(NewSRsrc); 7030 } else if (!VAddr && ST.hasAddr64()) { 7031 // This instructions is the _OFFSET variant, so we need to convert it to 7032 // ADDR64. 7033 assert(ST.getGeneration() < AMDGPUSubtarget::VOLCANIC_ISLANDS && 7034 "FIXME: Need to emit flat atomics here"); 7035 7036 unsigned RsrcPtr, NewSRsrc; 7037 std::tie(RsrcPtr, NewSRsrc) = extractRsrcPtr(*this, MI, *Rsrc); 7038 7039 Register NewVAddr = MRI.createVirtualRegister(&AMDGPU::VReg_64RegClass); 7040 MachineOperand *VData = getNamedOperand(MI, AMDGPU::OpName::vdata); 7041 MachineOperand *Offset = getNamedOperand(MI, AMDGPU::OpName::offset); 7042 MachineOperand *SOffset = getNamedOperand(MI, AMDGPU::OpName::soffset); 7043 unsigned Addr64Opcode = AMDGPU::getAddr64Inst(MI.getOpcode()); 7044 7045 // Atomics with return have an additional tied operand and are 7046 // missing some of the special bits. 7047 MachineOperand *VDataIn = getNamedOperand(MI, AMDGPU::OpName::vdata_in); 7048 MachineInstr *Addr64; 7049 7050 if (!VDataIn) { 7051 // Regular buffer load / store. 7052 MachineInstrBuilder MIB = 7053 BuildMI(MBB, MI, MI.getDebugLoc(), get(Addr64Opcode)) 7054 .add(*VData) 7055 .addReg(NewVAddr) 7056 .addReg(NewSRsrc) 7057 .add(*SOffset) 7058 .add(*Offset); 7059 7060 if (const MachineOperand *CPol = 7061 getNamedOperand(MI, AMDGPU::OpName::cpol)) { 7062 MIB.addImm(CPol->getImm()); 7063 } 7064 7065 if (const MachineOperand *TFE = 7066 getNamedOperand(MI, AMDGPU::OpName::tfe)) { 7067 MIB.addImm(TFE->getImm()); 7068 } 7069 7070 MIB.addImm(getNamedImmOperand(MI, AMDGPU::OpName::swz)); 7071 7072 MIB.cloneMemRefs(MI); 7073 Addr64 = MIB; 7074 } else { 7075 // Atomics with return. 7076 Addr64 = BuildMI(MBB, MI, MI.getDebugLoc(), get(Addr64Opcode)) 7077 .add(*VData) 7078 .add(*VDataIn) 7079 .addReg(NewVAddr) 7080 .addReg(NewSRsrc) 7081 .add(*SOffset) 7082 .add(*Offset) 7083 .addImm(getNamedImmOperand(MI, AMDGPU::OpName::cpol)) 7084 .cloneMemRefs(MI); 7085 } 7086 7087 MI.removeFromParent(); 7088 7089 // NewVaddr = {NewVaddrHi, NewVaddrLo} 7090 BuildMI(MBB, Addr64, Addr64->getDebugLoc(), get(AMDGPU::REG_SEQUENCE), 7091 NewVAddr) 7092 .addReg(RsrcPtr, 0, AMDGPU::sub0) 7093 .addImm(AMDGPU::sub0) 7094 .addReg(RsrcPtr, 0, AMDGPU::sub1) 7095 .addImm(AMDGPU::sub1); 7096 } else { 7097 // Legalize a VGPR Rsrc and soffset together. 7098 if (!isSoffsetLegal) { 7099 MachineOperand *Soffset = getNamedOperand(MI, AMDGPU::OpName::soffset); 7100 CreatedBB = 7101 loadMBUFScalarOperandsFromVGPR(*this, MI, {Rsrc, Soffset}, MDT); 7102 return CreatedBB; 7103 } 7104 CreatedBB = loadMBUFScalarOperandsFromVGPR(*this, MI, {Rsrc}, MDT); 7105 return CreatedBB; 7106 } 7107 } 7108 7109 // Legalize a VGPR soffset. 7110 if (!isSoffsetLegal) { 7111 MachineOperand *Soffset = getNamedOperand(MI, AMDGPU::OpName::soffset); 7112 CreatedBB = loadMBUFScalarOperandsFromVGPR(*this, MI, {Soffset}, MDT); 7113 return CreatedBB; 7114 } 7115 return CreatedBB; 7116 } 7117 7118 void SIInstrWorklist::insert(MachineInstr *MI) { 7119 InstrList.insert(MI); 7120 // Add MBUF instructiosn to deferred list. 7121 int RsrcIdx = 7122 AMDGPU::getNamedOperandIdx(MI->getOpcode(), AMDGPU::OpName::srsrc); 7123 if (RsrcIdx != -1) { 7124 DeferredList.insert(MI); 7125 } 7126 } 7127 7128 bool SIInstrWorklist::isDeferred(MachineInstr *MI) { 7129 return DeferredList.contains(MI); 7130 } 7131 7132 void SIInstrInfo::moveToVALU(SIInstrWorklist &Worklist, 7133 MachineDominatorTree *MDT) const { 7134 7135 while (!Worklist.empty()) { 7136 MachineInstr &Inst = *Worklist.top(); 7137 Worklist.erase_top(); 7138 // Skip MachineInstr in the deferred list. 7139 if (Worklist.isDeferred(&Inst)) 7140 continue; 7141 moveToVALUImpl(Worklist, MDT, Inst); 7142 } 7143 7144 // Deferred list of instructions will be processed once 7145 // all the MachineInstr in the worklist are done. 7146 for (MachineInstr *Inst : Worklist.getDeferredList()) { 7147 moveToVALUImpl(Worklist, MDT, *Inst); 7148 assert(Worklist.empty() && 7149 "Deferred MachineInstr are not supposed to re-populate worklist"); 7150 } 7151 } 7152 7153 void SIInstrInfo::moveToVALUImpl(SIInstrWorklist &Worklist, 7154 MachineDominatorTree *MDT, 7155 MachineInstr &Inst) const { 7156 7157 MachineBasicBlock *MBB = Inst.getParent(); 7158 if (!MBB) 7159 return; 7160 MachineRegisterInfo &MRI = MBB->getParent()->getRegInfo(); 7161 unsigned Opcode = Inst.getOpcode(); 7162 unsigned NewOpcode = getVALUOp(Inst); 7163 // Handle some special cases 7164 switch (Opcode) { 7165 default: 7166 break; 7167 case AMDGPU::S_ADD_U64_PSEUDO: 7168 NewOpcode = AMDGPU::V_ADD_U64_PSEUDO; 7169 break; 7170 case AMDGPU::S_SUB_U64_PSEUDO: 7171 NewOpcode = AMDGPU::V_SUB_U64_PSEUDO; 7172 break; 7173 case AMDGPU::S_ADD_I32: 7174 case AMDGPU::S_SUB_I32: { 7175 // FIXME: The u32 versions currently selected use the carry. 7176 bool Changed; 7177 MachineBasicBlock *CreatedBBTmp = nullptr; 7178 std::tie(Changed, CreatedBBTmp) = moveScalarAddSub(Worklist, Inst, MDT); 7179 if (Changed) 7180 return; 7181 7182 // Default handling 7183 break; 7184 } 7185 7186 case AMDGPU::S_MUL_U64: 7187 // Split s_mul_u64 in 32-bit vector multiplications. 7188 splitScalarSMulU64(Worklist, Inst, MDT); 7189 Inst.eraseFromParent(); 7190 return; 7191 7192 case AMDGPU::S_MUL_U64_U32_PSEUDO: 7193 case AMDGPU::S_MUL_I64_I32_PSEUDO: 7194 // This is a special case of s_mul_u64 where all the operands are either 7195 // zero extended or sign extended. 7196 splitScalarSMulPseudo(Worklist, Inst, MDT); 7197 Inst.eraseFromParent(); 7198 return; 7199 7200 case AMDGPU::S_AND_B64: 7201 splitScalar64BitBinaryOp(Worklist, Inst, AMDGPU::S_AND_B32, MDT); 7202 Inst.eraseFromParent(); 7203 return; 7204 7205 case AMDGPU::S_OR_B64: 7206 splitScalar64BitBinaryOp(Worklist, Inst, AMDGPU::S_OR_B32, MDT); 7207 Inst.eraseFromParent(); 7208 return; 7209 7210 case AMDGPU::S_XOR_B64: 7211 splitScalar64BitBinaryOp(Worklist, Inst, AMDGPU::S_XOR_B32, MDT); 7212 Inst.eraseFromParent(); 7213 return; 7214 7215 case AMDGPU::S_NAND_B64: 7216 splitScalar64BitBinaryOp(Worklist, Inst, AMDGPU::S_NAND_B32, MDT); 7217 Inst.eraseFromParent(); 7218 return; 7219 7220 case AMDGPU::S_NOR_B64: 7221 splitScalar64BitBinaryOp(Worklist, Inst, AMDGPU::S_NOR_B32, MDT); 7222 Inst.eraseFromParent(); 7223 return; 7224 7225 case AMDGPU::S_XNOR_B64: 7226 if (ST.hasDLInsts()) 7227 splitScalar64BitBinaryOp(Worklist, Inst, AMDGPU::S_XNOR_B32, MDT); 7228 else 7229 splitScalar64BitXnor(Worklist, Inst, MDT); 7230 Inst.eraseFromParent(); 7231 return; 7232 7233 case AMDGPU::S_ANDN2_B64: 7234 splitScalar64BitBinaryOp(Worklist, Inst, AMDGPU::S_ANDN2_B32, MDT); 7235 Inst.eraseFromParent(); 7236 return; 7237 7238 case AMDGPU::S_ORN2_B64: 7239 splitScalar64BitBinaryOp(Worklist, Inst, AMDGPU::S_ORN2_B32, MDT); 7240 Inst.eraseFromParent(); 7241 return; 7242 7243 case AMDGPU::S_BREV_B64: 7244 splitScalar64BitUnaryOp(Worklist, Inst, AMDGPU::S_BREV_B32, true); 7245 Inst.eraseFromParent(); 7246 return; 7247 7248 case AMDGPU::S_NOT_B64: 7249 splitScalar64BitUnaryOp(Worklist, Inst, AMDGPU::S_NOT_B32); 7250 Inst.eraseFromParent(); 7251 return; 7252 7253 case AMDGPU::S_BCNT1_I32_B64: 7254 splitScalar64BitBCNT(Worklist, Inst); 7255 Inst.eraseFromParent(); 7256 return; 7257 7258 case AMDGPU::S_BFE_I64: 7259 splitScalar64BitBFE(Worklist, Inst); 7260 Inst.eraseFromParent(); 7261 return; 7262 7263 case AMDGPU::S_FLBIT_I32_B64: 7264 splitScalar64BitCountOp(Worklist, Inst, AMDGPU::V_FFBH_U32_e32); 7265 Inst.eraseFromParent(); 7266 return; 7267 case AMDGPU::S_FF1_I32_B64: 7268 splitScalar64BitCountOp(Worklist, Inst, AMDGPU::V_FFBL_B32_e32); 7269 Inst.eraseFromParent(); 7270 return; 7271 7272 case AMDGPU::S_LSHL_B32: 7273 if (ST.hasOnlyRevVALUShifts()) { 7274 NewOpcode = AMDGPU::V_LSHLREV_B32_e64; 7275 swapOperands(Inst); 7276 } 7277 break; 7278 case AMDGPU::S_ASHR_I32: 7279 if (ST.hasOnlyRevVALUShifts()) { 7280 NewOpcode = AMDGPU::V_ASHRREV_I32_e64; 7281 swapOperands(Inst); 7282 } 7283 break; 7284 case AMDGPU::S_LSHR_B32: 7285 if (ST.hasOnlyRevVALUShifts()) { 7286 NewOpcode = AMDGPU::V_LSHRREV_B32_e64; 7287 swapOperands(Inst); 7288 } 7289 break; 7290 case AMDGPU::S_LSHL_B64: 7291 if (ST.hasOnlyRevVALUShifts()) { 7292 NewOpcode = ST.getGeneration() >= AMDGPUSubtarget::GFX12 7293 ? AMDGPU::V_LSHLREV_B64_pseudo_e64 7294 : AMDGPU::V_LSHLREV_B64_e64; 7295 swapOperands(Inst); 7296 } 7297 break; 7298 case AMDGPU::S_ASHR_I64: 7299 if (ST.hasOnlyRevVALUShifts()) { 7300 NewOpcode = AMDGPU::V_ASHRREV_I64_e64; 7301 swapOperands(Inst); 7302 } 7303 break; 7304 case AMDGPU::S_LSHR_B64: 7305 if (ST.hasOnlyRevVALUShifts()) { 7306 NewOpcode = AMDGPU::V_LSHRREV_B64_e64; 7307 swapOperands(Inst); 7308 } 7309 break; 7310 7311 case AMDGPU::S_ABS_I32: 7312 lowerScalarAbs(Worklist, Inst); 7313 Inst.eraseFromParent(); 7314 return; 7315 7316 case AMDGPU::S_CBRANCH_SCC0: 7317 case AMDGPU::S_CBRANCH_SCC1: { 7318 // Clear unused bits of vcc 7319 Register CondReg = Inst.getOperand(1).getReg(); 7320 bool IsSCC = CondReg == AMDGPU::SCC; 7321 Register VCC = RI.getVCC(); 7322 Register EXEC = ST.isWave32() ? AMDGPU::EXEC_LO : AMDGPU::EXEC; 7323 unsigned Opc = ST.isWave32() ? AMDGPU::S_AND_B32 : AMDGPU::S_AND_B64; 7324 BuildMI(*MBB, Inst, Inst.getDebugLoc(), get(Opc), VCC) 7325 .addReg(EXEC) 7326 .addReg(IsSCC ? VCC : CondReg); 7327 Inst.removeOperand(1); 7328 } break; 7329 7330 case AMDGPU::S_BFE_U64: 7331 case AMDGPU::S_BFM_B64: 7332 llvm_unreachable("Moving this op to VALU not implemented"); 7333 7334 case AMDGPU::S_PACK_LL_B32_B16: 7335 case AMDGPU::S_PACK_LH_B32_B16: 7336 case AMDGPU::S_PACK_HL_B32_B16: 7337 case AMDGPU::S_PACK_HH_B32_B16: 7338 movePackToVALU(Worklist, MRI, Inst); 7339 Inst.eraseFromParent(); 7340 return; 7341 7342 case AMDGPU::S_XNOR_B32: 7343 lowerScalarXnor(Worklist, Inst); 7344 Inst.eraseFromParent(); 7345 return; 7346 7347 case AMDGPU::S_NAND_B32: 7348 splitScalarNotBinop(Worklist, Inst, AMDGPU::S_AND_B32); 7349 Inst.eraseFromParent(); 7350 return; 7351 7352 case AMDGPU::S_NOR_B32: 7353 splitScalarNotBinop(Worklist, Inst, AMDGPU::S_OR_B32); 7354 Inst.eraseFromParent(); 7355 return; 7356 7357 case AMDGPU::S_ANDN2_B32: 7358 splitScalarBinOpN2(Worklist, Inst, AMDGPU::S_AND_B32); 7359 Inst.eraseFromParent(); 7360 return; 7361 7362 case AMDGPU::S_ORN2_B32: 7363 splitScalarBinOpN2(Worklist, Inst, AMDGPU::S_OR_B32); 7364 Inst.eraseFromParent(); 7365 return; 7366 7367 // TODO: remove as soon as everything is ready 7368 // to replace VGPR to SGPR copy with V_READFIRSTLANEs. 7369 // S_ADD/SUB_CO_PSEUDO as well as S_UADDO/USUBO_PSEUDO 7370 // can only be selected from the uniform SDNode. 7371 case AMDGPU::S_ADD_CO_PSEUDO: 7372 case AMDGPU::S_SUB_CO_PSEUDO: { 7373 unsigned Opc = (Inst.getOpcode() == AMDGPU::S_ADD_CO_PSEUDO) 7374 ? AMDGPU::V_ADDC_U32_e64 7375 : AMDGPU::V_SUBB_U32_e64; 7376 const auto *CarryRC = RI.getWaveMaskRegClass(); 7377 7378 Register CarryInReg = Inst.getOperand(4).getReg(); 7379 if (!MRI.constrainRegClass(CarryInReg, CarryRC)) { 7380 Register NewCarryReg = MRI.createVirtualRegister(CarryRC); 7381 BuildMI(*MBB, Inst, Inst.getDebugLoc(), get(AMDGPU::COPY), NewCarryReg) 7382 .addReg(CarryInReg); 7383 } 7384 7385 Register CarryOutReg = Inst.getOperand(1).getReg(); 7386 7387 Register DestReg = MRI.createVirtualRegister(RI.getEquivalentVGPRClass( 7388 MRI.getRegClass(Inst.getOperand(0).getReg()))); 7389 MachineInstr *CarryOp = 7390 BuildMI(*MBB, &Inst, Inst.getDebugLoc(), get(Opc), DestReg) 7391 .addReg(CarryOutReg, RegState::Define) 7392 .add(Inst.getOperand(2)) 7393 .add(Inst.getOperand(3)) 7394 .addReg(CarryInReg) 7395 .addImm(0); 7396 legalizeOperands(*CarryOp); 7397 MRI.replaceRegWith(Inst.getOperand(0).getReg(), DestReg); 7398 addUsersToMoveToVALUWorklist(DestReg, MRI, Worklist); 7399 Inst.eraseFromParent(); 7400 } 7401 return; 7402 case AMDGPU::S_UADDO_PSEUDO: 7403 case AMDGPU::S_USUBO_PSEUDO: { 7404 const DebugLoc &DL = Inst.getDebugLoc(); 7405 MachineOperand &Dest0 = Inst.getOperand(0); 7406 MachineOperand &Dest1 = Inst.getOperand(1); 7407 MachineOperand &Src0 = Inst.getOperand(2); 7408 MachineOperand &Src1 = Inst.getOperand(3); 7409 7410 unsigned Opc = (Inst.getOpcode() == AMDGPU::S_UADDO_PSEUDO) 7411 ? AMDGPU::V_ADD_CO_U32_e64 7412 : AMDGPU::V_SUB_CO_U32_e64; 7413 const TargetRegisterClass *NewRC = 7414 RI.getEquivalentVGPRClass(MRI.getRegClass(Dest0.getReg())); 7415 Register DestReg = MRI.createVirtualRegister(NewRC); 7416 MachineInstr *NewInstr = BuildMI(*MBB, &Inst, DL, get(Opc), DestReg) 7417 .addReg(Dest1.getReg(), RegState::Define) 7418 .add(Src0) 7419 .add(Src1) 7420 .addImm(0); // clamp bit 7421 7422 legalizeOperands(*NewInstr, MDT); 7423 MRI.replaceRegWith(Dest0.getReg(), DestReg); 7424 addUsersToMoveToVALUWorklist(NewInstr->getOperand(0).getReg(), MRI, 7425 Worklist); 7426 Inst.eraseFromParent(); 7427 } 7428 return; 7429 7430 case AMDGPU::S_CSELECT_B32: 7431 case AMDGPU::S_CSELECT_B64: 7432 lowerSelect(Worklist, Inst, MDT); 7433 Inst.eraseFromParent(); 7434 return; 7435 case AMDGPU::S_CMP_EQ_I32: 7436 case AMDGPU::S_CMP_LG_I32: 7437 case AMDGPU::S_CMP_GT_I32: 7438 case AMDGPU::S_CMP_GE_I32: 7439 case AMDGPU::S_CMP_LT_I32: 7440 case AMDGPU::S_CMP_LE_I32: 7441 case AMDGPU::S_CMP_EQ_U32: 7442 case AMDGPU::S_CMP_LG_U32: 7443 case AMDGPU::S_CMP_GT_U32: 7444 case AMDGPU::S_CMP_GE_U32: 7445 case AMDGPU::S_CMP_LT_U32: 7446 case AMDGPU::S_CMP_LE_U32: 7447 case AMDGPU::S_CMP_EQ_U64: 7448 case AMDGPU::S_CMP_LG_U64: 7449 case AMDGPU::S_CMP_LT_F32: 7450 case AMDGPU::S_CMP_EQ_F32: 7451 case AMDGPU::S_CMP_LE_F32: 7452 case AMDGPU::S_CMP_GT_F32: 7453 case AMDGPU::S_CMP_LG_F32: 7454 case AMDGPU::S_CMP_GE_F32: 7455 case AMDGPU::S_CMP_O_F32: 7456 case AMDGPU::S_CMP_U_F32: 7457 case AMDGPU::S_CMP_NGE_F32: 7458 case AMDGPU::S_CMP_NLG_F32: 7459 case AMDGPU::S_CMP_NGT_F32: 7460 case AMDGPU::S_CMP_NLE_F32: 7461 case AMDGPU::S_CMP_NEQ_F32: 7462 case AMDGPU::S_CMP_NLT_F32: { 7463 Register CondReg = MRI.createVirtualRegister(RI.getWaveMaskRegClass()); 7464 auto NewInstr = 7465 BuildMI(*MBB, Inst, Inst.getDebugLoc(), get(NewOpcode), CondReg) 7466 .setMIFlags(Inst.getFlags()); 7467 if (AMDGPU::getNamedOperandIdx(NewOpcode, AMDGPU::OpName::src0_modifiers) >= 7468 0) { 7469 NewInstr 7470 .addImm(0) // src0_modifiers 7471 .add(Inst.getOperand(0)) // src0 7472 .addImm(0) // src1_modifiers 7473 .add(Inst.getOperand(1)) // src1 7474 .addImm(0); // clamp 7475 } else { 7476 NewInstr.add(Inst.getOperand(0)).add(Inst.getOperand(1)); 7477 } 7478 legalizeOperands(*NewInstr, MDT); 7479 int SCCIdx = Inst.findRegisterDefOperandIdx(AMDGPU::SCC, /*TRI=*/nullptr); 7480 MachineOperand SCCOp = Inst.getOperand(SCCIdx); 7481 addSCCDefUsersToVALUWorklist(SCCOp, Inst, Worklist, CondReg); 7482 Inst.eraseFromParent(); 7483 return; 7484 } 7485 case AMDGPU::S_CMP_LT_F16: 7486 case AMDGPU::S_CMP_EQ_F16: 7487 case AMDGPU::S_CMP_LE_F16: 7488 case AMDGPU::S_CMP_GT_F16: 7489 case AMDGPU::S_CMP_LG_F16: 7490 case AMDGPU::S_CMP_GE_F16: 7491 case AMDGPU::S_CMP_O_F16: 7492 case AMDGPU::S_CMP_U_F16: 7493 case AMDGPU::S_CMP_NGE_F16: 7494 case AMDGPU::S_CMP_NLG_F16: 7495 case AMDGPU::S_CMP_NGT_F16: 7496 case AMDGPU::S_CMP_NLE_F16: 7497 case AMDGPU::S_CMP_NEQ_F16: 7498 case AMDGPU::S_CMP_NLT_F16: { 7499 Register CondReg = MRI.createVirtualRegister(RI.getWaveMaskRegClass()); 7500 auto NewInstr = 7501 BuildMI(*MBB, Inst, Inst.getDebugLoc(), get(NewOpcode), CondReg) 7502 .setMIFlags(Inst.getFlags()); 7503 if (AMDGPU::hasNamedOperand(NewOpcode, AMDGPU::OpName::src0_modifiers)) { 7504 NewInstr 7505 .addImm(0) // src0_modifiers 7506 .add(Inst.getOperand(0)) // src0 7507 .addImm(0) // src1_modifiers 7508 .add(Inst.getOperand(1)) // src1 7509 .addImm(0); // clamp 7510 if (AMDGPU::hasNamedOperand(NewOpcode, AMDGPU::OpName::op_sel)) 7511 NewInstr.addImm(0); // op_sel0 7512 } else { 7513 NewInstr 7514 .add(Inst.getOperand(0)) 7515 .add(Inst.getOperand(1)); 7516 } 7517 legalizeOperands(*NewInstr, MDT); 7518 int SCCIdx = Inst.findRegisterDefOperandIdx(AMDGPU::SCC, /*TRI=*/nullptr); 7519 MachineOperand SCCOp = Inst.getOperand(SCCIdx); 7520 addSCCDefUsersToVALUWorklist(SCCOp, Inst, Worklist, CondReg); 7521 Inst.eraseFromParent(); 7522 return; 7523 } 7524 case AMDGPU::S_CVT_HI_F32_F16: { 7525 const DebugLoc &DL = Inst.getDebugLoc(); 7526 Register TmpReg = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass); 7527 Register NewDst = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass); 7528 if (ST.useRealTrue16Insts()) { 7529 BuildMI(*MBB, Inst, DL, get(AMDGPU::COPY), TmpReg) 7530 .add(Inst.getOperand(1)); 7531 BuildMI(*MBB, Inst, DL, get(NewOpcode), NewDst) 7532 .addImm(0) // src0_modifiers 7533 .addReg(TmpReg, 0, AMDGPU::hi16) 7534 .addImm(0) // clamp 7535 .addImm(0) // omod 7536 .addImm(0); // op_sel0 7537 } else { 7538 BuildMI(*MBB, Inst, DL, get(AMDGPU::V_LSHRREV_B32_e64), TmpReg) 7539 .addImm(16) 7540 .add(Inst.getOperand(1)); 7541 BuildMI(*MBB, Inst, DL, get(NewOpcode), NewDst) 7542 .addImm(0) // src0_modifiers 7543 .addReg(TmpReg) 7544 .addImm(0) // clamp 7545 .addImm(0); // omod 7546 } 7547 7548 MRI.replaceRegWith(Inst.getOperand(0).getReg(), NewDst); 7549 addUsersToMoveToVALUWorklist(NewDst, MRI, Worklist); 7550 Inst.eraseFromParent(); 7551 return; 7552 } 7553 case AMDGPU::S_MINIMUM_F32: 7554 case AMDGPU::S_MAXIMUM_F32: { 7555 const DebugLoc &DL = Inst.getDebugLoc(); 7556 Register NewDst = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass); 7557 MachineInstr *NewInstr = BuildMI(*MBB, Inst, DL, get(NewOpcode), NewDst) 7558 .addImm(0) // src0_modifiers 7559 .add(Inst.getOperand(1)) 7560 .addImm(0) // src1_modifiers 7561 .add(Inst.getOperand(2)) 7562 .addImm(0) // clamp 7563 .addImm(0); // omod 7564 MRI.replaceRegWith(Inst.getOperand(0).getReg(), NewDst); 7565 7566 legalizeOperands(*NewInstr, MDT); 7567 addUsersToMoveToVALUWorklist(NewDst, MRI, Worklist); 7568 Inst.eraseFromParent(); 7569 return; 7570 } 7571 case AMDGPU::S_MINIMUM_F16: 7572 case AMDGPU::S_MAXIMUM_F16: { 7573 const DebugLoc &DL = Inst.getDebugLoc(); 7574 Register NewDst = MRI.createVirtualRegister(ST.useRealTrue16Insts() 7575 ? &AMDGPU::VGPR_16RegClass 7576 : &AMDGPU::VGPR_32RegClass); 7577 MachineInstr *NewInstr = BuildMI(*MBB, Inst, DL, get(NewOpcode), NewDst) 7578 .addImm(0) // src0_modifiers 7579 .add(Inst.getOperand(1)) 7580 .addImm(0) // src1_modifiers 7581 .add(Inst.getOperand(2)) 7582 .addImm(0) // clamp 7583 .addImm(0) // omod 7584 .addImm(0); // opsel0 7585 MRI.replaceRegWith(Inst.getOperand(0).getReg(), NewDst); 7586 legalizeOperands(*NewInstr, MDT); 7587 addUsersToMoveToVALUWorklist(NewDst, MRI, Worklist); 7588 Inst.eraseFromParent(); 7589 return; 7590 } 7591 } 7592 7593 if (NewOpcode == AMDGPU::INSTRUCTION_LIST_END) { 7594 // We cannot move this instruction to the VALU, so we should try to 7595 // legalize its operands instead. 7596 legalizeOperands(Inst, MDT); 7597 return; 7598 } 7599 // Handle converting generic instructions like COPY-to-SGPR into 7600 // COPY-to-VGPR. 7601 if (NewOpcode == Opcode) { 7602 Register DstReg = Inst.getOperand(0).getReg(); 7603 const TargetRegisterClass *NewDstRC = getDestEquivalentVGPRClass(Inst); 7604 7605 // If it's a copy of a VGPR to a physical SGPR, insert a V_READFIRSTLANE and 7606 // hope for the best. 7607 if (Inst.isCopy() && DstReg.isPhysical() && 7608 RI.isVGPR(MRI, Inst.getOperand(1).getReg())) { 7609 // TODO: Only works for 32 bit registers. 7610 BuildMI(*Inst.getParent(), &Inst, Inst.getDebugLoc(), 7611 get(AMDGPU::V_READFIRSTLANE_B32), Inst.getOperand(0).getReg()) 7612 .add(Inst.getOperand(1)); 7613 Inst.eraseFromParent(); 7614 return; 7615 } 7616 7617 if (Inst.isCopy() && Inst.getOperand(1).getReg().isVirtual() && 7618 NewDstRC == RI.getRegClassForReg(MRI, Inst.getOperand(1).getReg())) { 7619 // Instead of creating a copy where src and dst are the same register 7620 // class, we just replace all uses of dst with src. These kinds of 7621 // copies interfere with the heuristics MachineSink uses to decide 7622 // whether or not to split a critical edge. Since the pass assumes 7623 // that copies will end up as machine instructions and not be 7624 // eliminated. 7625 addUsersToMoveToVALUWorklist(DstReg, MRI, Worklist); 7626 MRI.replaceRegWith(DstReg, Inst.getOperand(1).getReg()); 7627 MRI.clearKillFlags(Inst.getOperand(1).getReg()); 7628 Inst.getOperand(0).setReg(DstReg); 7629 // Make sure we don't leave around a dead VGPR->SGPR copy. Normally 7630 // these are deleted later, but at -O0 it would leave a suspicious 7631 // looking illegal copy of an undef register. 7632 for (unsigned I = Inst.getNumOperands() - 1; I != 0; --I) 7633 Inst.removeOperand(I); 7634 Inst.setDesc(get(AMDGPU::IMPLICIT_DEF)); 7635 return; 7636 } 7637 Register NewDstReg = MRI.createVirtualRegister(NewDstRC); 7638 MRI.replaceRegWith(DstReg, NewDstReg); 7639 legalizeOperands(Inst, MDT); 7640 addUsersToMoveToVALUWorklist(NewDstReg, MRI, Worklist); 7641 return; 7642 } 7643 7644 // Use the new VALU Opcode. 7645 auto NewInstr = BuildMI(*MBB, Inst, Inst.getDebugLoc(), get(NewOpcode)) 7646 .setMIFlags(Inst.getFlags()); 7647 if (isVOP3(NewOpcode) && !isVOP3(Opcode)) { 7648 // Intersperse VOP3 modifiers among the SALU operands. 7649 NewInstr->addOperand(Inst.getOperand(0)); 7650 if (AMDGPU::getNamedOperandIdx(NewOpcode, 7651 AMDGPU::OpName::src0_modifiers) >= 0) 7652 NewInstr.addImm(0); 7653 if (AMDGPU::hasNamedOperand(NewOpcode, AMDGPU::OpName::src0)) { 7654 MachineOperand Src = Inst.getOperand(1); 7655 if (AMDGPU::isTrue16Inst(NewOpcode) && ST.useRealTrue16Insts() && 7656 Src.isReg() && RI.isVGPR(MRI, Src.getReg())) 7657 NewInstr.addReg(Src.getReg(), 0, AMDGPU::lo16); 7658 else 7659 NewInstr->addOperand(Src); 7660 } 7661 7662 if (Opcode == AMDGPU::S_SEXT_I32_I8 || Opcode == AMDGPU::S_SEXT_I32_I16) { 7663 // We are converting these to a BFE, so we need to add the missing 7664 // operands for the size and offset. 7665 unsigned Size = (Opcode == AMDGPU::S_SEXT_I32_I8) ? 8 : 16; 7666 NewInstr.addImm(0); 7667 NewInstr.addImm(Size); 7668 } else if (Opcode == AMDGPU::S_BCNT1_I32_B32) { 7669 // The VALU version adds the second operand to the result, so insert an 7670 // extra 0 operand. 7671 NewInstr.addImm(0); 7672 } else if (Opcode == AMDGPU::S_BFE_I32 || Opcode == AMDGPU::S_BFE_U32) { 7673 const MachineOperand &OffsetWidthOp = Inst.getOperand(2); 7674 // If we need to move this to VGPRs, we need to unpack the second 7675 // operand back into the 2 separate ones for bit offset and width. 7676 assert(OffsetWidthOp.isImm() && 7677 "Scalar BFE is only implemented for constant width and offset"); 7678 uint32_t Imm = OffsetWidthOp.getImm(); 7679 7680 uint32_t Offset = Imm & 0x3f; // Extract bits [5:0]. 7681 uint32_t BitWidth = (Imm & 0x7f0000) >> 16; // Extract bits [22:16]. 7682 NewInstr.addImm(Offset); 7683 NewInstr.addImm(BitWidth); 7684 } else { 7685 if (AMDGPU::getNamedOperandIdx(NewOpcode, 7686 AMDGPU::OpName::src1_modifiers) >= 0) 7687 NewInstr.addImm(0); 7688 if (AMDGPU::getNamedOperandIdx(NewOpcode, AMDGPU::OpName::src1) >= 0) 7689 NewInstr->addOperand(Inst.getOperand(2)); 7690 if (AMDGPU::getNamedOperandIdx(NewOpcode, 7691 AMDGPU::OpName::src2_modifiers) >= 0) 7692 NewInstr.addImm(0); 7693 if (AMDGPU::getNamedOperandIdx(NewOpcode, AMDGPU::OpName::src2) >= 0) 7694 NewInstr->addOperand(Inst.getOperand(3)); 7695 if (AMDGPU::getNamedOperandIdx(NewOpcode, AMDGPU::OpName::clamp) >= 0) 7696 NewInstr.addImm(0); 7697 if (AMDGPU::getNamedOperandIdx(NewOpcode, AMDGPU::OpName::omod) >= 0) 7698 NewInstr.addImm(0); 7699 if (AMDGPU::getNamedOperandIdx(NewOpcode, AMDGPU::OpName::op_sel) >= 0) 7700 NewInstr.addImm(0); 7701 } 7702 } else { 7703 // Just copy the SALU operands. 7704 for (const MachineOperand &Op : Inst.explicit_operands()) 7705 NewInstr->addOperand(Op); 7706 } 7707 7708 // Remove any references to SCC. Vector instructions can't read from it, and 7709 // We're just about to add the implicit use / defs of VCC, and we don't want 7710 // both. 7711 for (MachineOperand &Op : Inst.implicit_operands()) { 7712 if (Op.getReg() == AMDGPU::SCC) { 7713 // Only propagate through live-def of SCC. 7714 if (Op.isDef() && !Op.isDead()) 7715 addSCCDefUsersToVALUWorklist(Op, Inst, Worklist); 7716 if (Op.isUse()) 7717 addSCCDefsToVALUWorklist(NewInstr, Worklist); 7718 } 7719 } 7720 Inst.eraseFromParent(); 7721 Register NewDstReg; 7722 if (NewInstr->getOperand(0).isReg() && NewInstr->getOperand(0).isDef()) { 7723 Register DstReg = NewInstr->getOperand(0).getReg(); 7724 assert(DstReg.isVirtual()); 7725 // Update the destination register class. 7726 const TargetRegisterClass *NewDstRC = getDestEquivalentVGPRClass(*NewInstr); 7727 assert(NewDstRC); 7728 NewDstReg = MRI.createVirtualRegister(NewDstRC); 7729 MRI.replaceRegWith(DstReg, NewDstReg); 7730 } 7731 fixImplicitOperands(*NewInstr); 7732 // Legalize the operands 7733 legalizeOperands(*NewInstr, MDT); 7734 if (NewDstReg) 7735 addUsersToMoveToVALUWorklist(NewDstReg, MRI, Worklist); 7736 } 7737 7738 // Add/sub require special handling to deal with carry outs. 7739 std::pair<bool, MachineBasicBlock *> 7740 SIInstrInfo::moveScalarAddSub(SIInstrWorklist &Worklist, MachineInstr &Inst, 7741 MachineDominatorTree *MDT) const { 7742 if (ST.hasAddNoCarry()) { 7743 // Assume there is no user of scc since we don't select this in that case. 7744 // Since scc isn't used, it doesn't really matter if the i32 or u32 variant 7745 // is used. 7746 7747 MachineBasicBlock &MBB = *Inst.getParent(); 7748 MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo(); 7749 7750 Register OldDstReg = Inst.getOperand(0).getReg(); 7751 Register ResultReg = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass); 7752 7753 unsigned Opc = Inst.getOpcode(); 7754 assert(Opc == AMDGPU::S_ADD_I32 || Opc == AMDGPU::S_SUB_I32); 7755 7756 unsigned NewOpc = Opc == AMDGPU::S_ADD_I32 ? 7757 AMDGPU::V_ADD_U32_e64 : AMDGPU::V_SUB_U32_e64; 7758 7759 assert(Inst.getOperand(3).getReg() == AMDGPU::SCC); 7760 Inst.removeOperand(3); 7761 7762 Inst.setDesc(get(NewOpc)); 7763 Inst.addOperand(MachineOperand::CreateImm(0)); // clamp bit 7764 Inst.addImplicitDefUseOperands(*MBB.getParent()); 7765 MRI.replaceRegWith(OldDstReg, ResultReg); 7766 MachineBasicBlock *NewBB = legalizeOperands(Inst, MDT); 7767 7768 addUsersToMoveToVALUWorklist(ResultReg, MRI, Worklist); 7769 return std::pair(true, NewBB); 7770 } 7771 7772 return std::pair(false, nullptr); 7773 } 7774 7775 void SIInstrInfo::lowerSelect(SIInstrWorklist &Worklist, MachineInstr &Inst, 7776 MachineDominatorTree *MDT) const { 7777 7778 MachineBasicBlock &MBB = *Inst.getParent(); 7779 MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo(); 7780 MachineBasicBlock::iterator MII = Inst; 7781 DebugLoc DL = Inst.getDebugLoc(); 7782 7783 MachineOperand &Dest = Inst.getOperand(0); 7784 MachineOperand &Src0 = Inst.getOperand(1); 7785 MachineOperand &Src1 = Inst.getOperand(2); 7786 MachineOperand &Cond = Inst.getOperand(3); 7787 7788 Register CondReg = Cond.getReg(); 7789 bool IsSCC = (CondReg == AMDGPU::SCC); 7790 7791 // If this is a trivial select where the condition is effectively not SCC 7792 // (CondReg is a source of copy to SCC), then the select is semantically 7793 // equivalent to copying CondReg. Hence, there is no need to create 7794 // V_CNDMASK, we can just use that and bail out. 7795 if (!IsSCC && Src0.isImm() && (Src0.getImm() == -1) && Src1.isImm() && 7796 (Src1.getImm() == 0)) { 7797 MRI.replaceRegWith(Dest.getReg(), CondReg); 7798 return; 7799 } 7800 7801 Register NewCondReg = CondReg; 7802 if (IsSCC) { 7803 const TargetRegisterClass *TC = RI.getWaveMaskRegClass(); 7804 NewCondReg = MRI.createVirtualRegister(TC); 7805 7806 // Now look for the closest SCC def if it is a copy 7807 // replacing the CondReg with the COPY source register 7808 bool CopyFound = false; 7809 for (MachineInstr &CandI : 7810 make_range(std::next(MachineBasicBlock::reverse_iterator(Inst)), 7811 Inst.getParent()->rend())) { 7812 if (CandI.findRegisterDefOperandIdx(AMDGPU::SCC, &RI, false, false) != 7813 -1) { 7814 if (CandI.isCopy() && CandI.getOperand(0).getReg() == AMDGPU::SCC) { 7815 BuildMI(MBB, MII, DL, get(AMDGPU::COPY), NewCondReg) 7816 .addReg(CandI.getOperand(1).getReg()); 7817 CopyFound = true; 7818 } 7819 break; 7820 } 7821 } 7822 if (!CopyFound) { 7823 // SCC def is not a copy 7824 // Insert a trivial select instead of creating a copy, because a copy from 7825 // SCC would semantically mean just copying a single bit, but we may need 7826 // the result to be a vector condition mask that needs preserving. 7827 unsigned Opcode = 7828 ST.isWave64() ? AMDGPU::S_CSELECT_B64 : AMDGPU::S_CSELECT_B32; 7829 auto NewSelect = 7830 BuildMI(MBB, MII, DL, get(Opcode), NewCondReg).addImm(-1).addImm(0); 7831 NewSelect->getOperand(3).setIsUndef(Cond.isUndef()); 7832 } 7833 } 7834 7835 Register NewDestReg = MRI.createVirtualRegister( 7836 RI.getEquivalentVGPRClass(MRI.getRegClass(Dest.getReg()))); 7837 MachineInstr *NewInst; 7838 if (Inst.getOpcode() == AMDGPU::S_CSELECT_B32) { 7839 NewInst = BuildMI(MBB, MII, DL, get(AMDGPU::V_CNDMASK_B32_e64), NewDestReg) 7840 .addImm(0) 7841 .add(Src1) // False 7842 .addImm(0) 7843 .add(Src0) // True 7844 .addReg(NewCondReg); 7845 } else { 7846 NewInst = 7847 BuildMI(MBB, MII, DL, get(AMDGPU::V_CNDMASK_B64_PSEUDO), NewDestReg) 7848 .add(Src1) // False 7849 .add(Src0) // True 7850 .addReg(NewCondReg); 7851 } 7852 MRI.replaceRegWith(Dest.getReg(), NewDestReg); 7853 legalizeOperands(*NewInst, MDT); 7854 addUsersToMoveToVALUWorklist(NewDestReg, MRI, Worklist); 7855 } 7856 7857 void SIInstrInfo::lowerScalarAbs(SIInstrWorklist &Worklist, 7858 MachineInstr &Inst) const { 7859 MachineBasicBlock &MBB = *Inst.getParent(); 7860 MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo(); 7861 MachineBasicBlock::iterator MII = Inst; 7862 DebugLoc DL = Inst.getDebugLoc(); 7863 7864 MachineOperand &Dest = Inst.getOperand(0); 7865 MachineOperand &Src = Inst.getOperand(1); 7866 Register TmpReg = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass); 7867 Register ResultReg = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass); 7868 7869 unsigned SubOp = ST.hasAddNoCarry() ? 7870 AMDGPU::V_SUB_U32_e32 : AMDGPU::V_SUB_CO_U32_e32; 7871 7872 BuildMI(MBB, MII, DL, get(SubOp), TmpReg) 7873 .addImm(0) 7874 .addReg(Src.getReg()); 7875 7876 BuildMI(MBB, MII, DL, get(AMDGPU::V_MAX_I32_e64), ResultReg) 7877 .addReg(Src.getReg()) 7878 .addReg(TmpReg); 7879 7880 MRI.replaceRegWith(Dest.getReg(), ResultReg); 7881 addUsersToMoveToVALUWorklist(ResultReg, MRI, Worklist); 7882 } 7883 7884 void SIInstrInfo::lowerScalarXnor(SIInstrWorklist &Worklist, 7885 MachineInstr &Inst) const { 7886 MachineBasicBlock &MBB = *Inst.getParent(); 7887 MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo(); 7888 MachineBasicBlock::iterator MII = Inst; 7889 const DebugLoc &DL = Inst.getDebugLoc(); 7890 7891 MachineOperand &Dest = Inst.getOperand(0); 7892 MachineOperand &Src0 = Inst.getOperand(1); 7893 MachineOperand &Src1 = Inst.getOperand(2); 7894 7895 if (ST.hasDLInsts()) { 7896 Register NewDest = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass); 7897 legalizeGenericOperand(MBB, MII, &AMDGPU::VGPR_32RegClass, Src0, MRI, DL); 7898 legalizeGenericOperand(MBB, MII, &AMDGPU::VGPR_32RegClass, Src1, MRI, DL); 7899 7900 BuildMI(MBB, MII, DL, get(AMDGPU::V_XNOR_B32_e64), NewDest) 7901 .add(Src0) 7902 .add(Src1); 7903 7904 MRI.replaceRegWith(Dest.getReg(), NewDest); 7905 addUsersToMoveToVALUWorklist(NewDest, MRI, Worklist); 7906 } else { 7907 // Using the identity !(x ^ y) == (!x ^ y) == (x ^ !y), we can 7908 // invert either source and then perform the XOR. If either source is a 7909 // scalar register, then we can leave the inversion on the scalar unit to 7910 // achieve a better distribution of scalar and vector instructions. 7911 bool Src0IsSGPR = Src0.isReg() && 7912 RI.isSGPRClass(MRI.getRegClass(Src0.getReg())); 7913 bool Src1IsSGPR = Src1.isReg() && 7914 RI.isSGPRClass(MRI.getRegClass(Src1.getReg())); 7915 MachineInstr *Xor; 7916 Register Temp = MRI.createVirtualRegister(&AMDGPU::SReg_32RegClass); 7917 Register NewDest = MRI.createVirtualRegister(&AMDGPU::SReg_32RegClass); 7918 7919 // Build a pair of scalar instructions and add them to the work list. 7920 // The next iteration over the work list will lower these to the vector 7921 // unit as necessary. 7922 if (Src0IsSGPR) { 7923 BuildMI(MBB, MII, DL, get(AMDGPU::S_NOT_B32), Temp).add(Src0); 7924 Xor = BuildMI(MBB, MII, DL, get(AMDGPU::S_XOR_B32), NewDest) 7925 .addReg(Temp) 7926 .add(Src1); 7927 } else if (Src1IsSGPR) { 7928 BuildMI(MBB, MII, DL, get(AMDGPU::S_NOT_B32), Temp).add(Src1); 7929 Xor = BuildMI(MBB, MII, DL, get(AMDGPU::S_XOR_B32), NewDest) 7930 .add(Src0) 7931 .addReg(Temp); 7932 } else { 7933 Xor = BuildMI(MBB, MII, DL, get(AMDGPU::S_XOR_B32), Temp) 7934 .add(Src0) 7935 .add(Src1); 7936 MachineInstr *Not = 7937 BuildMI(MBB, MII, DL, get(AMDGPU::S_NOT_B32), NewDest).addReg(Temp); 7938 Worklist.insert(Not); 7939 } 7940 7941 MRI.replaceRegWith(Dest.getReg(), NewDest); 7942 7943 Worklist.insert(Xor); 7944 7945 addUsersToMoveToVALUWorklist(NewDest, MRI, Worklist); 7946 } 7947 } 7948 7949 void SIInstrInfo::splitScalarNotBinop(SIInstrWorklist &Worklist, 7950 MachineInstr &Inst, 7951 unsigned Opcode) const { 7952 MachineBasicBlock &MBB = *Inst.getParent(); 7953 MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo(); 7954 MachineBasicBlock::iterator MII = Inst; 7955 const DebugLoc &DL = Inst.getDebugLoc(); 7956 7957 MachineOperand &Dest = Inst.getOperand(0); 7958 MachineOperand &Src0 = Inst.getOperand(1); 7959 MachineOperand &Src1 = Inst.getOperand(2); 7960 7961 Register NewDest = MRI.createVirtualRegister(&AMDGPU::SReg_32RegClass); 7962 Register Interm = MRI.createVirtualRegister(&AMDGPU::SReg_32RegClass); 7963 7964 MachineInstr &Op = *BuildMI(MBB, MII, DL, get(Opcode), Interm) 7965 .add(Src0) 7966 .add(Src1); 7967 7968 MachineInstr &Not = *BuildMI(MBB, MII, DL, get(AMDGPU::S_NOT_B32), NewDest) 7969 .addReg(Interm); 7970 7971 Worklist.insert(&Op); 7972 Worklist.insert(&Not); 7973 7974 MRI.replaceRegWith(Dest.getReg(), NewDest); 7975 addUsersToMoveToVALUWorklist(NewDest, MRI, Worklist); 7976 } 7977 7978 void SIInstrInfo::splitScalarBinOpN2(SIInstrWorklist &Worklist, 7979 MachineInstr &Inst, 7980 unsigned Opcode) const { 7981 MachineBasicBlock &MBB = *Inst.getParent(); 7982 MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo(); 7983 MachineBasicBlock::iterator MII = Inst; 7984 const DebugLoc &DL = Inst.getDebugLoc(); 7985 7986 MachineOperand &Dest = Inst.getOperand(0); 7987 MachineOperand &Src0 = Inst.getOperand(1); 7988 MachineOperand &Src1 = Inst.getOperand(2); 7989 7990 Register NewDest = MRI.createVirtualRegister(&AMDGPU::SReg_32_XM0RegClass); 7991 Register Interm = MRI.createVirtualRegister(&AMDGPU::SReg_32_XM0RegClass); 7992 7993 MachineInstr &Not = *BuildMI(MBB, MII, DL, get(AMDGPU::S_NOT_B32), Interm) 7994 .add(Src1); 7995 7996 MachineInstr &Op = *BuildMI(MBB, MII, DL, get(Opcode), NewDest) 7997 .add(Src0) 7998 .addReg(Interm); 7999 8000 Worklist.insert(&Not); 8001 Worklist.insert(&Op); 8002 8003 MRI.replaceRegWith(Dest.getReg(), NewDest); 8004 addUsersToMoveToVALUWorklist(NewDest, MRI, Worklist); 8005 } 8006 8007 void SIInstrInfo::splitScalar64BitUnaryOp(SIInstrWorklist &Worklist, 8008 MachineInstr &Inst, unsigned Opcode, 8009 bool Swap) const { 8010 MachineBasicBlock &MBB = *Inst.getParent(); 8011 MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo(); 8012 8013 MachineOperand &Dest = Inst.getOperand(0); 8014 MachineOperand &Src0 = Inst.getOperand(1); 8015 DebugLoc DL = Inst.getDebugLoc(); 8016 8017 MachineBasicBlock::iterator MII = Inst; 8018 8019 const MCInstrDesc &InstDesc = get(Opcode); 8020 const TargetRegisterClass *Src0RC = Src0.isReg() ? 8021 MRI.getRegClass(Src0.getReg()) : 8022 &AMDGPU::SGPR_32RegClass; 8023 8024 const TargetRegisterClass *Src0SubRC = 8025 RI.getSubRegisterClass(Src0RC, AMDGPU::sub0); 8026 8027 MachineOperand SrcReg0Sub0 = buildExtractSubRegOrImm(MII, MRI, Src0, Src0RC, 8028 AMDGPU::sub0, Src0SubRC); 8029 8030 const TargetRegisterClass *DestRC = MRI.getRegClass(Dest.getReg()); 8031 const TargetRegisterClass *NewDestRC = RI.getEquivalentVGPRClass(DestRC); 8032 const TargetRegisterClass *NewDestSubRC = 8033 RI.getSubRegisterClass(NewDestRC, AMDGPU::sub0); 8034 8035 Register DestSub0 = MRI.createVirtualRegister(NewDestSubRC); 8036 MachineInstr &LoHalf = *BuildMI(MBB, MII, DL, InstDesc, DestSub0).add(SrcReg0Sub0); 8037 8038 MachineOperand SrcReg0Sub1 = buildExtractSubRegOrImm(MII, MRI, Src0, Src0RC, 8039 AMDGPU::sub1, Src0SubRC); 8040 8041 Register DestSub1 = MRI.createVirtualRegister(NewDestSubRC); 8042 MachineInstr &HiHalf = *BuildMI(MBB, MII, DL, InstDesc, DestSub1).add(SrcReg0Sub1); 8043 8044 if (Swap) 8045 std::swap(DestSub0, DestSub1); 8046 8047 Register FullDestReg = MRI.createVirtualRegister(NewDestRC); 8048 BuildMI(MBB, MII, DL, get(TargetOpcode::REG_SEQUENCE), FullDestReg) 8049 .addReg(DestSub0) 8050 .addImm(AMDGPU::sub0) 8051 .addReg(DestSub1) 8052 .addImm(AMDGPU::sub1); 8053 8054 MRI.replaceRegWith(Dest.getReg(), FullDestReg); 8055 8056 Worklist.insert(&LoHalf); 8057 Worklist.insert(&HiHalf); 8058 8059 // We don't need to legalizeOperands here because for a single operand, src0 8060 // will support any kind of input. 8061 8062 // Move all users of this moved value. 8063 addUsersToMoveToVALUWorklist(FullDestReg, MRI, Worklist); 8064 } 8065 8066 // There is not a vector equivalent of s_mul_u64. For this reason, we need to 8067 // split the s_mul_u64 in 32-bit vector multiplications. 8068 void SIInstrInfo::splitScalarSMulU64(SIInstrWorklist &Worklist, 8069 MachineInstr &Inst, 8070 MachineDominatorTree *MDT) const { 8071 MachineBasicBlock &MBB = *Inst.getParent(); 8072 MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo(); 8073 8074 Register FullDestReg = MRI.createVirtualRegister(&AMDGPU::VReg_64RegClass); 8075 Register DestSub0 = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass); 8076 Register DestSub1 = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass); 8077 8078 MachineOperand &Dest = Inst.getOperand(0); 8079 MachineOperand &Src0 = Inst.getOperand(1); 8080 MachineOperand &Src1 = Inst.getOperand(2); 8081 const DebugLoc &DL = Inst.getDebugLoc(); 8082 MachineBasicBlock::iterator MII = Inst; 8083 8084 const TargetRegisterClass *Src0RC = MRI.getRegClass(Src0.getReg()); 8085 const TargetRegisterClass *Src1RC = MRI.getRegClass(Src1.getReg()); 8086 const TargetRegisterClass *Src0SubRC = 8087 RI.getSubRegisterClass(Src0RC, AMDGPU::sub0); 8088 if (RI.isSGPRClass(Src0SubRC)) 8089 Src0SubRC = RI.getEquivalentVGPRClass(Src0SubRC); 8090 const TargetRegisterClass *Src1SubRC = 8091 RI.getSubRegisterClass(Src1RC, AMDGPU::sub0); 8092 if (RI.isSGPRClass(Src1SubRC)) 8093 Src1SubRC = RI.getEquivalentVGPRClass(Src1SubRC); 8094 8095 // First, we extract the low 32-bit and high 32-bit values from each of the 8096 // operands. 8097 MachineOperand Op0L = 8098 buildExtractSubRegOrImm(MII, MRI, Src0, Src0RC, AMDGPU::sub0, Src0SubRC); 8099 MachineOperand Op1L = 8100 buildExtractSubRegOrImm(MII, MRI, Src1, Src1RC, AMDGPU::sub0, Src1SubRC); 8101 MachineOperand Op0H = 8102 buildExtractSubRegOrImm(MII, MRI, Src0, Src0RC, AMDGPU::sub1, Src0SubRC); 8103 MachineOperand Op1H = 8104 buildExtractSubRegOrImm(MII, MRI, Src1, Src1RC, AMDGPU::sub1, Src1SubRC); 8105 8106 // The multilication is done as follows: 8107 // 8108 // Op1H Op1L 8109 // * Op0H Op0L 8110 // -------------------- 8111 // Op1H*Op0L Op1L*Op0L 8112 // + Op1H*Op0H Op1L*Op0H 8113 // ----------------------------------------- 8114 // (Op1H*Op0L + Op1L*Op0H + carry) Op1L*Op0L 8115 // 8116 // We drop Op1H*Op0H because the result of the multiplication is a 64-bit 8117 // value and that would overflow. 8118 // The low 32-bit value is Op1L*Op0L. 8119 // The high 32-bit value is Op1H*Op0L + Op1L*Op0H + carry (from Op1L*Op0L). 8120 8121 Register Op1L_Op0H_Reg = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass); 8122 MachineInstr *Op1L_Op0H = 8123 BuildMI(MBB, MII, DL, get(AMDGPU::V_MUL_LO_U32_e64), Op1L_Op0H_Reg) 8124 .add(Op1L) 8125 .add(Op0H); 8126 8127 Register Op1H_Op0L_Reg = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass); 8128 MachineInstr *Op1H_Op0L = 8129 BuildMI(MBB, MII, DL, get(AMDGPU::V_MUL_LO_U32_e64), Op1H_Op0L_Reg) 8130 .add(Op1H) 8131 .add(Op0L); 8132 8133 Register CarryReg = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass); 8134 MachineInstr *Carry = 8135 BuildMI(MBB, MII, DL, get(AMDGPU::V_MUL_HI_U32_e64), CarryReg) 8136 .add(Op1L) 8137 .add(Op0L); 8138 8139 MachineInstr *LoHalf = 8140 BuildMI(MBB, MII, DL, get(AMDGPU::V_MUL_LO_U32_e64), DestSub0) 8141 .add(Op1L) 8142 .add(Op0L); 8143 8144 Register AddReg = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass); 8145 MachineInstr *Add = BuildMI(MBB, MII, DL, get(AMDGPU::V_ADD_U32_e32), AddReg) 8146 .addReg(Op1L_Op0H_Reg) 8147 .addReg(Op1H_Op0L_Reg); 8148 8149 MachineInstr *HiHalf = 8150 BuildMI(MBB, MII, DL, get(AMDGPU::V_ADD_U32_e32), DestSub1) 8151 .addReg(AddReg) 8152 .addReg(CarryReg); 8153 8154 BuildMI(MBB, MII, DL, get(TargetOpcode::REG_SEQUENCE), FullDestReg) 8155 .addReg(DestSub0) 8156 .addImm(AMDGPU::sub0) 8157 .addReg(DestSub1) 8158 .addImm(AMDGPU::sub1); 8159 8160 MRI.replaceRegWith(Dest.getReg(), FullDestReg); 8161 8162 // Try to legalize the operands in case we need to swap the order to keep it 8163 // valid. 8164 legalizeOperands(*Op1L_Op0H, MDT); 8165 legalizeOperands(*Op1H_Op0L, MDT); 8166 legalizeOperands(*Carry, MDT); 8167 legalizeOperands(*LoHalf, MDT); 8168 legalizeOperands(*Add, MDT); 8169 legalizeOperands(*HiHalf, MDT); 8170 8171 // Move all users of this moved value. 8172 addUsersToMoveToVALUWorklist(FullDestReg, MRI, Worklist); 8173 } 8174 8175 // Lower S_MUL_U64_U32_PSEUDO/S_MUL_I64_I32_PSEUDO in two 32-bit vector 8176 // multiplications. 8177 void SIInstrInfo::splitScalarSMulPseudo(SIInstrWorklist &Worklist, 8178 MachineInstr &Inst, 8179 MachineDominatorTree *MDT) const { 8180 MachineBasicBlock &MBB = *Inst.getParent(); 8181 MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo(); 8182 8183 Register FullDestReg = MRI.createVirtualRegister(&AMDGPU::VReg_64RegClass); 8184 Register DestSub0 = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass); 8185 Register DestSub1 = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass); 8186 8187 MachineOperand &Dest = Inst.getOperand(0); 8188 MachineOperand &Src0 = Inst.getOperand(1); 8189 MachineOperand &Src1 = Inst.getOperand(2); 8190 const DebugLoc &DL = Inst.getDebugLoc(); 8191 MachineBasicBlock::iterator MII = Inst; 8192 8193 const TargetRegisterClass *Src0RC = MRI.getRegClass(Src0.getReg()); 8194 const TargetRegisterClass *Src1RC = MRI.getRegClass(Src1.getReg()); 8195 const TargetRegisterClass *Src0SubRC = 8196 RI.getSubRegisterClass(Src0RC, AMDGPU::sub0); 8197 if (RI.isSGPRClass(Src0SubRC)) 8198 Src0SubRC = RI.getEquivalentVGPRClass(Src0SubRC); 8199 const TargetRegisterClass *Src1SubRC = 8200 RI.getSubRegisterClass(Src1RC, AMDGPU::sub0); 8201 if (RI.isSGPRClass(Src1SubRC)) 8202 Src1SubRC = RI.getEquivalentVGPRClass(Src1SubRC); 8203 8204 // First, we extract the low 32-bit and high 32-bit values from each of the 8205 // operands. 8206 MachineOperand Op0L = 8207 buildExtractSubRegOrImm(MII, MRI, Src0, Src0RC, AMDGPU::sub0, Src0SubRC); 8208 MachineOperand Op1L = 8209 buildExtractSubRegOrImm(MII, MRI, Src1, Src1RC, AMDGPU::sub0, Src1SubRC); 8210 8211 unsigned Opc = Inst.getOpcode(); 8212 unsigned NewOpc = Opc == AMDGPU::S_MUL_U64_U32_PSEUDO 8213 ? AMDGPU::V_MUL_HI_U32_e64 8214 : AMDGPU::V_MUL_HI_I32_e64; 8215 MachineInstr *HiHalf = 8216 BuildMI(MBB, MII, DL, get(NewOpc), DestSub1).add(Op1L).add(Op0L); 8217 8218 MachineInstr *LoHalf = 8219 BuildMI(MBB, MII, DL, get(AMDGPU::V_MUL_LO_U32_e64), DestSub0) 8220 .add(Op1L) 8221 .add(Op0L); 8222 8223 BuildMI(MBB, MII, DL, get(TargetOpcode::REG_SEQUENCE), FullDestReg) 8224 .addReg(DestSub0) 8225 .addImm(AMDGPU::sub0) 8226 .addReg(DestSub1) 8227 .addImm(AMDGPU::sub1); 8228 8229 MRI.replaceRegWith(Dest.getReg(), FullDestReg); 8230 8231 // Try to legalize the operands in case we need to swap the order to keep it 8232 // valid. 8233 legalizeOperands(*HiHalf, MDT); 8234 legalizeOperands(*LoHalf, MDT); 8235 8236 // Move all users of this moved value. 8237 addUsersToMoveToVALUWorklist(FullDestReg, MRI, Worklist); 8238 } 8239 8240 void SIInstrInfo::splitScalar64BitBinaryOp(SIInstrWorklist &Worklist, 8241 MachineInstr &Inst, unsigned Opcode, 8242 MachineDominatorTree *MDT) const { 8243 MachineBasicBlock &MBB = *Inst.getParent(); 8244 MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo(); 8245 8246 MachineOperand &Dest = Inst.getOperand(0); 8247 MachineOperand &Src0 = Inst.getOperand(1); 8248 MachineOperand &Src1 = Inst.getOperand(2); 8249 DebugLoc DL = Inst.getDebugLoc(); 8250 8251 MachineBasicBlock::iterator MII = Inst; 8252 8253 const MCInstrDesc &InstDesc = get(Opcode); 8254 const TargetRegisterClass *Src0RC = Src0.isReg() ? 8255 MRI.getRegClass(Src0.getReg()) : 8256 &AMDGPU::SGPR_32RegClass; 8257 8258 const TargetRegisterClass *Src0SubRC = 8259 RI.getSubRegisterClass(Src0RC, AMDGPU::sub0); 8260 const TargetRegisterClass *Src1RC = Src1.isReg() ? 8261 MRI.getRegClass(Src1.getReg()) : 8262 &AMDGPU::SGPR_32RegClass; 8263 8264 const TargetRegisterClass *Src1SubRC = 8265 RI.getSubRegisterClass(Src1RC, AMDGPU::sub0); 8266 8267 MachineOperand SrcReg0Sub0 = buildExtractSubRegOrImm(MII, MRI, Src0, Src0RC, 8268 AMDGPU::sub0, Src0SubRC); 8269 MachineOperand SrcReg1Sub0 = buildExtractSubRegOrImm(MII, MRI, Src1, Src1RC, 8270 AMDGPU::sub0, Src1SubRC); 8271 MachineOperand SrcReg0Sub1 = buildExtractSubRegOrImm(MII, MRI, Src0, Src0RC, 8272 AMDGPU::sub1, Src0SubRC); 8273 MachineOperand SrcReg1Sub1 = buildExtractSubRegOrImm(MII, MRI, Src1, Src1RC, 8274 AMDGPU::sub1, Src1SubRC); 8275 8276 const TargetRegisterClass *DestRC = MRI.getRegClass(Dest.getReg()); 8277 const TargetRegisterClass *NewDestRC = RI.getEquivalentVGPRClass(DestRC); 8278 const TargetRegisterClass *NewDestSubRC = 8279 RI.getSubRegisterClass(NewDestRC, AMDGPU::sub0); 8280 8281 Register DestSub0 = MRI.createVirtualRegister(NewDestSubRC); 8282 MachineInstr &LoHalf = *BuildMI(MBB, MII, DL, InstDesc, DestSub0) 8283 .add(SrcReg0Sub0) 8284 .add(SrcReg1Sub0); 8285 8286 Register DestSub1 = MRI.createVirtualRegister(NewDestSubRC); 8287 MachineInstr &HiHalf = *BuildMI(MBB, MII, DL, InstDesc, DestSub1) 8288 .add(SrcReg0Sub1) 8289 .add(SrcReg1Sub1); 8290 8291 Register FullDestReg = MRI.createVirtualRegister(NewDestRC); 8292 BuildMI(MBB, MII, DL, get(TargetOpcode::REG_SEQUENCE), FullDestReg) 8293 .addReg(DestSub0) 8294 .addImm(AMDGPU::sub0) 8295 .addReg(DestSub1) 8296 .addImm(AMDGPU::sub1); 8297 8298 MRI.replaceRegWith(Dest.getReg(), FullDestReg); 8299 8300 Worklist.insert(&LoHalf); 8301 Worklist.insert(&HiHalf); 8302 8303 // Move all users of this moved value. 8304 addUsersToMoveToVALUWorklist(FullDestReg, MRI, Worklist); 8305 } 8306 8307 void SIInstrInfo::splitScalar64BitXnor(SIInstrWorklist &Worklist, 8308 MachineInstr &Inst, 8309 MachineDominatorTree *MDT) const { 8310 MachineBasicBlock &MBB = *Inst.getParent(); 8311 MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo(); 8312 8313 MachineOperand &Dest = Inst.getOperand(0); 8314 MachineOperand &Src0 = Inst.getOperand(1); 8315 MachineOperand &Src1 = Inst.getOperand(2); 8316 const DebugLoc &DL = Inst.getDebugLoc(); 8317 8318 MachineBasicBlock::iterator MII = Inst; 8319 8320 const TargetRegisterClass *DestRC = MRI.getRegClass(Dest.getReg()); 8321 8322 Register Interm = MRI.createVirtualRegister(&AMDGPU::SReg_64RegClass); 8323 8324 MachineOperand* Op0; 8325 MachineOperand* Op1; 8326 8327 if (Src0.isReg() && RI.isSGPRReg(MRI, Src0.getReg())) { 8328 Op0 = &Src0; 8329 Op1 = &Src1; 8330 } else { 8331 Op0 = &Src1; 8332 Op1 = &Src0; 8333 } 8334 8335 BuildMI(MBB, MII, DL, get(AMDGPU::S_NOT_B64), Interm) 8336 .add(*Op0); 8337 8338 Register NewDest = MRI.createVirtualRegister(DestRC); 8339 8340 MachineInstr &Xor = *BuildMI(MBB, MII, DL, get(AMDGPU::S_XOR_B64), NewDest) 8341 .addReg(Interm) 8342 .add(*Op1); 8343 8344 MRI.replaceRegWith(Dest.getReg(), NewDest); 8345 8346 Worklist.insert(&Xor); 8347 } 8348 8349 void SIInstrInfo::splitScalar64BitBCNT(SIInstrWorklist &Worklist, 8350 MachineInstr &Inst) const { 8351 MachineBasicBlock &MBB = *Inst.getParent(); 8352 MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo(); 8353 8354 MachineBasicBlock::iterator MII = Inst; 8355 const DebugLoc &DL = Inst.getDebugLoc(); 8356 8357 MachineOperand &Dest = Inst.getOperand(0); 8358 MachineOperand &Src = Inst.getOperand(1); 8359 8360 const MCInstrDesc &InstDesc = get(AMDGPU::V_BCNT_U32_B32_e64); 8361 const TargetRegisterClass *SrcRC = Src.isReg() ? 8362 MRI.getRegClass(Src.getReg()) : 8363 &AMDGPU::SGPR_32RegClass; 8364 8365 Register MidReg = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass); 8366 Register ResultReg = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass); 8367 8368 const TargetRegisterClass *SrcSubRC = 8369 RI.getSubRegisterClass(SrcRC, AMDGPU::sub0); 8370 8371 MachineOperand SrcRegSub0 = buildExtractSubRegOrImm(MII, MRI, Src, SrcRC, 8372 AMDGPU::sub0, SrcSubRC); 8373 MachineOperand SrcRegSub1 = buildExtractSubRegOrImm(MII, MRI, Src, SrcRC, 8374 AMDGPU::sub1, SrcSubRC); 8375 8376 BuildMI(MBB, MII, DL, InstDesc, MidReg).add(SrcRegSub0).addImm(0); 8377 8378 BuildMI(MBB, MII, DL, InstDesc, ResultReg).add(SrcRegSub1).addReg(MidReg); 8379 8380 MRI.replaceRegWith(Dest.getReg(), ResultReg); 8381 8382 // We don't need to legalize operands here. src0 for either instruction can be 8383 // an SGPR, and the second input is unused or determined here. 8384 addUsersToMoveToVALUWorklist(ResultReg, MRI, Worklist); 8385 } 8386 8387 void SIInstrInfo::splitScalar64BitBFE(SIInstrWorklist &Worklist, 8388 MachineInstr &Inst) const { 8389 MachineBasicBlock &MBB = *Inst.getParent(); 8390 MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo(); 8391 MachineBasicBlock::iterator MII = Inst; 8392 const DebugLoc &DL = Inst.getDebugLoc(); 8393 8394 MachineOperand &Dest = Inst.getOperand(0); 8395 uint32_t Imm = Inst.getOperand(2).getImm(); 8396 uint32_t Offset = Imm & 0x3f; // Extract bits [5:0]. 8397 uint32_t BitWidth = (Imm & 0x7f0000) >> 16; // Extract bits [22:16]. 8398 8399 (void) Offset; 8400 8401 // Only sext_inreg cases handled. 8402 assert(Inst.getOpcode() == AMDGPU::S_BFE_I64 && BitWidth <= 32 && 8403 Offset == 0 && "Not implemented"); 8404 8405 if (BitWidth < 32) { 8406 Register MidRegLo = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass); 8407 Register MidRegHi = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass); 8408 Register ResultReg = MRI.createVirtualRegister(&AMDGPU::VReg_64RegClass); 8409 8410 BuildMI(MBB, MII, DL, get(AMDGPU::V_BFE_I32_e64), MidRegLo) 8411 .addReg(Inst.getOperand(1).getReg(), 0, AMDGPU::sub0) 8412 .addImm(0) 8413 .addImm(BitWidth); 8414 8415 BuildMI(MBB, MII, DL, get(AMDGPU::V_ASHRREV_I32_e32), MidRegHi) 8416 .addImm(31) 8417 .addReg(MidRegLo); 8418 8419 BuildMI(MBB, MII, DL, get(TargetOpcode::REG_SEQUENCE), ResultReg) 8420 .addReg(MidRegLo) 8421 .addImm(AMDGPU::sub0) 8422 .addReg(MidRegHi) 8423 .addImm(AMDGPU::sub1); 8424 8425 MRI.replaceRegWith(Dest.getReg(), ResultReg); 8426 addUsersToMoveToVALUWorklist(ResultReg, MRI, Worklist); 8427 return; 8428 } 8429 8430 MachineOperand &Src = Inst.getOperand(1); 8431 Register TmpReg = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass); 8432 Register ResultReg = MRI.createVirtualRegister(&AMDGPU::VReg_64RegClass); 8433 8434 BuildMI(MBB, MII, DL, get(AMDGPU::V_ASHRREV_I32_e64), TmpReg) 8435 .addImm(31) 8436 .addReg(Src.getReg(), 0, AMDGPU::sub0); 8437 8438 BuildMI(MBB, MII, DL, get(TargetOpcode::REG_SEQUENCE), ResultReg) 8439 .addReg(Src.getReg(), 0, AMDGPU::sub0) 8440 .addImm(AMDGPU::sub0) 8441 .addReg(TmpReg) 8442 .addImm(AMDGPU::sub1); 8443 8444 MRI.replaceRegWith(Dest.getReg(), ResultReg); 8445 addUsersToMoveToVALUWorklist(ResultReg, MRI, Worklist); 8446 } 8447 8448 void SIInstrInfo::splitScalar64BitCountOp(SIInstrWorklist &Worklist, 8449 MachineInstr &Inst, unsigned Opcode, 8450 MachineDominatorTree *MDT) const { 8451 // (S_FLBIT_I32_B64 hi:lo) -> 8452 // -> (umin (V_FFBH_U32_e32 hi), (uaddsat (V_FFBH_U32_e32 lo), 32)) 8453 // (S_FF1_I32_B64 hi:lo) -> 8454 // ->(umin (uaddsat (V_FFBL_B32_e32 hi), 32) (V_FFBL_B32_e32 lo)) 8455 8456 MachineBasicBlock &MBB = *Inst.getParent(); 8457 MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo(); 8458 MachineBasicBlock::iterator MII = Inst; 8459 const DebugLoc &DL = Inst.getDebugLoc(); 8460 8461 MachineOperand &Dest = Inst.getOperand(0); 8462 MachineOperand &Src = Inst.getOperand(1); 8463 8464 const MCInstrDesc &InstDesc = get(Opcode); 8465 8466 bool IsCtlz = Opcode == AMDGPU::V_FFBH_U32_e32; 8467 unsigned OpcodeAdd = 8468 ST.hasAddNoCarry() ? AMDGPU::V_ADD_U32_e64 : AMDGPU::V_ADD_CO_U32_e32; 8469 8470 const TargetRegisterClass *SrcRC = 8471 Src.isReg() ? MRI.getRegClass(Src.getReg()) : &AMDGPU::SGPR_32RegClass; 8472 const TargetRegisterClass *SrcSubRC = 8473 RI.getSubRegisterClass(SrcRC, AMDGPU::sub0); 8474 8475 MachineOperand SrcRegSub0 = 8476 buildExtractSubRegOrImm(MII, MRI, Src, SrcRC, AMDGPU::sub0, SrcSubRC); 8477 MachineOperand SrcRegSub1 = 8478 buildExtractSubRegOrImm(MII, MRI, Src, SrcRC, AMDGPU::sub1, SrcSubRC); 8479 8480 Register MidReg1 = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass); 8481 Register MidReg2 = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass); 8482 Register MidReg3 = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass); 8483 Register MidReg4 = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass); 8484 8485 BuildMI(MBB, MII, DL, InstDesc, MidReg1).add(SrcRegSub0); 8486 8487 BuildMI(MBB, MII, DL, InstDesc, MidReg2).add(SrcRegSub1); 8488 8489 BuildMI(MBB, MII, DL, get(OpcodeAdd), MidReg3) 8490 .addReg(IsCtlz ? MidReg1 : MidReg2) 8491 .addImm(32) 8492 .addImm(1); // enable clamp 8493 8494 BuildMI(MBB, MII, DL, get(AMDGPU::V_MIN_U32_e64), MidReg4) 8495 .addReg(MidReg3) 8496 .addReg(IsCtlz ? MidReg2 : MidReg1); 8497 8498 MRI.replaceRegWith(Dest.getReg(), MidReg4); 8499 8500 addUsersToMoveToVALUWorklist(MidReg4, MRI, Worklist); 8501 } 8502 8503 void SIInstrInfo::addUsersToMoveToVALUWorklist( 8504 Register DstReg, MachineRegisterInfo &MRI, 8505 SIInstrWorklist &Worklist) const { 8506 for (MachineRegisterInfo::use_iterator I = MRI.use_begin(DstReg), 8507 E = MRI.use_end(); I != E;) { 8508 MachineInstr &UseMI = *I->getParent(); 8509 8510 unsigned OpNo = 0; 8511 8512 switch (UseMI.getOpcode()) { 8513 case AMDGPU::COPY: 8514 case AMDGPU::WQM: 8515 case AMDGPU::SOFT_WQM: 8516 case AMDGPU::STRICT_WWM: 8517 case AMDGPU::STRICT_WQM: 8518 case AMDGPU::REG_SEQUENCE: 8519 case AMDGPU::PHI: 8520 case AMDGPU::INSERT_SUBREG: 8521 break; 8522 default: 8523 OpNo = I.getOperandNo(); 8524 break; 8525 } 8526 8527 if (!RI.hasVectorRegisters(getOpRegClass(UseMI, OpNo))) { 8528 Worklist.insert(&UseMI); 8529 8530 do { 8531 ++I; 8532 } while (I != E && I->getParent() == &UseMI); 8533 } else { 8534 ++I; 8535 } 8536 } 8537 } 8538 8539 void SIInstrInfo::movePackToVALU(SIInstrWorklist &Worklist, 8540 MachineRegisterInfo &MRI, 8541 MachineInstr &Inst) const { 8542 Register ResultReg = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass); 8543 MachineBasicBlock *MBB = Inst.getParent(); 8544 MachineOperand &Src0 = Inst.getOperand(1); 8545 MachineOperand &Src1 = Inst.getOperand(2); 8546 const DebugLoc &DL = Inst.getDebugLoc(); 8547 8548 switch (Inst.getOpcode()) { 8549 case AMDGPU::S_PACK_LL_B32_B16: { 8550 Register ImmReg = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass); 8551 Register TmpReg = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass); 8552 8553 // FIXME: Can do a lot better if we know the high bits of src0 or src1 are 8554 // 0. 8555 BuildMI(*MBB, Inst, DL, get(AMDGPU::V_MOV_B32_e32), ImmReg) 8556 .addImm(0xffff); 8557 8558 BuildMI(*MBB, Inst, DL, get(AMDGPU::V_AND_B32_e64), TmpReg) 8559 .addReg(ImmReg, RegState::Kill) 8560 .add(Src0); 8561 8562 BuildMI(*MBB, Inst, DL, get(AMDGPU::V_LSHL_OR_B32_e64), ResultReg) 8563 .add(Src1) 8564 .addImm(16) 8565 .addReg(TmpReg, RegState::Kill); 8566 break; 8567 } 8568 case AMDGPU::S_PACK_LH_B32_B16: { 8569 Register ImmReg = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass); 8570 BuildMI(*MBB, Inst, DL, get(AMDGPU::V_MOV_B32_e32), ImmReg) 8571 .addImm(0xffff); 8572 BuildMI(*MBB, Inst, DL, get(AMDGPU::V_BFI_B32_e64), ResultReg) 8573 .addReg(ImmReg, RegState::Kill) 8574 .add(Src0) 8575 .add(Src1); 8576 break; 8577 } 8578 case AMDGPU::S_PACK_HL_B32_B16: { 8579 Register TmpReg = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass); 8580 BuildMI(*MBB, Inst, DL, get(AMDGPU::V_LSHRREV_B32_e64), TmpReg) 8581 .addImm(16) 8582 .add(Src0); 8583 BuildMI(*MBB, Inst, DL, get(AMDGPU::V_LSHL_OR_B32_e64), ResultReg) 8584 .add(Src1) 8585 .addImm(16) 8586 .addReg(TmpReg, RegState::Kill); 8587 break; 8588 } 8589 case AMDGPU::S_PACK_HH_B32_B16: { 8590 Register ImmReg = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass); 8591 Register TmpReg = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass); 8592 BuildMI(*MBB, Inst, DL, get(AMDGPU::V_LSHRREV_B32_e64), TmpReg) 8593 .addImm(16) 8594 .add(Src0); 8595 BuildMI(*MBB, Inst, DL, get(AMDGPU::V_MOV_B32_e32), ImmReg) 8596 .addImm(0xffff0000); 8597 BuildMI(*MBB, Inst, DL, get(AMDGPU::V_AND_OR_B32_e64), ResultReg) 8598 .add(Src1) 8599 .addReg(ImmReg, RegState::Kill) 8600 .addReg(TmpReg, RegState::Kill); 8601 break; 8602 } 8603 default: 8604 llvm_unreachable("unhandled s_pack_* instruction"); 8605 } 8606 8607 MachineOperand &Dest = Inst.getOperand(0); 8608 MRI.replaceRegWith(Dest.getReg(), ResultReg); 8609 addUsersToMoveToVALUWorklist(ResultReg, MRI, Worklist); 8610 } 8611 8612 void SIInstrInfo::addSCCDefUsersToVALUWorklist(MachineOperand &Op, 8613 MachineInstr &SCCDefInst, 8614 SIInstrWorklist &Worklist, 8615 Register NewCond) const { 8616 8617 // Ensure that def inst defines SCC, which is still live. 8618 assert(Op.isReg() && Op.getReg() == AMDGPU::SCC && Op.isDef() && 8619 !Op.isDead() && Op.getParent() == &SCCDefInst); 8620 SmallVector<MachineInstr *, 4> CopyToDelete; 8621 // This assumes that all the users of SCC are in the same block 8622 // as the SCC def. 8623 for (MachineInstr &MI : // Skip the def inst itself. 8624 make_range(std::next(MachineBasicBlock::iterator(SCCDefInst)), 8625 SCCDefInst.getParent()->end())) { 8626 // Check if SCC is used first. 8627 int SCCIdx = MI.findRegisterUseOperandIdx(AMDGPU::SCC, &RI, false); 8628 if (SCCIdx != -1) { 8629 if (MI.isCopy()) { 8630 MachineRegisterInfo &MRI = MI.getParent()->getParent()->getRegInfo(); 8631 Register DestReg = MI.getOperand(0).getReg(); 8632 8633 MRI.replaceRegWith(DestReg, NewCond); 8634 CopyToDelete.push_back(&MI); 8635 } else { 8636 8637 if (NewCond.isValid()) 8638 MI.getOperand(SCCIdx).setReg(NewCond); 8639 8640 Worklist.insert(&MI); 8641 } 8642 } 8643 // Exit if we find another SCC def. 8644 if (MI.findRegisterDefOperandIdx(AMDGPU::SCC, &RI, false, false) != -1) 8645 break; 8646 } 8647 for (auto &Copy : CopyToDelete) 8648 Copy->eraseFromParent(); 8649 } 8650 8651 // Instructions that use SCC may be converted to VALU instructions. When that 8652 // happens, the SCC register is changed to VCC_LO. The instruction that defines 8653 // SCC must be changed to an instruction that defines VCC. This function makes 8654 // sure that the instruction that defines SCC is added to the moveToVALU 8655 // worklist. 8656 void SIInstrInfo::addSCCDefsToVALUWorklist(MachineInstr *SCCUseInst, 8657 SIInstrWorklist &Worklist) const { 8658 // Look for a preceding instruction that either defines VCC or SCC. If VCC 8659 // then there is nothing to do because the defining instruction has been 8660 // converted to a VALU already. If SCC then that instruction needs to be 8661 // converted to a VALU. 8662 for (MachineInstr &MI : 8663 make_range(std::next(MachineBasicBlock::reverse_iterator(SCCUseInst)), 8664 SCCUseInst->getParent()->rend())) { 8665 if (MI.modifiesRegister(AMDGPU::VCC, &RI)) 8666 break; 8667 if (MI.definesRegister(AMDGPU::SCC, &RI)) { 8668 Worklist.insert(&MI); 8669 break; 8670 } 8671 } 8672 } 8673 8674 const TargetRegisterClass *SIInstrInfo::getDestEquivalentVGPRClass( 8675 const MachineInstr &Inst) const { 8676 const TargetRegisterClass *NewDstRC = getOpRegClass(Inst, 0); 8677 8678 switch (Inst.getOpcode()) { 8679 // For target instructions, getOpRegClass just returns the virtual register 8680 // class associated with the operand, so we need to find an equivalent VGPR 8681 // register class in order to move the instruction to the VALU. 8682 case AMDGPU::COPY: 8683 case AMDGPU::PHI: 8684 case AMDGPU::REG_SEQUENCE: 8685 case AMDGPU::INSERT_SUBREG: 8686 case AMDGPU::WQM: 8687 case AMDGPU::SOFT_WQM: 8688 case AMDGPU::STRICT_WWM: 8689 case AMDGPU::STRICT_WQM: { 8690 const TargetRegisterClass *SrcRC = getOpRegClass(Inst, 1); 8691 if (RI.isAGPRClass(SrcRC)) { 8692 if (RI.isAGPRClass(NewDstRC)) 8693 return nullptr; 8694 8695 switch (Inst.getOpcode()) { 8696 case AMDGPU::PHI: 8697 case AMDGPU::REG_SEQUENCE: 8698 case AMDGPU::INSERT_SUBREG: 8699 NewDstRC = RI.getEquivalentAGPRClass(NewDstRC); 8700 break; 8701 default: 8702 NewDstRC = RI.getEquivalentVGPRClass(NewDstRC); 8703 } 8704 8705 if (!NewDstRC) 8706 return nullptr; 8707 } else { 8708 if (RI.isVGPRClass(NewDstRC) || NewDstRC == &AMDGPU::VReg_1RegClass) 8709 return nullptr; 8710 8711 NewDstRC = RI.getEquivalentVGPRClass(NewDstRC); 8712 if (!NewDstRC) 8713 return nullptr; 8714 } 8715 8716 return NewDstRC; 8717 } 8718 default: 8719 return NewDstRC; 8720 } 8721 } 8722 8723 // Find the one SGPR operand we are allowed to use. 8724 Register SIInstrInfo::findUsedSGPR(const MachineInstr &MI, 8725 int OpIndices[3]) const { 8726 const MCInstrDesc &Desc = MI.getDesc(); 8727 8728 // Find the one SGPR operand we are allowed to use. 8729 // 8730 // First we need to consider the instruction's operand requirements before 8731 // legalizing. Some operands are required to be SGPRs, such as implicit uses 8732 // of VCC, but we are still bound by the constant bus requirement to only use 8733 // one. 8734 // 8735 // If the operand's class is an SGPR, we can never move it. 8736 8737 Register SGPRReg = findImplicitSGPRRead(MI); 8738 if (SGPRReg) 8739 return SGPRReg; 8740 8741 Register UsedSGPRs[3] = {Register()}; 8742 const MachineRegisterInfo &MRI = MI.getParent()->getParent()->getRegInfo(); 8743 8744 for (unsigned i = 0; i < 3; ++i) { 8745 int Idx = OpIndices[i]; 8746 if (Idx == -1) 8747 break; 8748 8749 const MachineOperand &MO = MI.getOperand(Idx); 8750 if (!MO.isReg()) 8751 continue; 8752 8753 // Is this operand statically required to be an SGPR based on the operand 8754 // constraints? 8755 const TargetRegisterClass *OpRC = 8756 RI.getRegClass(Desc.operands()[Idx].RegClass); 8757 bool IsRequiredSGPR = RI.isSGPRClass(OpRC); 8758 if (IsRequiredSGPR) 8759 return MO.getReg(); 8760 8761 // If this could be a VGPR or an SGPR, Check the dynamic register class. 8762 Register Reg = MO.getReg(); 8763 const TargetRegisterClass *RegRC = MRI.getRegClass(Reg); 8764 if (RI.isSGPRClass(RegRC)) 8765 UsedSGPRs[i] = Reg; 8766 } 8767 8768 // We don't have a required SGPR operand, so we have a bit more freedom in 8769 // selecting operands to move. 8770 8771 // Try to select the most used SGPR. If an SGPR is equal to one of the 8772 // others, we choose that. 8773 // 8774 // e.g. 8775 // V_FMA_F32 v0, s0, s0, s0 -> No moves 8776 // V_FMA_F32 v0, s0, s1, s0 -> Move s1 8777 8778 // TODO: If some of the operands are 64-bit SGPRs and some 32, we should 8779 // prefer those. 8780 8781 if (UsedSGPRs[0]) { 8782 if (UsedSGPRs[0] == UsedSGPRs[1] || UsedSGPRs[0] == UsedSGPRs[2]) 8783 SGPRReg = UsedSGPRs[0]; 8784 } 8785 8786 if (!SGPRReg && UsedSGPRs[1]) { 8787 if (UsedSGPRs[1] == UsedSGPRs[2]) 8788 SGPRReg = UsedSGPRs[1]; 8789 } 8790 8791 return SGPRReg; 8792 } 8793 8794 MachineOperand *SIInstrInfo::getNamedOperand(MachineInstr &MI, 8795 unsigned OperandName) const { 8796 int Idx = AMDGPU::getNamedOperandIdx(MI.getOpcode(), OperandName); 8797 if (Idx == -1) 8798 return nullptr; 8799 8800 return &MI.getOperand(Idx); 8801 } 8802 8803 uint64_t SIInstrInfo::getDefaultRsrcDataFormat() const { 8804 if (ST.getGeneration() >= AMDGPUSubtarget::GFX10) { 8805 int64_t Format = ST.getGeneration() >= AMDGPUSubtarget::GFX11 8806 ? (int64_t)AMDGPU::UfmtGFX11::UFMT_32_FLOAT 8807 : (int64_t)AMDGPU::UfmtGFX10::UFMT_32_FLOAT; 8808 return (Format << 44) | 8809 (1ULL << 56) | // RESOURCE_LEVEL = 1 8810 (3ULL << 60); // OOB_SELECT = 3 8811 } 8812 8813 uint64_t RsrcDataFormat = AMDGPU::RSRC_DATA_FORMAT; 8814 if (ST.isAmdHsaOS()) { 8815 // Set ATC = 1. GFX9 doesn't have this bit. 8816 if (ST.getGeneration() <= AMDGPUSubtarget::VOLCANIC_ISLANDS) 8817 RsrcDataFormat |= (1ULL << 56); 8818 8819 // Set MTYPE = 2 (MTYPE_UC = uncached). GFX9 doesn't have this. 8820 // BTW, it disables TC L2 and therefore decreases performance. 8821 if (ST.getGeneration() == AMDGPUSubtarget::VOLCANIC_ISLANDS) 8822 RsrcDataFormat |= (2ULL << 59); 8823 } 8824 8825 return RsrcDataFormat; 8826 } 8827 8828 uint64_t SIInstrInfo::getScratchRsrcWords23() const { 8829 uint64_t Rsrc23 = getDefaultRsrcDataFormat() | 8830 AMDGPU::RSRC_TID_ENABLE | 8831 0xffffffff; // Size; 8832 8833 // GFX9 doesn't have ELEMENT_SIZE. 8834 if (ST.getGeneration() <= AMDGPUSubtarget::VOLCANIC_ISLANDS) { 8835 uint64_t EltSizeValue = Log2_32(ST.getMaxPrivateElementSize(true)) - 1; 8836 Rsrc23 |= EltSizeValue << AMDGPU::RSRC_ELEMENT_SIZE_SHIFT; 8837 } 8838 8839 // IndexStride = 64 / 32. 8840 uint64_t IndexStride = ST.isWave64() ? 3 : 2; 8841 Rsrc23 |= IndexStride << AMDGPU::RSRC_INDEX_STRIDE_SHIFT; 8842 8843 // If TID_ENABLE is set, DATA_FORMAT specifies stride bits [14:17]. 8844 // Clear them unless we want a huge stride. 8845 if (ST.getGeneration() >= AMDGPUSubtarget::VOLCANIC_ISLANDS && 8846 ST.getGeneration() <= AMDGPUSubtarget::GFX9) 8847 Rsrc23 &= ~AMDGPU::RSRC_DATA_FORMAT; 8848 8849 return Rsrc23; 8850 } 8851 8852 bool SIInstrInfo::isLowLatencyInstruction(const MachineInstr &MI) const { 8853 unsigned Opc = MI.getOpcode(); 8854 8855 return isSMRD(Opc); 8856 } 8857 8858 bool SIInstrInfo::isHighLatencyDef(int Opc) const { 8859 return get(Opc).mayLoad() && 8860 (isMUBUF(Opc) || isMTBUF(Opc) || isMIMG(Opc) || isFLAT(Opc)); 8861 } 8862 8863 unsigned SIInstrInfo::isStackAccess(const MachineInstr &MI, 8864 int &FrameIndex) const { 8865 const MachineOperand *Addr = getNamedOperand(MI, AMDGPU::OpName::vaddr); 8866 if (!Addr || !Addr->isFI()) 8867 return Register(); 8868 8869 assert(!MI.memoperands_empty() && 8870 (*MI.memoperands_begin())->getAddrSpace() == AMDGPUAS::PRIVATE_ADDRESS); 8871 8872 FrameIndex = Addr->getIndex(); 8873 return getNamedOperand(MI, AMDGPU::OpName::vdata)->getReg(); 8874 } 8875 8876 unsigned SIInstrInfo::isSGPRStackAccess(const MachineInstr &MI, 8877 int &FrameIndex) const { 8878 const MachineOperand *Addr = getNamedOperand(MI, AMDGPU::OpName::addr); 8879 assert(Addr && Addr->isFI()); 8880 FrameIndex = Addr->getIndex(); 8881 return getNamedOperand(MI, AMDGPU::OpName::data)->getReg(); 8882 } 8883 8884 Register SIInstrInfo::isLoadFromStackSlot(const MachineInstr &MI, 8885 int &FrameIndex) const { 8886 if (!MI.mayLoad()) 8887 return Register(); 8888 8889 if (isMUBUF(MI) || isVGPRSpill(MI)) 8890 return isStackAccess(MI, FrameIndex); 8891 8892 if (isSGPRSpill(MI)) 8893 return isSGPRStackAccess(MI, FrameIndex); 8894 8895 return Register(); 8896 } 8897 8898 Register SIInstrInfo::isStoreToStackSlot(const MachineInstr &MI, 8899 int &FrameIndex) const { 8900 if (!MI.mayStore()) 8901 return Register(); 8902 8903 if (isMUBUF(MI) || isVGPRSpill(MI)) 8904 return isStackAccess(MI, FrameIndex); 8905 8906 if (isSGPRSpill(MI)) 8907 return isSGPRStackAccess(MI, FrameIndex); 8908 8909 return Register(); 8910 } 8911 8912 unsigned SIInstrInfo::getInstBundleSize(const MachineInstr &MI) const { 8913 unsigned Size = 0; 8914 MachineBasicBlock::const_instr_iterator I = MI.getIterator(); 8915 MachineBasicBlock::const_instr_iterator E = MI.getParent()->instr_end(); 8916 while (++I != E && I->isInsideBundle()) { 8917 assert(!I->isBundle() && "No nested bundle!"); 8918 Size += getInstSizeInBytes(*I); 8919 } 8920 8921 return Size; 8922 } 8923 8924 unsigned SIInstrInfo::getInstSizeInBytes(const MachineInstr &MI) const { 8925 unsigned Opc = MI.getOpcode(); 8926 const MCInstrDesc &Desc = getMCOpcodeFromPseudo(Opc); 8927 unsigned DescSize = Desc.getSize(); 8928 8929 // If we have a definitive size, we can use it. Otherwise we need to inspect 8930 // the operands to know the size. 8931 if (isFixedSize(MI)) { 8932 unsigned Size = DescSize; 8933 8934 // If we hit the buggy offset, an extra nop will be inserted in MC so 8935 // estimate the worst case. 8936 if (MI.isBranch() && ST.hasOffset3fBug()) 8937 Size += 4; 8938 8939 return Size; 8940 } 8941 8942 // Instructions may have a 32-bit literal encoded after them. Check 8943 // operands that could ever be literals. 8944 if (isVALU(MI) || isSALU(MI)) { 8945 if (isDPP(MI)) 8946 return DescSize; 8947 bool HasLiteral = false; 8948 for (int I = 0, E = MI.getNumExplicitOperands(); I != E; ++I) { 8949 const MachineOperand &Op = MI.getOperand(I); 8950 const MCOperandInfo &OpInfo = Desc.operands()[I]; 8951 if (!Op.isReg() && !isInlineConstant(Op, OpInfo)) { 8952 HasLiteral = true; 8953 break; 8954 } 8955 } 8956 return HasLiteral ? DescSize + 4 : DescSize; 8957 } 8958 8959 // Check whether we have extra NSA words. 8960 if (isMIMG(MI)) { 8961 int VAddr0Idx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::vaddr0); 8962 if (VAddr0Idx < 0) 8963 return 8; 8964 8965 int RSrcIdx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::srsrc); 8966 return 8 + 4 * ((RSrcIdx - VAddr0Idx + 2) / 4); 8967 } 8968 8969 switch (Opc) { 8970 case TargetOpcode::BUNDLE: 8971 return getInstBundleSize(MI); 8972 case TargetOpcode::INLINEASM: 8973 case TargetOpcode::INLINEASM_BR: { 8974 const MachineFunction *MF = MI.getParent()->getParent(); 8975 const char *AsmStr = MI.getOperand(0).getSymbolName(); 8976 return getInlineAsmLength(AsmStr, *MF->getTarget().getMCAsmInfo(), &ST); 8977 } 8978 default: 8979 if (MI.isMetaInstruction()) 8980 return 0; 8981 return DescSize; 8982 } 8983 } 8984 8985 bool SIInstrInfo::mayAccessFlatAddressSpace(const MachineInstr &MI) const { 8986 if (!isFLAT(MI)) 8987 return false; 8988 8989 if (MI.memoperands_empty()) 8990 return true; 8991 8992 for (const MachineMemOperand *MMO : MI.memoperands()) { 8993 if (MMO->getAddrSpace() == AMDGPUAS::FLAT_ADDRESS) 8994 return true; 8995 } 8996 return false; 8997 } 8998 8999 ArrayRef<std::pair<int, const char *>> 9000 SIInstrInfo::getSerializableTargetIndices() const { 9001 static const std::pair<int, const char *> TargetIndices[] = { 9002 {AMDGPU::TI_CONSTDATA_START, "amdgpu-constdata-start"}, 9003 {AMDGPU::TI_SCRATCH_RSRC_DWORD0, "amdgpu-scratch-rsrc-dword0"}, 9004 {AMDGPU::TI_SCRATCH_RSRC_DWORD1, "amdgpu-scratch-rsrc-dword1"}, 9005 {AMDGPU::TI_SCRATCH_RSRC_DWORD2, "amdgpu-scratch-rsrc-dword2"}, 9006 {AMDGPU::TI_SCRATCH_RSRC_DWORD3, "amdgpu-scratch-rsrc-dword3"}}; 9007 return ArrayRef(TargetIndices); 9008 } 9009 9010 /// This is used by the post-RA scheduler (SchedulePostRAList.cpp). The 9011 /// post-RA version of misched uses CreateTargetMIHazardRecognizer. 9012 ScheduleHazardRecognizer * 9013 SIInstrInfo::CreateTargetPostRAHazardRecognizer(const InstrItineraryData *II, 9014 const ScheduleDAG *DAG) const { 9015 return new GCNHazardRecognizer(DAG->MF); 9016 } 9017 9018 /// This is the hazard recognizer used at -O0 by the PostRAHazardRecognizer 9019 /// pass. 9020 ScheduleHazardRecognizer * 9021 SIInstrInfo::CreateTargetPostRAHazardRecognizer(const MachineFunction &MF) const { 9022 return new GCNHazardRecognizer(MF); 9023 } 9024 9025 // Called during: 9026 // - pre-RA scheduling and post-RA scheduling 9027 ScheduleHazardRecognizer * 9028 SIInstrInfo::CreateTargetMIHazardRecognizer(const InstrItineraryData *II, 9029 const ScheduleDAGMI *DAG) const { 9030 // Borrowed from Arm Target 9031 // We would like to restrict this hazard recognizer to only 9032 // post-RA scheduling; we can tell that we're post-RA because we don't 9033 // track VRegLiveness. 9034 if (!DAG->hasVRegLiveness()) 9035 return new GCNHazardRecognizer(DAG->MF); 9036 return TargetInstrInfo::CreateTargetMIHazardRecognizer(II, DAG); 9037 } 9038 9039 std::pair<unsigned, unsigned> 9040 SIInstrInfo::decomposeMachineOperandsTargetFlags(unsigned TF) const { 9041 return std::pair(TF & MO_MASK, TF & ~MO_MASK); 9042 } 9043 9044 ArrayRef<std::pair<unsigned, const char *>> 9045 SIInstrInfo::getSerializableDirectMachineOperandTargetFlags() const { 9046 static const std::pair<unsigned, const char *> TargetFlags[] = { 9047 { MO_GOTPCREL, "amdgpu-gotprel" }, 9048 { MO_GOTPCREL32_LO, "amdgpu-gotprel32-lo" }, 9049 { MO_GOTPCREL32_HI, "amdgpu-gotprel32-hi" }, 9050 { MO_REL32_LO, "amdgpu-rel32-lo" }, 9051 { MO_REL32_HI, "amdgpu-rel32-hi" }, 9052 { MO_ABS32_LO, "amdgpu-abs32-lo" }, 9053 { MO_ABS32_HI, "amdgpu-abs32-hi" }, 9054 }; 9055 9056 return ArrayRef(TargetFlags); 9057 } 9058 9059 ArrayRef<std::pair<MachineMemOperand::Flags, const char *>> 9060 SIInstrInfo::getSerializableMachineMemOperandTargetFlags() const { 9061 static const std::pair<MachineMemOperand::Flags, const char *> TargetFlags[] = 9062 { 9063 {MONoClobber, "amdgpu-noclobber"}, 9064 {MOLastUse, "amdgpu-last-use"}, 9065 }; 9066 9067 return ArrayRef(TargetFlags); 9068 } 9069 9070 unsigned SIInstrInfo::getLiveRangeSplitOpcode(Register SrcReg, 9071 const MachineFunction &MF) const { 9072 const SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>(); 9073 assert(SrcReg.isVirtual()); 9074 if (MFI->checkFlag(SrcReg, AMDGPU::VirtRegFlag::WWM_REG)) 9075 return AMDGPU::WWM_COPY; 9076 9077 return AMDGPU::COPY; 9078 } 9079 9080 bool SIInstrInfo::isBasicBlockPrologue(const MachineInstr &MI, 9081 Register Reg) const { 9082 // We need to handle instructions which may be inserted during register 9083 // allocation to handle the prolog. The initial prolog instruction may have 9084 // been separated from the start of the block by spills and copies inserted 9085 // needed by the prolog. However, the insertions for scalar registers can 9086 // always be placed at the BB top as they are independent of the exec mask 9087 // value. 9088 const MachineFunction *MF = MI.getParent()->getParent(); 9089 bool IsNullOrVectorRegister = true; 9090 if (Reg) { 9091 const MachineRegisterInfo &MRI = MF->getRegInfo(); 9092 IsNullOrVectorRegister = !RI.isSGPRClass(RI.getRegClassForReg(MRI, Reg)); 9093 } 9094 9095 uint16_t Opcode = MI.getOpcode(); 9096 const SIMachineFunctionInfo *MFI = MF->getInfo<SIMachineFunctionInfo>(); 9097 return IsNullOrVectorRegister && 9098 (isSGPRSpill(Opcode) || isWWMRegSpillOpcode(Opcode) || 9099 (Opcode == AMDGPU::IMPLICIT_DEF && 9100 MFI->isWWMReg(MI.getOperand(0).getReg())) || 9101 (!MI.isTerminator() && Opcode != AMDGPU::COPY && 9102 MI.modifiesRegister(AMDGPU::EXEC, &RI))); 9103 } 9104 9105 MachineInstrBuilder 9106 SIInstrInfo::getAddNoCarry(MachineBasicBlock &MBB, 9107 MachineBasicBlock::iterator I, 9108 const DebugLoc &DL, 9109 Register DestReg) const { 9110 if (ST.hasAddNoCarry()) 9111 return BuildMI(MBB, I, DL, get(AMDGPU::V_ADD_U32_e64), DestReg); 9112 9113 MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo(); 9114 Register UnusedCarry = MRI.createVirtualRegister(RI.getBoolRC()); 9115 MRI.setRegAllocationHint(UnusedCarry, 0, RI.getVCC()); 9116 9117 return BuildMI(MBB, I, DL, get(AMDGPU::V_ADD_CO_U32_e64), DestReg) 9118 .addReg(UnusedCarry, RegState::Define | RegState::Dead); 9119 } 9120 9121 MachineInstrBuilder SIInstrInfo::getAddNoCarry(MachineBasicBlock &MBB, 9122 MachineBasicBlock::iterator I, 9123 const DebugLoc &DL, 9124 Register DestReg, 9125 RegScavenger &RS) const { 9126 if (ST.hasAddNoCarry()) 9127 return BuildMI(MBB, I, DL, get(AMDGPU::V_ADD_U32_e32), DestReg); 9128 9129 // If available, prefer to use vcc. 9130 Register UnusedCarry = !RS.isRegUsed(AMDGPU::VCC) 9131 ? Register(RI.getVCC()) 9132 : RS.scavengeRegisterBackwards( 9133 *RI.getBoolRC(), I, /* RestoreAfter */ false, 9134 0, /* AllowSpill */ false); 9135 9136 // TODO: Users need to deal with this. 9137 if (!UnusedCarry.isValid()) 9138 return MachineInstrBuilder(); 9139 9140 return BuildMI(MBB, I, DL, get(AMDGPU::V_ADD_CO_U32_e64), DestReg) 9141 .addReg(UnusedCarry, RegState::Define | RegState::Dead); 9142 } 9143 9144 bool SIInstrInfo::isKillTerminator(unsigned Opcode) { 9145 switch (Opcode) { 9146 case AMDGPU::SI_KILL_F32_COND_IMM_TERMINATOR: 9147 case AMDGPU::SI_KILL_I1_TERMINATOR: 9148 return true; 9149 default: 9150 return false; 9151 } 9152 } 9153 9154 const MCInstrDesc &SIInstrInfo::getKillTerminatorFromPseudo(unsigned Opcode) const { 9155 switch (Opcode) { 9156 case AMDGPU::SI_KILL_F32_COND_IMM_PSEUDO: 9157 return get(AMDGPU::SI_KILL_F32_COND_IMM_TERMINATOR); 9158 case AMDGPU::SI_KILL_I1_PSEUDO: 9159 return get(AMDGPU::SI_KILL_I1_TERMINATOR); 9160 default: 9161 llvm_unreachable("invalid opcode, expected SI_KILL_*_PSEUDO"); 9162 } 9163 } 9164 9165 bool SIInstrInfo::isLegalMUBUFImmOffset(unsigned Imm) const { 9166 return Imm <= getMaxMUBUFImmOffset(ST); 9167 } 9168 9169 unsigned SIInstrInfo::getMaxMUBUFImmOffset(const GCNSubtarget &ST) { 9170 // GFX12 field is non-negative 24-bit signed byte offset. 9171 const unsigned OffsetBits = 9172 ST.getGeneration() >= AMDGPUSubtarget::GFX12 ? 23 : 12; 9173 return (1 << OffsetBits) - 1; 9174 } 9175 9176 void SIInstrInfo::fixImplicitOperands(MachineInstr &MI) const { 9177 if (!ST.isWave32()) 9178 return; 9179 9180 if (MI.isInlineAsm()) 9181 return; 9182 9183 for (auto &Op : MI.implicit_operands()) { 9184 if (Op.isReg() && Op.getReg() == AMDGPU::VCC) 9185 Op.setReg(AMDGPU::VCC_LO); 9186 } 9187 } 9188 9189 bool SIInstrInfo::isBufferSMRD(const MachineInstr &MI) const { 9190 if (!isSMRD(MI)) 9191 return false; 9192 9193 // Check that it is using a buffer resource. 9194 int Idx = AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::sbase); 9195 if (Idx == -1) // e.g. s_memtime 9196 return false; 9197 9198 const auto RCID = MI.getDesc().operands()[Idx].RegClass; 9199 return RI.getRegClass(RCID)->hasSubClassEq(&AMDGPU::SGPR_128RegClass); 9200 } 9201 9202 // Given Imm, split it into the values to put into the SOffset and ImmOffset 9203 // fields in an MUBUF instruction. Return false if it is not possible (due to a 9204 // hardware bug needing a workaround). 9205 // 9206 // The required alignment ensures that individual address components remain 9207 // aligned if they are aligned to begin with. It also ensures that additional 9208 // offsets within the given alignment can be added to the resulting ImmOffset. 9209 bool SIInstrInfo::splitMUBUFOffset(uint32_t Imm, uint32_t &SOffset, 9210 uint32_t &ImmOffset, Align Alignment) const { 9211 const uint32_t MaxOffset = SIInstrInfo::getMaxMUBUFImmOffset(ST); 9212 const uint32_t MaxImm = alignDown(MaxOffset, Alignment.value()); 9213 uint32_t Overflow = 0; 9214 9215 if (Imm > MaxImm) { 9216 if (Imm <= MaxImm + 64) { 9217 // Use an SOffset inline constant for 4..64 9218 Overflow = Imm - MaxImm; 9219 Imm = MaxImm; 9220 } else { 9221 // Try to keep the same value in SOffset for adjacent loads, so that 9222 // the corresponding register contents can be re-used. 9223 // 9224 // Load values with all low-bits (except for alignment bits) set into 9225 // SOffset, so that a larger range of values can be covered using 9226 // s_movk_i32. 9227 // 9228 // Atomic operations fail to work correctly when individual address 9229 // components are unaligned, even if their sum is aligned. 9230 uint32_t High = (Imm + Alignment.value()) & ~MaxOffset; 9231 uint32_t Low = (Imm + Alignment.value()) & MaxOffset; 9232 Imm = Low; 9233 Overflow = High - Alignment.value(); 9234 } 9235 } 9236 9237 if (Overflow > 0) { 9238 // There is a hardware bug in SI and CI which prevents address clamping in 9239 // MUBUF instructions from working correctly with SOffsets. The immediate 9240 // offset is unaffected. 9241 if (ST.getGeneration() <= AMDGPUSubtarget::SEA_ISLANDS) 9242 return false; 9243 9244 // It is not possible to set immediate in SOffset field on some targets. 9245 if (ST.hasRestrictedSOffset()) 9246 return false; 9247 } 9248 9249 ImmOffset = Imm; 9250 SOffset = Overflow; 9251 return true; 9252 } 9253 9254 // Depending on the used address space and instructions, some immediate offsets 9255 // are allowed and some are not. 9256 // Pre-GFX12, flat instruction offsets can only be non-negative, global and 9257 // scratch instruction offsets can also be negative. On GFX12, offsets can be 9258 // negative for all variants. 9259 // 9260 // There are several bugs related to these offsets: 9261 // On gfx10.1, flat instructions that go into the global address space cannot 9262 // use an offset. 9263 // 9264 // For scratch instructions, the address can be either an SGPR or a VGPR. 9265 // The following offsets can be used, depending on the architecture (x means 9266 // cannot be used): 9267 // +----------------------------+------+------+ 9268 // | Address-Mode | SGPR | VGPR | 9269 // +----------------------------+------+------+ 9270 // | gfx9 | | | 9271 // | negative, 4-aligned offset | x | ok | 9272 // | negative, unaligned offset | x | ok | 9273 // +----------------------------+------+------+ 9274 // | gfx10 | | | 9275 // | negative, 4-aligned offset | ok | ok | 9276 // | negative, unaligned offset | ok | x | 9277 // +----------------------------+------+------+ 9278 // | gfx10.3 | | | 9279 // | negative, 4-aligned offset | ok | ok | 9280 // | negative, unaligned offset | ok | ok | 9281 // +----------------------------+------+------+ 9282 // 9283 // This function ignores the addressing mode, so if an offset cannot be used in 9284 // one addressing mode, it is considered illegal. 9285 bool SIInstrInfo::isLegalFLATOffset(int64_t Offset, unsigned AddrSpace, 9286 uint64_t FlatVariant) const { 9287 // TODO: Should 0 be special cased? 9288 if (!ST.hasFlatInstOffsets()) 9289 return false; 9290 9291 if (ST.hasFlatSegmentOffsetBug() && FlatVariant == SIInstrFlags::FLAT && 9292 (AddrSpace == AMDGPUAS::FLAT_ADDRESS || 9293 AddrSpace == AMDGPUAS::GLOBAL_ADDRESS)) 9294 return false; 9295 9296 if (ST.hasNegativeUnalignedScratchOffsetBug() && 9297 FlatVariant == SIInstrFlags::FlatScratch && Offset < 0 && 9298 (Offset % 4) != 0) { 9299 return false; 9300 } 9301 9302 bool AllowNegative = allowNegativeFlatOffset(FlatVariant); 9303 unsigned N = AMDGPU::getNumFlatOffsetBits(ST); 9304 return isIntN(N, Offset) && (AllowNegative || Offset >= 0); 9305 } 9306 9307 // See comment on SIInstrInfo::isLegalFLATOffset for what is legal and what not. 9308 std::pair<int64_t, int64_t> 9309 SIInstrInfo::splitFlatOffset(int64_t COffsetVal, unsigned AddrSpace, 9310 uint64_t FlatVariant) const { 9311 int64_t RemainderOffset = COffsetVal; 9312 int64_t ImmField = 0; 9313 9314 bool AllowNegative = allowNegativeFlatOffset(FlatVariant); 9315 const unsigned NumBits = AMDGPU::getNumFlatOffsetBits(ST) - 1; 9316 9317 if (AllowNegative) { 9318 // Use signed division by a power of two to truncate towards 0. 9319 int64_t D = 1LL << NumBits; 9320 RemainderOffset = (COffsetVal / D) * D; 9321 ImmField = COffsetVal - RemainderOffset; 9322 9323 if (ST.hasNegativeUnalignedScratchOffsetBug() && 9324 FlatVariant == SIInstrFlags::FlatScratch && ImmField < 0 && 9325 (ImmField % 4) != 0) { 9326 // Make ImmField a multiple of 4 9327 RemainderOffset += ImmField % 4; 9328 ImmField -= ImmField % 4; 9329 } 9330 } else if (COffsetVal >= 0) { 9331 ImmField = COffsetVal & maskTrailingOnes<uint64_t>(NumBits); 9332 RemainderOffset = COffsetVal - ImmField; 9333 } 9334 9335 assert(isLegalFLATOffset(ImmField, AddrSpace, FlatVariant)); 9336 assert(RemainderOffset + ImmField == COffsetVal); 9337 return {ImmField, RemainderOffset}; 9338 } 9339 9340 bool SIInstrInfo::allowNegativeFlatOffset(uint64_t FlatVariant) const { 9341 if (ST.hasNegativeScratchOffsetBug() && 9342 FlatVariant == SIInstrFlags::FlatScratch) 9343 return false; 9344 9345 return FlatVariant != SIInstrFlags::FLAT || AMDGPU::isGFX12Plus(ST); 9346 } 9347 9348 static unsigned subtargetEncodingFamily(const GCNSubtarget &ST) { 9349 switch (ST.getGeneration()) { 9350 default: 9351 break; 9352 case AMDGPUSubtarget::SOUTHERN_ISLANDS: 9353 case AMDGPUSubtarget::SEA_ISLANDS: 9354 return SIEncodingFamily::SI; 9355 case AMDGPUSubtarget::VOLCANIC_ISLANDS: 9356 case AMDGPUSubtarget::GFX9: 9357 return SIEncodingFamily::VI; 9358 case AMDGPUSubtarget::GFX10: 9359 return SIEncodingFamily::GFX10; 9360 case AMDGPUSubtarget::GFX11: 9361 return SIEncodingFamily::GFX11; 9362 case AMDGPUSubtarget::GFX12: 9363 return SIEncodingFamily::GFX12; 9364 } 9365 llvm_unreachable("Unknown subtarget generation!"); 9366 } 9367 9368 bool SIInstrInfo::isAsmOnlyOpcode(int MCOp) const { 9369 switch(MCOp) { 9370 // These opcodes use indirect register addressing so 9371 // they need special handling by codegen (currently missing). 9372 // Therefore it is too risky to allow these opcodes 9373 // to be selected by dpp combiner or sdwa peepholer. 9374 case AMDGPU::V_MOVRELS_B32_dpp_gfx10: 9375 case AMDGPU::V_MOVRELS_B32_sdwa_gfx10: 9376 case AMDGPU::V_MOVRELD_B32_dpp_gfx10: 9377 case AMDGPU::V_MOVRELD_B32_sdwa_gfx10: 9378 case AMDGPU::V_MOVRELSD_B32_dpp_gfx10: 9379 case AMDGPU::V_MOVRELSD_B32_sdwa_gfx10: 9380 case AMDGPU::V_MOVRELSD_2_B32_dpp_gfx10: 9381 case AMDGPU::V_MOVRELSD_2_B32_sdwa_gfx10: 9382 return true; 9383 default: 9384 return false; 9385 } 9386 } 9387 9388 #define GENERATE_RENAMED_GFX9_CASES(OPCODE) \ 9389 case OPCODE##_dpp: \ 9390 case OPCODE##_e32: \ 9391 case OPCODE##_e64: \ 9392 case OPCODE##_e64_dpp: \ 9393 case OPCODE##_sdwa: 9394 9395 static bool isRenamedInGFX9(int Opcode) { 9396 switch (Opcode) { 9397 GENERATE_RENAMED_GFX9_CASES(AMDGPU::V_ADDC_U32) 9398 GENERATE_RENAMED_GFX9_CASES(AMDGPU::V_ADD_CO_U32) 9399 GENERATE_RENAMED_GFX9_CASES(AMDGPU::V_ADD_U32) 9400 GENERATE_RENAMED_GFX9_CASES(AMDGPU::V_SUBBREV_U32) 9401 GENERATE_RENAMED_GFX9_CASES(AMDGPU::V_SUBB_U32) 9402 GENERATE_RENAMED_GFX9_CASES(AMDGPU::V_SUBREV_CO_U32) 9403 GENERATE_RENAMED_GFX9_CASES(AMDGPU::V_SUBREV_U32) 9404 GENERATE_RENAMED_GFX9_CASES(AMDGPU::V_SUB_CO_U32) 9405 GENERATE_RENAMED_GFX9_CASES(AMDGPU::V_SUB_U32) 9406 // 9407 case AMDGPU::V_DIV_FIXUP_F16_gfx9_e64: 9408 case AMDGPU::V_DIV_FIXUP_F16_gfx9_fake16_e64: 9409 case AMDGPU::V_FMA_F16_gfx9_e64: 9410 case AMDGPU::V_FMA_F16_gfx9_fake16_e64: 9411 case AMDGPU::V_INTERP_P2_F16: 9412 case AMDGPU::V_MAD_F16_e64: 9413 case AMDGPU::V_MAD_U16_e64: 9414 case AMDGPU::V_MAD_I16_e64: 9415 return true; 9416 default: 9417 return false; 9418 } 9419 } 9420 9421 int SIInstrInfo::pseudoToMCOpcode(int Opcode) const { 9422 Opcode = SIInstrInfo::getNonSoftWaitcntOpcode(Opcode); 9423 9424 unsigned Gen = subtargetEncodingFamily(ST); 9425 9426 if (ST.getGeneration() == AMDGPUSubtarget::GFX9 && isRenamedInGFX9(Opcode)) 9427 Gen = SIEncodingFamily::GFX9; 9428 9429 // Adjust the encoding family to GFX80 for D16 buffer instructions when the 9430 // subtarget has UnpackedD16VMem feature. 9431 // TODO: remove this when we discard GFX80 encoding. 9432 if (ST.hasUnpackedD16VMem() && (get(Opcode).TSFlags & SIInstrFlags::D16Buf)) 9433 Gen = SIEncodingFamily::GFX80; 9434 9435 if (get(Opcode).TSFlags & SIInstrFlags::SDWA) { 9436 switch (ST.getGeneration()) { 9437 default: 9438 Gen = SIEncodingFamily::SDWA; 9439 break; 9440 case AMDGPUSubtarget::GFX9: 9441 Gen = SIEncodingFamily::SDWA9; 9442 break; 9443 case AMDGPUSubtarget::GFX10: 9444 Gen = SIEncodingFamily::SDWA10; 9445 break; 9446 } 9447 } 9448 9449 if (isMAI(Opcode)) { 9450 int MFMAOp = AMDGPU::getMFMAEarlyClobberOp(Opcode); 9451 if (MFMAOp != -1) 9452 Opcode = MFMAOp; 9453 } 9454 9455 int MCOp = AMDGPU::getMCOpcode(Opcode, Gen); 9456 9457 // -1 means that Opcode is already a native instruction. 9458 if (MCOp == -1) 9459 return Opcode; 9460 9461 if (ST.hasGFX90AInsts()) { 9462 uint16_t NMCOp = (uint16_t)-1; 9463 if (ST.hasGFX940Insts()) 9464 NMCOp = AMDGPU::getMCOpcode(Opcode, SIEncodingFamily::GFX940); 9465 if (NMCOp == (uint16_t)-1) 9466 NMCOp = AMDGPU::getMCOpcode(Opcode, SIEncodingFamily::GFX90A); 9467 if (NMCOp == (uint16_t)-1) 9468 NMCOp = AMDGPU::getMCOpcode(Opcode, SIEncodingFamily::GFX9); 9469 if (NMCOp != (uint16_t)-1) 9470 MCOp = NMCOp; 9471 } 9472 9473 // (uint16_t)-1 means that Opcode is a pseudo instruction that has 9474 // no encoding in the given subtarget generation. 9475 if (MCOp == (uint16_t)-1) 9476 return -1; 9477 9478 if (isAsmOnlyOpcode(MCOp)) 9479 return -1; 9480 9481 return MCOp; 9482 } 9483 9484 static 9485 TargetInstrInfo::RegSubRegPair getRegOrUndef(const MachineOperand &RegOpnd) { 9486 assert(RegOpnd.isReg()); 9487 return RegOpnd.isUndef() ? TargetInstrInfo::RegSubRegPair() : 9488 getRegSubRegPair(RegOpnd); 9489 } 9490 9491 TargetInstrInfo::RegSubRegPair 9492 llvm::getRegSequenceSubReg(MachineInstr &MI, unsigned SubReg) { 9493 assert(MI.isRegSequence()); 9494 for (unsigned I = 0, E = (MI.getNumOperands() - 1)/ 2; I < E; ++I) 9495 if (MI.getOperand(1 + 2 * I + 1).getImm() == SubReg) { 9496 auto &RegOp = MI.getOperand(1 + 2 * I); 9497 return getRegOrUndef(RegOp); 9498 } 9499 return TargetInstrInfo::RegSubRegPair(); 9500 } 9501 9502 // Try to find the definition of reg:subreg in subreg-manipulation pseudos 9503 // Following a subreg of reg:subreg isn't supported 9504 static bool followSubRegDef(MachineInstr &MI, 9505 TargetInstrInfo::RegSubRegPair &RSR) { 9506 if (!RSR.SubReg) 9507 return false; 9508 switch (MI.getOpcode()) { 9509 default: break; 9510 case AMDGPU::REG_SEQUENCE: 9511 RSR = getRegSequenceSubReg(MI, RSR.SubReg); 9512 return true; 9513 // EXTRACT_SUBREG ins't supported as this would follow a subreg of subreg 9514 case AMDGPU::INSERT_SUBREG: 9515 if (RSR.SubReg == (unsigned)MI.getOperand(3).getImm()) 9516 // inserted the subreg we're looking for 9517 RSR = getRegOrUndef(MI.getOperand(2)); 9518 else { // the subreg in the rest of the reg 9519 auto R1 = getRegOrUndef(MI.getOperand(1)); 9520 if (R1.SubReg) // subreg of subreg isn't supported 9521 return false; 9522 RSR.Reg = R1.Reg; 9523 } 9524 return true; 9525 } 9526 return false; 9527 } 9528 9529 MachineInstr *llvm::getVRegSubRegDef(const TargetInstrInfo::RegSubRegPair &P, 9530 MachineRegisterInfo &MRI) { 9531 assert(MRI.isSSA()); 9532 if (!P.Reg.isVirtual()) 9533 return nullptr; 9534 9535 auto RSR = P; 9536 auto *DefInst = MRI.getVRegDef(RSR.Reg); 9537 while (auto *MI = DefInst) { 9538 DefInst = nullptr; 9539 switch (MI->getOpcode()) { 9540 case AMDGPU::COPY: 9541 case AMDGPU::V_MOV_B32_e32: { 9542 auto &Op1 = MI->getOperand(1); 9543 if (Op1.isReg() && Op1.getReg().isVirtual()) { 9544 if (Op1.isUndef()) 9545 return nullptr; 9546 RSR = getRegSubRegPair(Op1); 9547 DefInst = MRI.getVRegDef(RSR.Reg); 9548 } 9549 break; 9550 } 9551 default: 9552 if (followSubRegDef(*MI, RSR)) { 9553 if (!RSR.Reg) 9554 return nullptr; 9555 DefInst = MRI.getVRegDef(RSR.Reg); 9556 } 9557 } 9558 if (!DefInst) 9559 return MI; 9560 } 9561 return nullptr; 9562 } 9563 9564 bool llvm::execMayBeModifiedBeforeUse(const MachineRegisterInfo &MRI, 9565 Register VReg, 9566 const MachineInstr &DefMI, 9567 const MachineInstr &UseMI) { 9568 assert(MRI.isSSA() && "Must be run on SSA"); 9569 9570 auto *TRI = MRI.getTargetRegisterInfo(); 9571 auto *DefBB = DefMI.getParent(); 9572 9573 // Don't bother searching between blocks, although it is possible this block 9574 // doesn't modify exec. 9575 if (UseMI.getParent() != DefBB) 9576 return true; 9577 9578 const int MaxInstScan = 20; 9579 int NumInst = 0; 9580 9581 // Stop scan at the use. 9582 auto E = UseMI.getIterator(); 9583 for (auto I = std::next(DefMI.getIterator()); I != E; ++I) { 9584 if (I->isDebugInstr()) 9585 continue; 9586 9587 if (++NumInst > MaxInstScan) 9588 return true; 9589 9590 if (I->modifiesRegister(AMDGPU::EXEC, TRI)) 9591 return true; 9592 } 9593 9594 return false; 9595 } 9596 9597 bool llvm::execMayBeModifiedBeforeAnyUse(const MachineRegisterInfo &MRI, 9598 Register VReg, 9599 const MachineInstr &DefMI) { 9600 assert(MRI.isSSA() && "Must be run on SSA"); 9601 9602 auto *TRI = MRI.getTargetRegisterInfo(); 9603 auto *DefBB = DefMI.getParent(); 9604 9605 const int MaxUseScan = 10; 9606 int NumUse = 0; 9607 9608 for (auto &Use : MRI.use_nodbg_operands(VReg)) { 9609 auto &UseInst = *Use.getParent(); 9610 // Don't bother searching between blocks, although it is possible this block 9611 // doesn't modify exec. 9612 if (UseInst.getParent() != DefBB || UseInst.isPHI()) 9613 return true; 9614 9615 if (++NumUse > MaxUseScan) 9616 return true; 9617 } 9618 9619 if (NumUse == 0) 9620 return false; 9621 9622 const int MaxInstScan = 20; 9623 int NumInst = 0; 9624 9625 // Stop scan when we have seen all the uses. 9626 for (auto I = std::next(DefMI.getIterator()); ; ++I) { 9627 assert(I != DefBB->end()); 9628 9629 if (I->isDebugInstr()) 9630 continue; 9631 9632 if (++NumInst > MaxInstScan) 9633 return true; 9634 9635 for (const MachineOperand &Op : I->operands()) { 9636 // We don't check reg masks here as they're used only on calls: 9637 // 1. EXEC is only considered const within one BB 9638 // 2. Call should be a terminator instruction if present in a BB 9639 9640 if (!Op.isReg()) 9641 continue; 9642 9643 Register Reg = Op.getReg(); 9644 if (Op.isUse()) { 9645 if (Reg == VReg && --NumUse == 0) 9646 return false; 9647 } else if (TRI->regsOverlap(Reg, AMDGPU::EXEC)) 9648 return true; 9649 } 9650 } 9651 } 9652 9653 MachineInstr *SIInstrInfo::createPHIDestinationCopy( 9654 MachineBasicBlock &MBB, MachineBasicBlock::iterator LastPHIIt, 9655 const DebugLoc &DL, Register Src, Register Dst) const { 9656 auto Cur = MBB.begin(); 9657 if (Cur != MBB.end()) 9658 do { 9659 if (!Cur->isPHI() && Cur->readsRegister(Dst, /*TRI=*/nullptr)) 9660 return BuildMI(MBB, Cur, DL, get(TargetOpcode::COPY), Dst).addReg(Src); 9661 ++Cur; 9662 } while (Cur != MBB.end() && Cur != LastPHIIt); 9663 9664 return TargetInstrInfo::createPHIDestinationCopy(MBB, LastPHIIt, DL, Src, 9665 Dst); 9666 } 9667 9668 MachineInstr *SIInstrInfo::createPHISourceCopy( 9669 MachineBasicBlock &MBB, MachineBasicBlock::iterator InsPt, 9670 const DebugLoc &DL, Register Src, unsigned SrcSubReg, Register Dst) const { 9671 if (InsPt != MBB.end() && 9672 (InsPt->getOpcode() == AMDGPU::SI_IF || 9673 InsPt->getOpcode() == AMDGPU::SI_ELSE || 9674 InsPt->getOpcode() == AMDGPU::SI_IF_BREAK) && 9675 InsPt->definesRegister(Src, /*TRI=*/nullptr)) { 9676 InsPt++; 9677 return BuildMI(MBB, InsPt, DL, 9678 get(ST.isWave32() ? AMDGPU::S_MOV_B32_term 9679 : AMDGPU::S_MOV_B64_term), 9680 Dst) 9681 .addReg(Src, 0, SrcSubReg) 9682 .addReg(AMDGPU::EXEC, RegState::Implicit); 9683 } 9684 return TargetInstrInfo::createPHISourceCopy(MBB, InsPt, DL, Src, SrcSubReg, 9685 Dst); 9686 } 9687 9688 bool llvm::SIInstrInfo::isWave32() const { return ST.isWave32(); } 9689 9690 MachineInstr *SIInstrInfo::foldMemoryOperandImpl( 9691 MachineFunction &MF, MachineInstr &MI, ArrayRef<unsigned> Ops, 9692 MachineBasicBlock::iterator InsertPt, int FrameIndex, LiveIntervals *LIS, 9693 VirtRegMap *VRM) const { 9694 // This is a bit of a hack (copied from AArch64). Consider this instruction: 9695 // 9696 // %0:sreg_32 = COPY $m0 9697 // 9698 // We explicitly chose SReg_32 for the virtual register so such a copy might 9699 // be eliminated by RegisterCoalescer. However, that may not be possible, and 9700 // %0 may even spill. We can't spill $m0 normally (it would require copying to 9701 // a numbered SGPR anyway), and since it is in the SReg_32 register class, 9702 // TargetInstrInfo::foldMemoryOperand() is going to try. 9703 // A similar issue also exists with spilling and reloading $exec registers. 9704 // 9705 // To prevent that, constrain the %0 register class here. 9706 if (isFullCopyInstr(MI)) { 9707 Register DstReg = MI.getOperand(0).getReg(); 9708 Register SrcReg = MI.getOperand(1).getReg(); 9709 if ((DstReg.isVirtual() || SrcReg.isVirtual()) && 9710 (DstReg.isVirtual() != SrcReg.isVirtual())) { 9711 MachineRegisterInfo &MRI = MF.getRegInfo(); 9712 Register VirtReg = DstReg.isVirtual() ? DstReg : SrcReg; 9713 const TargetRegisterClass *RC = MRI.getRegClass(VirtReg); 9714 if (RC->hasSuperClassEq(&AMDGPU::SReg_32RegClass)) { 9715 MRI.constrainRegClass(VirtReg, &AMDGPU::SReg_32_XM0_XEXECRegClass); 9716 return nullptr; 9717 } 9718 if (RC->hasSuperClassEq(&AMDGPU::SReg_64RegClass)) { 9719 MRI.constrainRegClass(VirtReg, &AMDGPU::SReg_64_XEXECRegClass); 9720 return nullptr; 9721 } 9722 } 9723 } 9724 9725 return nullptr; 9726 } 9727 9728 unsigned SIInstrInfo::getInstrLatency(const InstrItineraryData *ItinData, 9729 const MachineInstr &MI, 9730 unsigned *PredCost) const { 9731 if (MI.isBundle()) { 9732 MachineBasicBlock::const_instr_iterator I(MI.getIterator()); 9733 MachineBasicBlock::const_instr_iterator E(MI.getParent()->instr_end()); 9734 unsigned Lat = 0, Count = 0; 9735 for (++I; I != E && I->isBundledWithPred(); ++I) { 9736 ++Count; 9737 Lat = std::max(Lat, SchedModel.computeInstrLatency(&*I)); 9738 } 9739 return Lat + Count - 1; 9740 } 9741 9742 return SchedModel.computeInstrLatency(&MI); 9743 } 9744 9745 InstructionUniformity 9746 SIInstrInfo::getGenericInstructionUniformity(const MachineInstr &MI) const { 9747 unsigned opcode = MI.getOpcode(); 9748 if (auto *GI = dyn_cast<GIntrinsic>(&MI)) { 9749 auto IID = GI->getIntrinsicID(); 9750 if (AMDGPU::isIntrinsicSourceOfDivergence(IID)) 9751 return InstructionUniformity::NeverUniform; 9752 if (AMDGPU::isIntrinsicAlwaysUniform(IID)) 9753 return InstructionUniformity::AlwaysUniform; 9754 9755 switch (IID) { 9756 case Intrinsic::amdgcn_if: 9757 case Intrinsic::amdgcn_else: 9758 // FIXME: Uniform if second result 9759 break; 9760 } 9761 9762 return InstructionUniformity::Default; 9763 } 9764 9765 // Loads from the private and flat address spaces are divergent, because 9766 // threads can execute the load instruction with the same inputs and get 9767 // different results. 9768 // 9769 // All other loads are not divergent, because if threads issue loads with the 9770 // same arguments, they will always get the same result. 9771 if (opcode == AMDGPU::G_LOAD) { 9772 if (MI.memoperands_empty()) 9773 return InstructionUniformity::NeverUniform; // conservative assumption 9774 9775 if (llvm::any_of(MI.memoperands(), [](const MachineMemOperand *mmo) { 9776 return mmo->getAddrSpace() == AMDGPUAS::PRIVATE_ADDRESS || 9777 mmo->getAddrSpace() == AMDGPUAS::FLAT_ADDRESS; 9778 })) { 9779 // At least one MMO in a non-global address space. 9780 return InstructionUniformity::NeverUniform; 9781 } 9782 return InstructionUniformity::Default; 9783 } 9784 9785 if (SIInstrInfo::isGenericAtomicRMWOpcode(opcode) || 9786 opcode == AMDGPU::G_ATOMIC_CMPXCHG || 9787 opcode == AMDGPU::G_ATOMIC_CMPXCHG_WITH_SUCCESS || 9788 AMDGPU::isGenericAtomic(opcode)) { 9789 return InstructionUniformity::NeverUniform; 9790 } 9791 return InstructionUniformity::Default; 9792 } 9793 9794 InstructionUniformity 9795 SIInstrInfo::getInstructionUniformity(const MachineInstr &MI) const { 9796 9797 if (isNeverUniform(MI)) 9798 return InstructionUniformity::NeverUniform; 9799 9800 unsigned opcode = MI.getOpcode(); 9801 if (opcode == AMDGPU::V_READLANE_B32 || 9802 opcode == AMDGPU::V_READFIRSTLANE_B32 || 9803 opcode == AMDGPU::SI_RESTORE_S32_FROM_VGPR) 9804 return InstructionUniformity::AlwaysUniform; 9805 9806 if (isCopyInstr(MI)) { 9807 const MachineOperand &srcOp = MI.getOperand(1); 9808 if (srcOp.isReg() && srcOp.getReg().isPhysical()) { 9809 const TargetRegisterClass *regClass = 9810 RI.getPhysRegBaseClass(srcOp.getReg()); 9811 return RI.isSGPRClass(regClass) ? InstructionUniformity::AlwaysUniform 9812 : InstructionUniformity::NeverUniform; 9813 } 9814 return InstructionUniformity::Default; 9815 } 9816 9817 // GMIR handling 9818 if (MI.isPreISelOpcode()) 9819 return SIInstrInfo::getGenericInstructionUniformity(MI); 9820 9821 // Atomics are divergent because they are executed sequentially: when an 9822 // atomic operation refers to the same address in each thread, then each 9823 // thread after the first sees the value written by the previous thread as 9824 // original value. 9825 9826 if (isAtomic(MI)) 9827 return InstructionUniformity::NeverUniform; 9828 9829 // Loads from the private and flat address spaces are divergent, because 9830 // threads can execute the load instruction with the same inputs and get 9831 // different results. 9832 if (isFLAT(MI) && MI.mayLoad()) { 9833 if (MI.memoperands_empty()) 9834 return InstructionUniformity::NeverUniform; // conservative assumption 9835 9836 if (llvm::any_of(MI.memoperands(), [](const MachineMemOperand *mmo) { 9837 return mmo->getAddrSpace() == AMDGPUAS::PRIVATE_ADDRESS || 9838 mmo->getAddrSpace() == AMDGPUAS::FLAT_ADDRESS; 9839 })) { 9840 // At least one MMO in a non-global address space. 9841 return InstructionUniformity::NeverUniform; 9842 } 9843 9844 return InstructionUniformity::Default; 9845 } 9846 9847 const MachineRegisterInfo &MRI = MI.getParent()->getParent()->getRegInfo(); 9848 const AMDGPURegisterBankInfo *RBI = ST.getRegBankInfo(); 9849 9850 // FIXME: It's conceptually broken to report this for an instruction, and not 9851 // a specific def operand. For inline asm in particular, there could be mixed 9852 // uniform and divergent results. 9853 for (unsigned I = 0, E = MI.getNumOperands(); I != E; ++I) { 9854 const MachineOperand &SrcOp = MI.getOperand(I); 9855 if (!SrcOp.isReg()) 9856 continue; 9857 9858 Register Reg = SrcOp.getReg(); 9859 if (!Reg || !SrcOp.readsReg()) 9860 continue; 9861 9862 // If RegBank is null, this is unassigned or an unallocatable special 9863 // register, which are all scalars. 9864 const RegisterBank *RegBank = RBI->getRegBank(Reg, MRI, RI); 9865 if (RegBank && RegBank->getID() != AMDGPU::SGPRRegBankID) 9866 return InstructionUniformity::NeverUniform; 9867 } 9868 9869 // TODO: Uniformity check condtions above can be rearranged for more 9870 // redability 9871 9872 // TODO: amdgcn.{ballot, [if]cmp} should be AlwaysUniform, but they are 9873 // currently turned into no-op COPYs by SelectionDAG ISel and are 9874 // therefore no longer recognizable. 9875 9876 return InstructionUniformity::Default; 9877 } 9878 9879 unsigned SIInstrInfo::getDSShaderTypeValue(const MachineFunction &MF) { 9880 switch (MF.getFunction().getCallingConv()) { 9881 case CallingConv::AMDGPU_PS: 9882 return 1; 9883 case CallingConv::AMDGPU_VS: 9884 return 2; 9885 case CallingConv::AMDGPU_GS: 9886 return 3; 9887 case CallingConv::AMDGPU_HS: 9888 case CallingConv::AMDGPU_LS: 9889 case CallingConv::AMDGPU_ES: 9890 report_fatal_error("ds_ordered_count unsupported for this calling conv"); 9891 case CallingConv::AMDGPU_CS: 9892 case CallingConv::AMDGPU_KERNEL: 9893 case CallingConv::C: 9894 case CallingConv::Fast: 9895 default: 9896 // Assume other calling conventions are various compute callable functions 9897 return 0; 9898 } 9899 } 9900 9901 bool SIInstrInfo::analyzeCompare(const MachineInstr &MI, Register &SrcReg, 9902 Register &SrcReg2, int64_t &CmpMask, 9903 int64_t &CmpValue) const { 9904 if (!MI.getOperand(0).isReg() || MI.getOperand(0).getSubReg()) 9905 return false; 9906 9907 switch (MI.getOpcode()) { 9908 default: 9909 break; 9910 case AMDGPU::S_CMP_EQ_U32: 9911 case AMDGPU::S_CMP_EQ_I32: 9912 case AMDGPU::S_CMP_LG_U32: 9913 case AMDGPU::S_CMP_LG_I32: 9914 case AMDGPU::S_CMP_LT_U32: 9915 case AMDGPU::S_CMP_LT_I32: 9916 case AMDGPU::S_CMP_GT_U32: 9917 case AMDGPU::S_CMP_GT_I32: 9918 case AMDGPU::S_CMP_LE_U32: 9919 case AMDGPU::S_CMP_LE_I32: 9920 case AMDGPU::S_CMP_GE_U32: 9921 case AMDGPU::S_CMP_GE_I32: 9922 case AMDGPU::S_CMP_EQ_U64: 9923 case AMDGPU::S_CMP_LG_U64: 9924 SrcReg = MI.getOperand(0).getReg(); 9925 if (MI.getOperand(1).isReg()) { 9926 if (MI.getOperand(1).getSubReg()) 9927 return false; 9928 SrcReg2 = MI.getOperand(1).getReg(); 9929 CmpValue = 0; 9930 } else if (MI.getOperand(1).isImm()) { 9931 SrcReg2 = Register(); 9932 CmpValue = MI.getOperand(1).getImm(); 9933 } else { 9934 return false; 9935 } 9936 CmpMask = ~0; 9937 return true; 9938 case AMDGPU::S_CMPK_EQ_U32: 9939 case AMDGPU::S_CMPK_EQ_I32: 9940 case AMDGPU::S_CMPK_LG_U32: 9941 case AMDGPU::S_CMPK_LG_I32: 9942 case AMDGPU::S_CMPK_LT_U32: 9943 case AMDGPU::S_CMPK_LT_I32: 9944 case AMDGPU::S_CMPK_GT_U32: 9945 case AMDGPU::S_CMPK_GT_I32: 9946 case AMDGPU::S_CMPK_LE_U32: 9947 case AMDGPU::S_CMPK_LE_I32: 9948 case AMDGPU::S_CMPK_GE_U32: 9949 case AMDGPU::S_CMPK_GE_I32: 9950 SrcReg = MI.getOperand(0).getReg(); 9951 SrcReg2 = Register(); 9952 CmpValue = MI.getOperand(1).getImm(); 9953 CmpMask = ~0; 9954 return true; 9955 } 9956 9957 return false; 9958 } 9959 9960 bool SIInstrInfo::optimizeCompareInstr(MachineInstr &CmpInstr, Register SrcReg, 9961 Register SrcReg2, int64_t CmpMask, 9962 int64_t CmpValue, 9963 const MachineRegisterInfo *MRI) const { 9964 if (!SrcReg || SrcReg.isPhysical()) 9965 return false; 9966 9967 if (SrcReg2 && !getFoldableImm(SrcReg2, *MRI, CmpValue)) 9968 return false; 9969 9970 const auto optimizeCmpAnd = [&CmpInstr, SrcReg, CmpValue, MRI, 9971 this](int64_t ExpectedValue, unsigned SrcSize, 9972 bool IsReversible, bool IsSigned) -> bool { 9973 // s_cmp_eq_u32 (s_and_b32 $src, 1 << n), 1 << n => s_and_b32 $src, 1 << n 9974 // s_cmp_eq_i32 (s_and_b32 $src, 1 << n), 1 << n => s_and_b32 $src, 1 << n 9975 // s_cmp_ge_u32 (s_and_b32 $src, 1 << n), 1 << n => s_and_b32 $src, 1 << n 9976 // s_cmp_ge_i32 (s_and_b32 $src, 1 << n), 1 << n => s_and_b32 $src, 1 << n 9977 // s_cmp_eq_u64 (s_and_b64 $src, 1 << n), 1 << n => s_and_b64 $src, 1 << n 9978 // s_cmp_lg_u32 (s_and_b32 $src, 1 << n), 0 => s_and_b32 $src, 1 << n 9979 // s_cmp_lg_i32 (s_and_b32 $src, 1 << n), 0 => s_and_b32 $src, 1 << n 9980 // s_cmp_gt_u32 (s_and_b32 $src, 1 << n), 0 => s_and_b32 $src, 1 << n 9981 // s_cmp_gt_i32 (s_and_b32 $src, 1 << n), 0 => s_and_b32 $src, 1 << n 9982 // s_cmp_lg_u64 (s_and_b64 $src, 1 << n), 0 => s_and_b64 $src, 1 << n 9983 // 9984 // Signed ge/gt are not used for the sign bit. 9985 // 9986 // If result of the AND is unused except in the compare: 9987 // s_and_b(32|64) $src, 1 << n => s_bitcmp1_b(32|64) $src, n 9988 // 9989 // s_cmp_eq_u32 (s_and_b32 $src, 1 << n), 0 => s_bitcmp0_b32 $src, n 9990 // s_cmp_eq_i32 (s_and_b32 $src, 1 << n), 0 => s_bitcmp0_b32 $src, n 9991 // s_cmp_eq_u64 (s_and_b64 $src, 1 << n), 0 => s_bitcmp0_b64 $src, n 9992 // s_cmp_lg_u32 (s_and_b32 $src, 1 << n), 1 << n => s_bitcmp0_b32 $src, n 9993 // s_cmp_lg_i32 (s_and_b32 $src, 1 << n), 1 << n => s_bitcmp0_b32 $src, n 9994 // s_cmp_lg_u64 (s_and_b64 $src, 1 << n), 1 << n => s_bitcmp0_b64 $src, n 9995 9996 MachineInstr *Def = MRI->getUniqueVRegDef(SrcReg); 9997 if (!Def || Def->getParent() != CmpInstr.getParent()) 9998 return false; 9999 10000 if (Def->getOpcode() != AMDGPU::S_AND_B32 && 10001 Def->getOpcode() != AMDGPU::S_AND_B64) 10002 return false; 10003 10004 int64_t Mask; 10005 const auto isMask = [&Mask, SrcSize](const MachineOperand *MO) -> bool { 10006 if (MO->isImm()) 10007 Mask = MO->getImm(); 10008 else if (!getFoldableImm(MO, Mask)) 10009 return false; 10010 Mask &= maxUIntN(SrcSize); 10011 return isPowerOf2_64(Mask); 10012 }; 10013 10014 MachineOperand *SrcOp = &Def->getOperand(1); 10015 if (isMask(SrcOp)) 10016 SrcOp = &Def->getOperand(2); 10017 else if (isMask(&Def->getOperand(2))) 10018 SrcOp = &Def->getOperand(1); 10019 else 10020 return false; 10021 10022 // A valid Mask is required to have a single bit set, hence a non-zero and 10023 // power-of-two value. This verifies that we will not do 64-bit shift below. 10024 assert(llvm::has_single_bit<uint64_t>(Mask) && "Invalid mask."); 10025 unsigned BitNo = llvm::countr_zero((uint64_t)Mask); 10026 if (IsSigned && BitNo == SrcSize - 1) 10027 return false; 10028 10029 ExpectedValue <<= BitNo; 10030 10031 bool IsReversedCC = false; 10032 if (CmpValue != ExpectedValue) { 10033 if (!IsReversible) 10034 return false; 10035 IsReversedCC = CmpValue == (ExpectedValue ^ Mask); 10036 if (!IsReversedCC) 10037 return false; 10038 } 10039 10040 Register DefReg = Def->getOperand(0).getReg(); 10041 if (IsReversedCC && !MRI->hasOneNonDBGUse(DefReg)) 10042 return false; 10043 10044 for (auto I = std::next(Def->getIterator()), E = CmpInstr.getIterator(); 10045 I != E; ++I) { 10046 if (I->modifiesRegister(AMDGPU::SCC, &RI) || 10047 I->killsRegister(AMDGPU::SCC, &RI)) 10048 return false; 10049 } 10050 10051 MachineOperand *SccDef = 10052 Def->findRegisterDefOperand(AMDGPU::SCC, /*TRI=*/nullptr); 10053 SccDef->setIsDead(false); 10054 CmpInstr.eraseFromParent(); 10055 10056 if (!MRI->use_nodbg_empty(DefReg)) { 10057 assert(!IsReversedCC); 10058 return true; 10059 } 10060 10061 // Replace AND with unused result with a S_BITCMP. 10062 MachineBasicBlock *MBB = Def->getParent(); 10063 10064 unsigned NewOpc = (SrcSize == 32) ? IsReversedCC ? AMDGPU::S_BITCMP0_B32 10065 : AMDGPU::S_BITCMP1_B32 10066 : IsReversedCC ? AMDGPU::S_BITCMP0_B64 10067 : AMDGPU::S_BITCMP1_B64; 10068 10069 BuildMI(*MBB, Def, Def->getDebugLoc(), get(NewOpc)) 10070 .add(*SrcOp) 10071 .addImm(BitNo); 10072 Def->eraseFromParent(); 10073 10074 return true; 10075 }; 10076 10077 switch (CmpInstr.getOpcode()) { 10078 default: 10079 break; 10080 case AMDGPU::S_CMP_EQ_U32: 10081 case AMDGPU::S_CMP_EQ_I32: 10082 case AMDGPU::S_CMPK_EQ_U32: 10083 case AMDGPU::S_CMPK_EQ_I32: 10084 return optimizeCmpAnd(1, 32, true, false); 10085 case AMDGPU::S_CMP_GE_U32: 10086 case AMDGPU::S_CMPK_GE_U32: 10087 return optimizeCmpAnd(1, 32, false, false); 10088 case AMDGPU::S_CMP_GE_I32: 10089 case AMDGPU::S_CMPK_GE_I32: 10090 return optimizeCmpAnd(1, 32, false, true); 10091 case AMDGPU::S_CMP_EQ_U64: 10092 return optimizeCmpAnd(1, 64, true, false); 10093 case AMDGPU::S_CMP_LG_U32: 10094 case AMDGPU::S_CMP_LG_I32: 10095 case AMDGPU::S_CMPK_LG_U32: 10096 case AMDGPU::S_CMPK_LG_I32: 10097 return optimizeCmpAnd(0, 32, true, false); 10098 case AMDGPU::S_CMP_GT_U32: 10099 case AMDGPU::S_CMPK_GT_U32: 10100 return optimizeCmpAnd(0, 32, false, false); 10101 case AMDGPU::S_CMP_GT_I32: 10102 case AMDGPU::S_CMPK_GT_I32: 10103 return optimizeCmpAnd(0, 32, false, true); 10104 case AMDGPU::S_CMP_LG_U64: 10105 return optimizeCmpAnd(0, 64, true, false); 10106 } 10107 10108 return false; 10109 } 10110 10111 void SIInstrInfo::enforceOperandRCAlignment(MachineInstr &MI, 10112 unsigned OpName) const { 10113 if (!ST.needsAlignedVGPRs()) 10114 return; 10115 10116 int OpNo = AMDGPU::getNamedOperandIdx(MI.getOpcode(), OpName); 10117 if (OpNo < 0) 10118 return; 10119 MachineOperand &Op = MI.getOperand(OpNo); 10120 if (getOpSize(MI, OpNo) > 4) 10121 return; 10122 10123 // Add implicit aligned super-reg to force alignment on the data operand. 10124 const DebugLoc &DL = MI.getDebugLoc(); 10125 MachineBasicBlock *BB = MI.getParent(); 10126 MachineRegisterInfo &MRI = BB->getParent()->getRegInfo(); 10127 Register DataReg = Op.getReg(); 10128 bool IsAGPR = RI.isAGPR(MRI, DataReg); 10129 Register Undef = MRI.createVirtualRegister( 10130 IsAGPR ? &AMDGPU::AGPR_32RegClass : &AMDGPU::VGPR_32RegClass); 10131 BuildMI(*BB, MI, DL, get(AMDGPU::IMPLICIT_DEF), Undef); 10132 Register NewVR = 10133 MRI.createVirtualRegister(IsAGPR ? &AMDGPU::AReg_64_Align2RegClass 10134 : &AMDGPU::VReg_64_Align2RegClass); 10135 BuildMI(*BB, MI, DL, get(AMDGPU::REG_SEQUENCE), NewVR) 10136 .addReg(DataReg, 0, Op.getSubReg()) 10137 .addImm(AMDGPU::sub0) 10138 .addReg(Undef) 10139 .addImm(AMDGPU::sub1); 10140 Op.setReg(NewVR); 10141 Op.setSubReg(AMDGPU::sub0); 10142 MI.addOperand(MachineOperand::CreateReg(NewVR, false, true)); 10143 } 10144 10145 bool SIInstrInfo::isGlobalMemoryObject(const MachineInstr *MI) const { 10146 if (isIGLP(*MI)) 10147 return false; 10148 10149 return TargetInstrInfo::isGlobalMemoryObject(MI); 10150 } 10151