1 //===- RegisterCoalescer.cpp - Generic Register Coalescing Interface ------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the generic RegisterCoalescer interface which
10 // is used as the common interface used by all clients and
11 // implementations of register coalescing.
12 //
13 //===----------------------------------------------------------------------===//
14
15 #include "RegisterCoalescer.h"
16 #include "llvm/ADT/ArrayRef.h"
17 #include "llvm/ADT/BitVector.h"
18 #include "llvm/ADT/DenseSet.h"
19 #include "llvm/ADT/STLExtras.h"
20 #include "llvm/ADT/SmallPtrSet.h"
21 #include "llvm/ADT/SmallVector.h"
22 #include "llvm/ADT/Statistic.h"
23 #include "llvm/Analysis/AliasAnalysis.h"
24 #include "llvm/CodeGen/LiveInterval.h"
25 #include "llvm/CodeGen/LiveIntervals.h"
26 #include "llvm/CodeGen/LiveRangeEdit.h"
27 #include "llvm/CodeGen/MachineBasicBlock.h"
28 #include "llvm/CodeGen/MachineFunction.h"
29 #include "llvm/CodeGen/MachineFunctionPass.h"
30 #include "llvm/CodeGen/MachineInstr.h"
31 #include "llvm/CodeGen/MachineInstrBuilder.h"
32 #include "llvm/CodeGen/MachineLoopInfo.h"
33 #include "llvm/CodeGen/MachineOperand.h"
34 #include "llvm/CodeGen/MachineRegisterInfo.h"
35 #include "llvm/CodeGen/Passes.h"
36 #include "llvm/CodeGen/RegisterClassInfo.h"
37 #include "llvm/CodeGen/SlotIndexes.h"
38 #include "llvm/CodeGen/TargetInstrInfo.h"
39 #include "llvm/CodeGen/TargetOpcodes.h"
40 #include "llvm/CodeGen/TargetRegisterInfo.h"
41 #include "llvm/CodeGen/TargetSubtargetInfo.h"
42 #include "llvm/IR/DebugLoc.h"
43 #include "llvm/InitializePasses.h"
44 #include "llvm/MC/LaneBitmask.h"
45 #include "llvm/MC/MCInstrDesc.h"
46 #include "llvm/MC/MCRegisterInfo.h"
47 #include "llvm/Pass.h"
48 #include "llvm/Support/CommandLine.h"
49 #include "llvm/Support/Compiler.h"
50 #include "llvm/Support/Debug.h"
51 #include "llvm/Support/ErrorHandling.h"
52 #include "llvm/Support/raw_ostream.h"
53 #include <algorithm>
54 #include <cassert>
55 #include <iterator>
56 #include <limits>
57 #include <tuple>
58 #include <utility>
59 #include <vector>
60
61 using namespace llvm;
62
63 #define DEBUG_TYPE "regalloc"
64
65 STATISTIC(numJoins , "Number of interval joins performed");
66 STATISTIC(numCrossRCs , "Number of cross class joins performed");
67 STATISTIC(numCommutes , "Number of instruction commuting performed");
68 STATISTIC(numExtends , "Number of copies extended");
69 STATISTIC(NumReMats , "Number of instructions re-materialized");
70 STATISTIC(NumInflated , "Number of register classes inflated");
71 STATISTIC(NumLaneConflicts, "Number of dead lane conflicts tested");
72 STATISTIC(NumLaneResolves, "Number of dead lane conflicts resolved");
73 STATISTIC(NumShrinkToUses, "Number of shrinkToUses called");
74
75 static cl::opt<bool> EnableJoining("join-liveintervals",
76 cl::desc("Coalesce copies (default=true)"),
77 cl::init(true), cl::Hidden);
78
79 static cl::opt<bool> UseTerminalRule("terminal-rule",
80 cl::desc("Apply the terminal rule"),
81 cl::init(false), cl::Hidden);
82
83 /// Temporary flag to test critical edge unsplitting.
84 static cl::opt<bool>
85 EnableJoinSplits("join-splitedges",
86 cl::desc("Coalesce copies on split edges (default=subtarget)"), cl::Hidden);
87
88 /// Temporary flag to test global copy optimization.
89 static cl::opt<cl::boolOrDefault>
90 EnableGlobalCopies("join-globalcopies",
91 cl::desc("Coalesce copies that span blocks (default=subtarget)"),
92 cl::init(cl::BOU_UNSET), cl::Hidden);
93
94 static cl::opt<bool>
95 VerifyCoalescing("verify-coalescing",
96 cl::desc("Verify machine instrs before and after register coalescing"),
97 cl::Hidden);
98
99 static cl::opt<unsigned> LateRematUpdateThreshold(
100 "late-remat-update-threshold", cl::Hidden,
101 cl::desc("During rematerialization for a copy, if the def instruction has "
102 "many other copy uses to be rematerialized, delay the multiple "
103 "separate live interval update work and do them all at once after "
104 "all those rematerialization are done. It will save a lot of "
105 "repeated work. "),
106 cl::init(100));
107
108 static cl::opt<unsigned> LargeIntervalSizeThreshold(
109 "large-interval-size-threshold", cl::Hidden,
110 cl::desc("If the valnos size of an interval is larger than the threshold, "
111 "it is regarded as a large interval. "),
112 cl::init(100));
113
114 static cl::opt<unsigned> LargeIntervalFreqThreshold(
115 "large-interval-freq-threshold", cl::Hidden,
116 cl::desc("For a large interval, if it is coalesed with other live "
117 "intervals many times more than the threshold, stop its "
118 "coalescing to control the compile time. "),
119 cl::init(100));
120
121 namespace {
122
123 class JoinVals;
124
125 class RegisterCoalescer : public MachineFunctionPass,
126 private LiveRangeEdit::Delegate {
127 MachineFunction* MF = nullptr;
128 MachineRegisterInfo* MRI = nullptr;
129 const TargetRegisterInfo* TRI = nullptr;
130 const TargetInstrInfo* TII = nullptr;
131 LiveIntervals *LIS = nullptr;
132 const MachineLoopInfo* Loops = nullptr;
133 AliasAnalysis *AA = nullptr;
134 RegisterClassInfo RegClassInfo;
135
136 /// Debug variable location tracking -- for each VReg, maintain an
137 /// ordered-by-slot-index set of DBG_VALUEs, to help quick
138 /// identification of whether coalescing may change location validity.
139 using DbgValueLoc = std::pair<SlotIndex, MachineInstr*>;
140 DenseMap<Register, std::vector<DbgValueLoc>> DbgVRegToValues;
141
142 /// VRegs may be repeatedly coalesced, and have many DBG_VALUEs attached.
143 /// To avoid repeatedly merging sets of DbgValueLocs, instead record
144 /// which vregs have been coalesced, and where to. This map is from
145 /// vreg => {set of vregs merged in}.
146 DenseMap<Register, SmallVector<Register, 4>> DbgMergedVRegNums;
147
148 /// A LaneMask to remember on which subregister live ranges we need to call
149 /// shrinkToUses() later.
150 LaneBitmask ShrinkMask;
151
152 /// True if the main range of the currently coalesced intervals should be
153 /// checked for smaller live intervals.
154 bool ShrinkMainRange = false;
155
156 /// True if the coalescer should aggressively coalesce global copies
157 /// in favor of keeping local copies.
158 bool JoinGlobalCopies = false;
159
160 /// True if the coalescer should aggressively coalesce fall-thru
161 /// blocks exclusively containing copies.
162 bool JoinSplitEdges = false;
163
164 /// Copy instructions yet to be coalesced.
165 SmallVector<MachineInstr*, 8> WorkList;
166 SmallVector<MachineInstr*, 8> LocalWorkList;
167
168 /// Set of instruction pointers that have been erased, and
169 /// that may be present in WorkList.
170 SmallPtrSet<MachineInstr*, 8> ErasedInstrs;
171
172 /// Dead instructions that are about to be deleted.
173 SmallVector<MachineInstr*, 8> DeadDefs;
174
175 /// Virtual registers to be considered for register class inflation.
176 SmallVector<Register, 8> InflateRegs;
177
178 /// The collection of live intervals which should have been updated
179 /// immediately after rematerialiation but delayed until
180 /// lateLiveIntervalUpdate is called.
181 DenseSet<Register> ToBeUpdated;
182
183 /// Record how many times the large live interval with many valnos
184 /// has been tried to join with other live interval.
185 DenseMap<Register, unsigned long> LargeLIVisitCounter;
186
187 /// Recursively eliminate dead defs in DeadDefs.
188 void eliminateDeadDefs();
189
190 /// LiveRangeEdit callback for eliminateDeadDefs().
191 void LRE_WillEraseInstruction(MachineInstr *MI) override;
192
193 /// Coalesce the LocalWorkList.
194 void coalesceLocals();
195
196 /// Join compatible live intervals
197 void joinAllIntervals();
198
199 /// Coalesce copies in the specified MBB, putting
200 /// copies that cannot yet be coalesced into WorkList.
201 void copyCoalesceInMBB(MachineBasicBlock *MBB);
202
203 /// Tries to coalesce all copies in CurrList. Returns true if any progress
204 /// was made.
205 bool copyCoalesceWorkList(MutableArrayRef<MachineInstr*> CurrList);
206
207 /// If one def has many copy like uses, and those copy uses are all
208 /// rematerialized, the live interval update needed for those
209 /// rematerializations will be delayed and done all at once instead
210 /// of being done multiple times. This is to save compile cost because
211 /// live interval update is costly.
212 void lateLiveIntervalUpdate();
213
214 /// Check if the incoming value defined by a COPY at \p SLRQ in the subrange
215 /// has no value defined in the predecessors. If the incoming value is the
216 /// same as defined by the copy itself, the value is considered undefined.
217 bool copyValueUndefInPredecessors(LiveRange &S,
218 const MachineBasicBlock *MBB,
219 LiveQueryResult SLRQ);
220
221 /// Set necessary undef flags on subregister uses after pruning out undef
222 /// lane segments from the subrange.
223 void setUndefOnPrunedSubRegUses(LiveInterval &LI, Register Reg,
224 LaneBitmask PrunedLanes);
225
226 /// Attempt to join intervals corresponding to SrcReg/DstReg, which are the
227 /// src/dst of the copy instruction CopyMI. This returns true if the copy
228 /// was successfully coalesced away. If it is not currently possible to
229 /// coalesce this interval, but it may be possible if other things get
230 /// coalesced, then it returns true by reference in 'Again'.
231 bool joinCopy(MachineInstr *CopyMI, bool &Again);
232
233 /// Attempt to join these two intervals. On failure, this
234 /// returns false. The output "SrcInt" will not have been modified, so we
235 /// can use this information below to update aliases.
236 bool joinIntervals(CoalescerPair &CP);
237
238 /// Attempt joining two virtual registers. Return true on success.
239 bool joinVirtRegs(CoalescerPair &CP);
240
241 /// If a live interval has many valnos and is coalesced with other
242 /// live intervals many times, we regard such live interval as having
243 /// high compile time cost.
244 bool isHighCostLiveInterval(LiveInterval &LI);
245
246 /// Attempt joining with a reserved physreg.
247 bool joinReservedPhysReg(CoalescerPair &CP);
248
249 /// Add the LiveRange @p ToMerge as a subregister liverange of @p LI.
250 /// Subranges in @p LI which only partially interfere with the desired
251 /// LaneMask are split as necessary. @p LaneMask are the lanes that
252 /// @p ToMerge will occupy in the coalescer register. @p LI has its subrange
253 /// lanemasks already adjusted to the coalesced register.
254 void mergeSubRangeInto(LiveInterval &LI, const LiveRange &ToMerge,
255 LaneBitmask LaneMask, CoalescerPair &CP,
256 unsigned DstIdx);
257
258 /// Join the liveranges of two subregisters. Joins @p RRange into
259 /// @p LRange, @p RRange may be invalid afterwards.
260 void joinSubRegRanges(LiveRange &LRange, LiveRange &RRange,
261 LaneBitmask LaneMask, const CoalescerPair &CP);
262
263 /// We found a non-trivially-coalescable copy. If the source value number is
264 /// defined by a copy from the destination reg see if we can merge these two
265 /// destination reg valno# into a single value number, eliminating a copy.
266 /// This returns true if an interval was modified.
267 bool adjustCopiesBackFrom(const CoalescerPair &CP, MachineInstr *CopyMI);
268
269 /// Return true if there are definitions of IntB
270 /// other than BValNo val# that can reach uses of AValno val# of IntA.
271 bool hasOtherReachingDefs(LiveInterval &IntA, LiveInterval &IntB,
272 VNInfo *AValNo, VNInfo *BValNo);
273
274 /// We found a non-trivially-coalescable copy.
275 /// If the source value number is defined by a commutable instruction and
276 /// its other operand is coalesced to the copy dest register, see if we
277 /// can transform the copy into a noop by commuting the definition.
278 /// This returns a pair of two flags:
279 /// - the first element is true if an interval was modified,
280 /// - the second element is true if the destination interval needs
281 /// to be shrunk after deleting the copy.
282 std::pair<bool,bool> removeCopyByCommutingDef(const CoalescerPair &CP,
283 MachineInstr *CopyMI);
284
285 /// We found a copy which can be moved to its less frequent predecessor.
286 bool removePartialRedundancy(const CoalescerPair &CP, MachineInstr &CopyMI);
287
288 /// If the source of a copy is defined by a
289 /// trivial computation, replace the copy by rematerialize the definition.
290 bool reMaterializeTrivialDef(const CoalescerPair &CP, MachineInstr *CopyMI,
291 bool &IsDefCopy);
292
293 /// Return true if a copy involving a physreg should be joined.
294 bool canJoinPhys(const CoalescerPair &CP);
295
296 /// Replace all defs and uses of SrcReg to DstReg and update the subregister
297 /// number if it is not zero. If DstReg is a physical register and the
298 /// existing subregister number of the def / use being updated is not zero,
299 /// make sure to set it to the correct physical subregister.
300 void updateRegDefsUses(Register SrcReg, Register DstReg, unsigned SubIdx);
301
302 /// If the given machine operand reads only undefined lanes add an undef
303 /// flag.
304 /// This can happen when undef uses were previously concealed by a copy
305 /// which we coalesced. Example:
306 /// %0:sub0<def,read-undef> = ...
307 /// %1 = COPY %0 <-- Coalescing COPY reveals undef
308 /// = use %1:sub1 <-- hidden undef use
309 void addUndefFlag(const LiveInterval &Int, SlotIndex UseIdx,
310 MachineOperand &MO, unsigned SubRegIdx);
311
312 /// Handle copies of undef values. If the undef value is an incoming
313 /// PHI value, it will convert @p CopyMI to an IMPLICIT_DEF.
314 /// Returns nullptr if @p CopyMI was not in any way eliminable. Otherwise,
315 /// it returns @p CopyMI (which could be an IMPLICIT_DEF at this point).
316 MachineInstr *eliminateUndefCopy(MachineInstr *CopyMI);
317
318 /// Check whether or not we should apply the terminal rule on the
319 /// destination (Dst) of \p Copy.
320 /// When the terminal rule applies, Copy is not profitable to
321 /// coalesce.
322 /// Dst is terminal if it has exactly one affinity (Dst, Src) and
323 /// at least one interference (Dst, Dst2). If Dst is terminal, the
324 /// terminal rule consists in checking that at least one of
325 /// interfering node, say Dst2, has an affinity of equal or greater
326 /// weight with Src.
327 /// In that case, Dst2 and Dst will not be able to be both coalesced
328 /// with Src. Since Dst2 exposes more coalescing opportunities than
329 /// Dst, we can drop \p Copy.
330 bool applyTerminalRule(const MachineInstr &Copy) const;
331
332 /// Wrapper method for \see LiveIntervals::shrinkToUses.
333 /// This method does the proper fixing of the live-ranges when the afore
334 /// mentioned method returns true.
shrinkToUses(LiveInterval * LI,SmallVectorImpl<MachineInstr * > * Dead=nullptr)335 void shrinkToUses(LiveInterval *LI,
336 SmallVectorImpl<MachineInstr * > *Dead = nullptr) {
337 NumShrinkToUses++;
338 if (LIS->shrinkToUses(LI, Dead)) {
339 /// Check whether or not \p LI is composed by multiple connected
340 /// components and if that is the case, fix that.
341 SmallVector<LiveInterval*, 8> SplitLIs;
342 LIS->splitSeparateComponents(*LI, SplitLIs);
343 }
344 }
345
346 /// Wrapper Method to do all the necessary work when an Instruction is
347 /// deleted.
348 /// Optimizations should use this to make sure that deleted instructions
349 /// are always accounted for.
deleteInstr(MachineInstr * MI)350 void deleteInstr(MachineInstr* MI) {
351 ErasedInstrs.insert(MI);
352 LIS->RemoveMachineInstrFromMaps(*MI);
353 MI->eraseFromParent();
354 }
355
356 /// Walk over function and initialize the DbgVRegToValues map.
357 void buildVRegToDbgValueMap(MachineFunction &MF);
358
359 /// Test whether, after merging, any DBG_VALUEs would refer to a
360 /// different value number than before merging, and whether this can
361 /// be resolved. If not, mark the DBG_VALUE as being undef.
362 void checkMergingChangesDbgValues(CoalescerPair &CP, LiveRange &LHS,
363 JoinVals &LHSVals, LiveRange &RHS,
364 JoinVals &RHSVals);
365
366 void checkMergingChangesDbgValuesImpl(Register Reg, LiveRange &OtherRange,
367 LiveRange &RegRange, JoinVals &Vals2);
368
369 public:
370 static char ID; ///< Class identification, replacement for typeinfo
371
RegisterCoalescer()372 RegisterCoalescer() : MachineFunctionPass(ID) {
373 initializeRegisterCoalescerPass(*PassRegistry::getPassRegistry());
374 }
375
376 void getAnalysisUsage(AnalysisUsage &AU) const override;
377
378 void releaseMemory() override;
379
380 /// This is the pass entry point.
381 bool runOnMachineFunction(MachineFunction&) override;
382
383 /// Implement the dump method.
384 void print(raw_ostream &O, const Module* = nullptr) const override;
385 };
386
387 } // end anonymous namespace
388
389 char RegisterCoalescer::ID = 0;
390
391 char &llvm::RegisterCoalescerID = RegisterCoalescer::ID;
392
393 INITIALIZE_PASS_BEGIN(RegisterCoalescer, "simple-register-coalescing",
394 "Simple Register Coalescing", false, false)
INITIALIZE_PASS_DEPENDENCY(LiveIntervals)395 INITIALIZE_PASS_DEPENDENCY(LiveIntervals)
396 INITIALIZE_PASS_DEPENDENCY(SlotIndexes)
397 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo)
398 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
399 INITIALIZE_PASS_END(RegisterCoalescer, "simple-register-coalescing",
400 "Simple Register Coalescing", false, false)
401
402 LLVM_NODISCARD static bool isMoveInstr(const TargetRegisterInfo &tri,
403 const MachineInstr *MI, Register &Src,
404 Register &Dst, unsigned &SrcSub,
405 unsigned &DstSub) {
406 if (MI->isCopy()) {
407 Dst = MI->getOperand(0).getReg();
408 DstSub = MI->getOperand(0).getSubReg();
409 Src = MI->getOperand(1).getReg();
410 SrcSub = MI->getOperand(1).getSubReg();
411 } else if (MI->isSubregToReg()) {
412 Dst = MI->getOperand(0).getReg();
413 DstSub = tri.composeSubRegIndices(MI->getOperand(0).getSubReg(),
414 MI->getOperand(3).getImm());
415 Src = MI->getOperand(2).getReg();
416 SrcSub = MI->getOperand(2).getSubReg();
417 } else
418 return false;
419 return true;
420 }
421
422 /// Return true if this block should be vacated by the coalescer to eliminate
423 /// branches. The important cases to handle in the coalescer are critical edges
424 /// split during phi elimination which contain only copies. Simple blocks that
425 /// contain non-branches should also be vacated, but this can be handled by an
426 /// earlier pass similar to early if-conversion.
isSplitEdge(const MachineBasicBlock * MBB)427 static bool isSplitEdge(const MachineBasicBlock *MBB) {
428 if (MBB->pred_size() != 1 || MBB->succ_size() != 1)
429 return false;
430
431 for (const auto &MI : *MBB) {
432 if (!MI.isCopyLike() && !MI.isUnconditionalBranch())
433 return false;
434 }
435 return true;
436 }
437
setRegisters(const MachineInstr * MI)438 bool CoalescerPair::setRegisters(const MachineInstr *MI) {
439 SrcReg = DstReg = Register();
440 SrcIdx = DstIdx = 0;
441 NewRC = nullptr;
442 Flipped = CrossClass = false;
443
444 Register Src, Dst;
445 unsigned SrcSub = 0, DstSub = 0;
446 if (!isMoveInstr(TRI, MI, Src, Dst, SrcSub, DstSub))
447 return false;
448 Partial = SrcSub || DstSub;
449
450 // If one register is a physreg, it must be Dst.
451 if (Register::isPhysicalRegister(Src)) {
452 if (Register::isPhysicalRegister(Dst))
453 return false;
454 std::swap(Src, Dst);
455 std::swap(SrcSub, DstSub);
456 Flipped = true;
457 }
458
459 const MachineRegisterInfo &MRI = MI->getMF()->getRegInfo();
460
461 if (Register::isPhysicalRegister(Dst)) {
462 // Eliminate DstSub on a physreg.
463 if (DstSub) {
464 Dst = TRI.getSubReg(Dst, DstSub);
465 if (!Dst) return false;
466 DstSub = 0;
467 }
468
469 // Eliminate SrcSub by picking a corresponding Dst superregister.
470 if (SrcSub) {
471 Dst = TRI.getMatchingSuperReg(Dst, SrcSub, MRI.getRegClass(Src));
472 if (!Dst) return false;
473 } else if (!MRI.getRegClass(Src)->contains(Dst)) {
474 return false;
475 }
476 } else {
477 // Both registers are virtual.
478 const TargetRegisterClass *SrcRC = MRI.getRegClass(Src);
479 const TargetRegisterClass *DstRC = MRI.getRegClass(Dst);
480
481 // Both registers have subreg indices.
482 if (SrcSub && DstSub) {
483 // Copies between different sub-registers are never coalescable.
484 if (Src == Dst && SrcSub != DstSub)
485 return false;
486
487 NewRC = TRI.getCommonSuperRegClass(SrcRC, SrcSub, DstRC, DstSub,
488 SrcIdx, DstIdx);
489 if (!NewRC)
490 return false;
491 } else if (DstSub) {
492 // SrcReg will be merged with a sub-register of DstReg.
493 SrcIdx = DstSub;
494 NewRC = TRI.getMatchingSuperRegClass(DstRC, SrcRC, DstSub);
495 } else if (SrcSub) {
496 // DstReg will be merged with a sub-register of SrcReg.
497 DstIdx = SrcSub;
498 NewRC = TRI.getMatchingSuperRegClass(SrcRC, DstRC, SrcSub);
499 } else {
500 // This is a straight copy without sub-registers.
501 NewRC = TRI.getCommonSubClass(DstRC, SrcRC);
502 }
503
504 // The combined constraint may be impossible to satisfy.
505 if (!NewRC)
506 return false;
507
508 // Prefer SrcReg to be a sub-register of DstReg.
509 // FIXME: Coalescer should support subregs symmetrically.
510 if (DstIdx && !SrcIdx) {
511 std::swap(Src, Dst);
512 std::swap(SrcIdx, DstIdx);
513 Flipped = !Flipped;
514 }
515
516 CrossClass = NewRC != DstRC || NewRC != SrcRC;
517 }
518 // Check our invariants
519 assert(Register::isVirtualRegister(Src) && "Src must be virtual");
520 assert(!(Register::isPhysicalRegister(Dst) && DstSub) &&
521 "Cannot have a physical SubIdx");
522 SrcReg = Src;
523 DstReg = Dst;
524 return true;
525 }
526
flip()527 bool CoalescerPair::flip() {
528 if (Register::isPhysicalRegister(DstReg))
529 return false;
530 std::swap(SrcReg, DstReg);
531 std::swap(SrcIdx, DstIdx);
532 Flipped = !Flipped;
533 return true;
534 }
535
isCoalescable(const MachineInstr * MI) const536 bool CoalescerPair::isCoalescable(const MachineInstr *MI) const {
537 if (!MI)
538 return false;
539 Register Src, Dst;
540 unsigned SrcSub = 0, DstSub = 0;
541 if (!isMoveInstr(TRI, MI, Src, Dst, SrcSub, DstSub))
542 return false;
543
544 // Find the virtual register that is SrcReg.
545 if (Dst == SrcReg) {
546 std::swap(Src, Dst);
547 std::swap(SrcSub, DstSub);
548 } else if (Src != SrcReg) {
549 return false;
550 }
551
552 // Now check that Dst matches DstReg.
553 if (DstReg.isPhysical()) {
554 if (!Dst.isPhysical())
555 return false;
556 assert(!DstIdx && !SrcIdx && "Inconsistent CoalescerPair state.");
557 // DstSub could be set for a physreg from INSERT_SUBREG.
558 if (DstSub)
559 Dst = TRI.getSubReg(Dst, DstSub);
560 // Full copy of Src.
561 if (!SrcSub)
562 return DstReg == Dst;
563 // This is a partial register copy. Check that the parts match.
564 return Register(TRI.getSubReg(DstReg, SrcSub)) == Dst;
565 } else {
566 // DstReg is virtual.
567 if (DstReg != Dst)
568 return false;
569 // Registers match, do the subregisters line up?
570 return TRI.composeSubRegIndices(SrcIdx, SrcSub) ==
571 TRI.composeSubRegIndices(DstIdx, DstSub);
572 }
573 }
574
getAnalysisUsage(AnalysisUsage & AU) const575 void RegisterCoalescer::getAnalysisUsage(AnalysisUsage &AU) const {
576 AU.setPreservesCFG();
577 AU.addRequired<AAResultsWrapperPass>();
578 AU.addRequired<LiveIntervals>();
579 AU.addPreserved<LiveIntervals>();
580 AU.addPreserved<SlotIndexes>();
581 AU.addRequired<MachineLoopInfo>();
582 AU.addPreserved<MachineLoopInfo>();
583 AU.addPreservedID(MachineDominatorsID);
584 MachineFunctionPass::getAnalysisUsage(AU);
585 }
586
eliminateDeadDefs()587 void RegisterCoalescer::eliminateDeadDefs() {
588 SmallVector<Register, 8> NewRegs;
589 LiveRangeEdit(nullptr, NewRegs, *MF, *LIS,
590 nullptr, this).eliminateDeadDefs(DeadDefs);
591 }
592
LRE_WillEraseInstruction(MachineInstr * MI)593 void RegisterCoalescer::LRE_WillEraseInstruction(MachineInstr *MI) {
594 // MI may be in WorkList. Make sure we don't visit it.
595 ErasedInstrs.insert(MI);
596 }
597
adjustCopiesBackFrom(const CoalescerPair & CP,MachineInstr * CopyMI)598 bool RegisterCoalescer::adjustCopiesBackFrom(const CoalescerPair &CP,
599 MachineInstr *CopyMI) {
600 assert(!CP.isPartial() && "This doesn't work for partial copies.");
601 assert(!CP.isPhys() && "This doesn't work for physreg copies.");
602
603 LiveInterval &IntA =
604 LIS->getInterval(CP.isFlipped() ? CP.getDstReg() : CP.getSrcReg());
605 LiveInterval &IntB =
606 LIS->getInterval(CP.isFlipped() ? CP.getSrcReg() : CP.getDstReg());
607 SlotIndex CopyIdx = LIS->getInstructionIndex(*CopyMI).getRegSlot();
608
609 // We have a non-trivially-coalescable copy with IntA being the source and
610 // IntB being the dest, thus this defines a value number in IntB. If the
611 // source value number (in IntA) is defined by a copy from B, see if we can
612 // merge these two pieces of B into a single value number, eliminating a copy.
613 // For example:
614 //
615 // A3 = B0
616 // ...
617 // B1 = A3 <- this copy
618 //
619 // In this case, B0 can be extended to where the B1 copy lives, allowing the
620 // B1 value number to be replaced with B0 (which simplifies the B
621 // liveinterval).
622
623 // BValNo is a value number in B that is defined by a copy from A. 'B1' in
624 // the example above.
625 LiveInterval::iterator BS = IntB.FindSegmentContaining(CopyIdx);
626 if (BS == IntB.end()) return false;
627 VNInfo *BValNo = BS->valno;
628
629 // Get the location that B is defined at. Two options: either this value has
630 // an unknown definition point or it is defined at CopyIdx. If unknown, we
631 // can't process it.
632 if (BValNo->def != CopyIdx) return false;
633
634 // AValNo is the value number in A that defines the copy, A3 in the example.
635 SlotIndex CopyUseIdx = CopyIdx.getRegSlot(true);
636 LiveInterval::iterator AS = IntA.FindSegmentContaining(CopyUseIdx);
637 // The live segment might not exist after fun with physreg coalescing.
638 if (AS == IntA.end()) return false;
639 VNInfo *AValNo = AS->valno;
640
641 // If AValNo is defined as a copy from IntB, we can potentially process this.
642 // Get the instruction that defines this value number.
643 MachineInstr *ACopyMI = LIS->getInstructionFromIndex(AValNo->def);
644 // Don't allow any partial copies, even if isCoalescable() allows them.
645 if (!CP.isCoalescable(ACopyMI) || !ACopyMI->isFullCopy())
646 return false;
647
648 // Get the Segment in IntB that this value number starts with.
649 LiveInterval::iterator ValS =
650 IntB.FindSegmentContaining(AValNo->def.getPrevSlot());
651 if (ValS == IntB.end())
652 return false;
653
654 // Make sure that the end of the live segment is inside the same block as
655 // CopyMI.
656 MachineInstr *ValSEndInst =
657 LIS->getInstructionFromIndex(ValS->end.getPrevSlot());
658 if (!ValSEndInst || ValSEndInst->getParent() != CopyMI->getParent())
659 return false;
660
661 // Okay, we now know that ValS ends in the same block that the CopyMI
662 // live-range starts. If there are no intervening live segments between them
663 // in IntB, we can merge them.
664 if (ValS+1 != BS) return false;
665
666 LLVM_DEBUG(dbgs() << "Extending: " << printReg(IntB.reg(), TRI));
667
668 SlotIndex FillerStart = ValS->end, FillerEnd = BS->start;
669 // We are about to delete CopyMI, so need to remove it as the 'instruction
670 // that defines this value #'. Update the valnum with the new defining
671 // instruction #.
672 BValNo->def = FillerStart;
673
674 // Okay, we can merge them. We need to insert a new liverange:
675 // [ValS.end, BS.begin) of either value number, then we merge the
676 // two value numbers.
677 IntB.addSegment(LiveInterval::Segment(FillerStart, FillerEnd, BValNo));
678
679 // Okay, merge "B1" into the same value number as "B0".
680 if (BValNo != ValS->valno)
681 IntB.MergeValueNumberInto(BValNo, ValS->valno);
682
683 // Do the same for the subregister segments.
684 for (LiveInterval::SubRange &S : IntB.subranges()) {
685 // Check for SubRange Segments of the form [1234r,1234d:0) which can be
686 // removed to prevent creating bogus SubRange Segments.
687 LiveInterval::iterator SS = S.FindSegmentContaining(CopyIdx);
688 if (SS != S.end() && SlotIndex::isSameInstr(SS->start, SS->end)) {
689 S.removeSegment(*SS, true);
690 continue;
691 }
692 // The subrange may have ended before FillerStart. If so, extend it.
693 if (!S.getVNInfoAt(FillerStart)) {
694 SlotIndex BBStart =
695 LIS->getMBBStartIdx(LIS->getMBBFromIndex(FillerStart));
696 S.extendInBlock(BBStart, FillerStart);
697 }
698 VNInfo *SubBValNo = S.getVNInfoAt(CopyIdx);
699 S.addSegment(LiveInterval::Segment(FillerStart, FillerEnd, SubBValNo));
700 VNInfo *SubValSNo = S.getVNInfoAt(AValNo->def.getPrevSlot());
701 if (SubBValNo != SubValSNo)
702 S.MergeValueNumberInto(SubBValNo, SubValSNo);
703 }
704
705 LLVM_DEBUG(dbgs() << " result = " << IntB << '\n');
706
707 // If the source instruction was killing the source register before the
708 // merge, unset the isKill marker given the live range has been extended.
709 int UIdx = ValSEndInst->findRegisterUseOperandIdx(IntB.reg(), true);
710 if (UIdx != -1) {
711 ValSEndInst->getOperand(UIdx).setIsKill(false);
712 }
713
714 // Rewrite the copy.
715 CopyMI->substituteRegister(IntA.reg(), IntB.reg(), 0, *TRI);
716 // If the copy instruction was killing the destination register or any
717 // subrange before the merge trim the live range.
718 bool RecomputeLiveRange = AS->end == CopyIdx;
719 if (!RecomputeLiveRange) {
720 for (LiveInterval::SubRange &S : IntA.subranges()) {
721 LiveInterval::iterator SS = S.FindSegmentContaining(CopyUseIdx);
722 if (SS != S.end() && SS->end == CopyIdx) {
723 RecomputeLiveRange = true;
724 break;
725 }
726 }
727 }
728 if (RecomputeLiveRange)
729 shrinkToUses(&IntA);
730
731 ++numExtends;
732 return true;
733 }
734
hasOtherReachingDefs(LiveInterval & IntA,LiveInterval & IntB,VNInfo * AValNo,VNInfo * BValNo)735 bool RegisterCoalescer::hasOtherReachingDefs(LiveInterval &IntA,
736 LiveInterval &IntB,
737 VNInfo *AValNo,
738 VNInfo *BValNo) {
739 // If AValNo has PHI kills, conservatively assume that IntB defs can reach
740 // the PHI values.
741 if (LIS->hasPHIKill(IntA, AValNo))
742 return true;
743
744 for (LiveRange::Segment &ASeg : IntA.segments) {
745 if (ASeg.valno != AValNo) continue;
746 LiveInterval::iterator BI = llvm::upper_bound(IntB, ASeg.start);
747 if (BI != IntB.begin())
748 --BI;
749 for (; BI != IntB.end() && ASeg.end >= BI->start; ++BI) {
750 if (BI->valno == BValNo)
751 continue;
752 if (BI->start <= ASeg.start && BI->end > ASeg.start)
753 return true;
754 if (BI->start > ASeg.start && BI->start < ASeg.end)
755 return true;
756 }
757 }
758 return false;
759 }
760
761 /// Copy segments with value number @p SrcValNo from liverange @p Src to live
762 /// range @Dst and use value number @p DstValNo there.
763 static std::pair<bool,bool>
addSegmentsWithValNo(LiveRange & Dst,VNInfo * DstValNo,const LiveRange & Src,const VNInfo * SrcValNo)764 addSegmentsWithValNo(LiveRange &Dst, VNInfo *DstValNo, const LiveRange &Src,
765 const VNInfo *SrcValNo) {
766 bool Changed = false;
767 bool MergedWithDead = false;
768 for (const LiveRange::Segment &S : Src.segments) {
769 if (S.valno != SrcValNo)
770 continue;
771 // This is adding a segment from Src that ends in a copy that is about
772 // to be removed. This segment is going to be merged with a pre-existing
773 // segment in Dst. This works, except in cases when the corresponding
774 // segment in Dst is dead. For example: adding [192r,208r:1) from Src
775 // to [208r,208d:1) in Dst would create [192r,208d:1) in Dst.
776 // Recognized such cases, so that the segments can be shrunk.
777 LiveRange::Segment Added = LiveRange::Segment(S.start, S.end, DstValNo);
778 LiveRange::Segment &Merged = *Dst.addSegment(Added);
779 if (Merged.end.isDead())
780 MergedWithDead = true;
781 Changed = true;
782 }
783 return std::make_pair(Changed, MergedWithDead);
784 }
785
786 std::pair<bool,bool>
removeCopyByCommutingDef(const CoalescerPair & CP,MachineInstr * CopyMI)787 RegisterCoalescer::removeCopyByCommutingDef(const CoalescerPair &CP,
788 MachineInstr *CopyMI) {
789 assert(!CP.isPhys());
790
791 LiveInterval &IntA =
792 LIS->getInterval(CP.isFlipped() ? CP.getDstReg() : CP.getSrcReg());
793 LiveInterval &IntB =
794 LIS->getInterval(CP.isFlipped() ? CP.getSrcReg() : CP.getDstReg());
795
796 // We found a non-trivially-coalescable copy with IntA being the source and
797 // IntB being the dest, thus this defines a value number in IntB. If the
798 // source value number (in IntA) is defined by a commutable instruction and
799 // its other operand is coalesced to the copy dest register, see if we can
800 // transform the copy into a noop by commuting the definition. For example,
801 //
802 // A3 = op A2 killed B0
803 // ...
804 // B1 = A3 <- this copy
805 // ...
806 // = op A3 <- more uses
807 //
808 // ==>
809 //
810 // B2 = op B0 killed A2
811 // ...
812 // B1 = B2 <- now an identity copy
813 // ...
814 // = op B2 <- more uses
815
816 // BValNo is a value number in B that is defined by a copy from A. 'B1' in
817 // the example above.
818 SlotIndex CopyIdx = LIS->getInstructionIndex(*CopyMI).getRegSlot();
819 VNInfo *BValNo = IntB.getVNInfoAt(CopyIdx);
820 assert(BValNo != nullptr && BValNo->def == CopyIdx);
821
822 // AValNo is the value number in A that defines the copy, A3 in the example.
823 VNInfo *AValNo = IntA.getVNInfoAt(CopyIdx.getRegSlot(true));
824 assert(AValNo && !AValNo->isUnused() && "COPY source not live");
825 if (AValNo->isPHIDef())
826 return { false, false };
827 MachineInstr *DefMI = LIS->getInstructionFromIndex(AValNo->def);
828 if (!DefMI)
829 return { false, false };
830 if (!DefMI->isCommutable())
831 return { false, false };
832 // If DefMI is a two-address instruction then commuting it will change the
833 // destination register.
834 int DefIdx = DefMI->findRegisterDefOperandIdx(IntA.reg());
835 assert(DefIdx != -1);
836 unsigned UseOpIdx;
837 if (!DefMI->isRegTiedToUseOperand(DefIdx, &UseOpIdx))
838 return { false, false };
839
840 // FIXME: The code below tries to commute 'UseOpIdx' operand with some other
841 // commutable operand which is expressed by 'CommuteAnyOperandIndex'value
842 // passed to the method. That _other_ operand is chosen by
843 // the findCommutedOpIndices() method.
844 //
845 // That is obviously an area for improvement in case of instructions having
846 // more than 2 operands. For example, if some instruction has 3 commutable
847 // operands then all possible variants (i.e. op#1<->op#2, op#1<->op#3,
848 // op#2<->op#3) of commute transformation should be considered/tried here.
849 unsigned NewDstIdx = TargetInstrInfo::CommuteAnyOperandIndex;
850 if (!TII->findCommutedOpIndices(*DefMI, UseOpIdx, NewDstIdx))
851 return { false, false };
852
853 MachineOperand &NewDstMO = DefMI->getOperand(NewDstIdx);
854 Register NewReg = NewDstMO.getReg();
855 if (NewReg != IntB.reg() || !IntB.Query(AValNo->def).isKill())
856 return { false, false };
857
858 // Make sure there are no other definitions of IntB that would reach the
859 // uses which the new definition can reach.
860 if (hasOtherReachingDefs(IntA, IntB, AValNo, BValNo))
861 return { false, false };
862
863 // If some of the uses of IntA.reg is already coalesced away, return false.
864 // It's not possible to determine whether it's safe to perform the coalescing.
865 for (MachineOperand &MO : MRI->use_nodbg_operands(IntA.reg())) {
866 MachineInstr *UseMI = MO.getParent();
867 unsigned OpNo = &MO - &UseMI->getOperand(0);
868 SlotIndex UseIdx = LIS->getInstructionIndex(*UseMI);
869 LiveInterval::iterator US = IntA.FindSegmentContaining(UseIdx);
870 if (US == IntA.end() || US->valno != AValNo)
871 continue;
872 // If this use is tied to a def, we can't rewrite the register.
873 if (UseMI->isRegTiedToDefOperand(OpNo))
874 return { false, false };
875 }
876
877 LLVM_DEBUG(dbgs() << "\tremoveCopyByCommutingDef: " << AValNo->def << '\t'
878 << *DefMI);
879
880 // At this point we have decided that it is legal to do this
881 // transformation. Start by commuting the instruction.
882 MachineBasicBlock *MBB = DefMI->getParent();
883 MachineInstr *NewMI =
884 TII->commuteInstruction(*DefMI, false, UseOpIdx, NewDstIdx);
885 if (!NewMI)
886 return { false, false };
887 if (Register::isVirtualRegister(IntA.reg()) &&
888 Register::isVirtualRegister(IntB.reg()) &&
889 !MRI->constrainRegClass(IntB.reg(), MRI->getRegClass(IntA.reg())))
890 return { false, false };
891 if (NewMI != DefMI) {
892 LIS->ReplaceMachineInstrInMaps(*DefMI, *NewMI);
893 MachineBasicBlock::iterator Pos = DefMI;
894 MBB->insert(Pos, NewMI);
895 MBB->erase(DefMI);
896 }
897
898 // If ALR and BLR overlaps and end of BLR extends beyond end of ALR, e.g.
899 // A = or A, B
900 // ...
901 // B = A
902 // ...
903 // C = killed A
904 // ...
905 // = B
906
907 // Update uses of IntA of the specific Val# with IntB.
908 for (MachineRegisterInfo::use_iterator UI = MRI->use_begin(IntA.reg()),
909 UE = MRI->use_end();
910 UI != UE;
911 /* ++UI is below because of possible MI removal */) {
912 MachineOperand &UseMO = *UI;
913 ++UI;
914 if (UseMO.isUndef())
915 continue;
916 MachineInstr *UseMI = UseMO.getParent();
917 if (UseMI->isDebugValue()) {
918 // FIXME These don't have an instruction index. Not clear we have enough
919 // info to decide whether to do this replacement or not. For now do it.
920 UseMO.setReg(NewReg);
921 continue;
922 }
923 SlotIndex UseIdx = LIS->getInstructionIndex(*UseMI).getRegSlot(true);
924 LiveInterval::iterator US = IntA.FindSegmentContaining(UseIdx);
925 assert(US != IntA.end() && "Use must be live");
926 if (US->valno != AValNo)
927 continue;
928 // Kill flags are no longer accurate. They are recomputed after RA.
929 UseMO.setIsKill(false);
930 if (Register::isPhysicalRegister(NewReg))
931 UseMO.substPhysReg(NewReg, *TRI);
932 else
933 UseMO.setReg(NewReg);
934 if (UseMI == CopyMI)
935 continue;
936 if (!UseMI->isCopy())
937 continue;
938 if (UseMI->getOperand(0).getReg() != IntB.reg() ||
939 UseMI->getOperand(0).getSubReg())
940 continue;
941
942 // This copy will become a noop. If it's defining a new val#, merge it into
943 // BValNo.
944 SlotIndex DefIdx = UseIdx.getRegSlot();
945 VNInfo *DVNI = IntB.getVNInfoAt(DefIdx);
946 if (!DVNI)
947 continue;
948 LLVM_DEBUG(dbgs() << "\t\tnoop: " << DefIdx << '\t' << *UseMI);
949 assert(DVNI->def == DefIdx);
950 BValNo = IntB.MergeValueNumberInto(DVNI, BValNo);
951 for (LiveInterval::SubRange &S : IntB.subranges()) {
952 VNInfo *SubDVNI = S.getVNInfoAt(DefIdx);
953 if (!SubDVNI)
954 continue;
955 VNInfo *SubBValNo = S.getVNInfoAt(CopyIdx);
956 assert(SubBValNo->def == CopyIdx);
957 S.MergeValueNumberInto(SubDVNI, SubBValNo);
958 }
959
960 deleteInstr(UseMI);
961 }
962
963 // Extend BValNo by merging in IntA live segments of AValNo. Val# definition
964 // is updated.
965 bool ShrinkB = false;
966 BumpPtrAllocator &Allocator = LIS->getVNInfoAllocator();
967 if (IntA.hasSubRanges() || IntB.hasSubRanges()) {
968 if (!IntA.hasSubRanges()) {
969 LaneBitmask Mask = MRI->getMaxLaneMaskForVReg(IntA.reg());
970 IntA.createSubRangeFrom(Allocator, Mask, IntA);
971 } else if (!IntB.hasSubRanges()) {
972 LaneBitmask Mask = MRI->getMaxLaneMaskForVReg(IntB.reg());
973 IntB.createSubRangeFrom(Allocator, Mask, IntB);
974 }
975 SlotIndex AIdx = CopyIdx.getRegSlot(true);
976 LaneBitmask MaskA;
977 const SlotIndexes &Indexes = *LIS->getSlotIndexes();
978 for (LiveInterval::SubRange &SA : IntA.subranges()) {
979 VNInfo *ASubValNo = SA.getVNInfoAt(AIdx);
980 // Even if we are dealing with a full copy, some lanes can
981 // still be undefined.
982 // E.g.,
983 // undef A.subLow = ...
984 // B = COPY A <== A.subHigh is undefined here and does
985 // not have a value number.
986 if (!ASubValNo)
987 continue;
988 MaskA |= SA.LaneMask;
989
990 IntB.refineSubRanges(
991 Allocator, SA.LaneMask,
992 [&Allocator, &SA, CopyIdx, ASubValNo,
993 &ShrinkB](LiveInterval::SubRange &SR) {
994 VNInfo *BSubValNo = SR.empty() ? SR.getNextValue(CopyIdx, Allocator)
995 : SR.getVNInfoAt(CopyIdx);
996 assert(BSubValNo != nullptr);
997 auto P = addSegmentsWithValNo(SR, BSubValNo, SA, ASubValNo);
998 ShrinkB |= P.second;
999 if (P.first)
1000 BSubValNo->def = ASubValNo->def;
1001 },
1002 Indexes, *TRI);
1003 }
1004 // Go over all subranges of IntB that have not been covered by IntA,
1005 // and delete the segments starting at CopyIdx. This can happen if
1006 // IntA has undef lanes that are defined in IntB.
1007 for (LiveInterval::SubRange &SB : IntB.subranges()) {
1008 if ((SB.LaneMask & MaskA).any())
1009 continue;
1010 if (LiveRange::Segment *S = SB.getSegmentContaining(CopyIdx))
1011 if (S->start.getBaseIndex() == CopyIdx.getBaseIndex())
1012 SB.removeSegment(*S, true);
1013 }
1014 }
1015
1016 BValNo->def = AValNo->def;
1017 auto P = addSegmentsWithValNo(IntB, BValNo, IntA, AValNo);
1018 ShrinkB |= P.second;
1019 LLVM_DEBUG(dbgs() << "\t\textended: " << IntB << '\n');
1020
1021 LIS->removeVRegDefAt(IntA, AValNo->def);
1022
1023 LLVM_DEBUG(dbgs() << "\t\ttrimmed: " << IntA << '\n');
1024 ++numCommutes;
1025 return { true, ShrinkB };
1026 }
1027
1028 /// For copy B = A in BB2, if A is defined by A = B in BB0 which is a
1029 /// predecessor of BB2, and if B is not redefined on the way from A = B
1030 /// in BB0 to B = A in BB2, B = A in BB2 is partially redundant if the
1031 /// execution goes through the path from BB0 to BB2. We may move B = A
1032 /// to the predecessor without such reversed copy.
1033 /// So we will transform the program from:
1034 /// BB0:
1035 /// A = B; BB1:
1036 /// ... ...
1037 /// / \ /
1038 /// BB2:
1039 /// ...
1040 /// B = A;
1041 ///
1042 /// to:
1043 ///
1044 /// BB0: BB1:
1045 /// A = B; ...
1046 /// ... B = A;
1047 /// / \ /
1048 /// BB2:
1049 /// ...
1050 ///
1051 /// A special case is when BB0 and BB2 are the same BB which is the only
1052 /// BB in a loop:
1053 /// BB1:
1054 /// ...
1055 /// BB0/BB2: ----
1056 /// B = A; |
1057 /// ... |
1058 /// A = B; |
1059 /// |-------
1060 /// |
1061 /// We may hoist B = A from BB0/BB2 to BB1.
1062 ///
1063 /// The major preconditions for correctness to remove such partial
1064 /// redundancy include:
1065 /// 1. A in B = A in BB2 is defined by a PHI in BB2, and one operand of
1066 /// the PHI is defined by the reversed copy A = B in BB0.
1067 /// 2. No B is referenced from the start of BB2 to B = A.
1068 /// 3. No B is defined from A = B to the end of BB0.
1069 /// 4. BB1 has only one successor.
1070 ///
1071 /// 2 and 4 implicitly ensure B is not live at the end of BB1.
1072 /// 4 guarantees BB2 is hotter than BB1, so we can only move a copy to a
1073 /// colder place, which not only prevent endless loop, but also make sure
1074 /// the movement of copy is beneficial.
removePartialRedundancy(const CoalescerPair & CP,MachineInstr & CopyMI)1075 bool RegisterCoalescer::removePartialRedundancy(const CoalescerPair &CP,
1076 MachineInstr &CopyMI) {
1077 assert(!CP.isPhys());
1078 if (!CopyMI.isFullCopy())
1079 return false;
1080
1081 MachineBasicBlock &MBB = *CopyMI.getParent();
1082 // If this block is the target of an invoke/inlineasm_br, moving the copy into
1083 // the predecessor is tricker, and we don't handle it.
1084 if (MBB.isEHPad() || MBB.isInlineAsmBrIndirectTarget())
1085 return false;
1086
1087 if (MBB.pred_size() != 2)
1088 return false;
1089
1090 LiveInterval &IntA =
1091 LIS->getInterval(CP.isFlipped() ? CP.getDstReg() : CP.getSrcReg());
1092 LiveInterval &IntB =
1093 LIS->getInterval(CP.isFlipped() ? CP.getSrcReg() : CP.getDstReg());
1094
1095 // A is defined by PHI at the entry of MBB.
1096 SlotIndex CopyIdx = LIS->getInstructionIndex(CopyMI).getRegSlot(true);
1097 VNInfo *AValNo = IntA.getVNInfoAt(CopyIdx);
1098 assert(AValNo && !AValNo->isUnused() && "COPY source not live");
1099 if (!AValNo->isPHIDef())
1100 return false;
1101
1102 // No B is referenced before CopyMI in MBB.
1103 if (IntB.overlaps(LIS->getMBBStartIdx(&MBB), CopyIdx))
1104 return false;
1105
1106 // MBB has two predecessors: one contains A = B so no copy will be inserted
1107 // for it. The other one will have a copy moved from MBB.
1108 bool FoundReverseCopy = false;
1109 MachineBasicBlock *CopyLeftBB = nullptr;
1110 for (MachineBasicBlock *Pred : MBB.predecessors()) {
1111 VNInfo *PVal = IntA.getVNInfoBefore(LIS->getMBBEndIdx(Pred));
1112 MachineInstr *DefMI = LIS->getInstructionFromIndex(PVal->def);
1113 if (!DefMI || !DefMI->isFullCopy()) {
1114 CopyLeftBB = Pred;
1115 continue;
1116 }
1117 // Check DefMI is a reverse copy and it is in BB Pred.
1118 if (DefMI->getOperand(0).getReg() != IntA.reg() ||
1119 DefMI->getOperand(1).getReg() != IntB.reg() ||
1120 DefMI->getParent() != Pred) {
1121 CopyLeftBB = Pred;
1122 continue;
1123 }
1124 // If there is any other def of B after DefMI and before the end of Pred,
1125 // we need to keep the copy of B = A at the end of Pred if we remove
1126 // B = A from MBB.
1127 bool ValB_Changed = false;
1128 for (auto VNI : IntB.valnos) {
1129 if (VNI->isUnused())
1130 continue;
1131 if (PVal->def < VNI->def && VNI->def < LIS->getMBBEndIdx(Pred)) {
1132 ValB_Changed = true;
1133 break;
1134 }
1135 }
1136 if (ValB_Changed) {
1137 CopyLeftBB = Pred;
1138 continue;
1139 }
1140 FoundReverseCopy = true;
1141 }
1142
1143 // If no reverse copy is found in predecessors, nothing to do.
1144 if (!FoundReverseCopy)
1145 return false;
1146
1147 // If CopyLeftBB is nullptr, it means every predecessor of MBB contains
1148 // reverse copy, CopyMI can be removed trivially if only IntA/IntB is updated.
1149 // If CopyLeftBB is not nullptr, move CopyMI from MBB to CopyLeftBB and
1150 // update IntA/IntB.
1151 //
1152 // If CopyLeftBB is not nullptr, ensure CopyLeftBB has a single succ so
1153 // MBB is hotter than CopyLeftBB.
1154 if (CopyLeftBB && CopyLeftBB->succ_size() > 1)
1155 return false;
1156
1157 // Now (almost sure it's) ok to move copy.
1158 if (CopyLeftBB) {
1159 // Position in CopyLeftBB where we should insert new copy.
1160 auto InsPos = CopyLeftBB->getFirstTerminator();
1161
1162 // Make sure that B isn't referenced in the terminators (if any) at the end
1163 // of the predecessor since we're about to insert a new definition of B
1164 // before them.
1165 if (InsPos != CopyLeftBB->end()) {
1166 SlotIndex InsPosIdx = LIS->getInstructionIndex(*InsPos).getRegSlot(true);
1167 if (IntB.overlaps(InsPosIdx, LIS->getMBBEndIdx(CopyLeftBB)))
1168 return false;
1169 }
1170
1171 LLVM_DEBUG(dbgs() << "\tremovePartialRedundancy: Move the copy to "
1172 << printMBBReference(*CopyLeftBB) << '\t' << CopyMI);
1173
1174 // Insert new copy to CopyLeftBB.
1175 MachineInstr *NewCopyMI = BuildMI(*CopyLeftBB, InsPos, CopyMI.getDebugLoc(),
1176 TII->get(TargetOpcode::COPY), IntB.reg())
1177 .addReg(IntA.reg());
1178 SlotIndex NewCopyIdx =
1179 LIS->InsertMachineInstrInMaps(*NewCopyMI).getRegSlot();
1180 IntB.createDeadDef(NewCopyIdx, LIS->getVNInfoAllocator());
1181 for (LiveInterval::SubRange &SR : IntB.subranges())
1182 SR.createDeadDef(NewCopyIdx, LIS->getVNInfoAllocator());
1183
1184 // If the newly created Instruction has an address of an instruction that was
1185 // deleted before (object recycled by the allocator) it needs to be removed from
1186 // the deleted list.
1187 ErasedInstrs.erase(NewCopyMI);
1188 } else {
1189 LLVM_DEBUG(dbgs() << "\tremovePartialRedundancy: Remove the copy from "
1190 << printMBBReference(MBB) << '\t' << CopyMI);
1191 }
1192
1193 // Remove CopyMI.
1194 // Note: This is fine to remove the copy before updating the live-ranges.
1195 // While updating the live-ranges, we only look at slot indices and
1196 // never go back to the instruction.
1197 // Mark instructions as deleted.
1198 deleteInstr(&CopyMI);
1199
1200 // Update the liveness.
1201 SmallVector<SlotIndex, 8> EndPoints;
1202 VNInfo *BValNo = IntB.Query(CopyIdx).valueOutOrDead();
1203 LIS->pruneValue(*static_cast<LiveRange *>(&IntB), CopyIdx.getRegSlot(),
1204 &EndPoints);
1205 BValNo->markUnused();
1206 // Extend IntB to the EndPoints of its original live interval.
1207 LIS->extendToIndices(IntB, EndPoints);
1208
1209 // Now, do the same for its subranges.
1210 for (LiveInterval::SubRange &SR : IntB.subranges()) {
1211 EndPoints.clear();
1212 VNInfo *BValNo = SR.Query(CopyIdx).valueOutOrDead();
1213 assert(BValNo && "All sublanes should be live");
1214 LIS->pruneValue(SR, CopyIdx.getRegSlot(), &EndPoints);
1215 BValNo->markUnused();
1216 // We can have a situation where the result of the original copy is live,
1217 // but is immediately dead in this subrange, e.g. [336r,336d:0). That makes
1218 // the copy appear as an endpoint from pruneValue(), but we don't want it
1219 // to because the copy has been removed. We can go ahead and remove that
1220 // endpoint; there is no other situation here that there could be a use at
1221 // the same place as we know that the copy is a full copy.
1222 for (unsigned I = 0; I != EndPoints.size(); ) {
1223 if (SlotIndex::isSameInstr(EndPoints[I], CopyIdx)) {
1224 EndPoints[I] = EndPoints.back();
1225 EndPoints.pop_back();
1226 continue;
1227 }
1228 ++I;
1229 }
1230 SmallVector<SlotIndex, 8> Undefs;
1231 IntB.computeSubRangeUndefs(Undefs, SR.LaneMask, *MRI,
1232 *LIS->getSlotIndexes());
1233 LIS->extendToIndices(SR, EndPoints, Undefs);
1234 }
1235 // If any dead defs were extended, truncate them.
1236 shrinkToUses(&IntB);
1237
1238 // Finally, update the live-range of IntA.
1239 shrinkToUses(&IntA);
1240 return true;
1241 }
1242
1243 /// Returns true if @p MI defines the full vreg @p Reg, as opposed to just
1244 /// defining a subregister.
definesFullReg(const MachineInstr & MI,Register Reg)1245 static bool definesFullReg(const MachineInstr &MI, Register Reg) {
1246 assert(!Reg.isPhysical() && "This code cannot handle physreg aliasing");
1247
1248 for (const MachineOperand &Op : MI.operands()) {
1249 if (!Op.isReg() || !Op.isDef() || Op.getReg() != Reg)
1250 continue;
1251 // Return true if we define the full register or don't care about the value
1252 // inside other subregisters.
1253 if (Op.getSubReg() == 0 || Op.isUndef())
1254 return true;
1255 }
1256 return false;
1257 }
1258
reMaterializeTrivialDef(const CoalescerPair & CP,MachineInstr * CopyMI,bool & IsDefCopy)1259 bool RegisterCoalescer::reMaterializeTrivialDef(const CoalescerPair &CP,
1260 MachineInstr *CopyMI,
1261 bool &IsDefCopy) {
1262 IsDefCopy = false;
1263 Register SrcReg = CP.isFlipped() ? CP.getDstReg() : CP.getSrcReg();
1264 unsigned SrcIdx = CP.isFlipped() ? CP.getDstIdx() : CP.getSrcIdx();
1265 Register DstReg = CP.isFlipped() ? CP.getSrcReg() : CP.getDstReg();
1266 unsigned DstIdx = CP.isFlipped() ? CP.getSrcIdx() : CP.getDstIdx();
1267 if (Register::isPhysicalRegister(SrcReg))
1268 return false;
1269
1270 LiveInterval &SrcInt = LIS->getInterval(SrcReg);
1271 SlotIndex CopyIdx = LIS->getInstructionIndex(*CopyMI);
1272 VNInfo *ValNo = SrcInt.Query(CopyIdx).valueIn();
1273 if (!ValNo)
1274 return false;
1275 if (ValNo->isPHIDef() || ValNo->isUnused())
1276 return false;
1277 MachineInstr *DefMI = LIS->getInstructionFromIndex(ValNo->def);
1278 if (!DefMI)
1279 return false;
1280 if (DefMI->isCopyLike()) {
1281 IsDefCopy = true;
1282 return false;
1283 }
1284 if (!TII->isAsCheapAsAMove(*DefMI))
1285 return false;
1286 if (!TII->isTriviallyReMaterializable(*DefMI, AA))
1287 return false;
1288 if (!definesFullReg(*DefMI, SrcReg))
1289 return false;
1290 bool SawStore = false;
1291 if (!DefMI->isSafeToMove(AA, SawStore))
1292 return false;
1293 const MCInstrDesc &MCID = DefMI->getDesc();
1294 if (MCID.getNumDefs() != 1)
1295 return false;
1296 // Only support subregister destinations when the def is read-undef.
1297 MachineOperand &DstOperand = CopyMI->getOperand(0);
1298 Register CopyDstReg = DstOperand.getReg();
1299 if (DstOperand.getSubReg() && !DstOperand.isUndef())
1300 return false;
1301
1302 // If both SrcIdx and DstIdx are set, correct rematerialization would widen
1303 // the register substantially (beyond both source and dest size). This is bad
1304 // for performance since it can cascade through a function, introducing many
1305 // extra spills and fills (e.g. ARM can easily end up copying QQQQPR registers
1306 // around after a few subreg copies).
1307 if (SrcIdx && DstIdx)
1308 return false;
1309
1310 const TargetRegisterClass *DefRC = TII->getRegClass(MCID, 0, TRI, *MF);
1311 if (!DefMI->isImplicitDef()) {
1312 if (DstReg.isPhysical()) {
1313 Register NewDstReg = DstReg;
1314
1315 unsigned NewDstIdx = TRI->composeSubRegIndices(CP.getSrcIdx(),
1316 DefMI->getOperand(0).getSubReg());
1317 if (NewDstIdx)
1318 NewDstReg = TRI->getSubReg(DstReg, NewDstIdx);
1319
1320 // Finally, make sure that the physical subregister that will be
1321 // constructed later is permitted for the instruction.
1322 if (!DefRC->contains(NewDstReg))
1323 return false;
1324 } else {
1325 // Theoretically, some stack frame reference could exist. Just make sure
1326 // it hasn't actually happened.
1327 assert(Register::isVirtualRegister(DstReg) &&
1328 "Only expect to deal with virtual or physical registers");
1329 }
1330 }
1331
1332 DebugLoc DL = CopyMI->getDebugLoc();
1333 MachineBasicBlock *MBB = CopyMI->getParent();
1334 MachineBasicBlock::iterator MII =
1335 std::next(MachineBasicBlock::iterator(CopyMI));
1336 TII->reMaterialize(*MBB, MII, DstReg, SrcIdx, *DefMI, *TRI);
1337 MachineInstr &NewMI = *std::prev(MII);
1338 NewMI.setDebugLoc(DL);
1339
1340 // In a situation like the following:
1341 // %0:subreg = instr ; DefMI, subreg = DstIdx
1342 // %1 = copy %0:subreg ; CopyMI, SrcIdx = 0
1343 // instead of widening %1 to the register class of %0 simply do:
1344 // %1 = instr
1345 const TargetRegisterClass *NewRC = CP.getNewRC();
1346 if (DstIdx != 0) {
1347 MachineOperand &DefMO = NewMI.getOperand(0);
1348 if (DefMO.getSubReg() == DstIdx) {
1349 assert(SrcIdx == 0 && CP.isFlipped()
1350 && "Shouldn't have SrcIdx+DstIdx at this point");
1351 const TargetRegisterClass *DstRC = MRI->getRegClass(DstReg);
1352 const TargetRegisterClass *CommonRC =
1353 TRI->getCommonSubClass(DefRC, DstRC);
1354 if (CommonRC != nullptr) {
1355 NewRC = CommonRC;
1356 DstIdx = 0;
1357 DefMO.setSubReg(0);
1358 DefMO.setIsUndef(false); // Only subregs can have def+undef.
1359 }
1360 }
1361 }
1362
1363 // CopyMI may have implicit operands, save them so that we can transfer them
1364 // over to the newly materialized instruction after CopyMI is removed.
1365 SmallVector<MachineOperand, 4> ImplicitOps;
1366 ImplicitOps.reserve(CopyMI->getNumOperands() -
1367 CopyMI->getDesc().getNumOperands());
1368 for (unsigned I = CopyMI->getDesc().getNumOperands(),
1369 E = CopyMI->getNumOperands();
1370 I != E; ++I) {
1371 MachineOperand &MO = CopyMI->getOperand(I);
1372 if (MO.isReg()) {
1373 assert(MO.isImplicit() && "No explicit operands after implicit operands.");
1374 // Discard VReg implicit defs.
1375 if (Register::isPhysicalRegister(MO.getReg()))
1376 ImplicitOps.push_back(MO);
1377 }
1378 }
1379
1380 LIS->ReplaceMachineInstrInMaps(*CopyMI, NewMI);
1381 CopyMI->eraseFromParent();
1382 ErasedInstrs.insert(CopyMI);
1383
1384 // NewMI may have dead implicit defs (E.g. EFLAGS for MOV<bits>r0 on X86).
1385 // We need to remember these so we can add intervals once we insert
1386 // NewMI into SlotIndexes.
1387 SmallVector<MCRegister, 4> NewMIImplDefs;
1388 for (unsigned i = NewMI.getDesc().getNumOperands(),
1389 e = NewMI.getNumOperands();
1390 i != e; ++i) {
1391 MachineOperand &MO = NewMI.getOperand(i);
1392 if (MO.isReg() && MO.isDef()) {
1393 assert(MO.isImplicit() && MO.isDead() &&
1394 Register::isPhysicalRegister(MO.getReg()));
1395 NewMIImplDefs.push_back(MO.getReg().asMCReg());
1396 }
1397 }
1398
1399 if (DstReg.isVirtual()) {
1400 unsigned NewIdx = NewMI.getOperand(0).getSubReg();
1401
1402 if (DefRC != nullptr) {
1403 if (NewIdx)
1404 NewRC = TRI->getMatchingSuperRegClass(NewRC, DefRC, NewIdx);
1405 else
1406 NewRC = TRI->getCommonSubClass(NewRC, DefRC);
1407 assert(NewRC && "subreg chosen for remat incompatible with instruction");
1408 }
1409 // Remap subranges to new lanemask and change register class.
1410 LiveInterval &DstInt = LIS->getInterval(DstReg);
1411 for (LiveInterval::SubRange &SR : DstInt.subranges()) {
1412 SR.LaneMask = TRI->composeSubRegIndexLaneMask(DstIdx, SR.LaneMask);
1413 }
1414 MRI->setRegClass(DstReg, NewRC);
1415
1416 // Update machine operands and add flags.
1417 updateRegDefsUses(DstReg, DstReg, DstIdx);
1418 NewMI.getOperand(0).setSubReg(NewIdx);
1419 // updateRegDefUses can add an "undef" flag to the definition, since
1420 // it will replace DstReg with DstReg.DstIdx. If NewIdx is 0, make
1421 // sure that "undef" is not set.
1422 if (NewIdx == 0)
1423 NewMI.getOperand(0).setIsUndef(false);
1424 // Add dead subregister definitions if we are defining the whole register
1425 // but only part of it is live.
1426 // This could happen if the rematerialization instruction is rematerializing
1427 // more than actually is used in the register.
1428 // An example would be:
1429 // %1 = LOAD CONSTANTS 5, 8 ; Loading both 5 and 8 in different subregs
1430 // ; Copying only part of the register here, but the rest is undef.
1431 // %2:sub_16bit<def, read-undef> = COPY %1:sub_16bit
1432 // ==>
1433 // ; Materialize all the constants but only using one
1434 // %2 = LOAD_CONSTANTS 5, 8
1435 //
1436 // at this point for the part that wasn't defined before we could have
1437 // subranges missing the definition.
1438 if (NewIdx == 0 && DstInt.hasSubRanges()) {
1439 SlotIndex CurrIdx = LIS->getInstructionIndex(NewMI);
1440 SlotIndex DefIndex =
1441 CurrIdx.getRegSlot(NewMI.getOperand(0).isEarlyClobber());
1442 LaneBitmask MaxMask = MRI->getMaxLaneMaskForVReg(DstReg);
1443 VNInfo::Allocator& Alloc = LIS->getVNInfoAllocator();
1444 for (LiveInterval::SubRange &SR : DstInt.subranges()) {
1445 if (!SR.liveAt(DefIndex))
1446 SR.createDeadDef(DefIndex, Alloc);
1447 MaxMask &= ~SR.LaneMask;
1448 }
1449 if (MaxMask.any()) {
1450 LiveInterval::SubRange *SR = DstInt.createSubRange(Alloc, MaxMask);
1451 SR->createDeadDef(DefIndex, Alloc);
1452 }
1453 }
1454
1455 // Make sure that the subrange for resultant undef is removed
1456 // For example:
1457 // %1:sub1<def,read-undef> = LOAD CONSTANT 1
1458 // %2 = COPY %1
1459 // ==>
1460 // %2:sub1<def, read-undef> = LOAD CONSTANT 1
1461 // ; Correct but need to remove the subrange for %2:sub0
1462 // ; as it is now undef
1463 if (NewIdx != 0 && DstInt.hasSubRanges()) {
1464 // The affected subregister segments can be removed.
1465 SlotIndex CurrIdx = LIS->getInstructionIndex(NewMI);
1466 LaneBitmask DstMask = TRI->getSubRegIndexLaneMask(NewIdx);
1467 bool UpdatedSubRanges = false;
1468 SlotIndex DefIndex =
1469 CurrIdx.getRegSlot(NewMI.getOperand(0).isEarlyClobber());
1470 VNInfo::Allocator &Alloc = LIS->getVNInfoAllocator();
1471 for (LiveInterval::SubRange &SR : DstInt.subranges()) {
1472 if ((SR.LaneMask & DstMask).none()) {
1473 LLVM_DEBUG(dbgs()
1474 << "Removing undefined SubRange "
1475 << PrintLaneMask(SR.LaneMask) << " : " << SR << "\n");
1476 // VNI is in ValNo - remove any segments in this SubRange that have this ValNo
1477 if (VNInfo *RmValNo = SR.getVNInfoAt(CurrIdx.getRegSlot())) {
1478 SR.removeValNo(RmValNo);
1479 UpdatedSubRanges = true;
1480 }
1481 } else {
1482 // We know that this lane is defined by this instruction,
1483 // but at this point it may be empty because it is not used by
1484 // anything. This happens when updateRegDefUses adds the missing
1485 // lanes. Assign that lane a dead def so that the interferences
1486 // are properly modeled.
1487 if (SR.empty())
1488 SR.createDeadDef(DefIndex, Alloc);
1489 }
1490 }
1491 if (UpdatedSubRanges)
1492 DstInt.removeEmptySubRanges();
1493 }
1494 } else if (NewMI.getOperand(0).getReg() != CopyDstReg) {
1495 // The New instruction may be defining a sub-register of what's actually
1496 // been asked for. If so it must implicitly define the whole thing.
1497 assert(Register::isPhysicalRegister(DstReg) &&
1498 "Only expect virtual or physical registers in remat");
1499 NewMI.getOperand(0).setIsDead(true);
1500 NewMI.addOperand(MachineOperand::CreateReg(
1501 CopyDstReg, true /*IsDef*/, true /*IsImp*/, false /*IsKill*/));
1502 // Record small dead def live-ranges for all the subregisters
1503 // of the destination register.
1504 // Otherwise, variables that live through may miss some
1505 // interferences, thus creating invalid allocation.
1506 // E.g., i386 code:
1507 // %1 = somedef ; %1 GR8
1508 // %2 = remat ; %2 GR32
1509 // CL = COPY %2.sub_8bit
1510 // = somedef %1 ; %1 GR8
1511 // =>
1512 // %1 = somedef ; %1 GR8
1513 // dead ECX = remat ; implicit-def CL
1514 // = somedef %1 ; %1 GR8
1515 // %1 will see the interferences with CL but not with CH since
1516 // no live-ranges would have been created for ECX.
1517 // Fix that!
1518 SlotIndex NewMIIdx = LIS->getInstructionIndex(NewMI);
1519 for (MCRegUnitIterator Units(NewMI.getOperand(0).getReg(), TRI);
1520 Units.isValid(); ++Units)
1521 if (LiveRange *LR = LIS->getCachedRegUnit(*Units))
1522 LR->createDeadDef(NewMIIdx.getRegSlot(), LIS->getVNInfoAllocator());
1523 }
1524
1525 if (NewMI.getOperand(0).getSubReg())
1526 NewMI.getOperand(0).setIsUndef();
1527
1528 // Transfer over implicit operands to the rematerialized instruction.
1529 for (MachineOperand &MO : ImplicitOps)
1530 NewMI.addOperand(MO);
1531
1532 SlotIndex NewMIIdx = LIS->getInstructionIndex(NewMI);
1533 for (unsigned i = 0, e = NewMIImplDefs.size(); i != e; ++i) {
1534 MCRegister Reg = NewMIImplDefs[i];
1535 for (MCRegUnitIterator Units(Reg, TRI); Units.isValid(); ++Units)
1536 if (LiveRange *LR = LIS->getCachedRegUnit(*Units))
1537 LR->createDeadDef(NewMIIdx.getRegSlot(), LIS->getVNInfoAllocator());
1538 }
1539
1540 LLVM_DEBUG(dbgs() << "Remat: " << NewMI);
1541 ++NumReMats;
1542
1543 // If the virtual SrcReg is completely eliminated, update all DBG_VALUEs
1544 // to describe DstReg instead.
1545 if (MRI->use_nodbg_empty(SrcReg)) {
1546 for (MachineOperand &UseMO : MRI->use_operands(SrcReg)) {
1547 MachineInstr *UseMI = UseMO.getParent();
1548 if (UseMI->isDebugValue()) {
1549 if (Register::isPhysicalRegister(DstReg))
1550 UseMO.substPhysReg(DstReg, *TRI);
1551 else
1552 UseMO.setReg(DstReg);
1553 // Move the debug value directly after the def of the rematerialized
1554 // value in DstReg.
1555 MBB->splice(std::next(NewMI.getIterator()), UseMI->getParent(), UseMI);
1556 LLVM_DEBUG(dbgs() << "\t\tupdated: " << *UseMI);
1557 }
1558 }
1559 }
1560
1561 if (ToBeUpdated.count(SrcReg))
1562 return true;
1563
1564 unsigned NumCopyUses = 0;
1565 for (MachineOperand &UseMO : MRI->use_nodbg_operands(SrcReg)) {
1566 if (UseMO.getParent()->isCopyLike())
1567 NumCopyUses++;
1568 }
1569 if (NumCopyUses < LateRematUpdateThreshold) {
1570 // The source interval can become smaller because we removed a use.
1571 shrinkToUses(&SrcInt, &DeadDefs);
1572 if (!DeadDefs.empty())
1573 eliminateDeadDefs();
1574 } else {
1575 ToBeUpdated.insert(SrcReg);
1576 }
1577 return true;
1578 }
1579
eliminateUndefCopy(MachineInstr * CopyMI)1580 MachineInstr *RegisterCoalescer::eliminateUndefCopy(MachineInstr *CopyMI) {
1581 // ProcessImplicitDefs may leave some copies of <undef> values, it only
1582 // removes local variables. When we have a copy like:
1583 //
1584 // %1 = COPY undef %2
1585 //
1586 // We delete the copy and remove the corresponding value number from %1.
1587 // Any uses of that value number are marked as <undef>.
1588
1589 // Note that we do not query CoalescerPair here but redo isMoveInstr as the
1590 // CoalescerPair may have a new register class with adjusted subreg indices
1591 // at this point.
1592 Register SrcReg, DstReg;
1593 unsigned SrcSubIdx = 0, DstSubIdx = 0;
1594 if(!isMoveInstr(*TRI, CopyMI, SrcReg, DstReg, SrcSubIdx, DstSubIdx))
1595 return nullptr;
1596
1597 SlotIndex Idx = LIS->getInstructionIndex(*CopyMI);
1598 const LiveInterval &SrcLI = LIS->getInterval(SrcReg);
1599 // CopyMI is undef iff SrcReg is not live before the instruction.
1600 if (SrcSubIdx != 0 && SrcLI.hasSubRanges()) {
1601 LaneBitmask SrcMask = TRI->getSubRegIndexLaneMask(SrcSubIdx);
1602 for (const LiveInterval::SubRange &SR : SrcLI.subranges()) {
1603 if ((SR.LaneMask & SrcMask).none())
1604 continue;
1605 if (SR.liveAt(Idx))
1606 return nullptr;
1607 }
1608 } else if (SrcLI.liveAt(Idx))
1609 return nullptr;
1610
1611 // If the undef copy defines a live-out value (i.e. an input to a PHI def),
1612 // then replace it with an IMPLICIT_DEF.
1613 LiveInterval &DstLI = LIS->getInterval(DstReg);
1614 SlotIndex RegIndex = Idx.getRegSlot();
1615 LiveRange::Segment *Seg = DstLI.getSegmentContaining(RegIndex);
1616 assert(Seg != nullptr && "No segment for defining instruction");
1617 if (VNInfo *V = DstLI.getVNInfoAt(Seg->end)) {
1618 if (V->isPHIDef()) {
1619 CopyMI->setDesc(TII->get(TargetOpcode::IMPLICIT_DEF));
1620 for (unsigned i = CopyMI->getNumOperands(); i != 0; --i) {
1621 MachineOperand &MO = CopyMI->getOperand(i-1);
1622 if (MO.isReg() && MO.isUse())
1623 CopyMI->RemoveOperand(i-1);
1624 }
1625 LLVM_DEBUG(dbgs() << "\tReplaced copy of <undef> value with an "
1626 "implicit def\n");
1627 return CopyMI;
1628 }
1629 }
1630
1631 // Remove any DstReg segments starting at the instruction.
1632 LLVM_DEBUG(dbgs() << "\tEliminating copy of <undef> value\n");
1633
1634 // Remove value or merge with previous one in case of a subregister def.
1635 if (VNInfo *PrevVNI = DstLI.getVNInfoAt(Idx)) {
1636 VNInfo *VNI = DstLI.getVNInfoAt(RegIndex);
1637 DstLI.MergeValueNumberInto(VNI, PrevVNI);
1638
1639 // The affected subregister segments can be removed.
1640 LaneBitmask DstMask = TRI->getSubRegIndexLaneMask(DstSubIdx);
1641 for (LiveInterval::SubRange &SR : DstLI.subranges()) {
1642 if ((SR.LaneMask & DstMask).none())
1643 continue;
1644
1645 VNInfo *SVNI = SR.getVNInfoAt(RegIndex);
1646 assert(SVNI != nullptr && SlotIndex::isSameInstr(SVNI->def, RegIndex));
1647 SR.removeValNo(SVNI);
1648 }
1649 DstLI.removeEmptySubRanges();
1650 } else
1651 LIS->removeVRegDefAt(DstLI, RegIndex);
1652
1653 // Mark uses as undef.
1654 for (MachineOperand &MO : MRI->reg_nodbg_operands(DstReg)) {
1655 if (MO.isDef() /*|| MO.isUndef()*/)
1656 continue;
1657 const MachineInstr &MI = *MO.getParent();
1658 SlotIndex UseIdx = LIS->getInstructionIndex(MI);
1659 LaneBitmask UseMask = TRI->getSubRegIndexLaneMask(MO.getSubReg());
1660 bool isLive;
1661 if (!UseMask.all() && DstLI.hasSubRanges()) {
1662 isLive = false;
1663 for (const LiveInterval::SubRange &SR : DstLI.subranges()) {
1664 if ((SR.LaneMask & UseMask).none())
1665 continue;
1666 if (SR.liveAt(UseIdx)) {
1667 isLive = true;
1668 break;
1669 }
1670 }
1671 } else
1672 isLive = DstLI.liveAt(UseIdx);
1673 if (isLive)
1674 continue;
1675 MO.setIsUndef(true);
1676 LLVM_DEBUG(dbgs() << "\tnew undef: " << UseIdx << '\t' << MI);
1677 }
1678
1679 // A def of a subregister may be a use of the other subregisters, so
1680 // deleting a def of a subregister may also remove uses. Since CopyMI
1681 // is still part of the function (but about to be erased), mark all
1682 // defs of DstReg in it as <undef>, so that shrinkToUses would
1683 // ignore them.
1684 for (MachineOperand &MO : CopyMI->operands())
1685 if (MO.isReg() && MO.isDef() && MO.getReg() == DstReg)
1686 MO.setIsUndef(true);
1687 LIS->shrinkToUses(&DstLI);
1688
1689 return CopyMI;
1690 }
1691
addUndefFlag(const LiveInterval & Int,SlotIndex UseIdx,MachineOperand & MO,unsigned SubRegIdx)1692 void RegisterCoalescer::addUndefFlag(const LiveInterval &Int, SlotIndex UseIdx,
1693 MachineOperand &MO, unsigned SubRegIdx) {
1694 LaneBitmask Mask = TRI->getSubRegIndexLaneMask(SubRegIdx);
1695 if (MO.isDef())
1696 Mask = ~Mask;
1697 bool IsUndef = true;
1698 for (const LiveInterval::SubRange &S : Int.subranges()) {
1699 if ((S.LaneMask & Mask).none())
1700 continue;
1701 if (S.liveAt(UseIdx)) {
1702 IsUndef = false;
1703 break;
1704 }
1705 }
1706 if (IsUndef) {
1707 MO.setIsUndef(true);
1708 // We found out some subregister use is actually reading an undefined
1709 // value. In some cases the whole vreg has become undefined at this
1710 // point so we have to potentially shrink the main range if the
1711 // use was ending a live segment there.
1712 LiveQueryResult Q = Int.Query(UseIdx);
1713 if (Q.valueOut() == nullptr)
1714 ShrinkMainRange = true;
1715 }
1716 }
1717
updateRegDefsUses(Register SrcReg,Register DstReg,unsigned SubIdx)1718 void RegisterCoalescer::updateRegDefsUses(Register SrcReg, Register DstReg,
1719 unsigned SubIdx) {
1720 bool DstIsPhys = Register::isPhysicalRegister(DstReg);
1721 LiveInterval *DstInt = DstIsPhys ? nullptr : &LIS->getInterval(DstReg);
1722
1723 if (DstInt && DstInt->hasSubRanges() && DstReg != SrcReg) {
1724 for (MachineOperand &MO : MRI->reg_operands(DstReg)) {
1725 unsigned SubReg = MO.getSubReg();
1726 if (SubReg == 0 || MO.isUndef())
1727 continue;
1728 MachineInstr &MI = *MO.getParent();
1729 if (MI.isDebugValue())
1730 continue;
1731 SlotIndex UseIdx = LIS->getInstructionIndex(MI).getRegSlot(true);
1732 addUndefFlag(*DstInt, UseIdx, MO, SubReg);
1733 }
1734 }
1735
1736 SmallPtrSet<MachineInstr*, 8> Visited;
1737 for (MachineRegisterInfo::reg_instr_iterator
1738 I = MRI->reg_instr_begin(SrcReg), E = MRI->reg_instr_end();
1739 I != E; ) {
1740 MachineInstr *UseMI = &*(I++);
1741
1742 // Each instruction can only be rewritten once because sub-register
1743 // composition is not always idempotent. When SrcReg != DstReg, rewriting
1744 // the UseMI operands removes them from the SrcReg use-def chain, but when
1745 // SrcReg is DstReg we could encounter UseMI twice if it has multiple
1746 // operands mentioning the virtual register.
1747 if (SrcReg == DstReg && !Visited.insert(UseMI).second)
1748 continue;
1749
1750 SmallVector<unsigned,8> Ops;
1751 bool Reads, Writes;
1752 std::tie(Reads, Writes) = UseMI->readsWritesVirtualRegister(SrcReg, &Ops);
1753
1754 // If SrcReg wasn't read, it may still be the case that DstReg is live-in
1755 // because SrcReg is a sub-register.
1756 if (DstInt && !Reads && SubIdx && !UseMI->isDebugValue())
1757 Reads = DstInt->liveAt(LIS->getInstructionIndex(*UseMI));
1758
1759 // Replace SrcReg with DstReg in all UseMI operands.
1760 for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
1761 MachineOperand &MO = UseMI->getOperand(Ops[i]);
1762
1763 // Adjust <undef> flags in case of sub-register joins. We don't want to
1764 // turn a full def into a read-modify-write sub-register def and vice
1765 // versa.
1766 if (SubIdx && MO.isDef())
1767 MO.setIsUndef(!Reads);
1768
1769 // A subreg use of a partially undef (super) register may be a complete
1770 // undef use now and then has to be marked that way.
1771 if (MO.isUse() && !DstIsPhys) {
1772 unsigned SubUseIdx = TRI->composeSubRegIndices(SubIdx, MO.getSubReg());
1773 if (SubUseIdx != 0 && MRI->shouldTrackSubRegLiveness(DstReg)) {
1774 if (!DstInt->hasSubRanges()) {
1775 BumpPtrAllocator &Allocator = LIS->getVNInfoAllocator();
1776 LaneBitmask FullMask = MRI->getMaxLaneMaskForVReg(DstInt->reg());
1777 LaneBitmask UsedLanes = TRI->getSubRegIndexLaneMask(SubIdx);
1778 LaneBitmask UnusedLanes = FullMask & ~UsedLanes;
1779 DstInt->createSubRangeFrom(Allocator, UsedLanes, *DstInt);
1780 // The unused lanes are just empty live-ranges at this point.
1781 // It is the caller responsibility to set the proper
1782 // dead segments if there is an actual dead def of the
1783 // unused lanes. This may happen with rematerialization.
1784 DstInt->createSubRange(Allocator, UnusedLanes);
1785 }
1786 SlotIndex MIIdx = UseMI->isDebugValue()
1787 ? LIS->getSlotIndexes()->getIndexBefore(*UseMI)
1788 : LIS->getInstructionIndex(*UseMI);
1789 SlotIndex UseIdx = MIIdx.getRegSlot(true);
1790 addUndefFlag(*DstInt, UseIdx, MO, SubUseIdx);
1791 }
1792 }
1793
1794 if (DstIsPhys)
1795 MO.substPhysReg(DstReg, *TRI);
1796 else
1797 MO.substVirtReg(DstReg, SubIdx, *TRI);
1798 }
1799
1800 LLVM_DEBUG({
1801 dbgs() << "\t\tupdated: ";
1802 if (!UseMI->isDebugValue())
1803 dbgs() << LIS->getInstructionIndex(*UseMI) << "\t";
1804 dbgs() << *UseMI;
1805 });
1806 }
1807 }
1808
canJoinPhys(const CoalescerPair & CP)1809 bool RegisterCoalescer::canJoinPhys(const CoalescerPair &CP) {
1810 // Always join simple intervals that are defined by a single copy from a
1811 // reserved register. This doesn't increase register pressure, so it is
1812 // always beneficial.
1813 if (!MRI->isReserved(CP.getDstReg())) {
1814 LLVM_DEBUG(dbgs() << "\tCan only merge into reserved registers.\n");
1815 return false;
1816 }
1817
1818 LiveInterval &JoinVInt = LIS->getInterval(CP.getSrcReg());
1819 if (JoinVInt.containsOneValue())
1820 return true;
1821
1822 LLVM_DEBUG(
1823 dbgs() << "\tCannot join complex intervals into reserved register.\n");
1824 return false;
1825 }
1826
copyValueUndefInPredecessors(LiveRange & S,const MachineBasicBlock * MBB,LiveQueryResult SLRQ)1827 bool RegisterCoalescer::copyValueUndefInPredecessors(
1828 LiveRange &S, const MachineBasicBlock *MBB, LiveQueryResult SLRQ) {
1829 for (const MachineBasicBlock *Pred : MBB->predecessors()) {
1830 SlotIndex PredEnd = LIS->getMBBEndIdx(Pred);
1831 if (VNInfo *V = S.getVNInfoAt(PredEnd.getPrevSlot())) {
1832 // If this is a self loop, we may be reading the same value.
1833 if (V->id != SLRQ.valueOutOrDead()->id)
1834 return false;
1835 }
1836 }
1837
1838 return true;
1839 }
1840
setUndefOnPrunedSubRegUses(LiveInterval & LI,Register Reg,LaneBitmask PrunedLanes)1841 void RegisterCoalescer::setUndefOnPrunedSubRegUses(LiveInterval &LI,
1842 Register Reg,
1843 LaneBitmask PrunedLanes) {
1844 // If we had other instructions in the segment reading the undef sublane
1845 // value, we need to mark them with undef.
1846 for (MachineOperand &MO : MRI->use_nodbg_operands(Reg)) {
1847 unsigned SubRegIdx = MO.getSubReg();
1848 if (SubRegIdx == 0 || MO.isUndef())
1849 continue;
1850
1851 LaneBitmask SubRegMask = TRI->getSubRegIndexLaneMask(SubRegIdx);
1852 SlotIndex Pos = LIS->getInstructionIndex(*MO.getParent());
1853 for (LiveInterval::SubRange &S : LI.subranges()) {
1854 if (!S.liveAt(Pos) && (PrunedLanes & SubRegMask).any()) {
1855 MO.setIsUndef();
1856 break;
1857 }
1858 }
1859 }
1860
1861 LI.removeEmptySubRanges();
1862
1863 // A def of a subregister may be a use of other register lanes. Replacing
1864 // such a def with a def of a different register will eliminate the use,
1865 // and may cause the recorded live range to be larger than the actual
1866 // liveness in the program IR.
1867 LIS->shrinkToUses(&LI);
1868 }
1869
joinCopy(MachineInstr * CopyMI,bool & Again)1870 bool RegisterCoalescer::joinCopy(MachineInstr *CopyMI, bool &Again) {
1871 Again = false;
1872 LLVM_DEBUG(dbgs() << LIS->getInstructionIndex(*CopyMI) << '\t' << *CopyMI);
1873
1874 CoalescerPair CP(*TRI);
1875 if (!CP.setRegisters(CopyMI)) {
1876 LLVM_DEBUG(dbgs() << "\tNot coalescable.\n");
1877 return false;
1878 }
1879
1880 if (CP.getNewRC()) {
1881 auto SrcRC = MRI->getRegClass(CP.getSrcReg());
1882 auto DstRC = MRI->getRegClass(CP.getDstReg());
1883 unsigned SrcIdx = CP.getSrcIdx();
1884 unsigned DstIdx = CP.getDstIdx();
1885 if (CP.isFlipped()) {
1886 std::swap(SrcIdx, DstIdx);
1887 std::swap(SrcRC, DstRC);
1888 }
1889 if (!TRI->shouldCoalesce(CopyMI, SrcRC, SrcIdx, DstRC, DstIdx,
1890 CP.getNewRC(), *LIS)) {
1891 LLVM_DEBUG(dbgs() << "\tSubtarget bailed on coalescing.\n");
1892 return false;
1893 }
1894 }
1895
1896 // Dead code elimination. This really should be handled by MachineDCE, but
1897 // sometimes dead copies slip through, and we can't generate invalid live
1898 // ranges.
1899 if (!CP.isPhys() && CopyMI->allDefsAreDead()) {
1900 LLVM_DEBUG(dbgs() << "\tCopy is dead.\n");
1901 DeadDefs.push_back(CopyMI);
1902 eliminateDeadDefs();
1903 return true;
1904 }
1905
1906 // Eliminate undefs.
1907 if (!CP.isPhys()) {
1908 // If this is an IMPLICIT_DEF, leave it alone, but don't try to coalesce.
1909 if (MachineInstr *UndefMI = eliminateUndefCopy(CopyMI)) {
1910 if (UndefMI->isImplicitDef())
1911 return false;
1912 deleteInstr(CopyMI);
1913 return false; // Not coalescable.
1914 }
1915 }
1916
1917 // Coalesced copies are normally removed immediately, but transformations
1918 // like removeCopyByCommutingDef() can inadvertently create identity copies.
1919 // When that happens, just join the values and remove the copy.
1920 if (CP.getSrcReg() == CP.getDstReg()) {
1921 LiveInterval &LI = LIS->getInterval(CP.getSrcReg());
1922 LLVM_DEBUG(dbgs() << "\tCopy already coalesced: " << LI << '\n');
1923 const SlotIndex CopyIdx = LIS->getInstructionIndex(*CopyMI);
1924 LiveQueryResult LRQ = LI.Query(CopyIdx);
1925 if (VNInfo *DefVNI = LRQ.valueDefined()) {
1926 VNInfo *ReadVNI = LRQ.valueIn();
1927 assert(ReadVNI && "No value before copy and no <undef> flag.");
1928 assert(ReadVNI != DefVNI && "Cannot read and define the same value.");
1929
1930 // Track incoming undef lanes we need to eliminate from the subrange.
1931 LaneBitmask PrunedLanes;
1932 MachineBasicBlock *MBB = CopyMI->getParent();
1933
1934 // Process subregister liveranges.
1935 for (LiveInterval::SubRange &S : LI.subranges()) {
1936 LiveQueryResult SLRQ = S.Query(CopyIdx);
1937 if (VNInfo *SDefVNI = SLRQ.valueDefined()) {
1938 if (VNInfo *SReadVNI = SLRQ.valueIn())
1939 SDefVNI = S.MergeValueNumberInto(SDefVNI, SReadVNI);
1940
1941 // If this copy introduced an undef subrange from an incoming value,
1942 // we need to eliminate the undef live in values from the subrange.
1943 if (copyValueUndefInPredecessors(S, MBB, SLRQ)) {
1944 LLVM_DEBUG(dbgs() << "Incoming sublane value is undef at copy\n");
1945 PrunedLanes |= S.LaneMask;
1946 S.removeValNo(SDefVNI);
1947 }
1948 }
1949 }
1950
1951 LI.MergeValueNumberInto(DefVNI, ReadVNI);
1952 if (PrunedLanes.any()) {
1953 LLVM_DEBUG(dbgs() << "Pruning undef incoming lanes: "
1954 << PrunedLanes << '\n');
1955 setUndefOnPrunedSubRegUses(LI, CP.getSrcReg(), PrunedLanes);
1956 }
1957
1958 LLVM_DEBUG(dbgs() << "\tMerged values: " << LI << '\n');
1959 }
1960 deleteInstr(CopyMI);
1961 return true;
1962 }
1963
1964 // Enforce policies.
1965 if (CP.isPhys()) {
1966 LLVM_DEBUG(dbgs() << "\tConsidering merging "
1967 << printReg(CP.getSrcReg(), TRI) << " with "
1968 << printReg(CP.getDstReg(), TRI, CP.getSrcIdx()) << '\n');
1969 if (!canJoinPhys(CP)) {
1970 // Before giving up coalescing, if definition of source is defined by
1971 // trivial computation, try rematerializing it.
1972 bool IsDefCopy = false;
1973 if (reMaterializeTrivialDef(CP, CopyMI, IsDefCopy))
1974 return true;
1975 if (IsDefCopy)
1976 Again = true; // May be possible to coalesce later.
1977 return false;
1978 }
1979 } else {
1980 // When possible, let DstReg be the larger interval.
1981 if (!CP.isPartial() && LIS->getInterval(CP.getSrcReg()).size() >
1982 LIS->getInterval(CP.getDstReg()).size())
1983 CP.flip();
1984
1985 LLVM_DEBUG({
1986 dbgs() << "\tConsidering merging to "
1987 << TRI->getRegClassName(CP.getNewRC()) << " with ";
1988 if (CP.getDstIdx() && CP.getSrcIdx())
1989 dbgs() << printReg(CP.getDstReg()) << " in "
1990 << TRI->getSubRegIndexName(CP.getDstIdx()) << " and "
1991 << printReg(CP.getSrcReg()) << " in "
1992 << TRI->getSubRegIndexName(CP.getSrcIdx()) << '\n';
1993 else
1994 dbgs() << printReg(CP.getSrcReg(), TRI) << " in "
1995 << printReg(CP.getDstReg(), TRI, CP.getSrcIdx()) << '\n';
1996 });
1997 }
1998
1999 ShrinkMask = LaneBitmask::getNone();
2000 ShrinkMainRange = false;
2001
2002 // Okay, attempt to join these two intervals. On failure, this returns false.
2003 // Otherwise, if one of the intervals being joined is a physreg, this method
2004 // always canonicalizes DstInt to be it. The output "SrcInt" will not have
2005 // been modified, so we can use this information below to update aliases.
2006 if (!joinIntervals(CP)) {
2007 // Coalescing failed.
2008
2009 // If definition of source is defined by trivial computation, try
2010 // rematerializing it.
2011 bool IsDefCopy = false;
2012 if (reMaterializeTrivialDef(CP, CopyMI, IsDefCopy))
2013 return true;
2014
2015 // If we can eliminate the copy without merging the live segments, do so
2016 // now.
2017 if (!CP.isPartial() && !CP.isPhys()) {
2018 bool Changed = adjustCopiesBackFrom(CP, CopyMI);
2019 bool Shrink = false;
2020 if (!Changed)
2021 std::tie(Changed, Shrink) = removeCopyByCommutingDef(CP, CopyMI);
2022 if (Changed) {
2023 deleteInstr(CopyMI);
2024 if (Shrink) {
2025 Register DstReg = CP.isFlipped() ? CP.getSrcReg() : CP.getDstReg();
2026 LiveInterval &DstLI = LIS->getInterval(DstReg);
2027 shrinkToUses(&DstLI);
2028 LLVM_DEBUG(dbgs() << "\t\tshrunk: " << DstLI << '\n');
2029 }
2030 LLVM_DEBUG(dbgs() << "\tTrivial!\n");
2031 return true;
2032 }
2033 }
2034
2035 // Try and see if we can partially eliminate the copy by moving the copy to
2036 // its predecessor.
2037 if (!CP.isPartial() && !CP.isPhys())
2038 if (removePartialRedundancy(CP, *CopyMI))
2039 return true;
2040
2041 // Otherwise, we are unable to join the intervals.
2042 LLVM_DEBUG(dbgs() << "\tInterference!\n");
2043 Again = true; // May be possible to coalesce later.
2044 return false;
2045 }
2046
2047 // Coalescing to a virtual register that is of a sub-register class of the
2048 // other. Make sure the resulting register is set to the right register class.
2049 if (CP.isCrossClass()) {
2050 ++numCrossRCs;
2051 MRI->setRegClass(CP.getDstReg(), CP.getNewRC());
2052 }
2053
2054 // Removing sub-register copies can ease the register class constraints.
2055 // Make sure we attempt to inflate the register class of DstReg.
2056 if (!CP.isPhys() && RegClassInfo.isProperSubClass(CP.getNewRC()))
2057 InflateRegs.push_back(CP.getDstReg());
2058
2059 // CopyMI has been erased by joinIntervals at this point. Remove it from
2060 // ErasedInstrs since copyCoalesceWorkList() won't add a successful join back
2061 // to the work list. This keeps ErasedInstrs from growing needlessly.
2062 ErasedInstrs.erase(CopyMI);
2063
2064 // Rewrite all SrcReg operands to DstReg.
2065 // Also update DstReg operands to include DstIdx if it is set.
2066 if (CP.getDstIdx())
2067 updateRegDefsUses(CP.getDstReg(), CP.getDstReg(), CP.getDstIdx());
2068 updateRegDefsUses(CP.getSrcReg(), CP.getDstReg(), CP.getSrcIdx());
2069
2070 // Shrink subregister ranges if necessary.
2071 if (ShrinkMask.any()) {
2072 LiveInterval &LI = LIS->getInterval(CP.getDstReg());
2073 for (LiveInterval::SubRange &S : LI.subranges()) {
2074 if ((S.LaneMask & ShrinkMask).none())
2075 continue;
2076 LLVM_DEBUG(dbgs() << "Shrink LaneUses (Lane " << PrintLaneMask(S.LaneMask)
2077 << ")\n");
2078 LIS->shrinkToUses(S, LI.reg());
2079 }
2080 LI.removeEmptySubRanges();
2081 }
2082
2083 // CP.getSrcReg()'s live interval has been merged into CP.getDstReg's live
2084 // interval. Since CP.getSrcReg() is in ToBeUpdated set and its live interval
2085 // is not up-to-date, need to update the merged live interval here.
2086 if (ToBeUpdated.count(CP.getSrcReg()))
2087 ShrinkMainRange = true;
2088
2089 if (ShrinkMainRange) {
2090 LiveInterval &LI = LIS->getInterval(CP.getDstReg());
2091 shrinkToUses(&LI);
2092 }
2093
2094 // SrcReg is guaranteed to be the register whose live interval that is
2095 // being merged.
2096 LIS->removeInterval(CP.getSrcReg());
2097
2098 // Update regalloc hint.
2099 TRI->updateRegAllocHint(CP.getSrcReg(), CP.getDstReg(), *MF);
2100
2101 LLVM_DEBUG({
2102 dbgs() << "\tSuccess: " << printReg(CP.getSrcReg(), TRI, CP.getSrcIdx())
2103 << " -> " << printReg(CP.getDstReg(), TRI, CP.getDstIdx()) << '\n';
2104 dbgs() << "\tResult = ";
2105 if (CP.isPhys())
2106 dbgs() << printReg(CP.getDstReg(), TRI);
2107 else
2108 dbgs() << LIS->getInterval(CP.getDstReg());
2109 dbgs() << '\n';
2110 });
2111
2112 ++numJoins;
2113 return true;
2114 }
2115
joinReservedPhysReg(CoalescerPair & CP)2116 bool RegisterCoalescer::joinReservedPhysReg(CoalescerPair &CP) {
2117 Register DstReg = CP.getDstReg();
2118 Register SrcReg = CP.getSrcReg();
2119 assert(CP.isPhys() && "Must be a physreg copy");
2120 assert(MRI->isReserved(DstReg) && "Not a reserved register");
2121 LiveInterval &RHS = LIS->getInterval(SrcReg);
2122 LLVM_DEBUG(dbgs() << "\t\tRHS = " << RHS << '\n');
2123
2124 assert(RHS.containsOneValue() && "Invalid join with reserved register");
2125
2126 // Optimization for reserved registers like ESP. We can only merge with a
2127 // reserved physreg if RHS has a single value that is a copy of DstReg.
2128 // The live range of the reserved register will look like a set of dead defs
2129 // - we don't properly track the live range of reserved registers.
2130
2131 // Deny any overlapping intervals. This depends on all the reserved
2132 // register live ranges to look like dead defs.
2133 if (!MRI->isConstantPhysReg(DstReg)) {
2134 for (MCRegUnitIterator UI(DstReg, TRI); UI.isValid(); ++UI) {
2135 // Abort if not all the regunits are reserved.
2136 for (MCRegUnitRootIterator RI(*UI, TRI); RI.isValid(); ++RI) {
2137 if (!MRI->isReserved(*RI))
2138 return false;
2139 }
2140 if (RHS.overlaps(LIS->getRegUnit(*UI))) {
2141 LLVM_DEBUG(dbgs() << "\t\tInterference: " << printRegUnit(*UI, TRI)
2142 << '\n');
2143 return false;
2144 }
2145 }
2146
2147 // We must also check for overlaps with regmask clobbers.
2148 BitVector RegMaskUsable;
2149 if (LIS->checkRegMaskInterference(RHS, RegMaskUsable) &&
2150 !RegMaskUsable.test(DstReg)) {
2151 LLVM_DEBUG(dbgs() << "\t\tRegMask interference\n");
2152 return false;
2153 }
2154 }
2155
2156 // Skip any value computations, we are not adding new values to the
2157 // reserved register. Also skip merging the live ranges, the reserved
2158 // register live range doesn't need to be accurate as long as all the
2159 // defs are there.
2160
2161 // Delete the identity copy.
2162 MachineInstr *CopyMI;
2163 if (CP.isFlipped()) {
2164 // Physreg is copied into vreg
2165 // %y = COPY %physreg_x
2166 // ... //< no other def of %physreg_x here
2167 // use %y
2168 // =>
2169 // ...
2170 // use %physreg_x
2171 CopyMI = MRI->getVRegDef(SrcReg);
2172 } else {
2173 // VReg is copied into physreg:
2174 // %y = def
2175 // ... //< no other def or use of %physreg_x here
2176 // %physreg_x = COPY %y
2177 // =>
2178 // %physreg_x = def
2179 // ...
2180 if (!MRI->hasOneNonDBGUse(SrcReg)) {
2181 LLVM_DEBUG(dbgs() << "\t\tMultiple vreg uses!\n");
2182 return false;
2183 }
2184
2185 if (!LIS->intervalIsInOneMBB(RHS)) {
2186 LLVM_DEBUG(dbgs() << "\t\tComplex control flow!\n");
2187 return false;
2188 }
2189
2190 MachineInstr &DestMI = *MRI->getVRegDef(SrcReg);
2191 CopyMI = &*MRI->use_instr_nodbg_begin(SrcReg);
2192 SlotIndex CopyRegIdx = LIS->getInstructionIndex(*CopyMI).getRegSlot();
2193 SlotIndex DestRegIdx = LIS->getInstructionIndex(DestMI).getRegSlot();
2194
2195 if (!MRI->isConstantPhysReg(DstReg)) {
2196 // We checked above that there are no interfering defs of the physical
2197 // register. However, for this case, where we intend to move up the def of
2198 // the physical register, we also need to check for interfering uses.
2199 SlotIndexes *Indexes = LIS->getSlotIndexes();
2200 for (SlotIndex SI = Indexes->getNextNonNullIndex(DestRegIdx);
2201 SI != CopyRegIdx; SI = Indexes->getNextNonNullIndex(SI)) {
2202 MachineInstr *MI = LIS->getInstructionFromIndex(SI);
2203 if (MI->readsRegister(DstReg, TRI)) {
2204 LLVM_DEBUG(dbgs() << "\t\tInterference (read): " << *MI);
2205 return false;
2206 }
2207 }
2208 }
2209
2210 // We're going to remove the copy which defines a physical reserved
2211 // register, so remove its valno, etc.
2212 LLVM_DEBUG(dbgs() << "\t\tRemoving phys reg def of "
2213 << printReg(DstReg, TRI) << " at " << CopyRegIdx << "\n");
2214
2215 LIS->removePhysRegDefAt(DstReg.asMCReg(), CopyRegIdx);
2216 // Create a new dead def at the new def location.
2217 for (MCRegUnitIterator UI(DstReg, TRI); UI.isValid(); ++UI) {
2218 LiveRange &LR = LIS->getRegUnit(*UI);
2219 LR.createDeadDef(DestRegIdx, LIS->getVNInfoAllocator());
2220 }
2221 }
2222
2223 deleteInstr(CopyMI);
2224
2225 // We don't track kills for reserved registers.
2226 MRI->clearKillFlags(CP.getSrcReg());
2227
2228 return true;
2229 }
2230
2231 //===----------------------------------------------------------------------===//
2232 // Interference checking and interval joining
2233 //===----------------------------------------------------------------------===//
2234 //
2235 // In the easiest case, the two live ranges being joined are disjoint, and
2236 // there is no interference to consider. It is quite common, though, to have
2237 // overlapping live ranges, and we need to check if the interference can be
2238 // resolved.
2239 //
2240 // The live range of a single SSA value forms a sub-tree of the dominator tree.
2241 // This means that two SSA values overlap if and only if the def of one value
2242 // is contained in the live range of the other value. As a special case, the
2243 // overlapping values can be defined at the same index.
2244 //
2245 // The interference from an overlapping def can be resolved in these cases:
2246 //
2247 // 1. Coalescable copies. The value is defined by a copy that would become an
2248 // identity copy after joining SrcReg and DstReg. The copy instruction will
2249 // be removed, and the value will be merged with the source value.
2250 //
2251 // There can be several copies back and forth, causing many values to be
2252 // merged into one. We compute a list of ultimate values in the joined live
2253 // range as well as a mappings from the old value numbers.
2254 //
2255 // 2. IMPLICIT_DEF. This instruction is only inserted to ensure all PHI
2256 // predecessors have a live out value. It doesn't cause real interference,
2257 // and can be merged into the value it overlaps. Like a coalescable copy, it
2258 // can be erased after joining.
2259 //
2260 // 3. Copy of external value. The overlapping def may be a copy of a value that
2261 // is already in the other register. This is like a coalescable copy, but
2262 // the live range of the source register must be trimmed after erasing the
2263 // copy instruction:
2264 //
2265 // %src = COPY %ext
2266 // %dst = COPY %ext <-- Remove this COPY, trim the live range of %ext.
2267 //
2268 // 4. Clobbering undefined lanes. Vector registers are sometimes built by
2269 // defining one lane at a time:
2270 //
2271 // %dst:ssub0<def,read-undef> = FOO
2272 // %src = BAR
2273 // %dst:ssub1 = COPY %src
2274 //
2275 // The live range of %src overlaps the %dst value defined by FOO, but
2276 // merging %src into %dst:ssub1 is only going to clobber the ssub1 lane
2277 // which was undef anyway.
2278 //
2279 // The value mapping is more complicated in this case. The final live range
2280 // will have different value numbers for both FOO and BAR, but there is no
2281 // simple mapping from old to new values. It may even be necessary to add
2282 // new PHI values.
2283 //
2284 // 5. Clobbering dead lanes. A def may clobber a lane of a vector register that
2285 // is live, but never read. This can happen because we don't compute
2286 // individual live ranges per lane.
2287 //
2288 // %dst = FOO
2289 // %src = BAR
2290 // %dst:ssub1 = COPY %src
2291 //
2292 // This kind of interference is only resolved locally. If the clobbered
2293 // lane value escapes the block, the join is aborted.
2294
2295 namespace {
2296
2297 /// Track information about values in a single virtual register about to be
2298 /// joined. Objects of this class are always created in pairs - one for each
2299 /// side of the CoalescerPair (or one for each lane of a side of the coalescer
2300 /// pair)
2301 class JoinVals {
2302 /// Live range we work on.
2303 LiveRange &LR;
2304
2305 /// (Main) register we work on.
2306 const Register Reg;
2307
2308 /// Reg (and therefore the values in this liverange) will end up as
2309 /// subregister SubIdx in the coalesced register. Either CP.DstIdx or
2310 /// CP.SrcIdx.
2311 const unsigned SubIdx;
2312
2313 /// The LaneMask that this liverange will occupy the coalesced register. May
2314 /// be smaller than the lanemask produced by SubIdx when merging subranges.
2315 const LaneBitmask LaneMask;
2316
2317 /// This is true when joining sub register ranges, false when joining main
2318 /// ranges.
2319 const bool SubRangeJoin;
2320
2321 /// Whether the current LiveInterval tracks subregister liveness.
2322 const bool TrackSubRegLiveness;
2323
2324 /// Values that will be present in the final live range.
2325 SmallVectorImpl<VNInfo*> &NewVNInfo;
2326
2327 const CoalescerPair &CP;
2328 LiveIntervals *LIS;
2329 SlotIndexes *Indexes;
2330 const TargetRegisterInfo *TRI;
2331
2332 /// Value number assignments. Maps value numbers in LI to entries in
2333 /// NewVNInfo. This is suitable for passing to LiveInterval::join().
2334 SmallVector<int, 8> Assignments;
2335
2336 public:
2337 /// Conflict resolution for overlapping values.
2338 enum ConflictResolution {
2339 /// No overlap, simply keep this value.
2340 CR_Keep,
2341
2342 /// Merge this value into OtherVNI and erase the defining instruction.
2343 /// Used for IMPLICIT_DEF, coalescable copies, and copies from external
2344 /// values.
2345 CR_Erase,
2346
2347 /// Merge this value into OtherVNI but keep the defining instruction.
2348 /// This is for the special case where OtherVNI is defined by the same
2349 /// instruction.
2350 CR_Merge,
2351
2352 /// Keep this value, and have it replace OtherVNI where possible. This
2353 /// complicates value mapping since OtherVNI maps to two different values
2354 /// before and after this def.
2355 /// Used when clobbering undefined or dead lanes.
2356 CR_Replace,
2357
2358 /// Unresolved conflict. Visit later when all values have been mapped.
2359 CR_Unresolved,
2360
2361 /// Unresolvable conflict. Abort the join.
2362 CR_Impossible
2363 };
2364
2365 private:
2366 /// Per-value info for LI. The lane bit masks are all relative to the final
2367 /// joined register, so they can be compared directly between SrcReg and
2368 /// DstReg.
2369 struct Val {
2370 ConflictResolution Resolution = CR_Keep;
2371
2372 /// Lanes written by this def, 0 for unanalyzed values.
2373 LaneBitmask WriteLanes;
2374
2375 /// Lanes with defined values in this register. Other lanes are undef and
2376 /// safe to clobber.
2377 LaneBitmask ValidLanes;
2378
2379 /// Value in LI being redefined by this def.
2380 VNInfo *RedefVNI = nullptr;
2381
2382 /// Value in the other live range that overlaps this def, if any.
2383 VNInfo *OtherVNI = nullptr;
2384
2385 /// Is this value an IMPLICIT_DEF that can be erased?
2386 ///
2387 /// IMPLICIT_DEF values should only exist at the end of a basic block that
2388 /// is a predecessor to a phi-value. These IMPLICIT_DEF instructions can be
2389 /// safely erased if they are overlapping a live value in the other live
2390 /// interval.
2391 ///
2392 /// Weird control flow graphs and incomplete PHI handling in
2393 /// ProcessImplicitDefs can very rarely create IMPLICIT_DEF values with
2394 /// longer live ranges. Such IMPLICIT_DEF values should be treated like
2395 /// normal values.
2396 bool ErasableImplicitDef = false;
2397
2398 /// True when the live range of this value will be pruned because of an
2399 /// overlapping CR_Replace value in the other live range.
2400 bool Pruned = false;
2401
2402 /// True once Pruned above has been computed.
2403 bool PrunedComputed = false;
2404
2405 /// True if this value is determined to be identical to OtherVNI
2406 /// (in valuesIdentical). This is used with CR_Erase where the erased
2407 /// copy is redundant, i.e. the source value is already the same as
2408 /// the destination. In such cases the subranges need to be updated
2409 /// properly. See comment at pruneSubRegValues for more info.
2410 bool Identical = false;
2411
2412 Val() = default;
2413
isAnalyzed__anon3ec327350311::JoinVals::Val2414 bool isAnalyzed() const { return WriteLanes.any(); }
2415 };
2416
2417 /// One entry per value number in LI.
2418 SmallVector<Val, 8> Vals;
2419
2420 /// Compute the bitmask of lanes actually written by DefMI.
2421 /// Set Redef if there are any partial register definitions that depend on the
2422 /// previous value of the register.
2423 LaneBitmask computeWriteLanes(const MachineInstr *DefMI, bool &Redef) const;
2424
2425 /// Find the ultimate value that VNI was copied from.
2426 std::pair<const VNInfo *, Register> followCopyChain(const VNInfo *VNI) const;
2427
2428 bool valuesIdentical(VNInfo *Value0, VNInfo *Value1, const JoinVals &Other) const;
2429
2430 /// Analyze ValNo in this live range, and set all fields of Vals[ValNo].
2431 /// Return a conflict resolution when possible, but leave the hard cases as
2432 /// CR_Unresolved.
2433 /// Recursively calls computeAssignment() on this and Other, guaranteeing that
2434 /// both OtherVNI and RedefVNI have been analyzed and mapped before returning.
2435 /// The recursion always goes upwards in the dominator tree, making loops
2436 /// impossible.
2437 ConflictResolution analyzeValue(unsigned ValNo, JoinVals &Other);
2438
2439 /// Compute the value assignment for ValNo in RI.
2440 /// This may be called recursively by analyzeValue(), but never for a ValNo on
2441 /// the stack.
2442 void computeAssignment(unsigned ValNo, JoinVals &Other);
2443
2444 /// Assuming ValNo is going to clobber some valid lanes in Other.LR, compute
2445 /// the extent of the tainted lanes in the block.
2446 ///
2447 /// Multiple values in Other.LR can be affected since partial redefinitions
2448 /// can preserve previously tainted lanes.
2449 ///
2450 /// 1 %dst = VLOAD <-- Define all lanes in %dst
2451 /// 2 %src = FOO <-- ValNo to be joined with %dst:ssub0
2452 /// 3 %dst:ssub1 = BAR <-- Partial redef doesn't clear taint in ssub0
2453 /// 4 %dst:ssub0 = COPY %src <-- Conflict resolved, ssub0 wasn't read
2454 ///
2455 /// For each ValNo in Other that is affected, add an (EndIndex, TaintedLanes)
2456 /// entry to TaintedVals.
2457 ///
2458 /// Returns false if the tainted lanes extend beyond the basic block.
2459 bool
2460 taintExtent(unsigned ValNo, LaneBitmask TaintedLanes, JoinVals &Other,
2461 SmallVectorImpl<std::pair<SlotIndex, LaneBitmask>> &TaintExtent);
2462
2463 /// Return true if MI uses any of the given Lanes from Reg.
2464 /// This does not include partial redefinitions of Reg.
2465 bool usesLanes(const MachineInstr &MI, Register, unsigned, LaneBitmask) const;
2466
2467 /// Determine if ValNo is a copy of a value number in LR or Other.LR that will
2468 /// be pruned:
2469 ///
2470 /// %dst = COPY %src
2471 /// %src = COPY %dst <-- This value to be pruned.
2472 /// %dst = COPY %src <-- This value is a copy of a pruned value.
2473 bool isPrunedValue(unsigned ValNo, JoinVals &Other);
2474
2475 public:
JoinVals(LiveRange & LR,Register Reg,unsigned SubIdx,LaneBitmask LaneMask,SmallVectorImpl<VNInfo * > & newVNInfo,const CoalescerPair & cp,LiveIntervals * lis,const TargetRegisterInfo * TRI,bool SubRangeJoin,bool TrackSubRegLiveness)2476 JoinVals(LiveRange &LR, Register Reg, unsigned SubIdx, LaneBitmask LaneMask,
2477 SmallVectorImpl<VNInfo *> &newVNInfo, const CoalescerPair &cp,
2478 LiveIntervals *lis, const TargetRegisterInfo *TRI, bool SubRangeJoin,
2479 bool TrackSubRegLiveness)
2480 : LR(LR), Reg(Reg), SubIdx(SubIdx), LaneMask(LaneMask),
2481 SubRangeJoin(SubRangeJoin), TrackSubRegLiveness(TrackSubRegLiveness),
2482 NewVNInfo(newVNInfo), CP(cp), LIS(lis), Indexes(LIS->getSlotIndexes()),
2483 TRI(TRI), Assignments(LR.getNumValNums(), -1),
2484 Vals(LR.getNumValNums()) {}
2485
2486 /// Analyze defs in LR and compute a value mapping in NewVNInfo.
2487 /// Returns false if any conflicts were impossible to resolve.
2488 bool mapValues(JoinVals &Other);
2489
2490 /// Try to resolve conflicts that require all values to be mapped.
2491 /// Returns false if any conflicts were impossible to resolve.
2492 bool resolveConflicts(JoinVals &Other);
2493
2494 /// Prune the live range of values in Other.LR where they would conflict with
2495 /// CR_Replace values in LR. Collect end points for restoring the live range
2496 /// after joining.
2497 void pruneValues(JoinVals &Other, SmallVectorImpl<SlotIndex> &EndPoints,
2498 bool changeInstrs);
2499
2500 /// Removes subranges starting at copies that get removed. This sometimes
2501 /// happens when undefined subranges are copied around. These ranges contain
2502 /// no useful information and can be removed.
2503 void pruneSubRegValues(LiveInterval &LI, LaneBitmask &ShrinkMask);
2504
2505 /// Pruning values in subranges can lead to removing segments in these
2506 /// subranges started by IMPLICIT_DEFs. The corresponding segments in
2507 /// the main range also need to be removed. This function will mark
2508 /// the corresponding values in the main range as pruned, so that
2509 /// eraseInstrs can do the final cleanup.
2510 /// The parameter @p LI must be the interval whose main range is the
2511 /// live range LR.
2512 void pruneMainSegments(LiveInterval &LI, bool &ShrinkMainRange);
2513
2514 /// Erase any machine instructions that have been coalesced away.
2515 /// Add erased instructions to ErasedInstrs.
2516 /// Add foreign virtual registers to ShrinkRegs if their live range ended at
2517 /// the erased instrs.
2518 void eraseInstrs(SmallPtrSetImpl<MachineInstr*> &ErasedInstrs,
2519 SmallVectorImpl<Register> &ShrinkRegs,
2520 LiveInterval *LI = nullptr);
2521
2522 /// Remove liverange defs at places where implicit defs will be removed.
2523 void removeImplicitDefs();
2524
2525 /// Get the value assignments suitable for passing to LiveInterval::join.
getAssignments() const2526 const int *getAssignments() const { return Assignments.data(); }
2527
2528 /// Get the conflict resolution for a value number.
getResolution(unsigned Num) const2529 ConflictResolution getResolution(unsigned Num) const {
2530 return Vals[Num].Resolution;
2531 }
2532 };
2533
2534 } // end anonymous namespace
2535
computeWriteLanes(const MachineInstr * DefMI,bool & Redef) const2536 LaneBitmask JoinVals::computeWriteLanes(const MachineInstr *DefMI, bool &Redef)
2537 const {
2538 LaneBitmask L;
2539 for (const MachineOperand &MO : DefMI->operands()) {
2540 if (!MO.isReg() || MO.getReg() != Reg || !MO.isDef())
2541 continue;
2542 L |= TRI->getSubRegIndexLaneMask(
2543 TRI->composeSubRegIndices(SubIdx, MO.getSubReg()));
2544 if (MO.readsReg())
2545 Redef = true;
2546 }
2547 return L;
2548 }
2549
2550 std::pair<const VNInfo *, Register>
followCopyChain(const VNInfo * VNI) const2551 JoinVals::followCopyChain(const VNInfo *VNI) const {
2552 Register TrackReg = Reg;
2553
2554 while (!VNI->isPHIDef()) {
2555 SlotIndex Def = VNI->def;
2556 MachineInstr *MI = Indexes->getInstructionFromIndex(Def);
2557 assert(MI && "No defining instruction");
2558 if (!MI->isFullCopy())
2559 return std::make_pair(VNI, TrackReg);
2560 Register SrcReg = MI->getOperand(1).getReg();
2561 if (!SrcReg.isVirtual())
2562 return std::make_pair(VNI, TrackReg);
2563
2564 const LiveInterval &LI = LIS->getInterval(SrcReg);
2565 const VNInfo *ValueIn;
2566 // No subrange involved.
2567 if (!SubRangeJoin || !LI.hasSubRanges()) {
2568 LiveQueryResult LRQ = LI.Query(Def);
2569 ValueIn = LRQ.valueIn();
2570 } else {
2571 // Query subranges. Ensure that all matching ones take us to the same def
2572 // (allowing some of them to be undef).
2573 ValueIn = nullptr;
2574 for (const LiveInterval::SubRange &S : LI.subranges()) {
2575 // Transform lanemask to a mask in the joined live interval.
2576 LaneBitmask SMask = TRI->composeSubRegIndexLaneMask(SubIdx, S.LaneMask);
2577 if ((SMask & LaneMask).none())
2578 continue;
2579 LiveQueryResult LRQ = S.Query(Def);
2580 if (!ValueIn) {
2581 ValueIn = LRQ.valueIn();
2582 continue;
2583 }
2584 if (LRQ.valueIn() && ValueIn != LRQ.valueIn())
2585 return std::make_pair(VNI, TrackReg);
2586 }
2587 }
2588 if (ValueIn == nullptr) {
2589 // Reaching an undefined value is legitimate, for example:
2590 //
2591 // 1 undef %0.sub1 = ... ;; %0.sub0 == undef
2592 // 2 %1 = COPY %0 ;; %1 is defined here.
2593 // 3 %0 = COPY %1 ;; Now %0.sub0 has a definition,
2594 // ;; but it's equivalent to "undef".
2595 return std::make_pair(nullptr, SrcReg);
2596 }
2597 VNI = ValueIn;
2598 TrackReg = SrcReg;
2599 }
2600 return std::make_pair(VNI, TrackReg);
2601 }
2602
valuesIdentical(VNInfo * Value0,VNInfo * Value1,const JoinVals & Other) const2603 bool JoinVals::valuesIdentical(VNInfo *Value0, VNInfo *Value1,
2604 const JoinVals &Other) const {
2605 const VNInfo *Orig0;
2606 Register Reg0;
2607 std::tie(Orig0, Reg0) = followCopyChain(Value0);
2608 if (Orig0 == Value1 && Reg0 == Other.Reg)
2609 return true;
2610
2611 const VNInfo *Orig1;
2612 Register Reg1;
2613 std::tie(Orig1, Reg1) = Other.followCopyChain(Value1);
2614 // If both values are undefined, and the source registers are the same
2615 // register, the values are identical. Filter out cases where only one
2616 // value is defined.
2617 if (Orig0 == nullptr || Orig1 == nullptr)
2618 return Orig0 == Orig1 && Reg0 == Reg1;
2619
2620 // The values are equal if they are defined at the same place and use the
2621 // same register. Note that we cannot compare VNInfos directly as some of
2622 // them might be from a copy created in mergeSubRangeInto() while the other
2623 // is from the original LiveInterval.
2624 return Orig0->def == Orig1->def && Reg0 == Reg1;
2625 }
2626
2627 JoinVals::ConflictResolution
analyzeValue(unsigned ValNo,JoinVals & Other)2628 JoinVals::analyzeValue(unsigned ValNo, JoinVals &Other) {
2629 Val &V = Vals[ValNo];
2630 assert(!V.isAnalyzed() && "Value has already been analyzed!");
2631 VNInfo *VNI = LR.getValNumInfo(ValNo);
2632 if (VNI->isUnused()) {
2633 V.WriteLanes = LaneBitmask::getAll();
2634 return CR_Keep;
2635 }
2636
2637 // Get the instruction defining this value, compute the lanes written.
2638 const MachineInstr *DefMI = nullptr;
2639 if (VNI->isPHIDef()) {
2640 // Conservatively assume that all lanes in a PHI are valid.
2641 LaneBitmask Lanes = SubRangeJoin ? LaneBitmask::getLane(0)
2642 : TRI->getSubRegIndexLaneMask(SubIdx);
2643 V.ValidLanes = V.WriteLanes = Lanes;
2644 } else {
2645 DefMI = Indexes->getInstructionFromIndex(VNI->def);
2646 assert(DefMI != nullptr);
2647 if (SubRangeJoin) {
2648 // We don't care about the lanes when joining subregister ranges.
2649 V.WriteLanes = V.ValidLanes = LaneBitmask::getLane(0);
2650 if (DefMI->isImplicitDef()) {
2651 V.ValidLanes = LaneBitmask::getNone();
2652 V.ErasableImplicitDef = true;
2653 }
2654 } else {
2655 bool Redef = false;
2656 V.ValidLanes = V.WriteLanes = computeWriteLanes(DefMI, Redef);
2657
2658 // If this is a read-modify-write instruction, there may be more valid
2659 // lanes than the ones written by this instruction.
2660 // This only covers partial redef operands. DefMI may have normal use
2661 // operands reading the register. They don't contribute valid lanes.
2662 //
2663 // This adds ssub1 to the set of valid lanes in %src:
2664 //
2665 // %src:ssub1 = FOO
2666 //
2667 // This leaves only ssub1 valid, making any other lanes undef:
2668 //
2669 // %src:ssub1<def,read-undef> = FOO %src:ssub2
2670 //
2671 // The <read-undef> flag on the def operand means that old lane values are
2672 // not important.
2673 if (Redef) {
2674 V.RedefVNI = LR.Query(VNI->def).valueIn();
2675 assert((TrackSubRegLiveness || V.RedefVNI) &&
2676 "Instruction is reading nonexistent value");
2677 if (V.RedefVNI != nullptr) {
2678 computeAssignment(V.RedefVNI->id, Other);
2679 V.ValidLanes |= Vals[V.RedefVNI->id].ValidLanes;
2680 }
2681 }
2682
2683 // An IMPLICIT_DEF writes undef values.
2684 if (DefMI->isImplicitDef()) {
2685 // We normally expect IMPLICIT_DEF values to be live only until the end
2686 // of their block. If the value is really live longer and gets pruned in
2687 // another block, this flag is cleared again.
2688 //
2689 // Clearing the valid lanes is deferred until it is sure this can be
2690 // erased.
2691 V.ErasableImplicitDef = true;
2692 }
2693 }
2694 }
2695
2696 // Find the value in Other that overlaps VNI->def, if any.
2697 LiveQueryResult OtherLRQ = Other.LR.Query(VNI->def);
2698
2699 // It is possible that both values are defined by the same instruction, or
2700 // the values are PHIs defined in the same block. When that happens, the two
2701 // values should be merged into one, but not into any preceding value.
2702 // The first value defined or visited gets CR_Keep, the other gets CR_Merge.
2703 if (VNInfo *OtherVNI = OtherLRQ.valueDefined()) {
2704 assert(SlotIndex::isSameInstr(VNI->def, OtherVNI->def) && "Broken LRQ");
2705
2706 // One value stays, the other is merged. Keep the earlier one, or the first
2707 // one we see.
2708 if (OtherVNI->def < VNI->def)
2709 Other.computeAssignment(OtherVNI->id, *this);
2710 else if (VNI->def < OtherVNI->def && OtherLRQ.valueIn()) {
2711 // This is an early-clobber def overlapping a live-in value in the other
2712 // register. Not mergeable.
2713 V.OtherVNI = OtherLRQ.valueIn();
2714 return CR_Impossible;
2715 }
2716 V.OtherVNI = OtherVNI;
2717 Val &OtherV = Other.Vals[OtherVNI->id];
2718 // Keep this value, check for conflicts when analyzing OtherVNI.
2719 if (!OtherV.isAnalyzed())
2720 return CR_Keep;
2721 // Both sides have been analyzed now.
2722 // Allow overlapping PHI values. Any real interference would show up in a
2723 // predecessor, the PHI itself can't introduce any conflicts.
2724 if (VNI->isPHIDef())
2725 return CR_Merge;
2726 if ((V.ValidLanes & OtherV.ValidLanes).any())
2727 // Overlapping lanes can't be resolved.
2728 return CR_Impossible;
2729 else
2730 return CR_Merge;
2731 }
2732
2733 // No simultaneous def. Is Other live at the def?
2734 V.OtherVNI = OtherLRQ.valueIn();
2735 if (!V.OtherVNI)
2736 // No overlap, no conflict.
2737 return CR_Keep;
2738
2739 assert(!SlotIndex::isSameInstr(VNI->def, V.OtherVNI->def) && "Broken LRQ");
2740
2741 // We have overlapping values, or possibly a kill of Other.
2742 // Recursively compute assignments up the dominator tree.
2743 Other.computeAssignment(V.OtherVNI->id, *this);
2744 Val &OtherV = Other.Vals[V.OtherVNI->id];
2745
2746 if (OtherV.ErasableImplicitDef) {
2747 // Check if OtherV is an IMPLICIT_DEF that extends beyond its basic block.
2748 // This shouldn't normally happen, but ProcessImplicitDefs can leave such
2749 // IMPLICIT_DEF instructions behind, and there is nothing wrong with it
2750 // technically.
2751 //
2752 // When it happens, treat that IMPLICIT_DEF as a normal value, and don't try
2753 // to erase the IMPLICIT_DEF instruction.
2754 if (DefMI &&
2755 DefMI->getParent() != Indexes->getMBBFromIndex(V.OtherVNI->def)) {
2756 LLVM_DEBUG(dbgs() << "IMPLICIT_DEF defined at " << V.OtherVNI->def
2757 << " extends into "
2758 << printMBBReference(*DefMI->getParent())
2759 << ", keeping it.\n");
2760 OtherV.ErasableImplicitDef = false;
2761 } else {
2762 // We deferred clearing these lanes in case we needed to save them
2763 OtherV.ValidLanes &= ~OtherV.WriteLanes;
2764 }
2765 }
2766
2767 // Allow overlapping PHI values. Any real interference would show up in a
2768 // predecessor, the PHI itself can't introduce any conflicts.
2769 if (VNI->isPHIDef())
2770 return CR_Replace;
2771
2772 // Check for simple erasable conflicts.
2773 if (DefMI->isImplicitDef())
2774 return CR_Erase;
2775
2776 // Include the non-conflict where DefMI is a coalescable copy that kills
2777 // OtherVNI. We still want the copy erased and value numbers merged.
2778 if (CP.isCoalescable(DefMI)) {
2779 // Some of the lanes copied from OtherVNI may be undef, making them undef
2780 // here too.
2781 V.ValidLanes &= ~V.WriteLanes | OtherV.ValidLanes;
2782 return CR_Erase;
2783 }
2784
2785 // This may not be a real conflict if DefMI simply kills Other and defines
2786 // VNI.
2787 if (OtherLRQ.isKill() && OtherLRQ.endPoint() <= VNI->def)
2788 return CR_Keep;
2789
2790 // Handle the case where VNI and OtherVNI can be proven to be identical:
2791 //
2792 // %other = COPY %ext
2793 // %this = COPY %ext <-- Erase this copy
2794 //
2795 if (DefMI->isFullCopy() && !CP.isPartial() &&
2796 valuesIdentical(VNI, V.OtherVNI, Other)) {
2797 V.Identical = true;
2798 return CR_Erase;
2799 }
2800
2801 // The remaining checks apply to the lanes, which aren't tracked here. This
2802 // was already decided to be OK via the following CR_Replace condition.
2803 // CR_Replace.
2804 if (SubRangeJoin)
2805 return CR_Replace;
2806
2807 // If the lanes written by this instruction were all undef in OtherVNI, it is
2808 // still safe to join the live ranges. This can't be done with a simple value
2809 // mapping, though - OtherVNI will map to multiple values:
2810 //
2811 // 1 %dst:ssub0 = FOO <-- OtherVNI
2812 // 2 %src = BAR <-- VNI
2813 // 3 %dst:ssub1 = COPY killed %src <-- Eliminate this copy.
2814 // 4 BAZ killed %dst
2815 // 5 QUUX killed %src
2816 //
2817 // Here OtherVNI will map to itself in [1;2), but to VNI in [2;5). CR_Replace
2818 // handles this complex value mapping.
2819 if ((V.WriteLanes & OtherV.ValidLanes).none())
2820 return CR_Replace;
2821
2822 // If the other live range is killed by DefMI and the live ranges are still
2823 // overlapping, it must be because we're looking at an early clobber def:
2824 //
2825 // %dst<def,early-clobber> = ASM killed %src
2826 //
2827 // In this case, it is illegal to merge the two live ranges since the early
2828 // clobber def would clobber %src before it was read.
2829 if (OtherLRQ.isKill()) {
2830 // This case where the def doesn't overlap the kill is handled above.
2831 assert(VNI->def.isEarlyClobber() &&
2832 "Only early clobber defs can overlap a kill");
2833 return CR_Impossible;
2834 }
2835
2836 // VNI is clobbering live lanes in OtherVNI, but there is still the
2837 // possibility that no instructions actually read the clobbered lanes.
2838 // If we're clobbering all the lanes in OtherVNI, at least one must be read.
2839 // Otherwise Other.RI wouldn't be live here.
2840 if ((TRI->getSubRegIndexLaneMask(Other.SubIdx) & ~V.WriteLanes).none())
2841 return CR_Impossible;
2842
2843 // We need to verify that no instructions are reading the clobbered lanes. To
2844 // save compile time, we'll only check that locally. Don't allow the tainted
2845 // value to escape the basic block.
2846 MachineBasicBlock *MBB = Indexes->getMBBFromIndex(VNI->def);
2847 if (OtherLRQ.endPoint() >= Indexes->getMBBEndIdx(MBB))
2848 return CR_Impossible;
2849
2850 // There are still some things that could go wrong besides clobbered lanes
2851 // being read, for example OtherVNI may be only partially redefined in MBB,
2852 // and some clobbered lanes could escape the block. Save this analysis for
2853 // resolveConflicts() when all values have been mapped. We need to know
2854 // RedefVNI and WriteLanes for any later defs in MBB, and we can't compute
2855 // that now - the recursive analyzeValue() calls must go upwards in the
2856 // dominator tree.
2857 return CR_Unresolved;
2858 }
2859
computeAssignment(unsigned ValNo,JoinVals & Other)2860 void JoinVals::computeAssignment(unsigned ValNo, JoinVals &Other) {
2861 Val &V = Vals[ValNo];
2862 if (V.isAnalyzed()) {
2863 // Recursion should always move up the dominator tree, so ValNo is not
2864 // supposed to reappear before it has been assigned.
2865 assert(Assignments[ValNo] != -1 && "Bad recursion?");
2866 return;
2867 }
2868 switch ((V.Resolution = analyzeValue(ValNo, Other))) {
2869 case CR_Erase:
2870 case CR_Merge:
2871 // Merge this ValNo into OtherVNI.
2872 assert(V.OtherVNI && "OtherVNI not assigned, can't merge.");
2873 assert(Other.Vals[V.OtherVNI->id].isAnalyzed() && "Missing recursion");
2874 Assignments[ValNo] = Other.Assignments[V.OtherVNI->id];
2875 LLVM_DEBUG(dbgs() << "\t\tmerge " << printReg(Reg) << ':' << ValNo << '@'
2876 << LR.getValNumInfo(ValNo)->def << " into "
2877 << printReg(Other.Reg) << ':' << V.OtherVNI->id << '@'
2878 << V.OtherVNI->def << " --> @"
2879 << NewVNInfo[Assignments[ValNo]]->def << '\n');
2880 break;
2881 case CR_Replace:
2882 case CR_Unresolved: {
2883 // The other value is going to be pruned if this join is successful.
2884 assert(V.OtherVNI && "OtherVNI not assigned, can't prune");
2885 Val &OtherV = Other.Vals[V.OtherVNI->id];
2886 // We cannot erase an IMPLICIT_DEF if we don't have valid values for all
2887 // its lanes.
2888 if (OtherV.ErasableImplicitDef &&
2889 TrackSubRegLiveness &&
2890 (OtherV.WriteLanes & ~V.ValidLanes).any()) {
2891 LLVM_DEBUG(dbgs() << "Cannot erase implicit_def with missing values\n");
2892
2893 OtherV.ErasableImplicitDef = false;
2894 // The valid lanes written by the implicit_def were speculatively cleared
2895 // before, so make this more conservative. It may be better to track this,
2896 // I haven't found a testcase where it matters.
2897 OtherV.ValidLanes = LaneBitmask::getAll();
2898 }
2899
2900 OtherV.Pruned = true;
2901 LLVM_FALLTHROUGH;
2902 }
2903 default:
2904 // This value number needs to go in the final joined live range.
2905 Assignments[ValNo] = NewVNInfo.size();
2906 NewVNInfo.push_back(LR.getValNumInfo(ValNo));
2907 break;
2908 }
2909 }
2910
mapValues(JoinVals & Other)2911 bool JoinVals::mapValues(JoinVals &Other) {
2912 for (unsigned i = 0, e = LR.getNumValNums(); i != e; ++i) {
2913 computeAssignment(i, Other);
2914 if (Vals[i].Resolution == CR_Impossible) {
2915 LLVM_DEBUG(dbgs() << "\t\tinterference at " << printReg(Reg) << ':' << i
2916 << '@' << LR.getValNumInfo(i)->def << '\n');
2917 return false;
2918 }
2919 }
2920 return true;
2921 }
2922
2923 bool JoinVals::
taintExtent(unsigned ValNo,LaneBitmask TaintedLanes,JoinVals & Other,SmallVectorImpl<std::pair<SlotIndex,LaneBitmask>> & TaintExtent)2924 taintExtent(unsigned ValNo, LaneBitmask TaintedLanes, JoinVals &Other,
2925 SmallVectorImpl<std::pair<SlotIndex, LaneBitmask>> &TaintExtent) {
2926 VNInfo *VNI = LR.getValNumInfo(ValNo);
2927 MachineBasicBlock *MBB = Indexes->getMBBFromIndex(VNI->def);
2928 SlotIndex MBBEnd = Indexes->getMBBEndIdx(MBB);
2929
2930 // Scan Other.LR from VNI.def to MBBEnd.
2931 LiveInterval::iterator OtherI = Other.LR.find(VNI->def);
2932 assert(OtherI != Other.LR.end() && "No conflict?");
2933 do {
2934 // OtherI is pointing to a tainted value. Abort the join if the tainted
2935 // lanes escape the block.
2936 SlotIndex End = OtherI->end;
2937 if (End >= MBBEnd) {
2938 LLVM_DEBUG(dbgs() << "\t\ttaints global " << printReg(Other.Reg) << ':'
2939 << OtherI->valno->id << '@' << OtherI->start << '\n');
2940 return false;
2941 }
2942 LLVM_DEBUG(dbgs() << "\t\ttaints local " << printReg(Other.Reg) << ':'
2943 << OtherI->valno->id << '@' << OtherI->start << " to "
2944 << End << '\n');
2945 // A dead def is not a problem.
2946 if (End.isDead())
2947 break;
2948 TaintExtent.push_back(std::make_pair(End, TaintedLanes));
2949
2950 // Check for another def in the MBB.
2951 if (++OtherI == Other.LR.end() || OtherI->start >= MBBEnd)
2952 break;
2953
2954 // Lanes written by the new def are no longer tainted.
2955 const Val &OV = Other.Vals[OtherI->valno->id];
2956 TaintedLanes &= ~OV.WriteLanes;
2957 if (!OV.RedefVNI)
2958 break;
2959 } while (TaintedLanes.any());
2960 return true;
2961 }
2962
usesLanes(const MachineInstr & MI,Register Reg,unsigned SubIdx,LaneBitmask Lanes) const2963 bool JoinVals::usesLanes(const MachineInstr &MI, Register Reg, unsigned SubIdx,
2964 LaneBitmask Lanes) const {
2965 if (MI.isDebugOrPseudoInstr())
2966 return false;
2967 for (const MachineOperand &MO : MI.operands()) {
2968 if (!MO.isReg() || MO.isDef() || MO.getReg() != Reg)
2969 continue;
2970 if (!MO.readsReg())
2971 continue;
2972 unsigned S = TRI->composeSubRegIndices(SubIdx, MO.getSubReg());
2973 if ((Lanes & TRI->getSubRegIndexLaneMask(S)).any())
2974 return true;
2975 }
2976 return false;
2977 }
2978
resolveConflicts(JoinVals & Other)2979 bool JoinVals::resolveConflicts(JoinVals &Other) {
2980 for (unsigned i = 0, e = LR.getNumValNums(); i != e; ++i) {
2981 Val &V = Vals[i];
2982 assert(V.Resolution != CR_Impossible && "Unresolvable conflict");
2983 if (V.Resolution != CR_Unresolved)
2984 continue;
2985 LLVM_DEBUG(dbgs() << "\t\tconflict at " << printReg(Reg) << ':' << i << '@'
2986 << LR.getValNumInfo(i)->def
2987 << ' ' << PrintLaneMask(LaneMask) << '\n');
2988 if (SubRangeJoin)
2989 return false;
2990
2991 ++NumLaneConflicts;
2992 assert(V.OtherVNI && "Inconsistent conflict resolution.");
2993 VNInfo *VNI = LR.getValNumInfo(i);
2994 const Val &OtherV = Other.Vals[V.OtherVNI->id];
2995
2996 // VNI is known to clobber some lanes in OtherVNI. If we go ahead with the
2997 // join, those lanes will be tainted with a wrong value. Get the extent of
2998 // the tainted lanes.
2999 LaneBitmask TaintedLanes = V.WriteLanes & OtherV.ValidLanes;
3000 SmallVector<std::pair<SlotIndex, LaneBitmask>, 8> TaintExtent;
3001 if (!taintExtent(i, TaintedLanes, Other, TaintExtent))
3002 // Tainted lanes would extend beyond the basic block.
3003 return false;
3004
3005 assert(!TaintExtent.empty() && "There should be at least one conflict.");
3006
3007 // Now look at the instructions from VNI->def to TaintExtent (inclusive).
3008 MachineBasicBlock *MBB = Indexes->getMBBFromIndex(VNI->def);
3009 MachineBasicBlock::iterator MI = MBB->begin();
3010 if (!VNI->isPHIDef()) {
3011 MI = Indexes->getInstructionFromIndex(VNI->def);
3012 // No need to check the instruction defining VNI for reads.
3013 ++MI;
3014 }
3015 assert(!SlotIndex::isSameInstr(VNI->def, TaintExtent.front().first) &&
3016 "Interference ends on VNI->def. Should have been handled earlier");
3017 MachineInstr *LastMI =
3018 Indexes->getInstructionFromIndex(TaintExtent.front().first);
3019 assert(LastMI && "Range must end at a proper instruction");
3020 unsigned TaintNum = 0;
3021 while (true) {
3022 assert(MI != MBB->end() && "Bad LastMI");
3023 if (usesLanes(*MI, Other.Reg, Other.SubIdx, TaintedLanes)) {
3024 LLVM_DEBUG(dbgs() << "\t\ttainted lanes used by: " << *MI);
3025 return false;
3026 }
3027 // LastMI is the last instruction to use the current value.
3028 if (&*MI == LastMI) {
3029 if (++TaintNum == TaintExtent.size())
3030 break;
3031 LastMI = Indexes->getInstructionFromIndex(TaintExtent[TaintNum].first);
3032 assert(LastMI && "Range must end at a proper instruction");
3033 TaintedLanes = TaintExtent[TaintNum].second;
3034 }
3035 ++MI;
3036 }
3037
3038 // The tainted lanes are unused.
3039 V.Resolution = CR_Replace;
3040 ++NumLaneResolves;
3041 }
3042 return true;
3043 }
3044
isPrunedValue(unsigned ValNo,JoinVals & Other)3045 bool JoinVals::isPrunedValue(unsigned ValNo, JoinVals &Other) {
3046 Val &V = Vals[ValNo];
3047 if (V.Pruned || V.PrunedComputed)
3048 return V.Pruned;
3049
3050 if (V.Resolution != CR_Erase && V.Resolution != CR_Merge)
3051 return V.Pruned;
3052
3053 // Follow copies up the dominator tree and check if any intermediate value
3054 // has been pruned.
3055 V.PrunedComputed = true;
3056 V.Pruned = Other.isPrunedValue(V.OtherVNI->id, *this);
3057 return V.Pruned;
3058 }
3059
pruneValues(JoinVals & Other,SmallVectorImpl<SlotIndex> & EndPoints,bool changeInstrs)3060 void JoinVals::pruneValues(JoinVals &Other,
3061 SmallVectorImpl<SlotIndex> &EndPoints,
3062 bool changeInstrs) {
3063 for (unsigned i = 0, e = LR.getNumValNums(); i != e; ++i) {
3064 SlotIndex Def = LR.getValNumInfo(i)->def;
3065 switch (Vals[i].Resolution) {
3066 case CR_Keep:
3067 break;
3068 case CR_Replace: {
3069 // This value takes precedence over the value in Other.LR.
3070 LIS->pruneValue(Other.LR, Def, &EndPoints);
3071 // Check if we're replacing an IMPLICIT_DEF value. The IMPLICIT_DEF
3072 // instructions are only inserted to provide a live-out value for PHI
3073 // predecessors, so the instruction should simply go away once its value
3074 // has been replaced.
3075 Val &OtherV = Other.Vals[Vals[i].OtherVNI->id];
3076 bool EraseImpDef = OtherV.ErasableImplicitDef &&
3077 OtherV.Resolution == CR_Keep;
3078 if (!Def.isBlock()) {
3079 if (changeInstrs) {
3080 // Remove <def,read-undef> flags. This def is now a partial redef.
3081 // Also remove dead flags since the joined live range will
3082 // continue past this instruction.
3083 for (MachineOperand &MO :
3084 Indexes->getInstructionFromIndex(Def)->operands()) {
3085 if (MO.isReg() && MO.isDef() && MO.getReg() == Reg) {
3086 if (MO.getSubReg() != 0 && MO.isUndef() && !EraseImpDef)
3087 MO.setIsUndef(false);
3088 MO.setIsDead(false);
3089 }
3090 }
3091 }
3092 // This value will reach instructions below, but we need to make sure
3093 // the live range also reaches the instruction at Def.
3094 if (!EraseImpDef)
3095 EndPoints.push_back(Def);
3096 }
3097 LLVM_DEBUG(dbgs() << "\t\tpruned " << printReg(Other.Reg) << " at " << Def
3098 << ": " << Other.LR << '\n');
3099 break;
3100 }
3101 case CR_Erase:
3102 case CR_Merge:
3103 if (isPrunedValue(i, Other)) {
3104 // This value is ultimately a copy of a pruned value in LR or Other.LR.
3105 // We can no longer trust the value mapping computed by
3106 // computeAssignment(), the value that was originally copied could have
3107 // been replaced.
3108 LIS->pruneValue(LR, Def, &EndPoints);
3109 LLVM_DEBUG(dbgs() << "\t\tpruned all of " << printReg(Reg) << " at "
3110 << Def << ": " << LR << '\n');
3111 }
3112 break;
3113 case CR_Unresolved:
3114 case CR_Impossible:
3115 llvm_unreachable("Unresolved conflicts");
3116 }
3117 }
3118 }
3119
3120 // Check if the segment consists of a copied live-through value (i.e. the copy
3121 // in the block only extended the liveness, of an undef value which we may need
3122 // to handle).
isLiveThrough(const LiveQueryResult Q)3123 static bool isLiveThrough(const LiveQueryResult Q) {
3124 return Q.valueIn() && Q.valueIn()->isPHIDef() && Q.valueIn() == Q.valueOut();
3125 }
3126
3127 /// Consider the following situation when coalescing the copy between
3128 /// %31 and %45 at 800. (The vertical lines represent live range segments.)
3129 ///
3130 /// Main range Subrange 0004 (sub2)
3131 /// %31 %45 %31 %45
3132 /// 544 %45 = COPY %28 + +
3133 /// | v1 | v1
3134 /// 560B bb.1: + +
3135 /// 624 = %45.sub2 | v2 | v2
3136 /// 800 %31 = COPY %45 + + + +
3137 /// | v0 | v0
3138 /// 816 %31.sub1 = ... + |
3139 /// 880 %30 = COPY %31 | v1 +
3140 /// 928 %45 = COPY %30 | + +
3141 /// | | v0 | v0 <--+
3142 /// 992B ; backedge -> bb.1 | + + |
3143 /// 1040 = %31.sub0 + |
3144 /// This value must remain
3145 /// live-out!
3146 ///
3147 /// Assuming that %31 is coalesced into %45, the copy at 928 becomes
3148 /// redundant, since it copies the value from %45 back into it. The
3149 /// conflict resolution for the main range determines that %45.v0 is
3150 /// to be erased, which is ok since %31.v1 is identical to it.
3151 /// The problem happens with the subrange for sub2: it has to be live
3152 /// on exit from the block, but since 928 was actually a point of
3153 /// definition of %45.sub2, %45.sub2 was not live immediately prior
3154 /// to that definition. As a result, when 928 was erased, the value v0
3155 /// for %45.sub2 was pruned in pruneSubRegValues. Consequently, an
3156 /// IMPLICIT_DEF was inserted as a "backedge" definition for %45.sub2,
3157 /// providing an incorrect value to the use at 624.
3158 ///
3159 /// Since the main-range values %31.v1 and %45.v0 were proved to be
3160 /// identical, the corresponding values in subranges must also be the
3161 /// same. A redundant copy is removed because it's not needed, and not
3162 /// because it copied an undefined value, so any liveness that originated
3163 /// from that copy cannot disappear. When pruning a value that started
3164 /// at the removed copy, the corresponding identical value must be
3165 /// extended to replace it.
pruneSubRegValues(LiveInterval & LI,LaneBitmask & ShrinkMask)3166 void JoinVals::pruneSubRegValues(LiveInterval &LI, LaneBitmask &ShrinkMask) {
3167 // Look for values being erased.
3168 bool DidPrune = false;
3169 for (unsigned i = 0, e = LR.getNumValNums(); i != e; ++i) {
3170 Val &V = Vals[i];
3171 // We should trigger in all cases in which eraseInstrs() does something.
3172 // match what eraseInstrs() is doing, print a message so
3173 if (V.Resolution != CR_Erase &&
3174 (V.Resolution != CR_Keep || !V.ErasableImplicitDef || !V.Pruned))
3175 continue;
3176
3177 // Check subranges at the point where the copy will be removed.
3178 SlotIndex Def = LR.getValNumInfo(i)->def;
3179 SlotIndex OtherDef;
3180 if (V.Identical)
3181 OtherDef = V.OtherVNI->def;
3182
3183 // Print message so mismatches with eraseInstrs() can be diagnosed.
3184 LLVM_DEBUG(dbgs() << "\t\tExpecting instruction removal at " << Def
3185 << '\n');
3186 for (LiveInterval::SubRange &S : LI.subranges()) {
3187 LiveQueryResult Q = S.Query(Def);
3188
3189 // If a subrange starts at the copy then an undefined value has been
3190 // copied and we must remove that subrange value as well.
3191 VNInfo *ValueOut = Q.valueOutOrDead();
3192 if (ValueOut != nullptr && (Q.valueIn() == nullptr ||
3193 (V.Identical && V.Resolution == CR_Erase &&
3194 ValueOut->def == Def))) {
3195 LLVM_DEBUG(dbgs() << "\t\tPrune sublane " << PrintLaneMask(S.LaneMask)
3196 << " at " << Def << "\n");
3197 SmallVector<SlotIndex,8> EndPoints;
3198 LIS->pruneValue(S, Def, &EndPoints);
3199 DidPrune = true;
3200 // Mark value number as unused.
3201 ValueOut->markUnused();
3202
3203 if (V.Identical && S.Query(OtherDef).valueOutOrDead()) {
3204 // If V is identical to V.OtherVNI (and S was live at OtherDef),
3205 // then we can't simply prune V from S. V needs to be replaced
3206 // with V.OtherVNI.
3207 LIS->extendToIndices(S, EndPoints);
3208 }
3209
3210 // We may need to eliminate the subrange if the copy introduced a live
3211 // out undef value.
3212 if (ValueOut->isPHIDef())
3213 ShrinkMask |= S.LaneMask;
3214 continue;
3215 }
3216
3217 // If a subrange ends at the copy, then a value was copied but only
3218 // partially used later. Shrink the subregister range appropriately.
3219 //
3220 // Ultimately this calls shrinkToUses, so assuming ShrinkMask is
3221 // conservatively correct.
3222 if ((Q.valueIn() != nullptr && Q.valueOut() == nullptr) ||
3223 (V.Resolution == CR_Erase && isLiveThrough(Q))) {
3224 LLVM_DEBUG(dbgs() << "\t\tDead uses at sublane "
3225 << PrintLaneMask(S.LaneMask) << " at " << Def
3226 << "\n");
3227 ShrinkMask |= S.LaneMask;
3228 }
3229 }
3230 }
3231 if (DidPrune)
3232 LI.removeEmptySubRanges();
3233 }
3234
3235 /// Check if any of the subranges of @p LI contain a definition at @p Def.
isDefInSubRange(LiveInterval & LI,SlotIndex Def)3236 static bool isDefInSubRange(LiveInterval &LI, SlotIndex Def) {
3237 for (LiveInterval::SubRange &SR : LI.subranges()) {
3238 if (VNInfo *VNI = SR.Query(Def).valueOutOrDead())
3239 if (VNI->def == Def)
3240 return true;
3241 }
3242 return false;
3243 }
3244
pruneMainSegments(LiveInterval & LI,bool & ShrinkMainRange)3245 void JoinVals::pruneMainSegments(LiveInterval &LI, bool &ShrinkMainRange) {
3246 assert(&static_cast<LiveRange&>(LI) == &LR);
3247
3248 for (unsigned i = 0, e = LR.getNumValNums(); i != e; ++i) {
3249 if (Vals[i].Resolution != CR_Keep)
3250 continue;
3251 VNInfo *VNI = LR.getValNumInfo(i);
3252 if (VNI->isUnused() || VNI->isPHIDef() || isDefInSubRange(LI, VNI->def))
3253 continue;
3254 Vals[i].Pruned = true;
3255 ShrinkMainRange = true;
3256 }
3257 }
3258
removeImplicitDefs()3259 void JoinVals::removeImplicitDefs() {
3260 for (unsigned i = 0, e = LR.getNumValNums(); i != e; ++i) {
3261 Val &V = Vals[i];
3262 if (V.Resolution != CR_Keep || !V.ErasableImplicitDef || !V.Pruned)
3263 continue;
3264
3265 VNInfo *VNI = LR.getValNumInfo(i);
3266 VNI->markUnused();
3267 LR.removeValNo(VNI);
3268 }
3269 }
3270
eraseInstrs(SmallPtrSetImpl<MachineInstr * > & ErasedInstrs,SmallVectorImpl<Register> & ShrinkRegs,LiveInterval * LI)3271 void JoinVals::eraseInstrs(SmallPtrSetImpl<MachineInstr*> &ErasedInstrs,
3272 SmallVectorImpl<Register> &ShrinkRegs,
3273 LiveInterval *LI) {
3274 for (unsigned i = 0, e = LR.getNumValNums(); i != e; ++i) {
3275 // Get the def location before markUnused() below invalidates it.
3276 VNInfo *VNI = LR.getValNumInfo(i);
3277 SlotIndex Def = VNI->def;
3278 switch (Vals[i].Resolution) {
3279 case CR_Keep: {
3280 // If an IMPLICIT_DEF value is pruned, it doesn't serve a purpose any
3281 // longer. The IMPLICIT_DEF instructions are only inserted by
3282 // PHIElimination to guarantee that all PHI predecessors have a value.
3283 if (!Vals[i].ErasableImplicitDef || !Vals[i].Pruned)
3284 break;
3285 // Remove value number i from LR.
3286 // For intervals with subranges, removing a segment from the main range
3287 // may require extending the previous segment: for each definition of
3288 // a subregister, there will be a corresponding def in the main range.
3289 // That def may fall in the middle of a segment from another subrange.
3290 // In such cases, removing this def from the main range must be
3291 // complemented by extending the main range to account for the liveness
3292 // of the other subrange.
3293 // The new end point of the main range segment to be extended.
3294 SlotIndex NewEnd;
3295 if (LI != nullptr) {
3296 LiveRange::iterator I = LR.FindSegmentContaining(Def);
3297 assert(I != LR.end());
3298 // Do not extend beyond the end of the segment being removed.
3299 // The segment may have been pruned in preparation for joining
3300 // live ranges.
3301 NewEnd = I->end;
3302 }
3303
3304 LR.removeValNo(VNI);
3305 // Note that this VNInfo is reused and still referenced in NewVNInfo,
3306 // make it appear like an unused value number.
3307 VNI->markUnused();
3308
3309 if (LI != nullptr && LI->hasSubRanges()) {
3310 assert(static_cast<LiveRange*>(LI) == &LR);
3311 // Determine the end point based on the subrange information:
3312 // minimum of (earliest def of next segment,
3313 // latest end point of containing segment)
3314 SlotIndex ED, LE;
3315 for (LiveInterval::SubRange &SR : LI->subranges()) {
3316 LiveRange::iterator I = SR.find(Def);
3317 if (I == SR.end())
3318 continue;
3319 if (I->start > Def)
3320 ED = ED.isValid() ? std::min(ED, I->start) : I->start;
3321 else
3322 LE = LE.isValid() ? std::max(LE, I->end) : I->end;
3323 }
3324 if (LE.isValid())
3325 NewEnd = std::min(NewEnd, LE);
3326 if (ED.isValid())
3327 NewEnd = std::min(NewEnd, ED);
3328
3329 // We only want to do the extension if there was a subrange that
3330 // was live across Def.
3331 if (LE.isValid()) {
3332 LiveRange::iterator S = LR.find(Def);
3333 if (S != LR.begin())
3334 std::prev(S)->end = NewEnd;
3335 }
3336 }
3337 LLVM_DEBUG({
3338 dbgs() << "\t\tremoved " << i << '@' << Def << ": " << LR << '\n';
3339 if (LI != nullptr)
3340 dbgs() << "\t\t LHS = " << *LI << '\n';
3341 });
3342 LLVM_FALLTHROUGH;
3343 }
3344
3345 case CR_Erase: {
3346 MachineInstr *MI = Indexes->getInstructionFromIndex(Def);
3347 assert(MI && "No instruction to erase");
3348 if (MI->isCopy()) {
3349 Register Reg = MI->getOperand(1).getReg();
3350 if (Register::isVirtualRegister(Reg) && Reg != CP.getSrcReg() &&
3351 Reg != CP.getDstReg())
3352 ShrinkRegs.push_back(Reg);
3353 }
3354 ErasedInstrs.insert(MI);
3355 LLVM_DEBUG(dbgs() << "\t\terased:\t" << Def << '\t' << *MI);
3356 LIS->RemoveMachineInstrFromMaps(*MI);
3357 MI->eraseFromParent();
3358 break;
3359 }
3360 default:
3361 break;
3362 }
3363 }
3364 }
3365
joinSubRegRanges(LiveRange & LRange,LiveRange & RRange,LaneBitmask LaneMask,const CoalescerPair & CP)3366 void RegisterCoalescer::joinSubRegRanges(LiveRange &LRange, LiveRange &RRange,
3367 LaneBitmask LaneMask,
3368 const CoalescerPair &CP) {
3369 SmallVector<VNInfo*, 16> NewVNInfo;
3370 JoinVals RHSVals(RRange, CP.getSrcReg(), CP.getSrcIdx(), LaneMask,
3371 NewVNInfo, CP, LIS, TRI, true, true);
3372 JoinVals LHSVals(LRange, CP.getDstReg(), CP.getDstIdx(), LaneMask,
3373 NewVNInfo, CP, LIS, TRI, true, true);
3374
3375 // Compute NewVNInfo and resolve conflicts (see also joinVirtRegs())
3376 // We should be able to resolve all conflicts here as we could successfully do
3377 // it on the mainrange already. There is however a problem when multiple
3378 // ranges get mapped to the "overflow" lane mask bit which creates unexpected
3379 // interferences.
3380 if (!LHSVals.mapValues(RHSVals) || !RHSVals.mapValues(LHSVals)) {
3381 // We already determined that it is legal to merge the intervals, so this
3382 // should never fail.
3383 llvm_unreachable("*** Couldn't join subrange!\n");
3384 }
3385 if (!LHSVals.resolveConflicts(RHSVals) ||
3386 !RHSVals.resolveConflicts(LHSVals)) {
3387 // We already determined that it is legal to merge the intervals, so this
3388 // should never fail.
3389 llvm_unreachable("*** Couldn't join subrange!\n");
3390 }
3391
3392 // The merging algorithm in LiveInterval::join() can't handle conflicting
3393 // value mappings, so we need to remove any live ranges that overlap a
3394 // CR_Replace resolution. Collect a set of end points that can be used to
3395 // restore the live range after joining.
3396 SmallVector<SlotIndex, 8> EndPoints;
3397 LHSVals.pruneValues(RHSVals, EndPoints, false);
3398 RHSVals.pruneValues(LHSVals, EndPoints, false);
3399
3400 LHSVals.removeImplicitDefs();
3401 RHSVals.removeImplicitDefs();
3402
3403 LRange.verify();
3404 RRange.verify();
3405
3406 // Join RRange into LHS.
3407 LRange.join(RRange, LHSVals.getAssignments(), RHSVals.getAssignments(),
3408 NewVNInfo);
3409
3410 LLVM_DEBUG(dbgs() << "\t\tjoined lanes: " << PrintLaneMask(LaneMask)
3411 << ' ' << LRange << "\n");
3412 if (EndPoints.empty())
3413 return;
3414
3415 // Recompute the parts of the live range we had to remove because of
3416 // CR_Replace conflicts.
3417 LLVM_DEBUG({
3418 dbgs() << "\t\trestoring liveness to " << EndPoints.size() << " points: ";
3419 for (unsigned i = 0, n = EndPoints.size(); i != n; ++i) {
3420 dbgs() << EndPoints[i];
3421 if (i != n-1)
3422 dbgs() << ',';
3423 }
3424 dbgs() << ": " << LRange << '\n';
3425 });
3426 LIS->extendToIndices(LRange, EndPoints);
3427 }
3428
mergeSubRangeInto(LiveInterval & LI,const LiveRange & ToMerge,LaneBitmask LaneMask,CoalescerPair & CP,unsigned ComposeSubRegIdx)3429 void RegisterCoalescer::mergeSubRangeInto(LiveInterval &LI,
3430 const LiveRange &ToMerge,
3431 LaneBitmask LaneMask,
3432 CoalescerPair &CP,
3433 unsigned ComposeSubRegIdx) {
3434 BumpPtrAllocator &Allocator = LIS->getVNInfoAllocator();
3435 LI.refineSubRanges(
3436 Allocator, LaneMask,
3437 [this, &Allocator, &ToMerge, &CP](LiveInterval::SubRange &SR) {
3438 if (SR.empty()) {
3439 SR.assign(ToMerge, Allocator);
3440 } else {
3441 // joinSubRegRange() destroys the merged range, so we need a copy.
3442 LiveRange RangeCopy(ToMerge, Allocator);
3443 joinSubRegRanges(SR, RangeCopy, SR.LaneMask, CP);
3444 }
3445 },
3446 *LIS->getSlotIndexes(), *TRI, ComposeSubRegIdx);
3447 }
3448
isHighCostLiveInterval(LiveInterval & LI)3449 bool RegisterCoalescer::isHighCostLiveInterval(LiveInterval &LI) {
3450 if (LI.valnos.size() < LargeIntervalSizeThreshold)
3451 return false;
3452 auto &Counter = LargeLIVisitCounter[LI.reg()];
3453 if (Counter < LargeIntervalFreqThreshold) {
3454 Counter++;
3455 return false;
3456 }
3457 return true;
3458 }
3459
joinVirtRegs(CoalescerPair & CP)3460 bool RegisterCoalescer::joinVirtRegs(CoalescerPair &CP) {
3461 SmallVector<VNInfo*, 16> NewVNInfo;
3462 LiveInterval &RHS = LIS->getInterval(CP.getSrcReg());
3463 LiveInterval &LHS = LIS->getInterval(CP.getDstReg());
3464 bool TrackSubRegLiveness = MRI->shouldTrackSubRegLiveness(*CP.getNewRC());
3465 JoinVals RHSVals(RHS, CP.getSrcReg(), CP.getSrcIdx(), LaneBitmask::getNone(),
3466 NewVNInfo, CP, LIS, TRI, false, TrackSubRegLiveness);
3467 JoinVals LHSVals(LHS, CP.getDstReg(), CP.getDstIdx(), LaneBitmask::getNone(),
3468 NewVNInfo, CP, LIS, TRI, false, TrackSubRegLiveness);
3469
3470 LLVM_DEBUG(dbgs() << "\t\tRHS = " << RHS << "\n\t\tLHS = " << LHS << '\n');
3471
3472 if (isHighCostLiveInterval(LHS) || isHighCostLiveInterval(RHS))
3473 return false;
3474
3475 // First compute NewVNInfo and the simple value mappings.
3476 // Detect impossible conflicts early.
3477 if (!LHSVals.mapValues(RHSVals) || !RHSVals.mapValues(LHSVals))
3478 return false;
3479
3480 // Some conflicts can only be resolved after all values have been mapped.
3481 if (!LHSVals.resolveConflicts(RHSVals) || !RHSVals.resolveConflicts(LHSVals))
3482 return false;
3483
3484 // All clear, the live ranges can be merged.
3485 if (RHS.hasSubRanges() || LHS.hasSubRanges()) {
3486 BumpPtrAllocator &Allocator = LIS->getVNInfoAllocator();
3487
3488 // Transform lanemasks from the LHS to masks in the coalesced register and
3489 // create initial subranges if necessary.
3490 unsigned DstIdx = CP.getDstIdx();
3491 if (!LHS.hasSubRanges()) {
3492 LaneBitmask Mask = DstIdx == 0 ? CP.getNewRC()->getLaneMask()
3493 : TRI->getSubRegIndexLaneMask(DstIdx);
3494 // LHS must support subregs or we wouldn't be in this codepath.
3495 assert(Mask.any());
3496 LHS.createSubRangeFrom(Allocator, Mask, LHS);
3497 } else if (DstIdx != 0) {
3498 // Transform LHS lanemasks to new register class if necessary.
3499 for (LiveInterval::SubRange &R : LHS.subranges()) {
3500 LaneBitmask Mask = TRI->composeSubRegIndexLaneMask(DstIdx, R.LaneMask);
3501 R.LaneMask = Mask;
3502 }
3503 }
3504 LLVM_DEBUG(dbgs() << "\t\tLHST = " << printReg(CP.getDstReg()) << ' ' << LHS
3505 << '\n');
3506
3507 // Determine lanemasks of RHS in the coalesced register and merge subranges.
3508 unsigned SrcIdx = CP.getSrcIdx();
3509 if (!RHS.hasSubRanges()) {
3510 LaneBitmask Mask = SrcIdx == 0 ? CP.getNewRC()->getLaneMask()
3511 : TRI->getSubRegIndexLaneMask(SrcIdx);
3512 mergeSubRangeInto(LHS, RHS, Mask, CP, DstIdx);
3513 } else {
3514 // Pair up subranges and merge.
3515 for (LiveInterval::SubRange &R : RHS.subranges()) {
3516 LaneBitmask Mask = TRI->composeSubRegIndexLaneMask(SrcIdx, R.LaneMask);
3517 mergeSubRangeInto(LHS, R, Mask, CP, DstIdx);
3518 }
3519 }
3520 LLVM_DEBUG(dbgs() << "\tJoined SubRanges " << LHS << "\n");
3521
3522 // Pruning implicit defs from subranges may result in the main range
3523 // having stale segments.
3524 LHSVals.pruneMainSegments(LHS, ShrinkMainRange);
3525
3526 LHSVals.pruneSubRegValues(LHS, ShrinkMask);
3527 RHSVals.pruneSubRegValues(LHS, ShrinkMask);
3528 }
3529
3530 // The merging algorithm in LiveInterval::join() can't handle conflicting
3531 // value mappings, so we need to remove any live ranges that overlap a
3532 // CR_Replace resolution. Collect a set of end points that can be used to
3533 // restore the live range after joining.
3534 SmallVector<SlotIndex, 8> EndPoints;
3535 LHSVals.pruneValues(RHSVals, EndPoints, true);
3536 RHSVals.pruneValues(LHSVals, EndPoints, true);
3537
3538 // Erase COPY and IMPLICIT_DEF instructions. This may cause some external
3539 // registers to require trimming.
3540 SmallVector<Register, 8> ShrinkRegs;
3541 LHSVals.eraseInstrs(ErasedInstrs, ShrinkRegs, &LHS);
3542 RHSVals.eraseInstrs(ErasedInstrs, ShrinkRegs);
3543 while (!ShrinkRegs.empty())
3544 shrinkToUses(&LIS->getInterval(ShrinkRegs.pop_back_val()));
3545
3546 // Scan and mark undef any DBG_VALUEs that would refer to a different value.
3547 checkMergingChangesDbgValues(CP, LHS, LHSVals, RHS, RHSVals);
3548
3549 // Join RHS into LHS.
3550 LHS.join(RHS, LHSVals.getAssignments(), RHSVals.getAssignments(), NewVNInfo);
3551
3552 // Kill flags are going to be wrong if the live ranges were overlapping.
3553 // Eventually, we should simply clear all kill flags when computing live
3554 // ranges. They are reinserted after register allocation.
3555 MRI->clearKillFlags(LHS.reg());
3556 MRI->clearKillFlags(RHS.reg());
3557
3558 if (!EndPoints.empty()) {
3559 // Recompute the parts of the live range we had to remove because of
3560 // CR_Replace conflicts.
3561 LLVM_DEBUG({
3562 dbgs() << "\t\trestoring liveness to " << EndPoints.size() << " points: ";
3563 for (unsigned i = 0, n = EndPoints.size(); i != n; ++i) {
3564 dbgs() << EndPoints[i];
3565 if (i != n-1)
3566 dbgs() << ',';
3567 }
3568 dbgs() << ": " << LHS << '\n';
3569 });
3570 LIS->extendToIndices((LiveRange&)LHS, EndPoints);
3571 }
3572
3573 return true;
3574 }
3575
joinIntervals(CoalescerPair & CP)3576 bool RegisterCoalescer::joinIntervals(CoalescerPair &CP) {
3577 return CP.isPhys() ? joinReservedPhysReg(CP) : joinVirtRegs(CP);
3578 }
3579
buildVRegToDbgValueMap(MachineFunction & MF)3580 void RegisterCoalescer::buildVRegToDbgValueMap(MachineFunction &MF)
3581 {
3582 const SlotIndexes &Slots = *LIS->getSlotIndexes();
3583 SmallVector<MachineInstr *, 8> ToInsert;
3584
3585 // After collecting a block of DBG_VALUEs into ToInsert, enter them into the
3586 // vreg => DbgValueLoc map.
3587 auto CloseNewDVRange = [this, &ToInsert](SlotIndex Slot) {
3588 for (auto *X : ToInsert) {
3589 for (auto Op : X->debug_operands()) {
3590 if (Op.isReg() && Op.getReg().isVirtual())
3591 DbgVRegToValues[Op.getReg()].push_back({Slot, X});
3592 }
3593 }
3594
3595 ToInsert.clear();
3596 };
3597
3598 // Iterate over all instructions, collecting them into the ToInsert vector.
3599 // Once a non-debug instruction is found, record the slot index of the
3600 // collected DBG_VALUEs.
3601 for (auto &MBB : MF) {
3602 SlotIndex CurrentSlot = Slots.getMBBStartIdx(&MBB);
3603
3604 for (auto &MI : MBB) {
3605 if (MI.isDebugValue()) {
3606 if (any_of(MI.debug_operands(), [](const MachineOperand &MO) {
3607 return MO.isReg() && MO.getReg().isVirtual();
3608 }))
3609 ToInsert.push_back(&MI);
3610 } else if (!MI.isDebugOrPseudoInstr()) {
3611 CurrentSlot = Slots.getInstructionIndex(MI);
3612 CloseNewDVRange(CurrentSlot);
3613 }
3614 }
3615
3616 // Close range of DBG_VALUEs at the end of blocks.
3617 CloseNewDVRange(Slots.getMBBEndIdx(&MBB));
3618 }
3619
3620 // Sort all DBG_VALUEs we've seen by slot number.
3621 for (auto &Pair : DbgVRegToValues)
3622 llvm::sort(Pair.second);
3623 }
3624
checkMergingChangesDbgValues(CoalescerPair & CP,LiveRange & LHS,JoinVals & LHSVals,LiveRange & RHS,JoinVals & RHSVals)3625 void RegisterCoalescer::checkMergingChangesDbgValues(CoalescerPair &CP,
3626 LiveRange &LHS,
3627 JoinVals &LHSVals,
3628 LiveRange &RHS,
3629 JoinVals &RHSVals) {
3630 auto ScanForDstReg = [&](Register Reg) {
3631 checkMergingChangesDbgValuesImpl(Reg, RHS, LHS, LHSVals);
3632 };
3633
3634 auto ScanForSrcReg = [&](Register Reg) {
3635 checkMergingChangesDbgValuesImpl(Reg, LHS, RHS, RHSVals);
3636 };
3637
3638 // Scan for potentially unsound DBG_VALUEs: examine first the register number
3639 // Reg, and then any other vregs that may have been merged into it.
3640 auto PerformScan = [this](Register Reg, std::function<void(Register)> Func) {
3641 Func(Reg);
3642 if (DbgMergedVRegNums.count(Reg))
3643 for (Register X : DbgMergedVRegNums[Reg])
3644 Func(X);
3645 };
3646
3647 // Scan for unsound updates of both the source and destination register.
3648 PerformScan(CP.getSrcReg(), ScanForSrcReg);
3649 PerformScan(CP.getDstReg(), ScanForDstReg);
3650 }
3651
checkMergingChangesDbgValuesImpl(Register Reg,LiveRange & OtherLR,LiveRange & RegLR,JoinVals & RegVals)3652 void RegisterCoalescer::checkMergingChangesDbgValuesImpl(Register Reg,
3653 LiveRange &OtherLR,
3654 LiveRange &RegLR,
3655 JoinVals &RegVals) {
3656 // Are there any DBG_VALUEs to examine?
3657 auto VRegMapIt = DbgVRegToValues.find(Reg);
3658 if (VRegMapIt == DbgVRegToValues.end())
3659 return;
3660
3661 auto &DbgValueSet = VRegMapIt->second;
3662 auto DbgValueSetIt = DbgValueSet.begin();
3663 auto SegmentIt = OtherLR.begin();
3664
3665 bool LastUndefResult = false;
3666 SlotIndex LastUndefIdx;
3667
3668 // If the "Other" register is live at a slot Idx, test whether Reg can
3669 // safely be merged with it, or should be marked undef.
3670 auto ShouldUndef = [&RegVals, &RegLR, &LastUndefResult,
3671 &LastUndefIdx](SlotIndex Idx) -> bool {
3672 // Our worst-case performance typically happens with asan, causing very
3673 // many DBG_VALUEs of the same location. Cache a copy of the most recent
3674 // result for this edge-case.
3675 if (LastUndefIdx == Idx)
3676 return LastUndefResult;
3677
3678 // If the other range was live, and Reg's was not, the register coalescer
3679 // will not have tried to resolve any conflicts. We don't know whether
3680 // the DBG_VALUE will refer to the same value number, so it must be made
3681 // undef.
3682 auto OtherIt = RegLR.find(Idx);
3683 if (OtherIt == RegLR.end())
3684 return true;
3685
3686 // Both the registers were live: examine the conflict resolution record for
3687 // the value number Reg refers to. CR_Keep meant that this value number
3688 // "won" and the merged register definitely refers to that value. CR_Erase
3689 // means the value number was a redundant copy of the other value, which
3690 // was coalesced and Reg deleted. It's safe to refer to the other register
3691 // (which will be the source of the copy).
3692 auto Resolution = RegVals.getResolution(OtherIt->valno->id);
3693 LastUndefResult = Resolution != JoinVals::CR_Keep &&
3694 Resolution != JoinVals::CR_Erase;
3695 LastUndefIdx = Idx;
3696 return LastUndefResult;
3697 };
3698
3699 // Iterate over both the live-range of the "Other" register, and the set of
3700 // DBG_VALUEs for Reg at the same time. Advance whichever one has the lowest
3701 // slot index. This relies on the DbgValueSet being ordered.
3702 while (DbgValueSetIt != DbgValueSet.end() && SegmentIt != OtherLR.end()) {
3703 if (DbgValueSetIt->first < SegmentIt->end) {
3704 // "Other" is live and there is a DBG_VALUE of Reg: test if we should
3705 // set it undef.
3706 if (DbgValueSetIt->first >= SegmentIt->start) {
3707 bool HasReg = DbgValueSetIt->second->hasDebugOperandForReg(Reg);
3708 bool ShouldUndefReg = ShouldUndef(DbgValueSetIt->first);
3709 if (HasReg && ShouldUndefReg) {
3710 // Mark undef, erase record of this DBG_VALUE to avoid revisiting.
3711 DbgValueSetIt->second->setDebugValueUndef();
3712 continue;
3713 }
3714 }
3715 ++DbgValueSetIt;
3716 } else {
3717 ++SegmentIt;
3718 }
3719 }
3720 }
3721
3722 namespace {
3723
3724 /// Information concerning MBB coalescing priority.
3725 struct MBBPriorityInfo {
3726 MachineBasicBlock *MBB;
3727 unsigned Depth;
3728 bool IsSplit;
3729
MBBPriorityInfo__anon3ec327350b11::MBBPriorityInfo3730 MBBPriorityInfo(MachineBasicBlock *mbb, unsigned depth, bool issplit)
3731 : MBB(mbb), Depth(depth), IsSplit(issplit) {}
3732 };
3733
3734 } // end anonymous namespace
3735
3736 /// C-style comparator that sorts first based on the loop depth of the basic
3737 /// block (the unsigned), and then on the MBB number.
3738 ///
3739 /// EnableGlobalCopies assumes that the primary sort key is loop depth.
compareMBBPriority(const MBBPriorityInfo * LHS,const MBBPriorityInfo * RHS)3740 static int compareMBBPriority(const MBBPriorityInfo *LHS,
3741 const MBBPriorityInfo *RHS) {
3742 // Deeper loops first
3743 if (LHS->Depth != RHS->Depth)
3744 return LHS->Depth > RHS->Depth ? -1 : 1;
3745
3746 // Try to unsplit critical edges next.
3747 if (LHS->IsSplit != RHS->IsSplit)
3748 return LHS->IsSplit ? -1 : 1;
3749
3750 // Prefer blocks that are more connected in the CFG. This takes care of
3751 // the most difficult copies first while intervals are short.
3752 unsigned cl = LHS->MBB->pred_size() + LHS->MBB->succ_size();
3753 unsigned cr = RHS->MBB->pred_size() + RHS->MBB->succ_size();
3754 if (cl != cr)
3755 return cl > cr ? -1 : 1;
3756
3757 // As a last resort, sort by block number.
3758 return LHS->MBB->getNumber() < RHS->MBB->getNumber() ? -1 : 1;
3759 }
3760
3761 /// \returns true if the given copy uses or defines a local live range.
isLocalCopy(MachineInstr * Copy,const LiveIntervals * LIS)3762 static bool isLocalCopy(MachineInstr *Copy, const LiveIntervals *LIS) {
3763 if (!Copy->isCopy())
3764 return false;
3765
3766 if (Copy->getOperand(1).isUndef())
3767 return false;
3768
3769 Register SrcReg = Copy->getOperand(1).getReg();
3770 Register DstReg = Copy->getOperand(0).getReg();
3771 if (Register::isPhysicalRegister(SrcReg) ||
3772 Register::isPhysicalRegister(DstReg))
3773 return false;
3774
3775 return LIS->intervalIsInOneMBB(LIS->getInterval(SrcReg))
3776 || LIS->intervalIsInOneMBB(LIS->getInterval(DstReg));
3777 }
3778
lateLiveIntervalUpdate()3779 void RegisterCoalescer::lateLiveIntervalUpdate() {
3780 for (Register reg : ToBeUpdated) {
3781 if (!LIS->hasInterval(reg))
3782 continue;
3783 LiveInterval &LI = LIS->getInterval(reg);
3784 shrinkToUses(&LI, &DeadDefs);
3785 if (!DeadDefs.empty())
3786 eliminateDeadDefs();
3787 }
3788 ToBeUpdated.clear();
3789 }
3790
3791 bool RegisterCoalescer::
copyCoalesceWorkList(MutableArrayRef<MachineInstr * > CurrList)3792 copyCoalesceWorkList(MutableArrayRef<MachineInstr*> CurrList) {
3793 bool Progress = false;
3794 for (unsigned i = 0, e = CurrList.size(); i != e; ++i) {
3795 if (!CurrList[i])
3796 continue;
3797 // Skip instruction pointers that have already been erased, for example by
3798 // dead code elimination.
3799 if (ErasedInstrs.count(CurrList[i])) {
3800 CurrList[i] = nullptr;
3801 continue;
3802 }
3803 bool Again = false;
3804 bool Success = joinCopy(CurrList[i], Again);
3805 Progress |= Success;
3806 if (Success || !Again)
3807 CurrList[i] = nullptr;
3808 }
3809 return Progress;
3810 }
3811
3812 /// Check if DstReg is a terminal node.
3813 /// I.e., it does not have any affinity other than \p Copy.
isTerminalReg(Register DstReg,const MachineInstr & Copy,const MachineRegisterInfo * MRI)3814 static bool isTerminalReg(Register DstReg, const MachineInstr &Copy,
3815 const MachineRegisterInfo *MRI) {
3816 assert(Copy.isCopyLike());
3817 // Check if the destination of this copy as any other affinity.
3818 for (const MachineInstr &MI : MRI->reg_nodbg_instructions(DstReg))
3819 if (&MI != &Copy && MI.isCopyLike())
3820 return false;
3821 return true;
3822 }
3823
applyTerminalRule(const MachineInstr & Copy) const3824 bool RegisterCoalescer::applyTerminalRule(const MachineInstr &Copy) const {
3825 assert(Copy.isCopyLike());
3826 if (!UseTerminalRule)
3827 return false;
3828 Register SrcReg, DstReg;
3829 unsigned SrcSubReg = 0, DstSubReg = 0;
3830 if (!isMoveInstr(*TRI, &Copy, SrcReg, DstReg, SrcSubReg, DstSubReg))
3831 return false;
3832 // Check if the destination of this copy has any other affinity.
3833 if (DstReg.isPhysical() ||
3834 // If SrcReg is a physical register, the copy won't be coalesced.
3835 // Ignoring it may have other side effect (like missing
3836 // rematerialization). So keep it.
3837 SrcReg.isPhysical() || !isTerminalReg(DstReg, Copy, MRI))
3838 return false;
3839
3840 // DstReg is a terminal node. Check if it interferes with any other
3841 // copy involving SrcReg.
3842 const MachineBasicBlock *OrigBB = Copy.getParent();
3843 const LiveInterval &DstLI = LIS->getInterval(DstReg);
3844 for (const MachineInstr &MI : MRI->reg_nodbg_instructions(SrcReg)) {
3845 // Technically we should check if the weight of the new copy is
3846 // interesting compared to the other one and update the weight
3847 // of the copies accordingly. However, this would only work if
3848 // we would gather all the copies first then coalesce, whereas
3849 // right now we interleave both actions.
3850 // For now, just consider the copies that are in the same block.
3851 if (&MI == &Copy || !MI.isCopyLike() || MI.getParent() != OrigBB)
3852 continue;
3853 Register OtherSrcReg, OtherReg;
3854 unsigned OtherSrcSubReg = 0, OtherSubReg = 0;
3855 if (!isMoveInstr(*TRI, &Copy, OtherSrcReg, OtherReg, OtherSrcSubReg,
3856 OtherSubReg))
3857 return false;
3858 if (OtherReg == SrcReg)
3859 OtherReg = OtherSrcReg;
3860 // Check if OtherReg is a non-terminal.
3861 if (Register::isPhysicalRegister(OtherReg) ||
3862 isTerminalReg(OtherReg, MI, MRI))
3863 continue;
3864 // Check that OtherReg interfere with DstReg.
3865 if (LIS->getInterval(OtherReg).overlaps(DstLI)) {
3866 LLVM_DEBUG(dbgs() << "Apply terminal rule for: " << printReg(DstReg)
3867 << '\n');
3868 return true;
3869 }
3870 }
3871 return false;
3872 }
3873
3874 void
copyCoalesceInMBB(MachineBasicBlock * MBB)3875 RegisterCoalescer::copyCoalesceInMBB(MachineBasicBlock *MBB) {
3876 LLVM_DEBUG(dbgs() << MBB->getName() << ":\n");
3877
3878 // Collect all copy-like instructions in MBB. Don't start coalescing anything
3879 // yet, it might invalidate the iterator.
3880 const unsigned PrevSize = WorkList.size();
3881 if (JoinGlobalCopies) {
3882 SmallVector<MachineInstr*, 2> LocalTerminals;
3883 SmallVector<MachineInstr*, 2> GlobalTerminals;
3884 // Coalesce copies bottom-up to coalesce local defs before local uses. They
3885 // are not inherently easier to resolve, but slightly preferable until we
3886 // have local live range splitting. In particular this is required by
3887 // cmp+jmp macro fusion.
3888 for (MachineInstr &MI : *MBB) {
3889 if (!MI.isCopyLike())
3890 continue;
3891 bool ApplyTerminalRule = applyTerminalRule(MI);
3892 if (isLocalCopy(&MI, LIS)) {
3893 if (ApplyTerminalRule)
3894 LocalTerminals.push_back(&MI);
3895 else
3896 LocalWorkList.push_back(&MI);
3897 } else {
3898 if (ApplyTerminalRule)
3899 GlobalTerminals.push_back(&MI);
3900 else
3901 WorkList.push_back(&MI);
3902 }
3903 }
3904 // Append the copies evicted by the terminal rule at the end of the list.
3905 LocalWorkList.append(LocalTerminals.begin(), LocalTerminals.end());
3906 WorkList.append(GlobalTerminals.begin(), GlobalTerminals.end());
3907 }
3908 else {
3909 SmallVector<MachineInstr*, 2> Terminals;
3910 for (MachineInstr &MII : *MBB)
3911 if (MII.isCopyLike()) {
3912 if (applyTerminalRule(MII))
3913 Terminals.push_back(&MII);
3914 else
3915 WorkList.push_back(&MII);
3916 }
3917 // Append the copies evicted by the terminal rule at the end of the list.
3918 WorkList.append(Terminals.begin(), Terminals.end());
3919 }
3920 // Try coalescing the collected copies immediately, and remove the nulls.
3921 // This prevents the WorkList from getting too large since most copies are
3922 // joinable on the first attempt.
3923 MutableArrayRef<MachineInstr*>
3924 CurrList(WorkList.begin() + PrevSize, WorkList.end());
3925 if (copyCoalesceWorkList(CurrList))
3926 WorkList.erase(std::remove(WorkList.begin() + PrevSize, WorkList.end(),
3927 nullptr), WorkList.end());
3928 }
3929
coalesceLocals()3930 void RegisterCoalescer::coalesceLocals() {
3931 copyCoalesceWorkList(LocalWorkList);
3932 for (unsigned j = 0, je = LocalWorkList.size(); j != je; ++j) {
3933 if (LocalWorkList[j])
3934 WorkList.push_back(LocalWorkList[j]);
3935 }
3936 LocalWorkList.clear();
3937 }
3938
joinAllIntervals()3939 void RegisterCoalescer::joinAllIntervals() {
3940 LLVM_DEBUG(dbgs() << "********** JOINING INTERVALS ***********\n");
3941 assert(WorkList.empty() && LocalWorkList.empty() && "Old data still around.");
3942
3943 std::vector<MBBPriorityInfo> MBBs;
3944 MBBs.reserve(MF->size());
3945 for (MachineBasicBlock &MBB : *MF) {
3946 MBBs.push_back(MBBPriorityInfo(&MBB, Loops->getLoopDepth(&MBB),
3947 JoinSplitEdges && isSplitEdge(&MBB)));
3948 }
3949 array_pod_sort(MBBs.begin(), MBBs.end(), compareMBBPriority);
3950
3951 // Coalesce intervals in MBB priority order.
3952 unsigned CurrDepth = std::numeric_limits<unsigned>::max();
3953 for (unsigned i = 0, e = MBBs.size(); i != e; ++i) {
3954 // Try coalescing the collected local copies for deeper loops.
3955 if (JoinGlobalCopies && MBBs[i].Depth < CurrDepth) {
3956 coalesceLocals();
3957 CurrDepth = MBBs[i].Depth;
3958 }
3959 copyCoalesceInMBB(MBBs[i].MBB);
3960 }
3961 lateLiveIntervalUpdate();
3962 coalesceLocals();
3963
3964 // Joining intervals can allow other intervals to be joined. Iteratively join
3965 // until we make no progress.
3966 while (copyCoalesceWorkList(WorkList))
3967 /* empty */ ;
3968 lateLiveIntervalUpdate();
3969 }
3970
releaseMemory()3971 void RegisterCoalescer::releaseMemory() {
3972 ErasedInstrs.clear();
3973 WorkList.clear();
3974 DeadDefs.clear();
3975 InflateRegs.clear();
3976 LargeLIVisitCounter.clear();
3977 }
3978
runOnMachineFunction(MachineFunction & fn)3979 bool RegisterCoalescer::runOnMachineFunction(MachineFunction &fn) {
3980 LLVM_DEBUG(dbgs() << "********** SIMPLE REGISTER COALESCING **********\n"
3981 << "********** Function: " << fn.getName() << '\n');
3982
3983 // Variables changed between a setjmp and a longjump can have undefined value
3984 // after the longjmp. This behaviour can be observed if such a variable is
3985 // spilled, so longjmp won't restore the value in the spill slot.
3986 // RegisterCoalescer should not run in functions with a setjmp to avoid
3987 // merging such undefined variables with predictable ones.
3988 //
3989 // TODO: Could specifically disable coalescing registers live across setjmp
3990 // calls
3991 if (fn.exposesReturnsTwice()) {
3992 LLVM_DEBUG(
3993 dbgs() << "* Skipped as it exposes funcions that returns twice.\n");
3994 return false;
3995 }
3996
3997 MF = &fn;
3998 MRI = &fn.getRegInfo();
3999 const TargetSubtargetInfo &STI = fn.getSubtarget();
4000 TRI = STI.getRegisterInfo();
4001 TII = STI.getInstrInfo();
4002 LIS = &getAnalysis<LiveIntervals>();
4003 AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
4004 Loops = &getAnalysis<MachineLoopInfo>();
4005 if (EnableGlobalCopies == cl::BOU_UNSET)
4006 JoinGlobalCopies = STI.enableJoinGlobalCopies();
4007 else
4008 JoinGlobalCopies = (EnableGlobalCopies == cl::BOU_TRUE);
4009
4010 // The MachineScheduler does not currently require JoinSplitEdges. This will
4011 // either be enabled unconditionally or replaced by a more general live range
4012 // splitting optimization.
4013 JoinSplitEdges = EnableJoinSplits;
4014
4015 if (VerifyCoalescing)
4016 MF->verify(this, "Before register coalescing");
4017
4018 DbgVRegToValues.clear();
4019 DbgMergedVRegNums.clear();
4020 buildVRegToDbgValueMap(fn);
4021
4022 RegClassInfo.runOnMachineFunction(fn);
4023
4024 // Join (coalesce) intervals if requested.
4025 if (EnableJoining)
4026 joinAllIntervals();
4027
4028 // After deleting a lot of copies, register classes may be less constrained.
4029 // Removing sub-register operands may allow GR32_ABCD -> GR32 and DPR_VFP2 ->
4030 // DPR inflation.
4031 array_pod_sort(InflateRegs.begin(), InflateRegs.end());
4032 InflateRegs.erase(std::unique(InflateRegs.begin(), InflateRegs.end()),
4033 InflateRegs.end());
4034 LLVM_DEBUG(dbgs() << "Trying to inflate " << InflateRegs.size()
4035 << " regs.\n");
4036 for (unsigned i = 0, e = InflateRegs.size(); i != e; ++i) {
4037 Register Reg = InflateRegs[i];
4038 if (MRI->reg_nodbg_empty(Reg))
4039 continue;
4040 if (MRI->recomputeRegClass(Reg)) {
4041 LLVM_DEBUG(dbgs() << printReg(Reg) << " inflated to "
4042 << TRI->getRegClassName(MRI->getRegClass(Reg)) << '\n');
4043 ++NumInflated;
4044
4045 LiveInterval &LI = LIS->getInterval(Reg);
4046 if (LI.hasSubRanges()) {
4047 // If the inflated register class does not support subregisters anymore
4048 // remove the subranges.
4049 if (!MRI->shouldTrackSubRegLiveness(Reg)) {
4050 LI.clearSubRanges();
4051 } else {
4052 #ifndef NDEBUG
4053 LaneBitmask MaxMask = MRI->getMaxLaneMaskForVReg(Reg);
4054 // If subranges are still supported, then the same subregs
4055 // should still be supported.
4056 for (LiveInterval::SubRange &S : LI.subranges()) {
4057 assert((S.LaneMask & ~MaxMask).none());
4058 }
4059 #endif
4060 }
4061 }
4062 }
4063 }
4064
4065 LLVM_DEBUG(dump());
4066 if (VerifyCoalescing)
4067 MF->verify(this, "After register coalescing");
4068 return true;
4069 }
4070
print(raw_ostream & O,const Module * m) const4071 void RegisterCoalescer::print(raw_ostream &O, const Module* m) const {
4072 LIS->print(O, m);
4073 }
4074