1 //== RangeConstraintManager.cpp - Manage range constraints.------*- C++ -*--==// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file defines RangeConstraintManager, a class that tracks simple 10 // equality and inequality constraints on symbolic values of ProgramState. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "clang/Basic/JsonSupport.h" 15 #include "clang/StaticAnalyzer/Core/PathSensitive/APSIntType.h" 16 #include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState.h" 17 #include "clang/StaticAnalyzer/Core/PathSensitive/ProgramStateTrait.h" 18 #include "clang/StaticAnalyzer/Core/PathSensitive/RangedConstraintManager.h" 19 #include "clang/StaticAnalyzer/Core/PathSensitive/SValVisitor.h" 20 #include "llvm/ADT/FoldingSet.h" 21 #include "llvm/ADT/ImmutableSet.h" 22 #include "llvm/ADT/STLExtras.h" 23 #include "llvm/ADT/SmallSet.h" 24 #include "llvm/ADT/StringExtras.h" 25 #include "llvm/Support/Compiler.h" 26 #include "llvm/Support/raw_ostream.h" 27 #include <algorithm> 28 #include <iterator> 29 #include <optional> 30 31 using namespace clang; 32 using namespace ento; 33 34 // This class can be extended with other tables which will help to reason 35 // about ranges more precisely. 36 class OperatorRelationsTable { 37 static_assert(BO_LT < BO_GT && BO_GT < BO_LE && BO_LE < BO_GE && 38 BO_GE < BO_EQ && BO_EQ < BO_NE, 39 "This class relies on operators order. Rework it otherwise."); 40 41 public: 42 enum TriStateKind { 43 False = 0, 44 True, 45 Unknown, 46 }; 47 48 private: 49 // CmpOpTable holds states which represent the corresponding range for 50 // branching an exploded graph. We can reason about the branch if there is 51 // a previously known fact of the existence of a comparison expression with 52 // operands used in the current expression. 53 // E.g. assuming (x < y) is true that means (x != y) is surely true. 54 // if (x previous_operation y) // < | != | > 55 // if (x operation y) // != | > | < 56 // tristate // True | Unknown | False 57 // 58 // CmpOpTable represents next: 59 // __|< |> |<=|>=|==|!=|UnknownX2| 60 // < |1 |0 |* |0 |0 |* |1 | 61 // > |0 |1 |0 |* |0 |* |1 | 62 // <=|1 |0 |1 |* |1 |* |0 | 63 // >=|0 |1 |* |1 |1 |* |0 | 64 // ==|0 |0 |* |* |1 |0 |1 | 65 // !=|1 |1 |* |* |0 |1 |0 | 66 // 67 // Columns stands for a previous operator. 68 // Rows stands for a current operator. 69 // Each row has exactly two `Unknown` cases. 70 // UnknownX2 means that both `Unknown` previous operators are met in code, 71 // and there is a special column for that, for example: 72 // if (x >= y) 73 // if (x != y) 74 // if (x <= y) 75 // False only 76 static constexpr size_t CmpOpCount = BO_NE - BO_LT + 1; 77 const TriStateKind CmpOpTable[CmpOpCount][CmpOpCount + 1] = { 78 // < > <= >= == != UnknownX2 79 {True, False, Unknown, False, False, Unknown, True}, // < 80 {False, True, False, Unknown, False, Unknown, True}, // > 81 {True, False, True, Unknown, True, Unknown, False}, // <= 82 {False, True, Unknown, True, True, Unknown, False}, // >= 83 {False, False, Unknown, Unknown, True, False, True}, // == 84 {True, True, Unknown, Unknown, False, True, False}, // != 85 }; 86 87 static size_t getIndexFromOp(BinaryOperatorKind OP) { 88 return static_cast<size_t>(OP - BO_LT); 89 } 90 91 public: 92 constexpr size_t getCmpOpCount() const { return CmpOpCount; } 93 94 static BinaryOperatorKind getOpFromIndex(size_t Index) { 95 return static_cast<BinaryOperatorKind>(Index + BO_LT); 96 } 97 98 TriStateKind getCmpOpState(BinaryOperatorKind CurrentOP, 99 BinaryOperatorKind QueriedOP) const { 100 return CmpOpTable[getIndexFromOp(CurrentOP)][getIndexFromOp(QueriedOP)]; 101 } 102 103 TriStateKind getCmpOpStateForUnknownX2(BinaryOperatorKind CurrentOP) const { 104 return CmpOpTable[getIndexFromOp(CurrentOP)][CmpOpCount]; 105 } 106 }; 107 108 //===----------------------------------------------------------------------===// 109 // RangeSet implementation 110 //===----------------------------------------------------------------------===// 111 112 RangeSet::ContainerType RangeSet::Factory::EmptySet{}; 113 114 RangeSet RangeSet::Factory::add(RangeSet LHS, RangeSet RHS) { 115 ContainerType Result; 116 Result.reserve(LHS.size() + RHS.size()); 117 std::merge(LHS.begin(), LHS.end(), RHS.begin(), RHS.end(), 118 std::back_inserter(Result)); 119 return makePersistent(std::move(Result)); 120 } 121 122 RangeSet RangeSet::Factory::add(RangeSet Original, Range Element) { 123 ContainerType Result; 124 Result.reserve(Original.size() + 1); 125 126 const_iterator Lower = llvm::lower_bound(Original, Element); 127 Result.insert(Result.end(), Original.begin(), Lower); 128 Result.push_back(Element); 129 Result.insert(Result.end(), Lower, Original.end()); 130 131 return makePersistent(std::move(Result)); 132 } 133 134 RangeSet RangeSet::Factory::add(RangeSet Original, const llvm::APSInt &Point) { 135 return add(Original, Range(Point)); 136 } 137 138 RangeSet RangeSet::Factory::unite(RangeSet LHS, RangeSet RHS) { 139 ContainerType Result = unite(*LHS.Impl, *RHS.Impl); 140 return makePersistent(std::move(Result)); 141 } 142 143 RangeSet RangeSet::Factory::unite(RangeSet Original, Range R) { 144 ContainerType Result; 145 Result.push_back(R); 146 Result = unite(*Original.Impl, Result); 147 return makePersistent(std::move(Result)); 148 } 149 150 RangeSet RangeSet::Factory::unite(RangeSet Original, llvm::APSInt Point) { 151 return unite(Original, Range(ValueFactory.getValue(Point))); 152 } 153 154 RangeSet RangeSet::Factory::unite(RangeSet Original, llvm::APSInt From, 155 llvm::APSInt To) { 156 return unite(Original, 157 Range(ValueFactory.getValue(From), ValueFactory.getValue(To))); 158 } 159 160 template <typename T> 161 static void swapIterators(T &First, T &FirstEnd, T &Second, T &SecondEnd) { 162 std::swap(First, Second); 163 std::swap(FirstEnd, SecondEnd); 164 } 165 166 RangeSet::ContainerType RangeSet::Factory::unite(const ContainerType &LHS, 167 const ContainerType &RHS) { 168 if (LHS.empty()) 169 return RHS; 170 if (RHS.empty()) 171 return LHS; 172 173 using llvm::APSInt; 174 using iterator = ContainerType::const_iterator; 175 176 iterator First = LHS.begin(); 177 iterator FirstEnd = LHS.end(); 178 iterator Second = RHS.begin(); 179 iterator SecondEnd = RHS.end(); 180 APSIntType Ty = APSIntType(First->From()); 181 const APSInt Min = Ty.getMinValue(); 182 183 // Handle a corner case first when both range sets start from MIN. 184 // This helps to avoid complicated conditions below. Specifically, this 185 // particular check for `MIN` is not needed in the loop below every time 186 // when we do `Second->From() - One` operation. 187 if (Min == First->From() && Min == Second->From()) { 188 if (First->To() > Second->To()) { 189 // [ First ]---> 190 // [ Second ]-----> 191 // MIN^ 192 // The Second range is entirely inside the First one. 193 194 // Check if Second is the last in its RangeSet. 195 if (++Second == SecondEnd) 196 // [ First ]--[ First + 1 ]---> 197 // [ Second ]---------------------> 198 // MIN^ 199 // The Union is equal to First's RangeSet. 200 return LHS; 201 } else { 202 // case 1: [ First ]-----> 203 // case 2: [ First ]---> 204 // [ Second ]---> 205 // MIN^ 206 // The First range is entirely inside or equal to the Second one. 207 208 // Check if First is the last in its RangeSet. 209 if (++First == FirstEnd) 210 // [ First ]-----------------------> 211 // [ Second ]--[ Second + 1 ]----> 212 // MIN^ 213 // The Union is equal to Second's RangeSet. 214 return RHS; 215 } 216 } 217 218 const APSInt One = Ty.getValue(1); 219 ContainerType Result; 220 221 // This is called when there are no ranges left in one of the ranges. 222 // Append the rest of the ranges from another range set to the Result 223 // and return with that. 224 const auto AppendTheRest = [&Result](iterator I, iterator E) { 225 Result.append(I, E); 226 return Result; 227 }; 228 229 while (true) { 230 // We want to keep the following invariant at all times: 231 // ---[ First ------> 232 // -----[ Second ---> 233 if (First->From() > Second->From()) 234 swapIterators(First, FirstEnd, Second, SecondEnd); 235 236 // The Union definitely starts with First->From(). 237 // ----------[ First ------> 238 // ------------[ Second ---> 239 // ----------[ Union ------> 240 // UnionStart^ 241 const llvm::APSInt &UnionStart = First->From(); 242 243 // Loop where the invariant holds. 244 while (true) { 245 // Skip all enclosed ranges. 246 // ---[ First ]---> 247 // -----[ Second ]--[ Second + 1 ]--[ Second + N ]-----> 248 while (First->To() >= Second->To()) { 249 // Check if Second is the last in its RangeSet. 250 if (++Second == SecondEnd) { 251 // Append the Union. 252 // ---[ Union ]---> 253 // -----[ Second ]-----> 254 // --------[ First ]---> 255 // UnionEnd^ 256 Result.emplace_back(UnionStart, First->To()); 257 // ---[ Union ]-----------------> 258 // --------------[ First + 1]---> 259 // Append all remaining ranges from the First's RangeSet. 260 return AppendTheRest(++First, FirstEnd); 261 } 262 } 263 264 // Check if First and Second are disjoint. It means that we find 265 // the end of the Union. Exit the loop and append the Union. 266 // ---[ First ]=-------------> 267 // ------------=[ Second ]---> 268 // ----MinusOne^ 269 if (First->To() < Second->From() - One) 270 break; 271 272 // First is entirely inside the Union. Go next. 273 // ---[ Union -----------> 274 // ---- [ First ]--------> 275 // -------[ Second ]-----> 276 // Check if First is the last in its RangeSet. 277 if (++First == FirstEnd) { 278 // Append the Union. 279 // ---[ Union ]---> 280 // -----[ First ]-------> 281 // --------[ Second ]---> 282 // UnionEnd^ 283 Result.emplace_back(UnionStart, Second->To()); 284 // ---[ Union ]------------------> 285 // --------------[ Second + 1]---> 286 // Append all remaining ranges from the Second's RangeSet. 287 return AppendTheRest(++Second, SecondEnd); 288 } 289 290 // We know that we are at one of the two cases: 291 // case 1: --[ First ]---------> 292 // case 2: ----[ First ]-------> 293 // --------[ Second ]----------> 294 // In both cases First starts after Second->From(). 295 // Make sure that the loop invariant holds. 296 swapIterators(First, FirstEnd, Second, SecondEnd); 297 } 298 299 // Here First and Second are disjoint. 300 // Append the Union. 301 // ---[ Union ]---------------> 302 // -----------------[ Second ]---> 303 // ------[ First ]---------------> 304 // UnionEnd^ 305 Result.emplace_back(UnionStart, First->To()); 306 307 // Check if First is the last in its RangeSet. 308 if (++First == FirstEnd) 309 // ---[ Union ]---------------> 310 // --------------[ Second ]---> 311 // Append all remaining ranges from the Second's RangeSet. 312 return AppendTheRest(Second, SecondEnd); 313 } 314 315 llvm_unreachable("Normally, we should not reach here"); 316 } 317 318 RangeSet RangeSet::Factory::getRangeSet(Range From) { 319 ContainerType Result; 320 Result.push_back(From); 321 return makePersistent(std::move(Result)); 322 } 323 324 RangeSet RangeSet::Factory::makePersistent(ContainerType &&From) { 325 llvm::FoldingSetNodeID ID; 326 void *InsertPos; 327 328 From.Profile(ID); 329 ContainerType *Result = Cache.FindNodeOrInsertPos(ID, InsertPos); 330 331 if (!Result) { 332 // It is cheaper to fully construct the resulting range on stack 333 // and move it to the freshly allocated buffer if we don't have 334 // a set like this already. 335 Result = construct(std::move(From)); 336 Cache.InsertNode(Result, InsertPos); 337 } 338 339 return Result; 340 } 341 342 RangeSet::ContainerType *RangeSet::Factory::construct(ContainerType &&From) { 343 void *Buffer = Arena.Allocate(); 344 return new (Buffer) ContainerType(std::move(From)); 345 } 346 347 const llvm::APSInt &RangeSet::getMinValue() const { 348 assert(!isEmpty()); 349 return begin()->From(); 350 } 351 352 const llvm::APSInt &RangeSet::getMaxValue() const { 353 assert(!isEmpty()); 354 return std::prev(end())->To(); 355 } 356 357 bool clang::ento::RangeSet::isUnsigned() const { 358 assert(!isEmpty()); 359 return begin()->From().isUnsigned(); 360 } 361 362 uint32_t clang::ento::RangeSet::getBitWidth() const { 363 assert(!isEmpty()); 364 return begin()->From().getBitWidth(); 365 } 366 367 APSIntType clang::ento::RangeSet::getAPSIntType() const { 368 assert(!isEmpty()); 369 return APSIntType(begin()->From()); 370 } 371 372 bool RangeSet::containsImpl(llvm::APSInt &Point) const { 373 if (isEmpty() || !pin(Point)) 374 return false; 375 376 Range Dummy(Point); 377 const_iterator It = llvm::upper_bound(*this, Dummy); 378 if (It == begin()) 379 return false; 380 381 return std::prev(It)->Includes(Point); 382 } 383 384 bool RangeSet::pin(llvm::APSInt &Point) const { 385 APSIntType Type(getMinValue()); 386 if (Type.testInRange(Point, true) != APSIntType::RTR_Within) 387 return false; 388 389 Type.apply(Point); 390 return true; 391 } 392 393 bool RangeSet::pin(llvm::APSInt &Lower, llvm::APSInt &Upper) const { 394 // This function has nine cases, the cartesian product of range-testing 395 // both the upper and lower bounds against the symbol's type. 396 // Each case requires a different pinning operation. 397 // The function returns false if the described range is entirely outside 398 // the range of values for the associated symbol. 399 APSIntType Type(getMinValue()); 400 APSIntType::RangeTestResultKind LowerTest = Type.testInRange(Lower, true); 401 APSIntType::RangeTestResultKind UpperTest = Type.testInRange(Upper, true); 402 403 switch (LowerTest) { 404 case APSIntType::RTR_Below: 405 switch (UpperTest) { 406 case APSIntType::RTR_Below: 407 // The entire range is outside the symbol's set of possible values. 408 // If this is a conventionally-ordered range, the state is infeasible. 409 if (Lower <= Upper) 410 return false; 411 412 // However, if the range wraps around, it spans all possible values. 413 Lower = Type.getMinValue(); 414 Upper = Type.getMaxValue(); 415 break; 416 case APSIntType::RTR_Within: 417 // The range starts below what's possible but ends within it. Pin. 418 Lower = Type.getMinValue(); 419 Type.apply(Upper); 420 break; 421 case APSIntType::RTR_Above: 422 // The range spans all possible values for the symbol. Pin. 423 Lower = Type.getMinValue(); 424 Upper = Type.getMaxValue(); 425 break; 426 } 427 break; 428 case APSIntType::RTR_Within: 429 switch (UpperTest) { 430 case APSIntType::RTR_Below: 431 // The range wraps around, but all lower values are not possible. 432 Type.apply(Lower); 433 Upper = Type.getMaxValue(); 434 break; 435 case APSIntType::RTR_Within: 436 // The range may or may not wrap around, but both limits are valid. 437 Type.apply(Lower); 438 Type.apply(Upper); 439 break; 440 case APSIntType::RTR_Above: 441 // The range starts within what's possible but ends above it. Pin. 442 Type.apply(Lower); 443 Upper = Type.getMaxValue(); 444 break; 445 } 446 break; 447 case APSIntType::RTR_Above: 448 switch (UpperTest) { 449 case APSIntType::RTR_Below: 450 // The range wraps but is outside the symbol's set of possible values. 451 return false; 452 case APSIntType::RTR_Within: 453 // The range starts above what's possible but ends within it (wrap). 454 Lower = Type.getMinValue(); 455 Type.apply(Upper); 456 break; 457 case APSIntType::RTR_Above: 458 // The entire range is outside the symbol's set of possible values. 459 // If this is a conventionally-ordered range, the state is infeasible. 460 if (Lower <= Upper) 461 return false; 462 463 // However, if the range wraps around, it spans all possible values. 464 Lower = Type.getMinValue(); 465 Upper = Type.getMaxValue(); 466 break; 467 } 468 break; 469 } 470 471 return true; 472 } 473 474 RangeSet RangeSet::Factory::intersect(RangeSet What, llvm::APSInt Lower, 475 llvm::APSInt Upper) { 476 if (What.isEmpty() || !What.pin(Lower, Upper)) 477 return getEmptySet(); 478 479 ContainerType DummyContainer; 480 481 if (Lower <= Upper) { 482 // [Lower, Upper] is a regular range. 483 // 484 // Shortcut: check that there is even a possibility of the intersection 485 // by checking the two following situations: 486 // 487 // <---[ What ]---[------]------> 488 // Lower Upper 489 // -or- 490 // <----[------]----[ What ]----> 491 // Lower Upper 492 if (What.getMaxValue() < Lower || Upper < What.getMinValue()) 493 return getEmptySet(); 494 495 DummyContainer.push_back( 496 Range(ValueFactory.getValue(Lower), ValueFactory.getValue(Upper))); 497 } else { 498 // [Lower, Upper] is an inverted range, i.e. [MIN, Upper] U [Lower, MAX] 499 // 500 // Shortcut: check that there is even a possibility of the intersection 501 // by checking the following situation: 502 // 503 // <------]---[ What ]---[------> 504 // Upper Lower 505 if (What.getMaxValue() < Lower && Upper < What.getMinValue()) 506 return getEmptySet(); 507 508 DummyContainer.push_back( 509 Range(ValueFactory.getMinValue(Upper), ValueFactory.getValue(Upper))); 510 DummyContainer.push_back( 511 Range(ValueFactory.getValue(Lower), ValueFactory.getMaxValue(Lower))); 512 } 513 514 return intersect(*What.Impl, DummyContainer); 515 } 516 517 RangeSet RangeSet::Factory::intersect(const RangeSet::ContainerType &LHS, 518 const RangeSet::ContainerType &RHS) { 519 ContainerType Result; 520 Result.reserve(std::max(LHS.size(), RHS.size())); 521 522 const_iterator First = LHS.begin(), Second = RHS.begin(), 523 FirstEnd = LHS.end(), SecondEnd = RHS.end(); 524 525 // If we ran out of ranges in one set, but not in the other, 526 // it means that those elements are definitely not in the 527 // intersection. 528 while (First != FirstEnd && Second != SecondEnd) { 529 // We want to keep the following invariant at all times: 530 // 531 // ----[ First ----------------------> 532 // --------[ Second -----------------> 533 if (Second->From() < First->From()) 534 swapIterators(First, FirstEnd, Second, SecondEnd); 535 536 // Loop where the invariant holds: 537 do { 538 // Check for the following situation: 539 // 540 // ----[ First ]---------------------> 541 // ---------------[ Second ]---------> 542 // 543 // which means that... 544 if (Second->From() > First->To()) { 545 // ...First is not in the intersection. 546 // 547 // We should move on to the next range after First and break out of the 548 // loop because the invariant might not be true. 549 ++First; 550 break; 551 } 552 553 // We have a guaranteed intersection at this point! 554 // And this is the current situation: 555 // 556 // ----[ First ]-----------------> 557 // -------[ Second ------------------> 558 // 559 // Additionally, it definitely starts with Second->From(). 560 const llvm::APSInt &IntersectionStart = Second->From(); 561 562 // It is important to know which of the two ranges' ends 563 // is greater. That "longer" range might have some other 564 // intersections, while the "shorter" range might not. 565 if (Second->To() > First->To()) { 566 // Here we make a decision to keep First as the "longer" 567 // range. 568 swapIterators(First, FirstEnd, Second, SecondEnd); 569 } 570 571 // At this point, we have the following situation: 572 // 573 // ---- First ]--------------------> 574 // ---- Second ]--[ Second+1 ----------> 575 // 576 // We don't know the relationship between First->From and 577 // Second->From and we don't know whether Second+1 intersects 578 // with First. 579 // 580 // However, we know that [IntersectionStart, Second->To] is 581 // a part of the intersection... 582 Result.push_back(Range(IntersectionStart, Second->To())); 583 ++Second; 584 // ...and that the invariant will hold for a valid Second+1 585 // because First->From <= Second->To < (Second+1)->From. 586 } while (Second != SecondEnd); 587 } 588 589 if (Result.empty()) 590 return getEmptySet(); 591 592 return makePersistent(std::move(Result)); 593 } 594 595 RangeSet RangeSet::Factory::intersect(RangeSet LHS, RangeSet RHS) { 596 // Shortcut: let's see if the intersection is even possible. 597 if (LHS.isEmpty() || RHS.isEmpty() || LHS.getMaxValue() < RHS.getMinValue() || 598 RHS.getMaxValue() < LHS.getMinValue()) 599 return getEmptySet(); 600 601 return intersect(*LHS.Impl, *RHS.Impl); 602 } 603 604 RangeSet RangeSet::Factory::intersect(RangeSet LHS, llvm::APSInt Point) { 605 if (LHS.containsImpl(Point)) 606 return getRangeSet(ValueFactory.getValue(Point)); 607 608 return getEmptySet(); 609 } 610 611 RangeSet RangeSet::Factory::negate(RangeSet What) { 612 if (What.isEmpty()) 613 return getEmptySet(); 614 615 const llvm::APSInt SampleValue = What.getMinValue(); 616 const llvm::APSInt &MIN = ValueFactory.getMinValue(SampleValue); 617 const llvm::APSInt &MAX = ValueFactory.getMaxValue(SampleValue); 618 619 ContainerType Result; 620 Result.reserve(What.size() + (SampleValue == MIN)); 621 622 // Handle a special case for MIN value. 623 const_iterator It = What.begin(); 624 const_iterator End = What.end(); 625 626 const llvm::APSInt &From = It->From(); 627 const llvm::APSInt &To = It->To(); 628 629 if (From == MIN) { 630 // If the range [From, To] is [MIN, MAX], then result is also [MIN, MAX]. 631 if (To == MAX) { 632 return What; 633 } 634 635 const_iterator Last = std::prev(End); 636 637 // Try to find and unite the following ranges: 638 // [MIN, MIN] & [MIN + 1, N] => [MIN, N]. 639 if (Last->To() == MAX) { 640 // It means that in the original range we have ranges 641 // [MIN, A], ... , [B, MAX] 642 // And the result should be [MIN, -B], ..., [-A, MAX] 643 Result.emplace_back(MIN, ValueFactory.getValue(-Last->From())); 644 // We already negated Last, so we can skip it. 645 End = Last; 646 } else { 647 // Add a separate range for the lowest value. 648 Result.emplace_back(MIN, MIN); 649 } 650 651 // Skip adding the second range in case when [From, To] are [MIN, MIN]. 652 if (To != MIN) { 653 Result.emplace_back(ValueFactory.getValue(-To), MAX); 654 } 655 656 // Skip the first range in the loop. 657 ++It; 658 } 659 660 // Negate all other ranges. 661 for (; It != End; ++It) { 662 // Negate int values. 663 const llvm::APSInt &NewFrom = ValueFactory.getValue(-It->To()); 664 const llvm::APSInt &NewTo = ValueFactory.getValue(-It->From()); 665 666 // Add a negated range. 667 Result.emplace_back(NewFrom, NewTo); 668 } 669 670 llvm::sort(Result); 671 return makePersistent(std::move(Result)); 672 } 673 674 // Convert range set to the given integral type using truncation and promotion. 675 // This works similar to APSIntType::apply function but for the range set. 676 RangeSet RangeSet::Factory::castTo(RangeSet What, APSIntType Ty) { 677 // Set is empty or NOOP (aka cast to the same type). 678 if (What.isEmpty() || What.getAPSIntType() == Ty) 679 return What; 680 681 const bool IsConversion = What.isUnsigned() != Ty.isUnsigned(); 682 const bool IsTruncation = What.getBitWidth() > Ty.getBitWidth(); 683 const bool IsPromotion = What.getBitWidth() < Ty.getBitWidth(); 684 685 if (IsTruncation) 686 return makePersistent(truncateTo(What, Ty)); 687 688 // Here we handle 2 cases: 689 // - IsConversion && !IsPromotion. 690 // In this case we handle changing a sign with same bitwidth: char -> uchar, 691 // uint -> int. Here we convert negatives to positives and positives which 692 // is out of range to negatives. We use convertTo function for that. 693 // - IsConversion && IsPromotion && !What.isUnsigned(). 694 // In this case we handle changing a sign from signeds to unsigneds with 695 // higher bitwidth: char -> uint, int-> uint64. The point is that we also 696 // need convert negatives to positives and use convertTo function as well. 697 // For example, we don't need such a convertion when converting unsigned to 698 // signed with higher bitwidth, because all the values of unsigned is valid 699 // for the such signed. 700 if (IsConversion && (!IsPromotion || !What.isUnsigned())) 701 return makePersistent(convertTo(What, Ty)); 702 703 assert(IsPromotion && "Only promotion operation from unsigneds left."); 704 return makePersistent(promoteTo(What, Ty)); 705 } 706 707 RangeSet RangeSet::Factory::castTo(RangeSet What, QualType T) { 708 assert(T->isIntegralOrEnumerationType() && "T shall be an integral type."); 709 return castTo(What, ValueFactory.getAPSIntType(T)); 710 } 711 712 RangeSet::ContainerType RangeSet::Factory::truncateTo(RangeSet What, 713 APSIntType Ty) { 714 using llvm::APInt; 715 using llvm::APSInt; 716 ContainerType Result; 717 ContainerType Dummy; 718 // CastRangeSize is an amount of all possible values of cast type. 719 // Example: `char` has 256 values; `short` has 65536 values. 720 // But in fact we use `amount of values` - 1, because 721 // we can't keep `amount of values of UINT64` inside uint64_t. 722 // E.g. 256 is an amount of all possible values of `char` and we can't keep 723 // it inside `char`. 724 // And it's OK, it's enough to do correct calculations. 725 uint64_t CastRangeSize = APInt::getMaxValue(Ty.getBitWidth()).getZExtValue(); 726 for (const Range &R : What) { 727 // Get bounds of the given range. 728 APSInt FromInt = R.From(); 729 APSInt ToInt = R.To(); 730 // CurrentRangeSize is an amount of all possible values of the current 731 // range minus one. 732 uint64_t CurrentRangeSize = (ToInt - FromInt).getZExtValue(); 733 // This is an optimization for a specific case when this Range covers 734 // the whole range of the target type. 735 Dummy.clear(); 736 if (CurrentRangeSize >= CastRangeSize) { 737 Dummy.emplace_back(ValueFactory.getMinValue(Ty), 738 ValueFactory.getMaxValue(Ty)); 739 Result = std::move(Dummy); 740 break; 741 } 742 // Cast the bounds. 743 Ty.apply(FromInt); 744 Ty.apply(ToInt); 745 const APSInt &PersistentFrom = ValueFactory.getValue(FromInt); 746 const APSInt &PersistentTo = ValueFactory.getValue(ToInt); 747 if (FromInt > ToInt) { 748 Dummy.emplace_back(ValueFactory.getMinValue(Ty), PersistentTo); 749 Dummy.emplace_back(PersistentFrom, ValueFactory.getMaxValue(Ty)); 750 } else 751 Dummy.emplace_back(PersistentFrom, PersistentTo); 752 // Every range retrieved after truncation potentialy has garbage values. 753 // So, we have to unite every next range with the previouses. 754 Result = unite(Result, Dummy); 755 } 756 757 return Result; 758 } 759 760 // Divide the convertion into two phases (presented as loops here). 761 // First phase(loop) works when casted values go in ascending order. 762 // E.g. char{1,3,5,127} -> uint{1,3,5,127} 763 // Interrupt the first phase and go to second one when casted values start 764 // go in descending order. That means that we crossed over the middle of 765 // the type value set (aka 0 for signeds and MAX/2+1 for unsigneds). 766 // For instance: 767 // 1: uchar{1,3,5,128,255} -> char{1,3,5,-128,-1} 768 // Here we put {1,3,5} to one array and {-128, -1} to another 769 // 2: char{-128,-127,-1,0,1,2} -> uchar{128,129,255,0,1,3} 770 // Here we put {128,129,255} to one array and {0,1,3} to another. 771 // After that we unite both arrays. 772 // NOTE: We don't just concatenate the arrays, because they may have 773 // adjacent ranges, e.g.: 774 // 1: char(-128, 127) -> uchar -> arr1(128, 255), arr2(0, 127) -> 775 // unite -> uchar(0, 255) 776 // 2: uchar(0, 1)U(254, 255) -> char -> arr1(0, 1), arr2(-2, -1) -> 777 // unite -> uchar(-2, 1) 778 RangeSet::ContainerType RangeSet::Factory::convertTo(RangeSet What, 779 APSIntType Ty) { 780 using llvm::APInt; 781 using llvm::APSInt; 782 using Bounds = std::pair<const APSInt &, const APSInt &>; 783 ContainerType AscendArray; 784 ContainerType DescendArray; 785 auto CastRange = [Ty, &VF = ValueFactory](const Range &R) -> Bounds { 786 // Get bounds of the given range. 787 APSInt FromInt = R.From(); 788 APSInt ToInt = R.To(); 789 // Cast the bounds. 790 Ty.apply(FromInt); 791 Ty.apply(ToInt); 792 return {VF.getValue(FromInt), VF.getValue(ToInt)}; 793 }; 794 // Phase 1. Fill the first array. 795 APSInt LastConvertedInt = Ty.getMinValue(); 796 const auto *It = What.begin(); 797 const auto *E = What.end(); 798 while (It != E) { 799 Bounds NewBounds = CastRange(*(It++)); 800 // If values stop going acsending order, go to the second phase(loop). 801 if (NewBounds.first < LastConvertedInt) { 802 DescendArray.emplace_back(NewBounds.first, NewBounds.second); 803 break; 804 } 805 // If the range contains a midpoint, then split the range. 806 // E.g. char(-5, 5) -> uchar(251, 5) 807 // Here we shall add a range (251, 255) to the first array and (0, 5) to the 808 // second one. 809 if (NewBounds.first > NewBounds.second) { 810 DescendArray.emplace_back(ValueFactory.getMinValue(Ty), NewBounds.second); 811 AscendArray.emplace_back(NewBounds.first, ValueFactory.getMaxValue(Ty)); 812 } else 813 // Values are going acsending order. 814 AscendArray.emplace_back(NewBounds.first, NewBounds.second); 815 LastConvertedInt = NewBounds.first; 816 } 817 // Phase 2. Fill the second array. 818 while (It != E) { 819 Bounds NewBounds = CastRange(*(It++)); 820 DescendArray.emplace_back(NewBounds.first, NewBounds.second); 821 } 822 // Unite both arrays. 823 return unite(AscendArray, DescendArray); 824 } 825 826 /// Promotion from unsigneds to signeds/unsigneds left. 827 RangeSet::ContainerType RangeSet::Factory::promoteTo(RangeSet What, 828 APSIntType Ty) { 829 ContainerType Result; 830 // We definitely know the size of the result set. 831 Result.reserve(What.size()); 832 833 // Each unsigned value fits every larger type without any changes, 834 // whether the larger type is signed or unsigned. So just promote and push 835 // back each range one by one. 836 for (const Range &R : What) { 837 // Get bounds of the given range. 838 llvm::APSInt FromInt = R.From(); 839 llvm::APSInt ToInt = R.To(); 840 // Cast the bounds. 841 Ty.apply(FromInt); 842 Ty.apply(ToInt); 843 Result.emplace_back(ValueFactory.getValue(FromInt), 844 ValueFactory.getValue(ToInt)); 845 } 846 return Result; 847 } 848 849 RangeSet RangeSet::Factory::deletePoint(RangeSet From, 850 const llvm::APSInt &Point) { 851 if (!From.contains(Point)) 852 return From; 853 854 llvm::APSInt Upper = Point; 855 llvm::APSInt Lower = Point; 856 857 ++Upper; 858 --Lower; 859 860 // Notice that the lower bound is greater than the upper bound. 861 return intersect(From, Upper, Lower); 862 } 863 864 LLVM_DUMP_METHOD void Range::dump(raw_ostream &OS) const { 865 OS << '[' << toString(From(), 10) << ", " << toString(To(), 10) << ']'; 866 } 867 LLVM_DUMP_METHOD void Range::dump() const { dump(llvm::errs()); } 868 869 LLVM_DUMP_METHOD void RangeSet::dump(raw_ostream &OS) const { 870 OS << "{ "; 871 llvm::interleaveComma(*this, OS, [&OS](const Range &R) { R.dump(OS); }); 872 OS << " }"; 873 } 874 LLVM_DUMP_METHOD void RangeSet::dump() const { dump(llvm::errs()); } 875 876 REGISTER_SET_FACTORY_WITH_PROGRAMSTATE(SymbolSet, SymbolRef) 877 878 namespace { 879 class EquivalenceClass; 880 } // end anonymous namespace 881 882 REGISTER_MAP_WITH_PROGRAMSTATE(ClassMap, SymbolRef, EquivalenceClass) 883 REGISTER_MAP_WITH_PROGRAMSTATE(ClassMembers, EquivalenceClass, SymbolSet) 884 REGISTER_MAP_WITH_PROGRAMSTATE(ConstraintRange, EquivalenceClass, RangeSet) 885 886 REGISTER_SET_FACTORY_WITH_PROGRAMSTATE(ClassSet, EquivalenceClass) 887 REGISTER_MAP_WITH_PROGRAMSTATE(DisequalityMap, EquivalenceClass, ClassSet) 888 889 namespace { 890 /// This class encapsulates a set of symbols equal to each other. 891 /// 892 /// The main idea of the approach requiring such classes is in narrowing 893 /// and sharing constraints between symbols within the class. Also we can 894 /// conclude that there is no practical need in storing constraints for 895 /// every member of the class separately. 896 /// 897 /// Main terminology: 898 /// 899 /// * "Equivalence class" is an object of this class, which can be efficiently 900 /// compared to other classes. It represents the whole class without 901 /// storing the actual in it. The members of the class however can be 902 /// retrieved from the state. 903 /// 904 /// * "Class members" are the symbols corresponding to the class. This means 905 /// that A == B for every member symbols A and B from the class. Members of 906 /// each class are stored in the state. 907 /// 908 /// * "Trivial class" is a class that has and ever had only one same symbol. 909 /// 910 /// * "Merge operation" merges two classes into one. It is the main operation 911 /// to produce non-trivial classes. 912 /// If, at some point, we can assume that two symbols from two distinct 913 /// classes are equal, we can merge these classes. 914 class EquivalenceClass : public llvm::FoldingSetNode { 915 public: 916 /// Find equivalence class for the given symbol in the given state. 917 [[nodiscard]] static inline EquivalenceClass find(ProgramStateRef State, 918 SymbolRef Sym); 919 920 /// Merge classes for the given symbols and return a new state. 921 [[nodiscard]] static inline ProgramStateRef merge(RangeSet::Factory &F, 922 ProgramStateRef State, 923 SymbolRef First, 924 SymbolRef Second); 925 // Merge this class with the given class and return a new state. 926 [[nodiscard]] inline ProgramStateRef 927 merge(RangeSet::Factory &F, ProgramStateRef State, EquivalenceClass Other); 928 929 /// Return a set of class members for the given state. 930 [[nodiscard]] inline SymbolSet getClassMembers(ProgramStateRef State) const; 931 932 /// Return true if the current class is trivial in the given state. 933 /// A class is trivial if and only if there is not any member relations stored 934 /// to it in State/ClassMembers. 935 /// An equivalence class with one member might seem as it does not hold any 936 /// meaningful information, i.e. that is a tautology. However, during the 937 /// removal of dead symbols we do not remove classes with one member for 938 /// resource and performance reasons. Consequently, a class with one member is 939 /// not necessarily trivial. It could happen that we have a class with two 940 /// members and then during the removal of dead symbols we remove one of its 941 /// members. In this case, the class is still non-trivial (it still has the 942 /// mappings in ClassMembers), even though it has only one member. 943 [[nodiscard]] inline bool isTrivial(ProgramStateRef State) const; 944 945 /// Return true if the current class is trivial and its only member is dead. 946 [[nodiscard]] inline bool isTriviallyDead(ProgramStateRef State, 947 SymbolReaper &Reaper) const; 948 949 [[nodiscard]] static inline ProgramStateRef 950 markDisequal(RangeSet::Factory &F, ProgramStateRef State, SymbolRef First, 951 SymbolRef Second); 952 [[nodiscard]] static inline ProgramStateRef 953 markDisequal(RangeSet::Factory &F, ProgramStateRef State, 954 EquivalenceClass First, EquivalenceClass Second); 955 [[nodiscard]] inline ProgramStateRef 956 markDisequal(RangeSet::Factory &F, ProgramStateRef State, 957 EquivalenceClass Other) const; 958 [[nodiscard]] static inline ClassSet getDisequalClasses(ProgramStateRef State, 959 SymbolRef Sym); 960 [[nodiscard]] inline ClassSet getDisequalClasses(ProgramStateRef State) const; 961 [[nodiscard]] inline ClassSet 962 getDisequalClasses(DisequalityMapTy Map, ClassSet::Factory &Factory) const; 963 964 [[nodiscard]] static inline std::optional<bool> 965 areEqual(ProgramStateRef State, EquivalenceClass First, 966 EquivalenceClass Second); 967 [[nodiscard]] static inline std::optional<bool> 968 areEqual(ProgramStateRef State, SymbolRef First, SymbolRef Second); 969 970 /// Remove one member from the class. 971 [[nodiscard]] ProgramStateRef removeMember(ProgramStateRef State, 972 const SymbolRef Old); 973 974 /// Iterate over all symbols and try to simplify them. 975 [[nodiscard]] static inline ProgramStateRef simplify(SValBuilder &SVB, 976 RangeSet::Factory &F, 977 ProgramStateRef State, 978 EquivalenceClass Class); 979 980 void dumpToStream(ProgramStateRef State, raw_ostream &os) const; 981 LLVM_DUMP_METHOD void dump(ProgramStateRef State) const { 982 dumpToStream(State, llvm::errs()); 983 } 984 985 /// Check equivalence data for consistency. 986 [[nodiscard]] LLVM_ATTRIBUTE_UNUSED static bool 987 isClassDataConsistent(ProgramStateRef State); 988 989 [[nodiscard]] QualType getType() const { 990 return getRepresentativeSymbol()->getType(); 991 } 992 993 EquivalenceClass() = delete; 994 EquivalenceClass(const EquivalenceClass &) = default; 995 EquivalenceClass &operator=(const EquivalenceClass &) = delete; 996 EquivalenceClass(EquivalenceClass &&) = default; 997 EquivalenceClass &operator=(EquivalenceClass &&) = delete; 998 999 bool operator==(const EquivalenceClass &Other) const { 1000 return ID == Other.ID; 1001 } 1002 bool operator<(const EquivalenceClass &Other) const { return ID < Other.ID; } 1003 bool operator!=(const EquivalenceClass &Other) const { 1004 return !operator==(Other); 1005 } 1006 1007 static void Profile(llvm::FoldingSetNodeID &ID, uintptr_t CID) { 1008 ID.AddInteger(CID); 1009 } 1010 1011 void Profile(llvm::FoldingSetNodeID &ID) const { Profile(ID, this->ID); } 1012 1013 private: 1014 /* implicit */ EquivalenceClass(SymbolRef Sym) 1015 : ID(reinterpret_cast<uintptr_t>(Sym)) {} 1016 1017 /// This function is intended to be used ONLY within the class. 1018 /// The fact that ID is a pointer to a symbol is an implementation detail 1019 /// and should stay that way. 1020 /// In the current implementation, we use it to retrieve the only member 1021 /// of the trivial class. 1022 SymbolRef getRepresentativeSymbol() const { 1023 return reinterpret_cast<SymbolRef>(ID); 1024 } 1025 static inline SymbolSet::Factory &getMembersFactory(ProgramStateRef State); 1026 1027 inline ProgramStateRef mergeImpl(RangeSet::Factory &F, ProgramStateRef State, 1028 SymbolSet Members, EquivalenceClass Other, 1029 SymbolSet OtherMembers); 1030 1031 static inline bool 1032 addToDisequalityInfo(DisequalityMapTy &Info, ConstraintRangeTy &Constraints, 1033 RangeSet::Factory &F, ProgramStateRef State, 1034 EquivalenceClass First, EquivalenceClass Second); 1035 1036 /// This is a unique identifier of the class. 1037 uintptr_t ID; 1038 }; 1039 1040 //===----------------------------------------------------------------------===// 1041 // Constraint functions 1042 //===----------------------------------------------------------------------===// 1043 1044 [[nodiscard]] LLVM_ATTRIBUTE_UNUSED bool 1045 areFeasible(ConstraintRangeTy Constraints) { 1046 return llvm::none_of( 1047 Constraints, 1048 [](const std::pair<EquivalenceClass, RangeSet> &ClassConstraint) { 1049 return ClassConstraint.second.isEmpty(); 1050 }); 1051 } 1052 1053 [[nodiscard]] inline const RangeSet *getConstraint(ProgramStateRef State, 1054 EquivalenceClass Class) { 1055 return State->get<ConstraintRange>(Class); 1056 } 1057 1058 [[nodiscard]] inline const RangeSet *getConstraint(ProgramStateRef State, 1059 SymbolRef Sym) { 1060 return getConstraint(State, EquivalenceClass::find(State, Sym)); 1061 } 1062 1063 [[nodiscard]] ProgramStateRef setConstraint(ProgramStateRef State, 1064 EquivalenceClass Class, 1065 RangeSet Constraint) { 1066 return State->set<ConstraintRange>(Class, Constraint); 1067 } 1068 1069 [[nodiscard]] ProgramStateRef setConstraints(ProgramStateRef State, 1070 ConstraintRangeTy Constraints) { 1071 return State->set<ConstraintRange>(Constraints); 1072 } 1073 1074 //===----------------------------------------------------------------------===// 1075 // Equality/diseqiality abstraction 1076 //===----------------------------------------------------------------------===// 1077 1078 /// A small helper function for detecting symbolic (dis)equality. 1079 /// 1080 /// Equality check can have different forms (like a == b or a - b) and this 1081 /// class encapsulates those away if the only thing the user wants to check - 1082 /// whether it's equality/diseqiality or not. 1083 /// 1084 /// \returns true if assuming this Sym to be true means equality of operands 1085 /// false if it means disequality of operands 1086 /// std::nullopt otherwise 1087 std::optional<bool> meansEquality(const SymSymExpr *Sym) { 1088 switch (Sym->getOpcode()) { 1089 case BO_Sub: 1090 // This case is: A - B != 0 -> disequality check. 1091 return false; 1092 case BO_EQ: 1093 // This case is: A == B != 0 -> equality check. 1094 return true; 1095 case BO_NE: 1096 // This case is: A != B != 0 -> diseqiality check. 1097 return false; 1098 default: 1099 return std::nullopt; 1100 } 1101 } 1102 1103 //===----------------------------------------------------------------------===// 1104 // Intersection functions 1105 //===----------------------------------------------------------------------===// 1106 1107 template <class SecondTy, class... RestTy> 1108 [[nodiscard]] inline RangeSet intersect(RangeSet::Factory &F, RangeSet Head, 1109 SecondTy Second, RestTy... Tail); 1110 1111 template <class... RangeTy> struct IntersectionTraits; 1112 1113 template <class... TailTy> struct IntersectionTraits<RangeSet, TailTy...> { 1114 // Found RangeSet, no need to check any further 1115 using Type = RangeSet; 1116 }; 1117 1118 template <> struct IntersectionTraits<> { 1119 // We ran out of types, and we didn't find any RangeSet, so the result should 1120 // be optional. 1121 using Type = std::optional<RangeSet>; 1122 }; 1123 1124 template <class OptionalOrPointer, class... TailTy> 1125 struct IntersectionTraits<OptionalOrPointer, TailTy...> { 1126 // If current type is Optional or a raw pointer, we should keep looking. 1127 using Type = typename IntersectionTraits<TailTy...>::Type; 1128 }; 1129 1130 template <class EndTy> 1131 [[nodiscard]] inline EndTy intersect(RangeSet::Factory &F, EndTy End) { 1132 // If the list contains only RangeSet or std::optional<RangeSet>, simply 1133 // return that range set. 1134 return End; 1135 } 1136 1137 [[nodiscard]] LLVM_ATTRIBUTE_UNUSED inline std::optional<RangeSet> 1138 intersect(RangeSet::Factory &F, const RangeSet *End) { 1139 // This is an extraneous conversion from a raw pointer into 1140 // std::optional<RangeSet> 1141 if (End) { 1142 return *End; 1143 } 1144 return std::nullopt; 1145 } 1146 1147 template <class... RestTy> 1148 [[nodiscard]] inline RangeSet intersect(RangeSet::Factory &F, RangeSet Head, 1149 RangeSet Second, RestTy... Tail) { 1150 // Here we call either the <RangeSet,RangeSet,...> or <RangeSet,...> version 1151 // of the function and can be sure that the result is RangeSet. 1152 return intersect(F, F.intersect(Head, Second), Tail...); 1153 } 1154 1155 template <class SecondTy, class... RestTy> 1156 [[nodiscard]] inline RangeSet intersect(RangeSet::Factory &F, RangeSet Head, 1157 SecondTy Second, RestTy... Tail) { 1158 if (Second) { 1159 // Here we call the <RangeSet,RangeSet,...> version of the function... 1160 return intersect(F, Head, *Second, Tail...); 1161 } 1162 // ...and here it is either <RangeSet,RangeSet,...> or <RangeSet,...>, which 1163 // means that the result is definitely RangeSet. 1164 return intersect(F, Head, Tail...); 1165 } 1166 1167 /// Main generic intersect function. 1168 /// It intersects all of the given range sets. If some of the given arguments 1169 /// don't hold a range set (nullptr or std::nullopt), the function will skip 1170 /// them. 1171 /// 1172 /// Available representations for the arguments are: 1173 /// * RangeSet 1174 /// * std::optional<RangeSet> 1175 /// * RangeSet * 1176 /// Pointer to a RangeSet is automatically assumed to be nullable and will get 1177 /// checked as well as the optional version. If this behaviour is undesired, 1178 /// please dereference the pointer in the call. 1179 /// 1180 /// Return type depends on the arguments' types. If we can be sure in compile 1181 /// time that there will be a range set as a result, the returning type is 1182 /// simply RangeSet, in other cases we have to back off to 1183 /// std::optional<RangeSet>. 1184 /// 1185 /// Please, prefer optional range sets to raw pointers. If the last argument is 1186 /// a raw pointer and all previous arguments are std::nullopt, it will cost one 1187 /// additional check to convert RangeSet * into std::optional<RangeSet>. 1188 template <class HeadTy, class SecondTy, class... RestTy> 1189 [[nodiscard]] inline 1190 typename IntersectionTraits<HeadTy, SecondTy, RestTy...>::Type 1191 intersect(RangeSet::Factory &F, HeadTy Head, SecondTy Second, 1192 RestTy... Tail) { 1193 if (Head) { 1194 return intersect(F, *Head, Second, Tail...); 1195 } 1196 return intersect(F, Second, Tail...); 1197 } 1198 1199 //===----------------------------------------------------------------------===// 1200 // Symbolic reasoning logic 1201 //===----------------------------------------------------------------------===// 1202 1203 /// A little component aggregating all of the reasoning we have about 1204 /// the ranges of symbolic expressions. 1205 /// 1206 /// Even when we don't know the exact values of the operands, we still 1207 /// can get a pretty good estimate of the result's range. 1208 class SymbolicRangeInferrer 1209 : public SymExprVisitor<SymbolicRangeInferrer, RangeSet> { 1210 public: 1211 template <class SourceType> 1212 static RangeSet inferRange(RangeSet::Factory &F, ProgramStateRef State, 1213 SourceType Origin) { 1214 SymbolicRangeInferrer Inferrer(F, State); 1215 return Inferrer.infer(Origin); 1216 } 1217 1218 RangeSet VisitSymExpr(SymbolRef Sym) { 1219 if (std::optional<RangeSet> RS = getRangeForNegatedSym(Sym)) 1220 return *RS; 1221 // If we've reached this line, the actual type of the symbolic 1222 // expression is not supported for advanced inference. 1223 // In this case, we simply backoff to the default "let's simply 1224 // infer the range from the expression's type". 1225 return infer(Sym->getType()); 1226 } 1227 1228 RangeSet VisitUnarySymExpr(const UnarySymExpr *USE) { 1229 if (std::optional<RangeSet> RS = getRangeForNegatedUnarySym(USE)) 1230 return *RS; 1231 return infer(USE->getType()); 1232 } 1233 1234 RangeSet VisitSymIntExpr(const SymIntExpr *Sym) { 1235 return VisitBinaryOperator(Sym); 1236 } 1237 1238 RangeSet VisitIntSymExpr(const IntSymExpr *Sym) { 1239 return VisitBinaryOperator(Sym); 1240 } 1241 1242 RangeSet VisitSymSymExpr(const SymSymExpr *SSE) { 1243 return intersect( 1244 RangeFactory, 1245 // If Sym is a difference of symbols A - B, then maybe we have range 1246 // set stored for B - A. 1247 // 1248 // If we have range set stored for both A - B and B - A then 1249 // calculate the effective range set by intersecting the range set 1250 // for A - B and the negated range set of B - A. 1251 getRangeForNegatedSymSym(SSE), 1252 // If commutative, we may have constaints for the commuted variant. 1253 getRangeCommutativeSymSym(SSE), 1254 // If Sym is a comparison expression (except <=>), 1255 // find any other comparisons with the same operands. 1256 // See function description. 1257 getRangeForComparisonSymbol(SSE), 1258 // If Sym is (dis)equality, we might have some information 1259 // on that in our equality classes data structure. 1260 getRangeForEqualities(SSE), 1261 // And we should always check what we can get from the operands. 1262 VisitBinaryOperator(SSE)); 1263 } 1264 1265 private: 1266 SymbolicRangeInferrer(RangeSet::Factory &F, ProgramStateRef S) 1267 : ValueFactory(F.getValueFactory()), RangeFactory(F), State(S) {} 1268 1269 /// Infer range information from the given integer constant. 1270 /// 1271 /// It's not a real "inference", but is here for operating with 1272 /// sub-expressions in a more polymorphic manner. 1273 RangeSet inferAs(const llvm::APSInt &Val, QualType) { 1274 return {RangeFactory, Val}; 1275 } 1276 1277 /// Infer range information from symbol in the context of the given type. 1278 RangeSet inferAs(SymbolRef Sym, QualType DestType) { 1279 QualType ActualType = Sym->getType(); 1280 // Check that we can reason about the symbol at all. 1281 if (ActualType->isIntegralOrEnumerationType() || 1282 Loc::isLocType(ActualType)) { 1283 return infer(Sym); 1284 } 1285 // Otherwise, let's simply infer from the destination type. 1286 // We couldn't figure out nothing else about that expression. 1287 return infer(DestType); 1288 } 1289 1290 RangeSet infer(SymbolRef Sym) { 1291 return intersect(RangeFactory, 1292 // Of course, we should take the constraint directly 1293 // associated with this symbol into consideration. 1294 getConstraint(State, Sym), 1295 // Apart from the Sym itself, we can infer quite a lot if 1296 // we look into subexpressions of Sym. 1297 Visit(Sym)); 1298 } 1299 1300 RangeSet infer(EquivalenceClass Class) { 1301 if (const RangeSet *AssociatedConstraint = getConstraint(State, Class)) 1302 return *AssociatedConstraint; 1303 1304 return infer(Class.getType()); 1305 } 1306 1307 /// Infer range information solely from the type. 1308 RangeSet infer(QualType T) { 1309 // Lazily generate a new RangeSet representing all possible values for the 1310 // given symbol type. 1311 RangeSet Result(RangeFactory, ValueFactory.getMinValue(T), 1312 ValueFactory.getMaxValue(T)); 1313 1314 // References are known to be non-zero. 1315 if (T->isReferenceType()) 1316 return assumeNonZero(Result, T); 1317 1318 return Result; 1319 } 1320 1321 template <class BinarySymExprTy> 1322 RangeSet VisitBinaryOperator(const BinarySymExprTy *Sym) { 1323 // TODO #1: VisitBinaryOperator implementation might not make a good 1324 // use of the inferred ranges. In this case, we might be calculating 1325 // everything for nothing. This being said, we should introduce some 1326 // sort of laziness mechanism here. 1327 // 1328 // TODO #2: We didn't go into the nested expressions before, so it 1329 // might cause us spending much more time doing the inference. 1330 // This can be a problem for deeply nested expressions that are 1331 // involved in conditions and get tested continuously. We definitely 1332 // need to address this issue and introduce some sort of caching 1333 // in here. 1334 QualType ResultType = Sym->getType(); 1335 return VisitBinaryOperator(inferAs(Sym->getLHS(), ResultType), 1336 Sym->getOpcode(), 1337 inferAs(Sym->getRHS(), ResultType), ResultType); 1338 } 1339 1340 RangeSet VisitBinaryOperator(RangeSet LHS, BinaryOperator::Opcode Op, 1341 RangeSet RHS, QualType T); 1342 1343 //===----------------------------------------------------------------------===// 1344 // Ranges and operators 1345 //===----------------------------------------------------------------------===// 1346 1347 /// Return a rough approximation of the given range set. 1348 /// 1349 /// For the range set: 1350 /// { [x_0, y_0], [x_1, y_1], ... , [x_N, y_N] } 1351 /// it will return the range [x_0, y_N]. 1352 static Range fillGaps(RangeSet Origin) { 1353 assert(!Origin.isEmpty()); 1354 return {Origin.getMinValue(), Origin.getMaxValue()}; 1355 } 1356 1357 /// Try to convert given range into the given type. 1358 /// 1359 /// It will return std::nullopt only when the trivial conversion is possible. 1360 std::optional<Range> convert(const Range &Origin, APSIntType To) { 1361 if (To.testInRange(Origin.From(), false) != APSIntType::RTR_Within || 1362 To.testInRange(Origin.To(), false) != APSIntType::RTR_Within) { 1363 return std::nullopt; 1364 } 1365 return Range(ValueFactory.Convert(To, Origin.From()), 1366 ValueFactory.Convert(To, Origin.To())); 1367 } 1368 1369 template <BinaryOperator::Opcode Op> 1370 RangeSet VisitBinaryOperator(RangeSet LHS, RangeSet RHS, QualType T) { 1371 assert(!LHS.isEmpty() && !RHS.isEmpty()); 1372 1373 Range CoarseLHS = fillGaps(LHS); 1374 Range CoarseRHS = fillGaps(RHS); 1375 1376 APSIntType ResultType = ValueFactory.getAPSIntType(T); 1377 1378 // We need to convert ranges to the resulting type, so we can compare values 1379 // and combine them in a meaningful (in terms of the given operation) way. 1380 auto ConvertedCoarseLHS = convert(CoarseLHS, ResultType); 1381 auto ConvertedCoarseRHS = convert(CoarseRHS, ResultType); 1382 1383 // It is hard to reason about ranges when conversion changes 1384 // borders of the ranges. 1385 if (!ConvertedCoarseLHS || !ConvertedCoarseRHS) { 1386 return infer(T); 1387 } 1388 1389 return VisitBinaryOperator<Op>(*ConvertedCoarseLHS, *ConvertedCoarseRHS, T); 1390 } 1391 1392 template <BinaryOperator::Opcode Op> 1393 RangeSet VisitBinaryOperator(Range LHS, Range RHS, QualType T) { 1394 return infer(T); 1395 } 1396 1397 /// Return a symmetrical range for the given range and type. 1398 /// 1399 /// If T is signed, return the smallest range [-x..x] that covers the original 1400 /// range, or [-min(T), max(T)] if the aforementioned symmetric range doesn't 1401 /// exist due to original range covering min(T)). 1402 /// 1403 /// If T is unsigned, return the smallest range [0..x] that covers the 1404 /// original range. 1405 Range getSymmetricalRange(Range Origin, QualType T) { 1406 APSIntType RangeType = ValueFactory.getAPSIntType(T); 1407 1408 if (RangeType.isUnsigned()) { 1409 return Range(ValueFactory.getMinValue(RangeType), Origin.To()); 1410 } 1411 1412 if (Origin.From().isMinSignedValue()) { 1413 // If mini is a minimal signed value, absolute value of it is greater 1414 // than the maximal signed value. In order to avoid these 1415 // complications, we simply return the whole range. 1416 return {ValueFactory.getMinValue(RangeType), 1417 ValueFactory.getMaxValue(RangeType)}; 1418 } 1419 1420 // At this point, we are sure that the type is signed and we can safely 1421 // use unary - operator. 1422 // 1423 // While calculating absolute maximum, we can use the following formula 1424 // because of these reasons: 1425 // * If From >= 0 then To >= From and To >= -From. 1426 // AbsMax == To == max(To, -From) 1427 // * If To <= 0 then -From >= -To and -From >= From. 1428 // AbsMax == -From == max(-From, To) 1429 // * Otherwise, From <= 0, To >= 0, and 1430 // AbsMax == max(abs(From), abs(To)) 1431 llvm::APSInt AbsMax = std::max(-Origin.From(), Origin.To()); 1432 1433 // Intersection is guaranteed to be non-empty. 1434 return {ValueFactory.getValue(-AbsMax), ValueFactory.getValue(AbsMax)}; 1435 } 1436 1437 /// Return a range set subtracting zero from \p Domain. 1438 RangeSet assumeNonZero(RangeSet Domain, QualType T) { 1439 APSIntType IntType = ValueFactory.getAPSIntType(T); 1440 return RangeFactory.deletePoint(Domain, IntType.getZeroValue()); 1441 } 1442 1443 template <typename ProduceNegatedSymFunc> 1444 std::optional<RangeSet> getRangeForNegatedExpr(ProduceNegatedSymFunc F, 1445 QualType T) { 1446 // Do not negate if the type cannot be meaningfully negated. 1447 if (!T->isUnsignedIntegerOrEnumerationType() && 1448 !T->isSignedIntegerOrEnumerationType()) 1449 return std::nullopt; 1450 1451 if (SymbolRef NegatedSym = F()) 1452 if (const RangeSet *NegatedRange = getConstraint(State, NegatedSym)) 1453 return RangeFactory.negate(*NegatedRange); 1454 1455 return std::nullopt; 1456 } 1457 1458 std::optional<RangeSet> getRangeForNegatedUnarySym(const UnarySymExpr *USE) { 1459 // Just get the operand when we negate a symbol that is already negated. 1460 // -(-a) == a 1461 return getRangeForNegatedExpr( 1462 [USE]() -> SymbolRef { 1463 if (USE->getOpcode() == UO_Minus) 1464 return USE->getOperand(); 1465 return nullptr; 1466 }, 1467 USE->getType()); 1468 } 1469 1470 std::optional<RangeSet> getRangeForNegatedSymSym(const SymSymExpr *SSE) { 1471 return getRangeForNegatedExpr( 1472 [SSE, State = this->State]() -> SymbolRef { 1473 if (SSE->getOpcode() == BO_Sub) 1474 return State->getSymbolManager().acquire<SymSymExpr>( 1475 SSE->getRHS(), BO_Sub, SSE->getLHS(), SSE->getType()); 1476 return nullptr; 1477 }, 1478 SSE->getType()); 1479 } 1480 1481 std::optional<RangeSet> getRangeForNegatedSym(SymbolRef Sym) { 1482 return getRangeForNegatedExpr( 1483 [Sym, State = this->State]() { 1484 return State->getSymbolManager().acquire<UnarySymExpr>( 1485 Sym, UO_Minus, Sym->getType()); 1486 }, 1487 Sym->getType()); 1488 } 1489 1490 std::optional<RangeSet> getRangeCommutativeSymSym(const SymSymExpr *SSE) { 1491 auto Op = SSE->getOpcode(); 1492 bool IsCommutative = llvm::is_contained( 1493 // ==, !=, |, &, +, *, ^ 1494 {BO_EQ, BO_NE, BO_Or, BO_And, BO_Add, BO_Mul, BO_Xor}, Op); 1495 if (!IsCommutative) 1496 return std::nullopt; 1497 1498 SymbolRef Commuted = State->getSymbolManager().acquire<SymSymExpr>( 1499 SSE->getRHS(), Op, SSE->getLHS(), SSE->getType()); 1500 if (const RangeSet *Range = getConstraint(State, Commuted)) 1501 return *Range; 1502 return std::nullopt; 1503 } 1504 1505 // Returns ranges only for binary comparison operators (except <=>) 1506 // when left and right operands are symbolic values. 1507 // Finds any other comparisons with the same operands. 1508 // Then do logical calculations and refuse impossible branches. 1509 // E.g. (x < y) and (x > y) at the same time are impossible. 1510 // E.g. (x >= y) and (x != y) at the same time makes (x > y) true only. 1511 // E.g. (x == y) and (y == x) are just reversed but the same. 1512 // It covers all possible combinations (see CmpOpTable description). 1513 // Note that `x` and `y` can also stand for subexpressions, 1514 // not only for actual symbols. 1515 std::optional<RangeSet> getRangeForComparisonSymbol(const SymSymExpr *SSE) { 1516 const BinaryOperatorKind CurrentOP = SSE->getOpcode(); 1517 1518 // We currently do not support <=> (C++20). 1519 if (!BinaryOperator::isComparisonOp(CurrentOP) || (CurrentOP == BO_Cmp)) 1520 return std::nullopt; 1521 1522 static const OperatorRelationsTable CmpOpTable{}; 1523 1524 const SymExpr *LHS = SSE->getLHS(); 1525 const SymExpr *RHS = SSE->getRHS(); 1526 QualType T = SSE->getType(); 1527 1528 SymbolManager &SymMgr = State->getSymbolManager(); 1529 1530 // We use this variable to store the last queried operator (`QueriedOP`) 1531 // for which the `getCmpOpState` returned with `Unknown`. If there are two 1532 // different OPs that returned `Unknown` then we have to query the special 1533 // `UnknownX2` column. We assume that `getCmpOpState(CurrentOP, CurrentOP)` 1534 // never returns `Unknown`, so `CurrentOP` is a good initial value. 1535 BinaryOperatorKind LastQueriedOpToUnknown = CurrentOP; 1536 1537 // Loop goes through all of the columns exept the last one ('UnknownX2'). 1538 // We treat `UnknownX2` column separately at the end of the loop body. 1539 for (size_t i = 0; i < CmpOpTable.getCmpOpCount(); ++i) { 1540 1541 // Let's find an expression e.g. (x < y). 1542 BinaryOperatorKind QueriedOP = OperatorRelationsTable::getOpFromIndex(i); 1543 const SymSymExpr *SymSym = 1544 SymMgr.acquire<SymSymExpr>(LHS, QueriedOP, RHS, T); 1545 const RangeSet *QueriedRangeSet = getConstraint(State, SymSym); 1546 1547 // If ranges were not previously found, 1548 // try to find a reversed expression (y > x). 1549 if (!QueriedRangeSet) { 1550 const BinaryOperatorKind ROP = 1551 BinaryOperator::reverseComparisonOp(QueriedOP); 1552 SymSym = SymMgr.acquire<SymSymExpr>(RHS, ROP, LHS, T); 1553 QueriedRangeSet = getConstraint(State, SymSym); 1554 } 1555 1556 if (!QueriedRangeSet || QueriedRangeSet->isEmpty()) 1557 continue; 1558 1559 const llvm::APSInt *ConcreteValue = QueriedRangeSet->getConcreteValue(); 1560 const bool isInFalseBranch = 1561 ConcreteValue ? (*ConcreteValue == 0) : false; 1562 1563 // If it is a false branch, we shall be guided by opposite operator, 1564 // because the table is made assuming we are in the true branch. 1565 // E.g. when (x <= y) is false, then (x > y) is true. 1566 if (isInFalseBranch) 1567 QueriedOP = BinaryOperator::negateComparisonOp(QueriedOP); 1568 1569 OperatorRelationsTable::TriStateKind BranchState = 1570 CmpOpTable.getCmpOpState(CurrentOP, QueriedOP); 1571 1572 if (BranchState == OperatorRelationsTable::Unknown) { 1573 if (LastQueriedOpToUnknown != CurrentOP && 1574 LastQueriedOpToUnknown != QueriedOP) { 1575 // If we got the Unknown state for both different operators. 1576 // if (x <= y) // assume true 1577 // if (x != y) // assume true 1578 // if (x < y) // would be also true 1579 // Get a state from `UnknownX2` column. 1580 BranchState = CmpOpTable.getCmpOpStateForUnknownX2(CurrentOP); 1581 } else { 1582 LastQueriedOpToUnknown = QueriedOP; 1583 continue; 1584 } 1585 } 1586 1587 return (BranchState == OperatorRelationsTable::True) ? getTrueRange(T) 1588 : getFalseRange(T); 1589 } 1590 1591 return std::nullopt; 1592 } 1593 1594 std::optional<RangeSet> getRangeForEqualities(const SymSymExpr *Sym) { 1595 std::optional<bool> Equality = meansEquality(Sym); 1596 1597 if (!Equality) 1598 return std::nullopt; 1599 1600 if (std::optional<bool> AreEqual = 1601 EquivalenceClass::areEqual(State, Sym->getLHS(), Sym->getRHS())) { 1602 // Here we cover two cases at once: 1603 // * if Sym is equality and its operands are known to be equal -> true 1604 // * if Sym is disequality and its operands are disequal -> true 1605 if (*AreEqual == *Equality) { 1606 return getTrueRange(Sym->getType()); 1607 } 1608 // Opposite combinations result in false. 1609 return getFalseRange(Sym->getType()); 1610 } 1611 1612 return std::nullopt; 1613 } 1614 1615 RangeSet getTrueRange(QualType T) { 1616 RangeSet TypeRange = infer(T); 1617 return assumeNonZero(TypeRange, T); 1618 } 1619 1620 RangeSet getFalseRange(QualType T) { 1621 const llvm::APSInt &Zero = ValueFactory.getValue(0, T); 1622 return RangeSet(RangeFactory, Zero); 1623 } 1624 1625 BasicValueFactory &ValueFactory; 1626 RangeSet::Factory &RangeFactory; 1627 ProgramStateRef State; 1628 }; 1629 1630 //===----------------------------------------------------------------------===// 1631 // Range-based reasoning about symbolic operations 1632 //===----------------------------------------------------------------------===// 1633 1634 template <> 1635 RangeSet SymbolicRangeInferrer::VisitBinaryOperator<BO_NE>(RangeSet LHS, 1636 RangeSet RHS, 1637 QualType T) { 1638 assert(!LHS.isEmpty() && !RHS.isEmpty()); 1639 1640 if (LHS.getAPSIntType() == RHS.getAPSIntType()) { 1641 if (intersect(RangeFactory, LHS, RHS).isEmpty()) 1642 return getTrueRange(T); 1643 1644 } else { 1645 // We can only lose information if we are casting smaller signed type to 1646 // bigger unsigned type. For e.g., 1647 // LHS (unsigned short): [2, USHRT_MAX] 1648 // RHS (signed short): [SHRT_MIN, 0] 1649 // 1650 // Casting RHS to LHS type will leave us with overlapping values 1651 // CastedRHS : [0, 0] U [SHRT_MAX + 1, USHRT_MAX] 1652 // 1653 // We can avoid this by checking if signed type's maximum value is lesser 1654 // than unsigned type's minimum value. 1655 1656 // If both have different signs then only we can get more information. 1657 if (LHS.isUnsigned() != RHS.isUnsigned()) { 1658 if (LHS.isUnsigned() && (LHS.getBitWidth() >= RHS.getBitWidth())) { 1659 if (RHS.getMaxValue().isNegative() || 1660 LHS.getAPSIntType().convert(RHS.getMaxValue()) < LHS.getMinValue()) 1661 return getTrueRange(T); 1662 1663 } else if (RHS.isUnsigned() && (LHS.getBitWidth() <= RHS.getBitWidth())) { 1664 if (LHS.getMaxValue().isNegative() || 1665 RHS.getAPSIntType().convert(LHS.getMaxValue()) < RHS.getMinValue()) 1666 return getTrueRange(T); 1667 } 1668 } 1669 1670 // Both RangeSets should be casted to bigger unsigned type. 1671 APSIntType CastingType(std::max(LHS.getBitWidth(), RHS.getBitWidth()), 1672 LHS.isUnsigned() || RHS.isUnsigned()); 1673 1674 RangeSet CastedLHS = RangeFactory.castTo(LHS, CastingType); 1675 RangeSet CastedRHS = RangeFactory.castTo(RHS, CastingType); 1676 1677 if (intersect(RangeFactory, CastedLHS, CastedRHS).isEmpty()) 1678 return getTrueRange(T); 1679 } 1680 1681 // In all other cases, the resulting range cannot be deduced. 1682 return infer(T); 1683 } 1684 1685 template <> 1686 RangeSet SymbolicRangeInferrer::VisitBinaryOperator<BO_Or>(Range LHS, Range RHS, 1687 QualType T) { 1688 APSIntType ResultType = ValueFactory.getAPSIntType(T); 1689 llvm::APSInt Zero = ResultType.getZeroValue(); 1690 1691 bool IsLHSPositiveOrZero = LHS.From() >= Zero; 1692 bool IsRHSPositiveOrZero = RHS.From() >= Zero; 1693 1694 bool IsLHSNegative = LHS.To() < Zero; 1695 bool IsRHSNegative = RHS.To() < Zero; 1696 1697 // Check if both ranges have the same sign. 1698 if ((IsLHSPositiveOrZero && IsRHSPositiveOrZero) || 1699 (IsLHSNegative && IsRHSNegative)) { 1700 // The result is definitely greater or equal than any of the operands. 1701 const llvm::APSInt &Min = std::max(LHS.From(), RHS.From()); 1702 1703 // We estimate maximal value for positives as the maximal value for the 1704 // given type. For negatives, we estimate it with -1 (e.g. 0x11111111). 1705 // 1706 // TODO: We basically, limit the resulting range from below, but don't do 1707 // anything with the upper bound. 1708 // 1709 // For positive operands, it can be done as follows: for the upper 1710 // bound of LHS and RHS we calculate the most significant bit set. 1711 // Let's call it the N-th bit. Then we can estimate the maximal 1712 // number to be 2^(N+1)-1, i.e. the number with all the bits up to 1713 // the N-th bit set. 1714 const llvm::APSInt &Max = IsLHSNegative 1715 ? ValueFactory.getValue(--Zero) 1716 : ValueFactory.getMaxValue(ResultType); 1717 1718 return {RangeFactory, ValueFactory.getValue(Min), Max}; 1719 } 1720 1721 // Otherwise, let's check if at least one of the operands is negative. 1722 if (IsLHSNegative || IsRHSNegative) { 1723 // This means that the result is definitely negative as well. 1724 return {RangeFactory, ValueFactory.getMinValue(ResultType), 1725 ValueFactory.getValue(--Zero)}; 1726 } 1727 1728 RangeSet DefaultRange = infer(T); 1729 1730 // It is pretty hard to reason about operands with different signs 1731 // (and especially with possibly different signs). We simply check if it 1732 // can be zero. In order to conclude that the result could not be zero, 1733 // at least one of the operands should be definitely not zero itself. 1734 if (!LHS.Includes(Zero) || !RHS.Includes(Zero)) { 1735 return assumeNonZero(DefaultRange, T); 1736 } 1737 1738 // Nothing much else to do here. 1739 return DefaultRange; 1740 } 1741 1742 template <> 1743 RangeSet SymbolicRangeInferrer::VisitBinaryOperator<BO_And>(Range LHS, 1744 Range RHS, 1745 QualType T) { 1746 APSIntType ResultType = ValueFactory.getAPSIntType(T); 1747 llvm::APSInt Zero = ResultType.getZeroValue(); 1748 1749 bool IsLHSPositiveOrZero = LHS.From() >= Zero; 1750 bool IsRHSPositiveOrZero = RHS.From() >= Zero; 1751 1752 bool IsLHSNegative = LHS.To() < Zero; 1753 bool IsRHSNegative = RHS.To() < Zero; 1754 1755 // Check if both ranges have the same sign. 1756 if ((IsLHSPositiveOrZero && IsRHSPositiveOrZero) || 1757 (IsLHSNegative && IsRHSNegative)) { 1758 // The result is definitely less or equal than any of the operands. 1759 const llvm::APSInt &Max = std::min(LHS.To(), RHS.To()); 1760 1761 // We conservatively estimate lower bound to be the smallest positive 1762 // or negative value corresponding to the sign of the operands. 1763 const llvm::APSInt &Min = IsLHSNegative 1764 ? ValueFactory.getMinValue(ResultType) 1765 : ValueFactory.getValue(Zero); 1766 1767 return {RangeFactory, Min, Max}; 1768 } 1769 1770 // Otherwise, let's check if at least one of the operands is positive. 1771 if (IsLHSPositiveOrZero || IsRHSPositiveOrZero) { 1772 // This makes result definitely positive. 1773 // 1774 // We can also reason about a maximal value by finding the maximal 1775 // value of the positive operand. 1776 const llvm::APSInt &Max = IsLHSPositiveOrZero ? LHS.To() : RHS.To(); 1777 1778 // The minimal value on the other hand is much harder to reason about. 1779 // The only thing we know for sure is that the result is positive. 1780 return {RangeFactory, ValueFactory.getValue(Zero), 1781 ValueFactory.getValue(Max)}; 1782 } 1783 1784 // Nothing much else to do here. 1785 return infer(T); 1786 } 1787 1788 template <> 1789 RangeSet SymbolicRangeInferrer::VisitBinaryOperator<BO_Rem>(Range LHS, 1790 Range RHS, 1791 QualType T) { 1792 llvm::APSInt Zero = ValueFactory.getAPSIntType(T).getZeroValue(); 1793 1794 Range ConservativeRange = getSymmetricalRange(RHS, T); 1795 1796 llvm::APSInt Max = ConservativeRange.To(); 1797 llvm::APSInt Min = ConservativeRange.From(); 1798 1799 if (Max == Zero) { 1800 // It's an undefined behaviour to divide by 0 and it seems like we know 1801 // for sure that RHS is 0. Let's say that the resulting range is 1802 // simply infeasible for that matter. 1803 return RangeFactory.getEmptySet(); 1804 } 1805 1806 // At this point, our conservative range is closed. The result, however, 1807 // couldn't be greater than the RHS' maximal absolute value. Because of 1808 // this reason, we turn the range into open (or half-open in case of 1809 // unsigned integers). 1810 // 1811 // While we operate on integer values, an open interval (a, b) can be easily 1812 // represented by the closed interval [a + 1, b - 1]. And this is exactly 1813 // what we do next. 1814 // 1815 // If we are dealing with unsigned case, we shouldn't move the lower bound. 1816 if (Min.isSigned()) { 1817 ++Min; 1818 } 1819 --Max; 1820 1821 bool IsLHSPositiveOrZero = LHS.From() >= Zero; 1822 bool IsRHSPositiveOrZero = RHS.From() >= Zero; 1823 1824 // Remainder operator results with negative operands is implementation 1825 // defined. Positive cases are much easier to reason about though. 1826 if (IsLHSPositiveOrZero && IsRHSPositiveOrZero) { 1827 // If maximal value of LHS is less than maximal value of RHS, 1828 // the result won't get greater than LHS.To(). 1829 Max = std::min(LHS.To(), Max); 1830 // We want to check if it is a situation similar to the following: 1831 // 1832 // <------------|---[ LHS ]--------[ RHS ]-----> 1833 // -INF 0 +INF 1834 // 1835 // In this situation, we can conclude that (LHS / RHS) == 0 and 1836 // (LHS % RHS) == LHS. 1837 Min = LHS.To() < RHS.From() ? LHS.From() : Zero; 1838 } 1839 1840 // Nevertheless, the symmetrical range for RHS is a conservative estimate 1841 // for any sign of either LHS, or RHS. 1842 return {RangeFactory, ValueFactory.getValue(Min), ValueFactory.getValue(Max)}; 1843 } 1844 1845 RangeSet SymbolicRangeInferrer::VisitBinaryOperator(RangeSet LHS, 1846 BinaryOperator::Opcode Op, 1847 RangeSet RHS, QualType T) { 1848 // We should propagate information about unfeasbility of one of the 1849 // operands to the resulting range. 1850 if (LHS.isEmpty() || RHS.isEmpty()) { 1851 return RangeFactory.getEmptySet(); 1852 } 1853 1854 switch (Op) { 1855 case BO_NE: 1856 return VisitBinaryOperator<BO_NE>(LHS, RHS, T); 1857 case BO_Or: 1858 return VisitBinaryOperator<BO_Or>(LHS, RHS, T); 1859 case BO_And: 1860 return VisitBinaryOperator<BO_And>(LHS, RHS, T); 1861 case BO_Rem: 1862 return VisitBinaryOperator<BO_Rem>(LHS, RHS, T); 1863 default: 1864 return infer(T); 1865 } 1866 } 1867 1868 //===----------------------------------------------------------------------===// 1869 // Constraint manager implementation details 1870 //===----------------------------------------------------------------------===// 1871 1872 class RangeConstraintManager : public RangedConstraintManager { 1873 public: 1874 RangeConstraintManager(ExprEngine *EE, SValBuilder &SVB) 1875 : RangedConstraintManager(EE, SVB), F(getBasicVals()) {} 1876 1877 //===------------------------------------------------------------------===// 1878 // Implementation for interface from ConstraintManager. 1879 //===------------------------------------------------------------------===// 1880 1881 bool haveEqualConstraints(ProgramStateRef S1, 1882 ProgramStateRef S2) const override { 1883 // NOTE: ClassMembers are as simple as back pointers for ClassMap, 1884 // so comparing constraint ranges and class maps should be 1885 // sufficient. 1886 return S1->get<ConstraintRange>() == S2->get<ConstraintRange>() && 1887 S1->get<ClassMap>() == S2->get<ClassMap>(); 1888 } 1889 1890 bool canReasonAbout(SVal X) const override; 1891 1892 ConditionTruthVal checkNull(ProgramStateRef State, SymbolRef Sym) override; 1893 1894 const llvm::APSInt *getSymVal(ProgramStateRef State, 1895 SymbolRef Sym) const override; 1896 1897 const llvm::APSInt *getSymMinVal(ProgramStateRef State, 1898 SymbolRef Sym) const override; 1899 1900 const llvm::APSInt *getSymMaxVal(ProgramStateRef State, 1901 SymbolRef Sym) const override; 1902 1903 ProgramStateRef removeDeadBindings(ProgramStateRef State, 1904 SymbolReaper &SymReaper) override; 1905 1906 void printJson(raw_ostream &Out, ProgramStateRef State, const char *NL = "\n", 1907 unsigned int Space = 0, bool IsDot = false) const override; 1908 void printValue(raw_ostream &Out, ProgramStateRef State, 1909 SymbolRef Sym) override; 1910 void printConstraints(raw_ostream &Out, ProgramStateRef State, 1911 const char *NL = "\n", unsigned int Space = 0, 1912 bool IsDot = false) const; 1913 void printEquivalenceClasses(raw_ostream &Out, ProgramStateRef State, 1914 const char *NL = "\n", unsigned int Space = 0, 1915 bool IsDot = false) const; 1916 void printDisequalities(raw_ostream &Out, ProgramStateRef State, 1917 const char *NL = "\n", unsigned int Space = 0, 1918 bool IsDot = false) const; 1919 1920 //===------------------------------------------------------------------===// 1921 // Implementation for interface from RangedConstraintManager. 1922 //===------------------------------------------------------------------===// 1923 1924 ProgramStateRef assumeSymNE(ProgramStateRef State, SymbolRef Sym, 1925 const llvm::APSInt &V, 1926 const llvm::APSInt &Adjustment) override; 1927 1928 ProgramStateRef assumeSymEQ(ProgramStateRef State, SymbolRef Sym, 1929 const llvm::APSInt &V, 1930 const llvm::APSInt &Adjustment) override; 1931 1932 ProgramStateRef assumeSymLT(ProgramStateRef State, SymbolRef Sym, 1933 const llvm::APSInt &V, 1934 const llvm::APSInt &Adjustment) override; 1935 1936 ProgramStateRef assumeSymGT(ProgramStateRef State, SymbolRef Sym, 1937 const llvm::APSInt &V, 1938 const llvm::APSInt &Adjustment) override; 1939 1940 ProgramStateRef assumeSymLE(ProgramStateRef State, SymbolRef Sym, 1941 const llvm::APSInt &V, 1942 const llvm::APSInt &Adjustment) override; 1943 1944 ProgramStateRef assumeSymGE(ProgramStateRef State, SymbolRef Sym, 1945 const llvm::APSInt &V, 1946 const llvm::APSInt &Adjustment) override; 1947 1948 ProgramStateRef assumeSymWithinInclusiveRange( 1949 ProgramStateRef State, SymbolRef Sym, const llvm::APSInt &From, 1950 const llvm::APSInt &To, const llvm::APSInt &Adjustment) override; 1951 1952 ProgramStateRef assumeSymOutsideInclusiveRange( 1953 ProgramStateRef State, SymbolRef Sym, const llvm::APSInt &From, 1954 const llvm::APSInt &To, const llvm::APSInt &Adjustment) override; 1955 1956 private: 1957 mutable RangeSet::Factory F; 1958 1959 RangeSet getRange(ProgramStateRef State, SymbolRef Sym) const; 1960 ProgramStateRef setRange(ProgramStateRef State, SymbolRef Sym, 1961 RangeSet Range); 1962 1963 RangeSet getSymLTRange(ProgramStateRef St, SymbolRef Sym, 1964 const llvm::APSInt &Int, 1965 const llvm::APSInt &Adjustment) const; 1966 RangeSet getSymGTRange(ProgramStateRef St, SymbolRef Sym, 1967 const llvm::APSInt &Int, 1968 const llvm::APSInt &Adjustment) const; 1969 RangeSet getSymLERange(ProgramStateRef St, SymbolRef Sym, 1970 const llvm::APSInt &Int, 1971 const llvm::APSInt &Adjustment) const; 1972 RangeSet getSymLERange(llvm::function_ref<RangeSet()> RS, 1973 const llvm::APSInt &Int, 1974 const llvm::APSInt &Adjustment) const; 1975 RangeSet getSymGERange(ProgramStateRef St, SymbolRef Sym, 1976 const llvm::APSInt &Int, 1977 const llvm::APSInt &Adjustment) const; 1978 }; 1979 1980 //===----------------------------------------------------------------------===// 1981 // Constraint assignment logic 1982 //===----------------------------------------------------------------------===// 1983 1984 /// ConstraintAssignorBase is a small utility class that unifies visitor 1985 /// for ranges with a visitor for constraints (rangeset/range/constant). 1986 /// 1987 /// It is designed to have one derived class, but generally it can have more. 1988 /// Derived class can control which types we handle by defining methods of the 1989 /// following form: 1990 /// 1991 /// bool handle${SYMBOL}To${CONSTRAINT}(const SYMBOL *Sym, 1992 /// CONSTRAINT Constraint); 1993 /// 1994 /// where SYMBOL is the type of the symbol (e.g. SymSymExpr, SymbolCast, etc.) 1995 /// CONSTRAINT is the type of constraint (RangeSet/Range/Const) 1996 /// return value signifies whether we should try other handle methods 1997 /// (i.e. false would mean to stop right after calling this method) 1998 template <class Derived> class ConstraintAssignorBase { 1999 public: 2000 using Const = const llvm::APSInt &; 2001 2002 #define DISPATCH(CLASS) return assign##CLASS##Impl(cast<CLASS>(Sym), Constraint) 2003 2004 #define ASSIGN(CLASS, TO, SYM, CONSTRAINT) \ 2005 if (!static_cast<Derived *>(this)->assign##CLASS##To##TO(SYM, CONSTRAINT)) \ 2006 return false 2007 2008 void assign(SymbolRef Sym, RangeSet Constraint) { 2009 assignImpl(Sym, Constraint); 2010 } 2011 2012 bool assignImpl(SymbolRef Sym, RangeSet Constraint) { 2013 switch (Sym->getKind()) { 2014 #define SYMBOL(Id, Parent) \ 2015 case SymExpr::Id##Kind: \ 2016 DISPATCH(Id); 2017 #include "clang/StaticAnalyzer/Core/PathSensitive/Symbols.def" 2018 } 2019 llvm_unreachable("Unknown SymExpr kind!"); 2020 } 2021 2022 #define DEFAULT_ASSIGN(Id) \ 2023 bool assign##Id##To##RangeSet(const Id *Sym, RangeSet Constraint) { \ 2024 return true; \ 2025 } \ 2026 bool assign##Id##To##Range(const Id *Sym, Range Constraint) { return true; } \ 2027 bool assign##Id##To##Const(const Id *Sym, Const Constraint) { return true; } 2028 2029 // When we dispatch for constraint types, we first try to check 2030 // if the new constraint is the constant and try the corresponding 2031 // assignor methods. If it didn't interrupt, we can proceed to the 2032 // range, and finally to the range set. 2033 #define CONSTRAINT_DISPATCH(Id) \ 2034 if (const llvm::APSInt *Const = Constraint.getConcreteValue()) { \ 2035 ASSIGN(Id, Const, Sym, *Const); \ 2036 } \ 2037 if (Constraint.size() == 1) { \ 2038 ASSIGN(Id, Range, Sym, *Constraint.begin()); \ 2039 } \ 2040 ASSIGN(Id, RangeSet, Sym, Constraint) 2041 2042 // Our internal assign method first tries to call assignor methods for all 2043 // constraint types that apply. And if not interrupted, continues with its 2044 // parent class. 2045 #define SYMBOL(Id, Parent) \ 2046 bool assign##Id##Impl(const Id *Sym, RangeSet Constraint) { \ 2047 CONSTRAINT_DISPATCH(Id); \ 2048 DISPATCH(Parent); \ 2049 } \ 2050 DEFAULT_ASSIGN(Id) 2051 #define ABSTRACT_SYMBOL(Id, Parent) SYMBOL(Id, Parent) 2052 #include "clang/StaticAnalyzer/Core/PathSensitive/Symbols.def" 2053 2054 // Default implementations for the top class that doesn't have parents. 2055 bool assignSymExprImpl(const SymExpr *Sym, RangeSet Constraint) { 2056 CONSTRAINT_DISPATCH(SymExpr); 2057 return true; 2058 } 2059 DEFAULT_ASSIGN(SymExpr); 2060 2061 #undef DISPATCH 2062 #undef CONSTRAINT_DISPATCH 2063 #undef DEFAULT_ASSIGN 2064 #undef ASSIGN 2065 }; 2066 2067 /// A little component aggregating all of the reasoning we have about 2068 /// assigning new constraints to symbols. 2069 /// 2070 /// The main purpose of this class is to associate constraints to symbols, 2071 /// and impose additional constraints on other symbols, when we can imply 2072 /// them. 2073 /// 2074 /// It has a nice symmetry with SymbolicRangeInferrer. When the latter 2075 /// can provide more precise ranges by looking into the operands of the 2076 /// expression in question, ConstraintAssignor looks into the operands 2077 /// to see if we can imply more from the new constraint. 2078 class ConstraintAssignor : public ConstraintAssignorBase<ConstraintAssignor> { 2079 public: 2080 template <class ClassOrSymbol> 2081 [[nodiscard]] static ProgramStateRef 2082 assign(ProgramStateRef State, SValBuilder &Builder, RangeSet::Factory &F, 2083 ClassOrSymbol CoS, RangeSet NewConstraint) { 2084 if (!State || NewConstraint.isEmpty()) 2085 return nullptr; 2086 2087 ConstraintAssignor Assignor{State, Builder, F}; 2088 return Assignor.assign(CoS, NewConstraint); 2089 } 2090 2091 /// Handle expressions like: a % b != 0. 2092 template <typename SymT> 2093 bool handleRemainderOp(const SymT *Sym, RangeSet Constraint) { 2094 if (Sym->getOpcode() != BO_Rem) 2095 return true; 2096 // a % b != 0 implies that a != 0. 2097 if (!Constraint.containsZero()) { 2098 SVal SymSVal = Builder.makeSymbolVal(Sym->getLHS()); 2099 if (auto NonLocSymSVal = SymSVal.getAs<nonloc::SymbolVal>()) { 2100 State = State->assume(*NonLocSymSVal, true); 2101 if (!State) 2102 return false; 2103 } 2104 } 2105 return true; 2106 } 2107 2108 inline bool assignSymExprToConst(const SymExpr *Sym, Const Constraint); 2109 inline bool assignSymIntExprToRangeSet(const SymIntExpr *Sym, 2110 RangeSet Constraint) { 2111 return handleRemainderOp(Sym, Constraint); 2112 } 2113 inline bool assignSymSymExprToRangeSet(const SymSymExpr *Sym, 2114 RangeSet Constraint); 2115 2116 private: 2117 ConstraintAssignor(ProgramStateRef State, SValBuilder &Builder, 2118 RangeSet::Factory &F) 2119 : State(State), Builder(Builder), RangeFactory(F) {} 2120 using Base = ConstraintAssignorBase<ConstraintAssignor>; 2121 2122 /// Base method for handling new constraints for symbols. 2123 [[nodiscard]] ProgramStateRef assign(SymbolRef Sym, RangeSet NewConstraint) { 2124 // All constraints are actually associated with equivalence classes, and 2125 // that's what we are going to do first. 2126 State = assign(EquivalenceClass::find(State, Sym), NewConstraint); 2127 if (!State) 2128 return nullptr; 2129 2130 // And after that we can check what other things we can get from this 2131 // constraint. 2132 Base::assign(Sym, NewConstraint); 2133 return State; 2134 } 2135 2136 /// Base method for handling new constraints for classes. 2137 [[nodiscard]] ProgramStateRef assign(EquivalenceClass Class, 2138 RangeSet NewConstraint) { 2139 // There is a chance that we might need to update constraints for the 2140 // classes that are known to be disequal to Class. 2141 // 2142 // In order for this to be even possible, the new constraint should 2143 // be simply a constant because we can't reason about range disequalities. 2144 if (const llvm::APSInt *Point = NewConstraint.getConcreteValue()) { 2145 2146 ConstraintRangeTy Constraints = State->get<ConstraintRange>(); 2147 ConstraintRangeTy::Factory &CF = State->get_context<ConstraintRange>(); 2148 2149 // Add new constraint. 2150 Constraints = CF.add(Constraints, Class, NewConstraint); 2151 2152 for (EquivalenceClass DisequalClass : Class.getDisequalClasses(State)) { 2153 RangeSet UpdatedConstraint = SymbolicRangeInferrer::inferRange( 2154 RangeFactory, State, DisequalClass); 2155 2156 UpdatedConstraint = RangeFactory.deletePoint(UpdatedConstraint, *Point); 2157 2158 // If we end up with at least one of the disequal classes to be 2159 // constrained with an empty range-set, the state is infeasible. 2160 if (UpdatedConstraint.isEmpty()) 2161 return nullptr; 2162 2163 Constraints = CF.add(Constraints, DisequalClass, UpdatedConstraint); 2164 } 2165 assert(areFeasible(Constraints) && "Constraint manager shouldn't produce " 2166 "a state with infeasible constraints"); 2167 2168 return setConstraints(State, Constraints); 2169 } 2170 2171 return setConstraint(State, Class, NewConstraint); 2172 } 2173 2174 ProgramStateRef trackDisequality(ProgramStateRef State, SymbolRef LHS, 2175 SymbolRef RHS) { 2176 return EquivalenceClass::markDisequal(RangeFactory, State, LHS, RHS); 2177 } 2178 2179 ProgramStateRef trackEquality(ProgramStateRef State, SymbolRef LHS, 2180 SymbolRef RHS) { 2181 return EquivalenceClass::merge(RangeFactory, State, LHS, RHS); 2182 } 2183 2184 [[nodiscard]] std::optional<bool> interpreteAsBool(RangeSet Constraint) { 2185 assert(!Constraint.isEmpty() && "Empty ranges shouldn't get here"); 2186 2187 if (Constraint.getConcreteValue()) 2188 return !Constraint.getConcreteValue()->isZero(); 2189 2190 if (!Constraint.containsZero()) 2191 return true; 2192 2193 return std::nullopt; 2194 } 2195 2196 ProgramStateRef State; 2197 SValBuilder &Builder; 2198 RangeSet::Factory &RangeFactory; 2199 }; 2200 2201 bool ConstraintAssignor::assignSymExprToConst(const SymExpr *Sym, 2202 const llvm::APSInt &Constraint) { 2203 llvm::SmallSet<EquivalenceClass, 4> SimplifiedClasses; 2204 // Iterate over all equivalence classes and try to simplify them. 2205 ClassMembersTy Members = State->get<ClassMembers>(); 2206 for (std::pair<EquivalenceClass, SymbolSet> ClassToSymbolSet : Members) { 2207 EquivalenceClass Class = ClassToSymbolSet.first; 2208 State = EquivalenceClass::simplify(Builder, RangeFactory, State, Class); 2209 if (!State) 2210 return false; 2211 SimplifiedClasses.insert(Class); 2212 } 2213 2214 // Trivial equivalence classes (those that have only one symbol member) are 2215 // not stored in the State. Thus, we must skim through the constraints as 2216 // well. And we try to simplify symbols in the constraints. 2217 ConstraintRangeTy Constraints = State->get<ConstraintRange>(); 2218 for (std::pair<EquivalenceClass, RangeSet> ClassConstraint : Constraints) { 2219 EquivalenceClass Class = ClassConstraint.first; 2220 if (SimplifiedClasses.count(Class)) // Already simplified. 2221 continue; 2222 State = EquivalenceClass::simplify(Builder, RangeFactory, State, Class); 2223 if (!State) 2224 return false; 2225 } 2226 2227 // We may have trivial equivalence classes in the disequality info as 2228 // well, and we need to simplify them. 2229 DisequalityMapTy DisequalityInfo = State->get<DisequalityMap>(); 2230 for (std::pair<EquivalenceClass, ClassSet> DisequalityEntry : 2231 DisequalityInfo) { 2232 EquivalenceClass Class = DisequalityEntry.first; 2233 ClassSet DisequalClasses = DisequalityEntry.second; 2234 State = EquivalenceClass::simplify(Builder, RangeFactory, State, Class); 2235 if (!State) 2236 return false; 2237 } 2238 2239 return true; 2240 } 2241 2242 bool ConstraintAssignor::assignSymSymExprToRangeSet(const SymSymExpr *Sym, 2243 RangeSet Constraint) { 2244 if (!handleRemainderOp(Sym, Constraint)) 2245 return false; 2246 2247 std::optional<bool> ConstraintAsBool = interpreteAsBool(Constraint); 2248 2249 if (!ConstraintAsBool) 2250 return true; 2251 2252 if (std::optional<bool> Equality = meansEquality(Sym)) { 2253 // Here we cover two cases: 2254 // * if Sym is equality and the new constraint is true -> Sym's operands 2255 // should be marked as equal 2256 // * if Sym is disequality and the new constraint is false -> Sym's 2257 // operands should be also marked as equal 2258 if (*Equality == *ConstraintAsBool) { 2259 State = trackEquality(State, Sym->getLHS(), Sym->getRHS()); 2260 } else { 2261 // Other combinations leave as with disequal operands. 2262 State = trackDisequality(State, Sym->getLHS(), Sym->getRHS()); 2263 } 2264 2265 if (!State) 2266 return false; 2267 } 2268 2269 return true; 2270 } 2271 2272 } // end anonymous namespace 2273 2274 std::unique_ptr<ConstraintManager> 2275 ento::CreateRangeConstraintManager(ProgramStateManager &StMgr, 2276 ExprEngine *Eng) { 2277 return std::make_unique<RangeConstraintManager>(Eng, StMgr.getSValBuilder()); 2278 } 2279 2280 ConstraintMap ento::getConstraintMap(ProgramStateRef State) { 2281 ConstraintMap::Factory &F = State->get_context<ConstraintMap>(); 2282 ConstraintMap Result = F.getEmptyMap(); 2283 2284 ConstraintRangeTy Constraints = State->get<ConstraintRange>(); 2285 for (std::pair<EquivalenceClass, RangeSet> ClassConstraint : Constraints) { 2286 EquivalenceClass Class = ClassConstraint.first; 2287 SymbolSet ClassMembers = Class.getClassMembers(State); 2288 assert(!ClassMembers.isEmpty() && 2289 "Class must always have at least one member!"); 2290 2291 SymbolRef Representative = *ClassMembers.begin(); 2292 Result = F.add(Result, Representative, ClassConstraint.second); 2293 } 2294 2295 return Result; 2296 } 2297 2298 //===----------------------------------------------------------------------===// 2299 // EqualityClass implementation details 2300 //===----------------------------------------------------------------------===// 2301 2302 LLVM_DUMP_METHOD void EquivalenceClass::dumpToStream(ProgramStateRef State, 2303 raw_ostream &os) const { 2304 SymbolSet ClassMembers = getClassMembers(State); 2305 for (const SymbolRef &MemberSym : ClassMembers) { 2306 MemberSym->dump(); 2307 os << "\n"; 2308 } 2309 } 2310 2311 inline EquivalenceClass EquivalenceClass::find(ProgramStateRef State, 2312 SymbolRef Sym) { 2313 assert(State && "State should not be null"); 2314 assert(Sym && "Symbol should not be null"); 2315 // We store far from all Symbol -> Class mappings 2316 if (const EquivalenceClass *NontrivialClass = State->get<ClassMap>(Sym)) 2317 return *NontrivialClass; 2318 2319 // This is a trivial class of Sym. 2320 return Sym; 2321 } 2322 2323 inline ProgramStateRef EquivalenceClass::merge(RangeSet::Factory &F, 2324 ProgramStateRef State, 2325 SymbolRef First, 2326 SymbolRef Second) { 2327 EquivalenceClass FirstClass = find(State, First); 2328 EquivalenceClass SecondClass = find(State, Second); 2329 2330 return FirstClass.merge(F, State, SecondClass); 2331 } 2332 2333 inline ProgramStateRef EquivalenceClass::merge(RangeSet::Factory &F, 2334 ProgramStateRef State, 2335 EquivalenceClass Other) { 2336 // It is already the same class. 2337 if (*this == Other) 2338 return State; 2339 2340 // FIXME: As of now, we support only equivalence classes of the same type. 2341 // This limitation is connected to the lack of explicit casts in 2342 // our symbolic expression model. 2343 // 2344 // That means that for `int x` and `char y` we don't distinguish 2345 // between these two very different cases: 2346 // * `x == y` 2347 // * `(char)x == y` 2348 // 2349 // The moment we introduce symbolic casts, this restriction can be 2350 // lifted. 2351 if (getType()->getCanonicalTypeUnqualified() != 2352 Other.getType()->getCanonicalTypeUnqualified()) 2353 return State; 2354 2355 SymbolSet Members = getClassMembers(State); 2356 SymbolSet OtherMembers = Other.getClassMembers(State); 2357 2358 // We estimate the size of the class by the height of tree containing 2359 // its members. Merging is not a trivial operation, so it's easier to 2360 // merge the smaller class into the bigger one. 2361 if (Members.getHeight() >= OtherMembers.getHeight()) { 2362 return mergeImpl(F, State, Members, Other, OtherMembers); 2363 } else { 2364 return Other.mergeImpl(F, State, OtherMembers, *this, Members); 2365 } 2366 } 2367 2368 inline ProgramStateRef 2369 EquivalenceClass::mergeImpl(RangeSet::Factory &RangeFactory, 2370 ProgramStateRef State, SymbolSet MyMembers, 2371 EquivalenceClass Other, SymbolSet OtherMembers) { 2372 // Essentially what we try to recreate here is some kind of union-find 2373 // data structure. It does have certain limitations due to persistence 2374 // and the need to remove elements from classes. 2375 // 2376 // In this setting, EquialityClass object is the representative of the class 2377 // or the parent element. ClassMap is a mapping of class members to their 2378 // parent. Unlike the union-find structure, they all point directly to the 2379 // class representative because we don't have an opportunity to actually do 2380 // path compression when dealing with immutability. This means that we 2381 // compress paths every time we do merges. It also means that we lose 2382 // the main amortized complexity benefit from the original data structure. 2383 ConstraintRangeTy Constraints = State->get<ConstraintRange>(); 2384 ConstraintRangeTy::Factory &CRF = State->get_context<ConstraintRange>(); 2385 2386 // 1. If the merged classes have any constraints associated with them, we 2387 // need to transfer them to the class we have left. 2388 // 2389 // Intersection here makes perfect sense because both of these constraints 2390 // must hold for the whole new class. 2391 if (std::optional<RangeSet> NewClassConstraint = 2392 intersect(RangeFactory, getConstraint(State, *this), 2393 getConstraint(State, Other))) { 2394 // NOTE: Essentially, NewClassConstraint should NEVER be infeasible because 2395 // range inferrer shouldn't generate ranges incompatible with 2396 // equivalence classes. However, at the moment, due to imperfections 2397 // in the solver, it is possible and the merge function can also 2398 // return infeasible states aka null states. 2399 if (NewClassConstraint->isEmpty()) 2400 // Infeasible state 2401 return nullptr; 2402 2403 // No need in tracking constraints of a now-dissolved class. 2404 Constraints = CRF.remove(Constraints, Other); 2405 // Assign new constraints for this class. 2406 Constraints = CRF.add(Constraints, *this, *NewClassConstraint); 2407 2408 assert(areFeasible(Constraints) && "Constraint manager shouldn't produce " 2409 "a state with infeasible constraints"); 2410 2411 State = State->set<ConstraintRange>(Constraints); 2412 } 2413 2414 // 2. Get ALL equivalence-related maps 2415 ClassMapTy Classes = State->get<ClassMap>(); 2416 ClassMapTy::Factory &CMF = State->get_context<ClassMap>(); 2417 2418 ClassMembersTy Members = State->get<ClassMembers>(); 2419 ClassMembersTy::Factory &MF = State->get_context<ClassMembers>(); 2420 2421 DisequalityMapTy DisequalityInfo = State->get<DisequalityMap>(); 2422 DisequalityMapTy::Factory &DF = State->get_context<DisequalityMap>(); 2423 2424 ClassSet::Factory &CF = State->get_context<ClassSet>(); 2425 SymbolSet::Factory &F = getMembersFactory(State); 2426 2427 // 2. Merge members of the Other class into the current class. 2428 SymbolSet NewClassMembers = MyMembers; 2429 for (SymbolRef Sym : OtherMembers) { 2430 NewClassMembers = F.add(NewClassMembers, Sym); 2431 // *this is now the class for all these new symbols. 2432 Classes = CMF.add(Classes, Sym, *this); 2433 } 2434 2435 // 3. Adjust member mapping. 2436 // 2437 // No need in tracking members of a now-dissolved class. 2438 Members = MF.remove(Members, Other); 2439 // Now only the current class is mapped to all the symbols. 2440 Members = MF.add(Members, *this, NewClassMembers); 2441 2442 // 4. Update disequality relations 2443 ClassSet DisequalToOther = Other.getDisequalClasses(DisequalityInfo, CF); 2444 // We are about to merge two classes but they are already known to be 2445 // non-equal. This is a contradiction. 2446 if (DisequalToOther.contains(*this)) 2447 return nullptr; 2448 2449 if (!DisequalToOther.isEmpty()) { 2450 ClassSet DisequalToThis = getDisequalClasses(DisequalityInfo, CF); 2451 DisequalityInfo = DF.remove(DisequalityInfo, Other); 2452 2453 for (EquivalenceClass DisequalClass : DisequalToOther) { 2454 DisequalToThis = CF.add(DisequalToThis, DisequalClass); 2455 2456 // Disequality is a symmetric relation meaning that if 2457 // DisequalToOther not null then the set for DisequalClass is not 2458 // empty and has at least Other. 2459 ClassSet OriginalSetLinkedToOther = 2460 *DisequalityInfo.lookup(DisequalClass); 2461 2462 // Other will be eliminated and we should replace it with the bigger 2463 // united class. 2464 ClassSet NewSet = CF.remove(OriginalSetLinkedToOther, Other); 2465 NewSet = CF.add(NewSet, *this); 2466 2467 DisequalityInfo = DF.add(DisequalityInfo, DisequalClass, NewSet); 2468 } 2469 2470 DisequalityInfo = DF.add(DisequalityInfo, *this, DisequalToThis); 2471 State = State->set<DisequalityMap>(DisequalityInfo); 2472 } 2473 2474 // 5. Update the state 2475 State = State->set<ClassMap>(Classes); 2476 State = State->set<ClassMembers>(Members); 2477 2478 return State; 2479 } 2480 2481 inline SymbolSet::Factory & 2482 EquivalenceClass::getMembersFactory(ProgramStateRef State) { 2483 return State->get_context<SymbolSet>(); 2484 } 2485 2486 SymbolSet EquivalenceClass::getClassMembers(ProgramStateRef State) const { 2487 if (const SymbolSet *Members = State->get<ClassMembers>(*this)) 2488 return *Members; 2489 2490 // This class is trivial, so we need to construct a set 2491 // with just that one symbol from the class. 2492 SymbolSet::Factory &F = getMembersFactory(State); 2493 return F.add(F.getEmptySet(), getRepresentativeSymbol()); 2494 } 2495 2496 bool EquivalenceClass::isTrivial(ProgramStateRef State) const { 2497 return State->get<ClassMembers>(*this) == nullptr; 2498 } 2499 2500 bool EquivalenceClass::isTriviallyDead(ProgramStateRef State, 2501 SymbolReaper &Reaper) const { 2502 return isTrivial(State) && Reaper.isDead(getRepresentativeSymbol()); 2503 } 2504 2505 inline ProgramStateRef EquivalenceClass::markDisequal(RangeSet::Factory &RF, 2506 ProgramStateRef State, 2507 SymbolRef First, 2508 SymbolRef Second) { 2509 return markDisequal(RF, State, find(State, First), find(State, Second)); 2510 } 2511 2512 inline ProgramStateRef EquivalenceClass::markDisequal(RangeSet::Factory &RF, 2513 ProgramStateRef State, 2514 EquivalenceClass First, 2515 EquivalenceClass Second) { 2516 return First.markDisequal(RF, State, Second); 2517 } 2518 2519 inline ProgramStateRef 2520 EquivalenceClass::markDisequal(RangeSet::Factory &RF, ProgramStateRef State, 2521 EquivalenceClass Other) const { 2522 // If we know that two classes are equal, we can only produce an infeasible 2523 // state. 2524 if (*this == Other) { 2525 return nullptr; 2526 } 2527 2528 DisequalityMapTy DisequalityInfo = State->get<DisequalityMap>(); 2529 ConstraintRangeTy Constraints = State->get<ConstraintRange>(); 2530 2531 // Disequality is a symmetric relation, so if we mark A as disequal to B, 2532 // we should also mark B as disequalt to A. 2533 if (!addToDisequalityInfo(DisequalityInfo, Constraints, RF, State, *this, 2534 Other) || 2535 !addToDisequalityInfo(DisequalityInfo, Constraints, RF, State, Other, 2536 *this)) 2537 return nullptr; 2538 2539 assert(areFeasible(Constraints) && "Constraint manager shouldn't produce " 2540 "a state with infeasible constraints"); 2541 2542 State = State->set<DisequalityMap>(DisequalityInfo); 2543 State = State->set<ConstraintRange>(Constraints); 2544 2545 return State; 2546 } 2547 2548 inline bool EquivalenceClass::addToDisequalityInfo( 2549 DisequalityMapTy &Info, ConstraintRangeTy &Constraints, 2550 RangeSet::Factory &RF, ProgramStateRef State, EquivalenceClass First, 2551 EquivalenceClass Second) { 2552 2553 // 1. Get all of the required factories. 2554 DisequalityMapTy::Factory &F = State->get_context<DisequalityMap>(); 2555 ClassSet::Factory &CF = State->get_context<ClassSet>(); 2556 ConstraintRangeTy::Factory &CRF = State->get_context<ConstraintRange>(); 2557 2558 // 2. Add Second to the set of classes disequal to First. 2559 const ClassSet *CurrentSet = Info.lookup(First); 2560 ClassSet NewSet = CurrentSet ? *CurrentSet : CF.getEmptySet(); 2561 NewSet = CF.add(NewSet, Second); 2562 2563 Info = F.add(Info, First, NewSet); 2564 2565 // 3. If Second is known to be a constant, we can delete this point 2566 // from the constraint asociated with First. 2567 // 2568 // So, if Second == 10, it means that First != 10. 2569 // At the same time, the same logic does not apply to ranges. 2570 if (const RangeSet *SecondConstraint = Constraints.lookup(Second)) 2571 if (const llvm::APSInt *Point = SecondConstraint->getConcreteValue()) { 2572 2573 RangeSet FirstConstraint = SymbolicRangeInferrer::inferRange( 2574 RF, State, First.getRepresentativeSymbol()); 2575 2576 FirstConstraint = RF.deletePoint(FirstConstraint, *Point); 2577 2578 // If the First class is about to be constrained with an empty 2579 // range-set, the state is infeasible. 2580 if (FirstConstraint.isEmpty()) 2581 return false; 2582 2583 Constraints = CRF.add(Constraints, First, FirstConstraint); 2584 } 2585 2586 return true; 2587 } 2588 2589 inline std::optional<bool> EquivalenceClass::areEqual(ProgramStateRef State, 2590 SymbolRef FirstSym, 2591 SymbolRef SecondSym) { 2592 return EquivalenceClass::areEqual(State, find(State, FirstSym), 2593 find(State, SecondSym)); 2594 } 2595 2596 inline std::optional<bool> EquivalenceClass::areEqual(ProgramStateRef State, 2597 EquivalenceClass First, 2598 EquivalenceClass Second) { 2599 // The same equivalence class => symbols are equal. 2600 if (First == Second) 2601 return true; 2602 2603 // Let's check if we know anything about these two classes being not equal to 2604 // each other. 2605 ClassSet DisequalToFirst = First.getDisequalClasses(State); 2606 if (DisequalToFirst.contains(Second)) 2607 return false; 2608 2609 // It is not clear. 2610 return std::nullopt; 2611 } 2612 2613 [[nodiscard]] ProgramStateRef 2614 EquivalenceClass::removeMember(ProgramStateRef State, const SymbolRef Old) { 2615 2616 SymbolSet ClsMembers = getClassMembers(State); 2617 assert(ClsMembers.contains(Old)); 2618 2619 // Remove `Old`'s Class->Sym relation. 2620 SymbolSet::Factory &F = getMembersFactory(State); 2621 ClassMembersTy::Factory &EMFactory = State->get_context<ClassMembers>(); 2622 ClsMembers = F.remove(ClsMembers, Old); 2623 // Ensure another precondition of the removeMember function (we can check 2624 // this only with isEmpty, thus we have to do the remove first). 2625 assert(!ClsMembers.isEmpty() && 2626 "Class should have had at least two members before member removal"); 2627 // Overwrite the existing members assigned to this class. 2628 ClassMembersTy ClassMembersMap = State->get<ClassMembers>(); 2629 ClassMembersMap = EMFactory.add(ClassMembersMap, *this, ClsMembers); 2630 State = State->set<ClassMembers>(ClassMembersMap); 2631 2632 // Remove `Old`'s Sym->Class relation. 2633 ClassMapTy Classes = State->get<ClassMap>(); 2634 ClassMapTy::Factory &CMF = State->get_context<ClassMap>(); 2635 Classes = CMF.remove(Classes, Old); 2636 State = State->set<ClassMap>(Classes); 2637 2638 return State; 2639 } 2640 2641 // Re-evaluate an SVal with top-level `State->assume` logic. 2642 [[nodiscard]] static ProgramStateRef 2643 reAssume(ProgramStateRef State, const RangeSet *Constraint, SVal TheValue) { 2644 if (!Constraint) 2645 return State; 2646 2647 const auto DefinedVal = TheValue.castAs<DefinedSVal>(); 2648 2649 // If the SVal is 0, we can simply interpret that as `false`. 2650 if (Constraint->encodesFalseRange()) 2651 return State->assume(DefinedVal, false); 2652 2653 // If the constraint does not encode 0 then we can interpret that as `true` 2654 // AND as a Range(Set). 2655 if (Constraint->encodesTrueRange()) { 2656 State = State->assume(DefinedVal, true); 2657 if (!State) 2658 return nullptr; 2659 // Fall through, re-assume based on the range values as well. 2660 } 2661 // Overestimate the individual Ranges with the RangeSet' lowest and 2662 // highest values. 2663 return State->assumeInclusiveRange(DefinedVal, Constraint->getMinValue(), 2664 Constraint->getMaxValue(), true); 2665 } 2666 2667 // Iterate over all symbols and try to simplify them. Once a symbol is 2668 // simplified then we check if we can merge the simplified symbol's equivalence 2669 // class to this class. This way, we simplify not just the symbols but the 2670 // classes as well: we strive to keep the number of the classes to be the 2671 // absolute minimum. 2672 [[nodiscard]] ProgramStateRef 2673 EquivalenceClass::simplify(SValBuilder &SVB, RangeSet::Factory &F, 2674 ProgramStateRef State, EquivalenceClass Class) { 2675 SymbolSet ClassMembers = Class.getClassMembers(State); 2676 for (const SymbolRef &MemberSym : ClassMembers) { 2677 2678 const SVal SimplifiedMemberVal = simplifyToSVal(State, MemberSym); 2679 const SymbolRef SimplifiedMemberSym = SimplifiedMemberVal.getAsSymbol(); 2680 2681 // The symbol is collapsed to a constant, check if the current State is 2682 // still feasible. 2683 if (const auto CI = SimplifiedMemberVal.getAs<nonloc::ConcreteInt>()) { 2684 const llvm::APSInt &SV = CI->getValue(); 2685 const RangeSet *ClassConstraint = getConstraint(State, Class); 2686 // We have found a contradiction. 2687 if (ClassConstraint && !ClassConstraint->contains(SV)) 2688 return nullptr; 2689 } 2690 2691 if (SimplifiedMemberSym && MemberSym != SimplifiedMemberSym) { 2692 // The simplified symbol should be the member of the original Class, 2693 // however, it might be in another existing class at the moment. We 2694 // have to merge these classes. 2695 ProgramStateRef OldState = State; 2696 State = merge(F, State, MemberSym, SimplifiedMemberSym); 2697 if (!State) 2698 return nullptr; 2699 // No state change, no merge happened actually. 2700 if (OldState == State) 2701 continue; 2702 2703 // Be aware that `SimplifiedMemberSym` might refer to an already dead 2704 // symbol. In that case, the eqclass of that might not be the same as the 2705 // eqclass of `MemberSym`. This is because the dead symbols are not 2706 // preserved in the `ClassMap`, hence 2707 // `find(State, SimplifiedMemberSym)` will result in a trivial eqclass 2708 // compared to the eqclass of `MemberSym`. 2709 // These eqclasses should be the same if `SimplifiedMemberSym` is alive. 2710 // --> assert(find(State, MemberSym) == find(State, SimplifiedMemberSym)) 2711 // 2712 // Note that `MemberSym` must be alive here since that is from the 2713 // `ClassMembers` where all the symbols are alive. 2714 2715 // Remove the old and more complex symbol. 2716 State = find(State, MemberSym).removeMember(State, MemberSym); 2717 2718 // Query the class constraint again b/c that may have changed during the 2719 // merge above. 2720 const RangeSet *ClassConstraint = getConstraint(State, Class); 2721 2722 // Re-evaluate an SVal with top-level `State->assume`, this ignites 2723 // a RECURSIVE algorithm that will reach a FIXPOINT. 2724 // 2725 // About performance and complexity: Let us assume that in a State we 2726 // have N non-trivial equivalence classes and that all constraints and 2727 // disequality info is related to non-trivial classes. In the worst case, 2728 // we can simplify only one symbol of one class in each iteration. The 2729 // number of symbols in one class cannot grow b/c we replace the old 2730 // symbol with the simplified one. Also, the number of the equivalence 2731 // classes can decrease only, b/c the algorithm does a merge operation 2732 // optionally. We need N iterations in this case to reach the fixpoint. 2733 // Thus, the steps needed to be done in the worst case is proportional to 2734 // N*N. 2735 // 2736 // This worst case scenario can be extended to that case when we have 2737 // trivial classes in the constraints and in the disequality map. This 2738 // case can be reduced to the case with a State where there are only 2739 // non-trivial classes. This is because a merge operation on two trivial 2740 // classes results in one non-trivial class. 2741 State = reAssume(State, ClassConstraint, SimplifiedMemberVal); 2742 if (!State) 2743 return nullptr; 2744 } 2745 } 2746 return State; 2747 } 2748 2749 inline ClassSet EquivalenceClass::getDisequalClasses(ProgramStateRef State, 2750 SymbolRef Sym) { 2751 return find(State, Sym).getDisequalClasses(State); 2752 } 2753 2754 inline ClassSet 2755 EquivalenceClass::getDisequalClasses(ProgramStateRef State) const { 2756 return getDisequalClasses(State->get<DisequalityMap>(), 2757 State->get_context<ClassSet>()); 2758 } 2759 2760 inline ClassSet 2761 EquivalenceClass::getDisequalClasses(DisequalityMapTy Map, 2762 ClassSet::Factory &Factory) const { 2763 if (const ClassSet *DisequalClasses = Map.lookup(*this)) 2764 return *DisequalClasses; 2765 2766 return Factory.getEmptySet(); 2767 } 2768 2769 bool EquivalenceClass::isClassDataConsistent(ProgramStateRef State) { 2770 ClassMembersTy Members = State->get<ClassMembers>(); 2771 2772 for (std::pair<EquivalenceClass, SymbolSet> ClassMembersPair : Members) { 2773 for (SymbolRef Member : ClassMembersPair.second) { 2774 // Every member of the class should have a mapping back to the class. 2775 if (find(State, Member) == ClassMembersPair.first) { 2776 continue; 2777 } 2778 2779 return false; 2780 } 2781 } 2782 2783 DisequalityMapTy Disequalities = State->get<DisequalityMap>(); 2784 for (std::pair<EquivalenceClass, ClassSet> DisequalityInfo : Disequalities) { 2785 EquivalenceClass Class = DisequalityInfo.first; 2786 ClassSet DisequalClasses = DisequalityInfo.second; 2787 2788 // There is no use in keeping empty sets in the map. 2789 if (DisequalClasses.isEmpty()) 2790 return false; 2791 2792 // Disequality is symmetrical, i.e. for every Class A and B that A != B, 2793 // B != A should also be true. 2794 for (EquivalenceClass DisequalClass : DisequalClasses) { 2795 const ClassSet *DisequalToDisequalClasses = 2796 Disequalities.lookup(DisequalClass); 2797 2798 // It should be a set of at least one element: Class 2799 if (!DisequalToDisequalClasses || 2800 !DisequalToDisequalClasses->contains(Class)) 2801 return false; 2802 } 2803 } 2804 2805 return true; 2806 } 2807 2808 //===----------------------------------------------------------------------===// 2809 // RangeConstraintManager implementation 2810 //===----------------------------------------------------------------------===// 2811 2812 bool RangeConstraintManager::canReasonAbout(SVal X) const { 2813 std::optional<nonloc::SymbolVal> SymVal = X.getAs<nonloc::SymbolVal>(); 2814 if (SymVal && SymVal->isExpression()) { 2815 const SymExpr *SE = SymVal->getSymbol(); 2816 2817 if (const SymIntExpr *SIE = dyn_cast<SymIntExpr>(SE)) { 2818 switch (SIE->getOpcode()) { 2819 // We don't reason yet about bitwise-constraints on symbolic values. 2820 case BO_And: 2821 case BO_Or: 2822 case BO_Xor: 2823 return false; 2824 // We don't reason yet about these arithmetic constraints on 2825 // symbolic values. 2826 case BO_Mul: 2827 case BO_Div: 2828 case BO_Rem: 2829 case BO_Shl: 2830 case BO_Shr: 2831 return false; 2832 // All other cases. 2833 default: 2834 return true; 2835 } 2836 } 2837 2838 if (const SymSymExpr *SSE = dyn_cast<SymSymExpr>(SE)) { 2839 // FIXME: Handle <=> here. 2840 if (BinaryOperator::isEqualityOp(SSE->getOpcode()) || 2841 BinaryOperator::isRelationalOp(SSE->getOpcode())) { 2842 // We handle Loc <> Loc comparisons, but not (yet) NonLoc <> NonLoc. 2843 // We've recently started producing Loc <> NonLoc comparisons (that 2844 // result from casts of one of the operands between eg. intptr_t and 2845 // void *), but we can't reason about them yet. 2846 if (Loc::isLocType(SSE->getLHS()->getType())) { 2847 return Loc::isLocType(SSE->getRHS()->getType()); 2848 } 2849 } 2850 } 2851 2852 return false; 2853 } 2854 2855 return true; 2856 } 2857 2858 ConditionTruthVal RangeConstraintManager::checkNull(ProgramStateRef State, 2859 SymbolRef Sym) { 2860 const RangeSet *Ranges = getConstraint(State, Sym); 2861 2862 // If we don't have any information about this symbol, it's underconstrained. 2863 if (!Ranges) 2864 return ConditionTruthVal(); 2865 2866 // If we have a concrete value, see if it's zero. 2867 if (const llvm::APSInt *Value = Ranges->getConcreteValue()) 2868 return *Value == 0; 2869 2870 BasicValueFactory &BV = getBasicVals(); 2871 APSIntType IntType = BV.getAPSIntType(Sym->getType()); 2872 llvm::APSInt Zero = IntType.getZeroValue(); 2873 2874 // Check if zero is in the set of possible values. 2875 if (!Ranges->contains(Zero)) 2876 return false; 2877 2878 // Zero is a possible value, but it is not the /only/ possible value. 2879 return ConditionTruthVal(); 2880 } 2881 2882 const llvm::APSInt *RangeConstraintManager::getSymVal(ProgramStateRef St, 2883 SymbolRef Sym) const { 2884 return getRange(St, Sym).getConcreteValue(); 2885 } 2886 2887 const llvm::APSInt *RangeConstraintManager::getSymMinVal(ProgramStateRef St, 2888 SymbolRef Sym) const { 2889 RangeSet Range = getRange(St, Sym); 2890 return Range.isEmpty() ? nullptr : &Range.getMinValue(); 2891 } 2892 2893 const llvm::APSInt *RangeConstraintManager::getSymMaxVal(ProgramStateRef St, 2894 SymbolRef Sym) const { 2895 RangeSet Range = getRange(St, Sym); 2896 return Range.isEmpty() ? nullptr : &Range.getMaxValue(); 2897 } 2898 2899 //===----------------------------------------------------------------------===// 2900 // Remove dead symbols from existing constraints 2901 //===----------------------------------------------------------------------===// 2902 2903 /// Scan all symbols referenced by the constraints. If the symbol is not alive 2904 /// as marked in LSymbols, mark it as dead in DSymbols. 2905 ProgramStateRef 2906 RangeConstraintManager::removeDeadBindings(ProgramStateRef State, 2907 SymbolReaper &SymReaper) { 2908 ClassMembersTy ClassMembersMap = State->get<ClassMembers>(); 2909 ClassMembersTy NewClassMembersMap = ClassMembersMap; 2910 ClassMembersTy::Factory &EMFactory = State->get_context<ClassMembers>(); 2911 SymbolSet::Factory &SetFactory = State->get_context<SymbolSet>(); 2912 2913 ConstraintRangeTy Constraints = State->get<ConstraintRange>(); 2914 ConstraintRangeTy NewConstraints = Constraints; 2915 ConstraintRangeTy::Factory &ConstraintFactory = 2916 State->get_context<ConstraintRange>(); 2917 2918 ClassMapTy Map = State->get<ClassMap>(); 2919 ClassMapTy NewMap = Map; 2920 ClassMapTy::Factory &ClassFactory = State->get_context<ClassMap>(); 2921 2922 DisequalityMapTy Disequalities = State->get<DisequalityMap>(); 2923 DisequalityMapTy::Factory &DisequalityFactory = 2924 State->get_context<DisequalityMap>(); 2925 ClassSet::Factory &ClassSetFactory = State->get_context<ClassSet>(); 2926 2927 bool ClassMapChanged = false; 2928 bool MembersMapChanged = false; 2929 bool ConstraintMapChanged = false; 2930 bool DisequalitiesChanged = false; 2931 2932 auto removeDeadClass = [&](EquivalenceClass Class) { 2933 // Remove associated constraint ranges. 2934 Constraints = ConstraintFactory.remove(Constraints, Class); 2935 ConstraintMapChanged = true; 2936 2937 // Update disequality information to not hold any information on the 2938 // removed class. 2939 ClassSet DisequalClasses = 2940 Class.getDisequalClasses(Disequalities, ClassSetFactory); 2941 if (!DisequalClasses.isEmpty()) { 2942 for (EquivalenceClass DisequalClass : DisequalClasses) { 2943 ClassSet DisequalToDisequalSet = 2944 DisequalClass.getDisequalClasses(Disequalities, ClassSetFactory); 2945 // DisequalToDisequalSet is guaranteed to be non-empty for consistent 2946 // disequality info. 2947 assert(!DisequalToDisequalSet.isEmpty()); 2948 ClassSet NewSet = ClassSetFactory.remove(DisequalToDisequalSet, Class); 2949 2950 // No need in keeping an empty set. 2951 if (NewSet.isEmpty()) { 2952 Disequalities = 2953 DisequalityFactory.remove(Disequalities, DisequalClass); 2954 } else { 2955 Disequalities = 2956 DisequalityFactory.add(Disequalities, DisequalClass, NewSet); 2957 } 2958 } 2959 // Remove the data for the class 2960 Disequalities = DisequalityFactory.remove(Disequalities, Class); 2961 DisequalitiesChanged = true; 2962 } 2963 }; 2964 2965 // 1. Let's see if dead symbols are trivial and have associated constraints. 2966 for (std::pair<EquivalenceClass, RangeSet> ClassConstraintPair : 2967 Constraints) { 2968 EquivalenceClass Class = ClassConstraintPair.first; 2969 if (Class.isTriviallyDead(State, SymReaper)) { 2970 // If this class is trivial, we can remove its constraints right away. 2971 removeDeadClass(Class); 2972 } 2973 } 2974 2975 // 2. We don't need to track classes for dead symbols. 2976 for (std::pair<SymbolRef, EquivalenceClass> SymbolClassPair : Map) { 2977 SymbolRef Sym = SymbolClassPair.first; 2978 2979 if (SymReaper.isDead(Sym)) { 2980 ClassMapChanged = true; 2981 NewMap = ClassFactory.remove(NewMap, Sym); 2982 } 2983 } 2984 2985 // 3. Remove dead members from classes and remove dead non-trivial classes 2986 // and their constraints. 2987 for (std::pair<EquivalenceClass, SymbolSet> ClassMembersPair : 2988 ClassMembersMap) { 2989 EquivalenceClass Class = ClassMembersPair.first; 2990 SymbolSet LiveMembers = ClassMembersPair.second; 2991 bool MembersChanged = false; 2992 2993 for (SymbolRef Member : ClassMembersPair.second) { 2994 if (SymReaper.isDead(Member)) { 2995 MembersChanged = true; 2996 LiveMembers = SetFactory.remove(LiveMembers, Member); 2997 } 2998 } 2999 3000 // Check if the class changed. 3001 if (!MembersChanged) 3002 continue; 3003 3004 MembersMapChanged = true; 3005 3006 if (LiveMembers.isEmpty()) { 3007 // The class is dead now, we need to wipe it out of the members map... 3008 NewClassMembersMap = EMFactory.remove(NewClassMembersMap, Class); 3009 3010 // ...and remove all of its constraints. 3011 removeDeadClass(Class); 3012 } else { 3013 // We need to change the members associated with the class. 3014 NewClassMembersMap = 3015 EMFactory.add(NewClassMembersMap, Class, LiveMembers); 3016 } 3017 } 3018 3019 // 4. Update the state with new maps. 3020 // 3021 // Here we try to be humble and update a map only if it really changed. 3022 if (ClassMapChanged) 3023 State = State->set<ClassMap>(NewMap); 3024 3025 if (MembersMapChanged) 3026 State = State->set<ClassMembers>(NewClassMembersMap); 3027 3028 if (ConstraintMapChanged) 3029 State = State->set<ConstraintRange>(Constraints); 3030 3031 if (DisequalitiesChanged) 3032 State = State->set<DisequalityMap>(Disequalities); 3033 3034 assert(EquivalenceClass::isClassDataConsistent(State)); 3035 3036 return State; 3037 } 3038 3039 RangeSet RangeConstraintManager::getRange(ProgramStateRef State, 3040 SymbolRef Sym) const { 3041 return SymbolicRangeInferrer::inferRange(F, State, Sym); 3042 } 3043 3044 ProgramStateRef RangeConstraintManager::setRange(ProgramStateRef State, 3045 SymbolRef Sym, 3046 RangeSet Range) { 3047 return ConstraintAssignor::assign(State, getSValBuilder(), F, Sym, Range); 3048 } 3049 3050 //===------------------------------------------------------------------------=== 3051 // assumeSymX methods: protected interface for RangeConstraintManager. 3052 //===------------------------------------------------------------------------=== 3053 3054 // The syntax for ranges below is mathematical, using [x, y] for closed ranges 3055 // and (x, y) for open ranges. These ranges are modular, corresponding with 3056 // a common treatment of C integer overflow. This means that these methods 3057 // do not have to worry about overflow; RangeSet::Intersect can handle such a 3058 // "wraparound" range. 3059 // As an example, the range [UINT_MAX-1, 3) contains five values: UINT_MAX-1, 3060 // UINT_MAX, 0, 1, and 2. 3061 3062 ProgramStateRef 3063 RangeConstraintManager::assumeSymNE(ProgramStateRef St, SymbolRef Sym, 3064 const llvm::APSInt &Int, 3065 const llvm::APSInt &Adjustment) { 3066 // Before we do any real work, see if the value can even show up. 3067 APSIntType AdjustmentType(Adjustment); 3068 if (AdjustmentType.testInRange(Int, true) != APSIntType::RTR_Within) 3069 return St; 3070 3071 llvm::APSInt Point = AdjustmentType.convert(Int) - Adjustment; 3072 RangeSet New = getRange(St, Sym); 3073 New = F.deletePoint(New, Point); 3074 3075 return setRange(St, Sym, New); 3076 } 3077 3078 ProgramStateRef 3079 RangeConstraintManager::assumeSymEQ(ProgramStateRef St, SymbolRef Sym, 3080 const llvm::APSInt &Int, 3081 const llvm::APSInt &Adjustment) { 3082 // Before we do any real work, see if the value can even show up. 3083 APSIntType AdjustmentType(Adjustment); 3084 if (AdjustmentType.testInRange(Int, true) != APSIntType::RTR_Within) 3085 return nullptr; 3086 3087 // [Int-Adjustment, Int-Adjustment] 3088 llvm::APSInt AdjInt = AdjustmentType.convert(Int) - Adjustment; 3089 RangeSet New = getRange(St, Sym); 3090 New = F.intersect(New, AdjInt); 3091 3092 return setRange(St, Sym, New); 3093 } 3094 3095 RangeSet 3096 RangeConstraintManager::getSymLTRange(ProgramStateRef St, SymbolRef Sym, 3097 const llvm::APSInt &Int, 3098 const llvm::APSInt &Adjustment) const { 3099 // Before we do any real work, see if the value can even show up. 3100 APSIntType AdjustmentType(Adjustment); 3101 switch (AdjustmentType.testInRange(Int, true)) { 3102 case APSIntType::RTR_Below: 3103 return F.getEmptySet(); 3104 case APSIntType::RTR_Within: 3105 break; 3106 case APSIntType::RTR_Above: 3107 return getRange(St, Sym); 3108 } 3109 3110 // Special case for Int == Min. This is always false. 3111 llvm::APSInt ComparisonVal = AdjustmentType.convert(Int); 3112 llvm::APSInt Min = AdjustmentType.getMinValue(); 3113 if (ComparisonVal == Min) 3114 return F.getEmptySet(); 3115 3116 llvm::APSInt Lower = Min - Adjustment; 3117 llvm::APSInt Upper = ComparisonVal - Adjustment; 3118 --Upper; 3119 3120 RangeSet Result = getRange(St, Sym); 3121 return F.intersect(Result, Lower, Upper); 3122 } 3123 3124 ProgramStateRef 3125 RangeConstraintManager::assumeSymLT(ProgramStateRef St, SymbolRef Sym, 3126 const llvm::APSInt &Int, 3127 const llvm::APSInt &Adjustment) { 3128 RangeSet New = getSymLTRange(St, Sym, Int, Adjustment); 3129 return setRange(St, Sym, New); 3130 } 3131 3132 RangeSet 3133 RangeConstraintManager::getSymGTRange(ProgramStateRef St, SymbolRef Sym, 3134 const llvm::APSInt &Int, 3135 const llvm::APSInt &Adjustment) const { 3136 // Before we do any real work, see if the value can even show up. 3137 APSIntType AdjustmentType(Adjustment); 3138 switch (AdjustmentType.testInRange(Int, true)) { 3139 case APSIntType::RTR_Below: 3140 return getRange(St, Sym); 3141 case APSIntType::RTR_Within: 3142 break; 3143 case APSIntType::RTR_Above: 3144 return F.getEmptySet(); 3145 } 3146 3147 // Special case for Int == Max. This is always false. 3148 llvm::APSInt ComparisonVal = AdjustmentType.convert(Int); 3149 llvm::APSInt Max = AdjustmentType.getMaxValue(); 3150 if (ComparisonVal == Max) 3151 return F.getEmptySet(); 3152 3153 llvm::APSInt Lower = ComparisonVal - Adjustment; 3154 llvm::APSInt Upper = Max - Adjustment; 3155 ++Lower; 3156 3157 RangeSet SymRange = getRange(St, Sym); 3158 return F.intersect(SymRange, Lower, Upper); 3159 } 3160 3161 ProgramStateRef 3162 RangeConstraintManager::assumeSymGT(ProgramStateRef St, SymbolRef Sym, 3163 const llvm::APSInt &Int, 3164 const llvm::APSInt &Adjustment) { 3165 RangeSet New = getSymGTRange(St, Sym, Int, Adjustment); 3166 return setRange(St, Sym, New); 3167 } 3168 3169 RangeSet 3170 RangeConstraintManager::getSymGERange(ProgramStateRef St, SymbolRef Sym, 3171 const llvm::APSInt &Int, 3172 const llvm::APSInt &Adjustment) const { 3173 // Before we do any real work, see if the value can even show up. 3174 APSIntType AdjustmentType(Adjustment); 3175 switch (AdjustmentType.testInRange(Int, true)) { 3176 case APSIntType::RTR_Below: 3177 return getRange(St, Sym); 3178 case APSIntType::RTR_Within: 3179 break; 3180 case APSIntType::RTR_Above: 3181 return F.getEmptySet(); 3182 } 3183 3184 // Special case for Int == Min. This is always feasible. 3185 llvm::APSInt ComparisonVal = AdjustmentType.convert(Int); 3186 llvm::APSInt Min = AdjustmentType.getMinValue(); 3187 if (ComparisonVal == Min) 3188 return getRange(St, Sym); 3189 3190 llvm::APSInt Max = AdjustmentType.getMaxValue(); 3191 llvm::APSInt Lower = ComparisonVal - Adjustment; 3192 llvm::APSInt Upper = Max - Adjustment; 3193 3194 RangeSet SymRange = getRange(St, Sym); 3195 return F.intersect(SymRange, Lower, Upper); 3196 } 3197 3198 ProgramStateRef 3199 RangeConstraintManager::assumeSymGE(ProgramStateRef St, SymbolRef Sym, 3200 const llvm::APSInt &Int, 3201 const llvm::APSInt &Adjustment) { 3202 RangeSet New = getSymGERange(St, Sym, Int, Adjustment); 3203 return setRange(St, Sym, New); 3204 } 3205 3206 RangeSet 3207 RangeConstraintManager::getSymLERange(llvm::function_ref<RangeSet()> RS, 3208 const llvm::APSInt &Int, 3209 const llvm::APSInt &Adjustment) const { 3210 // Before we do any real work, see if the value can even show up. 3211 APSIntType AdjustmentType(Adjustment); 3212 switch (AdjustmentType.testInRange(Int, true)) { 3213 case APSIntType::RTR_Below: 3214 return F.getEmptySet(); 3215 case APSIntType::RTR_Within: 3216 break; 3217 case APSIntType::RTR_Above: 3218 return RS(); 3219 } 3220 3221 // Special case for Int == Max. This is always feasible. 3222 llvm::APSInt ComparisonVal = AdjustmentType.convert(Int); 3223 llvm::APSInt Max = AdjustmentType.getMaxValue(); 3224 if (ComparisonVal == Max) 3225 return RS(); 3226 3227 llvm::APSInt Min = AdjustmentType.getMinValue(); 3228 llvm::APSInt Lower = Min - Adjustment; 3229 llvm::APSInt Upper = ComparisonVal - Adjustment; 3230 3231 RangeSet Default = RS(); 3232 return F.intersect(Default, Lower, Upper); 3233 } 3234 3235 RangeSet 3236 RangeConstraintManager::getSymLERange(ProgramStateRef St, SymbolRef Sym, 3237 const llvm::APSInt &Int, 3238 const llvm::APSInt &Adjustment) const { 3239 return getSymLERange([&] { return getRange(St, Sym); }, Int, Adjustment); 3240 } 3241 3242 ProgramStateRef 3243 RangeConstraintManager::assumeSymLE(ProgramStateRef St, SymbolRef Sym, 3244 const llvm::APSInt &Int, 3245 const llvm::APSInt &Adjustment) { 3246 RangeSet New = getSymLERange(St, Sym, Int, Adjustment); 3247 return setRange(St, Sym, New); 3248 } 3249 3250 ProgramStateRef RangeConstraintManager::assumeSymWithinInclusiveRange( 3251 ProgramStateRef State, SymbolRef Sym, const llvm::APSInt &From, 3252 const llvm::APSInt &To, const llvm::APSInt &Adjustment) { 3253 RangeSet New = getSymGERange(State, Sym, From, Adjustment); 3254 if (New.isEmpty()) 3255 return nullptr; 3256 RangeSet Out = getSymLERange([&] { return New; }, To, Adjustment); 3257 return setRange(State, Sym, Out); 3258 } 3259 3260 ProgramStateRef RangeConstraintManager::assumeSymOutsideInclusiveRange( 3261 ProgramStateRef State, SymbolRef Sym, const llvm::APSInt &From, 3262 const llvm::APSInt &To, const llvm::APSInt &Adjustment) { 3263 RangeSet RangeLT = getSymLTRange(State, Sym, From, Adjustment); 3264 RangeSet RangeGT = getSymGTRange(State, Sym, To, Adjustment); 3265 RangeSet New(F.add(RangeLT, RangeGT)); 3266 return setRange(State, Sym, New); 3267 } 3268 3269 //===----------------------------------------------------------------------===// 3270 // Pretty-printing. 3271 //===----------------------------------------------------------------------===// 3272 3273 void RangeConstraintManager::printJson(raw_ostream &Out, ProgramStateRef State, 3274 const char *NL, unsigned int Space, 3275 bool IsDot) const { 3276 printConstraints(Out, State, NL, Space, IsDot); 3277 printEquivalenceClasses(Out, State, NL, Space, IsDot); 3278 printDisequalities(Out, State, NL, Space, IsDot); 3279 } 3280 3281 void RangeConstraintManager::printValue(raw_ostream &Out, ProgramStateRef State, 3282 SymbolRef Sym) { 3283 const RangeSet RS = getRange(State, Sym); 3284 if (RS.isEmpty()) { 3285 Out << "<empty rangeset>"; 3286 return; 3287 } 3288 Out << RS.getBitWidth() << (RS.isUnsigned() ? "u:" : "s:"); 3289 RS.dump(Out); 3290 } 3291 3292 static std::string toString(const SymbolRef &Sym) { 3293 std::string S; 3294 llvm::raw_string_ostream O(S); 3295 Sym->dumpToStream(O); 3296 return S; 3297 } 3298 3299 void RangeConstraintManager::printConstraints(raw_ostream &Out, 3300 ProgramStateRef State, 3301 const char *NL, 3302 unsigned int Space, 3303 bool IsDot) const { 3304 ConstraintRangeTy Constraints = State->get<ConstraintRange>(); 3305 3306 Indent(Out, Space, IsDot) << "\"constraints\": "; 3307 if (Constraints.isEmpty()) { 3308 Out << "null," << NL; 3309 return; 3310 } 3311 3312 std::map<std::string, RangeSet> OrderedConstraints; 3313 for (std::pair<EquivalenceClass, RangeSet> P : Constraints) { 3314 SymbolSet ClassMembers = P.first.getClassMembers(State); 3315 for (const SymbolRef &ClassMember : ClassMembers) { 3316 bool insertion_took_place; 3317 std::tie(std::ignore, insertion_took_place) = 3318 OrderedConstraints.insert({toString(ClassMember), P.second}); 3319 assert(insertion_took_place && 3320 "two symbols should not have the same dump"); 3321 } 3322 } 3323 3324 ++Space; 3325 Out << '[' << NL; 3326 bool First = true; 3327 for (std::pair<std::string, RangeSet> P : OrderedConstraints) { 3328 if (First) { 3329 First = false; 3330 } else { 3331 Out << ','; 3332 Out << NL; 3333 } 3334 Indent(Out, Space, IsDot) 3335 << "{ \"symbol\": \"" << P.first << "\", \"range\": \""; 3336 P.second.dump(Out); 3337 Out << "\" }"; 3338 } 3339 Out << NL; 3340 3341 --Space; 3342 Indent(Out, Space, IsDot) << "]," << NL; 3343 } 3344 3345 static std::string toString(ProgramStateRef State, EquivalenceClass Class) { 3346 SymbolSet ClassMembers = Class.getClassMembers(State); 3347 llvm::SmallVector<SymbolRef, 8> ClassMembersSorted(ClassMembers.begin(), 3348 ClassMembers.end()); 3349 llvm::sort(ClassMembersSorted, 3350 [](const SymbolRef &LHS, const SymbolRef &RHS) { 3351 return toString(LHS) < toString(RHS); 3352 }); 3353 3354 bool FirstMember = true; 3355 3356 std::string Str; 3357 llvm::raw_string_ostream Out(Str); 3358 Out << "[ "; 3359 for (SymbolRef ClassMember : ClassMembersSorted) { 3360 if (FirstMember) 3361 FirstMember = false; 3362 else 3363 Out << ", "; 3364 Out << "\"" << ClassMember << "\""; 3365 } 3366 Out << " ]"; 3367 return Str; 3368 } 3369 3370 void RangeConstraintManager::printEquivalenceClasses(raw_ostream &Out, 3371 ProgramStateRef State, 3372 const char *NL, 3373 unsigned int Space, 3374 bool IsDot) const { 3375 ClassMembersTy Members = State->get<ClassMembers>(); 3376 3377 Indent(Out, Space, IsDot) << "\"equivalence_classes\": "; 3378 if (Members.isEmpty()) { 3379 Out << "null," << NL; 3380 return; 3381 } 3382 3383 std::set<std::string> MembersStr; 3384 for (std::pair<EquivalenceClass, SymbolSet> ClassToSymbolSet : Members) 3385 MembersStr.insert(toString(State, ClassToSymbolSet.first)); 3386 3387 ++Space; 3388 Out << '[' << NL; 3389 bool FirstClass = true; 3390 for (const std::string &Str : MembersStr) { 3391 if (FirstClass) { 3392 FirstClass = false; 3393 } else { 3394 Out << ','; 3395 Out << NL; 3396 } 3397 Indent(Out, Space, IsDot); 3398 Out << Str; 3399 } 3400 Out << NL; 3401 3402 --Space; 3403 Indent(Out, Space, IsDot) << "]," << NL; 3404 } 3405 3406 void RangeConstraintManager::printDisequalities(raw_ostream &Out, 3407 ProgramStateRef State, 3408 const char *NL, 3409 unsigned int Space, 3410 bool IsDot) const { 3411 DisequalityMapTy Disequalities = State->get<DisequalityMap>(); 3412 3413 Indent(Out, Space, IsDot) << "\"disequality_info\": "; 3414 if (Disequalities.isEmpty()) { 3415 Out << "null," << NL; 3416 return; 3417 } 3418 3419 // Transform the disequality info to an ordered map of 3420 // [string -> (ordered set of strings)] 3421 using EqClassesStrTy = std::set<std::string>; 3422 using DisequalityInfoStrTy = std::map<std::string, EqClassesStrTy>; 3423 DisequalityInfoStrTy DisequalityInfoStr; 3424 for (std::pair<EquivalenceClass, ClassSet> ClassToDisEqSet : Disequalities) { 3425 EquivalenceClass Class = ClassToDisEqSet.first; 3426 ClassSet DisequalClasses = ClassToDisEqSet.second; 3427 EqClassesStrTy MembersStr; 3428 for (EquivalenceClass DisEqClass : DisequalClasses) 3429 MembersStr.insert(toString(State, DisEqClass)); 3430 DisequalityInfoStr.insert({toString(State, Class), MembersStr}); 3431 } 3432 3433 ++Space; 3434 Out << '[' << NL; 3435 bool FirstClass = true; 3436 for (std::pair<std::string, EqClassesStrTy> ClassToDisEqSet : 3437 DisequalityInfoStr) { 3438 const std::string &Class = ClassToDisEqSet.first; 3439 if (FirstClass) { 3440 FirstClass = false; 3441 } else { 3442 Out << ','; 3443 Out << NL; 3444 } 3445 Indent(Out, Space, IsDot) << "{" << NL; 3446 unsigned int DisEqSpace = Space + 1; 3447 Indent(Out, DisEqSpace, IsDot) << "\"class\": "; 3448 Out << Class; 3449 const EqClassesStrTy &DisequalClasses = ClassToDisEqSet.second; 3450 if (!DisequalClasses.empty()) { 3451 Out << "," << NL; 3452 Indent(Out, DisEqSpace, IsDot) << "\"disequal_to\": [" << NL; 3453 unsigned int DisEqClassSpace = DisEqSpace + 1; 3454 Indent(Out, DisEqClassSpace, IsDot); 3455 bool FirstDisEqClass = true; 3456 for (const std::string &DisEqClass : DisequalClasses) { 3457 if (FirstDisEqClass) { 3458 FirstDisEqClass = false; 3459 } else { 3460 Out << ',' << NL; 3461 Indent(Out, DisEqClassSpace, IsDot); 3462 } 3463 Out << DisEqClass; 3464 } 3465 Out << "]" << NL; 3466 } 3467 Indent(Out, Space, IsDot) << "}"; 3468 } 3469 Out << NL; 3470 3471 --Space; 3472 Indent(Out, Space, IsDot) << "]," << NL; 3473 } 3474