1 //== RangeConstraintManager.cpp - Manage range constraints.------*- C++ -*--==// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file defines RangeConstraintManager, a class that tracks simple 10 // equality and inequality constraints on symbolic values of ProgramState. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "clang/Basic/JsonSupport.h" 15 #include "clang/StaticAnalyzer/Core/PathSensitive/APSIntType.h" 16 #include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState.h" 17 #include "clang/StaticAnalyzer/Core/PathSensitive/ProgramStateTrait.h" 18 #include "clang/StaticAnalyzer/Core/PathSensitive/RangedConstraintManager.h" 19 #include "clang/StaticAnalyzer/Core/PathSensitive/SValVisitor.h" 20 #include "llvm/ADT/FoldingSet.h" 21 #include "llvm/ADT/ImmutableSet.h" 22 #include "llvm/ADT/STLExtras.h" 23 #include "llvm/ADT/SmallSet.h" 24 #include "llvm/ADT/StringExtras.h" 25 #include "llvm/Support/Compiler.h" 26 #include "llvm/Support/raw_ostream.h" 27 #include <algorithm> 28 #include <iterator> 29 #include <optional> 30 31 using namespace clang; 32 using namespace ento; 33 34 // This class can be extended with other tables which will help to reason 35 // about ranges more precisely. 36 class OperatorRelationsTable { 37 static_assert(BO_LT < BO_GT && BO_GT < BO_LE && BO_LE < BO_GE && 38 BO_GE < BO_EQ && BO_EQ < BO_NE, 39 "This class relies on operators order. Rework it otherwise."); 40 41 public: 42 enum TriStateKind { 43 False = 0, 44 True, 45 Unknown, 46 }; 47 48 private: 49 // CmpOpTable holds states which represent the corresponding range for 50 // branching an exploded graph. We can reason about the branch if there is 51 // a previously known fact of the existence of a comparison expression with 52 // operands used in the current expression. 53 // E.g. assuming (x < y) is true that means (x != y) is surely true. 54 // if (x previous_operation y) // < | != | > 55 // if (x operation y) // != | > | < 56 // tristate // True | Unknown | False 57 // 58 // CmpOpTable represents next: 59 // __|< |> |<=|>=|==|!=|UnknownX2| 60 // < |1 |0 |* |0 |0 |* |1 | 61 // > |0 |1 |0 |* |0 |* |1 | 62 // <=|1 |0 |1 |* |1 |* |0 | 63 // >=|0 |1 |* |1 |1 |* |0 | 64 // ==|0 |0 |* |* |1 |0 |1 | 65 // !=|1 |1 |* |* |0 |1 |0 | 66 // 67 // Columns stands for a previous operator. 68 // Rows stands for a current operator. 69 // Each row has exactly two `Unknown` cases. 70 // UnknownX2 means that both `Unknown` previous operators are met in code, 71 // and there is a special column for that, for example: 72 // if (x >= y) 73 // if (x != y) 74 // if (x <= y) 75 // False only 76 static constexpr size_t CmpOpCount = BO_NE - BO_LT + 1; 77 const TriStateKind CmpOpTable[CmpOpCount][CmpOpCount + 1] = { 78 // < > <= >= == != UnknownX2 79 {True, False, Unknown, False, False, Unknown, True}, // < 80 {False, True, False, Unknown, False, Unknown, True}, // > 81 {True, False, True, Unknown, True, Unknown, False}, // <= 82 {False, True, Unknown, True, True, Unknown, False}, // >= 83 {False, False, Unknown, Unknown, True, False, True}, // == 84 {True, True, Unknown, Unknown, False, True, False}, // != 85 }; 86 87 static size_t getIndexFromOp(BinaryOperatorKind OP) { 88 return static_cast<size_t>(OP - BO_LT); 89 } 90 91 public: 92 constexpr size_t getCmpOpCount() const { return CmpOpCount; } 93 94 static BinaryOperatorKind getOpFromIndex(size_t Index) { 95 return static_cast<BinaryOperatorKind>(Index + BO_LT); 96 } 97 98 TriStateKind getCmpOpState(BinaryOperatorKind CurrentOP, 99 BinaryOperatorKind QueriedOP) const { 100 return CmpOpTable[getIndexFromOp(CurrentOP)][getIndexFromOp(QueriedOP)]; 101 } 102 103 TriStateKind getCmpOpStateForUnknownX2(BinaryOperatorKind CurrentOP) const { 104 return CmpOpTable[getIndexFromOp(CurrentOP)][CmpOpCount]; 105 } 106 }; 107 108 //===----------------------------------------------------------------------===// 109 // RangeSet implementation 110 //===----------------------------------------------------------------------===// 111 112 RangeSet::ContainerType RangeSet::Factory::EmptySet{}; 113 114 RangeSet RangeSet::Factory::add(RangeSet LHS, RangeSet RHS) { 115 ContainerType Result; 116 Result.reserve(LHS.size() + RHS.size()); 117 std::merge(LHS.begin(), LHS.end(), RHS.begin(), RHS.end(), 118 std::back_inserter(Result)); 119 return makePersistent(std::move(Result)); 120 } 121 122 RangeSet RangeSet::Factory::add(RangeSet Original, Range Element) { 123 ContainerType Result; 124 Result.reserve(Original.size() + 1); 125 126 const_iterator Lower = llvm::lower_bound(Original, Element); 127 Result.insert(Result.end(), Original.begin(), Lower); 128 Result.push_back(Element); 129 Result.insert(Result.end(), Lower, Original.end()); 130 131 return makePersistent(std::move(Result)); 132 } 133 134 RangeSet RangeSet::Factory::add(RangeSet Original, const llvm::APSInt &Point) { 135 return add(Original, Range(Point)); 136 } 137 138 RangeSet RangeSet::Factory::unite(RangeSet LHS, RangeSet RHS) { 139 ContainerType Result = unite(*LHS.Impl, *RHS.Impl); 140 return makePersistent(std::move(Result)); 141 } 142 143 RangeSet RangeSet::Factory::unite(RangeSet Original, Range R) { 144 ContainerType Result; 145 Result.push_back(R); 146 Result = unite(*Original.Impl, Result); 147 return makePersistent(std::move(Result)); 148 } 149 150 RangeSet RangeSet::Factory::unite(RangeSet Original, llvm::APSInt Point) { 151 return unite(Original, Range(ValueFactory.getValue(Point))); 152 } 153 154 RangeSet RangeSet::Factory::unite(RangeSet Original, llvm::APSInt From, 155 llvm::APSInt To) { 156 return unite(Original, 157 Range(ValueFactory.getValue(From), ValueFactory.getValue(To))); 158 } 159 160 template <typename T> 161 void swapIterators(T &First, T &FirstEnd, T &Second, T &SecondEnd) { 162 std::swap(First, Second); 163 std::swap(FirstEnd, SecondEnd); 164 } 165 166 RangeSet::ContainerType RangeSet::Factory::unite(const ContainerType &LHS, 167 const ContainerType &RHS) { 168 if (LHS.empty()) 169 return RHS; 170 if (RHS.empty()) 171 return LHS; 172 173 using llvm::APSInt; 174 using iterator = ContainerType::const_iterator; 175 176 iterator First = LHS.begin(); 177 iterator FirstEnd = LHS.end(); 178 iterator Second = RHS.begin(); 179 iterator SecondEnd = RHS.end(); 180 APSIntType Ty = APSIntType(First->From()); 181 const APSInt Min = Ty.getMinValue(); 182 183 // Handle a corner case first when both range sets start from MIN. 184 // This helps to avoid complicated conditions below. Specifically, this 185 // particular check for `MIN` is not needed in the loop below every time 186 // when we do `Second->From() - One` operation. 187 if (Min == First->From() && Min == Second->From()) { 188 if (First->To() > Second->To()) { 189 // [ First ]---> 190 // [ Second ]-----> 191 // MIN^ 192 // The Second range is entirely inside the First one. 193 194 // Check if Second is the last in its RangeSet. 195 if (++Second == SecondEnd) 196 // [ First ]--[ First + 1 ]---> 197 // [ Second ]---------------------> 198 // MIN^ 199 // The Union is equal to First's RangeSet. 200 return LHS; 201 } else { 202 // case 1: [ First ]-----> 203 // case 2: [ First ]---> 204 // [ Second ]---> 205 // MIN^ 206 // The First range is entirely inside or equal to the Second one. 207 208 // Check if First is the last in its RangeSet. 209 if (++First == FirstEnd) 210 // [ First ]-----------------------> 211 // [ Second ]--[ Second + 1 ]----> 212 // MIN^ 213 // The Union is equal to Second's RangeSet. 214 return RHS; 215 } 216 } 217 218 const APSInt One = Ty.getValue(1); 219 ContainerType Result; 220 221 // This is called when there are no ranges left in one of the ranges. 222 // Append the rest of the ranges from another range set to the Result 223 // and return with that. 224 const auto AppendTheRest = [&Result](iterator I, iterator E) { 225 Result.append(I, E); 226 return Result; 227 }; 228 229 while (true) { 230 // We want to keep the following invariant at all times: 231 // ---[ First ------> 232 // -----[ Second ---> 233 if (First->From() > Second->From()) 234 swapIterators(First, FirstEnd, Second, SecondEnd); 235 236 // The Union definitely starts with First->From(). 237 // ----------[ First ------> 238 // ------------[ Second ---> 239 // ----------[ Union ------> 240 // UnionStart^ 241 const llvm::APSInt &UnionStart = First->From(); 242 243 // Loop where the invariant holds. 244 while (true) { 245 // Skip all enclosed ranges. 246 // ---[ First ]---> 247 // -----[ Second ]--[ Second + 1 ]--[ Second + N ]-----> 248 while (First->To() >= Second->To()) { 249 // Check if Second is the last in its RangeSet. 250 if (++Second == SecondEnd) { 251 // Append the Union. 252 // ---[ Union ]---> 253 // -----[ Second ]-----> 254 // --------[ First ]---> 255 // UnionEnd^ 256 Result.emplace_back(UnionStart, First->To()); 257 // ---[ Union ]-----------------> 258 // --------------[ First + 1]---> 259 // Append all remaining ranges from the First's RangeSet. 260 return AppendTheRest(++First, FirstEnd); 261 } 262 } 263 264 // Check if First and Second are disjoint. It means that we find 265 // the end of the Union. Exit the loop and append the Union. 266 // ---[ First ]=-------------> 267 // ------------=[ Second ]---> 268 // ----MinusOne^ 269 if (First->To() < Second->From() - One) 270 break; 271 272 // First is entirely inside the Union. Go next. 273 // ---[ Union -----------> 274 // ---- [ First ]--------> 275 // -------[ Second ]-----> 276 // Check if First is the last in its RangeSet. 277 if (++First == FirstEnd) { 278 // Append the Union. 279 // ---[ Union ]---> 280 // -----[ First ]-------> 281 // --------[ Second ]---> 282 // UnionEnd^ 283 Result.emplace_back(UnionStart, Second->To()); 284 // ---[ Union ]------------------> 285 // --------------[ Second + 1]---> 286 // Append all remaining ranges from the Second's RangeSet. 287 return AppendTheRest(++Second, SecondEnd); 288 } 289 290 // We know that we are at one of the two cases: 291 // case 1: --[ First ]---------> 292 // case 2: ----[ First ]-------> 293 // --------[ Second ]----------> 294 // In both cases First starts after Second->From(). 295 // Make sure that the loop invariant holds. 296 swapIterators(First, FirstEnd, Second, SecondEnd); 297 } 298 299 // Here First and Second are disjoint. 300 // Append the Union. 301 // ---[ Union ]---------------> 302 // -----------------[ Second ]---> 303 // ------[ First ]---------------> 304 // UnionEnd^ 305 Result.emplace_back(UnionStart, First->To()); 306 307 // Check if First is the last in its RangeSet. 308 if (++First == FirstEnd) 309 // ---[ Union ]---------------> 310 // --------------[ Second ]---> 311 // Append all remaining ranges from the Second's RangeSet. 312 return AppendTheRest(Second, SecondEnd); 313 } 314 315 llvm_unreachable("Normally, we should not reach here"); 316 } 317 318 RangeSet RangeSet::Factory::getRangeSet(Range From) { 319 ContainerType Result; 320 Result.push_back(From); 321 return makePersistent(std::move(Result)); 322 } 323 324 RangeSet RangeSet::Factory::makePersistent(ContainerType &&From) { 325 llvm::FoldingSetNodeID ID; 326 void *InsertPos; 327 328 From.Profile(ID); 329 ContainerType *Result = Cache.FindNodeOrInsertPos(ID, InsertPos); 330 331 if (!Result) { 332 // It is cheaper to fully construct the resulting range on stack 333 // and move it to the freshly allocated buffer if we don't have 334 // a set like this already. 335 Result = construct(std::move(From)); 336 Cache.InsertNode(Result, InsertPos); 337 } 338 339 return Result; 340 } 341 342 RangeSet::ContainerType *RangeSet::Factory::construct(ContainerType &&From) { 343 void *Buffer = Arena.Allocate(); 344 return new (Buffer) ContainerType(std::move(From)); 345 } 346 347 const llvm::APSInt &RangeSet::getMinValue() const { 348 assert(!isEmpty()); 349 return begin()->From(); 350 } 351 352 const llvm::APSInt &RangeSet::getMaxValue() const { 353 assert(!isEmpty()); 354 return std::prev(end())->To(); 355 } 356 357 bool clang::ento::RangeSet::isUnsigned() const { 358 assert(!isEmpty()); 359 return begin()->From().isUnsigned(); 360 } 361 362 uint32_t clang::ento::RangeSet::getBitWidth() const { 363 assert(!isEmpty()); 364 return begin()->From().getBitWidth(); 365 } 366 367 APSIntType clang::ento::RangeSet::getAPSIntType() const { 368 assert(!isEmpty()); 369 return APSIntType(begin()->From()); 370 } 371 372 bool RangeSet::containsImpl(llvm::APSInt &Point) const { 373 if (isEmpty() || !pin(Point)) 374 return false; 375 376 Range Dummy(Point); 377 const_iterator It = llvm::upper_bound(*this, Dummy); 378 if (It == begin()) 379 return false; 380 381 return std::prev(It)->Includes(Point); 382 } 383 384 bool RangeSet::pin(llvm::APSInt &Point) const { 385 APSIntType Type(getMinValue()); 386 if (Type.testInRange(Point, true) != APSIntType::RTR_Within) 387 return false; 388 389 Type.apply(Point); 390 return true; 391 } 392 393 bool RangeSet::pin(llvm::APSInt &Lower, llvm::APSInt &Upper) const { 394 // This function has nine cases, the cartesian product of range-testing 395 // both the upper and lower bounds against the symbol's type. 396 // Each case requires a different pinning operation. 397 // The function returns false if the described range is entirely outside 398 // the range of values for the associated symbol. 399 APSIntType Type(getMinValue()); 400 APSIntType::RangeTestResultKind LowerTest = Type.testInRange(Lower, true); 401 APSIntType::RangeTestResultKind UpperTest = Type.testInRange(Upper, true); 402 403 switch (LowerTest) { 404 case APSIntType::RTR_Below: 405 switch (UpperTest) { 406 case APSIntType::RTR_Below: 407 // The entire range is outside the symbol's set of possible values. 408 // If this is a conventionally-ordered range, the state is infeasible. 409 if (Lower <= Upper) 410 return false; 411 412 // However, if the range wraps around, it spans all possible values. 413 Lower = Type.getMinValue(); 414 Upper = Type.getMaxValue(); 415 break; 416 case APSIntType::RTR_Within: 417 // The range starts below what's possible but ends within it. Pin. 418 Lower = Type.getMinValue(); 419 Type.apply(Upper); 420 break; 421 case APSIntType::RTR_Above: 422 // The range spans all possible values for the symbol. Pin. 423 Lower = Type.getMinValue(); 424 Upper = Type.getMaxValue(); 425 break; 426 } 427 break; 428 case APSIntType::RTR_Within: 429 switch (UpperTest) { 430 case APSIntType::RTR_Below: 431 // The range wraps around, but all lower values are not possible. 432 Type.apply(Lower); 433 Upper = Type.getMaxValue(); 434 break; 435 case APSIntType::RTR_Within: 436 // The range may or may not wrap around, but both limits are valid. 437 Type.apply(Lower); 438 Type.apply(Upper); 439 break; 440 case APSIntType::RTR_Above: 441 // The range starts within what's possible but ends above it. Pin. 442 Type.apply(Lower); 443 Upper = Type.getMaxValue(); 444 break; 445 } 446 break; 447 case APSIntType::RTR_Above: 448 switch (UpperTest) { 449 case APSIntType::RTR_Below: 450 // The range wraps but is outside the symbol's set of possible values. 451 return false; 452 case APSIntType::RTR_Within: 453 // The range starts above what's possible but ends within it (wrap). 454 Lower = Type.getMinValue(); 455 Type.apply(Upper); 456 break; 457 case APSIntType::RTR_Above: 458 // The entire range is outside the symbol's set of possible values. 459 // If this is a conventionally-ordered range, the state is infeasible. 460 if (Lower <= Upper) 461 return false; 462 463 // However, if the range wraps around, it spans all possible values. 464 Lower = Type.getMinValue(); 465 Upper = Type.getMaxValue(); 466 break; 467 } 468 break; 469 } 470 471 return true; 472 } 473 474 RangeSet RangeSet::Factory::intersect(RangeSet What, llvm::APSInt Lower, 475 llvm::APSInt Upper) { 476 if (What.isEmpty() || !What.pin(Lower, Upper)) 477 return getEmptySet(); 478 479 ContainerType DummyContainer; 480 481 if (Lower <= Upper) { 482 // [Lower, Upper] is a regular range. 483 // 484 // Shortcut: check that there is even a possibility of the intersection 485 // by checking the two following situations: 486 // 487 // <---[ What ]---[------]------> 488 // Lower Upper 489 // -or- 490 // <----[------]----[ What ]----> 491 // Lower Upper 492 if (What.getMaxValue() < Lower || Upper < What.getMinValue()) 493 return getEmptySet(); 494 495 DummyContainer.push_back( 496 Range(ValueFactory.getValue(Lower), ValueFactory.getValue(Upper))); 497 } else { 498 // [Lower, Upper] is an inverted range, i.e. [MIN, Upper] U [Lower, MAX] 499 // 500 // Shortcut: check that there is even a possibility of the intersection 501 // by checking the following situation: 502 // 503 // <------]---[ What ]---[------> 504 // Upper Lower 505 if (What.getMaxValue() < Lower && Upper < What.getMinValue()) 506 return getEmptySet(); 507 508 DummyContainer.push_back( 509 Range(ValueFactory.getMinValue(Upper), ValueFactory.getValue(Upper))); 510 DummyContainer.push_back( 511 Range(ValueFactory.getValue(Lower), ValueFactory.getMaxValue(Lower))); 512 } 513 514 return intersect(*What.Impl, DummyContainer); 515 } 516 517 RangeSet RangeSet::Factory::intersect(const RangeSet::ContainerType &LHS, 518 const RangeSet::ContainerType &RHS) { 519 ContainerType Result; 520 Result.reserve(std::max(LHS.size(), RHS.size())); 521 522 const_iterator First = LHS.begin(), Second = RHS.begin(), 523 FirstEnd = LHS.end(), SecondEnd = RHS.end(); 524 525 // If we ran out of ranges in one set, but not in the other, 526 // it means that those elements are definitely not in the 527 // intersection. 528 while (First != FirstEnd && Second != SecondEnd) { 529 // We want to keep the following invariant at all times: 530 // 531 // ----[ First ----------------------> 532 // --------[ Second -----------------> 533 if (Second->From() < First->From()) 534 swapIterators(First, FirstEnd, Second, SecondEnd); 535 536 // Loop where the invariant holds: 537 do { 538 // Check for the following situation: 539 // 540 // ----[ First ]---------------------> 541 // ---------------[ Second ]---------> 542 // 543 // which means that... 544 if (Second->From() > First->To()) { 545 // ...First is not in the intersection. 546 // 547 // We should move on to the next range after First and break out of the 548 // loop because the invariant might not be true. 549 ++First; 550 break; 551 } 552 553 // We have a guaranteed intersection at this point! 554 // And this is the current situation: 555 // 556 // ----[ First ]-----------------> 557 // -------[ Second ------------------> 558 // 559 // Additionally, it definitely starts with Second->From(). 560 const llvm::APSInt &IntersectionStart = Second->From(); 561 562 // It is important to know which of the two ranges' ends 563 // is greater. That "longer" range might have some other 564 // intersections, while the "shorter" range might not. 565 if (Second->To() > First->To()) { 566 // Here we make a decision to keep First as the "longer" 567 // range. 568 swapIterators(First, FirstEnd, Second, SecondEnd); 569 } 570 571 // At this point, we have the following situation: 572 // 573 // ---- First ]--------------------> 574 // ---- Second ]--[ Second+1 ----------> 575 // 576 // We don't know the relationship between First->From and 577 // Second->From and we don't know whether Second+1 intersects 578 // with First. 579 // 580 // However, we know that [IntersectionStart, Second->To] is 581 // a part of the intersection... 582 Result.push_back(Range(IntersectionStart, Second->To())); 583 ++Second; 584 // ...and that the invariant will hold for a valid Second+1 585 // because First->From <= Second->To < (Second+1)->From. 586 } while (Second != SecondEnd); 587 } 588 589 if (Result.empty()) 590 return getEmptySet(); 591 592 return makePersistent(std::move(Result)); 593 } 594 595 RangeSet RangeSet::Factory::intersect(RangeSet LHS, RangeSet RHS) { 596 // Shortcut: let's see if the intersection is even possible. 597 if (LHS.isEmpty() || RHS.isEmpty() || LHS.getMaxValue() < RHS.getMinValue() || 598 RHS.getMaxValue() < LHS.getMinValue()) 599 return getEmptySet(); 600 601 return intersect(*LHS.Impl, *RHS.Impl); 602 } 603 604 RangeSet RangeSet::Factory::intersect(RangeSet LHS, llvm::APSInt Point) { 605 if (LHS.containsImpl(Point)) 606 return getRangeSet(ValueFactory.getValue(Point)); 607 608 return getEmptySet(); 609 } 610 611 RangeSet RangeSet::Factory::negate(RangeSet What) { 612 if (What.isEmpty()) 613 return getEmptySet(); 614 615 const llvm::APSInt SampleValue = What.getMinValue(); 616 const llvm::APSInt &MIN = ValueFactory.getMinValue(SampleValue); 617 const llvm::APSInt &MAX = ValueFactory.getMaxValue(SampleValue); 618 619 ContainerType Result; 620 Result.reserve(What.size() + (SampleValue == MIN)); 621 622 // Handle a special case for MIN value. 623 const_iterator It = What.begin(); 624 const_iterator End = What.end(); 625 626 const llvm::APSInt &From = It->From(); 627 const llvm::APSInt &To = It->To(); 628 629 if (From == MIN) { 630 // If the range [From, To] is [MIN, MAX], then result is also [MIN, MAX]. 631 if (To == MAX) { 632 return What; 633 } 634 635 const_iterator Last = std::prev(End); 636 637 // Try to find and unite the following ranges: 638 // [MIN, MIN] & [MIN + 1, N] => [MIN, N]. 639 if (Last->To() == MAX) { 640 // It means that in the original range we have ranges 641 // [MIN, A], ... , [B, MAX] 642 // And the result should be [MIN, -B], ..., [-A, MAX] 643 Result.emplace_back(MIN, ValueFactory.getValue(-Last->From())); 644 // We already negated Last, so we can skip it. 645 End = Last; 646 } else { 647 // Add a separate range for the lowest value. 648 Result.emplace_back(MIN, MIN); 649 } 650 651 // Skip adding the second range in case when [From, To] are [MIN, MIN]. 652 if (To != MIN) { 653 Result.emplace_back(ValueFactory.getValue(-To), MAX); 654 } 655 656 // Skip the first range in the loop. 657 ++It; 658 } 659 660 // Negate all other ranges. 661 for (; It != End; ++It) { 662 // Negate int values. 663 const llvm::APSInt &NewFrom = ValueFactory.getValue(-It->To()); 664 const llvm::APSInt &NewTo = ValueFactory.getValue(-It->From()); 665 666 // Add a negated range. 667 Result.emplace_back(NewFrom, NewTo); 668 } 669 670 llvm::sort(Result); 671 return makePersistent(std::move(Result)); 672 } 673 674 // Convert range set to the given integral type using truncation and promotion. 675 // This works similar to APSIntType::apply function but for the range set. 676 RangeSet RangeSet::Factory::castTo(RangeSet What, APSIntType Ty) { 677 // Set is empty or NOOP (aka cast to the same type). 678 if (What.isEmpty() || What.getAPSIntType() == Ty) 679 return What; 680 681 const bool IsConversion = What.isUnsigned() != Ty.isUnsigned(); 682 const bool IsTruncation = What.getBitWidth() > Ty.getBitWidth(); 683 const bool IsPromotion = What.getBitWidth() < Ty.getBitWidth(); 684 685 if (IsTruncation) 686 return makePersistent(truncateTo(What, Ty)); 687 688 // Here we handle 2 cases: 689 // - IsConversion && !IsPromotion. 690 // In this case we handle changing a sign with same bitwidth: char -> uchar, 691 // uint -> int. Here we convert negatives to positives and positives which 692 // is out of range to negatives. We use convertTo function for that. 693 // - IsConversion && IsPromotion && !What.isUnsigned(). 694 // In this case we handle changing a sign from signeds to unsigneds with 695 // higher bitwidth: char -> uint, int-> uint64. The point is that we also 696 // need convert negatives to positives and use convertTo function as well. 697 // For example, we don't need such a convertion when converting unsigned to 698 // signed with higher bitwidth, because all the values of unsigned is valid 699 // for the such signed. 700 if (IsConversion && (!IsPromotion || !What.isUnsigned())) 701 return makePersistent(convertTo(What, Ty)); 702 703 assert(IsPromotion && "Only promotion operation from unsigneds left."); 704 return makePersistent(promoteTo(What, Ty)); 705 } 706 707 RangeSet RangeSet::Factory::castTo(RangeSet What, QualType T) { 708 assert(T->isIntegralOrEnumerationType() && "T shall be an integral type."); 709 return castTo(What, ValueFactory.getAPSIntType(T)); 710 } 711 712 RangeSet::ContainerType RangeSet::Factory::truncateTo(RangeSet What, 713 APSIntType Ty) { 714 using llvm::APInt; 715 using llvm::APSInt; 716 ContainerType Result; 717 ContainerType Dummy; 718 // CastRangeSize is an amount of all possible values of cast type. 719 // Example: `char` has 256 values; `short` has 65536 values. 720 // But in fact we use `amount of values` - 1, because 721 // we can't keep `amount of values of UINT64` inside uint64_t. 722 // E.g. 256 is an amount of all possible values of `char` and we can't keep 723 // it inside `char`. 724 // And it's OK, it's enough to do correct calculations. 725 uint64_t CastRangeSize = APInt::getMaxValue(Ty.getBitWidth()).getZExtValue(); 726 for (const Range &R : What) { 727 // Get bounds of the given range. 728 APSInt FromInt = R.From(); 729 APSInt ToInt = R.To(); 730 // CurrentRangeSize is an amount of all possible values of the current 731 // range minus one. 732 uint64_t CurrentRangeSize = (ToInt - FromInt).getZExtValue(); 733 // This is an optimization for a specific case when this Range covers 734 // the whole range of the target type. 735 Dummy.clear(); 736 if (CurrentRangeSize >= CastRangeSize) { 737 Dummy.emplace_back(ValueFactory.getMinValue(Ty), 738 ValueFactory.getMaxValue(Ty)); 739 Result = std::move(Dummy); 740 break; 741 } 742 // Cast the bounds. 743 Ty.apply(FromInt); 744 Ty.apply(ToInt); 745 const APSInt &PersistentFrom = ValueFactory.getValue(FromInt); 746 const APSInt &PersistentTo = ValueFactory.getValue(ToInt); 747 if (FromInt > ToInt) { 748 Dummy.emplace_back(ValueFactory.getMinValue(Ty), PersistentTo); 749 Dummy.emplace_back(PersistentFrom, ValueFactory.getMaxValue(Ty)); 750 } else 751 Dummy.emplace_back(PersistentFrom, PersistentTo); 752 // Every range retrieved after truncation potentialy has garbage values. 753 // So, we have to unite every next range with the previouses. 754 Result = unite(Result, Dummy); 755 } 756 757 return Result; 758 } 759 760 // Divide the convertion into two phases (presented as loops here). 761 // First phase(loop) works when casted values go in ascending order. 762 // E.g. char{1,3,5,127} -> uint{1,3,5,127} 763 // Interrupt the first phase and go to second one when casted values start 764 // go in descending order. That means that we crossed over the middle of 765 // the type value set (aka 0 for signeds and MAX/2+1 for unsigneds). 766 // For instance: 767 // 1: uchar{1,3,5,128,255} -> char{1,3,5,-128,-1} 768 // Here we put {1,3,5} to one array and {-128, -1} to another 769 // 2: char{-128,-127,-1,0,1,2} -> uchar{128,129,255,0,1,3} 770 // Here we put {128,129,255} to one array and {0,1,3} to another. 771 // After that we unite both arrays. 772 // NOTE: We don't just concatenate the arrays, because they may have 773 // adjacent ranges, e.g.: 774 // 1: char(-128, 127) -> uchar -> arr1(128, 255), arr2(0, 127) -> 775 // unite -> uchar(0, 255) 776 // 2: uchar(0, 1)U(254, 255) -> char -> arr1(0, 1), arr2(-2, -1) -> 777 // unite -> uchar(-2, 1) 778 RangeSet::ContainerType RangeSet::Factory::convertTo(RangeSet What, 779 APSIntType Ty) { 780 using llvm::APInt; 781 using llvm::APSInt; 782 using Bounds = std::pair<const APSInt &, const APSInt &>; 783 ContainerType AscendArray; 784 ContainerType DescendArray; 785 auto CastRange = [Ty, &VF = ValueFactory](const Range &R) -> Bounds { 786 // Get bounds of the given range. 787 APSInt FromInt = R.From(); 788 APSInt ToInt = R.To(); 789 // Cast the bounds. 790 Ty.apply(FromInt); 791 Ty.apply(ToInt); 792 return {VF.getValue(FromInt), VF.getValue(ToInt)}; 793 }; 794 // Phase 1. Fill the first array. 795 APSInt LastConvertedInt = Ty.getMinValue(); 796 const auto *It = What.begin(); 797 const auto *E = What.end(); 798 while (It != E) { 799 Bounds NewBounds = CastRange(*(It++)); 800 // If values stop going acsending order, go to the second phase(loop). 801 if (NewBounds.first < LastConvertedInt) { 802 DescendArray.emplace_back(NewBounds.first, NewBounds.second); 803 break; 804 } 805 // If the range contains a midpoint, then split the range. 806 // E.g. char(-5, 5) -> uchar(251, 5) 807 // Here we shall add a range (251, 255) to the first array and (0, 5) to the 808 // second one. 809 if (NewBounds.first > NewBounds.second) { 810 DescendArray.emplace_back(ValueFactory.getMinValue(Ty), NewBounds.second); 811 AscendArray.emplace_back(NewBounds.first, ValueFactory.getMaxValue(Ty)); 812 } else 813 // Values are going acsending order. 814 AscendArray.emplace_back(NewBounds.first, NewBounds.second); 815 LastConvertedInt = NewBounds.first; 816 } 817 // Phase 2. Fill the second array. 818 while (It != E) { 819 Bounds NewBounds = CastRange(*(It++)); 820 DescendArray.emplace_back(NewBounds.first, NewBounds.second); 821 } 822 // Unite both arrays. 823 return unite(AscendArray, DescendArray); 824 } 825 826 /// Promotion from unsigneds to signeds/unsigneds left. 827 RangeSet::ContainerType RangeSet::Factory::promoteTo(RangeSet What, 828 APSIntType Ty) { 829 ContainerType Result; 830 // We definitely know the size of the result set. 831 Result.reserve(What.size()); 832 833 // Each unsigned value fits every larger type without any changes, 834 // whether the larger type is signed or unsigned. So just promote and push 835 // back each range one by one. 836 for (const Range &R : What) { 837 // Get bounds of the given range. 838 llvm::APSInt FromInt = R.From(); 839 llvm::APSInt ToInt = R.To(); 840 // Cast the bounds. 841 Ty.apply(FromInt); 842 Ty.apply(ToInt); 843 Result.emplace_back(ValueFactory.getValue(FromInt), 844 ValueFactory.getValue(ToInt)); 845 } 846 return Result; 847 } 848 849 RangeSet RangeSet::Factory::deletePoint(RangeSet From, 850 const llvm::APSInt &Point) { 851 if (!From.contains(Point)) 852 return From; 853 854 llvm::APSInt Upper = Point; 855 llvm::APSInt Lower = Point; 856 857 ++Upper; 858 --Lower; 859 860 // Notice that the lower bound is greater than the upper bound. 861 return intersect(From, Upper, Lower); 862 } 863 864 LLVM_DUMP_METHOD void Range::dump(raw_ostream &OS) const { 865 OS << '[' << toString(From(), 10) << ", " << toString(To(), 10) << ']'; 866 } 867 LLVM_DUMP_METHOD void Range::dump() const { dump(llvm::errs()); } 868 869 LLVM_DUMP_METHOD void RangeSet::dump(raw_ostream &OS) const { 870 OS << "{ "; 871 llvm::interleaveComma(*this, OS, [&OS](const Range &R) { R.dump(OS); }); 872 OS << " }"; 873 } 874 LLVM_DUMP_METHOD void RangeSet::dump() const { dump(llvm::errs()); } 875 876 REGISTER_SET_FACTORY_WITH_PROGRAMSTATE(SymbolSet, SymbolRef) 877 878 namespace { 879 class EquivalenceClass; 880 } // end anonymous namespace 881 882 REGISTER_MAP_WITH_PROGRAMSTATE(ClassMap, SymbolRef, EquivalenceClass) 883 REGISTER_MAP_WITH_PROGRAMSTATE(ClassMembers, EquivalenceClass, SymbolSet) 884 REGISTER_MAP_WITH_PROGRAMSTATE(ConstraintRange, EquivalenceClass, RangeSet) 885 886 REGISTER_SET_FACTORY_WITH_PROGRAMSTATE(ClassSet, EquivalenceClass) 887 REGISTER_MAP_WITH_PROGRAMSTATE(DisequalityMap, EquivalenceClass, ClassSet) 888 889 namespace { 890 /// This class encapsulates a set of symbols equal to each other. 891 /// 892 /// The main idea of the approach requiring such classes is in narrowing 893 /// and sharing constraints between symbols within the class. Also we can 894 /// conclude that there is no practical need in storing constraints for 895 /// every member of the class separately. 896 /// 897 /// Main terminology: 898 /// 899 /// * "Equivalence class" is an object of this class, which can be efficiently 900 /// compared to other classes. It represents the whole class without 901 /// storing the actual in it. The members of the class however can be 902 /// retrieved from the state. 903 /// 904 /// * "Class members" are the symbols corresponding to the class. This means 905 /// that A == B for every member symbols A and B from the class. Members of 906 /// each class are stored in the state. 907 /// 908 /// * "Trivial class" is a class that has and ever had only one same symbol. 909 /// 910 /// * "Merge operation" merges two classes into one. It is the main operation 911 /// to produce non-trivial classes. 912 /// If, at some point, we can assume that two symbols from two distinct 913 /// classes are equal, we can merge these classes. 914 class EquivalenceClass : public llvm::FoldingSetNode { 915 public: 916 /// Find equivalence class for the given symbol in the given state. 917 [[nodiscard]] static inline EquivalenceClass find(ProgramStateRef State, 918 SymbolRef Sym); 919 920 /// Merge classes for the given symbols and return a new state. 921 [[nodiscard]] static inline ProgramStateRef merge(RangeSet::Factory &F, 922 ProgramStateRef State, 923 SymbolRef First, 924 SymbolRef Second); 925 // Merge this class with the given class and return a new state. 926 [[nodiscard]] inline ProgramStateRef 927 merge(RangeSet::Factory &F, ProgramStateRef State, EquivalenceClass Other); 928 929 /// Return a set of class members for the given state. 930 [[nodiscard]] inline SymbolSet getClassMembers(ProgramStateRef State) const; 931 932 /// Return true if the current class is trivial in the given state. 933 /// A class is trivial if and only if there is not any member relations stored 934 /// to it in State/ClassMembers. 935 /// An equivalence class with one member might seem as it does not hold any 936 /// meaningful information, i.e. that is a tautology. However, during the 937 /// removal of dead symbols we do not remove classes with one member for 938 /// resource and performance reasons. Consequently, a class with one member is 939 /// not necessarily trivial. It could happen that we have a class with two 940 /// members and then during the removal of dead symbols we remove one of its 941 /// members. In this case, the class is still non-trivial (it still has the 942 /// mappings in ClassMembers), even though it has only one member. 943 [[nodiscard]] inline bool isTrivial(ProgramStateRef State) const; 944 945 /// Return true if the current class is trivial and its only member is dead. 946 [[nodiscard]] inline bool isTriviallyDead(ProgramStateRef State, 947 SymbolReaper &Reaper) const; 948 949 [[nodiscard]] static inline ProgramStateRef 950 markDisequal(RangeSet::Factory &F, ProgramStateRef State, SymbolRef First, 951 SymbolRef Second); 952 [[nodiscard]] static inline ProgramStateRef 953 markDisequal(RangeSet::Factory &F, ProgramStateRef State, 954 EquivalenceClass First, EquivalenceClass Second); 955 [[nodiscard]] inline ProgramStateRef 956 markDisequal(RangeSet::Factory &F, ProgramStateRef State, 957 EquivalenceClass Other) const; 958 [[nodiscard]] static inline ClassSet getDisequalClasses(ProgramStateRef State, 959 SymbolRef Sym); 960 [[nodiscard]] inline ClassSet getDisequalClasses(ProgramStateRef State) const; 961 [[nodiscard]] inline ClassSet 962 getDisequalClasses(DisequalityMapTy Map, ClassSet::Factory &Factory) const; 963 964 [[nodiscard]] static inline std::optional<bool> 965 areEqual(ProgramStateRef State, EquivalenceClass First, 966 EquivalenceClass Second); 967 [[nodiscard]] static inline std::optional<bool> 968 areEqual(ProgramStateRef State, SymbolRef First, SymbolRef Second); 969 970 /// Remove one member from the class. 971 [[nodiscard]] ProgramStateRef removeMember(ProgramStateRef State, 972 const SymbolRef Old); 973 974 /// Iterate over all symbols and try to simplify them. 975 [[nodiscard]] static inline ProgramStateRef simplify(SValBuilder &SVB, 976 RangeSet::Factory &F, 977 ProgramStateRef State, 978 EquivalenceClass Class); 979 980 void dumpToStream(ProgramStateRef State, raw_ostream &os) const; 981 LLVM_DUMP_METHOD void dump(ProgramStateRef State) const { 982 dumpToStream(State, llvm::errs()); 983 } 984 985 /// Check equivalence data for consistency. 986 [[nodiscard]] LLVM_ATTRIBUTE_UNUSED static bool 987 isClassDataConsistent(ProgramStateRef State); 988 989 [[nodiscard]] QualType getType() const { 990 return getRepresentativeSymbol()->getType(); 991 } 992 993 EquivalenceClass() = delete; 994 EquivalenceClass(const EquivalenceClass &) = default; 995 EquivalenceClass &operator=(const EquivalenceClass &) = delete; 996 EquivalenceClass(EquivalenceClass &&) = default; 997 EquivalenceClass &operator=(EquivalenceClass &&) = delete; 998 999 bool operator==(const EquivalenceClass &Other) const { 1000 return ID == Other.ID; 1001 } 1002 bool operator<(const EquivalenceClass &Other) const { return ID < Other.ID; } 1003 bool operator!=(const EquivalenceClass &Other) const { 1004 return !operator==(Other); 1005 } 1006 1007 static void Profile(llvm::FoldingSetNodeID &ID, uintptr_t CID) { 1008 ID.AddInteger(CID); 1009 } 1010 1011 void Profile(llvm::FoldingSetNodeID &ID) const { Profile(ID, this->ID); } 1012 1013 private: 1014 /* implicit */ EquivalenceClass(SymbolRef Sym) 1015 : ID(reinterpret_cast<uintptr_t>(Sym)) {} 1016 1017 /// This function is intended to be used ONLY within the class. 1018 /// The fact that ID is a pointer to a symbol is an implementation detail 1019 /// and should stay that way. 1020 /// In the current implementation, we use it to retrieve the only member 1021 /// of the trivial class. 1022 SymbolRef getRepresentativeSymbol() const { 1023 return reinterpret_cast<SymbolRef>(ID); 1024 } 1025 static inline SymbolSet::Factory &getMembersFactory(ProgramStateRef State); 1026 1027 inline ProgramStateRef mergeImpl(RangeSet::Factory &F, ProgramStateRef State, 1028 SymbolSet Members, EquivalenceClass Other, 1029 SymbolSet OtherMembers); 1030 1031 static inline bool 1032 addToDisequalityInfo(DisequalityMapTy &Info, ConstraintRangeTy &Constraints, 1033 RangeSet::Factory &F, ProgramStateRef State, 1034 EquivalenceClass First, EquivalenceClass Second); 1035 1036 /// This is a unique identifier of the class. 1037 uintptr_t ID; 1038 }; 1039 1040 //===----------------------------------------------------------------------===// 1041 // Constraint functions 1042 //===----------------------------------------------------------------------===// 1043 1044 [[nodiscard]] LLVM_ATTRIBUTE_UNUSED bool 1045 areFeasible(ConstraintRangeTy Constraints) { 1046 return llvm::none_of( 1047 Constraints, 1048 [](const std::pair<EquivalenceClass, RangeSet> &ClassConstraint) { 1049 return ClassConstraint.second.isEmpty(); 1050 }); 1051 } 1052 1053 [[nodiscard]] inline const RangeSet *getConstraint(ProgramStateRef State, 1054 EquivalenceClass Class) { 1055 return State->get<ConstraintRange>(Class); 1056 } 1057 1058 [[nodiscard]] inline const RangeSet *getConstraint(ProgramStateRef State, 1059 SymbolRef Sym) { 1060 return getConstraint(State, EquivalenceClass::find(State, Sym)); 1061 } 1062 1063 [[nodiscard]] ProgramStateRef setConstraint(ProgramStateRef State, 1064 EquivalenceClass Class, 1065 RangeSet Constraint) { 1066 return State->set<ConstraintRange>(Class, Constraint); 1067 } 1068 1069 [[nodiscard]] ProgramStateRef setConstraints(ProgramStateRef State, 1070 ConstraintRangeTy Constraints) { 1071 return State->set<ConstraintRange>(Constraints); 1072 } 1073 1074 //===----------------------------------------------------------------------===// 1075 // Equality/diseqiality abstraction 1076 //===----------------------------------------------------------------------===// 1077 1078 /// A small helper function for detecting symbolic (dis)equality. 1079 /// 1080 /// Equality check can have different forms (like a == b or a - b) and this 1081 /// class encapsulates those away if the only thing the user wants to check - 1082 /// whether it's equality/diseqiality or not. 1083 /// 1084 /// \returns true if assuming this Sym to be true means equality of operands 1085 /// false if it means disequality of operands 1086 /// std::nullopt otherwise 1087 std::optional<bool> meansEquality(const SymSymExpr *Sym) { 1088 switch (Sym->getOpcode()) { 1089 case BO_Sub: 1090 // This case is: A - B != 0 -> disequality check. 1091 return false; 1092 case BO_EQ: 1093 // This case is: A == B != 0 -> equality check. 1094 return true; 1095 case BO_NE: 1096 // This case is: A != B != 0 -> diseqiality check. 1097 return false; 1098 default: 1099 return std::nullopt; 1100 } 1101 } 1102 1103 //===----------------------------------------------------------------------===// 1104 // Intersection functions 1105 //===----------------------------------------------------------------------===// 1106 1107 template <class SecondTy, class... RestTy> 1108 [[nodiscard]] inline RangeSet intersect(RangeSet::Factory &F, RangeSet Head, 1109 SecondTy Second, RestTy... Tail); 1110 1111 template <class... RangeTy> struct IntersectionTraits; 1112 1113 template <class... TailTy> struct IntersectionTraits<RangeSet, TailTy...> { 1114 // Found RangeSet, no need to check any further 1115 using Type = RangeSet; 1116 }; 1117 1118 template <> struct IntersectionTraits<> { 1119 // We ran out of types, and we didn't find any RangeSet, so the result should 1120 // be optional. 1121 using Type = std::optional<RangeSet>; 1122 }; 1123 1124 template <class OptionalOrPointer, class... TailTy> 1125 struct IntersectionTraits<OptionalOrPointer, TailTy...> { 1126 // If current type is Optional or a raw pointer, we should keep looking. 1127 using Type = typename IntersectionTraits<TailTy...>::Type; 1128 }; 1129 1130 template <class EndTy> 1131 [[nodiscard]] inline EndTy intersect(RangeSet::Factory &F, EndTy End) { 1132 // If the list contains only RangeSet or std::optional<RangeSet>, simply 1133 // return that range set. 1134 return End; 1135 } 1136 1137 [[nodiscard]] LLVM_ATTRIBUTE_UNUSED inline std::optional<RangeSet> 1138 intersect(RangeSet::Factory &F, const RangeSet *End) { 1139 // This is an extraneous conversion from a raw pointer into 1140 // std::optional<RangeSet> 1141 if (End) { 1142 return *End; 1143 } 1144 return std::nullopt; 1145 } 1146 1147 template <class... RestTy> 1148 [[nodiscard]] inline RangeSet intersect(RangeSet::Factory &F, RangeSet Head, 1149 RangeSet Second, RestTy... Tail) { 1150 // Here we call either the <RangeSet,RangeSet,...> or <RangeSet,...> version 1151 // of the function and can be sure that the result is RangeSet. 1152 return intersect(F, F.intersect(Head, Second), Tail...); 1153 } 1154 1155 template <class SecondTy, class... RestTy> 1156 [[nodiscard]] inline RangeSet intersect(RangeSet::Factory &F, RangeSet Head, 1157 SecondTy Second, RestTy... Tail) { 1158 if (Second) { 1159 // Here we call the <RangeSet,RangeSet,...> version of the function... 1160 return intersect(F, Head, *Second, Tail...); 1161 } 1162 // ...and here it is either <RangeSet,RangeSet,...> or <RangeSet,...>, which 1163 // means that the result is definitely RangeSet. 1164 return intersect(F, Head, Tail...); 1165 } 1166 1167 /// Main generic intersect function. 1168 /// It intersects all of the given range sets. If some of the given arguments 1169 /// don't hold a range set (nullptr or std::nullopt), the function will skip 1170 /// them. 1171 /// 1172 /// Available representations for the arguments are: 1173 /// * RangeSet 1174 /// * std::optional<RangeSet> 1175 /// * RangeSet * 1176 /// Pointer to a RangeSet is automatically assumed to be nullable and will get 1177 /// checked as well as the optional version. If this behaviour is undesired, 1178 /// please dereference the pointer in the call. 1179 /// 1180 /// Return type depends on the arguments' types. If we can be sure in compile 1181 /// time that there will be a range set as a result, the returning type is 1182 /// simply RangeSet, in other cases we have to back off to 1183 /// std::optional<RangeSet>. 1184 /// 1185 /// Please, prefer optional range sets to raw pointers. If the last argument is 1186 /// a raw pointer and all previous arguments are std::nullopt, it will cost one 1187 /// additional check to convert RangeSet * into std::optional<RangeSet>. 1188 template <class HeadTy, class SecondTy, class... RestTy> 1189 [[nodiscard]] inline 1190 typename IntersectionTraits<HeadTy, SecondTy, RestTy...>::Type 1191 intersect(RangeSet::Factory &F, HeadTy Head, SecondTy Second, 1192 RestTy... Tail) { 1193 if (Head) { 1194 return intersect(F, *Head, Second, Tail...); 1195 } 1196 return intersect(F, Second, Tail...); 1197 } 1198 1199 //===----------------------------------------------------------------------===// 1200 // Symbolic reasoning logic 1201 //===----------------------------------------------------------------------===// 1202 1203 /// A little component aggregating all of the reasoning we have about 1204 /// the ranges of symbolic expressions. 1205 /// 1206 /// Even when we don't know the exact values of the operands, we still 1207 /// can get a pretty good estimate of the result's range. 1208 class SymbolicRangeInferrer 1209 : public SymExprVisitor<SymbolicRangeInferrer, RangeSet> { 1210 public: 1211 template <class SourceType> 1212 static RangeSet inferRange(RangeSet::Factory &F, ProgramStateRef State, 1213 SourceType Origin) { 1214 SymbolicRangeInferrer Inferrer(F, State); 1215 return Inferrer.infer(Origin); 1216 } 1217 1218 RangeSet VisitSymExpr(SymbolRef Sym) { 1219 if (std::optional<RangeSet> RS = getRangeForNegatedSym(Sym)) 1220 return *RS; 1221 // If we've reached this line, the actual type of the symbolic 1222 // expression is not supported for advanced inference. 1223 // In this case, we simply backoff to the default "let's simply 1224 // infer the range from the expression's type". 1225 return infer(Sym->getType()); 1226 } 1227 1228 RangeSet VisitUnarySymExpr(const UnarySymExpr *USE) { 1229 if (std::optional<RangeSet> RS = getRangeForNegatedUnarySym(USE)) 1230 return *RS; 1231 return infer(USE->getType()); 1232 } 1233 1234 RangeSet VisitSymIntExpr(const SymIntExpr *Sym) { 1235 return VisitBinaryOperator(Sym); 1236 } 1237 1238 RangeSet VisitIntSymExpr(const IntSymExpr *Sym) { 1239 return VisitBinaryOperator(Sym); 1240 } 1241 1242 RangeSet VisitSymSymExpr(const SymSymExpr *SSE) { 1243 return intersect( 1244 RangeFactory, 1245 // If Sym is a difference of symbols A - B, then maybe we have range 1246 // set stored for B - A. 1247 // 1248 // If we have range set stored for both A - B and B - A then 1249 // calculate the effective range set by intersecting the range set 1250 // for A - B and the negated range set of B - A. 1251 getRangeForNegatedSymSym(SSE), 1252 // If Sym is a comparison expression (except <=>), 1253 // find any other comparisons with the same operands. 1254 // See function description. 1255 getRangeForComparisonSymbol(SSE), 1256 // If Sym is (dis)equality, we might have some information 1257 // on that in our equality classes data structure. 1258 getRangeForEqualities(SSE), 1259 // And we should always check what we can get from the operands. 1260 VisitBinaryOperator(SSE)); 1261 } 1262 1263 private: 1264 SymbolicRangeInferrer(RangeSet::Factory &F, ProgramStateRef S) 1265 : ValueFactory(F.getValueFactory()), RangeFactory(F), State(S) {} 1266 1267 /// Infer range information from the given integer constant. 1268 /// 1269 /// It's not a real "inference", but is here for operating with 1270 /// sub-expressions in a more polymorphic manner. 1271 RangeSet inferAs(const llvm::APSInt &Val, QualType) { 1272 return {RangeFactory, Val}; 1273 } 1274 1275 /// Infer range information from symbol in the context of the given type. 1276 RangeSet inferAs(SymbolRef Sym, QualType DestType) { 1277 QualType ActualType = Sym->getType(); 1278 // Check that we can reason about the symbol at all. 1279 if (ActualType->isIntegralOrEnumerationType() || 1280 Loc::isLocType(ActualType)) { 1281 return infer(Sym); 1282 } 1283 // Otherwise, let's simply infer from the destination type. 1284 // We couldn't figure out nothing else about that expression. 1285 return infer(DestType); 1286 } 1287 1288 RangeSet infer(SymbolRef Sym) { 1289 return intersect(RangeFactory, 1290 // Of course, we should take the constraint directly 1291 // associated with this symbol into consideration. 1292 getConstraint(State, Sym), 1293 // Apart from the Sym itself, we can infer quite a lot if 1294 // we look into subexpressions of Sym. 1295 Visit(Sym)); 1296 } 1297 1298 RangeSet infer(EquivalenceClass Class) { 1299 if (const RangeSet *AssociatedConstraint = getConstraint(State, Class)) 1300 return *AssociatedConstraint; 1301 1302 return infer(Class.getType()); 1303 } 1304 1305 /// Infer range information solely from the type. 1306 RangeSet infer(QualType T) { 1307 // Lazily generate a new RangeSet representing all possible values for the 1308 // given symbol type. 1309 RangeSet Result(RangeFactory, ValueFactory.getMinValue(T), 1310 ValueFactory.getMaxValue(T)); 1311 1312 // References are known to be non-zero. 1313 if (T->isReferenceType()) 1314 return assumeNonZero(Result, T); 1315 1316 return Result; 1317 } 1318 1319 template <class BinarySymExprTy> 1320 RangeSet VisitBinaryOperator(const BinarySymExprTy *Sym) { 1321 // TODO #1: VisitBinaryOperator implementation might not make a good 1322 // use of the inferred ranges. In this case, we might be calculating 1323 // everything for nothing. This being said, we should introduce some 1324 // sort of laziness mechanism here. 1325 // 1326 // TODO #2: We didn't go into the nested expressions before, so it 1327 // might cause us spending much more time doing the inference. 1328 // This can be a problem for deeply nested expressions that are 1329 // involved in conditions and get tested continuously. We definitely 1330 // need to address this issue and introduce some sort of caching 1331 // in here. 1332 QualType ResultType = Sym->getType(); 1333 return VisitBinaryOperator(inferAs(Sym->getLHS(), ResultType), 1334 Sym->getOpcode(), 1335 inferAs(Sym->getRHS(), ResultType), ResultType); 1336 } 1337 1338 RangeSet VisitBinaryOperator(RangeSet LHS, BinaryOperator::Opcode Op, 1339 RangeSet RHS, QualType T); 1340 1341 //===----------------------------------------------------------------------===// 1342 // Ranges and operators 1343 //===----------------------------------------------------------------------===// 1344 1345 /// Return a rough approximation of the given range set. 1346 /// 1347 /// For the range set: 1348 /// { [x_0, y_0], [x_1, y_1], ... , [x_N, y_N] } 1349 /// it will return the range [x_0, y_N]. 1350 static Range fillGaps(RangeSet Origin) { 1351 assert(!Origin.isEmpty()); 1352 return {Origin.getMinValue(), Origin.getMaxValue()}; 1353 } 1354 1355 /// Try to convert given range into the given type. 1356 /// 1357 /// It will return std::nullopt only when the trivial conversion is possible. 1358 std::optional<Range> convert(const Range &Origin, APSIntType To) { 1359 if (To.testInRange(Origin.From(), false) != APSIntType::RTR_Within || 1360 To.testInRange(Origin.To(), false) != APSIntType::RTR_Within) { 1361 return std::nullopt; 1362 } 1363 return Range(ValueFactory.Convert(To, Origin.From()), 1364 ValueFactory.Convert(To, Origin.To())); 1365 } 1366 1367 template <BinaryOperator::Opcode Op> 1368 RangeSet VisitBinaryOperator(RangeSet LHS, RangeSet RHS, QualType T) { 1369 assert(!LHS.isEmpty() && !RHS.isEmpty()); 1370 1371 Range CoarseLHS = fillGaps(LHS); 1372 Range CoarseRHS = fillGaps(RHS); 1373 1374 APSIntType ResultType = ValueFactory.getAPSIntType(T); 1375 1376 // We need to convert ranges to the resulting type, so we can compare values 1377 // and combine them in a meaningful (in terms of the given operation) way. 1378 auto ConvertedCoarseLHS = convert(CoarseLHS, ResultType); 1379 auto ConvertedCoarseRHS = convert(CoarseRHS, ResultType); 1380 1381 // It is hard to reason about ranges when conversion changes 1382 // borders of the ranges. 1383 if (!ConvertedCoarseLHS || !ConvertedCoarseRHS) { 1384 return infer(T); 1385 } 1386 1387 return VisitBinaryOperator<Op>(*ConvertedCoarseLHS, *ConvertedCoarseRHS, T); 1388 } 1389 1390 template <BinaryOperator::Opcode Op> 1391 RangeSet VisitBinaryOperator(Range LHS, Range RHS, QualType T) { 1392 return infer(T); 1393 } 1394 1395 /// Return a symmetrical range for the given range and type. 1396 /// 1397 /// If T is signed, return the smallest range [-x..x] that covers the original 1398 /// range, or [-min(T), max(T)] if the aforementioned symmetric range doesn't 1399 /// exist due to original range covering min(T)). 1400 /// 1401 /// If T is unsigned, return the smallest range [0..x] that covers the 1402 /// original range. 1403 Range getSymmetricalRange(Range Origin, QualType T) { 1404 APSIntType RangeType = ValueFactory.getAPSIntType(T); 1405 1406 if (RangeType.isUnsigned()) { 1407 return Range(ValueFactory.getMinValue(RangeType), Origin.To()); 1408 } 1409 1410 if (Origin.From().isMinSignedValue()) { 1411 // If mini is a minimal signed value, absolute value of it is greater 1412 // than the maximal signed value. In order to avoid these 1413 // complications, we simply return the whole range. 1414 return {ValueFactory.getMinValue(RangeType), 1415 ValueFactory.getMaxValue(RangeType)}; 1416 } 1417 1418 // At this point, we are sure that the type is signed and we can safely 1419 // use unary - operator. 1420 // 1421 // While calculating absolute maximum, we can use the following formula 1422 // because of these reasons: 1423 // * If From >= 0 then To >= From and To >= -From. 1424 // AbsMax == To == max(To, -From) 1425 // * If To <= 0 then -From >= -To and -From >= From. 1426 // AbsMax == -From == max(-From, To) 1427 // * Otherwise, From <= 0, To >= 0, and 1428 // AbsMax == max(abs(From), abs(To)) 1429 llvm::APSInt AbsMax = std::max(-Origin.From(), Origin.To()); 1430 1431 // Intersection is guaranteed to be non-empty. 1432 return {ValueFactory.getValue(-AbsMax), ValueFactory.getValue(AbsMax)}; 1433 } 1434 1435 /// Return a range set subtracting zero from \p Domain. 1436 RangeSet assumeNonZero(RangeSet Domain, QualType T) { 1437 APSIntType IntType = ValueFactory.getAPSIntType(T); 1438 return RangeFactory.deletePoint(Domain, IntType.getZeroValue()); 1439 } 1440 1441 template <typename ProduceNegatedSymFunc> 1442 std::optional<RangeSet> getRangeForNegatedExpr(ProduceNegatedSymFunc F, 1443 QualType T) { 1444 // Do not negate if the type cannot be meaningfully negated. 1445 if (!T->isUnsignedIntegerOrEnumerationType() && 1446 !T->isSignedIntegerOrEnumerationType()) 1447 return std::nullopt; 1448 1449 if (SymbolRef NegatedSym = F()) 1450 if (const RangeSet *NegatedRange = getConstraint(State, NegatedSym)) 1451 return RangeFactory.negate(*NegatedRange); 1452 1453 return std::nullopt; 1454 } 1455 1456 std::optional<RangeSet> getRangeForNegatedUnarySym(const UnarySymExpr *USE) { 1457 // Just get the operand when we negate a symbol that is already negated. 1458 // -(-a) == a 1459 return getRangeForNegatedExpr( 1460 [USE]() -> SymbolRef { 1461 if (USE->getOpcode() == UO_Minus) 1462 return USE->getOperand(); 1463 return nullptr; 1464 }, 1465 USE->getType()); 1466 } 1467 1468 std::optional<RangeSet> getRangeForNegatedSymSym(const SymSymExpr *SSE) { 1469 return getRangeForNegatedExpr( 1470 [SSE, State = this->State]() -> SymbolRef { 1471 if (SSE->getOpcode() == BO_Sub) 1472 return State->getSymbolManager().getSymSymExpr( 1473 SSE->getRHS(), BO_Sub, SSE->getLHS(), SSE->getType()); 1474 return nullptr; 1475 }, 1476 SSE->getType()); 1477 } 1478 1479 std::optional<RangeSet> getRangeForNegatedSym(SymbolRef Sym) { 1480 return getRangeForNegatedExpr( 1481 [Sym, State = this->State]() { 1482 return State->getSymbolManager().getUnarySymExpr(Sym, UO_Minus, 1483 Sym->getType()); 1484 }, 1485 Sym->getType()); 1486 } 1487 1488 // Returns ranges only for binary comparison operators (except <=>) 1489 // when left and right operands are symbolic values. 1490 // Finds any other comparisons with the same operands. 1491 // Then do logical calculations and refuse impossible branches. 1492 // E.g. (x < y) and (x > y) at the same time are impossible. 1493 // E.g. (x >= y) and (x != y) at the same time makes (x > y) true only. 1494 // E.g. (x == y) and (y == x) are just reversed but the same. 1495 // It covers all possible combinations (see CmpOpTable description). 1496 // Note that `x` and `y` can also stand for subexpressions, 1497 // not only for actual symbols. 1498 std::optional<RangeSet> getRangeForComparisonSymbol(const SymSymExpr *SSE) { 1499 const BinaryOperatorKind CurrentOP = SSE->getOpcode(); 1500 1501 // We currently do not support <=> (C++20). 1502 if (!BinaryOperator::isComparisonOp(CurrentOP) || (CurrentOP == BO_Cmp)) 1503 return std::nullopt; 1504 1505 static const OperatorRelationsTable CmpOpTable{}; 1506 1507 const SymExpr *LHS = SSE->getLHS(); 1508 const SymExpr *RHS = SSE->getRHS(); 1509 QualType T = SSE->getType(); 1510 1511 SymbolManager &SymMgr = State->getSymbolManager(); 1512 1513 // We use this variable to store the last queried operator (`QueriedOP`) 1514 // for which the `getCmpOpState` returned with `Unknown`. If there are two 1515 // different OPs that returned `Unknown` then we have to query the special 1516 // `UnknownX2` column. We assume that `getCmpOpState(CurrentOP, CurrentOP)` 1517 // never returns `Unknown`, so `CurrentOP` is a good initial value. 1518 BinaryOperatorKind LastQueriedOpToUnknown = CurrentOP; 1519 1520 // Loop goes through all of the columns exept the last one ('UnknownX2'). 1521 // We treat `UnknownX2` column separately at the end of the loop body. 1522 for (size_t i = 0; i < CmpOpTable.getCmpOpCount(); ++i) { 1523 1524 // Let's find an expression e.g. (x < y). 1525 BinaryOperatorKind QueriedOP = OperatorRelationsTable::getOpFromIndex(i); 1526 const SymSymExpr *SymSym = SymMgr.getSymSymExpr(LHS, QueriedOP, RHS, T); 1527 const RangeSet *QueriedRangeSet = getConstraint(State, SymSym); 1528 1529 // If ranges were not previously found, 1530 // try to find a reversed expression (y > x). 1531 if (!QueriedRangeSet) { 1532 const BinaryOperatorKind ROP = 1533 BinaryOperator::reverseComparisonOp(QueriedOP); 1534 SymSym = SymMgr.getSymSymExpr(RHS, ROP, LHS, T); 1535 QueriedRangeSet = getConstraint(State, SymSym); 1536 } 1537 1538 if (!QueriedRangeSet || QueriedRangeSet->isEmpty()) 1539 continue; 1540 1541 const llvm::APSInt *ConcreteValue = QueriedRangeSet->getConcreteValue(); 1542 const bool isInFalseBranch = 1543 ConcreteValue ? (*ConcreteValue == 0) : false; 1544 1545 // If it is a false branch, we shall be guided by opposite operator, 1546 // because the table is made assuming we are in the true branch. 1547 // E.g. when (x <= y) is false, then (x > y) is true. 1548 if (isInFalseBranch) 1549 QueriedOP = BinaryOperator::negateComparisonOp(QueriedOP); 1550 1551 OperatorRelationsTable::TriStateKind BranchState = 1552 CmpOpTable.getCmpOpState(CurrentOP, QueriedOP); 1553 1554 if (BranchState == OperatorRelationsTable::Unknown) { 1555 if (LastQueriedOpToUnknown != CurrentOP && 1556 LastQueriedOpToUnknown != QueriedOP) { 1557 // If we got the Unknown state for both different operators. 1558 // if (x <= y) // assume true 1559 // if (x != y) // assume true 1560 // if (x < y) // would be also true 1561 // Get a state from `UnknownX2` column. 1562 BranchState = CmpOpTable.getCmpOpStateForUnknownX2(CurrentOP); 1563 } else { 1564 LastQueriedOpToUnknown = QueriedOP; 1565 continue; 1566 } 1567 } 1568 1569 return (BranchState == OperatorRelationsTable::True) ? getTrueRange(T) 1570 : getFalseRange(T); 1571 } 1572 1573 return std::nullopt; 1574 } 1575 1576 std::optional<RangeSet> getRangeForEqualities(const SymSymExpr *Sym) { 1577 std::optional<bool> Equality = meansEquality(Sym); 1578 1579 if (!Equality) 1580 return std::nullopt; 1581 1582 if (std::optional<bool> AreEqual = 1583 EquivalenceClass::areEqual(State, Sym->getLHS(), Sym->getRHS())) { 1584 // Here we cover two cases at once: 1585 // * if Sym is equality and its operands are known to be equal -> true 1586 // * if Sym is disequality and its operands are disequal -> true 1587 if (*AreEqual == *Equality) { 1588 return getTrueRange(Sym->getType()); 1589 } 1590 // Opposite combinations result in false. 1591 return getFalseRange(Sym->getType()); 1592 } 1593 1594 return std::nullopt; 1595 } 1596 1597 RangeSet getTrueRange(QualType T) { 1598 RangeSet TypeRange = infer(T); 1599 return assumeNonZero(TypeRange, T); 1600 } 1601 1602 RangeSet getFalseRange(QualType T) { 1603 const llvm::APSInt &Zero = ValueFactory.getValue(0, T); 1604 return RangeSet(RangeFactory, Zero); 1605 } 1606 1607 BasicValueFactory &ValueFactory; 1608 RangeSet::Factory &RangeFactory; 1609 ProgramStateRef State; 1610 }; 1611 1612 //===----------------------------------------------------------------------===// 1613 // Range-based reasoning about symbolic operations 1614 //===----------------------------------------------------------------------===// 1615 1616 template <> 1617 RangeSet SymbolicRangeInferrer::VisitBinaryOperator<BO_NE>(RangeSet LHS, 1618 RangeSet RHS, 1619 QualType T) { 1620 assert(!LHS.isEmpty() && !RHS.isEmpty()); 1621 1622 if (LHS.getAPSIntType() == RHS.getAPSIntType()) { 1623 if (intersect(RangeFactory, LHS, RHS).isEmpty()) 1624 return getTrueRange(T); 1625 1626 } else { 1627 // We can only lose information if we are casting smaller signed type to 1628 // bigger unsigned type. For e.g., 1629 // LHS (unsigned short): [2, USHRT_MAX] 1630 // RHS (signed short): [SHRT_MIN, 0] 1631 // 1632 // Casting RHS to LHS type will leave us with overlapping values 1633 // CastedRHS : [0, 0] U [SHRT_MAX + 1, USHRT_MAX] 1634 // 1635 // We can avoid this by checking if signed type's maximum value is lesser 1636 // than unsigned type's minimum value. 1637 1638 // If both have different signs then only we can get more information. 1639 if (LHS.isUnsigned() != RHS.isUnsigned()) { 1640 if (LHS.isUnsigned() && (LHS.getBitWidth() >= RHS.getBitWidth())) { 1641 if (RHS.getMaxValue().isNegative() || 1642 LHS.getAPSIntType().convert(RHS.getMaxValue()) < LHS.getMinValue()) 1643 return getTrueRange(T); 1644 1645 } else if (RHS.isUnsigned() && (LHS.getBitWidth() <= RHS.getBitWidth())) { 1646 if (LHS.getMaxValue().isNegative() || 1647 RHS.getAPSIntType().convert(LHS.getMaxValue()) < RHS.getMinValue()) 1648 return getTrueRange(T); 1649 } 1650 } 1651 1652 // Both RangeSets should be casted to bigger unsigned type. 1653 APSIntType CastingType(std::max(LHS.getBitWidth(), RHS.getBitWidth()), 1654 LHS.isUnsigned() || RHS.isUnsigned()); 1655 1656 RangeSet CastedLHS = RangeFactory.castTo(LHS, CastingType); 1657 RangeSet CastedRHS = RangeFactory.castTo(RHS, CastingType); 1658 1659 if (intersect(RangeFactory, CastedLHS, CastedRHS).isEmpty()) 1660 return getTrueRange(T); 1661 } 1662 1663 // In all other cases, the resulting range cannot be deduced. 1664 return infer(T); 1665 } 1666 1667 template <> 1668 RangeSet SymbolicRangeInferrer::VisitBinaryOperator<BO_Or>(Range LHS, Range RHS, 1669 QualType T) { 1670 APSIntType ResultType = ValueFactory.getAPSIntType(T); 1671 llvm::APSInt Zero = ResultType.getZeroValue(); 1672 1673 bool IsLHSPositiveOrZero = LHS.From() >= Zero; 1674 bool IsRHSPositiveOrZero = RHS.From() >= Zero; 1675 1676 bool IsLHSNegative = LHS.To() < Zero; 1677 bool IsRHSNegative = RHS.To() < Zero; 1678 1679 // Check if both ranges have the same sign. 1680 if ((IsLHSPositiveOrZero && IsRHSPositiveOrZero) || 1681 (IsLHSNegative && IsRHSNegative)) { 1682 // The result is definitely greater or equal than any of the operands. 1683 const llvm::APSInt &Min = std::max(LHS.From(), RHS.From()); 1684 1685 // We estimate maximal value for positives as the maximal value for the 1686 // given type. For negatives, we estimate it with -1 (e.g. 0x11111111). 1687 // 1688 // TODO: We basically, limit the resulting range from below, but don't do 1689 // anything with the upper bound. 1690 // 1691 // For positive operands, it can be done as follows: for the upper 1692 // bound of LHS and RHS we calculate the most significant bit set. 1693 // Let's call it the N-th bit. Then we can estimate the maximal 1694 // number to be 2^(N+1)-1, i.e. the number with all the bits up to 1695 // the N-th bit set. 1696 const llvm::APSInt &Max = IsLHSNegative 1697 ? ValueFactory.getValue(--Zero) 1698 : ValueFactory.getMaxValue(ResultType); 1699 1700 return {RangeFactory, ValueFactory.getValue(Min), Max}; 1701 } 1702 1703 // Otherwise, let's check if at least one of the operands is negative. 1704 if (IsLHSNegative || IsRHSNegative) { 1705 // This means that the result is definitely negative as well. 1706 return {RangeFactory, ValueFactory.getMinValue(ResultType), 1707 ValueFactory.getValue(--Zero)}; 1708 } 1709 1710 RangeSet DefaultRange = infer(T); 1711 1712 // It is pretty hard to reason about operands with different signs 1713 // (and especially with possibly different signs). We simply check if it 1714 // can be zero. In order to conclude that the result could not be zero, 1715 // at least one of the operands should be definitely not zero itself. 1716 if (!LHS.Includes(Zero) || !RHS.Includes(Zero)) { 1717 return assumeNonZero(DefaultRange, T); 1718 } 1719 1720 // Nothing much else to do here. 1721 return DefaultRange; 1722 } 1723 1724 template <> 1725 RangeSet SymbolicRangeInferrer::VisitBinaryOperator<BO_And>(Range LHS, 1726 Range RHS, 1727 QualType T) { 1728 APSIntType ResultType = ValueFactory.getAPSIntType(T); 1729 llvm::APSInt Zero = ResultType.getZeroValue(); 1730 1731 bool IsLHSPositiveOrZero = LHS.From() >= Zero; 1732 bool IsRHSPositiveOrZero = RHS.From() >= Zero; 1733 1734 bool IsLHSNegative = LHS.To() < Zero; 1735 bool IsRHSNegative = RHS.To() < Zero; 1736 1737 // Check if both ranges have the same sign. 1738 if ((IsLHSPositiveOrZero && IsRHSPositiveOrZero) || 1739 (IsLHSNegative && IsRHSNegative)) { 1740 // The result is definitely less or equal than any of the operands. 1741 const llvm::APSInt &Max = std::min(LHS.To(), RHS.To()); 1742 1743 // We conservatively estimate lower bound to be the smallest positive 1744 // or negative value corresponding to the sign of the operands. 1745 const llvm::APSInt &Min = IsLHSNegative 1746 ? ValueFactory.getMinValue(ResultType) 1747 : ValueFactory.getValue(Zero); 1748 1749 return {RangeFactory, Min, Max}; 1750 } 1751 1752 // Otherwise, let's check if at least one of the operands is positive. 1753 if (IsLHSPositiveOrZero || IsRHSPositiveOrZero) { 1754 // This makes result definitely positive. 1755 // 1756 // We can also reason about a maximal value by finding the maximal 1757 // value of the positive operand. 1758 const llvm::APSInt &Max = IsLHSPositiveOrZero ? LHS.To() : RHS.To(); 1759 1760 // The minimal value on the other hand is much harder to reason about. 1761 // The only thing we know for sure is that the result is positive. 1762 return {RangeFactory, ValueFactory.getValue(Zero), 1763 ValueFactory.getValue(Max)}; 1764 } 1765 1766 // Nothing much else to do here. 1767 return infer(T); 1768 } 1769 1770 template <> 1771 RangeSet SymbolicRangeInferrer::VisitBinaryOperator<BO_Rem>(Range LHS, 1772 Range RHS, 1773 QualType T) { 1774 llvm::APSInt Zero = ValueFactory.getAPSIntType(T).getZeroValue(); 1775 1776 Range ConservativeRange = getSymmetricalRange(RHS, T); 1777 1778 llvm::APSInt Max = ConservativeRange.To(); 1779 llvm::APSInt Min = ConservativeRange.From(); 1780 1781 if (Max == Zero) { 1782 // It's an undefined behaviour to divide by 0 and it seems like we know 1783 // for sure that RHS is 0. Let's say that the resulting range is 1784 // simply infeasible for that matter. 1785 return RangeFactory.getEmptySet(); 1786 } 1787 1788 // At this point, our conservative range is closed. The result, however, 1789 // couldn't be greater than the RHS' maximal absolute value. Because of 1790 // this reason, we turn the range into open (or half-open in case of 1791 // unsigned integers). 1792 // 1793 // While we operate on integer values, an open interval (a, b) can be easily 1794 // represented by the closed interval [a + 1, b - 1]. And this is exactly 1795 // what we do next. 1796 // 1797 // If we are dealing with unsigned case, we shouldn't move the lower bound. 1798 if (Min.isSigned()) { 1799 ++Min; 1800 } 1801 --Max; 1802 1803 bool IsLHSPositiveOrZero = LHS.From() >= Zero; 1804 bool IsRHSPositiveOrZero = RHS.From() >= Zero; 1805 1806 // Remainder operator results with negative operands is implementation 1807 // defined. Positive cases are much easier to reason about though. 1808 if (IsLHSPositiveOrZero && IsRHSPositiveOrZero) { 1809 // If maximal value of LHS is less than maximal value of RHS, 1810 // the result won't get greater than LHS.To(). 1811 Max = std::min(LHS.To(), Max); 1812 // We want to check if it is a situation similar to the following: 1813 // 1814 // <------------|---[ LHS ]--------[ RHS ]-----> 1815 // -INF 0 +INF 1816 // 1817 // In this situation, we can conclude that (LHS / RHS) == 0 and 1818 // (LHS % RHS) == LHS. 1819 Min = LHS.To() < RHS.From() ? LHS.From() : Zero; 1820 } 1821 1822 // Nevertheless, the symmetrical range for RHS is a conservative estimate 1823 // for any sign of either LHS, or RHS. 1824 return {RangeFactory, ValueFactory.getValue(Min), ValueFactory.getValue(Max)}; 1825 } 1826 1827 RangeSet SymbolicRangeInferrer::VisitBinaryOperator(RangeSet LHS, 1828 BinaryOperator::Opcode Op, 1829 RangeSet RHS, QualType T) { 1830 // We should propagate information about unfeasbility of one of the 1831 // operands to the resulting range. 1832 if (LHS.isEmpty() || RHS.isEmpty()) { 1833 return RangeFactory.getEmptySet(); 1834 } 1835 1836 switch (Op) { 1837 case BO_NE: 1838 return VisitBinaryOperator<BO_NE>(LHS, RHS, T); 1839 case BO_Or: 1840 return VisitBinaryOperator<BO_Or>(LHS, RHS, T); 1841 case BO_And: 1842 return VisitBinaryOperator<BO_And>(LHS, RHS, T); 1843 case BO_Rem: 1844 return VisitBinaryOperator<BO_Rem>(LHS, RHS, T); 1845 default: 1846 return infer(T); 1847 } 1848 } 1849 1850 //===----------------------------------------------------------------------===// 1851 // Constraint manager implementation details 1852 //===----------------------------------------------------------------------===// 1853 1854 class RangeConstraintManager : public RangedConstraintManager { 1855 public: 1856 RangeConstraintManager(ExprEngine *EE, SValBuilder &SVB) 1857 : RangedConstraintManager(EE, SVB), F(getBasicVals()) {} 1858 1859 //===------------------------------------------------------------------===// 1860 // Implementation for interface from ConstraintManager. 1861 //===------------------------------------------------------------------===// 1862 1863 bool haveEqualConstraints(ProgramStateRef S1, 1864 ProgramStateRef S2) const override { 1865 // NOTE: ClassMembers are as simple as back pointers for ClassMap, 1866 // so comparing constraint ranges and class maps should be 1867 // sufficient. 1868 return S1->get<ConstraintRange>() == S2->get<ConstraintRange>() && 1869 S1->get<ClassMap>() == S2->get<ClassMap>(); 1870 } 1871 1872 bool canReasonAbout(SVal X) const override; 1873 1874 ConditionTruthVal checkNull(ProgramStateRef State, SymbolRef Sym) override; 1875 1876 const llvm::APSInt *getSymVal(ProgramStateRef State, 1877 SymbolRef Sym) const override; 1878 1879 const llvm::APSInt *getSymMinVal(ProgramStateRef State, 1880 SymbolRef Sym) const override; 1881 1882 const llvm::APSInt *getSymMaxVal(ProgramStateRef State, 1883 SymbolRef Sym) const override; 1884 1885 ProgramStateRef removeDeadBindings(ProgramStateRef State, 1886 SymbolReaper &SymReaper) override; 1887 1888 void printJson(raw_ostream &Out, ProgramStateRef State, const char *NL = "\n", 1889 unsigned int Space = 0, bool IsDot = false) const override; 1890 void printValue(raw_ostream &Out, ProgramStateRef State, 1891 SymbolRef Sym) override; 1892 void printConstraints(raw_ostream &Out, ProgramStateRef State, 1893 const char *NL = "\n", unsigned int Space = 0, 1894 bool IsDot = false) const; 1895 void printEquivalenceClasses(raw_ostream &Out, ProgramStateRef State, 1896 const char *NL = "\n", unsigned int Space = 0, 1897 bool IsDot = false) const; 1898 void printDisequalities(raw_ostream &Out, ProgramStateRef State, 1899 const char *NL = "\n", unsigned int Space = 0, 1900 bool IsDot = false) const; 1901 1902 //===------------------------------------------------------------------===// 1903 // Implementation for interface from RangedConstraintManager. 1904 //===------------------------------------------------------------------===// 1905 1906 ProgramStateRef assumeSymNE(ProgramStateRef State, SymbolRef Sym, 1907 const llvm::APSInt &V, 1908 const llvm::APSInt &Adjustment) override; 1909 1910 ProgramStateRef assumeSymEQ(ProgramStateRef State, SymbolRef Sym, 1911 const llvm::APSInt &V, 1912 const llvm::APSInt &Adjustment) override; 1913 1914 ProgramStateRef assumeSymLT(ProgramStateRef State, SymbolRef Sym, 1915 const llvm::APSInt &V, 1916 const llvm::APSInt &Adjustment) override; 1917 1918 ProgramStateRef assumeSymGT(ProgramStateRef State, SymbolRef Sym, 1919 const llvm::APSInt &V, 1920 const llvm::APSInt &Adjustment) override; 1921 1922 ProgramStateRef assumeSymLE(ProgramStateRef State, SymbolRef Sym, 1923 const llvm::APSInt &V, 1924 const llvm::APSInt &Adjustment) override; 1925 1926 ProgramStateRef assumeSymGE(ProgramStateRef State, SymbolRef Sym, 1927 const llvm::APSInt &V, 1928 const llvm::APSInt &Adjustment) override; 1929 1930 ProgramStateRef assumeSymWithinInclusiveRange( 1931 ProgramStateRef State, SymbolRef Sym, const llvm::APSInt &From, 1932 const llvm::APSInt &To, const llvm::APSInt &Adjustment) override; 1933 1934 ProgramStateRef assumeSymOutsideInclusiveRange( 1935 ProgramStateRef State, SymbolRef Sym, const llvm::APSInt &From, 1936 const llvm::APSInt &To, const llvm::APSInt &Adjustment) override; 1937 1938 private: 1939 RangeSet::Factory F; 1940 1941 RangeSet getRange(ProgramStateRef State, SymbolRef Sym); 1942 RangeSet getRange(ProgramStateRef State, EquivalenceClass Class); 1943 ProgramStateRef setRange(ProgramStateRef State, SymbolRef Sym, 1944 RangeSet Range); 1945 ProgramStateRef setRange(ProgramStateRef State, EquivalenceClass Class, 1946 RangeSet Range); 1947 1948 RangeSet getSymLTRange(ProgramStateRef St, SymbolRef Sym, 1949 const llvm::APSInt &Int, 1950 const llvm::APSInt &Adjustment); 1951 RangeSet getSymGTRange(ProgramStateRef St, SymbolRef Sym, 1952 const llvm::APSInt &Int, 1953 const llvm::APSInt &Adjustment); 1954 RangeSet getSymLERange(ProgramStateRef St, SymbolRef Sym, 1955 const llvm::APSInt &Int, 1956 const llvm::APSInt &Adjustment); 1957 RangeSet getSymLERange(llvm::function_ref<RangeSet()> RS, 1958 const llvm::APSInt &Int, 1959 const llvm::APSInt &Adjustment); 1960 RangeSet getSymGERange(ProgramStateRef St, SymbolRef Sym, 1961 const llvm::APSInt &Int, 1962 const llvm::APSInt &Adjustment); 1963 }; 1964 1965 //===----------------------------------------------------------------------===// 1966 // Constraint assignment logic 1967 //===----------------------------------------------------------------------===// 1968 1969 /// ConstraintAssignorBase is a small utility class that unifies visitor 1970 /// for ranges with a visitor for constraints (rangeset/range/constant). 1971 /// 1972 /// It is designed to have one derived class, but generally it can have more. 1973 /// Derived class can control which types we handle by defining methods of the 1974 /// following form: 1975 /// 1976 /// bool handle${SYMBOL}To${CONSTRAINT}(const SYMBOL *Sym, 1977 /// CONSTRAINT Constraint); 1978 /// 1979 /// where SYMBOL is the type of the symbol (e.g. SymSymExpr, SymbolCast, etc.) 1980 /// CONSTRAINT is the type of constraint (RangeSet/Range/Const) 1981 /// return value signifies whether we should try other handle methods 1982 /// (i.e. false would mean to stop right after calling this method) 1983 template <class Derived> class ConstraintAssignorBase { 1984 public: 1985 using Const = const llvm::APSInt &; 1986 1987 #define DISPATCH(CLASS) return assign##CLASS##Impl(cast<CLASS>(Sym), Constraint) 1988 1989 #define ASSIGN(CLASS, TO, SYM, CONSTRAINT) \ 1990 if (!static_cast<Derived *>(this)->assign##CLASS##To##TO(SYM, CONSTRAINT)) \ 1991 return false 1992 1993 void assign(SymbolRef Sym, RangeSet Constraint) { 1994 assignImpl(Sym, Constraint); 1995 } 1996 1997 bool assignImpl(SymbolRef Sym, RangeSet Constraint) { 1998 switch (Sym->getKind()) { 1999 #define SYMBOL(Id, Parent) \ 2000 case SymExpr::Id##Kind: \ 2001 DISPATCH(Id); 2002 #include "clang/StaticAnalyzer/Core/PathSensitive/Symbols.def" 2003 } 2004 llvm_unreachable("Unknown SymExpr kind!"); 2005 } 2006 2007 #define DEFAULT_ASSIGN(Id) \ 2008 bool assign##Id##To##RangeSet(const Id *Sym, RangeSet Constraint) { \ 2009 return true; \ 2010 } \ 2011 bool assign##Id##To##Range(const Id *Sym, Range Constraint) { return true; } \ 2012 bool assign##Id##To##Const(const Id *Sym, Const Constraint) { return true; } 2013 2014 // When we dispatch for constraint types, we first try to check 2015 // if the new constraint is the constant and try the corresponding 2016 // assignor methods. If it didn't interrupt, we can proceed to the 2017 // range, and finally to the range set. 2018 #define CONSTRAINT_DISPATCH(Id) \ 2019 if (const llvm::APSInt *Const = Constraint.getConcreteValue()) { \ 2020 ASSIGN(Id, Const, Sym, *Const); \ 2021 } \ 2022 if (Constraint.size() == 1) { \ 2023 ASSIGN(Id, Range, Sym, *Constraint.begin()); \ 2024 } \ 2025 ASSIGN(Id, RangeSet, Sym, Constraint) 2026 2027 // Our internal assign method first tries to call assignor methods for all 2028 // constraint types that apply. And if not interrupted, continues with its 2029 // parent class. 2030 #define SYMBOL(Id, Parent) \ 2031 bool assign##Id##Impl(const Id *Sym, RangeSet Constraint) { \ 2032 CONSTRAINT_DISPATCH(Id); \ 2033 DISPATCH(Parent); \ 2034 } \ 2035 DEFAULT_ASSIGN(Id) 2036 #define ABSTRACT_SYMBOL(Id, Parent) SYMBOL(Id, Parent) 2037 #include "clang/StaticAnalyzer/Core/PathSensitive/Symbols.def" 2038 2039 // Default implementations for the top class that doesn't have parents. 2040 bool assignSymExprImpl(const SymExpr *Sym, RangeSet Constraint) { 2041 CONSTRAINT_DISPATCH(SymExpr); 2042 return true; 2043 } 2044 DEFAULT_ASSIGN(SymExpr); 2045 2046 #undef DISPATCH 2047 #undef CONSTRAINT_DISPATCH 2048 #undef DEFAULT_ASSIGN 2049 #undef ASSIGN 2050 }; 2051 2052 /// A little component aggregating all of the reasoning we have about 2053 /// assigning new constraints to symbols. 2054 /// 2055 /// The main purpose of this class is to associate constraints to symbols, 2056 /// and impose additional constraints on other symbols, when we can imply 2057 /// them. 2058 /// 2059 /// It has a nice symmetry with SymbolicRangeInferrer. When the latter 2060 /// can provide more precise ranges by looking into the operands of the 2061 /// expression in question, ConstraintAssignor looks into the operands 2062 /// to see if we can imply more from the new constraint. 2063 class ConstraintAssignor : public ConstraintAssignorBase<ConstraintAssignor> { 2064 public: 2065 template <class ClassOrSymbol> 2066 [[nodiscard]] static ProgramStateRef 2067 assign(ProgramStateRef State, SValBuilder &Builder, RangeSet::Factory &F, 2068 ClassOrSymbol CoS, RangeSet NewConstraint) { 2069 if (!State || NewConstraint.isEmpty()) 2070 return nullptr; 2071 2072 ConstraintAssignor Assignor{State, Builder, F}; 2073 return Assignor.assign(CoS, NewConstraint); 2074 } 2075 2076 /// Handle expressions like: a % b != 0. 2077 template <typename SymT> 2078 bool handleRemainderOp(const SymT *Sym, RangeSet Constraint) { 2079 if (Sym->getOpcode() != BO_Rem) 2080 return true; 2081 // a % b != 0 implies that a != 0. 2082 if (!Constraint.containsZero()) { 2083 SVal SymSVal = Builder.makeSymbolVal(Sym->getLHS()); 2084 if (auto NonLocSymSVal = SymSVal.getAs<nonloc::SymbolVal>()) { 2085 State = State->assume(*NonLocSymSVal, true); 2086 if (!State) 2087 return false; 2088 } 2089 } 2090 return true; 2091 } 2092 2093 inline bool assignSymExprToConst(const SymExpr *Sym, Const Constraint); 2094 inline bool assignSymIntExprToRangeSet(const SymIntExpr *Sym, 2095 RangeSet Constraint) { 2096 return handleRemainderOp(Sym, Constraint); 2097 } 2098 inline bool assignSymSymExprToRangeSet(const SymSymExpr *Sym, 2099 RangeSet Constraint); 2100 2101 private: 2102 ConstraintAssignor(ProgramStateRef State, SValBuilder &Builder, 2103 RangeSet::Factory &F) 2104 : State(State), Builder(Builder), RangeFactory(F) {} 2105 using Base = ConstraintAssignorBase<ConstraintAssignor>; 2106 2107 /// Base method for handling new constraints for symbols. 2108 [[nodiscard]] ProgramStateRef assign(SymbolRef Sym, RangeSet NewConstraint) { 2109 // All constraints are actually associated with equivalence classes, and 2110 // that's what we are going to do first. 2111 State = assign(EquivalenceClass::find(State, Sym), NewConstraint); 2112 if (!State) 2113 return nullptr; 2114 2115 // And after that we can check what other things we can get from this 2116 // constraint. 2117 Base::assign(Sym, NewConstraint); 2118 return State; 2119 } 2120 2121 /// Base method for handling new constraints for classes. 2122 [[nodiscard]] ProgramStateRef assign(EquivalenceClass Class, 2123 RangeSet NewConstraint) { 2124 // There is a chance that we might need to update constraints for the 2125 // classes that are known to be disequal to Class. 2126 // 2127 // In order for this to be even possible, the new constraint should 2128 // be simply a constant because we can't reason about range disequalities. 2129 if (const llvm::APSInt *Point = NewConstraint.getConcreteValue()) { 2130 2131 ConstraintRangeTy Constraints = State->get<ConstraintRange>(); 2132 ConstraintRangeTy::Factory &CF = State->get_context<ConstraintRange>(); 2133 2134 // Add new constraint. 2135 Constraints = CF.add(Constraints, Class, NewConstraint); 2136 2137 for (EquivalenceClass DisequalClass : Class.getDisequalClasses(State)) { 2138 RangeSet UpdatedConstraint = SymbolicRangeInferrer::inferRange( 2139 RangeFactory, State, DisequalClass); 2140 2141 UpdatedConstraint = RangeFactory.deletePoint(UpdatedConstraint, *Point); 2142 2143 // If we end up with at least one of the disequal classes to be 2144 // constrained with an empty range-set, the state is infeasible. 2145 if (UpdatedConstraint.isEmpty()) 2146 return nullptr; 2147 2148 Constraints = CF.add(Constraints, DisequalClass, UpdatedConstraint); 2149 } 2150 assert(areFeasible(Constraints) && "Constraint manager shouldn't produce " 2151 "a state with infeasible constraints"); 2152 2153 return setConstraints(State, Constraints); 2154 } 2155 2156 return setConstraint(State, Class, NewConstraint); 2157 } 2158 2159 ProgramStateRef trackDisequality(ProgramStateRef State, SymbolRef LHS, 2160 SymbolRef RHS) { 2161 return EquivalenceClass::markDisequal(RangeFactory, State, LHS, RHS); 2162 } 2163 2164 ProgramStateRef trackEquality(ProgramStateRef State, SymbolRef LHS, 2165 SymbolRef RHS) { 2166 return EquivalenceClass::merge(RangeFactory, State, LHS, RHS); 2167 } 2168 2169 [[nodiscard]] std::optional<bool> interpreteAsBool(RangeSet Constraint) { 2170 assert(!Constraint.isEmpty() && "Empty ranges shouldn't get here"); 2171 2172 if (Constraint.getConcreteValue()) 2173 return !Constraint.getConcreteValue()->isZero(); 2174 2175 if (!Constraint.containsZero()) 2176 return true; 2177 2178 return std::nullopt; 2179 } 2180 2181 ProgramStateRef State; 2182 SValBuilder &Builder; 2183 RangeSet::Factory &RangeFactory; 2184 }; 2185 2186 bool ConstraintAssignor::assignSymExprToConst(const SymExpr *Sym, 2187 const llvm::APSInt &Constraint) { 2188 llvm::SmallSet<EquivalenceClass, 4> SimplifiedClasses; 2189 // Iterate over all equivalence classes and try to simplify them. 2190 ClassMembersTy Members = State->get<ClassMembers>(); 2191 for (std::pair<EquivalenceClass, SymbolSet> ClassToSymbolSet : Members) { 2192 EquivalenceClass Class = ClassToSymbolSet.first; 2193 State = EquivalenceClass::simplify(Builder, RangeFactory, State, Class); 2194 if (!State) 2195 return false; 2196 SimplifiedClasses.insert(Class); 2197 } 2198 2199 // Trivial equivalence classes (those that have only one symbol member) are 2200 // not stored in the State. Thus, we must skim through the constraints as 2201 // well. And we try to simplify symbols in the constraints. 2202 ConstraintRangeTy Constraints = State->get<ConstraintRange>(); 2203 for (std::pair<EquivalenceClass, RangeSet> ClassConstraint : Constraints) { 2204 EquivalenceClass Class = ClassConstraint.first; 2205 if (SimplifiedClasses.count(Class)) // Already simplified. 2206 continue; 2207 State = EquivalenceClass::simplify(Builder, RangeFactory, State, Class); 2208 if (!State) 2209 return false; 2210 } 2211 2212 // We may have trivial equivalence classes in the disequality info as 2213 // well, and we need to simplify them. 2214 DisequalityMapTy DisequalityInfo = State->get<DisequalityMap>(); 2215 for (std::pair<EquivalenceClass, ClassSet> DisequalityEntry : 2216 DisequalityInfo) { 2217 EquivalenceClass Class = DisequalityEntry.first; 2218 ClassSet DisequalClasses = DisequalityEntry.second; 2219 State = EquivalenceClass::simplify(Builder, RangeFactory, State, Class); 2220 if (!State) 2221 return false; 2222 } 2223 2224 return true; 2225 } 2226 2227 bool ConstraintAssignor::assignSymSymExprToRangeSet(const SymSymExpr *Sym, 2228 RangeSet Constraint) { 2229 if (!handleRemainderOp(Sym, Constraint)) 2230 return false; 2231 2232 std::optional<bool> ConstraintAsBool = interpreteAsBool(Constraint); 2233 2234 if (!ConstraintAsBool) 2235 return true; 2236 2237 if (std::optional<bool> Equality = meansEquality(Sym)) { 2238 // Here we cover two cases: 2239 // * if Sym is equality and the new constraint is true -> Sym's operands 2240 // should be marked as equal 2241 // * if Sym is disequality and the new constraint is false -> Sym's 2242 // operands should be also marked as equal 2243 if (*Equality == *ConstraintAsBool) { 2244 State = trackEquality(State, Sym->getLHS(), Sym->getRHS()); 2245 } else { 2246 // Other combinations leave as with disequal operands. 2247 State = trackDisequality(State, Sym->getLHS(), Sym->getRHS()); 2248 } 2249 2250 if (!State) 2251 return false; 2252 } 2253 2254 return true; 2255 } 2256 2257 } // end anonymous namespace 2258 2259 std::unique_ptr<ConstraintManager> 2260 ento::CreateRangeConstraintManager(ProgramStateManager &StMgr, 2261 ExprEngine *Eng) { 2262 return std::make_unique<RangeConstraintManager>(Eng, StMgr.getSValBuilder()); 2263 } 2264 2265 ConstraintMap ento::getConstraintMap(ProgramStateRef State) { 2266 ConstraintMap::Factory &F = State->get_context<ConstraintMap>(); 2267 ConstraintMap Result = F.getEmptyMap(); 2268 2269 ConstraintRangeTy Constraints = State->get<ConstraintRange>(); 2270 for (std::pair<EquivalenceClass, RangeSet> ClassConstraint : Constraints) { 2271 EquivalenceClass Class = ClassConstraint.first; 2272 SymbolSet ClassMembers = Class.getClassMembers(State); 2273 assert(!ClassMembers.isEmpty() && 2274 "Class must always have at least one member!"); 2275 2276 SymbolRef Representative = *ClassMembers.begin(); 2277 Result = F.add(Result, Representative, ClassConstraint.second); 2278 } 2279 2280 return Result; 2281 } 2282 2283 //===----------------------------------------------------------------------===// 2284 // EqualityClass implementation details 2285 //===----------------------------------------------------------------------===// 2286 2287 LLVM_DUMP_METHOD void EquivalenceClass::dumpToStream(ProgramStateRef State, 2288 raw_ostream &os) const { 2289 SymbolSet ClassMembers = getClassMembers(State); 2290 for (const SymbolRef &MemberSym : ClassMembers) { 2291 MemberSym->dump(); 2292 os << "\n"; 2293 } 2294 } 2295 2296 inline EquivalenceClass EquivalenceClass::find(ProgramStateRef State, 2297 SymbolRef Sym) { 2298 assert(State && "State should not be null"); 2299 assert(Sym && "Symbol should not be null"); 2300 // We store far from all Symbol -> Class mappings 2301 if (const EquivalenceClass *NontrivialClass = State->get<ClassMap>(Sym)) 2302 return *NontrivialClass; 2303 2304 // This is a trivial class of Sym. 2305 return Sym; 2306 } 2307 2308 inline ProgramStateRef EquivalenceClass::merge(RangeSet::Factory &F, 2309 ProgramStateRef State, 2310 SymbolRef First, 2311 SymbolRef Second) { 2312 EquivalenceClass FirstClass = find(State, First); 2313 EquivalenceClass SecondClass = find(State, Second); 2314 2315 return FirstClass.merge(F, State, SecondClass); 2316 } 2317 2318 inline ProgramStateRef EquivalenceClass::merge(RangeSet::Factory &F, 2319 ProgramStateRef State, 2320 EquivalenceClass Other) { 2321 // It is already the same class. 2322 if (*this == Other) 2323 return State; 2324 2325 // FIXME: As of now, we support only equivalence classes of the same type. 2326 // This limitation is connected to the lack of explicit casts in 2327 // our symbolic expression model. 2328 // 2329 // That means that for `int x` and `char y` we don't distinguish 2330 // between these two very different cases: 2331 // * `x == y` 2332 // * `(char)x == y` 2333 // 2334 // The moment we introduce symbolic casts, this restriction can be 2335 // lifted. 2336 if (getType()->getCanonicalTypeUnqualified() != 2337 Other.getType()->getCanonicalTypeUnqualified()) 2338 return State; 2339 2340 SymbolSet Members = getClassMembers(State); 2341 SymbolSet OtherMembers = Other.getClassMembers(State); 2342 2343 // We estimate the size of the class by the height of tree containing 2344 // its members. Merging is not a trivial operation, so it's easier to 2345 // merge the smaller class into the bigger one. 2346 if (Members.getHeight() >= OtherMembers.getHeight()) { 2347 return mergeImpl(F, State, Members, Other, OtherMembers); 2348 } else { 2349 return Other.mergeImpl(F, State, OtherMembers, *this, Members); 2350 } 2351 } 2352 2353 inline ProgramStateRef 2354 EquivalenceClass::mergeImpl(RangeSet::Factory &RangeFactory, 2355 ProgramStateRef State, SymbolSet MyMembers, 2356 EquivalenceClass Other, SymbolSet OtherMembers) { 2357 // Essentially what we try to recreate here is some kind of union-find 2358 // data structure. It does have certain limitations due to persistence 2359 // and the need to remove elements from classes. 2360 // 2361 // In this setting, EquialityClass object is the representative of the class 2362 // or the parent element. ClassMap is a mapping of class members to their 2363 // parent. Unlike the union-find structure, they all point directly to the 2364 // class representative because we don't have an opportunity to actually do 2365 // path compression when dealing with immutability. This means that we 2366 // compress paths every time we do merges. It also means that we lose 2367 // the main amortized complexity benefit from the original data structure. 2368 ConstraintRangeTy Constraints = State->get<ConstraintRange>(); 2369 ConstraintRangeTy::Factory &CRF = State->get_context<ConstraintRange>(); 2370 2371 // 1. If the merged classes have any constraints associated with them, we 2372 // need to transfer them to the class we have left. 2373 // 2374 // Intersection here makes perfect sense because both of these constraints 2375 // must hold for the whole new class. 2376 if (std::optional<RangeSet> NewClassConstraint = 2377 intersect(RangeFactory, getConstraint(State, *this), 2378 getConstraint(State, Other))) { 2379 // NOTE: Essentially, NewClassConstraint should NEVER be infeasible because 2380 // range inferrer shouldn't generate ranges incompatible with 2381 // equivalence classes. However, at the moment, due to imperfections 2382 // in the solver, it is possible and the merge function can also 2383 // return infeasible states aka null states. 2384 if (NewClassConstraint->isEmpty()) 2385 // Infeasible state 2386 return nullptr; 2387 2388 // No need in tracking constraints of a now-dissolved class. 2389 Constraints = CRF.remove(Constraints, Other); 2390 // Assign new constraints for this class. 2391 Constraints = CRF.add(Constraints, *this, *NewClassConstraint); 2392 2393 assert(areFeasible(Constraints) && "Constraint manager shouldn't produce " 2394 "a state with infeasible constraints"); 2395 2396 State = State->set<ConstraintRange>(Constraints); 2397 } 2398 2399 // 2. Get ALL equivalence-related maps 2400 ClassMapTy Classes = State->get<ClassMap>(); 2401 ClassMapTy::Factory &CMF = State->get_context<ClassMap>(); 2402 2403 ClassMembersTy Members = State->get<ClassMembers>(); 2404 ClassMembersTy::Factory &MF = State->get_context<ClassMembers>(); 2405 2406 DisequalityMapTy DisequalityInfo = State->get<DisequalityMap>(); 2407 DisequalityMapTy::Factory &DF = State->get_context<DisequalityMap>(); 2408 2409 ClassSet::Factory &CF = State->get_context<ClassSet>(); 2410 SymbolSet::Factory &F = getMembersFactory(State); 2411 2412 // 2. Merge members of the Other class into the current class. 2413 SymbolSet NewClassMembers = MyMembers; 2414 for (SymbolRef Sym : OtherMembers) { 2415 NewClassMembers = F.add(NewClassMembers, Sym); 2416 // *this is now the class for all these new symbols. 2417 Classes = CMF.add(Classes, Sym, *this); 2418 } 2419 2420 // 3. Adjust member mapping. 2421 // 2422 // No need in tracking members of a now-dissolved class. 2423 Members = MF.remove(Members, Other); 2424 // Now only the current class is mapped to all the symbols. 2425 Members = MF.add(Members, *this, NewClassMembers); 2426 2427 // 4. Update disequality relations 2428 ClassSet DisequalToOther = Other.getDisequalClasses(DisequalityInfo, CF); 2429 // We are about to merge two classes but they are already known to be 2430 // non-equal. This is a contradiction. 2431 if (DisequalToOther.contains(*this)) 2432 return nullptr; 2433 2434 if (!DisequalToOther.isEmpty()) { 2435 ClassSet DisequalToThis = getDisequalClasses(DisequalityInfo, CF); 2436 DisequalityInfo = DF.remove(DisequalityInfo, Other); 2437 2438 for (EquivalenceClass DisequalClass : DisequalToOther) { 2439 DisequalToThis = CF.add(DisequalToThis, DisequalClass); 2440 2441 // Disequality is a symmetric relation meaning that if 2442 // DisequalToOther not null then the set for DisequalClass is not 2443 // empty and has at least Other. 2444 ClassSet OriginalSetLinkedToOther = 2445 *DisequalityInfo.lookup(DisequalClass); 2446 2447 // Other will be eliminated and we should replace it with the bigger 2448 // united class. 2449 ClassSet NewSet = CF.remove(OriginalSetLinkedToOther, Other); 2450 NewSet = CF.add(NewSet, *this); 2451 2452 DisequalityInfo = DF.add(DisequalityInfo, DisequalClass, NewSet); 2453 } 2454 2455 DisequalityInfo = DF.add(DisequalityInfo, *this, DisequalToThis); 2456 State = State->set<DisequalityMap>(DisequalityInfo); 2457 } 2458 2459 // 5. Update the state 2460 State = State->set<ClassMap>(Classes); 2461 State = State->set<ClassMembers>(Members); 2462 2463 return State; 2464 } 2465 2466 inline SymbolSet::Factory & 2467 EquivalenceClass::getMembersFactory(ProgramStateRef State) { 2468 return State->get_context<SymbolSet>(); 2469 } 2470 2471 SymbolSet EquivalenceClass::getClassMembers(ProgramStateRef State) const { 2472 if (const SymbolSet *Members = State->get<ClassMembers>(*this)) 2473 return *Members; 2474 2475 // This class is trivial, so we need to construct a set 2476 // with just that one symbol from the class. 2477 SymbolSet::Factory &F = getMembersFactory(State); 2478 return F.add(F.getEmptySet(), getRepresentativeSymbol()); 2479 } 2480 2481 bool EquivalenceClass::isTrivial(ProgramStateRef State) const { 2482 return State->get<ClassMembers>(*this) == nullptr; 2483 } 2484 2485 bool EquivalenceClass::isTriviallyDead(ProgramStateRef State, 2486 SymbolReaper &Reaper) const { 2487 return isTrivial(State) && Reaper.isDead(getRepresentativeSymbol()); 2488 } 2489 2490 inline ProgramStateRef EquivalenceClass::markDisequal(RangeSet::Factory &RF, 2491 ProgramStateRef State, 2492 SymbolRef First, 2493 SymbolRef Second) { 2494 return markDisequal(RF, State, find(State, First), find(State, Second)); 2495 } 2496 2497 inline ProgramStateRef EquivalenceClass::markDisequal(RangeSet::Factory &RF, 2498 ProgramStateRef State, 2499 EquivalenceClass First, 2500 EquivalenceClass Second) { 2501 return First.markDisequal(RF, State, Second); 2502 } 2503 2504 inline ProgramStateRef 2505 EquivalenceClass::markDisequal(RangeSet::Factory &RF, ProgramStateRef State, 2506 EquivalenceClass Other) const { 2507 // If we know that two classes are equal, we can only produce an infeasible 2508 // state. 2509 if (*this == Other) { 2510 return nullptr; 2511 } 2512 2513 DisequalityMapTy DisequalityInfo = State->get<DisequalityMap>(); 2514 ConstraintRangeTy Constraints = State->get<ConstraintRange>(); 2515 2516 // Disequality is a symmetric relation, so if we mark A as disequal to B, 2517 // we should also mark B as disequalt to A. 2518 if (!addToDisequalityInfo(DisequalityInfo, Constraints, RF, State, *this, 2519 Other) || 2520 !addToDisequalityInfo(DisequalityInfo, Constraints, RF, State, Other, 2521 *this)) 2522 return nullptr; 2523 2524 assert(areFeasible(Constraints) && "Constraint manager shouldn't produce " 2525 "a state with infeasible constraints"); 2526 2527 State = State->set<DisequalityMap>(DisequalityInfo); 2528 State = State->set<ConstraintRange>(Constraints); 2529 2530 return State; 2531 } 2532 2533 inline bool EquivalenceClass::addToDisequalityInfo( 2534 DisequalityMapTy &Info, ConstraintRangeTy &Constraints, 2535 RangeSet::Factory &RF, ProgramStateRef State, EquivalenceClass First, 2536 EquivalenceClass Second) { 2537 2538 // 1. Get all of the required factories. 2539 DisequalityMapTy::Factory &F = State->get_context<DisequalityMap>(); 2540 ClassSet::Factory &CF = State->get_context<ClassSet>(); 2541 ConstraintRangeTy::Factory &CRF = State->get_context<ConstraintRange>(); 2542 2543 // 2. Add Second to the set of classes disequal to First. 2544 const ClassSet *CurrentSet = Info.lookup(First); 2545 ClassSet NewSet = CurrentSet ? *CurrentSet : CF.getEmptySet(); 2546 NewSet = CF.add(NewSet, Second); 2547 2548 Info = F.add(Info, First, NewSet); 2549 2550 // 3. If Second is known to be a constant, we can delete this point 2551 // from the constraint asociated with First. 2552 // 2553 // So, if Second == 10, it means that First != 10. 2554 // At the same time, the same logic does not apply to ranges. 2555 if (const RangeSet *SecondConstraint = Constraints.lookup(Second)) 2556 if (const llvm::APSInt *Point = SecondConstraint->getConcreteValue()) { 2557 2558 RangeSet FirstConstraint = SymbolicRangeInferrer::inferRange( 2559 RF, State, First.getRepresentativeSymbol()); 2560 2561 FirstConstraint = RF.deletePoint(FirstConstraint, *Point); 2562 2563 // If the First class is about to be constrained with an empty 2564 // range-set, the state is infeasible. 2565 if (FirstConstraint.isEmpty()) 2566 return false; 2567 2568 Constraints = CRF.add(Constraints, First, FirstConstraint); 2569 } 2570 2571 return true; 2572 } 2573 2574 inline std::optional<bool> EquivalenceClass::areEqual(ProgramStateRef State, 2575 SymbolRef FirstSym, 2576 SymbolRef SecondSym) { 2577 return EquivalenceClass::areEqual(State, find(State, FirstSym), 2578 find(State, SecondSym)); 2579 } 2580 2581 inline std::optional<bool> EquivalenceClass::areEqual(ProgramStateRef State, 2582 EquivalenceClass First, 2583 EquivalenceClass Second) { 2584 // The same equivalence class => symbols are equal. 2585 if (First == Second) 2586 return true; 2587 2588 // Let's check if we know anything about these two classes being not equal to 2589 // each other. 2590 ClassSet DisequalToFirst = First.getDisequalClasses(State); 2591 if (DisequalToFirst.contains(Second)) 2592 return false; 2593 2594 // It is not clear. 2595 return std::nullopt; 2596 } 2597 2598 [[nodiscard]] ProgramStateRef 2599 EquivalenceClass::removeMember(ProgramStateRef State, const SymbolRef Old) { 2600 2601 SymbolSet ClsMembers = getClassMembers(State); 2602 assert(ClsMembers.contains(Old)); 2603 2604 // Remove `Old`'s Class->Sym relation. 2605 SymbolSet::Factory &F = getMembersFactory(State); 2606 ClassMembersTy::Factory &EMFactory = State->get_context<ClassMembers>(); 2607 ClsMembers = F.remove(ClsMembers, Old); 2608 // Ensure another precondition of the removeMember function (we can check 2609 // this only with isEmpty, thus we have to do the remove first). 2610 assert(!ClsMembers.isEmpty() && 2611 "Class should have had at least two members before member removal"); 2612 // Overwrite the existing members assigned to this class. 2613 ClassMembersTy ClassMembersMap = State->get<ClassMembers>(); 2614 ClassMembersMap = EMFactory.add(ClassMembersMap, *this, ClsMembers); 2615 State = State->set<ClassMembers>(ClassMembersMap); 2616 2617 // Remove `Old`'s Sym->Class relation. 2618 ClassMapTy Classes = State->get<ClassMap>(); 2619 ClassMapTy::Factory &CMF = State->get_context<ClassMap>(); 2620 Classes = CMF.remove(Classes, Old); 2621 State = State->set<ClassMap>(Classes); 2622 2623 return State; 2624 } 2625 2626 // Re-evaluate an SVal with top-level `State->assume` logic. 2627 [[nodiscard]] ProgramStateRef 2628 reAssume(ProgramStateRef State, const RangeSet *Constraint, SVal TheValue) { 2629 if (!Constraint) 2630 return State; 2631 2632 const auto DefinedVal = TheValue.castAs<DefinedSVal>(); 2633 2634 // If the SVal is 0, we can simply interpret that as `false`. 2635 if (Constraint->encodesFalseRange()) 2636 return State->assume(DefinedVal, false); 2637 2638 // If the constraint does not encode 0 then we can interpret that as `true` 2639 // AND as a Range(Set). 2640 if (Constraint->encodesTrueRange()) { 2641 State = State->assume(DefinedVal, true); 2642 if (!State) 2643 return nullptr; 2644 // Fall through, re-assume based on the range values as well. 2645 } 2646 // Overestimate the individual Ranges with the RangeSet' lowest and 2647 // highest values. 2648 return State->assumeInclusiveRange(DefinedVal, Constraint->getMinValue(), 2649 Constraint->getMaxValue(), true); 2650 } 2651 2652 // Iterate over all symbols and try to simplify them. Once a symbol is 2653 // simplified then we check if we can merge the simplified symbol's equivalence 2654 // class to this class. This way, we simplify not just the symbols but the 2655 // classes as well: we strive to keep the number of the classes to be the 2656 // absolute minimum. 2657 [[nodiscard]] ProgramStateRef 2658 EquivalenceClass::simplify(SValBuilder &SVB, RangeSet::Factory &F, 2659 ProgramStateRef State, EquivalenceClass Class) { 2660 SymbolSet ClassMembers = Class.getClassMembers(State); 2661 for (const SymbolRef &MemberSym : ClassMembers) { 2662 2663 const SVal SimplifiedMemberVal = simplifyToSVal(State, MemberSym); 2664 const SymbolRef SimplifiedMemberSym = SimplifiedMemberVal.getAsSymbol(); 2665 2666 // The symbol is collapsed to a constant, check if the current State is 2667 // still feasible. 2668 if (const auto CI = SimplifiedMemberVal.getAs<nonloc::ConcreteInt>()) { 2669 const llvm::APSInt &SV = CI->getValue(); 2670 const RangeSet *ClassConstraint = getConstraint(State, Class); 2671 // We have found a contradiction. 2672 if (ClassConstraint && !ClassConstraint->contains(SV)) 2673 return nullptr; 2674 } 2675 2676 if (SimplifiedMemberSym && MemberSym != SimplifiedMemberSym) { 2677 // The simplified symbol should be the member of the original Class, 2678 // however, it might be in another existing class at the moment. We 2679 // have to merge these classes. 2680 ProgramStateRef OldState = State; 2681 State = merge(F, State, MemberSym, SimplifiedMemberSym); 2682 if (!State) 2683 return nullptr; 2684 // No state change, no merge happened actually. 2685 if (OldState == State) 2686 continue; 2687 2688 // Be aware that `SimplifiedMemberSym` might refer to an already dead 2689 // symbol. In that case, the eqclass of that might not be the same as the 2690 // eqclass of `MemberSym`. This is because the dead symbols are not 2691 // preserved in the `ClassMap`, hence 2692 // `find(State, SimplifiedMemberSym)` will result in a trivial eqclass 2693 // compared to the eqclass of `MemberSym`. 2694 // These eqclasses should be the same if `SimplifiedMemberSym` is alive. 2695 // --> assert(find(State, MemberSym) == find(State, SimplifiedMemberSym)) 2696 // 2697 // Note that `MemberSym` must be alive here since that is from the 2698 // `ClassMembers` where all the symbols are alive. 2699 2700 // Remove the old and more complex symbol. 2701 State = find(State, MemberSym).removeMember(State, MemberSym); 2702 2703 // Query the class constraint again b/c that may have changed during the 2704 // merge above. 2705 const RangeSet *ClassConstraint = getConstraint(State, Class); 2706 2707 // Re-evaluate an SVal with top-level `State->assume`, this ignites 2708 // a RECURSIVE algorithm that will reach a FIXPOINT. 2709 // 2710 // About performance and complexity: Let us assume that in a State we 2711 // have N non-trivial equivalence classes and that all constraints and 2712 // disequality info is related to non-trivial classes. In the worst case, 2713 // we can simplify only one symbol of one class in each iteration. The 2714 // number of symbols in one class cannot grow b/c we replace the old 2715 // symbol with the simplified one. Also, the number of the equivalence 2716 // classes can decrease only, b/c the algorithm does a merge operation 2717 // optionally. We need N iterations in this case to reach the fixpoint. 2718 // Thus, the steps needed to be done in the worst case is proportional to 2719 // N*N. 2720 // 2721 // This worst case scenario can be extended to that case when we have 2722 // trivial classes in the constraints and in the disequality map. This 2723 // case can be reduced to the case with a State where there are only 2724 // non-trivial classes. This is because a merge operation on two trivial 2725 // classes results in one non-trivial class. 2726 State = reAssume(State, ClassConstraint, SimplifiedMemberVal); 2727 if (!State) 2728 return nullptr; 2729 } 2730 } 2731 return State; 2732 } 2733 2734 inline ClassSet EquivalenceClass::getDisequalClasses(ProgramStateRef State, 2735 SymbolRef Sym) { 2736 return find(State, Sym).getDisequalClasses(State); 2737 } 2738 2739 inline ClassSet 2740 EquivalenceClass::getDisequalClasses(ProgramStateRef State) const { 2741 return getDisequalClasses(State->get<DisequalityMap>(), 2742 State->get_context<ClassSet>()); 2743 } 2744 2745 inline ClassSet 2746 EquivalenceClass::getDisequalClasses(DisequalityMapTy Map, 2747 ClassSet::Factory &Factory) const { 2748 if (const ClassSet *DisequalClasses = Map.lookup(*this)) 2749 return *DisequalClasses; 2750 2751 return Factory.getEmptySet(); 2752 } 2753 2754 bool EquivalenceClass::isClassDataConsistent(ProgramStateRef State) { 2755 ClassMembersTy Members = State->get<ClassMembers>(); 2756 2757 for (std::pair<EquivalenceClass, SymbolSet> ClassMembersPair : Members) { 2758 for (SymbolRef Member : ClassMembersPair.second) { 2759 // Every member of the class should have a mapping back to the class. 2760 if (find(State, Member) == ClassMembersPair.first) { 2761 continue; 2762 } 2763 2764 return false; 2765 } 2766 } 2767 2768 DisequalityMapTy Disequalities = State->get<DisequalityMap>(); 2769 for (std::pair<EquivalenceClass, ClassSet> DisequalityInfo : Disequalities) { 2770 EquivalenceClass Class = DisequalityInfo.first; 2771 ClassSet DisequalClasses = DisequalityInfo.second; 2772 2773 // There is no use in keeping empty sets in the map. 2774 if (DisequalClasses.isEmpty()) 2775 return false; 2776 2777 // Disequality is symmetrical, i.e. for every Class A and B that A != B, 2778 // B != A should also be true. 2779 for (EquivalenceClass DisequalClass : DisequalClasses) { 2780 const ClassSet *DisequalToDisequalClasses = 2781 Disequalities.lookup(DisequalClass); 2782 2783 // It should be a set of at least one element: Class 2784 if (!DisequalToDisequalClasses || 2785 !DisequalToDisequalClasses->contains(Class)) 2786 return false; 2787 } 2788 } 2789 2790 return true; 2791 } 2792 2793 //===----------------------------------------------------------------------===// 2794 // RangeConstraintManager implementation 2795 //===----------------------------------------------------------------------===// 2796 2797 bool RangeConstraintManager::canReasonAbout(SVal X) const { 2798 std::optional<nonloc::SymbolVal> SymVal = X.getAs<nonloc::SymbolVal>(); 2799 if (SymVal && SymVal->isExpression()) { 2800 const SymExpr *SE = SymVal->getSymbol(); 2801 2802 if (const SymIntExpr *SIE = dyn_cast<SymIntExpr>(SE)) { 2803 switch (SIE->getOpcode()) { 2804 // We don't reason yet about bitwise-constraints on symbolic values. 2805 case BO_And: 2806 case BO_Or: 2807 case BO_Xor: 2808 return false; 2809 // We don't reason yet about these arithmetic constraints on 2810 // symbolic values. 2811 case BO_Mul: 2812 case BO_Div: 2813 case BO_Rem: 2814 case BO_Shl: 2815 case BO_Shr: 2816 return false; 2817 // All other cases. 2818 default: 2819 return true; 2820 } 2821 } 2822 2823 if (const SymSymExpr *SSE = dyn_cast<SymSymExpr>(SE)) { 2824 // FIXME: Handle <=> here. 2825 if (BinaryOperator::isEqualityOp(SSE->getOpcode()) || 2826 BinaryOperator::isRelationalOp(SSE->getOpcode())) { 2827 // We handle Loc <> Loc comparisons, but not (yet) NonLoc <> NonLoc. 2828 // We've recently started producing Loc <> NonLoc comparisons (that 2829 // result from casts of one of the operands between eg. intptr_t and 2830 // void *), but we can't reason about them yet. 2831 if (Loc::isLocType(SSE->getLHS()->getType())) { 2832 return Loc::isLocType(SSE->getRHS()->getType()); 2833 } 2834 } 2835 } 2836 2837 return false; 2838 } 2839 2840 return true; 2841 } 2842 2843 ConditionTruthVal RangeConstraintManager::checkNull(ProgramStateRef State, 2844 SymbolRef Sym) { 2845 const RangeSet *Ranges = getConstraint(State, Sym); 2846 2847 // If we don't have any information about this symbol, it's underconstrained. 2848 if (!Ranges) 2849 return ConditionTruthVal(); 2850 2851 // If we have a concrete value, see if it's zero. 2852 if (const llvm::APSInt *Value = Ranges->getConcreteValue()) 2853 return *Value == 0; 2854 2855 BasicValueFactory &BV = getBasicVals(); 2856 APSIntType IntType = BV.getAPSIntType(Sym->getType()); 2857 llvm::APSInt Zero = IntType.getZeroValue(); 2858 2859 // Check if zero is in the set of possible values. 2860 if (!Ranges->contains(Zero)) 2861 return false; 2862 2863 // Zero is a possible value, but it is not the /only/ possible value. 2864 return ConditionTruthVal(); 2865 } 2866 2867 const llvm::APSInt *RangeConstraintManager::getSymVal(ProgramStateRef St, 2868 SymbolRef Sym) const { 2869 const RangeSet *T = getConstraint(St, Sym); 2870 return T ? T->getConcreteValue() : nullptr; 2871 } 2872 2873 const llvm::APSInt *RangeConstraintManager::getSymMinVal(ProgramStateRef St, 2874 SymbolRef Sym) const { 2875 const RangeSet *T = getConstraint(St, Sym); 2876 if (!T || T->isEmpty()) 2877 return nullptr; 2878 return &T->getMinValue(); 2879 } 2880 2881 const llvm::APSInt *RangeConstraintManager::getSymMaxVal(ProgramStateRef St, 2882 SymbolRef Sym) const { 2883 const RangeSet *T = getConstraint(St, Sym); 2884 if (!T || T->isEmpty()) 2885 return nullptr; 2886 return &T->getMaxValue(); 2887 } 2888 2889 //===----------------------------------------------------------------------===// 2890 // Remove dead symbols from existing constraints 2891 //===----------------------------------------------------------------------===// 2892 2893 /// Scan all symbols referenced by the constraints. If the symbol is not alive 2894 /// as marked in LSymbols, mark it as dead in DSymbols. 2895 ProgramStateRef 2896 RangeConstraintManager::removeDeadBindings(ProgramStateRef State, 2897 SymbolReaper &SymReaper) { 2898 ClassMembersTy ClassMembersMap = State->get<ClassMembers>(); 2899 ClassMembersTy NewClassMembersMap = ClassMembersMap; 2900 ClassMembersTy::Factory &EMFactory = State->get_context<ClassMembers>(); 2901 SymbolSet::Factory &SetFactory = State->get_context<SymbolSet>(); 2902 2903 ConstraintRangeTy Constraints = State->get<ConstraintRange>(); 2904 ConstraintRangeTy NewConstraints = Constraints; 2905 ConstraintRangeTy::Factory &ConstraintFactory = 2906 State->get_context<ConstraintRange>(); 2907 2908 ClassMapTy Map = State->get<ClassMap>(); 2909 ClassMapTy NewMap = Map; 2910 ClassMapTy::Factory &ClassFactory = State->get_context<ClassMap>(); 2911 2912 DisequalityMapTy Disequalities = State->get<DisequalityMap>(); 2913 DisequalityMapTy::Factory &DisequalityFactory = 2914 State->get_context<DisequalityMap>(); 2915 ClassSet::Factory &ClassSetFactory = State->get_context<ClassSet>(); 2916 2917 bool ClassMapChanged = false; 2918 bool MembersMapChanged = false; 2919 bool ConstraintMapChanged = false; 2920 bool DisequalitiesChanged = false; 2921 2922 auto removeDeadClass = [&](EquivalenceClass Class) { 2923 // Remove associated constraint ranges. 2924 Constraints = ConstraintFactory.remove(Constraints, Class); 2925 ConstraintMapChanged = true; 2926 2927 // Update disequality information to not hold any information on the 2928 // removed class. 2929 ClassSet DisequalClasses = 2930 Class.getDisequalClasses(Disequalities, ClassSetFactory); 2931 if (!DisequalClasses.isEmpty()) { 2932 for (EquivalenceClass DisequalClass : DisequalClasses) { 2933 ClassSet DisequalToDisequalSet = 2934 DisequalClass.getDisequalClasses(Disequalities, ClassSetFactory); 2935 // DisequalToDisequalSet is guaranteed to be non-empty for consistent 2936 // disequality info. 2937 assert(!DisequalToDisequalSet.isEmpty()); 2938 ClassSet NewSet = ClassSetFactory.remove(DisequalToDisequalSet, Class); 2939 2940 // No need in keeping an empty set. 2941 if (NewSet.isEmpty()) { 2942 Disequalities = 2943 DisequalityFactory.remove(Disequalities, DisequalClass); 2944 } else { 2945 Disequalities = 2946 DisequalityFactory.add(Disequalities, DisequalClass, NewSet); 2947 } 2948 } 2949 // Remove the data for the class 2950 Disequalities = DisequalityFactory.remove(Disequalities, Class); 2951 DisequalitiesChanged = true; 2952 } 2953 }; 2954 2955 // 1. Let's see if dead symbols are trivial and have associated constraints. 2956 for (std::pair<EquivalenceClass, RangeSet> ClassConstraintPair : 2957 Constraints) { 2958 EquivalenceClass Class = ClassConstraintPair.first; 2959 if (Class.isTriviallyDead(State, SymReaper)) { 2960 // If this class is trivial, we can remove its constraints right away. 2961 removeDeadClass(Class); 2962 } 2963 } 2964 2965 // 2. We don't need to track classes for dead symbols. 2966 for (std::pair<SymbolRef, EquivalenceClass> SymbolClassPair : Map) { 2967 SymbolRef Sym = SymbolClassPair.first; 2968 2969 if (SymReaper.isDead(Sym)) { 2970 ClassMapChanged = true; 2971 NewMap = ClassFactory.remove(NewMap, Sym); 2972 } 2973 } 2974 2975 // 3. Remove dead members from classes and remove dead non-trivial classes 2976 // and their constraints. 2977 for (std::pair<EquivalenceClass, SymbolSet> ClassMembersPair : 2978 ClassMembersMap) { 2979 EquivalenceClass Class = ClassMembersPair.first; 2980 SymbolSet LiveMembers = ClassMembersPair.second; 2981 bool MembersChanged = false; 2982 2983 for (SymbolRef Member : ClassMembersPair.second) { 2984 if (SymReaper.isDead(Member)) { 2985 MembersChanged = true; 2986 LiveMembers = SetFactory.remove(LiveMembers, Member); 2987 } 2988 } 2989 2990 // Check if the class changed. 2991 if (!MembersChanged) 2992 continue; 2993 2994 MembersMapChanged = true; 2995 2996 if (LiveMembers.isEmpty()) { 2997 // The class is dead now, we need to wipe it out of the members map... 2998 NewClassMembersMap = EMFactory.remove(NewClassMembersMap, Class); 2999 3000 // ...and remove all of its constraints. 3001 removeDeadClass(Class); 3002 } else { 3003 // We need to change the members associated with the class. 3004 NewClassMembersMap = 3005 EMFactory.add(NewClassMembersMap, Class, LiveMembers); 3006 } 3007 } 3008 3009 // 4. Update the state with new maps. 3010 // 3011 // Here we try to be humble and update a map only if it really changed. 3012 if (ClassMapChanged) 3013 State = State->set<ClassMap>(NewMap); 3014 3015 if (MembersMapChanged) 3016 State = State->set<ClassMembers>(NewClassMembersMap); 3017 3018 if (ConstraintMapChanged) 3019 State = State->set<ConstraintRange>(Constraints); 3020 3021 if (DisequalitiesChanged) 3022 State = State->set<DisequalityMap>(Disequalities); 3023 3024 assert(EquivalenceClass::isClassDataConsistent(State)); 3025 3026 return State; 3027 } 3028 3029 RangeSet RangeConstraintManager::getRange(ProgramStateRef State, 3030 SymbolRef Sym) { 3031 return SymbolicRangeInferrer::inferRange(F, State, Sym); 3032 } 3033 3034 ProgramStateRef RangeConstraintManager::setRange(ProgramStateRef State, 3035 SymbolRef Sym, 3036 RangeSet Range) { 3037 return ConstraintAssignor::assign(State, getSValBuilder(), F, Sym, Range); 3038 } 3039 3040 //===------------------------------------------------------------------------=== 3041 // assumeSymX methods: protected interface for RangeConstraintManager. 3042 //===------------------------------------------------------------------------=== 3043 3044 // The syntax for ranges below is mathematical, using [x, y] for closed ranges 3045 // and (x, y) for open ranges. These ranges are modular, corresponding with 3046 // a common treatment of C integer overflow. This means that these methods 3047 // do not have to worry about overflow; RangeSet::Intersect can handle such a 3048 // "wraparound" range. 3049 // As an example, the range [UINT_MAX-1, 3) contains five values: UINT_MAX-1, 3050 // UINT_MAX, 0, 1, and 2. 3051 3052 ProgramStateRef 3053 RangeConstraintManager::assumeSymNE(ProgramStateRef St, SymbolRef Sym, 3054 const llvm::APSInt &Int, 3055 const llvm::APSInt &Adjustment) { 3056 // Before we do any real work, see if the value can even show up. 3057 APSIntType AdjustmentType(Adjustment); 3058 if (AdjustmentType.testInRange(Int, true) != APSIntType::RTR_Within) 3059 return St; 3060 3061 llvm::APSInt Point = AdjustmentType.convert(Int) - Adjustment; 3062 RangeSet New = getRange(St, Sym); 3063 New = F.deletePoint(New, Point); 3064 3065 return setRange(St, Sym, New); 3066 } 3067 3068 ProgramStateRef 3069 RangeConstraintManager::assumeSymEQ(ProgramStateRef St, SymbolRef Sym, 3070 const llvm::APSInt &Int, 3071 const llvm::APSInt &Adjustment) { 3072 // Before we do any real work, see if the value can even show up. 3073 APSIntType AdjustmentType(Adjustment); 3074 if (AdjustmentType.testInRange(Int, true) != APSIntType::RTR_Within) 3075 return nullptr; 3076 3077 // [Int-Adjustment, Int-Adjustment] 3078 llvm::APSInt AdjInt = AdjustmentType.convert(Int) - Adjustment; 3079 RangeSet New = getRange(St, Sym); 3080 New = F.intersect(New, AdjInt); 3081 3082 return setRange(St, Sym, New); 3083 } 3084 3085 RangeSet RangeConstraintManager::getSymLTRange(ProgramStateRef St, 3086 SymbolRef Sym, 3087 const llvm::APSInt &Int, 3088 const llvm::APSInt &Adjustment) { 3089 // Before we do any real work, see if the value can even show up. 3090 APSIntType AdjustmentType(Adjustment); 3091 switch (AdjustmentType.testInRange(Int, true)) { 3092 case APSIntType::RTR_Below: 3093 return F.getEmptySet(); 3094 case APSIntType::RTR_Within: 3095 break; 3096 case APSIntType::RTR_Above: 3097 return getRange(St, Sym); 3098 } 3099 3100 // Special case for Int == Min. This is always false. 3101 llvm::APSInt ComparisonVal = AdjustmentType.convert(Int); 3102 llvm::APSInt Min = AdjustmentType.getMinValue(); 3103 if (ComparisonVal == Min) 3104 return F.getEmptySet(); 3105 3106 llvm::APSInt Lower = Min - Adjustment; 3107 llvm::APSInt Upper = ComparisonVal - Adjustment; 3108 --Upper; 3109 3110 RangeSet Result = getRange(St, Sym); 3111 return F.intersect(Result, Lower, Upper); 3112 } 3113 3114 ProgramStateRef 3115 RangeConstraintManager::assumeSymLT(ProgramStateRef St, SymbolRef Sym, 3116 const llvm::APSInt &Int, 3117 const llvm::APSInt &Adjustment) { 3118 RangeSet New = getSymLTRange(St, Sym, Int, Adjustment); 3119 return setRange(St, Sym, New); 3120 } 3121 3122 RangeSet RangeConstraintManager::getSymGTRange(ProgramStateRef St, 3123 SymbolRef Sym, 3124 const llvm::APSInt &Int, 3125 const llvm::APSInt &Adjustment) { 3126 // Before we do any real work, see if the value can even show up. 3127 APSIntType AdjustmentType(Adjustment); 3128 switch (AdjustmentType.testInRange(Int, true)) { 3129 case APSIntType::RTR_Below: 3130 return getRange(St, Sym); 3131 case APSIntType::RTR_Within: 3132 break; 3133 case APSIntType::RTR_Above: 3134 return F.getEmptySet(); 3135 } 3136 3137 // Special case for Int == Max. This is always false. 3138 llvm::APSInt ComparisonVal = AdjustmentType.convert(Int); 3139 llvm::APSInt Max = AdjustmentType.getMaxValue(); 3140 if (ComparisonVal == Max) 3141 return F.getEmptySet(); 3142 3143 llvm::APSInt Lower = ComparisonVal - Adjustment; 3144 llvm::APSInt Upper = Max - Adjustment; 3145 ++Lower; 3146 3147 RangeSet SymRange = getRange(St, Sym); 3148 return F.intersect(SymRange, Lower, Upper); 3149 } 3150 3151 ProgramStateRef 3152 RangeConstraintManager::assumeSymGT(ProgramStateRef St, SymbolRef Sym, 3153 const llvm::APSInt &Int, 3154 const llvm::APSInt &Adjustment) { 3155 RangeSet New = getSymGTRange(St, Sym, Int, Adjustment); 3156 return setRange(St, Sym, New); 3157 } 3158 3159 RangeSet RangeConstraintManager::getSymGERange(ProgramStateRef St, 3160 SymbolRef Sym, 3161 const llvm::APSInt &Int, 3162 const llvm::APSInt &Adjustment) { 3163 // Before we do any real work, see if the value can even show up. 3164 APSIntType AdjustmentType(Adjustment); 3165 switch (AdjustmentType.testInRange(Int, true)) { 3166 case APSIntType::RTR_Below: 3167 return getRange(St, Sym); 3168 case APSIntType::RTR_Within: 3169 break; 3170 case APSIntType::RTR_Above: 3171 return F.getEmptySet(); 3172 } 3173 3174 // Special case for Int == Min. This is always feasible. 3175 llvm::APSInt ComparisonVal = AdjustmentType.convert(Int); 3176 llvm::APSInt Min = AdjustmentType.getMinValue(); 3177 if (ComparisonVal == Min) 3178 return getRange(St, Sym); 3179 3180 llvm::APSInt Max = AdjustmentType.getMaxValue(); 3181 llvm::APSInt Lower = ComparisonVal - Adjustment; 3182 llvm::APSInt Upper = Max - Adjustment; 3183 3184 RangeSet SymRange = getRange(St, Sym); 3185 return F.intersect(SymRange, Lower, Upper); 3186 } 3187 3188 ProgramStateRef 3189 RangeConstraintManager::assumeSymGE(ProgramStateRef St, SymbolRef Sym, 3190 const llvm::APSInt &Int, 3191 const llvm::APSInt &Adjustment) { 3192 RangeSet New = getSymGERange(St, Sym, Int, Adjustment); 3193 return setRange(St, Sym, New); 3194 } 3195 3196 RangeSet 3197 RangeConstraintManager::getSymLERange(llvm::function_ref<RangeSet()> RS, 3198 const llvm::APSInt &Int, 3199 const llvm::APSInt &Adjustment) { 3200 // Before we do any real work, see if the value can even show up. 3201 APSIntType AdjustmentType(Adjustment); 3202 switch (AdjustmentType.testInRange(Int, true)) { 3203 case APSIntType::RTR_Below: 3204 return F.getEmptySet(); 3205 case APSIntType::RTR_Within: 3206 break; 3207 case APSIntType::RTR_Above: 3208 return RS(); 3209 } 3210 3211 // Special case for Int == Max. This is always feasible. 3212 llvm::APSInt ComparisonVal = AdjustmentType.convert(Int); 3213 llvm::APSInt Max = AdjustmentType.getMaxValue(); 3214 if (ComparisonVal == Max) 3215 return RS(); 3216 3217 llvm::APSInt Min = AdjustmentType.getMinValue(); 3218 llvm::APSInt Lower = Min - Adjustment; 3219 llvm::APSInt Upper = ComparisonVal - Adjustment; 3220 3221 RangeSet Default = RS(); 3222 return F.intersect(Default, Lower, Upper); 3223 } 3224 3225 RangeSet RangeConstraintManager::getSymLERange(ProgramStateRef St, 3226 SymbolRef Sym, 3227 const llvm::APSInt &Int, 3228 const llvm::APSInt &Adjustment) { 3229 return getSymLERange([&] { return getRange(St, Sym); }, Int, Adjustment); 3230 } 3231 3232 ProgramStateRef 3233 RangeConstraintManager::assumeSymLE(ProgramStateRef St, SymbolRef Sym, 3234 const llvm::APSInt &Int, 3235 const llvm::APSInt &Adjustment) { 3236 RangeSet New = getSymLERange(St, Sym, Int, Adjustment); 3237 return setRange(St, Sym, New); 3238 } 3239 3240 ProgramStateRef RangeConstraintManager::assumeSymWithinInclusiveRange( 3241 ProgramStateRef State, SymbolRef Sym, const llvm::APSInt &From, 3242 const llvm::APSInt &To, const llvm::APSInt &Adjustment) { 3243 RangeSet New = getSymGERange(State, Sym, From, Adjustment); 3244 if (New.isEmpty()) 3245 return nullptr; 3246 RangeSet Out = getSymLERange([&] { return New; }, To, Adjustment); 3247 return setRange(State, Sym, Out); 3248 } 3249 3250 ProgramStateRef RangeConstraintManager::assumeSymOutsideInclusiveRange( 3251 ProgramStateRef State, SymbolRef Sym, const llvm::APSInt &From, 3252 const llvm::APSInt &To, const llvm::APSInt &Adjustment) { 3253 RangeSet RangeLT = getSymLTRange(State, Sym, From, Adjustment); 3254 RangeSet RangeGT = getSymGTRange(State, Sym, To, Adjustment); 3255 RangeSet New(F.add(RangeLT, RangeGT)); 3256 return setRange(State, Sym, New); 3257 } 3258 3259 //===----------------------------------------------------------------------===// 3260 // Pretty-printing. 3261 //===----------------------------------------------------------------------===// 3262 3263 void RangeConstraintManager::printJson(raw_ostream &Out, ProgramStateRef State, 3264 const char *NL, unsigned int Space, 3265 bool IsDot) const { 3266 printConstraints(Out, State, NL, Space, IsDot); 3267 printEquivalenceClasses(Out, State, NL, Space, IsDot); 3268 printDisequalities(Out, State, NL, Space, IsDot); 3269 } 3270 3271 void RangeConstraintManager::printValue(raw_ostream &Out, ProgramStateRef State, 3272 SymbolRef Sym) { 3273 const RangeSet RS = getRange(State, Sym); 3274 if (RS.isEmpty()) { 3275 Out << "<empty rangeset>"; 3276 return; 3277 } 3278 Out << RS.getBitWidth() << (RS.isUnsigned() ? "u:" : "s:"); 3279 RS.dump(Out); 3280 } 3281 3282 static std::string toString(const SymbolRef &Sym) { 3283 std::string S; 3284 llvm::raw_string_ostream O(S); 3285 Sym->dumpToStream(O); 3286 return S; 3287 } 3288 3289 void RangeConstraintManager::printConstraints(raw_ostream &Out, 3290 ProgramStateRef State, 3291 const char *NL, 3292 unsigned int Space, 3293 bool IsDot) const { 3294 ConstraintRangeTy Constraints = State->get<ConstraintRange>(); 3295 3296 Indent(Out, Space, IsDot) << "\"constraints\": "; 3297 if (Constraints.isEmpty()) { 3298 Out << "null," << NL; 3299 return; 3300 } 3301 3302 std::map<std::string, RangeSet> OrderedConstraints; 3303 for (std::pair<EquivalenceClass, RangeSet> P : Constraints) { 3304 SymbolSet ClassMembers = P.first.getClassMembers(State); 3305 for (const SymbolRef &ClassMember : ClassMembers) { 3306 bool insertion_took_place; 3307 std::tie(std::ignore, insertion_took_place) = 3308 OrderedConstraints.insert({toString(ClassMember), P.second}); 3309 assert(insertion_took_place && 3310 "two symbols should not have the same dump"); 3311 } 3312 } 3313 3314 ++Space; 3315 Out << '[' << NL; 3316 bool First = true; 3317 for (std::pair<std::string, RangeSet> P : OrderedConstraints) { 3318 if (First) { 3319 First = false; 3320 } else { 3321 Out << ','; 3322 Out << NL; 3323 } 3324 Indent(Out, Space, IsDot) 3325 << "{ \"symbol\": \"" << P.first << "\", \"range\": \""; 3326 P.second.dump(Out); 3327 Out << "\" }"; 3328 } 3329 Out << NL; 3330 3331 --Space; 3332 Indent(Out, Space, IsDot) << "]," << NL; 3333 } 3334 3335 static std::string toString(ProgramStateRef State, EquivalenceClass Class) { 3336 SymbolSet ClassMembers = Class.getClassMembers(State); 3337 llvm::SmallVector<SymbolRef, 8> ClassMembersSorted(ClassMembers.begin(), 3338 ClassMembers.end()); 3339 llvm::sort(ClassMembersSorted, 3340 [](const SymbolRef &LHS, const SymbolRef &RHS) { 3341 return toString(LHS) < toString(RHS); 3342 }); 3343 3344 bool FirstMember = true; 3345 3346 std::string Str; 3347 llvm::raw_string_ostream Out(Str); 3348 Out << "[ "; 3349 for (SymbolRef ClassMember : ClassMembersSorted) { 3350 if (FirstMember) 3351 FirstMember = false; 3352 else 3353 Out << ", "; 3354 Out << "\"" << ClassMember << "\""; 3355 } 3356 Out << " ]"; 3357 return Str; 3358 } 3359 3360 void RangeConstraintManager::printEquivalenceClasses(raw_ostream &Out, 3361 ProgramStateRef State, 3362 const char *NL, 3363 unsigned int Space, 3364 bool IsDot) const { 3365 ClassMembersTy Members = State->get<ClassMembers>(); 3366 3367 Indent(Out, Space, IsDot) << "\"equivalence_classes\": "; 3368 if (Members.isEmpty()) { 3369 Out << "null," << NL; 3370 return; 3371 } 3372 3373 std::set<std::string> MembersStr; 3374 for (std::pair<EquivalenceClass, SymbolSet> ClassToSymbolSet : Members) 3375 MembersStr.insert(toString(State, ClassToSymbolSet.first)); 3376 3377 ++Space; 3378 Out << '[' << NL; 3379 bool FirstClass = true; 3380 for (const std::string &Str : MembersStr) { 3381 if (FirstClass) { 3382 FirstClass = false; 3383 } else { 3384 Out << ','; 3385 Out << NL; 3386 } 3387 Indent(Out, Space, IsDot); 3388 Out << Str; 3389 } 3390 Out << NL; 3391 3392 --Space; 3393 Indent(Out, Space, IsDot) << "]," << NL; 3394 } 3395 3396 void RangeConstraintManager::printDisequalities(raw_ostream &Out, 3397 ProgramStateRef State, 3398 const char *NL, 3399 unsigned int Space, 3400 bool IsDot) const { 3401 DisequalityMapTy Disequalities = State->get<DisequalityMap>(); 3402 3403 Indent(Out, Space, IsDot) << "\"disequality_info\": "; 3404 if (Disequalities.isEmpty()) { 3405 Out << "null," << NL; 3406 return; 3407 } 3408 3409 // Transform the disequality info to an ordered map of 3410 // [string -> (ordered set of strings)] 3411 using EqClassesStrTy = std::set<std::string>; 3412 using DisequalityInfoStrTy = std::map<std::string, EqClassesStrTy>; 3413 DisequalityInfoStrTy DisequalityInfoStr; 3414 for (std::pair<EquivalenceClass, ClassSet> ClassToDisEqSet : Disequalities) { 3415 EquivalenceClass Class = ClassToDisEqSet.first; 3416 ClassSet DisequalClasses = ClassToDisEqSet.second; 3417 EqClassesStrTy MembersStr; 3418 for (EquivalenceClass DisEqClass : DisequalClasses) 3419 MembersStr.insert(toString(State, DisEqClass)); 3420 DisequalityInfoStr.insert({toString(State, Class), MembersStr}); 3421 } 3422 3423 ++Space; 3424 Out << '[' << NL; 3425 bool FirstClass = true; 3426 for (std::pair<std::string, EqClassesStrTy> ClassToDisEqSet : 3427 DisequalityInfoStr) { 3428 const std::string &Class = ClassToDisEqSet.first; 3429 if (FirstClass) { 3430 FirstClass = false; 3431 } else { 3432 Out << ','; 3433 Out << NL; 3434 } 3435 Indent(Out, Space, IsDot) << "{" << NL; 3436 unsigned int DisEqSpace = Space + 1; 3437 Indent(Out, DisEqSpace, IsDot) << "\"class\": "; 3438 Out << Class; 3439 const EqClassesStrTy &DisequalClasses = ClassToDisEqSet.second; 3440 if (!DisequalClasses.empty()) { 3441 Out << "," << NL; 3442 Indent(Out, DisEqSpace, IsDot) << "\"disequal_to\": [" << NL; 3443 unsigned int DisEqClassSpace = DisEqSpace + 1; 3444 Indent(Out, DisEqClassSpace, IsDot); 3445 bool FirstDisEqClass = true; 3446 for (const std::string &DisEqClass : DisequalClasses) { 3447 if (FirstDisEqClass) { 3448 FirstDisEqClass = false; 3449 } else { 3450 Out << ',' << NL; 3451 Indent(Out, DisEqClassSpace, IsDot); 3452 } 3453 Out << DisEqClass; 3454 } 3455 Out << "]" << NL; 3456 } 3457 Indent(Out, Space, IsDot) << "}"; 3458 } 3459 Out << NL; 3460 3461 --Space; 3462 Indent(Out, Space, IsDot) << "]," << NL; 3463 } 3464