1 //===- PredicateTree.cpp - Predicate tree merging -------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "PredicateTree.h" 10 #include "RootOrdering.h" 11 12 #include "mlir/Dialect/PDL/IR/PDL.h" 13 #include "mlir/Dialect/PDL/IR/PDLTypes.h" 14 #include "mlir/Dialect/PDLInterp/IR/PDLInterp.h" 15 #include "mlir/IR/BuiltinOps.h" 16 #include "mlir/Interfaces/InferTypeOpInterface.h" 17 #include "llvm/ADT/MapVector.h" 18 #include "llvm/ADT/SmallPtrSet.h" 19 #include "llvm/ADT/TypeSwitch.h" 20 #include "llvm/Support/Debug.h" 21 #include <queue> 22 23 #define DEBUG_TYPE "pdl-predicate-tree" 24 25 using namespace mlir; 26 using namespace mlir::pdl_to_pdl_interp; 27 28 //===----------------------------------------------------------------------===// 29 // Predicate List Building 30 //===----------------------------------------------------------------------===// 31 32 static void getTreePredicates(std::vector<PositionalPredicate> &predList, 33 Value val, PredicateBuilder &builder, 34 DenseMap<Value, Position *> &inputs, 35 Position *pos); 36 37 /// Compares the depths of two positions. 38 static bool comparePosDepth(Position *lhs, Position *rhs) { 39 return lhs->getOperationDepth() < rhs->getOperationDepth(); 40 } 41 42 /// Returns the number of non-range elements within `values`. 43 static unsigned getNumNonRangeValues(ValueRange values) { 44 return llvm::count_if(values.getTypes(), 45 [](Type type) { return !isa<pdl::RangeType>(type); }); 46 } 47 48 static void getTreePredicates(std::vector<PositionalPredicate> &predList, 49 Value val, PredicateBuilder &builder, 50 DenseMap<Value, Position *> &inputs, 51 AttributePosition *pos) { 52 assert(isa<pdl::AttributeType>(val.getType()) && "expected attribute type"); 53 predList.emplace_back(pos, builder.getIsNotNull()); 54 55 if (auto attr = dyn_cast<pdl::AttributeOp>(val.getDefiningOp())) { 56 // If the attribute has a type or value, add a constraint. 57 if (Value type = attr.getValueType()) 58 getTreePredicates(predList, type, builder, inputs, builder.getType(pos)); 59 else if (Attribute value = attr.getValueAttr()) 60 predList.emplace_back(pos, builder.getAttributeConstraint(value)); 61 } 62 } 63 64 /// Collect all of the predicates for the given operand position. 65 static void getOperandTreePredicates(std::vector<PositionalPredicate> &predList, 66 Value val, PredicateBuilder &builder, 67 DenseMap<Value, Position *> &inputs, 68 Position *pos) { 69 Type valueType = val.getType(); 70 bool isVariadic = isa<pdl::RangeType>(valueType); 71 72 // If this is a typed operand, add a type constraint. 73 TypeSwitch<Operation *>(val.getDefiningOp()) 74 .Case<pdl::OperandOp, pdl::OperandsOp>([&](auto op) { 75 // Prevent traversal into a null value if the operand has a proper 76 // index. 77 if (std::is_same<pdl::OperandOp, decltype(op)>::value || 78 cast<OperandGroupPosition>(pos)->getOperandGroupNumber()) 79 predList.emplace_back(pos, builder.getIsNotNull()); 80 81 if (Value type = op.getValueType()) 82 getTreePredicates(predList, type, builder, inputs, 83 builder.getType(pos)); 84 }) 85 .Case<pdl::ResultOp, pdl::ResultsOp>([&](auto op) { 86 std::optional<unsigned> index = op.getIndex(); 87 88 // Prevent traversal into a null value if the result has a proper index. 89 if (index) 90 predList.emplace_back(pos, builder.getIsNotNull()); 91 92 // Get the parent operation of this operand. 93 OperationPosition *parentPos = builder.getOperandDefiningOp(pos); 94 predList.emplace_back(parentPos, builder.getIsNotNull()); 95 96 // Ensure that the operands match the corresponding results of the 97 // parent operation. 98 Position *resultPos = nullptr; 99 if (std::is_same<pdl::ResultOp, decltype(op)>::value) 100 resultPos = builder.getResult(parentPos, *index); 101 else 102 resultPos = builder.getResultGroup(parentPos, index, isVariadic); 103 predList.emplace_back(resultPos, builder.getEqualTo(pos)); 104 105 // Collect the predicates of the parent operation. 106 getTreePredicates(predList, op.getParent(), builder, inputs, 107 (Position *)parentPos); 108 }); 109 } 110 111 static void 112 getTreePredicates(std::vector<PositionalPredicate> &predList, Value val, 113 PredicateBuilder &builder, 114 DenseMap<Value, Position *> &inputs, OperationPosition *pos, 115 std::optional<unsigned> ignoreOperand = std::nullopt) { 116 assert(isa<pdl::OperationType>(val.getType()) && "expected operation"); 117 pdl::OperationOp op = cast<pdl::OperationOp>(val.getDefiningOp()); 118 OperationPosition *opPos = cast<OperationPosition>(pos); 119 120 // Ensure getDefiningOp returns a non-null operation. 121 if (!opPos->isRoot()) 122 predList.emplace_back(pos, builder.getIsNotNull()); 123 124 // Check that this is the correct root operation. 125 if (std::optional<StringRef> opName = op.getOpName()) 126 predList.emplace_back(pos, builder.getOperationName(*opName)); 127 128 // Check that the operation has the proper number of operands. If there are 129 // any variable length operands, we check a minimum instead of an exact count. 130 OperandRange operands = op.getOperandValues(); 131 unsigned minOperands = getNumNonRangeValues(operands); 132 if (minOperands != operands.size()) { 133 if (minOperands) 134 predList.emplace_back(pos, builder.getOperandCountAtLeast(minOperands)); 135 } else { 136 predList.emplace_back(pos, builder.getOperandCount(minOperands)); 137 } 138 139 // Check that the operation has the proper number of results. If there are 140 // any variable length results, we check a minimum instead of an exact count. 141 OperandRange types = op.getTypeValues(); 142 unsigned minResults = getNumNonRangeValues(types); 143 if (minResults == types.size()) 144 predList.emplace_back(pos, builder.getResultCount(types.size())); 145 else if (minResults) 146 predList.emplace_back(pos, builder.getResultCountAtLeast(minResults)); 147 148 // Recurse into any attributes, operands, or results. 149 for (auto [attrName, attr] : 150 llvm::zip(op.getAttributeValueNames(), op.getAttributeValues())) { 151 getTreePredicates( 152 predList, attr, builder, inputs, 153 builder.getAttribute(opPos, cast<StringAttr>(attrName).getValue())); 154 } 155 156 // Process the operands and results of the operation. For all values up to 157 // the first variable length value, we use the concrete operand/result 158 // number. After that, we use the "group" given that we can't know the 159 // concrete indices until runtime. If there is only one variadic operand 160 // group, we treat it as all of the operands/results of the operation. 161 /// Operands. 162 if (operands.size() == 1 && isa<pdl::RangeType>(operands[0].getType())) { 163 // Ignore the operands if we are performing an upward traversal (in that 164 // case, they have already been visited). 165 if (opPos->isRoot() || opPos->isOperandDefiningOp()) 166 getTreePredicates(predList, operands.front(), builder, inputs, 167 builder.getAllOperands(opPos)); 168 } else { 169 bool foundVariableLength = false; 170 for (const auto &operandIt : llvm::enumerate(operands)) { 171 bool isVariadic = isa<pdl::RangeType>(operandIt.value().getType()); 172 foundVariableLength |= isVariadic; 173 174 // Ignore the specified operand, usually because this position was 175 // visited in an upward traversal via an iterative choice. 176 if (ignoreOperand && *ignoreOperand == operandIt.index()) 177 continue; 178 179 Position *pos = 180 foundVariableLength 181 ? builder.getOperandGroup(opPos, operandIt.index(), isVariadic) 182 : builder.getOperand(opPos, operandIt.index()); 183 getTreePredicates(predList, operandIt.value(), builder, inputs, pos); 184 } 185 } 186 /// Results. 187 if (types.size() == 1 && isa<pdl::RangeType>(types[0].getType())) { 188 getTreePredicates(predList, types.front(), builder, inputs, 189 builder.getType(builder.getAllResults(opPos))); 190 return; 191 } 192 193 bool foundVariableLength = false; 194 for (auto [idx, typeValue] : llvm::enumerate(types)) { 195 bool isVariadic = isa<pdl::RangeType>(typeValue.getType()); 196 foundVariableLength |= isVariadic; 197 198 auto *resultPos = foundVariableLength 199 ? builder.getResultGroup(pos, idx, isVariadic) 200 : builder.getResult(pos, idx); 201 predList.emplace_back(resultPos, builder.getIsNotNull()); 202 getTreePredicates(predList, typeValue, builder, inputs, 203 builder.getType(resultPos)); 204 } 205 } 206 207 static void getTreePredicates(std::vector<PositionalPredicate> &predList, 208 Value val, PredicateBuilder &builder, 209 DenseMap<Value, Position *> &inputs, 210 TypePosition *pos) { 211 // Check for a constraint on a constant type. 212 if (pdl::TypeOp typeOp = val.getDefiningOp<pdl::TypeOp>()) { 213 if (Attribute type = typeOp.getConstantTypeAttr()) 214 predList.emplace_back(pos, builder.getTypeConstraint(type)); 215 } else if (pdl::TypesOp typeOp = val.getDefiningOp<pdl::TypesOp>()) { 216 if (Attribute typeAttr = typeOp.getConstantTypesAttr()) 217 predList.emplace_back(pos, builder.getTypeConstraint(typeAttr)); 218 } 219 } 220 221 /// Collect the tree predicates anchored at the given value. 222 static void getTreePredicates(std::vector<PositionalPredicate> &predList, 223 Value val, PredicateBuilder &builder, 224 DenseMap<Value, Position *> &inputs, 225 Position *pos) { 226 // Make sure this input value is accessible to the rewrite. 227 auto it = inputs.try_emplace(val, pos); 228 if (!it.second) { 229 // If this is an input value that has been visited in the tree, add a 230 // constraint to ensure that both instances refer to the same value. 231 if (isa<pdl::AttributeOp, pdl::OperandOp, pdl::OperandsOp, pdl::OperationOp, 232 pdl::TypeOp>(val.getDefiningOp())) { 233 auto minMaxPositions = 234 std::minmax(pos, it.first->second, comparePosDepth); 235 predList.emplace_back(minMaxPositions.second, 236 builder.getEqualTo(minMaxPositions.first)); 237 } 238 return; 239 } 240 241 TypeSwitch<Position *>(pos) 242 .Case<AttributePosition, OperationPosition, TypePosition>([&](auto *pos) { 243 getTreePredicates(predList, val, builder, inputs, pos); 244 }) 245 .Case<OperandPosition, OperandGroupPosition>([&](auto *pos) { 246 getOperandTreePredicates(predList, val, builder, inputs, pos); 247 }) 248 .Default([](auto *) { llvm_unreachable("unexpected position kind"); }); 249 } 250 251 static void getAttributePredicates(pdl::AttributeOp op, 252 std::vector<PositionalPredicate> &predList, 253 PredicateBuilder &builder, 254 DenseMap<Value, Position *> &inputs) { 255 Position *&attrPos = inputs[op]; 256 if (attrPos) 257 return; 258 Attribute value = op.getValueAttr(); 259 assert(value && "expected non-tree `pdl.attribute` to contain a value"); 260 attrPos = builder.getAttributeLiteral(value); 261 } 262 263 static void getConstraintPredicates(pdl::ApplyNativeConstraintOp op, 264 std::vector<PositionalPredicate> &predList, 265 PredicateBuilder &builder, 266 DenseMap<Value, Position *> &inputs) { 267 OperandRange arguments = op.getArgs(); 268 269 std::vector<Position *> allPositions; 270 allPositions.reserve(arguments.size()); 271 for (Value arg : arguments) 272 allPositions.push_back(inputs.lookup(arg)); 273 274 // Push the constraint to the furthest position. 275 Position *pos = *llvm::max_element(allPositions, comparePosDepth); 276 ResultRange results = op.getResults(); 277 PredicateBuilder::Predicate pred = builder.getConstraint( 278 op.getName(), allPositions, SmallVector<Type>(results.getTypes()), 279 op.getIsNegated()); 280 281 // For each result register a position so it can be used later 282 for (auto [i, result] : llvm::enumerate(results)) { 283 ConstraintQuestion *q = cast<ConstraintQuestion>(pred.first); 284 ConstraintPosition *pos = builder.getConstraintPosition(q, i); 285 auto [it, inserted] = inputs.try_emplace(result, pos); 286 // If this is an input value that has been visited in the tree, add a 287 // constraint to ensure that both instances refer to the same value. 288 if (!inserted) { 289 Position *first = pos; 290 Position *second = it->second; 291 if (comparePosDepth(second, first)) 292 std::tie(second, first) = std::make_pair(first, second); 293 294 predList.emplace_back(second, builder.getEqualTo(first)); 295 } 296 } 297 predList.emplace_back(pos, pred); 298 } 299 300 static void getResultPredicates(pdl::ResultOp op, 301 std::vector<PositionalPredicate> &predList, 302 PredicateBuilder &builder, 303 DenseMap<Value, Position *> &inputs) { 304 Position *&resultPos = inputs[op]; 305 if (resultPos) 306 return; 307 308 // Ensure that the result isn't null. 309 auto *parentPos = cast<OperationPosition>(inputs.lookup(op.getParent())); 310 resultPos = builder.getResult(parentPos, op.getIndex()); 311 predList.emplace_back(resultPos, builder.getIsNotNull()); 312 } 313 314 static void getResultPredicates(pdl::ResultsOp op, 315 std::vector<PositionalPredicate> &predList, 316 PredicateBuilder &builder, 317 DenseMap<Value, Position *> &inputs) { 318 Position *&resultPos = inputs[op]; 319 if (resultPos) 320 return; 321 322 // Ensure that the result isn't null if the result has an index. 323 auto *parentPos = cast<OperationPosition>(inputs.lookup(op.getParent())); 324 bool isVariadic = isa<pdl::RangeType>(op.getType()); 325 std::optional<unsigned> index = op.getIndex(); 326 resultPos = builder.getResultGroup(parentPos, index, isVariadic); 327 if (index) 328 predList.emplace_back(resultPos, builder.getIsNotNull()); 329 } 330 331 static void getTypePredicates(Value typeValue, 332 function_ref<Attribute()> typeAttrFn, 333 PredicateBuilder &builder, 334 DenseMap<Value, Position *> &inputs) { 335 Position *&typePos = inputs[typeValue]; 336 if (typePos) 337 return; 338 Attribute typeAttr = typeAttrFn(); 339 assert(typeAttr && 340 "expected non-tree `pdl.type`/`pdl.types` to contain a value"); 341 typePos = builder.getTypeLiteral(typeAttr); 342 } 343 344 /// Collect all of the predicates that cannot be determined via walking the 345 /// tree. 346 static void getNonTreePredicates(pdl::PatternOp pattern, 347 std::vector<PositionalPredicate> &predList, 348 PredicateBuilder &builder, 349 DenseMap<Value, Position *> &inputs) { 350 for (Operation &op : pattern.getBodyRegion().getOps()) { 351 TypeSwitch<Operation *>(&op) 352 .Case([&](pdl::AttributeOp attrOp) { 353 getAttributePredicates(attrOp, predList, builder, inputs); 354 }) 355 .Case<pdl::ApplyNativeConstraintOp>([&](auto constraintOp) { 356 getConstraintPredicates(constraintOp, predList, builder, inputs); 357 }) 358 .Case<pdl::ResultOp, pdl::ResultsOp>([&](auto resultOp) { 359 getResultPredicates(resultOp, predList, builder, inputs); 360 }) 361 .Case([&](pdl::TypeOp typeOp) { 362 getTypePredicates( 363 typeOp, [&] { return typeOp.getConstantTypeAttr(); }, builder, 364 inputs); 365 }) 366 .Case([&](pdl::TypesOp typeOp) { 367 getTypePredicates( 368 typeOp, [&] { return typeOp.getConstantTypesAttr(); }, builder, 369 inputs); 370 }); 371 } 372 } 373 374 namespace { 375 376 /// An op accepting a value at an optional index. 377 struct OpIndex { 378 Value parent; 379 std::optional<unsigned> index; 380 }; 381 382 /// The parent and operand index of each operation for each root, stored 383 /// as a nested map [root][operation]. 384 using ParentMaps = DenseMap<Value, DenseMap<Value, OpIndex>>; 385 386 } // namespace 387 388 /// Given a pattern, determines the set of roots present in this pattern. 389 /// These are the operations whose results are not consumed by other operations. 390 static SmallVector<Value> detectRoots(pdl::PatternOp pattern) { 391 // First, collect all the operations that are used as operands 392 // to other operations. These are not roots by default. 393 DenseSet<Value> used; 394 for (auto operationOp : pattern.getBodyRegion().getOps<pdl::OperationOp>()) { 395 for (Value operand : operationOp.getOperandValues()) 396 TypeSwitch<Operation *>(operand.getDefiningOp()) 397 .Case<pdl::ResultOp, pdl::ResultsOp>( 398 [&used](auto resultOp) { used.insert(resultOp.getParent()); }); 399 } 400 401 // Remove the specified root from the use set, so that we can 402 // always select it as a root, even if it is used by other operations. 403 if (Value root = pattern.getRewriter().getRoot()) 404 used.erase(root); 405 406 // Finally, collect all the unused operations. 407 SmallVector<Value> roots; 408 for (Value operationOp : pattern.getBodyRegion().getOps<pdl::OperationOp>()) 409 if (!used.contains(operationOp)) 410 roots.push_back(operationOp); 411 412 return roots; 413 } 414 415 /// Given a list of candidate roots, builds the cost graph for connecting them. 416 /// The graph is formed by traversing the DAG of operations starting from each 417 /// root and marking the depth of each connector value (operand). Then we join 418 /// the candidate roots based on the common connector values, taking the one 419 /// with the minimum depth. Along the way, we compute, for each candidate root, 420 /// a mapping from each operation (in the DAG underneath this root) to its 421 /// parent operation and the corresponding operand index. 422 static void buildCostGraph(ArrayRef<Value> roots, RootOrderingGraph &graph, 423 ParentMaps &parentMaps) { 424 425 // The entry of a queue. The entry consists of the following items: 426 // * the value in the DAG underneath the root; 427 // * the parent of the value; 428 // * the operand index of the value in its parent; 429 // * the depth of the visited value. 430 struct Entry { 431 Entry(Value value, Value parent, std::optional<unsigned> index, 432 unsigned depth) 433 : value(value), parent(parent), index(index), depth(depth) {} 434 435 Value value; 436 Value parent; 437 std::optional<unsigned> index; 438 unsigned depth; 439 }; 440 441 // A root of a value and its depth (distance from root to the value). 442 struct RootDepth { 443 Value root; 444 unsigned depth = 0; 445 }; 446 447 // Map from candidate connector values to their roots and depths. Using a 448 // small vector with 1 entry because most values belong to a single root. 449 llvm::MapVector<Value, SmallVector<RootDepth, 1>> connectorsRootsDepths; 450 451 // Perform a breadth-first traversal of the op DAG rooted at each root. 452 for (Value root : roots) { 453 // The queue of visited values. A value may be present multiple times in 454 // the queue, for multiple parents. We only accept the first occurrence, 455 // which is guaranteed to have the lowest depth. 456 std::queue<Entry> toVisit; 457 toVisit.emplace(root, Value(), 0, 0); 458 459 // The map from value to its parent for the current root. 460 DenseMap<Value, OpIndex> &parentMap = parentMaps[root]; 461 462 while (!toVisit.empty()) { 463 Entry entry = toVisit.front(); 464 toVisit.pop(); 465 // Skip if already visited. 466 if (!parentMap.insert({entry.value, {entry.parent, entry.index}}).second) 467 continue; 468 469 // Mark the root and depth of the value. 470 connectorsRootsDepths[entry.value].push_back({root, entry.depth}); 471 472 // Traverse the operands of an operation and result ops. 473 // We intentionally do not traverse attributes and types, because those 474 // are expensive to join on. 475 TypeSwitch<Operation *>(entry.value.getDefiningOp()) 476 .Case<pdl::OperationOp>([&](auto operationOp) { 477 OperandRange operands = operationOp.getOperandValues(); 478 // Special case when we pass all the operands in one range. 479 // For those, the index is empty. 480 if (operands.size() == 1 && 481 isa<pdl::RangeType>(operands[0].getType())) { 482 toVisit.emplace(operands[0], entry.value, std::nullopt, 483 entry.depth + 1); 484 return; 485 } 486 487 // Default case: visit all the operands. 488 for (const auto &p : 489 llvm::enumerate(operationOp.getOperandValues())) 490 toVisit.emplace(p.value(), entry.value, p.index(), 491 entry.depth + 1); 492 }) 493 .Case<pdl::ResultOp, pdl::ResultsOp>([&](auto resultOp) { 494 toVisit.emplace(resultOp.getParent(), entry.value, 495 resultOp.getIndex(), entry.depth); 496 }); 497 } 498 } 499 500 // Now build the cost graph. 501 // This is simply a minimum over all depths for the target root. 502 unsigned nextID = 0; 503 for (const auto &connectorRootsDepths : connectorsRootsDepths) { 504 Value value = connectorRootsDepths.first; 505 ArrayRef<RootDepth> rootsDepths = connectorRootsDepths.second; 506 // If there is only one root for this value, this will not trigger 507 // any edges in the cost graph (a perf optimization). 508 if (rootsDepths.size() == 1) 509 continue; 510 511 for (const RootDepth &p : rootsDepths) { 512 for (const RootDepth &q : rootsDepths) { 513 if (&p == &q) 514 continue; 515 // Insert or retrieve the property of edge from p to q. 516 RootOrderingEntry &entry = graph[q.root][p.root]; 517 if (!entry.connector /* new edge */ || entry.cost.first > q.depth) { 518 if (!entry.connector) 519 entry.cost.second = nextID++; 520 entry.cost.first = q.depth; 521 entry.connector = value; 522 } 523 } 524 } 525 } 526 527 assert((llvm::hasSingleElement(roots) || graph.size() == roots.size()) && 528 "the pattern contains a candidate root disconnected from the others"); 529 } 530 531 /// Returns true if the operand at the given index needs to be queried using an 532 /// operand group, i.e., if it is variadic itself or follows a variadic operand. 533 static bool useOperandGroup(pdl::OperationOp op, unsigned index) { 534 OperandRange operands = op.getOperandValues(); 535 assert(index < operands.size() && "operand index out of range"); 536 for (unsigned i = 0; i <= index; ++i) 537 if (isa<pdl::RangeType>(operands[i].getType())) 538 return true; 539 return false; 540 } 541 542 /// Visit a node during upward traversal. 543 static void visitUpward(std::vector<PositionalPredicate> &predList, 544 OpIndex opIndex, PredicateBuilder &builder, 545 DenseMap<Value, Position *> &valueToPosition, 546 Position *&pos, unsigned rootID) { 547 Value value = opIndex.parent; 548 TypeSwitch<Operation *>(value.getDefiningOp()) 549 .Case<pdl::OperationOp>([&](auto operationOp) { 550 LLVM_DEBUG(llvm::dbgs() << " * Value: " << value << "\n"); 551 552 // Get users and iterate over them. 553 Position *usersPos = builder.getUsers(pos, /*useRepresentative=*/true); 554 Position *foreachPos = builder.getForEach(usersPos, rootID); 555 OperationPosition *opPos = builder.getPassthroughOp(foreachPos); 556 557 // Compare the operand(s) of the user against the input value(s). 558 Position *operandPos; 559 if (!opIndex.index) { 560 // We are querying all the operands of the operation. 561 operandPos = builder.getAllOperands(opPos); 562 } else if (useOperandGroup(operationOp, *opIndex.index)) { 563 // We are querying an operand group. 564 Type type = operationOp.getOperandValues()[*opIndex.index].getType(); 565 bool variadic = isa<pdl::RangeType>(type); 566 operandPos = builder.getOperandGroup(opPos, opIndex.index, variadic); 567 } else { 568 // We are querying an individual operand. 569 operandPos = builder.getOperand(opPos, *opIndex.index); 570 } 571 predList.emplace_back(operandPos, builder.getEqualTo(pos)); 572 573 // Guard against duplicate upward visits. These are not possible, 574 // because if this value was already visited, it would have been 575 // cheaper to start the traversal at this value rather than at the 576 // `connector`, violating the optimality of our spanning tree. 577 bool inserted = valueToPosition.try_emplace(value, opPos).second; 578 (void)inserted; 579 assert(inserted && "duplicate upward visit"); 580 581 // Obtain the tree predicates at the current value. 582 getTreePredicates(predList, value, builder, valueToPosition, opPos, 583 opIndex.index); 584 585 // Update the position 586 pos = opPos; 587 }) 588 .Case<pdl::ResultOp>([&](auto resultOp) { 589 // Traverse up an individual result. 590 auto *opPos = dyn_cast<OperationPosition>(pos); 591 assert(opPos && "operations and results must be interleaved"); 592 pos = builder.getResult(opPos, *opIndex.index); 593 594 // Insert the result position in case we have not visited it yet. 595 valueToPosition.try_emplace(value, pos); 596 }) 597 .Case<pdl::ResultsOp>([&](auto resultOp) { 598 // Traverse up a group of results. 599 auto *opPos = dyn_cast<OperationPosition>(pos); 600 assert(opPos && "operations and results must be interleaved"); 601 bool isVariadic = isa<pdl::RangeType>(value.getType()); 602 if (opIndex.index) 603 pos = builder.getResultGroup(opPos, opIndex.index, isVariadic); 604 else 605 pos = builder.getAllResults(opPos); 606 607 // Insert the result position in case we have not visited it yet. 608 valueToPosition.try_emplace(value, pos); 609 }); 610 } 611 612 /// Given a pattern operation, build the set of matcher predicates necessary to 613 /// match this pattern. 614 static Value buildPredicateList(pdl::PatternOp pattern, 615 PredicateBuilder &builder, 616 std::vector<PositionalPredicate> &predList, 617 DenseMap<Value, Position *> &valueToPosition) { 618 SmallVector<Value> roots = detectRoots(pattern); 619 620 // Build the root ordering graph and compute the parent maps. 621 RootOrderingGraph graph; 622 ParentMaps parentMaps; 623 buildCostGraph(roots, graph, parentMaps); 624 LLVM_DEBUG({ 625 llvm::dbgs() << "Graph:\n"; 626 for (auto &target : graph) { 627 llvm::dbgs() << " * " << target.first.getLoc() << " " << target.first 628 << "\n"; 629 for (auto &source : target.second) { 630 RootOrderingEntry &entry = source.second; 631 llvm::dbgs() << " <- " << source.first << ": " << entry.cost.first 632 << ":" << entry.cost.second << " via " 633 << entry.connector.getLoc() << "\n"; 634 } 635 } 636 }); 637 638 // Solve the optimal branching problem for each candidate root, or use the 639 // provided one. 640 Value bestRoot = pattern.getRewriter().getRoot(); 641 OptimalBranching::EdgeList bestEdges; 642 if (!bestRoot) { 643 unsigned bestCost = 0; 644 LLVM_DEBUG(llvm::dbgs() << "Candidate roots:\n"); 645 for (Value root : roots) { 646 OptimalBranching solver(graph, root); 647 unsigned cost = solver.solve(); 648 LLVM_DEBUG(llvm::dbgs() << " * " << root << ": " << cost << "\n"); 649 if (!bestRoot || bestCost > cost) { 650 bestCost = cost; 651 bestRoot = root; 652 bestEdges = solver.preOrderTraversal(roots); 653 } 654 } 655 } else { 656 OptimalBranching solver(graph, bestRoot); 657 solver.solve(); 658 bestEdges = solver.preOrderTraversal(roots); 659 } 660 661 // Print the best solution. 662 LLVM_DEBUG({ 663 llvm::dbgs() << "Best tree:\n"; 664 for (const std::pair<Value, Value> &edge : bestEdges) { 665 llvm::dbgs() << " * " << edge.first; 666 if (edge.second) 667 llvm::dbgs() << " <- " << edge.second; 668 llvm::dbgs() << "\n"; 669 } 670 }); 671 672 LLVM_DEBUG(llvm::dbgs() << "Calling key getTreePredicates:\n"); 673 LLVM_DEBUG(llvm::dbgs() << " * Value: " << bestRoot << "\n"); 674 675 // The best root is the starting point for the traversal. Get the tree 676 // predicates for the DAG rooted at bestRoot. 677 getTreePredicates(predList, bestRoot, builder, valueToPosition, 678 builder.getRoot()); 679 680 // Traverse the selected optimal branching. For all edges in order, traverse 681 // up starting from the connector, until the candidate root is reached, and 682 // call getTreePredicates at every node along the way. 683 for (const auto &it : llvm::enumerate(bestEdges)) { 684 Value target = it.value().first; 685 Value source = it.value().second; 686 687 // Check if we already visited the target root. This happens in two cases: 688 // 1) the initial root (bestRoot); 689 // 2) a root that is dominated by (contained in the subtree rooted at) an 690 // already visited root. 691 if (valueToPosition.count(target)) 692 continue; 693 694 // Determine the connector. 695 Value connector = graph[target][source].connector; 696 assert(connector && "invalid edge"); 697 LLVM_DEBUG(llvm::dbgs() << " * Connector: " << connector.getLoc() << "\n"); 698 DenseMap<Value, OpIndex> parentMap = parentMaps.lookup(target); 699 Position *pos = valueToPosition.lookup(connector); 700 assert(pos && "connector has not been traversed yet"); 701 702 // Traverse from the connector upwards towards the target root. 703 for (Value value = connector; value != target;) { 704 OpIndex opIndex = parentMap.lookup(value); 705 assert(opIndex.parent && "missing parent"); 706 visitUpward(predList, opIndex, builder, valueToPosition, pos, it.index()); 707 value = opIndex.parent; 708 } 709 } 710 711 getNonTreePredicates(pattern, predList, builder, valueToPosition); 712 713 return bestRoot; 714 } 715 716 //===----------------------------------------------------------------------===// 717 // Pattern Predicate Tree Merging 718 //===----------------------------------------------------------------------===// 719 720 namespace { 721 722 /// This class represents a specific predicate applied to a position, and 723 /// provides hashing and ordering operators. This class allows for computing a 724 /// frequence sum and ordering predicates based on a cost model. 725 struct OrderedPredicate { 726 OrderedPredicate(const std::pair<Position *, Qualifier *> &ip) 727 : position(ip.first), question(ip.second) {} 728 OrderedPredicate(const PositionalPredicate &ip) 729 : position(ip.position), question(ip.question) {} 730 731 /// The position this predicate is applied to. 732 Position *position; 733 734 /// The question that is applied by this predicate onto the position. 735 Qualifier *question; 736 737 /// The first and second order benefit sums. 738 /// The primary sum is the number of occurrences of this predicate among all 739 /// of the patterns. 740 unsigned primary = 0; 741 /// The secondary sum is a squared summation of the primary sum of all of the 742 /// predicates within each pattern that contains this predicate. This allows 743 /// for favoring predicates that are more commonly shared within a pattern, as 744 /// opposed to those shared across patterns. 745 unsigned secondary = 0; 746 747 /// The tie breaking ID, used to preserve a deterministic (insertion) order 748 /// among all the predicates with the same priority, depth, and position / 749 /// predicate dependency. 750 unsigned id = 0; 751 752 /// A map between a pattern operation and the answer to the predicate question 753 /// within that pattern. 754 DenseMap<Operation *, Qualifier *> patternToAnswer; 755 756 /// Returns true if this predicate is ordered before `rhs`, based on the cost 757 /// model. 758 bool operator<(const OrderedPredicate &rhs) const { 759 // Sort by: 760 // * higher first and secondary order sums 761 // * lower depth 762 // * lower position dependency 763 // * lower predicate dependency 764 // * lower tie breaking ID 765 auto *rhsPos = rhs.position; 766 return std::make_tuple(primary, secondary, rhsPos->getOperationDepth(), 767 rhsPos->getKind(), rhs.question->getKind(), rhs.id) > 768 std::make_tuple(rhs.primary, rhs.secondary, 769 position->getOperationDepth(), position->getKind(), 770 question->getKind(), id); 771 } 772 }; 773 774 /// A DenseMapInfo for OrderedPredicate based solely on the position and 775 /// question. 776 struct OrderedPredicateDenseInfo { 777 using Base = DenseMapInfo<std::pair<Position *, Qualifier *>>; 778 779 static OrderedPredicate getEmptyKey() { return Base::getEmptyKey(); } 780 static OrderedPredicate getTombstoneKey() { return Base::getTombstoneKey(); } 781 static bool isEqual(const OrderedPredicate &lhs, 782 const OrderedPredicate &rhs) { 783 return lhs.position == rhs.position && lhs.question == rhs.question; 784 } 785 static unsigned getHashValue(const OrderedPredicate &p) { 786 return llvm::hash_combine(p.position, p.question); 787 } 788 }; 789 790 /// This class wraps a set of ordered predicates that are used within a specific 791 /// pattern operation. 792 struct OrderedPredicateList { 793 OrderedPredicateList(pdl::PatternOp pattern, Value root) 794 : pattern(pattern), root(root) {} 795 796 pdl::PatternOp pattern; 797 Value root; 798 DenseSet<OrderedPredicate *> predicates; 799 }; 800 } // namespace 801 802 /// Returns true if the given matcher refers to the same predicate as the given 803 /// ordered predicate. This means that the position and questions of the two 804 /// match. 805 static bool isSamePredicate(MatcherNode *node, OrderedPredicate *predicate) { 806 return node->getPosition() == predicate->position && 807 node->getQuestion() == predicate->question; 808 } 809 810 /// Get or insert a child matcher for the given parent switch node, given a 811 /// predicate and parent pattern. 812 std::unique_ptr<MatcherNode> &getOrCreateChild(SwitchNode *node, 813 OrderedPredicate *predicate, 814 pdl::PatternOp pattern) { 815 assert(isSamePredicate(node, predicate) && 816 "expected matcher to equal the given predicate"); 817 818 auto it = predicate->patternToAnswer.find(pattern); 819 assert(it != predicate->patternToAnswer.end() && 820 "expected pattern to exist in predicate"); 821 return node->getChildren()[it->second]; 822 } 823 824 /// Build the matcher CFG by "pushing" patterns through by sorted predicate 825 /// order. A pattern will traverse as far as possible using common predicates 826 /// and then either diverge from the CFG or reach the end of a branch and start 827 /// creating new nodes. 828 static void propagatePattern(std::unique_ptr<MatcherNode> &node, 829 OrderedPredicateList &list, 830 std::vector<OrderedPredicate *>::iterator current, 831 std::vector<OrderedPredicate *>::iterator end) { 832 if (current == end) { 833 // We've hit the end of a pattern, so create a successful result node. 834 node = 835 std::make_unique<SuccessNode>(list.pattern, list.root, std::move(node)); 836 837 // If the pattern doesn't contain this predicate, ignore it. 838 } else if (!list.predicates.contains(*current)) { 839 propagatePattern(node, list, std::next(current), end); 840 841 // If the current matcher node is invalid, create a new one for this 842 // position and continue propagation. 843 } else if (!node) { 844 // Create a new node at this position and continue 845 node = std::make_unique<SwitchNode>((*current)->position, 846 (*current)->question); 847 propagatePattern( 848 getOrCreateChild(cast<SwitchNode>(&*node), *current, list.pattern), 849 list, std::next(current), end); 850 851 // If the matcher has already been created, and it is for this predicate we 852 // continue propagation to the child. 853 } else if (isSamePredicate(node.get(), *current)) { 854 propagatePattern( 855 getOrCreateChild(cast<SwitchNode>(&*node), *current, list.pattern), 856 list, std::next(current), end); 857 858 // If the matcher doesn't match the current predicate, insert a branch as 859 // the common set of matchers has diverged. 860 } else { 861 propagatePattern(node->getFailureNode(), list, current, end); 862 } 863 } 864 865 /// Fold any switch nodes nested under `node` to boolean nodes when possible. 866 /// `node` is updated in-place if it is a switch. 867 static void foldSwitchToBool(std::unique_ptr<MatcherNode> &node) { 868 if (!node) 869 return; 870 871 if (SwitchNode *switchNode = dyn_cast<SwitchNode>(&*node)) { 872 SwitchNode::ChildMapT &children = switchNode->getChildren(); 873 for (auto &it : children) 874 foldSwitchToBool(it.second); 875 876 // If the node only contains one child, collapse it into a boolean predicate 877 // node. 878 if (children.size() == 1) { 879 auto *childIt = children.begin(); 880 node = std::make_unique<BoolNode>( 881 node->getPosition(), node->getQuestion(), childIt->first, 882 std::move(childIt->second), std::move(node->getFailureNode())); 883 } 884 } else if (BoolNode *boolNode = dyn_cast<BoolNode>(&*node)) { 885 foldSwitchToBool(boolNode->getSuccessNode()); 886 } 887 888 foldSwitchToBool(node->getFailureNode()); 889 } 890 891 /// Insert an exit node at the end of the failure path of the `root`. 892 static void insertExitNode(std::unique_ptr<MatcherNode> *root) { 893 while (*root) 894 root = &(*root)->getFailureNode(); 895 *root = std::make_unique<ExitNode>(); 896 } 897 898 /// Sorts the range begin/end with the partial order given by cmp. 899 template <typename Iterator, typename Compare> 900 static void stableTopologicalSort(Iterator begin, Iterator end, Compare cmp) { 901 while (begin != end) { 902 // Cannot compute sortBeforeOthers in the predicate of stable_partition 903 // because stable_partition will not keep the [begin, end) range intact 904 // while it runs. 905 llvm::SmallPtrSet<typename Iterator::value_type, 16> sortBeforeOthers; 906 for (auto i = begin; i != end; ++i) { 907 if (std::none_of(begin, end, [&](auto const &b) { return cmp(b, *i); })) 908 sortBeforeOthers.insert(*i); 909 } 910 911 auto const next = std::stable_partition(begin, end, [&](auto const &a) { 912 return sortBeforeOthers.contains(a); 913 }); 914 assert(next != begin && "not a partial ordering"); 915 begin = next; 916 } 917 } 918 919 /// Returns true if 'b' depends on a result of 'a'. 920 static bool dependsOn(OrderedPredicate *a, OrderedPredicate *b) { 921 auto *cqa = dyn_cast<ConstraintQuestion>(a->question); 922 if (!cqa) 923 return false; 924 925 auto positionDependsOnA = [&](Position *p) { 926 auto *cp = dyn_cast<ConstraintPosition>(p); 927 return cp && cp->getQuestion() == cqa; 928 }; 929 930 if (auto *cqb = dyn_cast<ConstraintQuestion>(b->question)) { 931 // Does any argument of b use a? 932 return llvm::any_of(cqb->getArgs(), positionDependsOnA); 933 } 934 if (auto *equalTo = dyn_cast<EqualToQuestion>(b->question)) { 935 return positionDependsOnA(b->position) || 936 positionDependsOnA(equalTo->getValue()); 937 } 938 return positionDependsOnA(b->position); 939 } 940 941 /// Given a module containing PDL pattern operations, generate a matcher tree 942 /// using the patterns within the given module and return the root matcher node. 943 std::unique_ptr<MatcherNode> 944 MatcherNode::generateMatcherTree(ModuleOp module, PredicateBuilder &builder, 945 DenseMap<Value, Position *> &valueToPosition) { 946 // The set of predicates contained within the pattern operations of the 947 // module. 948 struct PatternPredicates { 949 PatternPredicates(pdl::PatternOp pattern, Value root, 950 std::vector<PositionalPredicate> predicates) 951 : pattern(pattern), root(root), predicates(std::move(predicates)) {} 952 953 /// A pattern. 954 pdl::PatternOp pattern; 955 956 /// A root of the pattern chosen among the candidate roots in pdl.rewrite. 957 Value root; 958 959 /// The extracted predicates for this pattern and root. 960 std::vector<PositionalPredicate> predicates; 961 }; 962 963 SmallVector<PatternPredicates, 16> patternsAndPredicates; 964 for (pdl::PatternOp pattern : module.getOps<pdl::PatternOp>()) { 965 std::vector<PositionalPredicate> predicateList; 966 Value root = 967 buildPredicateList(pattern, builder, predicateList, valueToPosition); 968 patternsAndPredicates.emplace_back(pattern, root, std::move(predicateList)); 969 } 970 971 // Associate a pattern result with each unique predicate. 972 DenseSet<OrderedPredicate, OrderedPredicateDenseInfo> uniqued; 973 for (auto &patternAndPredList : patternsAndPredicates) { 974 for (auto &predicate : patternAndPredList.predicates) { 975 auto it = uniqued.insert(predicate); 976 it.first->patternToAnswer.try_emplace(patternAndPredList.pattern, 977 predicate.answer); 978 // Mark the insertion order (0-based indexing). 979 if (it.second) 980 it.first->id = uniqued.size() - 1; 981 } 982 } 983 984 // Associate each pattern to a set of its ordered predicates for later lookup. 985 std::vector<OrderedPredicateList> lists; 986 lists.reserve(patternsAndPredicates.size()); 987 for (auto &patternAndPredList : patternsAndPredicates) { 988 OrderedPredicateList list(patternAndPredList.pattern, 989 patternAndPredList.root); 990 for (auto &predicate : patternAndPredList.predicates) { 991 OrderedPredicate *orderedPredicate = &*uniqued.find(predicate); 992 list.predicates.insert(orderedPredicate); 993 994 // Increment the primary sum for each reference to a particular predicate. 995 ++orderedPredicate->primary; 996 } 997 lists.push_back(std::move(list)); 998 } 999 1000 // For a particular pattern, get the total primary sum and add it to the 1001 // secondary sum of each predicate. Square the primary sums to emphasize 1002 // shared predicates within rather than across patterns. 1003 for (auto &list : lists) { 1004 unsigned total = 0; 1005 for (auto *predicate : list.predicates) 1006 total += predicate->primary * predicate->primary; 1007 for (auto *predicate : list.predicates) 1008 predicate->secondary += total; 1009 } 1010 1011 // Sort the set of predicates now that the cost primary and secondary sums 1012 // have been computed. 1013 std::vector<OrderedPredicate *> ordered; 1014 ordered.reserve(uniqued.size()); 1015 for (auto &ip : uniqued) 1016 ordered.push_back(&ip); 1017 llvm::sort(ordered, [](OrderedPredicate *lhs, OrderedPredicate *rhs) { 1018 return *lhs < *rhs; 1019 }); 1020 1021 // Mostly keep the now established order, but also ensure that 1022 // ConstraintQuestions come after the results they use. 1023 stableTopologicalSort(ordered.begin(), ordered.end(), dependsOn); 1024 1025 // Build the matchers for each of the pattern predicate lists. 1026 std::unique_ptr<MatcherNode> root; 1027 for (OrderedPredicateList &list : lists) 1028 propagatePattern(root, list, ordered.begin(), ordered.end()); 1029 1030 // Collapse the graph and insert the exit node. 1031 foldSwitchToBool(root); 1032 insertExitNode(&root); 1033 return root; 1034 } 1035 1036 //===----------------------------------------------------------------------===// 1037 // MatcherNode 1038 //===----------------------------------------------------------------------===// 1039 1040 MatcherNode::MatcherNode(TypeID matcherTypeID, Position *p, Qualifier *q, 1041 std::unique_ptr<MatcherNode> failureNode) 1042 : position(p), question(q), failureNode(std::move(failureNode)), 1043 matcherTypeID(matcherTypeID) {} 1044 1045 //===----------------------------------------------------------------------===// 1046 // BoolNode 1047 //===----------------------------------------------------------------------===// 1048 1049 BoolNode::BoolNode(Position *position, Qualifier *question, Qualifier *answer, 1050 std::unique_ptr<MatcherNode> successNode, 1051 std::unique_ptr<MatcherNode> failureNode) 1052 : MatcherNode(TypeID::get<BoolNode>(), position, question, 1053 std::move(failureNode)), 1054 answer(answer), successNode(std::move(successNode)) {} 1055 1056 //===----------------------------------------------------------------------===// 1057 // SuccessNode 1058 //===----------------------------------------------------------------------===// 1059 1060 SuccessNode::SuccessNode(pdl::PatternOp pattern, Value root, 1061 std::unique_ptr<MatcherNode> failureNode) 1062 : MatcherNode(TypeID::get<SuccessNode>(), /*position=*/nullptr, 1063 /*question=*/nullptr, std::move(failureNode)), 1064 pattern(pattern), root(root) {} 1065 1066 //===----------------------------------------------------------------------===// 1067 // SwitchNode 1068 //===----------------------------------------------------------------------===// 1069 1070 SwitchNode::SwitchNode(Position *position, Qualifier *question) 1071 : MatcherNode(TypeID::get<SwitchNode>(), position, question) {} 1072