1 //===-- PredicateInfo.cpp - PredicateInfo Builder--------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------===//
8 //
9 // This file implements the PredicateInfo class.
10 //
11 //===----------------------------------------------------------------===//
12
13 #include "llvm/Transforms/Utils/PredicateInfo.h"
14 #include "llvm/ADT/DenseMap.h"
15 #include "llvm/ADT/DepthFirstIterator.h"
16 #include "llvm/ADT/STLExtras.h"
17 #include "llvm/ADT/SmallPtrSet.h"
18 #include "llvm/Analysis/AssumptionCache.h"
19 #include "llvm/IR/AssemblyAnnotationWriter.h"
20 #include "llvm/IR/Dominators.h"
21 #include "llvm/IR/IRBuilder.h"
22 #include "llvm/IR/InstIterator.h"
23 #include "llvm/IR/IntrinsicInst.h"
24 #include "llvm/IR/Module.h"
25 #include "llvm/IR/PatternMatch.h"
26 #include "llvm/InitializePasses.h"
27 #include "llvm/Support/CommandLine.h"
28 #include "llvm/Support/Debug.h"
29 #include "llvm/Support/DebugCounter.h"
30 #include "llvm/Support/FormattedStream.h"
31 #include <algorithm>
32 #define DEBUG_TYPE "predicateinfo"
33 using namespace llvm;
34 using namespace PatternMatch;
35
36 INITIALIZE_PASS_BEGIN(PredicateInfoPrinterLegacyPass, "print-predicateinfo",
37 "PredicateInfo Printer", false, false)
38 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
39 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
40 INITIALIZE_PASS_END(PredicateInfoPrinterLegacyPass, "print-predicateinfo",
41 "PredicateInfo Printer", false, false)
42 static cl::opt<bool> VerifyPredicateInfo(
43 "verify-predicateinfo", cl::init(false), cl::Hidden,
44 cl::desc("Verify PredicateInfo in legacy printer pass."));
45 DEBUG_COUNTER(RenameCounter, "predicateinfo-rename",
46 "Controls which variables are renamed with predicateinfo");
47
48 // Maximum number of conditions considered for renaming for each branch/assume.
49 // This limits renaming of deep and/or chains.
50 static const unsigned MaxCondsPerBranch = 8;
51
52 namespace {
53 // Given a predicate info that is a type of branching terminator, get the
54 // branching block.
getBranchBlock(const PredicateBase * PB)55 const BasicBlock *getBranchBlock(const PredicateBase *PB) {
56 assert(isa<PredicateWithEdge>(PB) &&
57 "Only branches and switches should have PHIOnly defs that "
58 "require branch blocks.");
59 return cast<PredicateWithEdge>(PB)->From;
60 }
61
62 // Given a predicate info that is a type of branching terminator, get the
63 // branching terminator.
getBranchTerminator(const PredicateBase * PB)64 static Instruction *getBranchTerminator(const PredicateBase *PB) {
65 assert(isa<PredicateWithEdge>(PB) &&
66 "Not a predicate info type we know how to get a terminator from.");
67 return cast<PredicateWithEdge>(PB)->From->getTerminator();
68 }
69
70 // Given a predicate info that is a type of branching terminator, get the
71 // edge this predicate info represents
getBlockEdge(const PredicateBase * PB)72 std::pair<BasicBlock *, BasicBlock *> getBlockEdge(const PredicateBase *PB) {
73 assert(isa<PredicateWithEdge>(PB) &&
74 "Not a predicate info type we know how to get an edge from.");
75 const auto *PEdge = cast<PredicateWithEdge>(PB);
76 return std::make_pair(PEdge->From, PEdge->To);
77 }
78 }
79
80 namespace llvm {
81 enum LocalNum {
82 // Operations that must appear first in the block.
83 LN_First,
84 // Operations that are somewhere in the middle of the block, and are sorted on
85 // demand.
86 LN_Middle,
87 // Operations that must appear last in a block, like successor phi node uses.
88 LN_Last
89 };
90
91 // Associate global and local DFS info with defs and uses, so we can sort them
92 // into a global domination ordering.
93 struct ValueDFS {
94 int DFSIn = 0;
95 int DFSOut = 0;
96 unsigned int LocalNum = LN_Middle;
97 // Only one of Def or Use will be set.
98 Value *Def = nullptr;
99 Use *U = nullptr;
100 // Neither PInfo nor EdgeOnly participate in the ordering
101 PredicateBase *PInfo = nullptr;
102 bool EdgeOnly = false;
103 };
104
105 // Perform a strict weak ordering on instructions and arguments.
valueComesBefore(const Value * A,const Value * B)106 static bool valueComesBefore(const Value *A, const Value *B) {
107 auto *ArgA = dyn_cast_or_null<Argument>(A);
108 auto *ArgB = dyn_cast_or_null<Argument>(B);
109 if (ArgA && !ArgB)
110 return true;
111 if (ArgB && !ArgA)
112 return false;
113 if (ArgA && ArgB)
114 return ArgA->getArgNo() < ArgB->getArgNo();
115 return cast<Instruction>(A)->comesBefore(cast<Instruction>(B));
116 }
117
118 // This compares ValueDFS structures. Doing so allows us to walk the minimum
119 // number of instructions necessary to compute our def/use ordering.
120 struct ValueDFS_Compare {
121 DominatorTree &DT;
ValueDFS_Comparellvm::ValueDFS_Compare122 ValueDFS_Compare(DominatorTree &DT) : DT(DT) {}
123
operator ()llvm::ValueDFS_Compare124 bool operator()(const ValueDFS &A, const ValueDFS &B) const {
125 if (&A == &B)
126 return false;
127 // The only case we can't directly compare them is when they in the same
128 // block, and both have localnum == middle. In that case, we have to use
129 // comesbefore to see what the real ordering is, because they are in the
130 // same basic block.
131
132 assert((A.DFSIn != B.DFSIn || A.DFSOut == B.DFSOut) &&
133 "Equal DFS-in numbers imply equal out numbers");
134 bool SameBlock = A.DFSIn == B.DFSIn;
135
136 // We want to put the def that will get used for a given set of phi uses,
137 // before those phi uses.
138 // So we sort by edge, then by def.
139 // Note that only phi nodes uses and defs can come last.
140 if (SameBlock && A.LocalNum == LN_Last && B.LocalNum == LN_Last)
141 return comparePHIRelated(A, B);
142
143 bool isADef = A.Def;
144 bool isBDef = B.Def;
145 if (!SameBlock || A.LocalNum != LN_Middle || B.LocalNum != LN_Middle)
146 return std::tie(A.DFSIn, A.LocalNum, isADef) <
147 std::tie(B.DFSIn, B.LocalNum, isBDef);
148 return localComesBefore(A, B);
149 }
150
151 // For a phi use, or a non-materialized def, return the edge it represents.
getBlockEdgellvm::ValueDFS_Compare152 std::pair<BasicBlock *, BasicBlock *> getBlockEdge(const ValueDFS &VD) const {
153 if (!VD.Def && VD.U) {
154 auto *PHI = cast<PHINode>(VD.U->getUser());
155 return std::make_pair(PHI->getIncomingBlock(*VD.U), PHI->getParent());
156 }
157 // This is really a non-materialized def.
158 return ::getBlockEdge(VD.PInfo);
159 }
160
161 // For two phi related values, return the ordering.
comparePHIRelatedllvm::ValueDFS_Compare162 bool comparePHIRelated(const ValueDFS &A, const ValueDFS &B) const {
163 BasicBlock *ASrc, *ADest, *BSrc, *BDest;
164 std::tie(ASrc, ADest) = getBlockEdge(A);
165 std::tie(BSrc, BDest) = getBlockEdge(B);
166
167 #ifndef NDEBUG
168 // This function should only be used for values in the same BB, check that.
169 DomTreeNode *DomASrc = DT.getNode(ASrc);
170 DomTreeNode *DomBSrc = DT.getNode(BSrc);
171 assert(DomASrc->getDFSNumIn() == (unsigned)A.DFSIn &&
172 "DFS numbers for A should match the ones of the source block");
173 assert(DomBSrc->getDFSNumIn() == (unsigned)B.DFSIn &&
174 "DFS numbers for B should match the ones of the source block");
175 assert(A.DFSIn == B.DFSIn && "Values must be in the same block");
176 #endif
177 (void)ASrc;
178 (void)BSrc;
179
180 // Use DFS numbers to compare destination blocks, to guarantee a
181 // deterministic order.
182 DomTreeNode *DomADest = DT.getNode(ADest);
183 DomTreeNode *DomBDest = DT.getNode(BDest);
184 unsigned AIn = DomADest->getDFSNumIn();
185 unsigned BIn = DomBDest->getDFSNumIn();
186 bool isADef = A.Def;
187 bool isBDef = B.Def;
188 assert((!A.Def || !A.U) && (!B.Def || !B.U) &&
189 "Def and U cannot be set at the same time");
190 // Now sort by edge destination and then defs before uses.
191 return std::tie(AIn, isADef) < std::tie(BIn, isBDef);
192 }
193
194 // Get the definition of an instruction that occurs in the middle of a block.
getMiddleDefllvm::ValueDFS_Compare195 Value *getMiddleDef(const ValueDFS &VD) const {
196 if (VD.Def)
197 return VD.Def;
198 // It's possible for the defs and uses to be null. For branches, the local
199 // numbering will say the placed predicaeinfos should go first (IE
200 // LN_beginning), so we won't be in this function. For assumes, we will end
201 // up here, beause we need to order the def we will place relative to the
202 // assume. So for the purpose of ordering, we pretend the def is right
203 // after the assume, because that is where we will insert the info.
204 if (!VD.U) {
205 assert(VD.PInfo &&
206 "No def, no use, and no predicateinfo should not occur");
207 assert(isa<PredicateAssume>(VD.PInfo) &&
208 "Middle of block should only occur for assumes");
209 return cast<PredicateAssume>(VD.PInfo)->AssumeInst->getNextNode();
210 }
211 return nullptr;
212 }
213
214 // Return either the Def, if it's not null, or the user of the Use, if the def
215 // is null.
getDefOrUserllvm::ValueDFS_Compare216 const Instruction *getDefOrUser(const Value *Def, const Use *U) const {
217 if (Def)
218 return cast<Instruction>(Def);
219 return cast<Instruction>(U->getUser());
220 }
221
222 // This performs the necessary local basic block ordering checks to tell
223 // whether A comes before B, where both are in the same basic block.
localComesBeforellvm::ValueDFS_Compare224 bool localComesBefore(const ValueDFS &A, const ValueDFS &B) const {
225 auto *ADef = getMiddleDef(A);
226 auto *BDef = getMiddleDef(B);
227
228 // See if we have real values or uses. If we have real values, we are
229 // guaranteed they are instructions or arguments. No matter what, we are
230 // guaranteed they are in the same block if they are instructions.
231 auto *ArgA = dyn_cast_or_null<Argument>(ADef);
232 auto *ArgB = dyn_cast_or_null<Argument>(BDef);
233
234 if (ArgA || ArgB)
235 return valueComesBefore(ArgA, ArgB);
236
237 auto *AInst = getDefOrUser(ADef, A.U);
238 auto *BInst = getDefOrUser(BDef, B.U);
239 return valueComesBefore(AInst, BInst);
240 }
241 };
242
243 class PredicateInfoBuilder {
244 // Used to store information about each value we might rename.
245 struct ValueInfo {
246 SmallVector<PredicateBase *, 4> Infos;
247 };
248
249 PredicateInfo &PI;
250 Function &F;
251 DominatorTree &DT;
252 AssumptionCache &AC;
253
254 // This stores info about each operand or comparison result we make copies
255 // of. The real ValueInfos start at index 1, index 0 is unused so that we
256 // can more easily detect invalid indexing.
257 SmallVector<ValueInfo, 32> ValueInfos;
258
259 // This gives the index into the ValueInfos array for a given Value. Because
260 // 0 is not a valid Value Info index, you can use DenseMap::lookup and tell
261 // whether it returned a valid result.
262 DenseMap<Value *, unsigned int> ValueInfoNums;
263
264 // The set of edges along which we can only handle phi uses, due to critical
265 // edges.
266 DenseSet<std::pair<BasicBlock *, BasicBlock *>> EdgeUsesOnly;
267
268 ValueInfo &getOrCreateValueInfo(Value *);
269 const ValueInfo &getValueInfo(Value *) const;
270
271 void processAssume(IntrinsicInst *, BasicBlock *,
272 SmallVectorImpl<Value *> &OpsToRename);
273 void processBranch(BranchInst *, BasicBlock *,
274 SmallVectorImpl<Value *> &OpsToRename);
275 void processSwitch(SwitchInst *, BasicBlock *,
276 SmallVectorImpl<Value *> &OpsToRename);
277 void renameUses(SmallVectorImpl<Value *> &OpsToRename);
278 void addInfoFor(SmallVectorImpl<Value *> &OpsToRename, Value *Op,
279 PredicateBase *PB);
280
281 typedef SmallVectorImpl<ValueDFS> ValueDFSStack;
282 void convertUsesToDFSOrdered(Value *, SmallVectorImpl<ValueDFS> &);
283 Value *materializeStack(unsigned int &, ValueDFSStack &, Value *);
284 bool stackIsInScope(const ValueDFSStack &, const ValueDFS &) const;
285 void popStackUntilDFSScope(ValueDFSStack &, const ValueDFS &);
286
287 public:
PredicateInfoBuilder(PredicateInfo & PI,Function & F,DominatorTree & DT,AssumptionCache & AC)288 PredicateInfoBuilder(PredicateInfo &PI, Function &F, DominatorTree &DT,
289 AssumptionCache &AC)
290 : PI(PI), F(F), DT(DT), AC(AC) {
291 // Push an empty operand info so that we can detect 0 as not finding one
292 ValueInfos.resize(1);
293 }
294
295 void buildPredicateInfo();
296 };
297
stackIsInScope(const ValueDFSStack & Stack,const ValueDFS & VDUse) const298 bool PredicateInfoBuilder::stackIsInScope(const ValueDFSStack &Stack,
299 const ValueDFS &VDUse) const {
300 if (Stack.empty())
301 return false;
302 // If it's a phi only use, make sure it's for this phi node edge, and that the
303 // use is in a phi node. If it's anything else, and the top of the stack is
304 // EdgeOnly, we need to pop the stack. We deliberately sort phi uses next to
305 // the defs they must go with so that we can know it's time to pop the stack
306 // when we hit the end of the phi uses for a given def.
307 if (Stack.back().EdgeOnly) {
308 if (!VDUse.U)
309 return false;
310 auto *PHI = dyn_cast<PHINode>(VDUse.U->getUser());
311 if (!PHI)
312 return false;
313 // Check edge
314 BasicBlock *EdgePred = PHI->getIncomingBlock(*VDUse.U);
315 if (EdgePred != getBranchBlock(Stack.back().PInfo))
316 return false;
317
318 // Use dominates, which knows how to handle edge dominance.
319 return DT.dominates(getBlockEdge(Stack.back().PInfo), *VDUse.U);
320 }
321
322 return (VDUse.DFSIn >= Stack.back().DFSIn &&
323 VDUse.DFSOut <= Stack.back().DFSOut);
324 }
325
popStackUntilDFSScope(ValueDFSStack & Stack,const ValueDFS & VD)326 void PredicateInfoBuilder::popStackUntilDFSScope(ValueDFSStack &Stack,
327 const ValueDFS &VD) {
328 while (!Stack.empty() && !stackIsInScope(Stack, VD))
329 Stack.pop_back();
330 }
331
332 // Convert the uses of Op into a vector of uses, associating global and local
333 // DFS info with each one.
convertUsesToDFSOrdered(Value * Op,SmallVectorImpl<ValueDFS> & DFSOrderedSet)334 void PredicateInfoBuilder::convertUsesToDFSOrdered(
335 Value *Op, SmallVectorImpl<ValueDFS> &DFSOrderedSet) {
336 for (auto &U : Op->uses()) {
337 if (auto *I = dyn_cast<Instruction>(U.getUser())) {
338 ValueDFS VD;
339 // Put the phi node uses in the incoming block.
340 BasicBlock *IBlock;
341 if (auto *PN = dyn_cast<PHINode>(I)) {
342 IBlock = PN->getIncomingBlock(U);
343 // Make phi node users appear last in the incoming block
344 // they are from.
345 VD.LocalNum = LN_Last;
346 } else {
347 // If it's not a phi node use, it is somewhere in the middle of the
348 // block.
349 IBlock = I->getParent();
350 VD.LocalNum = LN_Middle;
351 }
352 DomTreeNode *DomNode = DT.getNode(IBlock);
353 // It's possible our use is in an unreachable block. Skip it if so.
354 if (!DomNode)
355 continue;
356 VD.DFSIn = DomNode->getDFSNumIn();
357 VD.DFSOut = DomNode->getDFSNumOut();
358 VD.U = &U;
359 DFSOrderedSet.push_back(VD);
360 }
361 }
362 }
363
shouldRename(Value * V)364 bool shouldRename(Value *V) {
365 // Only want real values, not constants. Additionally, operands with one use
366 // are only being used in the comparison, which means they will not be useful
367 // for us to consider for predicateinfo.
368 return (isa<Instruction>(V) || isa<Argument>(V)) && !V->hasOneUse();
369 }
370
371 // Collect relevant operations from Comparison that we may want to insert copies
372 // for.
collectCmpOps(CmpInst * Comparison,SmallVectorImpl<Value * > & CmpOperands)373 void collectCmpOps(CmpInst *Comparison, SmallVectorImpl<Value *> &CmpOperands) {
374 auto *Op0 = Comparison->getOperand(0);
375 auto *Op1 = Comparison->getOperand(1);
376 if (Op0 == Op1)
377 return;
378
379 CmpOperands.push_back(Op0);
380 CmpOperands.push_back(Op1);
381 }
382
383 // Add Op, PB to the list of value infos for Op, and mark Op to be renamed.
addInfoFor(SmallVectorImpl<Value * > & OpsToRename,Value * Op,PredicateBase * PB)384 void PredicateInfoBuilder::addInfoFor(SmallVectorImpl<Value *> &OpsToRename,
385 Value *Op, PredicateBase *PB) {
386 auto &OperandInfo = getOrCreateValueInfo(Op);
387 if (OperandInfo.Infos.empty())
388 OpsToRename.push_back(Op);
389 PI.AllInfos.push_back(PB);
390 OperandInfo.Infos.push_back(PB);
391 }
392
393 // Process an assume instruction and place relevant operations we want to rename
394 // into OpsToRename.
processAssume(IntrinsicInst * II,BasicBlock * AssumeBB,SmallVectorImpl<Value * > & OpsToRename)395 void PredicateInfoBuilder::processAssume(
396 IntrinsicInst *II, BasicBlock *AssumeBB,
397 SmallVectorImpl<Value *> &OpsToRename) {
398 SmallVector<Value *, 4> Worklist;
399 SmallPtrSet<Value *, 4> Visited;
400 Worklist.push_back(II->getOperand(0));
401 while (!Worklist.empty()) {
402 Value *Cond = Worklist.pop_back_val();
403 if (!Visited.insert(Cond).second)
404 continue;
405 if (Visited.size() > MaxCondsPerBranch)
406 break;
407
408 Value *Op0, *Op1;
409 if (match(Cond, m_LogicalAnd(m_Value(Op0), m_Value(Op1)))) {
410 Worklist.push_back(Op1);
411 Worklist.push_back(Op0);
412 }
413
414 SmallVector<Value *, 4> Values;
415 Values.push_back(Cond);
416 if (auto *Cmp = dyn_cast<CmpInst>(Cond))
417 collectCmpOps(Cmp, Values);
418
419 for (Value *V : Values) {
420 if (shouldRename(V)) {
421 auto *PA = new PredicateAssume(V, II, Cond);
422 addInfoFor(OpsToRename, V, PA);
423 }
424 }
425 }
426 }
427
428 // Process a block terminating branch, and place relevant operations to be
429 // renamed into OpsToRename.
processBranch(BranchInst * BI,BasicBlock * BranchBB,SmallVectorImpl<Value * > & OpsToRename)430 void PredicateInfoBuilder::processBranch(
431 BranchInst *BI, BasicBlock *BranchBB,
432 SmallVectorImpl<Value *> &OpsToRename) {
433 BasicBlock *FirstBB = BI->getSuccessor(0);
434 BasicBlock *SecondBB = BI->getSuccessor(1);
435
436 for (BasicBlock *Succ : {FirstBB, SecondBB}) {
437 bool TakenEdge = Succ == FirstBB;
438 // Don't try to insert on a self-edge. This is mainly because we will
439 // eliminate during renaming anyway.
440 if (Succ == BranchBB)
441 continue;
442
443 SmallVector<Value *, 4> Worklist;
444 SmallPtrSet<Value *, 4> Visited;
445 Worklist.push_back(BI->getCondition());
446 while (!Worklist.empty()) {
447 Value *Cond = Worklist.pop_back_val();
448 if (!Visited.insert(Cond).second)
449 continue;
450 if (Visited.size() > MaxCondsPerBranch)
451 break;
452
453 Value *Op0, *Op1;
454 if (TakenEdge ? match(Cond, m_LogicalAnd(m_Value(Op0), m_Value(Op1)))
455 : match(Cond, m_LogicalOr(m_Value(Op0), m_Value(Op1)))) {
456 Worklist.push_back(Op1);
457 Worklist.push_back(Op0);
458 }
459
460 SmallVector<Value *, 4> Values;
461 Values.push_back(Cond);
462 if (auto *Cmp = dyn_cast<CmpInst>(Cond))
463 collectCmpOps(Cmp, Values);
464
465 for (Value *V : Values) {
466 if (shouldRename(V)) {
467 PredicateBase *PB =
468 new PredicateBranch(V, BranchBB, Succ, Cond, TakenEdge);
469 addInfoFor(OpsToRename, V, PB);
470 if (!Succ->getSinglePredecessor())
471 EdgeUsesOnly.insert({BranchBB, Succ});
472 }
473 }
474 }
475 }
476 }
477 // Process a block terminating switch, and place relevant operations to be
478 // renamed into OpsToRename.
processSwitch(SwitchInst * SI,BasicBlock * BranchBB,SmallVectorImpl<Value * > & OpsToRename)479 void PredicateInfoBuilder::processSwitch(
480 SwitchInst *SI, BasicBlock *BranchBB,
481 SmallVectorImpl<Value *> &OpsToRename) {
482 Value *Op = SI->getCondition();
483 if ((!isa<Instruction>(Op) && !isa<Argument>(Op)) || Op->hasOneUse())
484 return;
485
486 // Remember how many outgoing edges there are to every successor.
487 SmallDenseMap<BasicBlock *, unsigned, 16> SwitchEdges;
488 for (unsigned i = 0, e = SI->getNumSuccessors(); i != e; ++i) {
489 BasicBlock *TargetBlock = SI->getSuccessor(i);
490 ++SwitchEdges[TargetBlock];
491 }
492
493 // Now propagate info for each case value
494 for (auto C : SI->cases()) {
495 BasicBlock *TargetBlock = C.getCaseSuccessor();
496 if (SwitchEdges.lookup(TargetBlock) == 1) {
497 PredicateSwitch *PS = new PredicateSwitch(
498 Op, SI->getParent(), TargetBlock, C.getCaseValue(), SI);
499 addInfoFor(OpsToRename, Op, PS);
500 if (!TargetBlock->getSinglePredecessor())
501 EdgeUsesOnly.insert({BranchBB, TargetBlock});
502 }
503 }
504 }
505
506 // Build predicate info for our function
buildPredicateInfo()507 void PredicateInfoBuilder::buildPredicateInfo() {
508 DT.updateDFSNumbers();
509 // Collect operands to rename from all conditional branch terminators, as well
510 // as assume statements.
511 SmallVector<Value *, 8> OpsToRename;
512 for (auto *DTN : depth_first(DT.getRootNode())) {
513 BasicBlock *BranchBB = DTN->getBlock();
514 if (auto *BI = dyn_cast<BranchInst>(BranchBB->getTerminator())) {
515 if (!BI->isConditional())
516 continue;
517 // Can't insert conditional information if they all go to the same place.
518 if (BI->getSuccessor(0) == BI->getSuccessor(1))
519 continue;
520 processBranch(BI, BranchBB, OpsToRename);
521 } else if (auto *SI = dyn_cast<SwitchInst>(BranchBB->getTerminator())) {
522 processSwitch(SI, BranchBB, OpsToRename);
523 }
524 }
525 for (auto &Assume : AC.assumptions()) {
526 if (auto *II = dyn_cast_or_null<IntrinsicInst>(Assume))
527 if (DT.isReachableFromEntry(II->getParent()))
528 processAssume(II, II->getParent(), OpsToRename);
529 }
530 // Now rename all our operations.
531 renameUses(OpsToRename);
532 }
533
534 // Given the renaming stack, make all the operands currently on the stack real
535 // by inserting them into the IR. Return the last operation's value.
materializeStack(unsigned int & Counter,ValueDFSStack & RenameStack,Value * OrigOp)536 Value *PredicateInfoBuilder::materializeStack(unsigned int &Counter,
537 ValueDFSStack &RenameStack,
538 Value *OrigOp) {
539 // Find the first thing we have to materialize
540 auto RevIter = RenameStack.rbegin();
541 for (; RevIter != RenameStack.rend(); ++RevIter)
542 if (RevIter->Def)
543 break;
544
545 size_t Start = RevIter - RenameStack.rbegin();
546 // The maximum number of things we should be trying to materialize at once
547 // right now is 4, depending on if we had an assume, a branch, and both used
548 // and of conditions.
549 for (auto RenameIter = RenameStack.end() - Start;
550 RenameIter != RenameStack.end(); ++RenameIter) {
551 auto *Op =
552 RenameIter == RenameStack.begin() ? OrigOp : (RenameIter - 1)->Def;
553 ValueDFS &Result = *RenameIter;
554 auto *ValInfo = Result.PInfo;
555 ValInfo->RenamedOp = (RenameStack.end() - Start) == RenameStack.begin()
556 ? OrigOp
557 : (RenameStack.end() - Start - 1)->Def;
558 // For edge predicates, we can just place the operand in the block before
559 // the terminator. For assume, we have to place it right before the assume
560 // to ensure we dominate all of our uses. Always insert right before the
561 // relevant instruction (terminator, assume), so that we insert in proper
562 // order in the case of multiple predicateinfo in the same block.
563 // The number of named values is used to detect if a new declaration was
564 // added. If so, that declaration is tracked so that it can be removed when
565 // the analysis is done. The corner case were a new declaration results in
566 // a name clash and the old name being renamed is not considered as that
567 // represents an invalid module.
568 if (isa<PredicateWithEdge>(ValInfo)) {
569 IRBuilder<> B(getBranchTerminator(ValInfo));
570 auto NumDecls = F.getParent()->getNumNamedValues();
571 Function *IF = Intrinsic::getDeclaration(
572 F.getParent(), Intrinsic::ssa_copy, Op->getType());
573 if (NumDecls != F.getParent()->getNumNamedValues())
574 PI.CreatedDeclarations.insert(IF);
575 CallInst *PIC =
576 B.CreateCall(IF, Op, Op->getName() + "." + Twine(Counter++));
577 PI.PredicateMap.insert({PIC, ValInfo});
578 Result.Def = PIC;
579 } else {
580 auto *PAssume = dyn_cast<PredicateAssume>(ValInfo);
581 assert(PAssume &&
582 "Should not have gotten here without it being an assume");
583 // Insert the predicate directly after the assume. While it also holds
584 // directly before it, assume(i1 true) is not a useful fact.
585 IRBuilder<> B(PAssume->AssumeInst->getNextNode());
586 auto NumDecls = F.getParent()->getNumNamedValues();
587 Function *IF = Intrinsic::getDeclaration(
588 F.getParent(), Intrinsic::ssa_copy, Op->getType());
589 if (NumDecls != F.getParent()->getNumNamedValues())
590 PI.CreatedDeclarations.insert(IF);
591 CallInst *PIC = B.CreateCall(IF, Op);
592 PI.PredicateMap.insert({PIC, ValInfo});
593 Result.Def = PIC;
594 }
595 }
596 return RenameStack.back().Def;
597 }
598
599 // Instead of the standard SSA renaming algorithm, which is O(Number of
600 // instructions), and walks the entire dominator tree, we walk only the defs +
601 // uses. The standard SSA renaming algorithm does not really rely on the
602 // dominator tree except to order the stack push/pops of the renaming stacks, so
603 // that defs end up getting pushed before hitting the correct uses. This does
604 // not require the dominator tree, only the *order* of the dominator tree. The
605 // complete and correct ordering of the defs and uses, in dominator tree is
606 // contained in the DFS numbering of the dominator tree. So we sort the defs and
607 // uses into the DFS ordering, and then just use the renaming stack as per
608 // normal, pushing when we hit a def (which is a predicateinfo instruction),
609 // popping when we are out of the dfs scope for that def, and replacing any uses
610 // with top of stack if it exists. In order to handle liveness without
611 // propagating liveness info, we don't actually insert the predicateinfo
612 // instruction def until we see a use that it would dominate. Once we see such
613 // a use, we materialize the predicateinfo instruction in the right place and
614 // use it.
615 //
616 // TODO: Use this algorithm to perform fast single-variable renaming in
617 // promotememtoreg and memoryssa.
renameUses(SmallVectorImpl<Value * > & OpsToRename)618 void PredicateInfoBuilder::renameUses(SmallVectorImpl<Value *> &OpsToRename) {
619 ValueDFS_Compare Compare(DT);
620 // Compute liveness, and rename in O(uses) per Op.
621 for (auto *Op : OpsToRename) {
622 LLVM_DEBUG(dbgs() << "Visiting " << *Op << "\n");
623 unsigned Counter = 0;
624 SmallVector<ValueDFS, 16> OrderedUses;
625 const auto &ValueInfo = getValueInfo(Op);
626 // Insert the possible copies into the def/use list.
627 // They will become real copies if we find a real use for them, and never
628 // created otherwise.
629 for (const auto &PossibleCopy : ValueInfo.Infos) {
630 ValueDFS VD;
631 // Determine where we are going to place the copy by the copy type.
632 // The predicate info for branches always come first, they will get
633 // materialized in the split block at the top of the block.
634 // The predicate info for assumes will be somewhere in the middle,
635 // it will get materialized in front of the assume.
636 if (const auto *PAssume = dyn_cast<PredicateAssume>(PossibleCopy)) {
637 VD.LocalNum = LN_Middle;
638 DomTreeNode *DomNode = DT.getNode(PAssume->AssumeInst->getParent());
639 if (!DomNode)
640 continue;
641 VD.DFSIn = DomNode->getDFSNumIn();
642 VD.DFSOut = DomNode->getDFSNumOut();
643 VD.PInfo = PossibleCopy;
644 OrderedUses.push_back(VD);
645 } else if (isa<PredicateWithEdge>(PossibleCopy)) {
646 // If we can only do phi uses, we treat it like it's in the branch
647 // block, and handle it specially. We know that it goes last, and only
648 // dominate phi uses.
649 auto BlockEdge = getBlockEdge(PossibleCopy);
650 if (EdgeUsesOnly.count(BlockEdge)) {
651 VD.LocalNum = LN_Last;
652 auto *DomNode = DT.getNode(BlockEdge.first);
653 if (DomNode) {
654 VD.DFSIn = DomNode->getDFSNumIn();
655 VD.DFSOut = DomNode->getDFSNumOut();
656 VD.PInfo = PossibleCopy;
657 VD.EdgeOnly = true;
658 OrderedUses.push_back(VD);
659 }
660 } else {
661 // Otherwise, we are in the split block (even though we perform
662 // insertion in the branch block).
663 // Insert a possible copy at the split block and before the branch.
664 VD.LocalNum = LN_First;
665 auto *DomNode = DT.getNode(BlockEdge.second);
666 if (DomNode) {
667 VD.DFSIn = DomNode->getDFSNumIn();
668 VD.DFSOut = DomNode->getDFSNumOut();
669 VD.PInfo = PossibleCopy;
670 OrderedUses.push_back(VD);
671 }
672 }
673 }
674 }
675
676 convertUsesToDFSOrdered(Op, OrderedUses);
677 // Here we require a stable sort because we do not bother to try to
678 // assign an order to the operands the uses represent. Thus, two
679 // uses in the same instruction do not have a strict sort order
680 // currently and will be considered equal. We could get rid of the
681 // stable sort by creating one if we wanted.
682 llvm::stable_sort(OrderedUses, Compare);
683 SmallVector<ValueDFS, 8> RenameStack;
684 // For each use, sorted into dfs order, push values and replaces uses with
685 // top of stack, which will represent the reaching def.
686 for (auto &VD : OrderedUses) {
687 // We currently do not materialize copy over copy, but we should decide if
688 // we want to.
689 bool PossibleCopy = VD.PInfo != nullptr;
690 if (RenameStack.empty()) {
691 LLVM_DEBUG(dbgs() << "Rename Stack is empty\n");
692 } else {
693 LLVM_DEBUG(dbgs() << "Rename Stack Top DFS numbers are ("
694 << RenameStack.back().DFSIn << ","
695 << RenameStack.back().DFSOut << ")\n");
696 }
697
698 LLVM_DEBUG(dbgs() << "Current DFS numbers are (" << VD.DFSIn << ","
699 << VD.DFSOut << ")\n");
700
701 bool ShouldPush = (VD.Def || PossibleCopy);
702 bool OutOfScope = !stackIsInScope(RenameStack, VD);
703 if (OutOfScope || ShouldPush) {
704 // Sync to our current scope.
705 popStackUntilDFSScope(RenameStack, VD);
706 if (ShouldPush) {
707 RenameStack.push_back(VD);
708 }
709 }
710 // If we get to this point, and the stack is empty we must have a use
711 // with no renaming needed, just skip it.
712 if (RenameStack.empty())
713 continue;
714 // Skip values, only want to rename the uses
715 if (VD.Def || PossibleCopy)
716 continue;
717 if (!DebugCounter::shouldExecute(RenameCounter)) {
718 LLVM_DEBUG(dbgs() << "Skipping execution due to debug counter\n");
719 continue;
720 }
721 ValueDFS &Result = RenameStack.back();
722
723 // If the possible copy dominates something, materialize our stack up to
724 // this point. This ensures every comparison that affects our operation
725 // ends up with predicateinfo.
726 if (!Result.Def)
727 Result.Def = materializeStack(Counter, RenameStack, Op);
728
729 LLVM_DEBUG(dbgs() << "Found replacement " << *Result.Def << " for "
730 << *VD.U->get() << " in " << *(VD.U->getUser())
731 << "\n");
732 assert(DT.dominates(cast<Instruction>(Result.Def), *VD.U) &&
733 "Predicateinfo def should have dominated this use");
734 VD.U->set(Result.Def);
735 }
736 }
737 }
738
739 PredicateInfoBuilder::ValueInfo &
getOrCreateValueInfo(Value * Operand)740 PredicateInfoBuilder::getOrCreateValueInfo(Value *Operand) {
741 auto OIN = ValueInfoNums.find(Operand);
742 if (OIN == ValueInfoNums.end()) {
743 // This will grow it
744 ValueInfos.resize(ValueInfos.size() + 1);
745 // This will use the new size and give us a 0 based number of the info
746 auto InsertResult = ValueInfoNums.insert({Operand, ValueInfos.size() - 1});
747 assert(InsertResult.second && "Value info number already existed?");
748 return ValueInfos[InsertResult.first->second];
749 }
750 return ValueInfos[OIN->second];
751 }
752
753 const PredicateInfoBuilder::ValueInfo &
getValueInfo(Value * Operand) const754 PredicateInfoBuilder::getValueInfo(Value *Operand) const {
755 auto OINI = ValueInfoNums.lookup(Operand);
756 assert(OINI != 0 && "Operand was not really in the Value Info Numbers");
757 assert(OINI < ValueInfos.size() &&
758 "Value Info Number greater than size of Value Info Table");
759 return ValueInfos[OINI];
760 }
761
PredicateInfo(Function & F,DominatorTree & DT,AssumptionCache & AC)762 PredicateInfo::PredicateInfo(Function &F, DominatorTree &DT,
763 AssumptionCache &AC)
764 : F(F) {
765 PredicateInfoBuilder Builder(*this, F, DT, AC);
766 Builder.buildPredicateInfo();
767 }
768
769 // Remove all declarations we created . The PredicateInfo consumers are
770 // responsible for remove the ssa_copy calls created.
~PredicateInfo()771 PredicateInfo::~PredicateInfo() {
772 // Collect function pointers in set first, as SmallSet uses a SmallVector
773 // internally and we have to remove the asserting value handles first.
774 SmallPtrSet<Function *, 20> FunctionPtrs;
775 for (const auto &F : CreatedDeclarations)
776 FunctionPtrs.insert(&*F);
777 CreatedDeclarations.clear();
778
779 for (Function *F : FunctionPtrs) {
780 assert(F->user_begin() == F->user_end() &&
781 "PredicateInfo consumer did not remove all SSA copies.");
782 F->eraseFromParent();
783 }
784 }
785
getConstraint() const786 std::optional<PredicateConstraint> PredicateBase::getConstraint() const {
787 switch (Type) {
788 case PT_Assume:
789 case PT_Branch: {
790 bool TrueEdge = true;
791 if (auto *PBranch = dyn_cast<PredicateBranch>(this))
792 TrueEdge = PBranch->TrueEdge;
793
794 if (Condition == RenamedOp) {
795 return {{CmpInst::ICMP_EQ,
796 TrueEdge ? ConstantInt::getTrue(Condition->getType())
797 : ConstantInt::getFalse(Condition->getType())}};
798 }
799
800 CmpInst *Cmp = dyn_cast<CmpInst>(Condition);
801 if (!Cmp) {
802 // TODO: Make this an assertion once RenamedOp is fully accurate.
803 return std::nullopt;
804 }
805
806 CmpInst::Predicate Pred;
807 Value *OtherOp;
808 if (Cmp->getOperand(0) == RenamedOp) {
809 Pred = Cmp->getPredicate();
810 OtherOp = Cmp->getOperand(1);
811 } else if (Cmp->getOperand(1) == RenamedOp) {
812 Pred = Cmp->getSwappedPredicate();
813 OtherOp = Cmp->getOperand(0);
814 } else {
815 // TODO: Make this an assertion once RenamedOp is fully accurate.
816 return std::nullopt;
817 }
818
819 // Invert predicate along false edge.
820 if (!TrueEdge)
821 Pred = CmpInst::getInversePredicate(Pred);
822
823 return {{Pred, OtherOp}};
824 }
825 case PT_Switch:
826 if (Condition != RenamedOp) {
827 // TODO: Make this an assertion once RenamedOp is fully accurate.
828 return std::nullopt;
829 }
830
831 return {{CmpInst::ICMP_EQ, cast<PredicateSwitch>(this)->CaseValue}};
832 }
833 llvm_unreachable("Unknown predicate type");
834 }
835
verifyPredicateInfo() const836 void PredicateInfo::verifyPredicateInfo() const {}
837
838 char PredicateInfoPrinterLegacyPass::ID = 0;
839
PredicateInfoPrinterLegacyPass()840 PredicateInfoPrinterLegacyPass::PredicateInfoPrinterLegacyPass()
841 : FunctionPass(ID) {
842 initializePredicateInfoPrinterLegacyPassPass(
843 *PassRegistry::getPassRegistry());
844 }
845
getAnalysisUsage(AnalysisUsage & AU) const846 void PredicateInfoPrinterLegacyPass::getAnalysisUsage(AnalysisUsage &AU) const {
847 AU.setPreservesAll();
848 AU.addRequiredTransitive<DominatorTreeWrapperPass>();
849 AU.addRequired<AssumptionCacheTracker>();
850 }
851
852 // Replace ssa_copy calls created by PredicateInfo with their operand.
replaceCreatedSSACopys(PredicateInfo & PredInfo,Function & F)853 static void replaceCreatedSSACopys(PredicateInfo &PredInfo, Function &F) {
854 for (Instruction &Inst : llvm::make_early_inc_range(instructions(F))) {
855 const auto *PI = PredInfo.getPredicateInfoFor(&Inst);
856 auto *II = dyn_cast<IntrinsicInst>(&Inst);
857 if (!PI || !II || II->getIntrinsicID() != Intrinsic::ssa_copy)
858 continue;
859
860 Inst.replaceAllUsesWith(II->getOperand(0));
861 Inst.eraseFromParent();
862 }
863 }
864
runOnFunction(Function & F)865 bool PredicateInfoPrinterLegacyPass::runOnFunction(Function &F) {
866 auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
867 auto &AC = getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
868 auto PredInfo = std::make_unique<PredicateInfo>(F, DT, AC);
869 PredInfo->print(dbgs());
870 if (VerifyPredicateInfo)
871 PredInfo->verifyPredicateInfo();
872
873 replaceCreatedSSACopys(*PredInfo, F);
874 return false;
875 }
876
run(Function & F,FunctionAnalysisManager & AM)877 PreservedAnalyses PredicateInfoPrinterPass::run(Function &F,
878 FunctionAnalysisManager &AM) {
879 auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
880 auto &AC = AM.getResult<AssumptionAnalysis>(F);
881 OS << "PredicateInfo for function: " << F.getName() << "\n";
882 auto PredInfo = std::make_unique<PredicateInfo>(F, DT, AC);
883 PredInfo->print(OS);
884
885 replaceCreatedSSACopys(*PredInfo, F);
886 return PreservedAnalyses::all();
887 }
888
889 /// An assembly annotator class to print PredicateInfo information in
890 /// comments.
891 class PredicateInfoAnnotatedWriter : public AssemblyAnnotationWriter {
892 friend class PredicateInfo;
893 const PredicateInfo *PredInfo;
894
895 public:
PredicateInfoAnnotatedWriter(const PredicateInfo * M)896 PredicateInfoAnnotatedWriter(const PredicateInfo *M) : PredInfo(M) {}
897
emitBasicBlockStartAnnot(const BasicBlock * BB,formatted_raw_ostream & OS)898 void emitBasicBlockStartAnnot(const BasicBlock *BB,
899 formatted_raw_ostream &OS) override {}
900
emitInstructionAnnot(const Instruction * I,formatted_raw_ostream & OS)901 void emitInstructionAnnot(const Instruction *I,
902 formatted_raw_ostream &OS) override {
903 if (const auto *PI = PredInfo->getPredicateInfoFor(I)) {
904 OS << "; Has predicate info\n";
905 if (const auto *PB = dyn_cast<PredicateBranch>(PI)) {
906 OS << "; branch predicate info { TrueEdge: " << PB->TrueEdge
907 << " Comparison:" << *PB->Condition << " Edge: [";
908 PB->From->printAsOperand(OS);
909 OS << ",";
910 PB->To->printAsOperand(OS);
911 OS << "]";
912 } else if (const auto *PS = dyn_cast<PredicateSwitch>(PI)) {
913 OS << "; switch predicate info { CaseValue: " << *PS->CaseValue
914 << " Switch:" << *PS->Switch << " Edge: [";
915 PS->From->printAsOperand(OS);
916 OS << ",";
917 PS->To->printAsOperand(OS);
918 OS << "]";
919 } else if (const auto *PA = dyn_cast<PredicateAssume>(PI)) {
920 OS << "; assume predicate info {"
921 << " Comparison:" << *PA->Condition;
922 }
923 OS << ", RenamedOp: ";
924 PI->RenamedOp->printAsOperand(OS, false);
925 OS << " }\n";
926 }
927 }
928 };
929
print(raw_ostream & OS) const930 void PredicateInfo::print(raw_ostream &OS) const {
931 PredicateInfoAnnotatedWriter Writer(this);
932 F.print(OS, &Writer);
933 }
934
dump() const935 void PredicateInfo::dump() const {
936 PredicateInfoAnnotatedWriter Writer(this);
937 F.print(dbgs(), &Writer);
938 }
939
run(Function & F,FunctionAnalysisManager & AM)940 PreservedAnalyses PredicateInfoVerifierPass::run(Function &F,
941 FunctionAnalysisManager &AM) {
942 auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
943 auto &AC = AM.getResult<AssumptionAnalysis>(F);
944 std::make_unique<PredicateInfo>(F, DT, AC)->verifyPredicateInfo();
945
946 return PreservedAnalyses::all();
947 }
948 }
949