1 //===- PartialInlining.cpp - Inline parts of functions --------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This pass performs partial inlining, typically by inlining an if statement 10 // that surrounds the body of the function. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Transforms/IPO/PartialInlining.h" 15 #include "llvm/ADT/DenseMap.h" 16 #include "llvm/ADT/DenseSet.h" 17 #include "llvm/ADT/DepthFirstIterator.h" 18 #include "llvm/ADT/STLExtras.h" 19 #include "llvm/ADT/SmallVector.h" 20 #include "llvm/ADT/Statistic.h" 21 #include "llvm/Analysis/BlockFrequencyInfo.h" 22 #include "llvm/Analysis/BranchProbabilityInfo.h" 23 #include "llvm/Analysis/InlineCost.h" 24 #include "llvm/Analysis/LoopInfo.h" 25 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 26 #include "llvm/Analysis/ProfileSummaryInfo.h" 27 #include "llvm/Analysis/TargetLibraryInfo.h" 28 #include "llvm/Analysis/TargetTransformInfo.h" 29 #include "llvm/IR/Attributes.h" 30 #include "llvm/IR/BasicBlock.h" 31 #include "llvm/IR/CFG.h" 32 #include "llvm/IR/DebugLoc.h" 33 #include "llvm/IR/DiagnosticInfo.h" 34 #include "llvm/IR/Dominators.h" 35 #include "llvm/IR/Function.h" 36 #include "llvm/IR/InstrTypes.h" 37 #include "llvm/IR/Instruction.h" 38 #include "llvm/IR/Instructions.h" 39 #include "llvm/IR/IntrinsicInst.h" 40 #include "llvm/IR/Intrinsics.h" 41 #include "llvm/IR/Module.h" 42 #include "llvm/IR/Operator.h" 43 #include "llvm/IR/ProfDataUtils.h" 44 #include "llvm/IR/User.h" 45 #include "llvm/Support/BlockFrequency.h" 46 #include "llvm/Support/BranchProbability.h" 47 #include "llvm/Support/Casting.h" 48 #include "llvm/Support/CommandLine.h" 49 #include "llvm/Support/ErrorHandling.h" 50 #include "llvm/Transforms/IPO.h" 51 #include "llvm/Transforms/Utils/Cloning.h" 52 #include "llvm/Transforms/Utils/CodeExtractor.h" 53 #include "llvm/Transforms/Utils/ValueMapper.h" 54 #include <algorithm> 55 #include <cassert> 56 #include <cstdint> 57 #include <memory> 58 #include <tuple> 59 #include <vector> 60 61 using namespace llvm; 62 63 #define DEBUG_TYPE "partial-inlining" 64 65 STATISTIC(NumPartialInlined, 66 "Number of callsites functions partially inlined into."); 67 STATISTIC(NumColdOutlinePartialInlined, "Number of times functions with " 68 "cold outlined regions were partially " 69 "inlined into its caller(s)."); 70 STATISTIC(NumColdRegionsFound, 71 "Number of cold single entry/exit regions found."); 72 STATISTIC(NumColdRegionsOutlined, 73 "Number of cold single entry/exit regions outlined."); 74 75 // Command line option to disable partial-inlining. The default is false: 76 static cl::opt<bool> 77 DisablePartialInlining("disable-partial-inlining", cl::init(false), 78 cl::Hidden, cl::desc("Disable partial inlining")); 79 // Command line option to disable multi-region partial-inlining. The default is 80 // false: 81 static cl::opt<bool> DisableMultiRegionPartialInline( 82 "disable-mr-partial-inlining", cl::init(false), cl::Hidden, 83 cl::desc("Disable multi-region partial inlining")); 84 85 // Command line option to force outlining in regions with live exit variables. 86 // The default is false: 87 static cl::opt<bool> 88 ForceLiveExit("pi-force-live-exit-outline", cl::init(false), cl::Hidden, 89 cl::desc("Force outline regions with live exits")); 90 91 // Command line option to enable marking outline functions with Cold Calling 92 // Convention. The default is false: 93 static cl::opt<bool> 94 MarkOutlinedColdCC("pi-mark-coldcc", cl::init(false), cl::Hidden, 95 cl::desc("Mark outline function calls with ColdCC")); 96 97 // This is an option used by testing: 98 static cl::opt<bool> SkipCostAnalysis("skip-partial-inlining-cost-analysis", 99 100 cl::ReallyHidden, 101 cl::desc("Skip Cost Analysis")); 102 // Used to determine if a cold region is worth outlining based on 103 // its inlining cost compared to the original function. Default is set at 10%. 104 // ie. if the cold region reduces the inlining cost of the original function by 105 // at least 10%. 106 static cl::opt<float> MinRegionSizeRatio( 107 "min-region-size-ratio", cl::init(0.1), cl::Hidden, 108 cl::desc("Minimum ratio comparing relative sizes of each " 109 "outline candidate and original function")); 110 // Used to tune the minimum number of execution counts needed in the predecessor 111 // block to the cold edge. ie. confidence interval. 112 static cl::opt<unsigned> 113 MinBlockCounterExecution("min-block-execution", cl::init(100), cl::Hidden, 114 cl::desc("Minimum block executions to consider " 115 "its BranchProbabilityInfo valid")); 116 // Used to determine when an edge is considered cold. Default is set to 10%. ie. 117 // if the branch probability is 10% or less, then it is deemed as 'cold'. 118 static cl::opt<float> ColdBranchRatio( 119 "cold-branch-ratio", cl::init(0.1), cl::Hidden, 120 cl::desc("Minimum BranchProbability to consider a region cold.")); 121 122 static cl::opt<unsigned> MaxNumInlineBlocks( 123 "max-num-inline-blocks", cl::init(5), cl::Hidden, 124 cl::desc("Max number of blocks to be partially inlined")); 125 126 // Command line option to set the maximum number of partial inlining allowed 127 // for the module. The default value of -1 means no limit. 128 static cl::opt<int> MaxNumPartialInlining( 129 "max-partial-inlining", cl::init(-1), cl::Hidden, 130 cl::desc("Max number of partial inlining. The default is unlimited")); 131 132 // Used only when PGO or user annotated branch data is absent. It is 133 // the least value that is used to weigh the outline region. If BFI 134 // produces larger value, the BFI value will be used. 135 static cl::opt<int> 136 OutlineRegionFreqPercent("outline-region-freq-percent", cl::init(75), 137 cl::Hidden, 138 cl::desc("Relative frequency of outline region to " 139 "the entry block")); 140 141 static cl::opt<unsigned> ExtraOutliningPenalty( 142 "partial-inlining-extra-penalty", cl::init(0), cl::Hidden, 143 cl::desc("A debug option to add additional penalty to the computed one.")); 144 145 namespace { 146 147 struct FunctionOutliningInfo { 148 FunctionOutliningInfo() = default; 149 150 // Returns the number of blocks to be inlined including all blocks 151 // in Entries and one return block. 152 unsigned getNumInlinedBlocks() const { return Entries.size() + 1; } 153 154 // A set of blocks including the function entry that guard 155 // the region to be outlined. 156 SmallVector<BasicBlock *, 4> Entries; 157 158 // The return block that is not included in the outlined region. 159 BasicBlock *ReturnBlock = nullptr; 160 161 // The dominating block of the region to be outlined. 162 BasicBlock *NonReturnBlock = nullptr; 163 164 // The set of blocks in Entries that are predecessors to ReturnBlock 165 SmallVector<BasicBlock *, 4> ReturnBlockPreds; 166 }; 167 168 struct FunctionOutliningMultiRegionInfo { 169 FunctionOutliningMultiRegionInfo() = default; 170 171 // Container for outline regions 172 struct OutlineRegionInfo { 173 OutlineRegionInfo(ArrayRef<BasicBlock *> Region, BasicBlock *EntryBlock, 174 BasicBlock *ExitBlock, BasicBlock *ReturnBlock) 175 : Region(Region), EntryBlock(EntryBlock), ExitBlock(ExitBlock), 176 ReturnBlock(ReturnBlock) {} 177 SmallVector<BasicBlock *, 8> Region; 178 BasicBlock *EntryBlock; 179 BasicBlock *ExitBlock; 180 BasicBlock *ReturnBlock; 181 }; 182 183 SmallVector<OutlineRegionInfo, 4> ORI; 184 }; 185 186 struct PartialInlinerImpl { 187 188 PartialInlinerImpl( 189 function_ref<AssumptionCache &(Function &)> GetAC, 190 function_ref<AssumptionCache *(Function &)> LookupAC, 191 function_ref<TargetTransformInfo &(Function &)> GTTI, 192 function_ref<const TargetLibraryInfo &(Function &)> GTLI, 193 ProfileSummaryInfo &ProfSI, 194 function_ref<BlockFrequencyInfo &(Function &)> GBFI = nullptr) 195 : GetAssumptionCache(GetAC), LookupAssumptionCache(LookupAC), 196 GetTTI(GTTI), GetBFI(GBFI), GetTLI(GTLI), PSI(ProfSI) {} 197 198 bool run(Module &M); 199 // Main part of the transformation that calls helper functions to find 200 // outlining candidates, clone & outline the function, and attempt to 201 // partially inline the resulting function. Returns true if 202 // inlining was successful, false otherwise. Also returns the outline 203 // function (only if we partially inlined early returns) as there is a 204 // possibility to further "peel" early return statements that were left in the 205 // outline function due to code size. 206 std::pair<bool, Function *> unswitchFunction(Function &F); 207 208 // This class speculatively clones the function to be partial inlined. 209 // At the end of partial inlining, the remaining callsites to the cloned 210 // function that are not partially inlined will be fixed up to reference 211 // the original function, and the cloned function will be erased. 212 struct FunctionCloner { 213 // Two constructors, one for single region outlining, the other for 214 // multi-region outlining. 215 FunctionCloner(Function *F, FunctionOutliningInfo *OI, 216 OptimizationRemarkEmitter &ORE, 217 function_ref<AssumptionCache *(Function &)> LookupAC, 218 function_ref<TargetTransformInfo &(Function &)> GetTTI); 219 FunctionCloner(Function *F, FunctionOutliningMultiRegionInfo *OMRI, 220 OptimizationRemarkEmitter &ORE, 221 function_ref<AssumptionCache *(Function &)> LookupAC, 222 function_ref<TargetTransformInfo &(Function &)> GetTTI); 223 224 ~FunctionCloner(); 225 226 // Prepare for function outlining: making sure there is only 227 // one incoming edge from the extracted/outlined region to 228 // the return block. 229 void normalizeReturnBlock() const; 230 231 // Do function outlining for cold regions. 232 bool doMultiRegionFunctionOutlining(); 233 // Do function outlining for region after early return block(s). 234 // NOTE: For vararg functions that do the vararg handling in the outlined 235 // function, we temporarily generate IR that does not properly 236 // forward varargs to the outlined function. Calling InlineFunction 237 // will update calls to the outlined functions to properly forward 238 // the varargs. 239 Function *doSingleRegionFunctionOutlining(); 240 241 Function *OrigFunc = nullptr; 242 Function *ClonedFunc = nullptr; 243 244 typedef std::pair<Function *, BasicBlock *> FuncBodyCallerPair; 245 // Keep track of Outlined Functions and the basic block they're called from. 246 SmallVector<FuncBodyCallerPair, 4> OutlinedFunctions; 247 248 // ClonedFunc is inlined in one of its callers after function 249 // outlining. 250 bool IsFunctionInlined = false; 251 // The cost of the region to be outlined. 252 InstructionCost OutlinedRegionCost = 0; 253 // ClonedOI is specific to outlining non-early return blocks. 254 std::unique_ptr<FunctionOutliningInfo> ClonedOI = nullptr; 255 // ClonedOMRI is specific to outlining cold regions. 256 std::unique_ptr<FunctionOutliningMultiRegionInfo> ClonedOMRI = nullptr; 257 std::unique_ptr<BlockFrequencyInfo> ClonedFuncBFI = nullptr; 258 OptimizationRemarkEmitter &ORE; 259 function_ref<AssumptionCache *(Function &)> LookupAC; 260 function_ref<TargetTransformInfo &(Function &)> GetTTI; 261 }; 262 263 private: 264 int NumPartialInlining = 0; 265 function_ref<AssumptionCache &(Function &)> GetAssumptionCache; 266 function_ref<AssumptionCache *(Function &)> LookupAssumptionCache; 267 function_ref<TargetTransformInfo &(Function &)> GetTTI; 268 function_ref<BlockFrequencyInfo &(Function &)> GetBFI; 269 function_ref<const TargetLibraryInfo &(Function &)> GetTLI; 270 ProfileSummaryInfo &PSI; 271 272 // Return the frequency of the OutlininingBB relative to F's entry point. 273 // The result is no larger than 1 and is represented using BP. 274 // (Note that the outlined region's 'head' block can only have incoming 275 // edges from the guarding entry blocks). 276 BranchProbability 277 getOutliningCallBBRelativeFreq(FunctionCloner &Cloner) const; 278 279 // Return true if the callee of CB should be partially inlined with 280 // profit. 281 bool shouldPartialInline(CallBase &CB, FunctionCloner &Cloner, 282 BlockFrequency WeightedOutliningRcost, 283 OptimizationRemarkEmitter &ORE) const; 284 285 // Try to inline DuplicateFunction (cloned from F with call to 286 // the OutlinedFunction into its callers. Return true 287 // if there is any successful inlining. 288 bool tryPartialInline(FunctionCloner &Cloner); 289 290 // Compute the mapping from use site of DuplicationFunction to the enclosing 291 // BB's profile count. 292 void 293 computeCallsiteToProfCountMap(Function *DuplicateFunction, 294 DenseMap<User *, uint64_t> &SiteCountMap) const; 295 296 bool isLimitReached() const { 297 return (MaxNumPartialInlining != -1 && 298 NumPartialInlining >= MaxNumPartialInlining); 299 } 300 301 static CallBase *getSupportedCallBase(User *U) { 302 if (isa<CallInst>(U) || isa<InvokeInst>(U)) 303 return cast<CallBase>(U); 304 llvm_unreachable("All uses must be calls"); 305 return nullptr; 306 } 307 308 static CallBase *getOneCallSiteTo(Function &F) { 309 User *User = *F.user_begin(); 310 return getSupportedCallBase(User); 311 } 312 313 std::tuple<DebugLoc, BasicBlock *> getOneDebugLoc(Function &F) const { 314 CallBase *CB = getOneCallSiteTo(F); 315 DebugLoc DLoc = CB->getDebugLoc(); 316 BasicBlock *Block = CB->getParent(); 317 return std::make_tuple(DLoc, Block); 318 } 319 320 // Returns the costs associated with function outlining: 321 // - The first value is the non-weighted runtime cost for making the call 322 // to the outlined function, including the addtional setup cost in the 323 // outlined function itself; 324 // - The second value is the estimated size of the new call sequence in 325 // basic block Cloner.OutliningCallBB; 326 std::tuple<InstructionCost, InstructionCost> 327 computeOutliningCosts(FunctionCloner &Cloner) const; 328 329 // Compute the 'InlineCost' of block BB. InlineCost is a proxy used to 330 // approximate both the size and runtime cost (Note that in the current 331 // inline cost analysis, there is no clear distinction there either). 332 static InstructionCost computeBBInlineCost(BasicBlock *BB, 333 TargetTransformInfo *TTI); 334 335 std::unique_ptr<FunctionOutliningInfo> 336 computeOutliningInfo(Function &F) const; 337 338 std::unique_ptr<FunctionOutliningMultiRegionInfo> 339 computeOutliningColdRegionsInfo(Function &F, 340 OptimizationRemarkEmitter &ORE) const; 341 }; 342 343 } // end anonymous namespace 344 345 std::unique_ptr<FunctionOutliningMultiRegionInfo> 346 PartialInlinerImpl::computeOutliningColdRegionsInfo( 347 Function &F, OptimizationRemarkEmitter &ORE) const { 348 BasicBlock *EntryBlock = &F.front(); 349 350 DominatorTree DT(F); 351 LoopInfo LI(DT); 352 BranchProbabilityInfo BPI(F, LI); 353 std::unique_ptr<BlockFrequencyInfo> ScopedBFI; 354 BlockFrequencyInfo *BFI; 355 if (!GetBFI) { 356 ScopedBFI.reset(new BlockFrequencyInfo(F, BPI, LI)); 357 BFI = ScopedBFI.get(); 358 } else 359 BFI = &(GetBFI(F)); 360 361 // Return if we don't have profiling information. 362 if (!PSI.hasInstrumentationProfile()) 363 return std::unique_ptr<FunctionOutliningMultiRegionInfo>(); 364 365 std::unique_ptr<FunctionOutliningMultiRegionInfo> OutliningInfo = 366 std::make_unique<FunctionOutliningMultiRegionInfo>(); 367 368 auto IsSingleExit = 369 [&ORE](SmallVectorImpl<BasicBlock *> &BlockList) -> BasicBlock * { 370 BasicBlock *ExitBlock = nullptr; 371 for (auto *Block : BlockList) { 372 for (BasicBlock *Succ : successors(Block)) { 373 if (!is_contained(BlockList, Succ)) { 374 if (ExitBlock) { 375 ORE.emit([&]() { 376 return OptimizationRemarkMissed(DEBUG_TYPE, "MultiExitRegion", 377 &Succ->front()) 378 << "Region dominated by " 379 << ore::NV("Block", BlockList.front()->getName()) 380 << " has more than one region exit edge."; 381 }); 382 return nullptr; 383 } 384 385 ExitBlock = Block; 386 } 387 } 388 } 389 return ExitBlock; 390 }; 391 392 auto BBProfileCount = [BFI](BasicBlock *BB) { 393 return BFI->getBlockProfileCount(BB).value_or(0); 394 }; 395 396 // Use the same computeBBInlineCost function to compute the cost savings of 397 // the outlining the candidate region. 398 TargetTransformInfo *FTTI = &GetTTI(F); 399 InstructionCost OverallFunctionCost = 0; 400 for (auto &BB : F) 401 OverallFunctionCost += computeBBInlineCost(&BB, FTTI); 402 403 LLVM_DEBUG(dbgs() << "OverallFunctionCost = " << OverallFunctionCost 404 << "\n";); 405 406 InstructionCost MinOutlineRegionCost = OverallFunctionCost.map( 407 [&](auto Cost) { return Cost * MinRegionSizeRatio; }); 408 409 BranchProbability MinBranchProbability( 410 static_cast<int>(ColdBranchRatio * MinBlockCounterExecution), 411 MinBlockCounterExecution); 412 bool ColdCandidateFound = false; 413 BasicBlock *CurrEntry = EntryBlock; 414 std::vector<BasicBlock *> DFS; 415 DenseMap<BasicBlock *, bool> VisitedMap; 416 DFS.push_back(CurrEntry); 417 VisitedMap[CurrEntry] = true; 418 419 // Use Depth First Search on the basic blocks to find CFG edges that are 420 // considered cold. 421 // Cold regions considered must also have its inline cost compared to the 422 // overall inline cost of the original function. The region is outlined only 423 // if it reduced the inline cost of the function by 'MinOutlineRegionCost' or 424 // more. 425 while (!DFS.empty()) { 426 auto *ThisBB = DFS.back(); 427 DFS.pop_back(); 428 // Only consider regions with predecessor blocks that are considered 429 // not-cold (default: part of the top 99.99% of all block counters) 430 // AND greater than our minimum block execution count (default: 100). 431 if (PSI.isColdBlock(ThisBB, BFI) || 432 BBProfileCount(ThisBB) < MinBlockCounterExecution) 433 continue; 434 for (auto SI = succ_begin(ThisBB); SI != succ_end(ThisBB); ++SI) { 435 if (VisitedMap[*SI]) 436 continue; 437 VisitedMap[*SI] = true; 438 DFS.push_back(*SI); 439 // If branch isn't cold, we skip to the next one. 440 BranchProbability SuccProb = BPI.getEdgeProbability(ThisBB, *SI); 441 if (SuccProb > MinBranchProbability) 442 continue; 443 444 LLVM_DEBUG(dbgs() << "Found cold edge: " << ThisBB->getName() << "->" 445 << SI->getName() 446 << "\nBranch Probability = " << SuccProb << "\n";); 447 448 SmallVector<BasicBlock *, 8> DominateVector; 449 DT.getDescendants(*SI, DominateVector); 450 assert(!DominateVector.empty() && 451 "SI should be reachable and have at least itself as descendant"); 452 453 // We can only outline single entry regions (for now). 454 if (!DominateVector.front()->hasNPredecessors(1)) { 455 LLVM_DEBUG(dbgs() << "ABORT: Block " << SI->getName() 456 << " doesn't have a single predecessor in the " 457 "dominator tree\n";); 458 continue; 459 } 460 461 BasicBlock *ExitBlock = nullptr; 462 // We can only outline single exit regions (for now). 463 if (!(ExitBlock = IsSingleExit(DominateVector))) { 464 LLVM_DEBUG(dbgs() << "ABORT: Block " << SI->getName() 465 << " doesn't have a unique successor\n";); 466 continue; 467 } 468 469 InstructionCost OutlineRegionCost = 0; 470 for (auto *BB : DominateVector) 471 OutlineRegionCost += computeBBInlineCost(BB, &GetTTI(*BB->getParent())); 472 473 LLVM_DEBUG(dbgs() << "OutlineRegionCost = " << OutlineRegionCost 474 << "\n";); 475 476 if (!SkipCostAnalysis && OutlineRegionCost < MinOutlineRegionCost) { 477 ORE.emit([&]() { 478 return OptimizationRemarkAnalysis(DEBUG_TYPE, "TooCostly", 479 &SI->front()) 480 << ore::NV("Callee", &F) 481 << " inline cost-savings smaller than " 482 << ore::NV("Cost", MinOutlineRegionCost); 483 }); 484 485 LLVM_DEBUG(dbgs() << "ABORT: Outline region cost is smaller than " 486 << MinOutlineRegionCost << "\n";); 487 continue; 488 } 489 490 // For now, ignore blocks that belong to a SISE region that is a 491 // candidate for outlining. In the future, we may want to look 492 // at inner regions because the outer region may have live-exit 493 // variables. 494 for (auto *BB : DominateVector) 495 VisitedMap[BB] = true; 496 497 // ReturnBlock here means the block after the outline call 498 BasicBlock *ReturnBlock = ExitBlock->getSingleSuccessor(); 499 FunctionOutliningMultiRegionInfo::OutlineRegionInfo RegInfo( 500 DominateVector, DominateVector.front(), ExitBlock, ReturnBlock); 501 OutliningInfo->ORI.push_back(RegInfo); 502 LLVM_DEBUG(dbgs() << "Found Cold Candidate starting at block: " 503 << DominateVector.front()->getName() << "\n";); 504 ColdCandidateFound = true; 505 NumColdRegionsFound++; 506 } 507 } 508 509 if (ColdCandidateFound) 510 return OutliningInfo; 511 512 return std::unique_ptr<FunctionOutliningMultiRegionInfo>(); 513 } 514 515 std::unique_ptr<FunctionOutliningInfo> 516 PartialInlinerImpl::computeOutliningInfo(Function &F) const { 517 BasicBlock *EntryBlock = &F.front(); 518 BranchInst *BR = dyn_cast<BranchInst>(EntryBlock->getTerminator()); 519 if (!BR || BR->isUnconditional()) 520 return std::unique_ptr<FunctionOutliningInfo>(); 521 522 // Returns true if Succ is BB's successor 523 auto IsSuccessor = [](BasicBlock *Succ, BasicBlock *BB) { 524 return is_contained(successors(BB), Succ); 525 }; 526 527 auto IsReturnBlock = [](BasicBlock *BB) { 528 Instruction *TI = BB->getTerminator(); 529 return isa<ReturnInst>(TI); 530 }; 531 532 auto GetReturnBlock = [&](BasicBlock *Succ1, BasicBlock *Succ2) { 533 if (IsReturnBlock(Succ1)) 534 return std::make_tuple(Succ1, Succ2); 535 if (IsReturnBlock(Succ2)) 536 return std::make_tuple(Succ2, Succ1); 537 538 return std::make_tuple<BasicBlock *, BasicBlock *>(nullptr, nullptr); 539 }; 540 541 // Detect a triangular shape: 542 auto GetCommonSucc = [&](BasicBlock *Succ1, BasicBlock *Succ2) { 543 if (IsSuccessor(Succ1, Succ2)) 544 return std::make_tuple(Succ1, Succ2); 545 if (IsSuccessor(Succ2, Succ1)) 546 return std::make_tuple(Succ2, Succ1); 547 548 return std::make_tuple<BasicBlock *, BasicBlock *>(nullptr, nullptr); 549 }; 550 551 std::unique_ptr<FunctionOutliningInfo> OutliningInfo = 552 std::make_unique<FunctionOutliningInfo>(); 553 554 BasicBlock *CurrEntry = EntryBlock; 555 bool CandidateFound = false; 556 do { 557 // The number of blocks to be inlined has already reached 558 // the limit. When MaxNumInlineBlocks is set to 0 or 1, this 559 // disables partial inlining for the function. 560 if (OutliningInfo->getNumInlinedBlocks() >= MaxNumInlineBlocks) 561 break; 562 563 if (succ_size(CurrEntry) != 2) 564 break; 565 566 BasicBlock *Succ1 = *succ_begin(CurrEntry); 567 BasicBlock *Succ2 = *(succ_begin(CurrEntry) + 1); 568 569 BasicBlock *ReturnBlock, *NonReturnBlock; 570 std::tie(ReturnBlock, NonReturnBlock) = GetReturnBlock(Succ1, Succ2); 571 572 if (ReturnBlock) { 573 OutliningInfo->Entries.push_back(CurrEntry); 574 OutliningInfo->ReturnBlock = ReturnBlock; 575 OutliningInfo->NonReturnBlock = NonReturnBlock; 576 CandidateFound = true; 577 break; 578 } 579 580 BasicBlock *CommSucc, *OtherSucc; 581 std::tie(CommSucc, OtherSucc) = GetCommonSucc(Succ1, Succ2); 582 583 if (!CommSucc) 584 break; 585 586 OutliningInfo->Entries.push_back(CurrEntry); 587 CurrEntry = OtherSucc; 588 } while (true); 589 590 if (!CandidateFound) 591 return std::unique_ptr<FunctionOutliningInfo>(); 592 593 // There should not be any successors (not in the entry set) other than 594 // {ReturnBlock, NonReturnBlock} 595 assert(OutliningInfo->Entries[0] == &F.front() && 596 "Function Entry must be the first in Entries vector"); 597 DenseSet<BasicBlock *> Entries; 598 for (BasicBlock *E : OutliningInfo->Entries) 599 Entries.insert(E); 600 601 // Returns true of BB has Predecessor which is not 602 // in Entries set. 603 auto HasNonEntryPred = [Entries](BasicBlock *BB) { 604 for (auto *Pred : predecessors(BB)) { 605 if (!Entries.count(Pred)) 606 return true; 607 } 608 return false; 609 }; 610 auto CheckAndNormalizeCandidate = 611 [Entries, HasNonEntryPred](FunctionOutliningInfo *OutliningInfo) { 612 for (BasicBlock *E : OutliningInfo->Entries) { 613 for (auto *Succ : successors(E)) { 614 if (Entries.count(Succ)) 615 continue; 616 if (Succ == OutliningInfo->ReturnBlock) 617 OutliningInfo->ReturnBlockPreds.push_back(E); 618 else if (Succ != OutliningInfo->NonReturnBlock) 619 return false; 620 } 621 // There should not be any outside incoming edges either: 622 if (HasNonEntryPred(E)) 623 return false; 624 } 625 return true; 626 }; 627 628 if (!CheckAndNormalizeCandidate(OutliningInfo.get())) 629 return std::unique_ptr<FunctionOutliningInfo>(); 630 631 // Now further growing the candidate's inlining region by 632 // peeling off dominating blocks from the outlining region: 633 while (OutliningInfo->getNumInlinedBlocks() < MaxNumInlineBlocks) { 634 BasicBlock *Cand = OutliningInfo->NonReturnBlock; 635 if (succ_size(Cand) != 2) 636 break; 637 638 if (HasNonEntryPred(Cand)) 639 break; 640 641 BasicBlock *Succ1 = *succ_begin(Cand); 642 BasicBlock *Succ2 = *(succ_begin(Cand) + 1); 643 644 BasicBlock *ReturnBlock, *NonReturnBlock; 645 std::tie(ReturnBlock, NonReturnBlock) = GetReturnBlock(Succ1, Succ2); 646 if (!ReturnBlock || ReturnBlock != OutliningInfo->ReturnBlock) 647 break; 648 649 if (NonReturnBlock->getSinglePredecessor() != Cand) 650 break; 651 652 // Now grow and update OutlininigInfo: 653 OutliningInfo->Entries.push_back(Cand); 654 OutliningInfo->NonReturnBlock = NonReturnBlock; 655 OutliningInfo->ReturnBlockPreds.push_back(Cand); 656 Entries.insert(Cand); 657 } 658 659 return OutliningInfo; 660 } 661 662 // Check if there is PGO data or user annotated branch data: 663 static bool hasProfileData(const Function &F, const FunctionOutliningInfo &OI) { 664 if (F.hasProfileData()) 665 return true; 666 // Now check if any of the entry block has MD_prof data: 667 for (auto *E : OI.Entries) { 668 BranchInst *BR = dyn_cast<BranchInst>(E->getTerminator()); 669 if (!BR || BR->isUnconditional()) 670 continue; 671 if (hasBranchWeightMD(*BR)) 672 return true; 673 } 674 return false; 675 } 676 677 BranchProbability PartialInlinerImpl::getOutliningCallBBRelativeFreq( 678 FunctionCloner &Cloner) const { 679 BasicBlock *OutliningCallBB = Cloner.OutlinedFunctions.back().second; 680 auto EntryFreq = 681 Cloner.ClonedFuncBFI->getBlockFreq(&Cloner.ClonedFunc->getEntryBlock()); 682 auto OutliningCallFreq = 683 Cloner.ClonedFuncBFI->getBlockFreq(OutliningCallBB); 684 // FIXME Hackery needed because ClonedFuncBFI is based on the function BEFORE 685 // we outlined any regions, so we may encounter situations where the 686 // OutliningCallFreq is *slightly* bigger than the EntryFreq. 687 if (OutliningCallFreq.getFrequency() > EntryFreq.getFrequency()) 688 OutliningCallFreq = EntryFreq; 689 690 auto OutlineRegionRelFreq = BranchProbability::getBranchProbability( 691 OutliningCallFreq.getFrequency(), EntryFreq.getFrequency()); 692 693 if (hasProfileData(*Cloner.OrigFunc, *Cloner.ClonedOI)) 694 return OutlineRegionRelFreq; 695 696 // When profile data is not available, we need to be conservative in 697 // estimating the overall savings. Static branch prediction can usually 698 // guess the branch direction right (taken/non-taken), but the guessed 699 // branch probability is usually not biased enough. In case when the 700 // outlined region is predicted to be likely, its probability needs 701 // to be made higher (more biased) to not under-estimate the cost of 702 // function outlining. On the other hand, if the outlined region 703 // is predicted to be less likely, the predicted probablity is usually 704 // higher than the actual. For instance, the actual probability of the 705 // less likely target is only 5%, but the guessed probablity can be 706 // 40%. In the latter case, there is no need for further adjustment. 707 // FIXME: add an option for this. 708 if (OutlineRegionRelFreq < BranchProbability(45, 100)) 709 return OutlineRegionRelFreq; 710 711 OutlineRegionRelFreq = std::max( 712 OutlineRegionRelFreq, BranchProbability(OutlineRegionFreqPercent, 100)); 713 714 return OutlineRegionRelFreq; 715 } 716 717 bool PartialInlinerImpl::shouldPartialInline( 718 CallBase &CB, FunctionCloner &Cloner, BlockFrequency WeightedOutliningRcost, 719 OptimizationRemarkEmitter &ORE) const { 720 using namespace ore; 721 722 Function *Callee = CB.getCalledFunction(); 723 assert(Callee == Cloner.ClonedFunc); 724 725 if (SkipCostAnalysis) 726 return isInlineViable(*Callee).isSuccess(); 727 728 Function *Caller = CB.getCaller(); 729 auto &CalleeTTI = GetTTI(*Callee); 730 bool RemarksEnabled = 731 Callee->getContext().getDiagHandlerPtr()->isMissedOptRemarkEnabled( 732 DEBUG_TYPE); 733 InlineCost IC = 734 getInlineCost(CB, getInlineParams(), CalleeTTI, GetAssumptionCache, 735 GetTLI, GetBFI, &PSI, RemarksEnabled ? &ORE : nullptr); 736 737 if (IC.isAlways()) { 738 ORE.emit([&]() { 739 return OptimizationRemarkAnalysis(DEBUG_TYPE, "AlwaysInline", &CB) 740 << NV("Callee", Cloner.OrigFunc) 741 << " should always be fully inlined, not partially"; 742 }); 743 return false; 744 } 745 746 if (IC.isNever()) { 747 ORE.emit([&]() { 748 return OptimizationRemarkMissed(DEBUG_TYPE, "NeverInline", &CB) 749 << NV("Callee", Cloner.OrigFunc) << " not partially inlined into " 750 << NV("Caller", Caller) 751 << " because it should never be inlined (cost=never)"; 752 }); 753 return false; 754 } 755 756 if (!IC) { 757 ORE.emit([&]() { 758 return OptimizationRemarkAnalysis(DEBUG_TYPE, "TooCostly", &CB) 759 << NV("Callee", Cloner.OrigFunc) << " not partially inlined into " 760 << NV("Caller", Caller) << " because too costly to inline (cost=" 761 << NV("Cost", IC.getCost()) << ", threshold=" 762 << NV("Threshold", IC.getCostDelta() + IC.getCost()) << ")"; 763 }); 764 return false; 765 } 766 const DataLayout &DL = Caller->getDataLayout(); 767 768 // The savings of eliminating the call: 769 int NonWeightedSavings = getCallsiteCost(CalleeTTI, CB, DL); 770 BlockFrequency NormWeightedSavings(NonWeightedSavings); 771 772 // Weighted saving is smaller than weighted cost, return false 773 if (NormWeightedSavings < WeightedOutliningRcost) { 774 ORE.emit([&]() { 775 return OptimizationRemarkAnalysis(DEBUG_TYPE, "OutliningCallcostTooHigh", 776 &CB) 777 << NV("Callee", Cloner.OrigFunc) << " not partially inlined into " 778 << NV("Caller", Caller) << " runtime overhead (overhead=" 779 << NV("Overhead", (unsigned)WeightedOutliningRcost.getFrequency()) 780 << ", savings=" 781 << NV("Savings", (unsigned)NormWeightedSavings.getFrequency()) 782 << ")" 783 << " of making the outlined call is too high"; 784 }); 785 786 return false; 787 } 788 789 ORE.emit([&]() { 790 return OptimizationRemarkAnalysis(DEBUG_TYPE, "CanBePartiallyInlined", &CB) 791 << NV("Callee", Cloner.OrigFunc) << " can be partially inlined into " 792 << NV("Caller", Caller) << " with cost=" << NV("Cost", IC.getCost()) 793 << " (threshold=" 794 << NV("Threshold", IC.getCostDelta() + IC.getCost()) << ")"; 795 }); 796 return true; 797 } 798 799 // TODO: Ideally we should share Inliner's InlineCost Analysis code. 800 // For now use a simplified version. The returned 'InlineCost' will be used 801 // to esimate the size cost as well as runtime cost of the BB. 802 InstructionCost 803 PartialInlinerImpl::computeBBInlineCost(BasicBlock *BB, 804 TargetTransformInfo *TTI) { 805 InstructionCost InlineCost = 0; 806 const DataLayout &DL = BB->getDataLayout(); 807 int InstrCost = InlineConstants::getInstrCost(); 808 for (Instruction &I : BB->instructionsWithoutDebug()) { 809 // Skip free instructions. 810 switch (I.getOpcode()) { 811 case Instruction::BitCast: 812 case Instruction::PtrToInt: 813 case Instruction::IntToPtr: 814 case Instruction::Alloca: 815 case Instruction::PHI: 816 continue; 817 case Instruction::GetElementPtr: 818 if (cast<GetElementPtrInst>(&I)->hasAllZeroIndices()) 819 continue; 820 break; 821 default: 822 break; 823 } 824 825 if (I.isLifetimeStartOrEnd()) 826 continue; 827 828 if (auto *II = dyn_cast<IntrinsicInst>(&I)) { 829 Intrinsic::ID IID = II->getIntrinsicID(); 830 SmallVector<Type *, 4> Tys; 831 FastMathFlags FMF; 832 for (Value *Val : II->args()) 833 Tys.push_back(Val->getType()); 834 835 if (auto *FPMO = dyn_cast<FPMathOperator>(II)) 836 FMF = FPMO->getFastMathFlags(); 837 838 IntrinsicCostAttributes ICA(IID, II->getType(), Tys, FMF); 839 InlineCost += TTI->getIntrinsicInstrCost(ICA, TTI::TCK_SizeAndLatency); 840 continue; 841 } 842 843 if (CallInst *CI = dyn_cast<CallInst>(&I)) { 844 InlineCost += getCallsiteCost(*TTI, *CI, DL); 845 continue; 846 } 847 848 if (InvokeInst *II = dyn_cast<InvokeInst>(&I)) { 849 InlineCost += getCallsiteCost(*TTI, *II, DL); 850 continue; 851 } 852 853 if (SwitchInst *SI = dyn_cast<SwitchInst>(&I)) { 854 InlineCost += (SI->getNumCases() + 1) * InstrCost; 855 continue; 856 } 857 InlineCost += InstrCost; 858 } 859 860 return InlineCost; 861 } 862 863 std::tuple<InstructionCost, InstructionCost> 864 PartialInlinerImpl::computeOutliningCosts(FunctionCloner &Cloner) const { 865 InstructionCost OutliningFuncCallCost = 0, OutlinedFunctionCost = 0; 866 for (auto FuncBBPair : Cloner.OutlinedFunctions) { 867 Function *OutlinedFunc = FuncBBPair.first; 868 BasicBlock* OutliningCallBB = FuncBBPair.second; 869 // Now compute the cost of the call sequence to the outlined function 870 // 'OutlinedFunction' in BB 'OutliningCallBB': 871 auto *OutlinedFuncTTI = &GetTTI(*OutlinedFunc); 872 OutliningFuncCallCost += 873 computeBBInlineCost(OutliningCallBB, OutlinedFuncTTI); 874 875 // Now compute the cost of the extracted/outlined function itself: 876 for (BasicBlock &BB : *OutlinedFunc) 877 OutlinedFunctionCost += computeBBInlineCost(&BB, OutlinedFuncTTI); 878 } 879 assert(OutlinedFunctionCost >= Cloner.OutlinedRegionCost && 880 "Outlined function cost should be no less than the outlined region"); 881 882 // The code extractor introduces a new root and exit stub blocks with 883 // additional unconditional branches. Those branches will be eliminated 884 // later with bb layout. The cost should be adjusted accordingly: 885 OutlinedFunctionCost -= 886 2 * InlineConstants::getInstrCost() * Cloner.OutlinedFunctions.size(); 887 888 InstructionCost OutliningRuntimeOverhead = 889 OutliningFuncCallCost + 890 (OutlinedFunctionCost - Cloner.OutlinedRegionCost) + 891 ExtraOutliningPenalty.getValue(); 892 893 return std::make_tuple(OutliningFuncCallCost, OutliningRuntimeOverhead); 894 } 895 896 // Create the callsite to profile count map which is 897 // used to update the original function's entry count, 898 // after the function is partially inlined into the callsite. 899 void PartialInlinerImpl::computeCallsiteToProfCountMap( 900 Function *DuplicateFunction, 901 DenseMap<User *, uint64_t> &CallSiteToProfCountMap) const { 902 std::vector<User *> Users(DuplicateFunction->user_begin(), 903 DuplicateFunction->user_end()); 904 Function *CurrentCaller = nullptr; 905 std::unique_ptr<BlockFrequencyInfo> TempBFI; 906 BlockFrequencyInfo *CurrentCallerBFI = nullptr; 907 908 auto ComputeCurrBFI = [&,this](Function *Caller) { 909 // For the old pass manager: 910 if (!GetBFI) { 911 DominatorTree DT(*Caller); 912 LoopInfo LI(DT); 913 BranchProbabilityInfo BPI(*Caller, LI); 914 TempBFI.reset(new BlockFrequencyInfo(*Caller, BPI, LI)); 915 CurrentCallerBFI = TempBFI.get(); 916 } else { 917 // New pass manager: 918 CurrentCallerBFI = &(GetBFI(*Caller)); 919 } 920 }; 921 922 for (User *User : Users) { 923 // Don't bother with BlockAddress used by CallBr for asm goto. 924 if (isa<BlockAddress>(User)) 925 continue; 926 CallBase *CB = getSupportedCallBase(User); 927 Function *Caller = CB->getCaller(); 928 if (CurrentCaller != Caller) { 929 CurrentCaller = Caller; 930 ComputeCurrBFI(Caller); 931 } else { 932 assert(CurrentCallerBFI && "CallerBFI is not set"); 933 } 934 BasicBlock *CallBB = CB->getParent(); 935 auto Count = CurrentCallerBFI->getBlockProfileCount(CallBB); 936 if (Count) 937 CallSiteToProfCountMap[User] = *Count; 938 else 939 CallSiteToProfCountMap[User] = 0; 940 } 941 } 942 943 PartialInlinerImpl::FunctionCloner::FunctionCloner( 944 Function *F, FunctionOutliningInfo *OI, OptimizationRemarkEmitter &ORE, 945 function_ref<AssumptionCache *(Function &)> LookupAC, 946 function_ref<TargetTransformInfo &(Function &)> GetTTI) 947 : OrigFunc(F), ORE(ORE), LookupAC(LookupAC), GetTTI(GetTTI) { 948 ClonedOI = std::make_unique<FunctionOutliningInfo>(); 949 950 // Clone the function, so that we can hack away on it. 951 ValueToValueMapTy VMap; 952 ClonedFunc = CloneFunction(F, VMap); 953 954 ClonedOI->ReturnBlock = cast<BasicBlock>(VMap[OI->ReturnBlock]); 955 ClonedOI->NonReturnBlock = cast<BasicBlock>(VMap[OI->NonReturnBlock]); 956 for (BasicBlock *BB : OI->Entries) 957 ClonedOI->Entries.push_back(cast<BasicBlock>(VMap[BB])); 958 959 for (BasicBlock *E : OI->ReturnBlockPreds) { 960 BasicBlock *NewE = cast<BasicBlock>(VMap[E]); 961 ClonedOI->ReturnBlockPreds.push_back(NewE); 962 } 963 // Go ahead and update all uses to the duplicate, so that we can just 964 // use the inliner functionality when we're done hacking. 965 F->replaceAllUsesWith(ClonedFunc); 966 } 967 968 PartialInlinerImpl::FunctionCloner::FunctionCloner( 969 Function *F, FunctionOutliningMultiRegionInfo *OI, 970 OptimizationRemarkEmitter &ORE, 971 function_ref<AssumptionCache *(Function &)> LookupAC, 972 function_ref<TargetTransformInfo &(Function &)> GetTTI) 973 : OrigFunc(F), ORE(ORE), LookupAC(LookupAC), GetTTI(GetTTI) { 974 ClonedOMRI = std::make_unique<FunctionOutliningMultiRegionInfo>(); 975 976 // Clone the function, so that we can hack away on it. 977 ValueToValueMapTy VMap; 978 ClonedFunc = CloneFunction(F, VMap); 979 980 // Go through all Outline Candidate Regions and update all BasicBlock 981 // information. 982 for (const FunctionOutliningMultiRegionInfo::OutlineRegionInfo &RegionInfo : 983 OI->ORI) { 984 SmallVector<BasicBlock *, 8> Region; 985 for (BasicBlock *BB : RegionInfo.Region) 986 Region.push_back(cast<BasicBlock>(VMap[BB])); 987 988 BasicBlock *NewEntryBlock = cast<BasicBlock>(VMap[RegionInfo.EntryBlock]); 989 BasicBlock *NewExitBlock = cast<BasicBlock>(VMap[RegionInfo.ExitBlock]); 990 BasicBlock *NewReturnBlock = nullptr; 991 if (RegionInfo.ReturnBlock) 992 NewReturnBlock = cast<BasicBlock>(VMap[RegionInfo.ReturnBlock]); 993 FunctionOutliningMultiRegionInfo::OutlineRegionInfo MappedRegionInfo( 994 Region, NewEntryBlock, NewExitBlock, NewReturnBlock); 995 ClonedOMRI->ORI.push_back(MappedRegionInfo); 996 } 997 // Go ahead and update all uses to the duplicate, so that we can just 998 // use the inliner functionality when we're done hacking. 999 F->replaceAllUsesWith(ClonedFunc); 1000 } 1001 1002 void PartialInlinerImpl::FunctionCloner::normalizeReturnBlock() const { 1003 auto GetFirstPHI = [](BasicBlock *BB) { 1004 BasicBlock::iterator I = BB->begin(); 1005 PHINode *FirstPhi = nullptr; 1006 while (I != BB->end()) { 1007 PHINode *Phi = dyn_cast<PHINode>(I); 1008 if (!Phi) 1009 break; 1010 if (!FirstPhi) { 1011 FirstPhi = Phi; 1012 break; 1013 } 1014 } 1015 return FirstPhi; 1016 }; 1017 1018 // Shouldn't need to normalize PHIs if we're not outlining non-early return 1019 // blocks. 1020 if (!ClonedOI) 1021 return; 1022 1023 // Special hackery is needed with PHI nodes that have inputs from more than 1024 // one extracted block. For simplicity, just split the PHIs into a two-level 1025 // sequence of PHIs, some of which will go in the extracted region, and some 1026 // of which will go outside. 1027 BasicBlock *PreReturn = ClonedOI->ReturnBlock; 1028 // only split block when necessary: 1029 PHINode *FirstPhi = GetFirstPHI(PreReturn); 1030 unsigned NumPredsFromEntries = ClonedOI->ReturnBlockPreds.size(); 1031 1032 if (!FirstPhi || FirstPhi->getNumIncomingValues() <= NumPredsFromEntries + 1) 1033 return; 1034 1035 auto IsTrivialPhi = [](PHINode *PN) -> Value * { 1036 if (llvm::all_equal(PN->incoming_values())) 1037 return PN->getIncomingValue(0); 1038 return nullptr; 1039 }; 1040 1041 ClonedOI->ReturnBlock = ClonedOI->ReturnBlock->splitBasicBlock( 1042 ClonedOI->ReturnBlock->getFirstNonPHIIt()); 1043 BasicBlock::iterator I = PreReturn->begin(); 1044 BasicBlock::iterator Ins = ClonedOI->ReturnBlock->begin(); 1045 SmallVector<Instruction *, 4> DeadPhis; 1046 while (I != PreReturn->end()) { 1047 PHINode *OldPhi = dyn_cast<PHINode>(I); 1048 if (!OldPhi) 1049 break; 1050 1051 PHINode *RetPhi = 1052 PHINode::Create(OldPhi->getType(), NumPredsFromEntries + 1, ""); 1053 RetPhi->insertBefore(Ins); 1054 OldPhi->replaceAllUsesWith(RetPhi); 1055 Ins = ClonedOI->ReturnBlock->getFirstNonPHIIt(); 1056 1057 RetPhi->addIncoming(&*I, PreReturn); 1058 for (BasicBlock *E : ClonedOI->ReturnBlockPreds) { 1059 RetPhi->addIncoming(OldPhi->getIncomingValueForBlock(E), E); 1060 OldPhi->removeIncomingValue(E); 1061 } 1062 1063 // After incoming values splitting, the old phi may become trivial. 1064 // Keeping the trivial phi can introduce definition inside the outline 1065 // region which is live-out, causing necessary overhead (load, store 1066 // arg passing etc). 1067 if (auto *OldPhiVal = IsTrivialPhi(OldPhi)) { 1068 OldPhi->replaceAllUsesWith(OldPhiVal); 1069 DeadPhis.push_back(OldPhi); 1070 } 1071 ++I; 1072 } 1073 for (auto *DP : DeadPhis) 1074 DP->eraseFromParent(); 1075 1076 for (auto *E : ClonedOI->ReturnBlockPreds) 1077 E->getTerminator()->replaceUsesOfWith(PreReturn, ClonedOI->ReturnBlock); 1078 } 1079 1080 bool PartialInlinerImpl::FunctionCloner::doMultiRegionFunctionOutlining() { 1081 1082 auto ComputeRegionCost = 1083 [&](SmallVectorImpl<BasicBlock *> &Region) -> InstructionCost { 1084 InstructionCost Cost = 0; 1085 for (BasicBlock* BB : Region) 1086 Cost += computeBBInlineCost(BB, &GetTTI(*BB->getParent())); 1087 return Cost; 1088 }; 1089 1090 assert(ClonedOMRI && "Expecting OutlineInfo for multi region outline"); 1091 1092 if (ClonedOMRI->ORI.empty()) 1093 return false; 1094 1095 // The CodeExtractor needs a dominator tree. 1096 DominatorTree DT; 1097 DT.recalculate(*ClonedFunc); 1098 1099 // Manually calculate a BlockFrequencyInfo and BranchProbabilityInfo. 1100 LoopInfo LI(DT); 1101 BranchProbabilityInfo BPI(*ClonedFunc, LI); 1102 ClonedFuncBFI.reset(new BlockFrequencyInfo(*ClonedFunc, BPI, LI)); 1103 1104 // Cache and recycle the CodeExtractor analysis to avoid O(n^2) compile-time. 1105 CodeExtractorAnalysisCache CEAC(*ClonedFunc); 1106 1107 SetVector<Value *> Inputs, Outputs, Sinks; 1108 for (FunctionOutliningMultiRegionInfo::OutlineRegionInfo RegionInfo : 1109 ClonedOMRI->ORI) { 1110 InstructionCost CurrentOutlinedRegionCost = 1111 ComputeRegionCost(RegionInfo.Region); 1112 1113 CodeExtractor CE(RegionInfo.Region, &DT, /*AggregateArgs*/ false, 1114 ClonedFuncBFI.get(), &BPI, 1115 LookupAC(*RegionInfo.EntryBlock->getParent()), 1116 /* AllowVarargs */ false); 1117 1118 CE.findInputsOutputs(Inputs, Outputs, Sinks); 1119 1120 LLVM_DEBUG({ 1121 dbgs() << "inputs: " << Inputs.size() << "\n"; 1122 dbgs() << "outputs: " << Outputs.size() << "\n"; 1123 for (Value *value : Inputs) 1124 dbgs() << "value used in func: " << *value << "\n"; 1125 for (Value *output : Outputs) 1126 dbgs() << "instr used in func: " << *output << "\n"; 1127 }); 1128 1129 // Do not extract regions that have live exit variables. 1130 if (Outputs.size() > 0 && !ForceLiveExit) 1131 continue; 1132 1133 if (Function *OutlinedFunc = CE.extractCodeRegion(CEAC)) { 1134 CallBase *OCS = PartialInlinerImpl::getOneCallSiteTo(*OutlinedFunc); 1135 BasicBlock *OutliningCallBB = OCS->getParent(); 1136 assert(OutliningCallBB->getParent() == ClonedFunc); 1137 OutlinedFunctions.push_back(std::make_pair(OutlinedFunc,OutliningCallBB)); 1138 NumColdRegionsOutlined++; 1139 OutlinedRegionCost += CurrentOutlinedRegionCost; 1140 1141 if (MarkOutlinedColdCC) { 1142 OutlinedFunc->setCallingConv(CallingConv::Cold); 1143 OCS->setCallingConv(CallingConv::Cold); 1144 } 1145 } else 1146 ORE.emit([&]() { 1147 return OptimizationRemarkMissed(DEBUG_TYPE, "ExtractFailed", 1148 &RegionInfo.Region.front()->front()) 1149 << "Failed to extract region at block " 1150 << ore::NV("Block", RegionInfo.Region.front()); 1151 }); 1152 } 1153 1154 return !OutlinedFunctions.empty(); 1155 } 1156 1157 Function * 1158 PartialInlinerImpl::FunctionCloner::doSingleRegionFunctionOutlining() { 1159 // Returns true if the block is to be partial inlined into the caller 1160 // (i.e. not to be extracted to the out of line function) 1161 auto ToBeInlined = [&, this](BasicBlock *BB) { 1162 return BB == ClonedOI->ReturnBlock || 1163 llvm::is_contained(ClonedOI->Entries, BB); 1164 }; 1165 1166 assert(ClonedOI && "Expecting OutlineInfo for single region outline"); 1167 // The CodeExtractor needs a dominator tree. 1168 DominatorTree DT; 1169 DT.recalculate(*ClonedFunc); 1170 1171 // Manually calculate a BlockFrequencyInfo and BranchProbabilityInfo. 1172 LoopInfo LI(DT); 1173 BranchProbabilityInfo BPI(*ClonedFunc, LI); 1174 ClonedFuncBFI.reset(new BlockFrequencyInfo(*ClonedFunc, BPI, LI)); 1175 1176 // Gather up the blocks that we're going to extract. 1177 std::vector<BasicBlock *> ToExtract; 1178 auto *ClonedFuncTTI = &GetTTI(*ClonedFunc); 1179 ToExtract.push_back(ClonedOI->NonReturnBlock); 1180 OutlinedRegionCost += PartialInlinerImpl::computeBBInlineCost( 1181 ClonedOI->NonReturnBlock, ClonedFuncTTI); 1182 for (BasicBlock *BB : depth_first(&ClonedFunc->getEntryBlock())) 1183 if (!ToBeInlined(BB) && BB != ClonedOI->NonReturnBlock) { 1184 ToExtract.push_back(BB); 1185 // FIXME: the code extractor may hoist/sink more code 1186 // into the outlined function which may make the outlining 1187 // overhead (the difference of the outlined function cost 1188 // and OutliningRegionCost) look larger. 1189 OutlinedRegionCost += computeBBInlineCost(BB, ClonedFuncTTI); 1190 } 1191 1192 // Extract the body of the if. 1193 CodeExtractorAnalysisCache CEAC(*ClonedFunc); 1194 Function *OutlinedFunc = 1195 CodeExtractor(ToExtract, &DT, /*AggregateArgs*/ false, 1196 ClonedFuncBFI.get(), &BPI, LookupAC(*ClonedFunc), 1197 /* AllowVarargs */ true) 1198 .extractCodeRegion(CEAC); 1199 1200 if (OutlinedFunc) { 1201 BasicBlock *OutliningCallBB = 1202 PartialInlinerImpl::getOneCallSiteTo(*OutlinedFunc)->getParent(); 1203 assert(OutliningCallBB->getParent() == ClonedFunc); 1204 OutlinedFunctions.push_back(std::make_pair(OutlinedFunc, OutliningCallBB)); 1205 } else 1206 ORE.emit([&]() { 1207 return OptimizationRemarkMissed(DEBUG_TYPE, "ExtractFailed", 1208 &ToExtract.front()->front()) 1209 << "Failed to extract region at block " 1210 << ore::NV("Block", ToExtract.front()); 1211 }); 1212 1213 return OutlinedFunc; 1214 } 1215 1216 PartialInlinerImpl::FunctionCloner::~FunctionCloner() { 1217 // Ditch the duplicate, since we're done with it, and rewrite all remaining 1218 // users (function pointers, etc.) back to the original function. 1219 ClonedFunc->replaceAllUsesWith(OrigFunc); 1220 ClonedFunc->eraseFromParent(); 1221 if (!IsFunctionInlined) { 1222 // Remove each function that was speculatively created if there is no 1223 // reference. 1224 for (auto FuncBBPair : OutlinedFunctions) { 1225 Function *Func = FuncBBPair.first; 1226 Func->eraseFromParent(); 1227 } 1228 } 1229 } 1230 1231 std::pair<bool, Function *> PartialInlinerImpl::unswitchFunction(Function &F) { 1232 if (F.hasAddressTaken()) 1233 return {false, nullptr}; 1234 1235 // Let inliner handle it 1236 if (F.hasFnAttribute(Attribute::AlwaysInline)) 1237 return {false, nullptr}; 1238 1239 if (F.hasFnAttribute(Attribute::NoInline)) 1240 return {false, nullptr}; 1241 1242 if (PSI.isFunctionEntryCold(&F)) 1243 return {false, nullptr}; 1244 1245 if (F.users().empty()) 1246 return {false, nullptr}; 1247 1248 OptimizationRemarkEmitter ORE(&F); 1249 1250 // Only try to outline cold regions if we have a profile summary, which 1251 // implies we have profiling information. 1252 if (PSI.hasProfileSummary() && F.hasProfileData() && 1253 !DisableMultiRegionPartialInline) { 1254 std::unique_ptr<FunctionOutliningMultiRegionInfo> OMRI = 1255 computeOutliningColdRegionsInfo(F, ORE); 1256 if (OMRI) { 1257 FunctionCloner Cloner(&F, OMRI.get(), ORE, LookupAssumptionCache, GetTTI); 1258 1259 LLVM_DEBUG({ 1260 dbgs() << "HotCountThreshold = " << PSI.getHotCountThreshold() << "\n"; 1261 dbgs() << "ColdCountThreshold = " << PSI.getColdCountThreshold() 1262 << "\n"; 1263 }); 1264 1265 bool DidOutline = Cloner.doMultiRegionFunctionOutlining(); 1266 1267 if (DidOutline) { 1268 LLVM_DEBUG({ 1269 dbgs() << ">>>>>> Outlined (Cloned) Function >>>>>>\n"; 1270 Cloner.ClonedFunc->print(dbgs()); 1271 dbgs() << "<<<<<< Outlined (Cloned) Function <<<<<<\n"; 1272 }); 1273 1274 if (tryPartialInline(Cloner)) 1275 return {true, nullptr}; 1276 } 1277 } 1278 } 1279 1280 // Fall-thru to regular partial inlining if we: 1281 // i) can't find any cold regions to outline, or 1282 // ii) can't inline the outlined function anywhere. 1283 std::unique_ptr<FunctionOutliningInfo> OI = computeOutliningInfo(F); 1284 if (!OI) 1285 return {false, nullptr}; 1286 1287 FunctionCloner Cloner(&F, OI.get(), ORE, LookupAssumptionCache, GetTTI); 1288 Cloner.normalizeReturnBlock(); 1289 1290 Function *OutlinedFunction = Cloner.doSingleRegionFunctionOutlining(); 1291 1292 if (!OutlinedFunction) 1293 return {false, nullptr}; 1294 1295 if (tryPartialInline(Cloner)) 1296 return {true, OutlinedFunction}; 1297 1298 return {false, nullptr}; 1299 } 1300 1301 bool PartialInlinerImpl::tryPartialInline(FunctionCloner &Cloner) { 1302 if (Cloner.OutlinedFunctions.empty()) 1303 return false; 1304 1305 auto OutliningCosts = computeOutliningCosts(Cloner); 1306 1307 InstructionCost SizeCost = std::get<0>(OutliningCosts); 1308 InstructionCost NonWeightedRcost = std::get<1>(OutliningCosts); 1309 1310 assert(SizeCost.isValid() && NonWeightedRcost.isValid() && 1311 "Expected valid costs"); 1312 1313 // Only calculate RelativeToEntryFreq when we are doing single region 1314 // outlining. 1315 BranchProbability RelativeToEntryFreq; 1316 if (Cloner.ClonedOI) 1317 RelativeToEntryFreq = getOutliningCallBBRelativeFreq(Cloner); 1318 else 1319 // RelativeToEntryFreq doesn't make sense when we have more than one 1320 // outlined call because each call will have a different relative frequency 1321 // to the entry block. We can consider using the average, but the 1322 // usefulness of that information is questionable. For now, assume we never 1323 // execute the calls to outlined functions. 1324 RelativeToEntryFreq = BranchProbability(0, 1); 1325 1326 BlockFrequency WeightedRcost = 1327 BlockFrequency(*NonWeightedRcost.getValue()) * RelativeToEntryFreq; 1328 1329 // The call sequence(s) to the outlined function(s) are larger than the sum of 1330 // the original outlined region size(s), it does not increase the chances of 1331 // inlining the function with outlining (The inliner uses the size increase to 1332 // model the cost of inlining a callee). 1333 if (!SkipCostAnalysis && Cloner.OutlinedRegionCost < SizeCost) { 1334 OptimizationRemarkEmitter OrigFuncORE(Cloner.OrigFunc); 1335 DebugLoc DLoc; 1336 BasicBlock *Block; 1337 std::tie(DLoc, Block) = getOneDebugLoc(*Cloner.ClonedFunc); 1338 OrigFuncORE.emit([&]() { 1339 return OptimizationRemarkAnalysis(DEBUG_TYPE, "OutlineRegionTooSmall", 1340 DLoc, Block) 1341 << ore::NV("Function", Cloner.OrigFunc) 1342 << " not partially inlined into callers (Original Size = " 1343 << ore::NV("OutlinedRegionOriginalSize", Cloner.OutlinedRegionCost) 1344 << ", Size of call sequence to outlined function = " 1345 << ore::NV("NewSize", SizeCost) << ")"; 1346 }); 1347 return false; 1348 } 1349 1350 assert(Cloner.OrigFunc->users().empty() && 1351 "F's users should all be replaced!"); 1352 1353 std::vector<User *> Users(Cloner.ClonedFunc->user_begin(), 1354 Cloner.ClonedFunc->user_end()); 1355 1356 DenseMap<User *, uint64_t> CallSiteToProfCountMap; 1357 auto CalleeEntryCount = Cloner.OrigFunc->getEntryCount(); 1358 if (CalleeEntryCount) 1359 computeCallsiteToProfCountMap(Cloner.ClonedFunc, CallSiteToProfCountMap); 1360 1361 uint64_t CalleeEntryCountV = 1362 (CalleeEntryCount ? CalleeEntryCount->getCount() : 0); 1363 1364 bool AnyInline = false; 1365 for (User *User : Users) { 1366 // Don't bother with BlockAddress used by CallBr for asm goto. 1367 if (isa<BlockAddress>(User)) 1368 continue; 1369 1370 CallBase *CB = getSupportedCallBase(User); 1371 1372 if (isLimitReached()) 1373 continue; 1374 1375 OptimizationRemarkEmitter CallerORE(CB->getCaller()); 1376 if (!shouldPartialInline(*CB, Cloner, WeightedRcost, CallerORE)) 1377 continue; 1378 1379 // Construct remark before doing the inlining, as after successful inlining 1380 // the callsite is removed. 1381 OptimizationRemark OR(DEBUG_TYPE, "PartiallyInlined", CB); 1382 OR << ore::NV("Callee", Cloner.OrigFunc) << " partially inlined into " 1383 << ore::NV("Caller", CB->getCaller()); 1384 1385 InlineFunctionInfo IFI(GetAssumptionCache, &PSI); 1386 // We can only forward varargs when we outlined a single region, else we 1387 // bail on vararg functions. 1388 if (!InlineFunction(*CB, IFI, /*MergeAttributes=*/false, nullptr, true, 1389 (Cloner.ClonedOI ? Cloner.OutlinedFunctions.back().first 1390 : nullptr)) 1391 .isSuccess()) 1392 continue; 1393 1394 CallerORE.emit(OR); 1395 1396 // Now update the entry count: 1397 if (CalleeEntryCountV && CallSiteToProfCountMap.count(User)) { 1398 uint64_t CallSiteCount = CallSiteToProfCountMap[User]; 1399 CalleeEntryCountV -= std::min(CalleeEntryCountV, CallSiteCount); 1400 } 1401 1402 AnyInline = true; 1403 NumPartialInlining++; 1404 // Update the stats 1405 if (Cloner.ClonedOI) 1406 NumPartialInlined++; 1407 else 1408 NumColdOutlinePartialInlined++; 1409 } 1410 1411 if (AnyInline) { 1412 Cloner.IsFunctionInlined = true; 1413 if (CalleeEntryCount) 1414 Cloner.OrigFunc->setEntryCount(Function::ProfileCount( 1415 CalleeEntryCountV, CalleeEntryCount->getType())); 1416 OptimizationRemarkEmitter OrigFuncORE(Cloner.OrigFunc); 1417 OrigFuncORE.emit([&]() { 1418 return OptimizationRemark(DEBUG_TYPE, "PartiallyInlined", Cloner.OrigFunc) 1419 << "Partially inlined into at least one caller"; 1420 }); 1421 } 1422 1423 return AnyInline; 1424 } 1425 1426 bool PartialInlinerImpl::run(Module &M) { 1427 if (DisablePartialInlining) 1428 return false; 1429 1430 std::vector<Function *> Worklist; 1431 Worklist.reserve(M.size()); 1432 for (Function &F : M) 1433 if (!F.use_empty() && !F.isDeclaration()) 1434 Worklist.push_back(&F); 1435 1436 bool Changed = false; 1437 while (!Worklist.empty()) { 1438 Function *CurrFunc = Worklist.back(); 1439 Worklist.pop_back(); 1440 1441 if (CurrFunc->use_empty()) 1442 continue; 1443 1444 std::pair<bool, Function *> Result = unswitchFunction(*CurrFunc); 1445 if (Result.second) 1446 Worklist.push_back(Result.second); 1447 Changed |= Result.first; 1448 } 1449 1450 return Changed; 1451 } 1452 1453 PreservedAnalyses PartialInlinerPass::run(Module &M, 1454 ModuleAnalysisManager &AM) { 1455 auto &FAM = AM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager(); 1456 1457 auto GetAssumptionCache = [&FAM](Function &F) -> AssumptionCache & { 1458 return FAM.getResult<AssumptionAnalysis>(F); 1459 }; 1460 1461 auto LookupAssumptionCache = [&FAM](Function &F) -> AssumptionCache * { 1462 return FAM.getCachedResult<AssumptionAnalysis>(F); 1463 }; 1464 1465 auto GetBFI = [&FAM](Function &F) -> BlockFrequencyInfo & { 1466 return FAM.getResult<BlockFrequencyAnalysis>(F); 1467 }; 1468 1469 auto GetTTI = [&FAM](Function &F) -> TargetTransformInfo & { 1470 return FAM.getResult<TargetIRAnalysis>(F); 1471 }; 1472 1473 auto GetTLI = [&FAM](Function &F) -> TargetLibraryInfo & { 1474 return FAM.getResult<TargetLibraryAnalysis>(F); 1475 }; 1476 1477 ProfileSummaryInfo &PSI = AM.getResult<ProfileSummaryAnalysis>(M); 1478 1479 if (PartialInlinerImpl(GetAssumptionCache, LookupAssumptionCache, GetTTI, 1480 GetTLI, PSI, GetBFI) 1481 .run(M)) 1482 return PreservedAnalyses::none(); 1483 return PreservedAnalyses::all(); 1484 } 1485