1 //===-- PPCTargetTransformInfo.cpp - PPC specific TTI ---------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "PPCTargetTransformInfo.h" 10 #include "llvm/Analysis/CodeMetrics.h" 11 #include "llvm/Analysis/TargetLibraryInfo.h" 12 #include "llvm/Analysis/TargetTransformInfo.h" 13 #include "llvm/CodeGen/BasicTTIImpl.h" 14 #include "llvm/CodeGen/TargetLowering.h" 15 #include "llvm/CodeGen/TargetSchedule.h" 16 #include "llvm/IR/IntrinsicsPowerPC.h" 17 #include "llvm/IR/ProfDataUtils.h" 18 #include "llvm/Support/CommandLine.h" 19 #include "llvm/Transforms/InstCombine/InstCombiner.h" 20 #include "llvm/Transforms/Utils/Local.h" 21 #include <optional> 22 23 using namespace llvm; 24 25 #define DEBUG_TYPE "ppctti" 26 27 static cl::opt<bool> VecMaskCost("ppc-vec-mask-cost", 28 cl::desc("add masking cost for i1 vectors"), cl::init(true), cl::Hidden); 29 30 static cl::opt<bool> DisablePPCConstHoist("disable-ppc-constant-hoisting", 31 cl::desc("disable constant hoisting on PPC"), cl::init(false), cl::Hidden); 32 33 static cl::opt<bool> 34 EnablePPCColdCC("ppc-enable-coldcc", cl::Hidden, cl::init(false), 35 cl::desc("Enable using coldcc calling conv for cold " 36 "internal functions")); 37 38 static cl::opt<bool> 39 LsrNoInsnsCost("ppc-lsr-no-insns-cost", cl::Hidden, cl::init(false), 40 cl::desc("Do not add instruction count to lsr cost model")); 41 42 // The latency of mtctr is only justified if there are more than 4 43 // comparisons that will be removed as a result. 44 static cl::opt<unsigned> 45 SmallCTRLoopThreshold("min-ctr-loop-threshold", cl::init(4), cl::Hidden, 46 cl::desc("Loops with a constant trip count smaller than " 47 "this value will not use the count register.")); 48 49 //===----------------------------------------------------------------------===// 50 // 51 // PPC cost model. 52 // 53 //===----------------------------------------------------------------------===// 54 55 TargetTransformInfo::PopcntSupportKind 56 PPCTTIImpl::getPopcntSupport(unsigned TyWidth) { 57 assert(isPowerOf2_32(TyWidth) && "Ty width must be power of 2"); 58 if (ST->hasPOPCNTD() != PPCSubtarget::POPCNTD_Unavailable && TyWidth <= 64) 59 return ST->hasPOPCNTD() == PPCSubtarget::POPCNTD_Slow ? 60 TTI::PSK_SlowHardware : TTI::PSK_FastHardware; 61 return TTI::PSK_Software; 62 } 63 64 std::optional<Instruction *> 65 PPCTTIImpl::instCombineIntrinsic(InstCombiner &IC, IntrinsicInst &II) const { 66 Intrinsic::ID IID = II.getIntrinsicID(); 67 switch (IID) { 68 default: 69 break; 70 case Intrinsic::ppc_altivec_lvx: 71 case Intrinsic::ppc_altivec_lvxl: 72 // Turn PPC lvx -> load if the pointer is known aligned. 73 if (getOrEnforceKnownAlignment( 74 II.getArgOperand(0), Align(16), IC.getDataLayout(), &II, 75 &IC.getAssumptionCache(), &IC.getDominatorTree()) >= 16) { 76 Value *Ptr = II.getArgOperand(0); 77 return new LoadInst(II.getType(), Ptr, "", false, Align(16)); 78 } 79 break; 80 case Intrinsic::ppc_vsx_lxvw4x: 81 case Intrinsic::ppc_vsx_lxvd2x: { 82 // Turn PPC VSX loads into normal loads. 83 Value *Ptr = II.getArgOperand(0); 84 return new LoadInst(II.getType(), Ptr, Twine(""), false, Align(1)); 85 } 86 case Intrinsic::ppc_altivec_stvx: 87 case Intrinsic::ppc_altivec_stvxl: 88 // Turn stvx -> store if the pointer is known aligned. 89 if (getOrEnforceKnownAlignment( 90 II.getArgOperand(1), Align(16), IC.getDataLayout(), &II, 91 &IC.getAssumptionCache(), &IC.getDominatorTree()) >= 16) { 92 Value *Ptr = II.getArgOperand(1); 93 return new StoreInst(II.getArgOperand(0), Ptr, false, Align(16)); 94 } 95 break; 96 case Intrinsic::ppc_vsx_stxvw4x: 97 case Intrinsic::ppc_vsx_stxvd2x: { 98 // Turn PPC VSX stores into normal stores. 99 Value *Ptr = II.getArgOperand(1); 100 return new StoreInst(II.getArgOperand(0), Ptr, false, Align(1)); 101 } 102 case Intrinsic::ppc_altivec_vperm: 103 // Turn vperm(V1,V2,mask) -> shuffle(V1,V2,mask) if mask is a constant. 104 // Note that ppc_altivec_vperm has a big-endian bias, so when creating 105 // a vectorshuffle for little endian, we must undo the transformation 106 // performed on vec_perm in altivec.h. That is, we must complement 107 // the permutation mask with respect to 31 and reverse the order of 108 // V1 and V2. 109 if (Constant *Mask = dyn_cast<Constant>(II.getArgOperand(2))) { 110 assert(cast<FixedVectorType>(Mask->getType())->getNumElements() == 16 && 111 "Bad type for intrinsic!"); 112 113 // Check that all of the elements are integer constants or undefs. 114 bool AllEltsOk = true; 115 for (unsigned i = 0; i != 16; ++i) { 116 Constant *Elt = Mask->getAggregateElement(i); 117 if (!Elt || !(isa<ConstantInt>(Elt) || isa<UndefValue>(Elt))) { 118 AllEltsOk = false; 119 break; 120 } 121 } 122 123 if (AllEltsOk) { 124 // Cast the input vectors to byte vectors. 125 Value *Op0 = 126 IC.Builder.CreateBitCast(II.getArgOperand(0), Mask->getType()); 127 Value *Op1 = 128 IC.Builder.CreateBitCast(II.getArgOperand(1), Mask->getType()); 129 Value *Result = UndefValue::get(Op0->getType()); 130 131 // Only extract each element once. 132 Value *ExtractedElts[32]; 133 memset(ExtractedElts, 0, sizeof(ExtractedElts)); 134 135 for (unsigned i = 0; i != 16; ++i) { 136 if (isa<UndefValue>(Mask->getAggregateElement(i))) 137 continue; 138 unsigned Idx = 139 cast<ConstantInt>(Mask->getAggregateElement(i))->getZExtValue(); 140 Idx &= 31; // Match the hardware behavior. 141 if (DL.isLittleEndian()) 142 Idx = 31 - Idx; 143 144 if (!ExtractedElts[Idx]) { 145 Value *Op0ToUse = (DL.isLittleEndian()) ? Op1 : Op0; 146 Value *Op1ToUse = (DL.isLittleEndian()) ? Op0 : Op1; 147 ExtractedElts[Idx] = IC.Builder.CreateExtractElement( 148 Idx < 16 ? Op0ToUse : Op1ToUse, IC.Builder.getInt32(Idx & 15)); 149 } 150 151 // Insert this value into the result vector. 152 Result = IC.Builder.CreateInsertElement(Result, ExtractedElts[Idx], 153 IC.Builder.getInt32(i)); 154 } 155 return CastInst::Create(Instruction::BitCast, Result, II.getType()); 156 } 157 } 158 break; 159 } 160 return std::nullopt; 161 } 162 163 InstructionCost PPCTTIImpl::getIntImmCost(const APInt &Imm, Type *Ty, 164 TTI::TargetCostKind CostKind) { 165 if (DisablePPCConstHoist) 166 return BaseT::getIntImmCost(Imm, Ty, CostKind); 167 168 assert(Ty->isIntegerTy()); 169 170 unsigned BitSize = Ty->getPrimitiveSizeInBits(); 171 if (BitSize == 0) 172 return ~0U; 173 174 if (Imm == 0) 175 return TTI::TCC_Free; 176 177 if (Imm.getBitWidth() <= 64) { 178 if (isInt<16>(Imm.getSExtValue())) 179 return TTI::TCC_Basic; 180 181 if (isInt<32>(Imm.getSExtValue())) { 182 // A constant that can be materialized using lis. 183 if ((Imm.getZExtValue() & 0xFFFF) == 0) 184 return TTI::TCC_Basic; 185 186 return 2 * TTI::TCC_Basic; 187 } 188 } 189 190 return 4 * TTI::TCC_Basic; 191 } 192 193 InstructionCost PPCTTIImpl::getIntImmCostIntrin(Intrinsic::ID IID, unsigned Idx, 194 const APInt &Imm, Type *Ty, 195 TTI::TargetCostKind CostKind) { 196 if (DisablePPCConstHoist) 197 return BaseT::getIntImmCostIntrin(IID, Idx, Imm, Ty, CostKind); 198 199 assert(Ty->isIntegerTy()); 200 201 unsigned BitSize = Ty->getPrimitiveSizeInBits(); 202 if (BitSize == 0) 203 return ~0U; 204 205 switch (IID) { 206 default: 207 return TTI::TCC_Free; 208 case Intrinsic::sadd_with_overflow: 209 case Intrinsic::uadd_with_overflow: 210 case Intrinsic::ssub_with_overflow: 211 case Intrinsic::usub_with_overflow: 212 if ((Idx == 1) && Imm.getBitWidth() <= 64 && isInt<16>(Imm.getSExtValue())) 213 return TTI::TCC_Free; 214 break; 215 case Intrinsic::experimental_stackmap: 216 if ((Idx < 2) || (Imm.getBitWidth() <= 64 && isInt<64>(Imm.getSExtValue()))) 217 return TTI::TCC_Free; 218 break; 219 case Intrinsic::experimental_patchpoint_void: 220 case Intrinsic::experimental_patchpoint: 221 if ((Idx < 4) || (Imm.getBitWidth() <= 64 && isInt<64>(Imm.getSExtValue()))) 222 return TTI::TCC_Free; 223 break; 224 } 225 return PPCTTIImpl::getIntImmCost(Imm, Ty, CostKind); 226 } 227 228 InstructionCost PPCTTIImpl::getIntImmCostInst(unsigned Opcode, unsigned Idx, 229 const APInt &Imm, Type *Ty, 230 TTI::TargetCostKind CostKind, 231 Instruction *Inst) { 232 if (DisablePPCConstHoist) 233 return BaseT::getIntImmCostInst(Opcode, Idx, Imm, Ty, CostKind, Inst); 234 235 assert(Ty->isIntegerTy()); 236 237 unsigned BitSize = Ty->getPrimitiveSizeInBits(); 238 if (BitSize == 0) 239 return ~0U; 240 241 unsigned ImmIdx = ~0U; 242 bool ShiftedFree = false, RunFree = false, UnsignedFree = false, 243 ZeroFree = false; 244 switch (Opcode) { 245 default: 246 return TTI::TCC_Free; 247 case Instruction::GetElementPtr: 248 // Always hoist the base address of a GetElementPtr. This prevents the 249 // creation of new constants for every base constant that gets constant 250 // folded with the offset. 251 if (Idx == 0) 252 return 2 * TTI::TCC_Basic; 253 return TTI::TCC_Free; 254 case Instruction::And: 255 RunFree = true; // (for the rotate-and-mask instructions) 256 [[fallthrough]]; 257 case Instruction::Add: 258 case Instruction::Or: 259 case Instruction::Xor: 260 ShiftedFree = true; 261 [[fallthrough]]; 262 case Instruction::Sub: 263 case Instruction::Mul: 264 case Instruction::Shl: 265 case Instruction::LShr: 266 case Instruction::AShr: 267 ImmIdx = 1; 268 break; 269 case Instruction::ICmp: 270 UnsignedFree = true; 271 ImmIdx = 1; 272 // Zero comparisons can use record-form instructions. 273 [[fallthrough]]; 274 case Instruction::Select: 275 ZeroFree = true; 276 break; 277 case Instruction::PHI: 278 case Instruction::Call: 279 case Instruction::Ret: 280 case Instruction::Load: 281 case Instruction::Store: 282 break; 283 } 284 285 if (ZeroFree && Imm == 0) 286 return TTI::TCC_Free; 287 288 if (Idx == ImmIdx && Imm.getBitWidth() <= 64) { 289 if (isInt<16>(Imm.getSExtValue())) 290 return TTI::TCC_Free; 291 292 if (RunFree) { 293 if (Imm.getBitWidth() <= 32 && 294 (isShiftedMask_32(Imm.getZExtValue()) || 295 isShiftedMask_32(~Imm.getZExtValue()))) 296 return TTI::TCC_Free; 297 298 if (ST->isPPC64() && 299 (isShiftedMask_64(Imm.getZExtValue()) || 300 isShiftedMask_64(~Imm.getZExtValue()))) 301 return TTI::TCC_Free; 302 } 303 304 if (UnsignedFree && isUInt<16>(Imm.getZExtValue())) 305 return TTI::TCC_Free; 306 307 if (ShiftedFree && (Imm.getZExtValue() & 0xFFFF) == 0) 308 return TTI::TCC_Free; 309 } 310 311 return PPCTTIImpl::getIntImmCost(Imm, Ty, CostKind); 312 } 313 314 // Check if the current Type is an MMA vector type. Valid MMA types are 315 // v256i1 and v512i1 respectively. 316 static bool isMMAType(Type *Ty) { 317 return Ty->isVectorTy() && (Ty->getScalarSizeInBits() == 1) && 318 (Ty->getPrimitiveSizeInBits() > 128); 319 } 320 321 InstructionCost PPCTTIImpl::getInstructionCost(const User *U, 322 ArrayRef<const Value *> Operands, 323 TTI::TargetCostKind CostKind) { 324 // We already implement getCastInstrCost and getMemoryOpCost where we perform 325 // the vector adjustment there. 326 if (isa<CastInst>(U) || isa<LoadInst>(U) || isa<StoreInst>(U)) 327 return BaseT::getInstructionCost(U, Operands, CostKind); 328 329 if (U->getType()->isVectorTy()) { 330 // Instructions that need to be split should cost more. 331 std::pair<InstructionCost, MVT> LT = getTypeLegalizationCost(U->getType()); 332 return LT.first * BaseT::getInstructionCost(U, Operands, CostKind); 333 } 334 335 return BaseT::getInstructionCost(U, Operands, CostKind); 336 } 337 338 bool PPCTTIImpl::isHardwareLoopProfitable(Loop *L, ScalarEvolution &SE, 339 AssumptionCache &AC, 340 TargetLibraryInfo *LibInfo, 341 HardwareLoopInfo &HWLoopInfo) { 342 const PPCTargetMachine &TM = ST->getTargetMachine(); 343 TargetSchedModel SchedModel; 344 SchedModel.init(ST); 345 346 // Do not convert small short loops to CTR loop. 347 unsigned ConstTripCount = SE.getSmallConstantTripCount(L); 348 if (ConstTripCount && ConstTripCount < SmallCTRLoopThreshold) { 349 SmallPtrSet<const Value *, 32> EphValues; 350 CodeMetrics::collectEphemeralValues(L, &AC, EphValues); 351 CodeMetrics Metrics; 352 for (BasicBlock *BB : L->blocks()) 353 Metrics.analyzeBasicBlock(BB, *this, EphValues); 354 // 6 is an approximate latency for the mtctr instruction. 355 if (Metrics.NumInsts <= (6 * SchedModel.getIssueWidth())) 356 return false; 357 } 358 359 // Check that there is no hardware loop related intrinsics in the loop. 360 for (auto *BB : L->getBlocks()) 361 for (auto &I : *BB) 362 if (auto *Call = dyn_cast<IntrinsicInst>(&I)) 363 if (Call->getIntrinsicID() == Intrinsic::set_loop_iterations || 364 Call->getIntrinsicID() == Intrinsic::loop_decrement) 365 return false; 366 367 SmallVector<BasicBlock*, 4> ExitingBlocks; 368 L->getExitingBlocks(ExitingBlocks); 369 370 // If there is an exit edge known to be frequently taken, 371 // we should not transform this loop. 372 for (auto &BB : ExitingBlocks) { 373 Instruction *TI = BB->getTerminator(); 374 if (!TI) continue; 375 376 if (BranchInst *BI = dyn_cast<BranchInst>(TI)) { 377 uint64_t TrueWeight = 0, FalseWeight = 0; 378 if (!BI->isConditional() || 379 !extractBranchWeights(*BI, TrueWeight, FalseWeight)) 380 continue; 381 382 // If the exit path is more frequent than the loop path, 383 // we return here without further analysis for this loop. 384 bool TrueIsExit = !L->contains(BI->getSuccessor(0)); 385 if (( TrueIsExit && FalseWeight < TrueWeight) || 386 (!TrueIsExit && FalseWeight > TrueWeight)) 387 return false; 388 } 389 } 390 391 LLVMContext &C = L->getHeader()->getContext(); 392 HWLoopInfo.CountType = TM.isPPC64() ? 393 Type::getInt64Ty(C) : Type::getInt32Ty(C); 394 HWLoopInfo.LoopDecrement = ConstantInt::get(HWLoopInfo.CountType, 1); 395 return true; 396 } 397 398 void PPCTTIImpl::getUnrollingPreferences(Loop *L, ScalarEvolution &SE, 399 TTI::UnrollingPreferences &UP, 400 OptimizationRemarkEmitter *ORE) { 401 if (ST->getCPUDirective() == PPC::DIR_A2) { 402 // The A2 is in-order with a deep pipeline, and concatenation unrolling 403 // helps expose latency-hiding opportunities to the instruction scheduler. 404 UP.Partial = UP.Runtime = true; 405 406 // We unroll a lot on the A2 (hundreds of instructions), and the benefits 407 // often outweigh the cost of a division to compute the trip count. 408 UP.AllowExpensiveTripCount = true; 409 } 410 411 BaseT::getUnrollingPreferences(L, SE, UP, ORE); 412 } 413 414 void PPCTTIImpl::getPeelingPreferences(Loop *L, ScalarEvolution &SE, 415 TTI::PeelingPreferences &PP) { 416 BaseT::getPeelingPreferences(L, SE, PP); 417 } 418 // This function returns true to allow using coldcc calling convention. 419 // Returning true results in coldcc being used for functions which are cold at 420 // all call sites when the callers of the functions are not calling any other 421 // non coldcc functions. 422 bool PPCTTIImpl::useColdCCForColdCall(Function &F) { 423 return EnablePPCColdCC; 424 } 425 426 bool PPCTTIImpl::enableAggressiveInterleaving(bool LoopHasReductions) { 427 // On the A2, always unroll aggressively. 428 if (ST->getCPUDirective() == PPC::DIR_A2) 429 return true; 430 431 return LoopHasReductions; 432 } 433 434 PPCTTIImpl::TTI::MemCmpExpansionOptions 435 PPCTTIImpl::enableMemCmpExpansion(bool OptSize, bool IsZeroCmp) const { 436 TTI::MemCmpExpansionOptions Options; 437 Options.LoadSizes = {8, 4, 2, 1}; 438 Options.MaxNumLoads = TLI->getMaxExpandSizeMemcmp(OptSize); 439 return Options; 440 } 441 442 bool PPCTTIImpl::enableInterleavedAccessVectorization() { 443 return true; 444 } 445 446 unsigned PPCTTIImpl::getNumberOfRegisters(unsigned ClassID) const { 447 assert(ClassID == GPRRC || ClassID == FPRRC || 448 ClassID == VRRC || ClassID == VSXRC); 449 if (ST->hasVSX()) { 450 assert(ClassID == GPRRC || ClassID == VSXRC || ClassID == VRRC); 451 return ClassID == VSXRC ? 64 : 32; 452 } 453 assert(ClassID == GPRRC || ClassID == FPRRC || ClassID == VRRC); 454 return 32; 455 } 456 457 unsigned PPCTTIImpl::getRegisterClassForType(bool Vector, Type *Ty) const { 458 if (Vector) 459 return ST->hasVSX() ? VSXRC : VRRC; 460 else if (Ty && (Ty->getScalarType()->isFloatTy() || 461 Ty->getScalarType()->isDoubleTy())) 462 return ST->hasVSX() ? VSXRC : FPRRC; 463 else if (Ty && (Ty->getScalarType()->isFP128Ty() || 464 Ty->getScalarType()->isPPC_FP128Ty())) 465 return VRRC; 466 else if (Ty && Ty->getScalarType()->isHalfTy()) 467 return VSXRC; 468 else 469 return GPRRC; 470 } 471 472 const char* PPCTTIImpl::getRegisterClassName(unsigned ClassID) const { 473 474 switch (ClassID) { 475 default: 476 llvm_unreachable("unknown register class"); 477 return "PPC::unknown register class"; 478 case GPRRC: return "PPC::GPRRC"; 479 case FPRRC: return "PPC::FPRRC"; 480 case VRRC: return "PPC::VRRC"; 481 case VSXRC: return "PPC::VSXRC"; 482 } 483 } 484 485 TypeSize 486 PPCTTIImpl::getRegisterBitWidth(TargetTransformInfo::RegisterKind K) const { 487 switch (K) { 488 case TargetTransformInfo::RGK_Scalar: 489 return TypeSize::getFixed(ST->isPPC64() ? 64 : 32); 490 case TargetTransformInfo::RGK_FixedWidthVector: 491 return TypeSize::getFixed(ST->hasAltivec() ? 128 : 0); 492 case TargetTransformInfo::RGK_ScalableVector: 493 return TypeSize::getScalable(0); 494 } 495 496 llvm_unreachable("Unsupported register kind"); 497 } 498 499 unsigned PPCTTIImpl::getCacheLineSize() const { 500 // Starting with P7 we have a cache line size of 128. 501 unsigned Directive = ST->getCPUDirective(); 502 // Assume that Future CPU has the same cache line size as the others. 503 if (Directive == PPC::DIR_PWR7 || Directive == PPC::DIR_PWR8 || 504 Directive == PPC::DIR_PWR9 || Directive == PPC::DIR_PWR10 || 505 Directive == PPC::DIR_PWR11 || Directive == PPC::DIR_PWR_FUTURE) 506 return 128; 507 508 // On other processors return a default of 64 bytes. 509 return 64; 510 } 511 512 unsigned PPCTTIImpl::getPrefetchDistance() const { 513 return 300; 514 } 515 516 unsigned PPCTTIImpl::getMaxInterleaveFactor(ElementCount VF) { 517 unsigned Directive = ST->getCPUDirective(); 518 // The 440 has no SIMD support, but floating-point instructions 519 // have a 5-cycle latency, so unroll by 5x for latency hiding. 520 if (Directive == PPC::DIR_440) 521 return 5; 522 523 // The A2 has no SIMD support, but floating-point instructions 524 // have a 6-cycle latency, so unroll by 6x for latency hiding. 525 if (Directive == PPC::DIR_A2) 526 return 6; 527 528 // FIXME: For lack of any better information, do no harm... 529 if (Directive == PPC::DIR_E500mc || Directive == PPC::DIR_E5500) 530 return 1; 531 532 // For P7 and P8, floating-point instructions have a 6-cycle latency and 533 // there are two execution units, so unroll by 12x for latency hiding. 534 // FIXME: the same for P9 as previous gen until POWER9 scheduling is ready 535 // FIXME: the same for P10 as previous gen until POWER10 scheduling is ready 536 // Assume that future is the same as the others. 537 if (Directive == PPC::DIR_PWR7 || Directive == PPC::DIR_PWR8 || 538 Directive == PPC::DIR_PWR9 || Directive == PPC::DIR_PWR10 || 539 Directive == PPC::DIR_PWR11 || Directive == PPC::DIR_PWR_FUTURE) 540 return 12; 541 542 // For most things, modern systems have two execution units (and 543 // out-of-order execution). 544 return 2; 545 } 546 547 // Returns a cost adjustment factor to adjust the cost of vector instructions 548 // on targets which there is overlap between the vector and scalar units, 549 // thereby reducing the overall throughput of vector code wrt. scalar code. 550 // An invalid instruction cost is returned if the type is an MMA vector type. 551 InstructionCost PPCTTIImpl::vectorCostAdjustmentFactor(unsigned Opcode, 552 Type *Ty1, Type *Ty2) { 553 // If the vector type is of an MMA type (v256i1, v512i1), an invalid 554 // instruction cost is returned. This is to signify to other cost computing 555 // functions to return the maximum instruction cost in order to prevent any 556 // opportunities for the optimizer to produce MMA types within the IR. 557 if (isMMAType(Ty1)) 558 return InstructionCost::getInvalid(); 559 560 if (!ST->vectorsUseTwoUnits() || !Ty1->isVectorTy()) 561 return InstructionCost(1); 562 563 std::pair<InstructionCost, MVT> LT1 = getTypeLegalizationCost(Ty1); 564 // If type legalization involves splitting the vector, we don't want to 565 // double the cost at every step - only the last step. 566 if (LT1.first != 1 || !LT1.second.isVector()) 567 return InstructionCost(1); 568 569 int ISD = TLI->InstructionOpcodeToISD(Opcode); 570 if (TLI->isOperationExpand(ISD, LT1.second)) 571 return InstructionCost(1); 572 573 if (Ty2) { 574 std::pair<InstructionCost, MVT> LT2 = getTypeLegalizationCost(Ty2); 575 if (LT2.first != 1 || !LT2.second.isVector()) 576 return InstructionCost(1); 577 } 578 579 return InstructionCost(2); 580 } 581 582 InstructionCost PPCTTIImpl::getArithmeticInstrCost( 583 unsigned Opcode, Type *Ty, TTI::TargetCostKind CostKind, 584 TTI::OperandValueInfo Op1Info, TTI::OperandValueInfo Op2Info, 585 ArrayRef<const Value *> Args, 586 const Instruction *CxtI) { 587 assert(TLI->InstructionOpcodeToISD(Opcode) && "Invalid opcode"); 588 589 InstructionCost CostFactor = vectorCostAdjustmentFactor(Opcode, Ty, nullptr); 590 if (!CostFactor.isValid()) 591 return InstructionCost::getMax(); 592 593 // TODO: Handle more cost kinds. 594 if (CostKind != TTI::TCK_RecipThroughput) 595 return BaseT::getArithmeticInstrCost(Opcode, Ty, CostKind, Op1Info, 596 Op2Info, Args, CxtI); 597 598 // Fallback to the default implementation. 599 InstructionCost Cost = BaseT::getArithmeticInstrCost( 600 Opcode, Ty, CostKind, Op1Info, Op2Info); 601 return Cost * CostFactor; 602 } 603 604 InstructionCost PPCTTIImpl::getShuffleCost(TTI::ShuffleKind Kind, Type *Tp, 605 ArrayRef<int> Mask, 606 TTI::TargetCostKind CostKind, 607 int Index, Type *SubTp, 608 ArrayRef<const Value *> Args, 609 const Instruction *CxtI) { 610 611 InstructionCost CostFactor = 612 vectorCostAdjustmentFactor(Instruction::ShuffleVector, Tp, nullptr); 613 if (!CostFactor.isValid()) 614 return InstructionCost::getMax(); 615 616 // Legalize the type. 617 std::pair<InstructionCost, MVT> LT = getTypeLegalizationCost(Tp); 618 619 // PPC, for both Altivec/VSX, support cheap arbitrary permutations 620 // (at least in the sense that there need only be one non-loop-invariant 621 // instruction). We need one such shuffle instruction for each actual 622 // register (this is not true for arbitrary shuffles, but is true for the 623 // structured types of shuffles covered by TTI::ShuffleKind). 624 return LT.first * CostFactor; 625 } 626 627 InstructionCost PPCTTIImpl::getCFInstrCost(unsigned Opcode, 628 TTI::TargetCostKind CostKind, 629 const Instruction *I) { 630 if (CostKind != TTI::TCK_RecipThroughput) 631 return Opcode == Instruction::PHI ? 0 : 1; 632 // Branches are assumed to be predicted. 633 return 0; 634 } 635 636 InstructionCost PPCTTIImpl::getCastInstrCost(unsigned Opcode, Type *Dst, 637 Type *Src, 638 TTI::CastContextHint CCH, 639 TTI::TargetCostKind CostKind, 640 const Instruction *I) { 641 assert(TLI->InstructionOpcodeToISD(Opcode) && "Invalid opcode"); 642 643 InstructionCost CostFactor = vectorCostAdjustmentFactor(Opcode, Dst, Src); 644 if (!CostFactor.isValid()) 645 return InstructionCost::getMax(); 646 647 InstructionCost Cost = 648 BaseT::getCastInstrCost(Opcode, Dst, Src, CCH, CostKind, I); 649 Cost *= CostFactor; 650 // TODO: Allow non-throughput costs that aren't binary. 651 if (CostKind != TTI::TCK_RecipThroughput) 652 return Cost == 0 ? 0 : 1; 653 return Cost; 654 } 655 656 InstructionCost PPCTTIImpl::getCmpSelInstrCost( 657 unsigned Opcode, Type *ValTy, Type *CondTy, CmpInst::Predicate VecPred, 658 TTI::TargetCostKind CostKind, TTI::OperandValueInfo Op1Info, 659 TTI::OperandValueInfo Op2Info, const Instruction *I) { 660 InstructionCost CostFactor = 661 vectorCostAdjustmentFactor(Opcode, ValTy, nullptr); 662 if (!CostFactor.isValid()) 663 return InstructionCost::getMax(); 664 665 InstructionCost Cost = BaseT::getCmpSelInstrCost( 666 Opcode, ValTy, CondTy, VecPred, CostKind, Op1Info, Op2Info, I); 667 // TODO: Handle other cost kinds. 668 if (CostKind != TTI::TCK_RecipThroughput) 669 return Cost; 670 return Cost * CostFactor; 671 } 672 673 InstructionCost PPCTTIImpl::getVectorInstrCost(unsigned Opcode, Type *Val, 674 TTI::TargetCostKind CostKind, 675 unsigned Index, Value *Op0, 676 Value *Op1) { 677 assert(Val->isVectorTy() && "This must be a vector type"); 678 679 int ISD = TLI->InstructionOpcodeToISD(Opcode); 680 assert(ISD && "Invalid opcode"); 681 682 InstructionCost CostFactor = vectorCostAdjustmentFactor(Opcode, Val, nullptr); 683 if (!CostFactor.isValid()) 684 return InstructionCost::getMax(); 685 686 InstructionCost Cost = 687 BaseT::getVectorInstrCost(Opcode, Val, CostKind, Index, Op0, Op1); 688 Cost *= CostFactor; 689 690 if (ST->hasVSX() && Val->getScalarType()->isDoubleTy()) { 691 // Double-precision scalars are already located in index #0 (or #1 if LE). 692 if (ISD == ISD::EXTRACT_VECTOR_ELT && 693 Index == (ST->isLittleEndian() ? 1 : 0)) 694 return 0; 695 696 return Cost; 697 698 } else if (Val->getScalarType()->isIntegerTy()) { 699 unsigned EltSize = Val->getScalarSizeInBits(); 700 // Computing on 1 bit values requires extra mask or compare operations. 701 unsigned MaskCostForOneBitSize = (VecMaskCost && EltSize == 1) ? 1 : 0; 702 // Computing on non const index requires extra mask or compare operations. 703 unsigned MaskCostForIdx = (Index != -1U) ? 0 : 1; 704 if (ST->hasP9Altivec()) { 705 // P10 has vxform insert which can handle non const index. The 706 // MaskCostForIdx is for masking the index. 707 // P9 has insert for const index. A move-to VSR and a permute/insert. 708 // Assume vector operation cost for both (cost will be 2x on P9). 709 if (ISD == ISD::INSERT_VECTOR_ELT) { 710 if (ST->hasP10Vector()) 711 return CostFactor + MaskCostForIdx; 712 else if (Index != -1U) 713 return 2 * CostFactor; 714 } else if (ISD == ISD::EXTRACT_VECTOR_ELT) { 715 // It's an extract. Maybe we can do a cheap move-from VSR. 716 unsigned EltSize = Val->getScalarSizeInBits(); 717 // P9 has both mfvsrd and mfvsrld for 64 bit integer. 718 if (EltSize == 64 && Index != -1U) 719 return 1; 720 else if (EltSize == 32) { 721 unsigned MfvsrwzIndex = ST->isLittleEndian() ? 2 : 1; 722 if (Index == MfvsrwzIndex) 723 return 1; 724 725 // For other indexs like non const, P9 has vxform extract. The 726 // MaskCostForIdx is for masking the index. 727 return CostFactor + MaskCostForIdx; 728 } 729 730 // We need a vector extract (or mfvsrld). Assume vector operation cost. 731 // The cost of the load constant for a vector extract is disregarded 732 // (invariant, easily schedulable). 733 return CostFactor + MaskCostForOneBitSize + MaskCostForIdx; 734 } 735 } else if (ST->hasDirectMove() && Index != -1U) { 736 // Assume permute has standard cost. 737 // Assume move-to/move-from VSR have 2x standard cost. 738 if (ISD == ISD::INSERT_VECTOR_ELT) 739 return 3; 740 return 3 + MaskCostForOneBitSize; 741 } 742 } 743 744 // Estimated cost of a load-hit-store delay. This was obtained 745 // experimentally as a minimum needed to prevent unprofitable 746 // vectorization for the paq8p benchmark. It may need to be 747 // raised further if other unprofitable cases remain. 748 unsigned LHSPenalty = 2; 749 if (ISD == ISD::INSERT_VECTOR_ELT) 750 LHSPenalty += 7; 751 752 // Vector element insert/extract with Altivec is very expensive, 753 // because they require store and reload with the attendant 754 // processor stall for load-hit-store. Until VSX is available, 755 // these need to be estimated as very costly. 756 if (ISD == ISD::EXTRACT_VECTOR_ELT || 757 ISD == ISD::INSERT_VECTOR_ELT) 758 return LHSPenalty + Cost; 759 760 return Cost; 761 } 762 763 InstructionCost PPCTTIImpl::getMemoryOpCost(unsigned Opcode, Type *Src, 764 MaybeAlign Alignment, 765 unsigned AddressSpace, 766 TTI::TargetCostKind CostKind, 767 TTI::OperandValueInfo OpInfo, 768 const Instruction *I) { 769 770 InstructionCost CostFactor = vectorCostAdjustmentFactor(Opcode, Src, nullptr); 771 if (!CostFactor.isValid()) 772 return InstructionCost::getMax(); 773 774 if (TLI->getValueType(DL, Src, true) == MVT::Other) 775 return BaseT::getMemoryOpCost(Opcode, Src, Alignment, AddressSpace, 776 CostKind); 777 // Legalize the type. 778 std::pair<InstructionCost, MVT> LT = getTypeLegalizationCost(Src); 779 assert((Opcode == Instruction::Load || Opcode == Instruction::Store) && 780 "Invalid Opcode"); 781 782 InstructionCost Cost = 783 BaseT::getMemoryOpCost(Opcode, Src, Alignment, AddressSpace, CostKind); 784 // TODO: Handle other cost kinds. 785 if (CostKind != TTI::TCK_RecipThroughput) 786 return Cost; 787 788 Cost *= CostFactor; 789 790 bool IsAltivecType = ST->hasAltivec() && 791 (LT.second == MVT::v16i8 || LT.second == MVT::v8i16 || 792 LT.second == MVT::v4i32 || LT.second == MVT::v4f32); 793 bool IsVSXType = ST->hasVSX() && 794 (LT.second == MVT::v2f64 || LT.second == MVT::v2i64); 795 796 // VSX has 32b/64b load instructions. Legalization can handle loading of 797 // 32b/64b to VSR correctly and cheaply. But BaseT::getMemoryOpCost and 798 // PPCTargetLowering can't compute the cost appropriately. So here we 799 // explicitly check this case. There are also corresponding store 800 // instructions. 801 unsigned MemBits = Src->getPrimitiveSizeInBits(); 802 unsigned SrcBytes = LT.second.getStoreSize(); 803 if (ST->hasVSX() && IsAltivecType) { 804 if (MemBits == 64 || (ST->hasP8Vector() && MemBits == 32)) 805 return 1; 806 807 // Use lfiwax/xxspltw 808 Align AlignBytes = Alignment ? *Alignment : Align(1); 809 if (Opcode == Instruction::Load && MemBits == 32 && AlignBytes < SrcBytes) 810 return 2; 811 } 812 813 // Aligned loads and stores are easy. 814 if (!SrcBytes || !Alignment || *Alignment >= SrcBytes) 815 return Cost; 816 817 // If we can use the permutation-based load sequence, then this is also 818 // relatively cheap (not counting loop-invariant instructions): one load plus 819 // one permute (the last load in a series has extra cost, but we're 820 // neglecting that here). Note that on the P7, we could do unaligned loads 821 // for Altivec types using the VSX instructions, but that's more expensive 822 // than using the permutation-based load sequence. On the P8, that's no 823 // longer true. 824 if (Opcode == Instruction::Load && (!ST->hasP8Vector() && IsAltivecType) && 825 *Alignment >= LT.second.getScalarType().getStoreSize()) 826 return Cost + LT.first; // Add the cost of the permutations. 827 828 // For VSX, we can do unaligned loads and stores on Altivec/VSX types. On the 829 // P7, unaligned vector loads are more expensive than the permutation-based 830 // load sequence, so that might be used instead, but regardless, the net cost 831 // is about the same (not counting loop-invariant instructions). 832 if (IsVSXType || (ST->hasVSX() && IsAltivecType)) 833 return Cost; 834 835 // Newer PPC supports unaligned memory access. 836 if (TLI->allowsMisalignedMemoryAccesses(LT.second, 0)) 837 return Cost; 838 839 // PPC in general does not support unaligned loads and stores. They'll need 840 // to be decomposed based on the alignment factor. 841 842 // Add the cost of each scalar load or store. 843 assert(Alignment); 844 Cost += LT.first * ((SrcBytes / Alignment->value()) - 1); 845 846 // For a vector type, there is also scalarization overhead (only for 847 // stores, loads are expanded using the vector-load + permutation sequence, 848 // which is much less expensive). 849 if (Src->isVectorTy() && Opcode == Instruction::Store) 850 for (int i = 0, e = cast<FixedVectorType>(Src)->getNumElements(); i < e; 851 ++i) 852 Cost += getVectorInstrCost(Instruction::ExtractElement, Src, CostKind, i, 853 nullptr, nullptr); 854 855 return Cost; 856 } 857 858 InstructionCost PPCTTIImpl::getInterleavedMemoryOpCost( 859 unsigned Opcode, Type *VecTy, unsigned Factor, ArrayRef<unsigned> Indices, 860 Align Alignment, unsigned AddressSpace, TTI::TargetCostKind CostKind, 861 bool UseMaskForCond, bool UseMaskForGaps) { 862 InstructionCost CostFactor = 863 vectorCostAdjustmentFactor(Opcode, VecTy, nullptr); 864 if (!CostFactor.isValid()) 865 return InstructionCost::getMax(); 866 867 if (UseMaskForCond || UseMaskForGaps) 868 return BaseT::getInterleavedMemoryOpCost(Opcode, VecTy, Factor, Indices, 869 Alignment, AddressSpace, CostKind, 870 UseMaskForCond, UseMaskForGaps); 871 872 assert(isa<VectorType>(VecTy) && 873 "Expect a vector type for interleaved memory op"); 874 875 // Legalize the type. 876 std::pair<InstructionCost, MVT> LT = getTypeLegalizationCost(VecTy); 877 878 // Firstly, the cost of load/store operation. 879 InstructionCost Cost = getMemoryOpCost(Opcode, VecTy, MaybeAlign(Alignment), 880 AddressSpace, CostKind); 881 882 // PPC, for both Altivec/VSX, support cheap arbitrary permutations 883 // (at least in the sense that there need only be one non-loop-invariant 884 // instruction). For each result vector, we need one shuffle per incoming 885 // vector (except that the first shuffle can take two incoming vectors 886 // because it does not need to take itself). 887 Cost += Factor*(LT.first-1); 888 889 return Cost; 890 } 891 892 InstructionCost 893 PPCTTIImpl::getIntrinsicInstrCost(const IntrinsicCostAttributes &ICA, 894 TTI::TargetCostKind CostKind) { 895 return BaseT::getIntrinsicInstrCost(ICA, CostKind); 896 } 897 898 bool PPCTTIImpl::areTypesABICompatible(const Function *Caller, 899 const Function *Callee, 900 const ArrayRef<Type *> &Types) const { 901 902 // We need to ensure that argument promotion does not 903 // attempt to promote pointers to MMA types (__vector_pair 904 // and __vector_quad) since these types explicitly cannot be 905 // passed as arguments. Both of these types are larger than 906 // the 128-bit Altivec vectors and have a scalar size of 1 bit. 907 if (!BaseT::areTypesABICompatible(Caller, Callee, Types)) 908 return false; 909 910 return llvm::none_of(Types, [](Type *Ty) { 911 if (Ty->isSized()) 912 return Ty->isIntOrIntVectorTy(1) && Ty->getPrimitiveSizeInBits() > 128; 913 return false; 914 }); 915 } 916 917 bool PPCTTIImpl::canSaveCmp(Loop *L, BranchInst **BI, ScalarEvolution *SE, 918 LoopInfo *LI, DominatorTree *DT, 919 AssumptionCache *AC, TargetLibraryInfo *LibInfo) { 920 // Process nested loops first. 921 for (Loop *I : *L) 922 if (canSaveCmp(I, BI, SE, LI, DT, AC, LibInfo)) 923 return false; // Stop search. 924 925 HardwareLoopInfo HWLoopInfo(L); 926 927 if (!HWLoopInfo.canAnalyze(*LI)) 928 return false; 929 930 if (!isHardwareLoopProfitable(L, *SE, *AC, LibInfo, HWLoopInfo)) 931 return false; 932 933 if (!HWLoopInfo.isHardwareLoopCandidate(*SE, *LI, *DT)) 934 return false; 935 936 *BI = HWLoopInfo.ExitBranch; 937 return true; 938 } 939 940 bool PPCTTIImpl::isLSRCostLess(const TargetTransformInfo::LSRCost &C1, 941 const TargetTransformInfo::LSRCost &C2) { 942 // PowerPC default behaviour here is "instruction number 1st priority". 943 // If LsrNoInsnsCost is set, call default implementation. 944 if (!LsrNoInsnsCost) 945 return std::tie(C1.Insns, C1.NumRegs, C1.AddRecCost, C1.NumIVMuls, 946 C1.NumBaseAdds, C1.ScaleCost, C1.ImmCost, C1.SetupCost) < 947 std::tie(C2.Insns, C2.NumRegs, C2.AddRecCost, C2.NumIVMuls, 948 C2.NumBaseAdds, C2.ScaleCost, C2.ImmCost, C2.SetupCost); 949 else 950 return TargetTransformInfoImplBase::isLSRCostLess(C1, C2); 951 } 952 953 bool PPCTTIImpl::isNumRegsMajorCostOfLSR() { 954 return false; 955 } 956 957 bool PPCTTIImpl::shouldBuildRelLookupTables() const { 958 const PPCTargetMachine &TM = ST->getTargetMachine(); 959 // XCOFF hasn't implemented lowerRelativeReference, disable non-ELF for now. 960 if (!TM.isELFv2ABI()) 961 return false; 962 return BaseT::shouldBuildRelLookupTables(); 963 } 964 965 bool PPCTTIImpl::getTgtMemIntrinsic(IntrinsicInst *Inst, 966 MemIntrinsicInfo &Info) { 967 switch (Inst->getIntrinsicID()) { 968 case Intrinsic::ppc_altivec_lvx: 969 case Intrinsic::ppc_altivec_lvxl: 970 case Intrinsic::ppc_altivec_lvebx: 971 case Intrinsic::ppc_altivec_lvehx: 972 case Intrinsic::ppc_altivec_lvewx: 973 case Intrinsic::ppc_vsx_lxvd2x: 974 case Intrinsic::ppc_vsx_lxvw4x: 975 case Intrinsic::ppc_vsx_lxvd2x_be: 976 case Intrinsic::ppc_vsx_lxvw4x_be: 977 case Intrinsic::ppc_vsx_lxvl: 978 case Intrinsic::ppc_vsx_lxvll: 979 case Intrinsic::ppc_vsx_lxvp: { 980 Info.PtrVal = Inst->getArgOperand(0); 981 Info.ReadMem = true; 982 Info.WriteMem = false; 983 return true; 984 } 985 case Intrinsic::ppc_altivec_stvx: 986 case Intrinsic::ppc_altivec_stvxl: 987 case Intrinsic::ppc_altivec_stvebx: 988 case Intrinsic::ppc_altivec_stvehx: 989 case Intrinsic::ppc_altivec_stvewx: 990 case Intrinsic::ppc_vsx_stxvd2x: 991 case Intrinsic::ppc_vsx_stxvw4x: 992 case Intrinsic::ppc_vsx_stxvd2x_be: 993 case Intrinsic::ppc_vsx_stxvw4x_be: 994 case Intrinsic::ppc_vsx_stxvl: 995 case Intrinsic::ppc_vsx_stxvll: 996 case Intrinsic::ppc_vsx_stxvp: { 997 Info.PtrVal = Inst->getArgOperand(1); 998 Info.ReadMem = false; 999 Info.WriteMem = true; 1000 return true; 1001 } 1002 case Intrinsic::ppc_stbcx: 1003 case Intrinsic::ppc_sthcx: 1004 case Intrinsic::ppc_stdcx: 1005 case Intrinsic::ppc_stwcx: { 1006 Info.PtrVal = Inst->getArgOperand(0); 1007 Info.ReadMem = false; 1008 Info.WriteMem = true; 1009 return true; 1010 } 1011 default: 1012 break; 1013 } 1014 1015 return false; 1016 } 1017 1018 bool PPCTTIImpl::hasActiveVectorLength(unsigned Opcode, Type *DataType, 1019 Align Alignment) const { 1020 // Only load and stores instructions can have variable vector length on Power. 1021 if (Opcode != Instruction::Load && Opcode != Instruction::Store) 1022 return false; 1023 // Loads/stores with length instructions use bits 0-7 of the GPR operand and 1024 // therefore cannot be used in 32-bit mode. 1025 if ((!ST->hasP9Vector() && !ST->hasP10Vector()) || !ST->isPPC64()) 1026 return false; 1027 if (isa<FixedVectorType>(DataType)) { 1028 unsigned VecWidth = DataType->getPrimitiveSizeInBits(); 1029 return VecWidth == 128; 1030 } 1031 Type *ScalarTy = DataType->getScalarType(); 1032 1033 if (ScalarTy->isPointerTy()) 1034 return true; 1035 1036 if (ScalarTy->isFloatTy() || ScalarTy->isDoubleTy()) 1037 return true; 1038 1039 if (!ScalarTy->isIntegerTy()) 1040 return false; 1041 1042 unsigned IntWidth = ScalarTy->getIntegerBitWidth(); 1043 return IntWidth == 8 || IntWidth == 16 || IntWidth == 32 || IntWidth == 64; 1044 } 1045 1046 InstructionCost PPCTTIImpl::getVPMemoryOpCost(unsigned Opcode, Type *Src, 1047 Align Alignment, 1048 unsigned AddressSpace, 1049 TTI::TargetCostKind CostKind, 1050 const Instruction *I) { 1051 InstructionCost Cost = BaseT::getVPMemoryOpCost(Opcode, Src, Alignment, 1052 AddressSpace, CostKind, I); 1053 if (TLI->getValueType(DL, Src, true) == MVT::Other) 1054 return Cost; 1055 // TODO: Handle other cost kinds. 1056 if (CostKind != TTI::TCK_RecipThroughput) 1057 return Cost; 1058 1059 assert((Opcode == Instruction::Load || Opcode == Instruction::Store) && 1060 "Invalid Opcode"); 1061 1062 auto *SrcVTy = dyn_cast<FixedVectorType>(Src); 1063 assert(SrcVTy && "Expected a vector type for VP memory operations"); 1064 1065 if (hasActiveVectorLength(Opcode, Src, Alignment)) { 1066 std::pair<InstructionCost, MVT> LT = getTypeLegalizationCost(SrcVTy); 1067 1068 InstructionCost CostFactor = 1069 vectorCostAdjustmentFactor(Opcode, Src, nullptr); 1070 if (!CostFactor.isValid()) 1071 return InstructionCost::getMax(); 1072 1073 InstructionCost Cost = LT.first * CostFactor; 1074 assert(Cost.isValid() && "Expected valid cost"); 1075 1076 // On P9 but not on P10, if the op is misaligned then it will cause a 1077 // pipeline flush. Otherwise the VSX masked memops cost the same as unmasked 1078 // ones. 1079 const Align DesiredAlignment(16); 1080 if (Alignment >= DesiredAlignment || ST->getCPUDirective() != PPC::DIR_PWR9) 1081 return Cost; 1082 1083 // Since alignment may be under estimated, we try to compute the probability 1084 // that the actual address is aligned to the desired boundary. For example 1085 // an 8-byte aligned load is assumed to be actually 16-byte aligned half the 1086 // time, while a 4-byte aligned load has a 25% chance of being 16-byte 1087 // aligned. 1088 float AlignmentProb = ((float)Alignment.value()) / DesiredAlignment.value(); 1089 float MisalignmentProb = 1.0 - AlignmentProb; 1090 return (MisalignmentProb * P9PipelineFlushEstimate) + 1091 (AlignmentProb * *Cost.getValue()); 1092 } 1093 1094 // Usually we should not get to this point, but the following is an attempt to 1095 // model the cost of legalization. Currently we can only lower intrinsics with 1096 // evl but no mask, on Power 9/10. Otherwise, we must scalarize. 1097 return getMaskedMemoryOpCost(Opcode, Src, Alignment, AddressSpace, CostKind); 1098 } 1099 1100 bool PPCTTIImpl::supportsTailCallFor(const CallBase *CB) const { 1101 return TLI->supportsTailCallFor(CB); 1102 } 1103