xref: /netbsd-src/external/apache2/llvm/dist/llvm/lib/Target/PowerPC/PPCISelDAGToDAG.cpp (revision 82d56013d7b633d116a93943de88e08335357a7c)
1 //===-- PPCISelDAGToDAG.cpp - PPC --pattern matching inst selector --------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines a pattern matching instruction selector for PowerPC,
10 // converting from a legalized dag to a PPC dag.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "MCTargetDesc/PPCMCTargetDesc.h"
15 #include "MCTargetDesc/PPCPredicates.h"
16 #include "PPC.h"
17 #include "PPCISelLowering.h"
18 #include "PPCMachineFunctionInfo.h"
19 #include "PPCSubtarget.h"
20 #include "PPCTargetMachine.h"
21 #include "llvm/ADT/APInt.h"
22 #include "llvm/ADT/DenseMap.h"
23 #include "llvm/ADT/STLExtras.h"
24 #include "llvm/ADT/SmallPtrSet.h"
25 #include "llvm/ADT/SmallVector.h"
26 #include "llvm/ADT/Statistic.h"
27 #include "llvm/Analysis/BranchProbabilityInfo.h"
28 #include "llvm/CodeGen/FunctionLoweringInfo.h"
29 #include "llvm/CodeGen/ISDOpcodes.h"
30 #include "llvm/CodeGen/MachineBasicBlock.h"
31 #include "llvm/CodeGen/MachineFunction.h"
32 #include "llvm/CodeGen/MachineInstrBuilder.h"
33 #include "llvm/CodeGen/MachineRegisterInfo.h"
34 #include "llvm/CodeGen/SelectionDAG.h"
35 #include "llvm/CodeGen/SelectionDAGISel.h"
36 #include "llvm/CodeGen/SelectionDAGNodes.h"
37 #include "llvm/CodeGen/TargetInstrInfo.h"
38 #include "llvm/CodeGen/TargetRegisterInfo.h"
39 #include "llvm/CodeGen/ValueTypes.h"
40 #include "llvm/IR/BasicBlock.h"
41 #include "llvm/IR/DebugLoc.h"
42 #include "llvm/IR/Function.h"
43 #include "llvm/IR/GlobalValue.h"
44 #include "llvm/IR/InlineAsm.h"
45 #include "llvm/IR/InstrTypes.h"
46 #include "llvm/IR/IntrinsicsPowerPC.h"
47 #include "llvm/IR/Module.h"
48 #include "llvm/Support/Casting.h"
49 #include "llvm/Support/CodeGen.h"
50 #include "llvm/Support/CommandLine.h"
51 #include "llvm/Support/Compiler.h"
52 #include "llvm/Support/Debug.h"
53 #include "llvm/Support/ErrorHandling.h"
54 #include "llvm/Support/KnownBits.h"
55 #include "llvm/Support/MachineValueType.h"
56 #include "llvm/Support/MathExtras.h"
57 #include "llvm/Support/raw_ostream.h"
58 #include <algorithm>
59 #include <cassert>
60 #include <cstdint>
61 #include <iterator>
62 #include <limits>
63 #include <memory>
64 #include <new>
65 #include <tuple>
66 #include <utility>
67 
68 using namespace llvm;
69 
70 #define DEBUG_TYPE "ppc-codegen"
71 
72 STATISTIC(NumSextSetcc,
73           "Number of (sext(setcc)) nodes expanded into GPR sequence.");
74 STATISTIC(NumZextSetcc,
75           "Number of (zext(setcc)) nodes expanded into GPR sequence.");
76 STATISTIC(SignExtensionsAdded,
77           "Number of sign extensions for compare inputs added.");
78 STATISTIC(ZeroExtensionsAdded,
79           "Number of zero extensions for compare inputs added.");
80 STATISTIC(NumLogicOpsOnComparison,
81           "Number of logical ops on i1 values calculated in GPR.");
82 STATISTIC(OmittedForNonExtendUses,
83           "Number of compares not eliminated as they have non-extending uses.");
84 STATISTIC(NumP9Setb,
85           "Number of compares lowered to setb.");
86 
87 // FIXME: Remove this once the bug has been fixed!
88 cl::opt<bool> ANDIGlueBug("expose-ppc-andi-glue-bug",
89 cl::desc("expose the ANDI glue bug on PPC"), cl::Hidden);
90 
91 static cl::opt<bool>
92     UseBitPermRewriter("ppc-use-bit-perm-rewriter", cl::init(true),
93                        cl::desc("use aggressive ppc isel for bit permutations"),
94                        cl::Hidden);
95 static cl::opt<bool> BPermRewriterNoMasking(
96     "ppc-bit-perm-rewriter-stress-rotates",
97     cl::desc("stress rotate selection in aggressive ppc isel for "
98              "bit permutations"),
99     cl::Hidden);
100 
101 static cl::opt<bool> EnableBranchHint(
102   "ppc-use-branch-hint", cl::init(true),
103     cl::desc("Enable static hinting of branches on ppc"),
104     cl::Hidden);
105 
106 static cl::opt<bool> EnableTLSOpt(
107   "ppc-tls-opt", cl::init(true),
108     cl::desc("Enable tls optimization peephole"),
109     cl::Hidden);
110 
111 enum ICmpInGPRType { ICGPR_All, ICGPR_None, ICGPR_I32, ICGPR_I64,
112   ICGPR_NonExtIn, ICGPR_Zext, ICGPR_Sext, ICGPR_ZextI32,
113   ICGPR_SextI32, ICGPR_ZextI64, ICGPR_SextI64 };
114 
115 static cl::opt<ICmpInGPRType> CmpInGPR(
116   "ppc-gpr-icmps", cl::Hidden, cl::init(ICGPR_All),
117   cl::desc("Specify the types of comparisons to emit GPR-only code for."),
118   cl::values(clEnumValN(ICGPR_None, "none", "Do not modify integer comparisons."),
119              clEnumValN(ICGPR_All, "all", "All possible int comparisons in GPRs."),
120              clEnumValN(ICGPR_I32, "i32", "Only i32 comparisons in GPRs."),
121              clEnumValN(ICGPR_I64, "i64", "Only i64 comparisons in GPRs."),
122              clEnumValN(ICGPR_NonExtIn, "nonextin",
123                         "Only comparisons where inputs don't need [sz]ext."),
124              clEnumValN(ICGPR_Zext, "zext", "Only comparisons with zext result."),
125              clEnumValN(ICGPR_ZextI32, "zexti32",
126                         "Only i32 comparisons with zext result."),
127              clEnumValN(ICGPR_ZextI64, "zexti64",
128                         "Only i64 comparisons with zext result."),
129              clEnumValN(ICGPR_Sext, "sext", "Only comparisons with sext result."),
130              clEnumValN(ICGPR_SextI32, "sexti32",
131                         "Only i32 comparisons with sext result."),
132              clEnumValN(ICGPR_SextI64, "sexti64",
133                         "Only i64 comparisons with sext result.")));
134 namespace {
135 
136   //===--------------------------------------------------------------------===//
137   /// PPCDAGToDAGISel - PPC specific code to select PPC machine
138   /// instructions for SelectionDAG operations.
139   ///
140   class PPCDAGToDAGISel : public SelectionDAGISel {
141     const PPCTargetMachine &TM;
142     const PPCSubtarget *Subtarget = nullptr;
143     const PPCTargetLowering *PPCLowering = nullptr;
144     unsigned GlobalBaseReg = 0;
145 
146   public:
PPCDAGToDAGISel(PPCTargetMachine & tm,CodeGenOpt::Level OptLevel)147     explicit PPCDAGToDAGISel(PPCTargetMachine &tm, CodeGenOpt::Level OptLevel)
148         : SelectionDAGISel(tm, OptLevel), TM(tm) {}
149 
runOnMachineFunction(MachineFunction & MF)150     bool runOnMachineFunction(MachineFunction &MF) override {
151       // Make sure we re-emit a set of the global base reg if necessary
152       GlobalBaseReg = 0;
153       Subtarget = &MF.getSubtarget<PPCSubtarget>();
154       PPCLowering = Subtarget->getTargetLowering();
155       if (Subtarget->hasROPProtect()) {
156         // Create a place on the stack for the ROP Protection Hash.
157         // The ROP Protection Hash will always be 8 bytes and aligned to 8
158         // bytes.
159         MachineFrameInfo &MFI = MF.getFrameInfo();
160         PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>();
161         const int Result = MFI.CreateStackObject(8, Align(8), false);
162         FI->setROPProtectionHashSaveIndex(Result);
163       }
164       SelectionDAGISel::runOnMachineFunction(MF);
165 
166       return true;
167     }
168 
169     void PreprocessISelDAG() override;
170     void PostprocessISelDAG() override;
171 
172     /// getI16Imm - Return a target constant with the specified value, of type
173     /// i16.
getI16Imm(unsigned Imm,const SDLoc & dl)174     inline SDValue getI16Imm(unsigned Imm, const SDLoc &dl) {
175       return CurDAG->getTargetConstant(Imm, dl, MVT::i16);
176     }
177 
178     /// getI32Imm - Return a target constant with the specified value, of type
179     /// i32.
getI32Imm(unsigned Imm,const SDLoc & dl)180     inline SDValue getI32Imm(unsigned Imm, const SDLoc &dl) {
181       return CurDAG->getTargetConstant(Imm, dl, MVT::i32);
182     }
183 
184     /// getI64Imm - Return a target constant with the specified value, of type
185     /// i64.
getI64Imm(uint64_t Imm,const SDLoc & dl)186     inline SDValue getI64Imm(uint64_t Imm, const SDLoc &dl) {
187       return CurDAG->getTargetConstant(Imm, dl, MVT::i64);
188     }
189 
190     /// getSmallIPtrImm - Return a target constant of pointer type.
getSmallIPtrImm(unsigned Imm,const SDLoc & dl)191     inline SDValue getSmallIPtrImm(unsigned Imm, const SDLoc &dl) {
192       return CurDAG->getTargetConstant(
193           Imm, dl, PPCLowering->getPointerTy(CurDAG->getDataLayout()));
194     }
195 
196     /// isRotateAndMask - Returns true if Mask and Shift can be folded into a
197     /// rotate and mask opcode and mask operation.
198     static bool isRotateAndMask(SDNode *N, unsigned Mask, bool isShiftMask,
199                                 unsigned &SH, unsigned &MB, unsigned &ME);
200 
201     /// getGlobalBaseReg - insert code into the entry mbb to materialize the PIC
202     /// base register.  Return the virtual register that holds this value.
203     SDNode *getGlobalBaseReg();
204 
205     void selectFrameIndex(SDNode *SN, SDNode *N, unsigned Offset = 0);
206 
207     // Select - Convert the specified operand from a target-independent to a
208     // target-specific node if it hasn't already been changed.
209     void Select(SDNode *N) override;
210 
211     bool tryBitfieldInsert(SDNode *N);
212     bool tryBitPermutation(SDNode *N);
213     bool tryIntCompareInGPR(SDNode *N);
214 
215     // tryTLSXFormLoad - Convert an ISD::LOAD fed by a PPCISD::ADD_TLS into
216     // an X-Form load instruction with the offset being a relocation coming from
217     // the PPCISD::ADD_TLS.
218     bool tryTLSXFormLoad(LoadSDNode *N);
219     // tryTLSXFormStore - Convert an ISD::STORE fed by a PPCISD::ADD_TLS into
220     // an X-Form store instruction with the offset being a relocation coming from
221     // the PPCISD::ADD_TLS.
222     bool tryTLSXFormStore(StoreSDNode *N);
223     /// SelectCC - Select a comparison of the specified values with the
224     /// specified condition code, returning the CR# of the expression.
225     SDValue SelectCC(SDValue LHS, SDValue RHS, ISD::CondCode CC,
226                      const SDLoc &dl, SDValue Chain = SDValue());
227 
228     /// SelectAddrImmOffs - Return true if the operand is valid for a preinc
229     /// immediate field.  Note that the operand at this point is already the
230     /// result of a prior SelectAddressRegImm call.
SelectAddrImmOffs(SDValue N,SDValue & Out) const231     bool SelectAddrImmOffs(SDValue N, SDValue &Out) const {
232       if (N.getOpcode() == ISD::TargetConstant ||
233           N.getOpcode() == ISD::TargetGlobalAddress) {
234         Out = N;
235         return true;
236       }
237 
238       return false;
239     }
240 
241     /// SelectDSForm - Returns true if address N can be represented by the
242     /// addressing mode of DSForm instructions (a base register, plus a signed
243     /// 16-bit displacement that is a multiple of 4.
SelectDSForm(SDNode * Parent,SDValue N,SDValue & Disp,SDValue & Base)244     bool SelectDSForm(SDNode *Parent, SDValue N, SDValue &Disp, SDValue &Base) {
245       return PPCLowering->SelectOptimalAddrMode(Parent, N, Disp, Base, *CurDAG,
246                                                 Align(4)) == PPC::AM_DSForm;
247     }
248 
249     /// SelectDQForm - Returns true if address N can be represented by the
250     /// addressing mode of DQForm instructions (a base register, plus a signed
251     /// 16-bit displacement that is a multiple of 16.
SelectDQForm(SDNode * Parent,SDValue N,SDValue & Disp,SDValue & Base)252     bool SelectDQForm(SDNode *Parent, SDValue N, SDValue &Disp, SDValue &Base) {
253       return PPCLowering->SelectOptimalAddrMode(Parent, N, Disp, Base, *CurDAG,
254                                                 Align(16)) == PPC::AM_DQForm;
255     }
256 
257     /// SelectDForm - Returns true if address N can be represented by
258     /// the addressing mode of DForm instructions (a base register, plus a
259     /// signed 16-bit immediate.
SelectDForm(SDNode * Parent,SDValue N,SDValue & Disp,SDValue & Base)260     bool SelectDForm(SDNode *Parent, SDValue N, SDValue &Disp, SDValue &Base) {
261       return PPCLowering->SelectOptimalAddrMode(Parent, N, Disp, Base, *CurDAG,
262                                                 None) == PPC::AM_DForm;
263     }
264 
265     /// SelectXForm - Returns true if address N can be represented by the
266     /// addressing mode of XForm instructions (an indexed [r+r] operation).
SelectXForm(SDNode * Parent,SDValue N,SDValue & Disp,SDValue & Base)267     bool SelectXForm(SDNode *Parent, SDValue N, SDValue &Disp, SDValue &Base) {
268       return PPCLowering->SelectOptimalAddrMode(Parent, N, Disp, Base, *CurDAG,
269                                                 None) == PPC::AM_XForm;
270     }
271 
272     /// SelectForceXForm - Given the specified address, force it to be
273     /// represented as an indexed [r+r] operation (an XForm instruction).
SelectForceXForm(SDNode * Parent,SDValue N,SDValue & Disp,SDValue & Base)274     bool SelectForceXForm(SDNode *Parent, SDValue N, SDValue &Disp,
275                           SDValue &Base) {
276       return PPCLowering->SelectForceXFormMode(N, Disp, Base, *CurDAG) ==
277              PPC::AM_XForm;
278     }
279 
280     /// SelectAddrIdx - Given the specified address, check to see if it can be
281     /// represented as an indexed [r+r] operation.
282     /// This is for xform instructions whose associated displacement form is D.
283     /// The last parameter \p 0 means associated D form has no requirment for 16
284     /// bit signed displacement.
285     /// Returns false if it can be represented by [r+imm], which are preferred.
SelectAddrIdx(SDValue N,SDValue & Base,SDValue & Index)286     bool SelectAddrIdx(SDValue N, SDValue &Base, SDValue &Index) {
287       return PPCLowering->SelectAddressRegReg(N, Base, Index, *CurDAG, None);
288     }
289 
290     /// SelectAddrIdx4 - Given the specified address, check to see if it can be
291     /// represented as an indexed [r+r] operation.
292     /// This is for xform instructions whose associated displacement form is DS.
293     /// The last parameter \p 4 means associated DS form 16 bit signed
294     /// displacement must be a multiple of 4.
295     /// Returns false if it can be represented by [r+imm], which are preferred.
SelectAddrIdxX4(SDValue N,SDValue & Base,SDValue & Index)296     bool SelectAddrIdxX4(SDValue N, SDValue &Base, SDValue &Index) {
297       return PPCLowering->SelectAddressRegReg(N, Base, Index, *CurDAG,
298                                               Align(4));
299     }
300 
301     /// SelectAddrIdx16 - Given the specified address, check to see if it can be
302     /// represented as an indexed [r+r] operation.
303     /// This is for xform instructions whose associated displacement form is DQ.
304     /// The last parameter \p 16 means associated DQ form 16 bit signed
305     /// displacement must be a multiple of 16.
306     /// Returns false if it can be represented by [r+imm], which are preferred.
SelectAddrIdxX16(SDValue N,SDValue & Base,SDValue & Index)307     bool SelectAddrIdxX16(SDValue N, SDValue &Base, SDValue &Index) {
308       return PPCLowering->SelectAddressRegReg(N, Base, Index, *CurDAG,
309                                               Align(16));
310     }
311 
312     /// SelectAddrIdxOnly - Given the specified address, force it to be
313     /// represented as an indexed [r+r] operation.
SelectAddrIdxOnly(SDValue N,SDValue & Base,SDValue & Index)314     bool SelectAddrIdxOnly(SDValue N, SDValue &Base, SDValue &Index) {
315       return PPCLowering->SelectAddressRegRegOnly(N, Base, Index, *CurDAG);
316     }
317 
318     /// SelectAddrImm - Returns true if the address N can be represented by
319     /// a base register plus a signed 16-bit displacement [r+imm].
320     /// The last parameter \p 0 means D form has no requirment for 16 bit signed
321     /// displacement.
SelectAddrImm(SDValue N,SDValue & Disp,SDValue & Base)322     bool SelectAddrImm(SDValue N, SDValue &Disp,
323                        SDValue &Base) {
324       return PPCLowering->SelectAddressRegImm(N, Disp, Base, *CurDAG, None);
325     }
326 
327     /// SelectAddrImmX4 - Returns true if the address N can be represented by
328     /// a base register plus a signed 16-bit displacement that is a multiple of
329     /// 4 (last parameter). Suitable for use by STD and friends.
SelectAddrImmX4(SDValue N,SDValue & Disp,SDValue & Base)330     bool SelectAddrImmX4(SDValue N, SDValue &Disp, SDValue &Base) {
331       return PPCLowering->SelectAddressRegImm(N, Disp, Base, *CurDAG, Align(4));
332     }
333 
334     /// SelectAddrImmX16 - Returns true if the address N can be represented by
335     /// a base register plus a signed 16-bit displacement that is a multiple of
336     /// 16(last parameter). Suitable for use by STXV and friends.
SelectAddrImmX16(SDValue N,SDValue & Disp,SDValue & Base)337     bool SelectAddrImmX16(SDValue N, SDValue &Disp, SDValue &Base) {
338       return PPCLowering->SelectAddressRegImm(N, Disp, Base, *CurDAG,
339                                               Align(16));
340     }
341 
342     /// SelectAddrImmX34 - Returns true if the address N can be represented by
343     /// a base register plus a signed 34-bit displacement. Suitable for use by
344     /// PSTXVP and friends.
SelectAddrImmX34(SDValue N,SDValue & Disp,SDValue & Base)345     bool SelectAddrImmX34(SDValue N, SDValue &Disp, SDValue &Base) {
346       return PPCLowering->SelectAddressRegImm34(N, Disp, Base, *CurDAG);
347     }
348 
349     // Select an address into a single register.
SelectAddr(SDValue N,SDValue & Base)350     bool SelectAddr(SDValue N, SDValue &Base) {
351       Base = N;
352       return true;
353     }
354 
SelectAddrPCRel(SDValue N,SDValue & Base)355     bool SelectAddrPCRel(SDValue N, SDValue &Base) {
356       return PPCLowering->SelectAddressPCRel(N, Base);
357     }
358 
359     /// SelectInlineAsmMemoryOperand - Implement addressing mode selection for
360     /// inline asm expressions.  It is always correct to compute the value into
361     /// a register.  The case of adding a (possibly relocatable) constant to a
362     /// register can be improved, but it is wrong to substitute Reg+Reg for
363     /// Reg in an asm, because the load or store opcode would have to change.
SelectInlineAsmMemoryOperand(const SDValue & Op,unsigned ConstraintID,std::vector<SDValue> & OutOps)364     bool SelectInlineAsmMemoryOperand(const SDValue &Op,
365                                       unsigned ConstraintID,
366                                       std::vector<SDValue> &OutOps) override {
367       switch(ConstraintID) {
368       default:
369         errs() << "ConstraintID: " << ConstraintID << "\n";
370         llvm_unreachable("Unexpected asm memory constraint");
371       case InlineAsm::Constraint_es:
372       case InlineAsm::Constraint_m:
373       case InlineAsm::Constraint_o:
374       case InlineAsm::Constraint_Q:
375       case InlineAsm::Constraint_Z:
376       case InlineAsm::Constraint_Zy:
377         // We need to make sure that this one operand does not end up in r0
378         // (because we might end up lowering this as 0(%op)).
379         const TargetRegisterInfo *TRI = Subtarget->getRegisterInfo();
380         const TargetRegisterClass *TRC = TRI->getPointerRegClass(*MF, /*Kind=*/1);
381         SDLoc dl(Op);
382         SDValue RC = CurDAG->getTargetConstant(TRC->getID(), dl, MVT::i32);
383         SDValue NewOp =
384           SDValue(CurDAG->getMachineNode(TargetOpcode::COPY_TO_REGCLASS,
385                                          dl, Op.getValueType(),
386                                          Op, RC), 0);
387 
388         OutOps.push_back(NewOp);
389         return false;
390       }
391       return true;
392     }
393 
getPassName() const394     StringRef getPassName() const override {
395       return "PowerPC DAG->DAG Pattern Instruction Selection";
396     }
397 
398 // Include the pieces autogenerated from the target description.
399 #include "PPCGenDAGISel.inc"
400 
401 private:
402     bool trySETCC(SDNode *N);
403     bool tryFoldSWTestBRCC(SDNode *N);
404     bool tryAsSingleRLDICL(SDNode *N);
405     bool tryAsSingleRLDICR(SDNode *N);
406     bool tryAsSingleRLWINM(SDNode *N);
407     bool tryAsSingleRLWINM8(SDNode *N);
408     bool tryAsSingleRLWIMI(SDNode *N);
409     bool tryAsPairOfRLDICL(SDNode *N);
410     bool tryAsSingleRLDIMI(SDNode *N);
411 
412     void PeepholePPC64();
413     void PeepholePPC64ZExt();
414     void PeepholeCROps();
415 
416     SDValue combineToCMPB(SDNode *N);
417     void foldBoolExts(SDValue &Res, SDNode *&N);
418 
419     bool AllUsersSelectZero(SDNode *N);
420     void SwapAllSelectUsers(SDNode *N);
421 
422     bool isOffsetMultipleOf(SDNode *N, unsigned Val) const;
423     void transferMemOperands(SDNode *N, SDNode *Result);
424   };
425 
426 } // end anonymous namespace
427 
428 /// getGlobalBaseReg - Output the instructions required to put the
429 /// base address to use for accessing globals into a register.
430 ///
getGlobalBaseReg()431 SDNode *PPCDAGToDAGISel::getGlobalBaseReg() {
432   if (!GlobalBaseReg) {
433     const TargetInstrInfo &TII = *Subtarget->getInstrInfo();
434     // Insert the set of GlobalBaseReg into the first MBB of the function
435     MachineBasicBlock &FirstMBB = MF->front();
436     MachineBasicBlock::iterator MBBI = FirstMBB.begin();
437     const Module *M = MF->getFunction().getParent();
438     DebugLoc dl;
439 
440     if (PPCLowering->getPointerTy(CurDAG->getDataLayout()) == MVT::i32) {
441       if (Subtarget->isTargetELF()) {
442         GlobalBaseReg = PPC::R30;
443         if (!Subtarget->isSecurePlt() &&
444             M->getPICLevel() == PICLevel::SmallPIC) {
445           BuildMI(FirstMBB, MBBI, dl, TII.get(PPC::MoveGOTtoLR));
446           BuildMI(FirstMBB, MBBI, dl, TII.get(PPC::MFLR), GlobalBaseReg);
447           MF->getInfo<PPCFunctionInfo>()->setUsesPICBase(true);
448         } else {
449           BuildMI(FirstMBB, MBBI, dl, TII.get(PPC::MovePCtoLR));
450           BuildMI(FirstMBB, MBBI, dl, TII.get(PPC::MFLR), GlobalBaseReg);
451           Register TempReg = RegInfo->createVirtualRegister(&PPC::GPRCRegClass);
452           BuildMI(FirstMBB, MBBI, dl,
453                   TII.get(PPC::UpdateGBR), GlobalBaseReg)
454                   .addReg(TempReg, RegState::Define).addReg(GlobalBaseReg);
455           MF->getInfo<PPCFunctionInfo>()->setUsesPICBase(true);
456         }
457       } else {
458         GlobalBaseReg =
459           RegInfo->createVirtualRegister(&PPC::GPRC_and_GPRC_NOR0RegClass);
460         BuildMI(FirstMBB, MBBI, dl, TII.get(PPC::MovePCtoLR));
461         BuildMI(FirstMBB, MBBI, dl, TII.get(PPC::MFLR), GlobalBaseReg);
462       }
463     } else {
464       // We must ensure that this sequence is dominated by the prologue.
465       // FIXME: This is a bit of a big hammer since we don't get the benefits
466       // of shrink-wrapping whenever we emit this instruction. Considering
467       // this is used in any function where we emit a jump table, this may be
468       // a significant limitation. We should consider inserting this in the
469       // block where it is used and then commoning this sequence up if it
470       // appears in multiple places.
471       // Note: on ISA 3.0 cores, we can use lnia (addpcis) instead of
472       // MovePCtoLR8.
473       MF->getInfo<PPCFunctionInfo>()->setShrinkWrapDisabled(true);
474       GlobalBaseReg = RegInfo->createVirtualRegister(&PPC::G8RC_and_G8RC_NOX0RegClass);
475       BuildMI(FirstMBB, MBBI, dl, TII.get(PPC::MovePCtoLR8));
476       BuildMI(FirstMBB, MBBI, dl, TII.get(PPC::MFLR8), GlobalBaseReg);
477     }
478   }
479   return CurDAG->getRegister(GlobalBaseReg,
480                              PPCLowering->getPointerTy(CurDAG->getDataLayout()))
481       .getNode();
482 }
483 
484 // Check if a SDValue has the toc-data attribute.
hasTocDataAttr(SDValue Val,unsigned PointerSize)485 static bool hasTocDataAttr(SDValue Val, unsigned PointerSize) {
486   GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Val);
487   if (!GA)
488     return false;
489 
490   const GlobalVariable *GV = dyn_cast_or_null<GlobalVariable>(GA->getGlobal());
491   if (!GV)
492     return false;
493 
494   if (!GV->hasAttribute("toc-data"))
495     return false;
496 
497   // TODO: These asserts should be updated as more support for the toc data
498   // transformation is added (64 bit, struct support, etc.).
499 
500   assert(PointerSize == 4 && "Only 32 Bit Codegen is currently supported by "
501                              "the toc data transformation.");
502 
503   assert(PointerSize >= GV->getAlign().valueOrOne().value() &&
504          "GlobalVariables with an alignment requirement stricter then 4-bytes "
505          "not supported by the toc data transformation.");
506 
507   Type *PtrType = GV->getType();
508   assert(PtrType->isPointerTy() &&
509          "GlobalVariables always have pointer type!.");
510 
511   Type *GVType = dyn_cast<PointerType>(PtrType)->getElementType();
512 
513   assert(GVType->isSized() && "A GlobalVariable's size must be known to be "
514                               "supported by the toc data transformation.");
515 
516   if (GVType->isVectorTy())
517     report_fatal_error("A GlobalVariable of Vector type is not currently "
518                        "supported by the toc data transformation.");
519 
520   if (GVType->isArrayTy())
521     report_fatal_error("A GlobalVariable of Array type is not currently "
522                        "supported by the toc data transformation.");
523 
524   if (GVType->isStructTy())
525     report_fatal_error("A GlobalVariable of Struct type is not currently "
526                        "supported by the toc data transformation.");
527 
528   assert(GVType->getPrimitiveSizeInBits() <= PointerSize * 8 &&
529          "A GlobalVariable with size larger than 32 bits is not currently "
530          "supported by the toc data transformation.");
531 
532   if (GV->hasLocalLinkage() || GV->hasPrivateLinkage())
533     report_fatal_error("A GlobalVariable with private or local linkage is not "
534                        "currently supported by the toc data transformation.");
535 
536   assert(!GV->hasCommonLinkage() &&
537          "Tentative definitions cannot have the mapping class XMC_TD.");
538 
539   return true;
540 }
541 
542 /// isInt32Immediate - This method tests to see if the node is a 32-bit constant
543 /// operand. If so Imm will receive the 32-bit value.
isInt32Immediate(SDNode * N,unsigned & Imm)544 static bool isInt32Immediate(SDNode *N, unsigned &Imm) {
545   if (N->getOpcode() == ISD::Constant && N->getValueType(0) == MVT::i32) {
546     Imm = cast<ConstantSDNode>(N)->getZExtValue();
547     return true;
548   }
549   return false;
550 }
551 
552 /// isInt64Immediate - This method tests to see if the node is a 64-bit constant
553 /// operand.  If so Imm will receive the 64-bit value.
isInt64Immediate(SDNode * N,uint64_t & Imm)554 static bool isInt64Immediate(SDNode *N, uint64_t &Imm) {
555   if (N->getOpcode() == ISD::Constant && N->getValueType(0) == MVT::i64) {
556     Imm = cast<ConstantSDNode>(N)->getZExtValue();
557     return true;
558   }
559   return false;
560 }
561 
562 // isInt32Immediate - This method tests to see if a constant operand.
563 // If so Imm will receive the 32 bit value.
isInt32Immediate(SDValue N,unsigned & Imm)564 static bool isInt32Immediate(SDValue N, unsigned &Imm) {
565   return isInt32Immediate(N.getNode(), Imm);
566 }
567 
568 /// isInt64Immediate - This method tests to see if the value is a 64-bit
569 /// constant operand. If so Imm will receive the 64-bit value.
isInt64Immediate(SDValue N,uint64_t & Imm)570 static bool isInt64Immediate(SDValue N, uint64_t &Imm) {
571   return isInt64Immediate(N.getNode(), Imm);
572 }
573 
getBranchHint(unsigned PCC,const FunctionLoweringInfo & FuncInfo,const SDValue & DestMBB)574 static unsigned getBranchHint(unsigned PCC,
575                               const FunctionLoweringInfo &FuncInfo,
576                               const SDValue &DestMBB) {
577   assert(isa<BasicBlockSDNode>(DestMBB));
578 
579   if (!FuncInfo.BPI) return PPC::BR_NO_HINT;
580 
581   const BasicBlock *BB = FuncInfo.MBB->getBasicBlock();
582   const Instruction *BBTerm = BB->getTerminator();
583 
584   if (BBTerm->getNumSuccessors() != 2) return PPC::BR_NO_HINT;
585 
586   const BasicBlock *TBB = BBTerm->getSuccessor(0);
587   const BasicBlock *FBB = BBTerm->getSuccessor(1);
588 
589   auto TProb = FuncInfo.BPI->getEdgeProbability(BB, TBB);
590   auto FProb = FuncInfo.BPI->getEdgeProbability(BB, FBB);
591 
592   // We only want to handle cases which are easy to predict at static time, e.g.
593   // C++ throw statement, that is very likely not taken, or calling never
594   // returned function, e.g. stdlib exit(). So we set Threshold to filter
595   // unwanted cases.
596   //
597   // Below is LLVM branch weight table, we only want to handle case 1, 2
598   //
599   // Case                  Taken:Nontaken  Example
600   // 1. Unreachable        1048575:1       C++ throw, stdlib exit(),
601   // 2. Invoke-terminating 1:1048575
602   // 3. Coldblock          4:64            __builtin_expect
603   // 4. Loop Branch        124:4           For loop
604   // 5. PH/ZH/FPH          20:12
605   const uint32_t Threshold = 10000;
606 
607   if (std::max(TProb, FProb) / Threshold < std::min(TProb, FProb))
608     return PPC::BR_NO_HINT;
609 
610   LLVM_DEBUG(dbgs() << "Use branch hint for '" << FuncInfo.Fn->getName()
611                     << "::" << BB->getName() << "'\n"
612                     << " -> " << TBB->getName() << ": " << TProb << "\n"
613                     << " -> " << FBB->getName() << ": " << FProb << "\n");
614 
615   const BasicBlockSDNode *BBDN = cast<BasicBlockSDNode>(DestMBB);
616 
617   // If Dest BasicBlock is False-BasicBlock (FBB), swap branch probabilities,
618   // because we want 'TProb' stands for 'branch probability' to Dest BasicBlock
619   if (BBDN->getBasicBlock()->getBasicBlock() != TBB)
620     std::swap(TProb, FProb);
621 
622   return (TProb > FProb) ? PPC::BR_TAKEN_HINT : PPC::BR_NONTAKEN_HINT;
623 }
624 
625 // isOpcWithIntImmediate - This method tests to see if the node is a specific
626 // opcode and that it has a immediate integer right operand.
627 // If so Imm will receive the 32 bit value.
isOpcWithIntImmediate(SDNode * N,unsigned Opc,unsigned & Imm)628 static bool isOpcWithIntImmediate(SDNode *N, unsigned Opc, unsigned& Imm) {
629   return N->getOpcode() == Opc
630          && isInt32Immediate(N->getOperand(1).getNode(), Imm);
631 }
632 
selectFrameIndex(SDNode * SN,SDNode * N,unsigned Offset)633 void PPCDAGToDAGISel::selectFrameIndex(SDNode *SN, SDNode *N, unsigned Offset) {
634   SDLoc dl(SN);
635   int FI = cast<FrameIndexSDNode>(N)->getIndex();
636   SDValue TFI = CurDAG->getTargetFrameIndex(FI, N->getValueType(0));
637   unsigned Opc = N->getValueType(0) == MVT::i32 ? PPC::ADDI : PPC::ADDI8;
638   if (SN->hasOneUse())
639     CurDAG->SelectNodeTo(SN, Opc, N->getValueType(0), TFI,
640                          getSmallIPtrImm(Offset, dl));
641   else
642     ReplaceNode(SN, CurDAG->getMachineNode(Opc, dl, N->getValueType(0), TFI,
643                                            getSmallIPtrImm(Offset, dl)));
644 }
645 
isRotateAndMask(SDNode * N,unsigned Mask,bool isShiftMask,unsigned & SH,unsigned & MB,unsigned & ME)646 bool PPCDAGToDAGISel::isRotateAndMask(SDNode *N, unsigned Mask,
647                                       bool isShiftMask, unsigned &SH,
648                                       unsigned &MB, unsigned &ME) {
649   // Don't even go down this path for i64, since different logic will be
650   // necessary for rldicl/rldicr/rldimi.
651   if (N->getValueType(0) != MVT::i32)
652     return false;
653 
654   unsigned Shift  = 32;
655   unsigned Indeterminant = ~0;  // bit mask marking indeterminant results
656   unsigned Opcode = N->getOpcode();
657   if (N->getNumOperands() != 2 ||
658       !isInt32Immediate(N->getOperand(1).getNode(), Shift) || (Shift > 31))
659     return false;
660 
661   if (Opcode == ISD::SHL) {
662     // apply shift left to mask if it comes first
663     if (isShiftMask) Mask = Mask << Shift;
664     // determine which bits are made indeterminant by shift
665     Indeterminant = ~(0xFFFFFFFFu << Shift);
666   } else if (Opcode == ISD::SRL) {
667     // apply shift right to mask if it comes first
668     if (isShiftMask) Mask = Mask >> Shift;
669     // determine which bits are made indeterminant by shift
670     Indeterminant = ~(0xFFFFFFFFu >> Shift);
671     // adjust for the left rotate
672     Shift = 32 - Shift;
673   } else if (Opcode == ISD::ROTL) {
674     Indeterminant = 0;
675   } else {
676     return false;
677   }
678 
679   // if the mask doesn't intersect any Indeterminant bits
680   if (Mask && !(Mask & Indeterminant)) {
681     SH = Shift & 31;
682     // make sure the mask is still a mask (wrap arounds may not be)
683     return isRunOfOnes(Mask, MB, ME);
684   }
685   return false;
686 }
687 
tryTLSXFormStore(StoreSDNode * ST)688 bool PPCDAGToDAGISel::tryTLSXFormStore(StoreSDNode *ST) {
689   SDValue Base = ST->getBasePtr();
690   if (Base.getOpcode() != PPCISD::ADD_TLS)
691     return false;
692   SDValue Offset = ST->getOffset();
693   if (!Offset.isUndef())
694     return false;
695   if (Base.getOperand(1).getOpcode() == PPCISD::TLS_LOCAL_EXEC_MAT_ADDR)
696     return false;
697 
698   SDLoc dl(ST);
699   EVT MemVT = ST->getMemoryVT();
700   EVT RegVT = ST->getValue().getValueType();
701 
702   unsigned Opcode;
703   switch (MemVT.getSimpleVT().SimpleTy) {
704     default:
705       return false;
706     case MVT::i8: {
707       Opcode = (RegVT == MVT::i32) ? PPC::STBXTLS_32 : PPC::STBXTLS;
708       break;
709     }
710     case MVT::i16: {
711       Opcode = (RegVT == MVT::i32) ? PPC::STHXTLS_32 : PPC::STHXTLS;
712       break;
713     }
714     case MVT::i32: {
715       Opcode = (RegVT == MVT::i32) ? PPC::STWXTLS_32 : PPC::STWXTLS;
716       break;
717     }
718     case MVT::i64: {
719       Opcode = PPC::STDXTLS;
720       break;
721     }
722   }
723   SDValue Chain = ST->getChain();
724   SDVTList VTs = ST->getVTList();
725   SDValue Ops[] = {ST->getValue(), Base.getOperand(0), Base.getOperand(1),
726                    Chain};
727   SDNode *MN = CurDAG->getMachineNode(Opcode, dl, VTs, Ops);
728   transferMemOperands(ST, MN);
729   ReplaceNode(ST, MN);
730   return true;
731 }
732 
tryTLSXFormLoad(LoadSDNode * LD)733 bool PPCDAGToDAGISel::tryTLSXFormLoad(LoadSDNode *LD) {
734   SDValue Base = LD->getBasePtr();
735   if (Base.getOpcode() != PPCISD::ADD_TLS)
736     return false;
737   SDValue Offset = LD->getOffset();
738   if (!Offset.isUndef())
739     return false;
740   if (Base.getOperand(1).getOpcode() == PPCISD::TLS_LOCAL_EXEC_MAT_ADDR)
741     return false;
742 
743   SDLoc dl(LD);
744   EVT MemVT = LD->getMemoryVT();
745   EVT RegVT = LD->getValueType(0);
746   unsigned Opcode;
747   switch (MemVT.getSimpleVT().SimpleTy) {
748     default:
749       return false;
750     case MVT::i8: {
751       Opcode = (RegVT == MVT::i32) ? PPC::LBZXTLS_32 : PPC::LBZXTLS;
752       break;
753     }
754     case MVT::i16: {
755       Opcode = (RegVT == MVT::i32) ? PPC::LHZXTLS_32 : PPC::LHZXTLS;
756       break;
757     }
758     case MVT::i32: {
759       Opcode = (RegVT == MVT::i32) ? PPC::LWZXTLS_32 : PPC::LWZXTLS;
760       break;
761     }
762     case MVT::i64: {
763       Opcode = PPC::LDXTLS;
764       break;
765     }
766   }
767   SDValue Chain = LD->getChain();
768   SDVTList VTs = LD->getVTList();
769   SDValue Ops[] = {Base.getOperand(0), Base.getOperand(1), Chain};
770   SDNode *MN = CurDAG->getMachineNode(Opcode, dl, VTs, Ops);
771   transferMemOperands(LD, MN);
772   ReplaceNode(LD, MN);
773   return true;
774 }
775 
776 /// Turn an or of two masked values into the rotate left word immediate then
777 /// mask insert (rlwimi) instruction.
tryBitfieldInsert(SDNode * N)778 bool PPCDAGToDAGISel::tryBitfieldInsert(SDNode *N) {
779   SDValue Op0 = N->getOperand(0);
780   SDValue Op1 = N->getOperand(1);
781   SDLoc dl(N);
782 
783   KnownBits LKnown = CurDAG->computeKnownBits(Op0);
784   KnownBits RKnown = CurDAG->computeKnownBits(Op1);
785 
786   unsigned TargetMask = LKnown.Zero.getZExtValue();
787   unsigned InsertMask = RKnown.Zero.getZExtValue();
788 
789   if ((TargetMask | InsertMask) == 0xFFFFFFFF) {
790     unsigned Op0Opc = Op0.getOpcode();
791     unsigned Op1Opc = Op1.getOpcode();
792     unsigned Value, SH = 0;
793     TargetMask = ~TargetMask;
794     InsertMask = ~InsertMask;
795 
796     // If the LHS has a foldable shift and the RHS does not, then swap it to the
797     // RHS so that we can fold the shift into the insert.
798     if (Op0Opc == ISD::AND && Op1Opc == ISD::AND) {
799       if (Op0.getOperand(0).getOpcode() == ISD::SHL ||
800           Op0.getOperand(0).getOpcode() == ISD::SRL) {
801         if (Op1.getOperand(0).getOpcode() != ISD::SHL &&
802             Op1.getOperand(0).getOpcode() != ISD::SRL) {
803           std::swap(Op0, Op1);
804           std::swap(Op0Opc, Op1Opc);
805           std::swap(TargetMask, InsertMask);
806         }
807       }
808     } else if (Op0Opc == ISD::SHL || Op0Opc == ISD::SRL) {
809       if (Op1Opc == ISD::AND && Op1.getOperand(0).getOpcode() != ISD::SHL &&
810           Op1.getOperand(0).getOpcode() != ISD::SRL) {
811         std::swap(Op0, Op1);
812         std::swap(Op0Opc, Op1Opc);
813         std::swap(TargetMask, InsertMask);
814       }
815     }
816 
817     unsigned MB, ME;
818     if (isRunOfOnes(InsertMask, MB, ME)) {
819       if ((Op1Opc == ISD::SHL || Op1Opc == ISD::SRL) &&
820           isInt32Immediate(Op1.getOperand(1), Value)) {
821         Op1 = Op1.getOperand(0);
822         SH  = (Op1Opc == ISD::SHL) ? Value : 32 - Value;
823       }
824       if (Op1Opc == ISD::AND) {
825        // The AND mask might not be a constant, and we need to make sure that
826        // if we're going to fold the masking with the insert, all bits not
827        // know to be zero in the mask are known to be one.
828         KnownBits MKnown = CurDAG->computeKnownBits(Op1.getOperand(1));
829         bool CanFoldMask = InsertMask == MKnown.One.getZExtValue();
830 
831         unsigned SHOpc = Op1.getOperand(0).getOpcode();
832         if ((SHOpc == ISD::SHL || SHOpc == ISD::SRL) && CanFoldMask &&
833             isInt32Immediate(Op1.getOperand(0).getOperand(1), Value)) {
834           // Note that Value must be in range here (less than 32) because
835           // otherwise there would not be any bits set in InsertMask.
836           Op1 = Op1.getOperand(0).getOperand(0);
837           SH  = (SHOpc == ISD::SHL) ? Value : 32 - Value;
838         }
839       }
840 
841       SH &= 31;
842       SDValue Ops[] = { Op0, Op1, getI32Imm(SH, dl), getI32Imm(MB, dl),
843                           getI32Imm(ME, dl) };
844       ReplaceNode(N, CurDAG->getMachineNode(PPC::RLWIMI, dl, MVT::i32, Ops));
845       return true;
846     }
847   }
848   return false;
849 }
850 
allUsesTruncate(SelectionDAG * CurDAG,SDNode * N)851 static unsigned allUsesTruncate(SelectionDAG *CurDAG, SDNode *N) {
852   unsigned MaxTruncation = 0;
853   // Cannot use range-based for loop here as we need the actual use (i.e. we
854   // need the operand number corresponding to the use). A range-based for
855   // will unbox the use and provide an SDNode*.
856   for (SDNode::use_iterator Use = N->use_begin(), UseEnd = N->use_end();
857        Use != UseEnd; ++Use) {
858     unsigned Opc =
859       Use->isMachineOpcode() ? Use->getMachineOpcode() : Use->getOpcode();
860     switch (Opc) {
861     default: return 0;
862     case ISD::TRUNCATE:
863       if (Use->isMachineOpcode())
864         return 0;
865       MaxTruncation =
866         std::max(MaxTruncation, (unsigned)Use->getValueType(0).getSizeInBits());
867       continue;
868     case ISD::STORE: {
869       if (Use->isMachineOpcode())
870         return 0;
871       StoreSDNode *STN = cast<StoreSDNode>(*Use);
872       unsigned MemVTSize = STN->getMemoryVT().getSizeInBits();
873       if (MemVTSize == 64 || Use.getOperandNo() != 0)
874         return 0;
875       MaxTruncation = std::max(MaxTruncation, MemVTSize);
876       continue;
877     }
878     case PPC::STW8:
879     case PPC::STWX8:
880     case PPC::STWU8:
881     case PPC::STWUX8:
882       if (Use.getOperandNo() != 0)
883         return 0;
884       MaxTruncation = std::max(MaxTruncation, 32u);
885       continue;
886     case PPC::STH8:
887     case PPC::STHX8:
888     case PPC::STHU8:
889     case PPC::STHUX8:
890       if (Use.getOperandNo() != 0)
891         return 0;
892       MaxTruncation = std::max(MaxTruncation, 16u);
893       continue;
894     case PPC::STB8:
895     case PPC::STBX8:
896     case PPC::STBU8:
897     case PPC::STBUX8:
898       if (Use.getOperandNo() != 0)
899         return 0;
900       MaxTruncation = std::max(MaxTruncation, 8u);
901       continue;
902     }
903   }
904   return MaxTruncation;
905 }
906 
907 // For any 32 < Num < 64, check if the Imm contains at least Num consecutive
908 // zeros and return the number of bits by the left of these consecutive zeros.
findContiguousZerosAtLeast(uint64_t Imm,unsigned Num)909 static int findContiguousZerosAtLeast(uint64_t Imm, unsigned Num) {
910   unsigned HiTZ = countTrailingZeros<uint32_t>(Hi_32(Imm));
911   unsigned LoLZ = countLeadingZeros<uint32_t>(Lo_32(Imm));
912   if ((HiTZ + LoLZ) >= Num)
913     return (32 + HiTZ);
914   return 0;
915 }
916 
917 // Direct materialization of 64-bit constants by enumerated patterns.
selectI64ImmDirect(SelectionDAG * CurDAG,const SDLoc & dl,uint64_t Imm,unsigned & InstCnt)918 static SDNode *selectI64ImmDirect(SelectionDAG *CurDAG, const SDLoc &dl,
919                                   uint64_t Imm, unsigned &InstCnt) {
920   unsigned TZ = countTrailingZeros<uint64_t>(Imm);
921   unsigned LZ = countLeadingZeros<uint64_t>(Imm);
922   unsigned TO = countTrailingOnes<uint64_t>(Imm);
923   unsigned LO = countLeadingOnes<uint64_t>(Imm);
924   unsigned Hi32 = Hi_32(Imm);
925   unsigned Lo32 = Lo_32(Imm);
926   SDNode *Result = nullptr;
927   unsigned Shift = 0;
928 
929   auto getI32Imm = [CurDAG, dl](unsigned Imm) {
930     return CurDAG->getTargetConstant(Imm, dl, MVT::i32);
931   };
932 
933   // Following patterns use 1 instructions to materialize the Imm.
934   InstCnt = 1;
935   // 1-1) Patterns : {zeros}{15-bit valve}
936   //                 {ones}{15-bit valve}
937   if (isInt<16>(Imm)) {
938     SDValue SDImm = CurDAG->getTargetConstant(Imm, dl, MVT::i64);
939     return CurDAG->getMachineNode(PPC::LI8, dl, MVT::i64, SDImm);
940   }
941   // 1-2) Patterns : {zeros}{15-bit valve}{16 zeros}
942   //                 {ones}{15-bit valve}{16 zeros}
943   if (TZ > 15 && (LZ > 32 || LO > 32))
944     return CurDAG->getMachineNode(PPC::LIS8, dl, MVT::i64,
945                                   getI32Imm((Imm >> 16) & 0xffff));
946 
947   // Following patterns use 2 instructions to materialize the Imm.
948   InstCnt = 2;
949   assert(LZ < 64 && "Unexpected leading zeros here.");
950   // Count of ones follwing the leading zeros.
951   unsigned FO = countLeadingOnes<uint64_t>(Imm << LZ);
952   // 2-1) Patterns : {zeros}{31-bit value}
953   //                 {ones}{31-bit value}
954   if (isInt<32>(Imm)) {
955     uint64_t ImmHi16 = (Imm >> 16) & 0xffff;
956     unsigned Opcode = ImmHi16 ? PPC::LIS8 : PPC::LI8;
957     Result = CurDAG->getMachineNode(Opcode, dl, MVT::i64, getI32Imm(ImmHi16));
958     return CurDAG->getMachineNode(PPC::ORI8, dl, MVT::i64, SDValue(Result, 0),
959                                   getI32Imm(Imm & 0xffff));
960   }
961   // 2-2) Patterns : {zeros}{ones}{15-bit value}{zeros}
962   //                 {zeros}{15-bit value}{zeros}
963   //                 {zeros}{ones}{15-bit value}
964   //                 {ones}{15-bit value}{zeros}
965   // We can take advantage of LI's sign-extension semantics to generate leading
966   // ones, and then use RLDIC to mask off the ones in both sides after rotation.
967   if ((LZ + FO + TZ) > 48) {
968     Result = CurDAG->getMachineNode(PPC::LI8, dl, MVT::i64,
969                                     getI32Imm((Imm >> TZ) & 0xffff));
970     return CurDAG->getMachineNode(PPC::RLDIC, dl, MVT::i64, SDValue(Result, 0),
971                                   getI32Imm(TZ), getI32Imm(LZ));
972   }
973   // 2-3) Pattern : {zeros}{15-bit value}{ones}
974   // Shift right the Imm by (48 - LZ) bits to construct a negtive 16 bits value,
975   // therefore we can take advantage of LI's sign-extension semantics, and then
976   // mask them off after rotation.
977   //
978   // +--LZ--||-15-bit-||--TO--+     +-------------|--16-bit--+
979   // |00000001bbbbbbbbb1111111| ->  |00000000000001bbbbbbbbb1|
980   // +------------------------+     +------------------------+
981   // 63                      0      63                      0
982   //          Imm                   (Imm >> (48 - LZ) & 0xffff)
983   // +----sext-----|--16-bit--+     +clear-|-----------------+
984   // |11111111111111bbbbbbbbb1| ->  |00000001bbbbbbbbb1111111|
985   // +------------------------+     +------------------------+
986   // 63                      0      63                      0
987   // LI8: sext many leading zeros   RLDICL: rotate left (48 - LZ), clear left LZ
988   if ((LZ + TO) > 48) {
989     // Since the immediates with (LZ > 32) have been handled by previous
990     // patterns, here we have (LZ <= 32) to make sure we will not shift right
991     // the Imm by a negative value.
992     assert(LZ <= 32 && "Unexpected shift value.");
993     Result = CurDAG->getMachineNode(PPC::LI8, dl, MVT::i64,
994                                     getI32Imm((Imm >> (48 - LZ) & 0xffff)));
995     return CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64, SDValue(Result, 0),
996                                   getI32Imm(48 - LZ), getI32Imm(LZ));
997   }
998   // 2-4) Patterns : {zeros}{ones}{15-bit value}{ones}
999   //                 {ones}{15-bit value}{ones}
1000   // We can take advantage of LI's sign-extension semantics to generate leading
1001   // ones, and then use RLDICL to mask off the ones in left sides (if required)
1002   // after rotation.
1003   //
1004   // +-LZ-FO||-15-bit-||--TO--+     +-------------|--16-bit--+
1005   // |00011110bbbbbbbbb1111111| ->  |000000000011110bbbbbbbbb|
1006   // +------------------------+     +------------------------+
1007   // 63                      0      63                      0
1008   //            Imm                    (Imm >> TO) & 0xffff
1009   // +----sext-----|--16-bit--+     +LZ|---------------------+
1010   // |111111111111110bbbbbbbbb| ->  |00011110bbbbbbbbb1111111|
1011   // +------------------------+     +------------------------+
1012   // 63                      0      63                      0
1013   // LI8: sext many leading zeros   RLDICL: rotate left TO, clear left LZ
1014   if ((LZ + FO + TO) > 48) {
1015     Result = CurDAG->getMachineNode(PPC::LI8, dl, MVT::i64,
1016                                     getI32Imm((Imm >> TO) & 0xffff));
1017     return CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64, SDValue(Result, 0),
1018                                   getI32Imm(TO), getI32Imm(LZ));
1019   }
1020   // 2-5) Pattern : {32 zeros}{****}{0}{15-bit value}
1021   // If Hi32 is zero and the Lo16(in Lo32) can be presented as a positive 16 bit
1022   // value, we can use LI for Lo16 without generating leading ones then add the
1023   // Hi16(in Lo32).
1024   if (LZ == 32 && ((Lo32 & 0x8000) == 0)) {
1025     Result = CurDAG->getMachineNode(PPC::LI8, dl, MVT::i64,
1026                                     getI32Imm(Lo32 & 0xffff));
1027     return CurDAG->getMachineNode(PPC::ORIS8, dl, MVT::i64, SDValue(Result, 0),
1028                                   getI32Imm(Lo32 >> 16));
1029   }
1030   // 2-6) Patterns : {******}{49 zeros}{******}
1031   //                 {******}{49 ones}{******}
1032   // If the Imm contains 49 consecutive zeros/ones, it means that a total of 15
1033   // bits remain on both sides. Rotate right the Imm to construct an int<16>
1034   // value, use LI for int<16> value and then use RLDICL without mask to rotate
1035   // it back.
1036   //
1037   // 1) findContiguousZerosAtLeast(Imm, 49)
1038   // +------|--zeros-|------+     +---ones--||---15 bit--+
1039   // |bbbbbb0000000000aaaaaa| ->  |0000000000aaaaaabbbbbb|
1040   // +----------------------+     +----------------------+
1041   // 63                    0      63                    0
1042   //
1043   // 2) findContiguousZerosAtLeast(~Imm, 49)
1044   // +------|--ones--|------+     +---ones--||---15 bit--+
1045   // |bbbbbb1111111111aaaaaa| ->  |1111111111aaaaaabbbbbb|
1046   // +----------------------+     +----------------------+
1047   // 63                    0      63                    0
1048   if ((Shift = findContiguousZerosAtLeast(Imm, 49)) ||
1049       (Shift = findContiguousZerosAtLeast(~Imm, 49))) {
1050     uint64_t RotImm = APInt(64, Imm).rotr(Shift).getZExtValue();
1051     Result = CurDAG->getMachineNode(PPC::LI8, dl, MVT::i64,
1052                                     getI32Imm(RotImm & 0xffff));
1053     return CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64, SDValue(Result, 0),
1054                                   getI32Imm(Shift), getI32Imm(0));
1055   }
1056 
1057   // Following patterns use 3 instructions to materialize the Imm.
1058   InstCnt = 3;
1059   // 3-1) Patterns : {zeros}{ones}{31-bit value}{zeros}
1060   //                 {zeros}{31-bit value}{zeros}
1061   //                 {zeros}{ones}{31-bit value}
1062   //                 {ones}{31-bit value}{zeros}
1063   // We can take advantage of LIS's sign-extension semantics to generate leading
1064   // ones, add the remaining bits with ORI, and then use RLDIC to mask off the
1065   // ones in both sides after rotation.
1066   if ((LZ + FO + TZ) > 32) {
1067     uint64_t ImmHi16 = (Imm >> (TZ + 16)) & 0xffff;
1068     unsigned Opcode = ImmHi16 ? PPC::LIS8 : PPC::LI8;
1069     Result = CurDAG->getMachineNode(Opcode, dl, MVT::i64, getI32Imm(ImmHi16));
1070     Result = CurDAG->getMachineNode(PPC::ORI8, dl, MVT::i64, SDValue(Result, 0),
1071                                     getI32Imm((Imm >> TZ) & 0xffff));
1072     return CurDAG->getMachineNode(PPC::RLDIC, dl, MVT::i64, SDValue(Result, 0),
1073                                   getI32Imm(TZ), getI32Imm(LZ));
1074   }
1075   // 3-2) Pattern : {zeros}{31-bit value}{ones}
1076   // Shift right the Imm by (32 - LZ) bits to construct a negtive 32 bits value,
1077   // therefore we can take advantage of LIS's sign-extension semantics, add
1078   // the remaining bits with ORI, and then mask them off after rotation.
1079   // This is similar to Pattern 2-3, please refer to the diagram there.
1080   if ((LZ + TO) > 32) {
1081     // Since the immediates with (LZ > 32) have been handled by previous
1082     // patterns, here we have (LZ <= 32) to make sure we will not shift right
1083     // the Imm by a negative value.
1084     assert(LZ <= 32 && "Unexpected shift value.");
1085     Result = CurDAG->getMachineNode(PPC::LIS8, dl, MVT::i64,
1086                                     getI32Imm((Imm >> (48 - LZ)) & 0xffff));
1087     Result = CurDAG->getMachineNode(PPC::ORI8, dl, MVT::i64, SDValue(Result, 0),
1088                                     getI32Imm((Imm >> (32 - LZ)) & 0xffff));
1089     return CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64, SDValue(Result, 0),
1090                                   getI32Imm(32 - LZ), getI32Imm(LZ));
1091   }
1092   // 3-3) Patterns : {zeros}{ones}{31-bit value}{ones}
1093   //                 {ones}{31-bit value}{ones}
1094   // We can take advantage of LIS's sign-extension semantics to generate leading
1095   // ones, add the remaining bits with ORI, and then use RLDICL to mask off the
1096   // ones in left sides (if required) after rotation.
1097   // This is similar to Pattern 2-4, please refer to the diagram there.
1098   if ((LZ + FO + TO) > 32) {
1099     Result = CurDAG->getMachineNode(PPC::LIS8, dl, MVT::i64,
1100                                     getI32Imm((Imm >> (TO + 16)) & 0xffff));
1101     Result = CurDAG->getMachineNode(PPC::ORI8, dl, MVT::i64, SDValue(Result, 0),
1102                                     getI32Imm((Imm >> TO) & 0xffff));
1103     return CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64, SDValue(Result, 0),
1104                                   getI32Imm(TO), getI32Imm(LZ));
1105   }
1106   // 3-4) Patterns : High word == Low word
1107   if (Hi32 == Lo32) {
1108     // Handle the first 32 bits.
1109     uint64_t ImmHi16 = (Lo32 >> 16) & 0xffff;
1110     unsigned Opcode = ImmHi16 ? PPC::LIS8 : PPC::LI8;
1111     Result = CurDAG->getMachineNode(Opcode, dl, MVT::i64, getI32Imm(ImmHi16));
1112     Result = CurDAG->getMachineNode(PPC::ORI8, dl, MVT::i64, SDValue(Result, 0),
1113                                     getI32Imm(Lo32 & 0xffff));
1114     // Use rldimi to insert the Low word into High word.
1115     SDValue Ops[] = {SDValue(Result, 0), SDValue(Result, 0), getI32Imm(32),
1116                      getI32Imm(0)};
1117     return CurDAG->getMachineNode(PPC::RLDIMI, dl, MVT::i64, Ops);
1118   }
1119   // 3-5) Patterns : {******}{33 zeros}{******}
1120   //                 {******}{33 ones}{******}
1121   // If the Imm contains 33 consecutive zeros/ones, it means that a total of 31
1122   // bits remain on both sides. Rotate right the Imm to construct an int<32>
1123   // value, use LIS + ORI for int<32> value and then use RLDICL without mask to
1124   // rotate it back.
1125   // This is similar to Pattern 2-6, please refer to the diagram there.
1126   if ((Shift = findContiguousZerosAtLeast(Imm, 33)) ||
1127       (Shift = findContiguousZerosAtLeast(~Imm, 33))) {
1128     uint64_t RotImm = APInt(64, Imm).rotr(Shift).getZExtValue();
1129     uint64_t ImmHi16 = (RotImm >> 16) & 0xffff;
1130     unsigned Opcode = ImmHi16 ? PPC::LIS8 : PPC::LI8;
1131     Result = CurDAG->getMachineNode(Opcode, dl, MVT::i64, getI32Imm(ImmHi16));
1132     Result = CurDAG->getMachineNode(PPC::ORI8, dl, MVT::i64, SDValue(Result, 0),
1133                                     getI32Imm(RotImm & 0xffff));
1134     return CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64, SDValue(Result, 0),
1135                                   getI32Imm(Shift), getI32Imm(0));
1136   }
1137 
1138   InstCnt = 0;
1139   return nullptr;
1140 }
1141 
1142 // Try to select instructions to generate a 64 bit immediate using prefix as
1143 // well as non prefix instructions. The function will return the SDNode
1144 // to materialize that constant or it will return nullptr if it does not
1145 // find one. The variable InstCnt is set to the number of instructions that
1146 // were selected.
selectI64ImmDirectPrefix(SelectionDAG * CurDAG,const SDLoc & dl,uint64_t Imm,unsigned & InstCnt)1147 static SDNode *selectI64ImmDirectPrefix(SelectionDAG *CurDAG, const SDLoc &dl,
1148                                         uint64_t Imm, unsigned &InstCnt) {
1149   unsigned TZ = countTrailingZeros<uint64_t>(Imm);
1150   unsigned LZ = countLeadingZeros<uint64_t>(Imm);
1151   unsigned TO = countTrailingOnes<uint64_t>(Imm);
1152   unsigned FO = countLeadingOnes<uint64_t>(LZ == 64 ? 0 : (Imm << LZ));
1153   unsigned Hi32 = Hi_32(Imm);
1154   unsigned Lo32 = Lo_32(Imm);
1155 
1156   auto getI32Imm = [CurDAG, dl](unsigned Imm) {
1157     return CurDAG->getTargetConstant(Imm, dl, MVT::i32);
1158   };
1159 
1160   auto getI64Imm = [CurDAG, dl](uint64_t Imm) {
1161     return CurDAG->getTargetConstant(Imm, dl, MVT::i64);
1162   };
1163 
1164   // Following patterns use 1 instruction to materialize Imm.
1165   InstCnt = 1;
1166 
1167   // The pli instruction can materialize up to 34 bits directly.
1168   // If a constant fits within 34-bits, emit the pli instruction here directly.
1169   if (isInt<34>(Imm))
1170     return CurDAG->getMachineNode(PPC::PLI8, dl, MVT::i64,
1171                                   CurDAG->getTargetConstant(Imm, dl, MVT::i64));
1172 
1173   // Require at least two instructions.
1174   InstCnt = 2;
1175   SDNode *Result = nullptr;
1176   // Patterns : {zeros}{ones}{33-bit value}{zeros}
1177   //            {zeros}{33-bit value}{zeros}
1178   //            {zeros}{ones}{33-bit value}
1179   //            {ones}{33-bit value}{zeros}
1180   // We can take advantage of PLI's sign-extension semantics to generate leading
1181   // ones, and then use RLDIC to mask off the ones on both sides after rotation.
1182   if ((LZ + FO + TZ) > 30) {
1183     APInt SignedInt34 = APInt(34, (Imm >> TZ) & 0x3ffffffff);
1184     APInt Extended = SignedInt34.sext(64);
1185     Result = CurDAG->getMachineNode(PPC::PLI8, dl, MVT::i64,
1186                                     getI64Imm(*Extended.getRawData()));
1187     return CurDAG->getMachineNode(PPC::RLDIC, dl, MVT::i64, SDValue(Result, 0),
1188                                   getI32Imm(TZ), getI32Imm(LZ));
1189   }
1190   // Pattern : {zeros}{33-bit value}{ones}
1191   // Shift right the Imm by (30 - LZ) bits to construct a negative 34 bit value,
1192   // therefore we can take advantage of PLI's sign-extension semantics, and then
1193   // mask them off after rotation.
1194   //
1195   // +--LZ--||-33-bit-||--TO--+     +-------------|--34-bit--+
1196   // |00000001bbbbbbbbb1111111| ->  |00000000000001bbbbbbbbb1|
1197   // +------------------------+     +------------------------+
1198   // 63                      0      63                      0
1199   //
1200   // +----sext-----|--34-bit--+     +clear-|-----------------+
1201   // |11111111111111bbbbbbbbb1| ->  |00000001bbbbbbbbb1111111|
1202   // +------------------------+     +------------------------+
1203   // 63                      0      63                      0
1204   if ((LZ + TO) > 30) {
1205     APInt SignedInt34 = APInt(34, (Imm >> (30 - LZ)) & 0x3ffffffff);
1206     APInt Extended = SignedInt34.sext(64);
1207     Result = CurDAG->getMachineNode(PPC::PLI8, dl, MVT::i64,
1208                                     getI64Imm(*Extended.getRawData()));
1209     return CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64, SDValue(Result, 0),
1210                                   getI32Imm(30 - LZ), getI32Imm(LZ));
1211   }
1212   // Patterns : {zeros}{ones}{33-bit value}{ones}
1213   //            {ones}{33-bit value}{ones}
1214   // Similar to LI we can take advantage of PLI's sign-extension semantics to
1215   // generate leading ones, and then use RLDICL to mask off the ones in left
1216   // sides (if required) after rotation.
1217   if ((LZ + FO + TO) > 30) {
1218     APInt SignedInt34 = APInt(34, (Imm >> TO) & 0x3ffffffff);
1219     APInt Extended = SignedInt34.sext(64);
1220     Result = CurDAG->getMachineNode(PPC::PLI8, dl, MVT::i64,
1221                                     getI64Imm(*Extended.getRawData()));
1222     return CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64, SDValue(Result, 0),
1223                                   getI32Imm(TO), getI32Imm(LZ));
1224   }
1225   // Patterns : {******}{31 zeros}{******}
1226   //          : {******}{31 ones}{******}
1227   // If Imm contains 31 consecutive zeros/ones then the remaining bit count
1228   // is 33. Rotate right the Imm to construct a int<33> value, we can use PLI
1229   // for the int<33> value and then use RLDICL without a mask to rotate it back.
1230   //
1231   // +------|--ones--|------+     +---ones--||---33 bit--+
1232   // |bbbbbb1111111111aaaaaa| ->  |1111111111aaaaaabbbbbb|
1233   // +----------------------+     +----------------------+
1234   // 63                    0      63                    0
1235   for (unsigned Shift = 0; Shift < 63; ++Shift) {
1236     uint64_t RotImm = APInt(64, Imm).rotr(Shift).getZExtValue();
1237     if (isInt<34>(RotImm)) {
1238       Result =
1239           CurDAG->getMachineNode(PPC::PLI8, dl, MVT::i64, getI64Imm(RotImm));
1240       return CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64,
1241                                     SDValue(Result, 0), getI32Imm(Shift),
1242                                     getI32Imm(0));
1243     }
1244   }
1245 
1246   // Patterns : High word == Low word
1247   // This is basically a splat of a 32 bit immediate.
1248   if (Hi32 == Lo32) {
1249     Result = CurDAG->getMachineNode(PPC::PLI8, dl, MVT::i64, getI64Imm(Hi32));
1250     SDValue Ops[] = {SDValue(Result, 0), SDValue(Result, 0), getI32Imm(32),
1251                      getI32Imm(0)};
1252     return CurDAG->getMachineNode(PPC::RLDIMI, dl, MVT::i64, Ops);
1253   }
1254 
1255   InstCnt = 3;
1256   // Catch-all
1257   // This pattern can form any 64 bit immediate in 3 instructions.
1258   SDNode *ResultHi =
1259       CurDAG->getMachineNode(PPC::PLI8, dl, MVT::i64, getI64Imm(Hi32));
1260   SDNode *ResultLo =
1261       CurDAG->getMachineNode(PPC::PLI8, dl, MVT::i64, getI64Imm(Lo32));
1262   SDValue Ops[] = {SDValue(ResultLo, 0), SDValue(ResultHi, 0), getI32Imm(32),
1263                    getI32Imm(0)};
1264   return CurDAG->getMachineNode(PPC::RLDIMI, dl, MVT::i64, Ops);
1265 }
1266 
selectI64Imm(SelectionDAG * CurDAG,const SDLoc & dl,uint64_t Imm,unsigned * InstCnt=nullptr)1267 static SDNode *selectI64Imm(SelectionDAG *CurDAG, const SDLoc &dl, uint64_t Imm,
1268                             unsigned *InstCnt = nullptr) {
1269   unsigned InstCntDirect = 0;
1270   // No more than 3 instructions is used if we can select the i64 immediate
1271   // directly.
1272   SDNode *Result = selectI64ImmDirect(CurDAG, dl, Imm, InstCntDirect);
1273 
1274   const PPCSubtarget &Subtarget =
1275       CurDAG->getMachineFunction().getSubtarget<PPCSubtarget>();
1276 
1277   // If we have prefixed instructions and there is a chance we can
1278   // materialize the constant with fewer prefixed instructions than
1279   // non-prefixed, try that.
1280   if (Subtarget.hasPrefixInstrs() && InstCntDirect != 1) {
1281     unsigned InstCntDirectP = 0;
1282     SDNode *ResultP = selectI64ImmDirectPrefix(CurDAG, dl, Imm, InstCntDirectP);
1283     // Use the prefix case in either of two cases:
1284     // 1) We have no result from the non-prefix case to use.
1285     // 2) The non-prefix case uses more instructions than the prefix case.
1286     // If the prefix and non-prefix cases use the same number of instructions
1287     // we will prefer the non-prefix case.
1288     if (ResultP && (!Result || InstCntDirectP < InstCntDirect)) {
1289       if (InstCnt)
1290         *InstCnt = InstCntDirectP;
1291       return ResultP;
1292     }
1293   }
1294 
1295   if (Result) {
1296     if (InstCnt)
1297       *InstCnt = InstCntDirect;
1298     return Result;
1299   }
1300   auto getI32Imm = [CurDAG, dl](unsigned Imm) {
1301     return CurDAG->getTargetConstant(Imm, dl, MVT::i32);
1302   };
1303   // Handle the upper 32 bit value.
1304   Result =
1305       selectI64ImmDirect(CurDAG, dl, Imm & 0xffffffff00000000, InstCntDirect);
1306   // Add in the last bits as required.
1307   if (uint32_t Hi16 = (Lo_32(Imm) >> 16) & 0xffff) {
1308     Result = CurDAG->getMachineNode(PPC::ORIS8, dl, MVT::i64,
1309                                     SDValue(Result, 0), getI32Imm(Hi16));
1310     ++InstCntDirect;
1311   }
1312   if (uint32_t Lo16 = Lo_32(Imm) & 0xffff) {
1313     Result = CurDAG->getMachineNode(PPC::ORI8, dl, MVT::i64, SDValue(Result, 0),
1314                                     getI32Imm(Lo16));
1315     ++InstCntDirect;
1316   }
1317   if (InstCnt)
1318     *InstCnt = InstCntDirect;
1319   return Result;
1320 }
1321 
1322 // Select a 64-bit constant.
selectI64Imm(SelectionDAG * CurDAG,SDNode * N)1323 static SDNode *selectI64Imm(SelectionDAG *CurDAG, SDNode *N) {
1324   SDLoc dl(N);
1325 
1326   // Get 64 bit value.
1327   int64_t Imm = cast<ConstantSDNode>(N)->getZExtValue();
1328   if (unsigned MinSize = allUsesTruncate(CurDAG, N)) {
1329     uint64_t SextImm = SignExtend64(Imm, MinSize);
1330     SDValue SDImm = CurDAG->getTargetConstant(SextImm, dl, MVT::i64);
1331     if (isInt<16>(SextImm))
1332       return CurDAG->getMachineNode(PPC::LI8, dl, MVT::i64, SDImm);
1333   }
1334   return selectI64Imm(CurDAG, dl, Imm);
1335 }
1336 
1337 namespace {
1338 
1339 class BitPermutationSelector {
1340   struct ValueBit {
1341     SDValue V;
1342 
1343     // The bit number in the value, using a convention where bit 0 is the
1344     // lowest-order bit.
1345     unsigned Idx;
1346 
1347     // ConstZero means a bit we need to mask off.
1348     // Variable is a bit comes from an input variable.
1349     // VariableKnownToBeZero is also a bit comes from an input variable,
1350     // but it is known to be already zero. So we do not need to mask them.
1351     enum Kind {
1352       ConstZero,
1353       Variable,
1354       VariableKnownToBeZero
1355     } K;
1356 
ValueBit__anon516d030b0611::BitPermutationSelector::ValueBit1357     ValueBit(SDValue V, unsigned I, Kind K = Variable)
1358       : V(V), Idx(I), K(K) {}
ValueBit__anon516d030b0611::BitPermutationSelector::ValueBit1359     ValueBit(Kind K = Variable)
1360       : V(SDValue(nullptr, 0)), Idx(UINT32_MAX), K(K) {}
1361 
isZero__anon516d030b0611::BitPermutationSelector::ValueBit1362     bool isZero() const {
1363       return K == ConstZero || K == VariableKnownToBeZero;
1364     }
1365 
hasValue__anon516d030b0611::BitPermutationSelector::ValueBit1366     bool hasValue() const {
1367       return K == Variable || K == VariableKnownToBeZero;
1368     }
1369 
getValue__anon516d030b0611::BitPermutationSelector::ValueBit1370     SDValue getValue() const {
1371       assert(hasValue() && "Cannot get the value of a constant bit");
1372       return V;
1373     }
1374 
getValueBitIndex__anon516d030b0611::BitPermutationSelector::ValueBit1375     unsigned getValueBitIndex() const {
1376       assert(hasValue() && "Cannot get the value bit index of a constant bit");
1377       return Idx;
1378     }
1379   };
1380 
1381   // A bit group has the same underlying value and the same rotate factor.
1382   struct BitGroup {
1383     SDValue V;
1384     unsigned RLAmt;
1385     unsigned StartIdx, EndIdx;
1386 
1387     // This rotation amount assumes that the lower 32 bits of the quantity are
1388     // replicated in the high 32 bits by the rotation operator (which is done
1389     // by rlwinm and friends in 64-bit mode).
1390     bool Repl32;
1391     // Did converting to Repl32 == true change the rotation factor? If it did,
1392     // it decreased it by 32.
1393     bool Repl32CR;
1394     // Was this group coalesced after setting Repl32 to true?
1395     bool Repl32Coalesced;
1396 
BitGroup__anon516d030b0611::BitPermutationSelector::BitGroup1397     BitGroup(SDValue V, unsigned R, unsigned S, unsigned E)
1398       : V(V), RLAmt(R), StartIdx(S), EndIdx(E), Repl32(false), Repl32CR(false),
1399         Repl32Coalesced(false) {
1400       LLVM_DEBUG(dbgs() << "\tbit group for " << V.getNode() << " RLAmt = " << R
1401                         << " [" << S << ", " << E << "]\n");
1402     }
1403   };
1404 
1405   // Information on each (Value, RLAmt) pair (like the number of groups
1406   // associated with each) used to choose the lowering method.
1407   struct ValueRotInfo {
1408     SDValue V;
1409     unsigned RLAmt = std::numeric_limits<unsigned>::max();
1410     unsigned NumGroups = 0;
1411     unsigned FirstGroupStartIdx = std::numeric_limits<unsigned>::max();
1412     bool Repl32 = false;
1413 
1414     ValueRotInfo() = default;
1415 
1416     // For sorting (in reverse order) by NumGroups, and then by
1417     // FirstGroupStartIdx.
operator <__anon516d030b0611::BitPermutationSelector::ValueRotInfo1418     bool operator < (const ValueRotInfo &Other) const {
1419       // We need to sort so that the non-Repl32 come first because, when we're
1420       // doing masking, the Repl32 bit groups might be subsumed into the 64-bit
1421       // masking operation.
1422       if (Repl32 < Other.Repl32)
1423         return true;
1424       else if (Repl32 > Other.Repl32)
1425         return false;
1426       else if (NumGroups > Other.NumGroups)
1427         return true;
1428       else if (NumGroups < Other.NumGroups)
1429         return false;
1430       else if (RLAmt == 0 && Other.RLAmt != 0)
1431         return true;
1432       else if (RLAmt != 0 && Other.RLAmt == 0)
1433         return false;
1434       else if (FirstGroupStartIdx < Other.FirstGroupStartIdx)
1435         return true;
1436       return false;
1437     }
1438   };
1439 
1440   using ValueBitsMemoizedValue = std::pair<bool, SmallVector<ValueBit, 64>>;
1441   using ValueBitsMemoizer =
1442       DenseMap<SDValue, std::unique_ptr<ValueBitsMemoizedValue>>;
1443   ValueBitsMemoizer Memoizer;
1444 
1445   // Return a pair of bool and a SmallVector pointer to a memoization entry.
1446   // The bool is true if something interesting was deduced, otherwise if we're
1447   // providing only a generic representation of V (or something else likewise
1448   // uninteresting for instruction selection) through the SmallVector.
getValueBits(SDValue V,unsigned NumBits)1449   std::pair<bool, SmallVector<ValueBit, 64> *> getValueBits(SDValue V,
1450                                                             unsigned NumBits) {
1451     auto &ValueEntry = Memoizer[V];
1452     if (ValueEntry)
1453       return std::make_pair(ValueEntry->first, &ValueEntry->second);
1454     ValueEntry.reset(new ValueBitsMemoizedValue());
1455     bool &Interesting = ValueEntry->first;
1456     SmallVector<ValueBit, 64> &Bits = ValueEntry->second;
1457     Bits.resize(NumBits);
1458 
1459     switch (V.getOpcode()) {
1460     default: break;
1461     case ISD::ROTL:
1462       if (isa<ConstantSDNode>(V.getOperand(1))) {
1463         unsigned RotAmt = V.getConstantOperandVal(1);
1464 
1465         const auto &LHSBits = *getValueBits(V.getOperand(0), NumBits).second;
1466 
1467         for (unsigned i = 0; i < NumBits; ++i)
1468           Bits[i] = LHSBits[i < RotAmt ? i + (NumBits - RotAmt) : i - RotAmt];
1469 
1470         return std::make_pair(Interesting = true, &Bits);
1471       }
1472       break;
1473     case ISD::SHL:
1474     case PPCISD::SHL:
1475       if (isa<ConstantSDNode>(V.getOperand(1))) {
1476         unsigned ShiftAmt = V.getConstantOperandVal(1);
1477 
1478         const auto &LHSBits = *getValueBits(V.getOperand(0), NumBits).second;
1479 
1480         for (unsigned i = ShiftAmt; i < NumBits; ++i)
1481           Bits[i] = LHSBits[i - ShiftAmt];
1482 
1483         for (unsigned i = 0; i < ShiftAmt; ++i)
1484           Bits[i] = ValueBit(ValueBit::ConstZero);
1485 
1486         return std::make_pair(Interesting = true, &Bits);
1487       }
1488       break;
1489     case ISD::SRL:
1490     case PPCISD::SRL:
1491       if (isa<ConstantSDNode>(V.getOperand(1))) {
1492         unsigned ShiftAmt = V.getConstantOperandVal(1);
1493 
1494         const auto &LHSBits = *getValueBits(V.getOperand(0), NumBits).second;
1495 
1496         for (unsigned i = 0; i < NumBits - ShiftAmt; ++i)
1497           Bits[i] = LHSBits[i + ShiftAmt];
1498 
1499         for (unsigned i = NumBits - ShiftAmt; i < NumBits; ++i)
1500           Bits[i] = ValueBit(ValueBit::ConstZero);
1501 
1502         return std::make_pair(Interesting = true, &Bits);
1503       }
1504       break;
1505     case ISD::AND:
1506       if (isa<ConstantSDNode>(V.getOperand(1))) {
1507         uint64_t Mask = V.getConstantOperandVal(1);
1508 
1509         const SmallVector<ValueBit, 64> *LHSBits;
1510         // Mark this as interesting, only if the LHS was also interesting. This
1511         // prevents the overall procedure from matching a single immediate 'and'
1512         // (which is non-optimal because such an and might be folded with other
1513         // things if we don't select it here).
1514         std::tie(Interesting, LHSBits) = getValueBits(V.getOperand(0), NumBits);
1515 
1516         for (unsigned i = 0; i < NumBits; ++i)
1517           if (((Mask >> i) & 1) == 1)
1518             Bits[i] = (*LHSBits)[i];
1519           else {
1520             // AND instruction masks this bit. If the input is already zero,
1521             // we have nothing to do here. Otherwise, make the bit ConstZero.
1522             if ((*LHSBits)[i].isZero())
1523               Bits[i] = (*LHSBits)[i];
1524             else
1525               Bits[i] = ValueBit(ValueBit::ConstZero);
1526           }
1527 
1528         return std::make_pair(Interesting, &Bits);
1529       }
1530       break;
1531     case ISD::OR: {
1532       const auto &LHSBits = *getValueBits(V.getOperand(0), NumBits).second;
1533       const auto &RHSBits = *getValueBits(V.getOperand(1), NumBits).second;
1534 
1535       bool AllDisjoint = true;
1536       SDValue LastVal = SDValue();
1537       unsigned LastIdx = 0;
1538       for (unsigned i = 0; i < NumBits; ++i) {
1539         if (LHSBits[i].isZero() && RHSBits[i].isZero()) {
1540           // If both inputs are known to be zero and one is ConstZero and
1541           // another is VariableKnownToBeZero, we can select whichever
1542           // we like. To minimize the number of bit groups, we select
1543           // VariableKnownToBeZero if this bit is the next bit of the same
1544           // input variable from the previous bit. Otherwise, we select
1545           // ConstZero.
1546           if (LHSBits[i].hasValue() && LHSBits[i].getValue() == LastVal &&
1547               LHSBits[i].getValueBitIndex() == LastIdx + 1)
1548             Bits[i] = LHSBits[i];
1549           else if (RHSBits[i].hasValue() && RHSBits[i].getValue() == LastVal &&
1550                    RHSBits[i].getValueBitIndex() == LastIdx + 1)
1551             Bits[i] = RHSBits[i];
1552           else
1553             Bits[i] = ValueBit(ValueBit::ConstZero);
1554         }
1555         else if (LHSBits[i].isZero())
1556           Bits[i] = RHSBits[i];
1557         else if (RHSBits[i].isZero())
1558           Bits[i] = LHSBits[i];
1559         else {
1560           AllDisjoint = false;
1561           break;
1562         }
1563         // We remember the value and bit index of this bit.
1564         if (Bits[i].hasValue()) {
1565           LastVal = Bits[i].getValue();
1566           LastIdx = Bits[i].getValueBitIndex();
1567         }
1568         else {
1569           if (LastVal) LastVal = SDValue();
1570           LastIdx = 0;
1571         }
1572       }
1573 
1574       if (!AllDisjoint)
1575         break;
1576 
1577       return std::make_pair(Interesting = true, &Bits);
1578     }
1579     case ISD::ZERO_EXTEND: {
1580       // We support only the case with zero extension from i32 to i64 so far.
1581       if (V.getValueType() != MVT::i64 ||
1582           V.getOperand(0).getValueType() != MVT::i32)
1583         break;
1584 
1585       const SmallVector<ValueBit, 64> *LHSBits;
1586       const unsigned NumOperandBits = 32;
1587       std::tie(Interesting, LHSBits) = getValueBits(V.getOperand(0),
1588                                                     NumOperandBits);
1589 
1590       for (unsigned i = 0; i < NumOperandBits; ++i)
1591         Bits[i] = (*LHSBits)[i];
1592 
1593       for (unsigned i = NumOperandBits; i < NumBits; ++i)
1594         Bits[i] = ValueBit(ValueBit::ConstZero);
1595 
1596       return std::make_pair(Interesting, &Bits);
1597     }
1598     case ISD::TRUNCATE: {
1599       EVT FromType = V.getOperand(0).getValueType();
1600       EVT ToType = V.getValueType();
1601       // We support only the case with truncate from i64 to i32.
1602       if (FromType != MVT::i64 || ToType != MVT::i32)
1603         break;
1604       const unsigned NumAllBits = FromType.getSizeInBits();
1605       SmallVector<ValueBit, 64> *InBits;
1606       std::tie(Interesting, InBits) = getValueBits(V.getOperand(0),
1607                                                     NumAllBits);
1608       const unsigned NumValidBits = ToType.getSizeInBits();
1609 
1610       // A 32-bit instruction cannot touch upper 32-bit part of 64-bit value.
1611       // So, we cannot include this truncate.
1612       bool UseUpper32bit = false;
1613       for (unsigned i = 0; i < NumValidBits; ++i)
1614         if ((*InBits)[i].hasValue() && (*InBits)[i].getValueBitIndex() >= 32) {
1615           UseUpper32bit = true;
1616           break;
1617         }
1618       if (UseUpper32bit)
1619         break;
1620 
1621       for (unsigned i = 0; i < NumValidBits; ++i)
1622         Bits[i] = (*InBits)[i];
1623 
1624       return std::make_pair(Interesting, &Bits);
1625     }
1626     case ISD::AssertZext: {
1627       // For AssertZext, we look through the operand and
1628       // mark the bits known to be zero.
1629       const SmallVector<ValueBit, 64> *LHSBits;
1630       std::tie(Interesting, LHSBits) = getValueBits(V.getOperand(0),
1631                                                     NumBits);
1632 
1633       EVT FromType = cast<VTSDNode>(V.getOperand(1))->getVT();
1634       const unsigned NumValidBits = FromType.getSizeInBits();
1635       for (unsigned i = 0; i < NumValidBits; ++i)
1636         Bits[i] = (*LHSBits)[i];
1637 
1638       // These bits are known to be zero but the AssertZext may be from a value
1639       // that already has some constant zero bits (i.e. from a masking and).
1640       for (unsigned i = NumValidBits; i < NumBits; ++i)
1641         Bits[i] = (*LHSBits)[i].hasValue()
1642                       ? ValueBit((*LHSBits)[i].getValue(),
1643                                  (*LHSBits)[i].getValueBitIndex(),
1644                                  ValueBit::VariableKnownToBeZero)
1645                       : ValueBit(ValueBit::ConstZero);
1646 
1647       return std::make_pair(Interesting, &Bits);
1648     }
1649     case ISD::LOAD:
1650       LoadSDNode *LD = cast<LoadSDNode>(V);
1651       if (ISD::isZEXTLoad(V.getNode()) && V.getResNo() == 0) {
1652         EVT VT = LD->getMemoryVT();
1653         const unsigned NumValidBits = VT.getSizeInBits();
1654 
1655         for (unsigned i = 0; i < NumValidBits; ++i)
1656           Bits[i] = ValueBit(V, i);
1657 
1658         // These bits are known to be zero.
1659         for (unsigned i = NumValidBits; i < NumBits; ++i)
1660           Bits[i] = ValueBit(V, i, ValueBit::VariableKnownToBeZero);
1661 
1662         // Zero-extending load itself cannot be optimized. So, it is not
1663         // interesting by itself though it gives useful information.
1664         return std::make_pair(Interesting = false, &Bits);
1665       }
1666       break;
1667     }
1668 
1669     for (unsigned i = 0; i < NumBits; ++i)
1670       Bits[i] = ValueBit(V, i);
1671 
1672     return std::make_pair(Interesting = false, &Bits);
1673   }
1674 
1675   // For each value (except the constant ones), compute the left-rotate amount
1676   // to get it from its original to final position.
computeRotationAmounts()1677   void computeRotationAmounts() {
1678     NeedMask = false;
1679     RLAmt.resize(Bits.size());
1680     for (unsigned i = 0; i < Bits.size(); ++i)
1681       if (Bits[i].hasValue()) {
1682         unsigned VBI = Bits[i].getValueBitIndex();
1683         if (i >= VBI)
1684           RLAmt[i] = i - VBI;
1685         else
1686           RLAmt[i] = Bits.size() - (VBI - i);
1687       } else if (Bits[i].isZero()) {
1688         NeedMask = true;
1689         RLAmt[i] = UINT32_MAX;
1690       } else {
1691         llvm_unreachable("Unknown value bit type");
1692       }
1693   }
1694 
1695   // Collect groups of consecutive bits with the same underlying value and
1696   // rotation factor. If we're doing late masking, we ignore zeros, otherwise
1697   // they break up groups.
collectBitGroups(bool LateMask)1698   void collectBitGroups(bool LateMask) {
1699     BitGroups.clear();
1700 
1701     unsigned LastRLAmt = RLAmt[0];
1702     SDValue LastValue = Bits[0].hasValue() ? Bits[0].getValue() : SDValue();
1703     unsigned LastGroupStartIdx = 0;
1704     bool IsGroupOfZeros = !Bits[LastGroupStartIdx].hasValue();
1705     for (unsigned i = 1; i < Bits.size(); ++i) {
1706       unsigned ThisRLAmt = RLAmt[i];
1707       SDValue ThisValue = Bits[i].hasValue() ? Bits[i].getValue() : SDValue();
1708       if (LateMask && !ThisValue) {
1709         ThisValue = LastValue;
1710         ThisRLAmt = LastRLAmt;
1711         // If we're doing late masking, then the first bit group always starts
1712         // at zero (even if the first bits were zero).
1713         if (BitGroups.empty())
1714           LastGroupStartIdx = 0;
1715       }
1716 
1717       // If this bit is known to be zero and the current group is a bit group
1718       // of zeros, we do not need to terminate the current bit group even the
1719       // Value or RLAmt does not match here. Instead, we terminate this group
1720       // when the first non-zero bit appears later.
1721       if (IsGroupOfZeros && Bits[i].isZero())
1722         continue;
1723 
1724       // If this bit has the same underlying value and the same rotate factor as
1725       // the last one, then they're part of the same group.
1726       if (ThisRLAmt == LastRLAmt && ThisValue == LastValue)
1727         // We cannot continue the current group if this bits is not known to
1728         // be zero in a bit group of zeros.
1729         if (!(IsGroupOfZeros && ThisValue && !Bits[i].isZero()))
1730           continue;
1731 
1732       if (LastValue.getNode())
1733         BitGroups.push_back(BitGroup(LastValue, LastRLAmt, LastGroupStartIdx,
1734                                      i-1));
1735       LastRLAmt = ThisRLAmt;
1736       LastValue = ThisValue;
1737       LastGroupStartIdx = i;
1738       IsGroupOfZeros = !Bits[LastGroupStartIdx].hasValue();
1739     }
1740     if (LastValue.getNode())
1741       BitGroups.push_back(BitGroup(LastValue, LastRLAmt, LastGroupStartIdx,
1742                                    Bits.size()-1));
1743 
1744     if (BitGroups.empty())
1745       return;
1746 
1747     // We might be able to combine the first and last groups.
1748     if (BitGroups.size() > 1) {
1749       // If the first and last groups are the same, then remove the first group
1750       // in favor of the last group, making the ending index of the last group
1751       // equal to the ending index of the to-be-removed first group.
1752       if (BitGroups[0].StartIdx == 0 &&
1753           BitGroups[BitGroups.size()-1].EndIdx == Bits.size()-1 &&
1754           BitGroups[0].V == BitGroups[BitGroups.size()-1].V &&
1755           BitGroups[0].RLAmt == BitGroups[BitGroups.size()-1].RLAmt) {
1756         LLVM_DEBUG(dbgs() << "\tcombining final bit group with initial one\n");
1757         BitGroups[BitGroups.size()-1].EndIdx = BitGroups[0].EndIdx;
1758         BitGroups.erase(BitGroups.begin());
1759       }
1760     }
1761   }
1762 
1763   // Take all (SDValue, RLAmt) pairs and sort them by the number of groups
1764   // associated with each. If the number of groups are same, we prefer a group
1765   // which does not require rotate, i.e. RLAmt is 0, to avoid the first rotate
1766   // instruction. If there is a degeneracy, pick the one that occurs
1767   // first (in the final value).
collectValueRotInfo()1768   void collectValueRotInfo() {
1769     ValueRots.clear();
1770 
1771     for (auto &BG : BitGroups) {
1772       unsigned RLAmtKey = BG.RLAmt + (BG.Repl32 ? 64 : 0);
1773       ValueRotInfo &VRI = ValueRots[std::make_pair(BG.V, RLAmtKey)];
1774       VRI.V = BG.V;
1775       VRI.RLAmt = BG.RLAmt;
1776       VRI.Repl32 = BG.Repl32;
1777       VRI.NumGroups += 1;
1778       VRI.FirstGroupStartIdx = std::min(VRI.FirstGroupStartIdx, BG.StartIdx);
1779     }
1780 
1781     // Now that we've collected the various ValueRotInfo instances, we need to
1782     // sort them.
1783     ValueRotsVec.clear();
1784     for (auto &I : ValueRots) {
1785       ValueRotsVec.push_back(I.second);
1786     }
1787     llvm::sort(ValueRotsVec);
1788   }
1789 
1790   // In 64-bit mode, rlwinm and friends have a rotation operator that
1791   // replicates the low-order 32 bits into the high-order 32-bits. The mask
1792   // indices of these instructions can only be in the lower 32 bits, so they
1793   // can only represent some 64-bit bit groups. However, when they can be used,
1794   // the 32-bit replication can be used to represent, as a single bit group,
1795   // otherwise separate bit groups. We'll convert to replicated-32-bit bit
1796   // groups when possible. Returns true if any of the bit groups were
1797   // converted.
assignRepl32BitGroups()1798   void assignRepl32BitGroups() {
1799     // If we have bits like this:
1800     //
1801     // Indices:    15 14 13 12 11 10 9 8  7  6  5  4  3  2  1  0
1802     // V bits: ... 7  6  5  4  3  2  1 0 31 30 29 28 27 26 25 24
1803     // Groups:    |      RLAmt = 8      |      RLAmt = 40       |
1804     //
1805     // But, making use of a 32-bit operation that replicates the low-order 32
1806     // bits into the high-order 32 bits, this can be one bit group with a RLAmt
1807     // of 8.
1808 
1809     auto IsAllLow32 = [this](BitGroup & BG) {
1810       if (BG.StartIdx <= BG.EndIdx) {
1811         for (unsigned i = BG.StartIdx; i <= BG.EndIdx; ++i) {
1812           if (!Bits[i].hasValue())
1813             continue;
1814           if (Bits[i].getValueBitIndex() >= 32)
1815             return false;
1816         }
1817       } else {
1818         for (unsigned i = BG.StartIdx; i < Bits.size(); ++i) {
1819           if (!Bits[i].hasValue())
1820             continue;
1821           if (Bits[i].getValueBitIndex() >= 32)
1822             return false;
1823         }
1824         for (unsigned i = 0; i <= BG.EndIdx; ++i) {
1825           if (!Bits[i].hasValue())
1826             continue;
1827           if (Bits[i].getValueBitIndex() >= 32)
1828             return false;
1829         }
1830       }
1831 
1832       return true;
1833     };
1834 
1835     for (auto &BG : BitGroups) {
1836       // If this bit group has RLAmt of 0 and will not be merged with
1837       // another bit group, we don't benefit from Repl32. We don't mark
1838       // such group to give more freedom for later instruction selection.
1839       if (BG.RLAmt == 0) {
1840         auto PotentiallyMerged = [this](BitGroup & BG) {
1841           for (auto &BG2 : BitGroups)
1842             if (&BG != &BG2 && BG.V == BG2.V &&
1843                 (BG2.RLAmt == 0 || BG2.RLAmt == 32))
1844               return true;
1845           return false;
1846         };
1847         if (!PotentiallyMerged(BG))
1848           continue;
1849       }
1850       if (BG.StartIdx < 32 && BG.EndIdx < 32) {
1851         if (IsAllLow32(BG)) {
1852           if (BG.RLAmt >= 32) {
1853             BG.RLAmt -= 32;
1854             BG.Repl32CR = true;
1855           }
1856 
1857           BG.Repl32 = true;
1858 
1859           LLVM_DEBUG(dbgs() << "\t32-bit replicated bit group for "
1860                             << BG.V.getNode() << " RLAmt = " << BG.RLAmt << " ["
1861                             << BG.StartIdx << ", " << BG.EndIdx << "]\n");
1862         }
1863       }
1864     }
1865 
1866     // Now walk through the bit groups, consolidating where possible.
1867     for (auto I = BitGroups.begin(); I != BitGroups.end();) {
1868       // We might want to remove this bit group by merging it with the previous
1869       // group (which might be the ending group).
1870       auto IP = (I == BitGroups.begin()) ?
1871                 std::prev(BitGroups.end()) : std::prev(I);
1872       if (I->Repl32 && IP->Repl32 && I->V == IP->V && I->RLAmt == IP->RLAmt &&
1873           I->StartIdx == (IP->EndIdx + 1) % 64 && I != IP) {
1874 
1875         LLVM_DEBUG(dbgs() << "\tcombining 32-bit replicated bit group for "
1876                           << I->V.getNode() << " RLAmt = " << I->RLAmt << " ["
1877                           << I->StartIdx << ", " << I->EndIdx
1878                           << "] with group with range [" << IP->StartIdx << ", "
1879                           << IP->EndIdx << "]\n");
1880 
1881         IP->EndIdx = I->EndIdx;
1882         IP->Repl32CR = IP->Repl32CR || I->Repl32CR;
1883         IP->Repl32Coalesced = true;
1884         I = BitGroups.erase(I);
1885         continue;
1886       } else {
1887         // There is a special case worth handling: If there is a single group
1888         // covering the entire upper 32 bits, and it can be merged with both
1889         // the next and previous groups (which might be the same group), then
1890         // do so. If it is the same group (so there will be only one group in
1891         // total), then we need to reverse the order of the range so that it
1892         // covers the entire 64 bits.
1893         if (I->StartIdx == 32 && I->EndIdx == 63) {
1894           assert(std::next(I) == BitGroups.end() &&
1895                  "bit group ends at index 63 but there is another?");
1896           auto IN = BitGroups.begin();
1897 
1898           if (IP->Repl32 && IN->Repl32 && I->V == IP->V && I->V == IN->V &&
1899               (I->RLAmt % 32) == IP->RLAmt && (I->RLAmt % 32) == IN->RLAmt &&
1900               IP->EndIdx == 31 && IN->StartIdx == 0 && I != IP &&
1901               IsAllLow32(*I)) {
1902 
1903             LLVM_DEBUG(dbgs() << "\tcombining bit group for " << I->V.getNode()
1904                               << " RLAmt = " << I->RLAmt << " [" << I->StartIdx
1905                               << ", " << I->EndIdx
1906                               << "] with 32-bit replicated groups with ranges ["
1907                               << IP->StartIdx << ", " << IP->EndIdx << "] and ["
1908                               << IN->StartIdx << ", " << IN->EndIdx << "]\n");
1909 
1910             if (IP == IN) {
1911               // There is only one other group; change it to cover the whole
1912               // range (backward, so that it can still be Repl32 but cover the
1913               // whole 64-bit range).
1914               IP->StartIdx = 31;
1915               IP->EndIdx = 30;
1916               IP->Repl32CR = IP->Repl32CR || I->RLAmt >= 32;
1917               IP->Repl32Coalesced = true;
1918               I = BitGroups.erase(I);
1919             } else {
1920               // There are two separate groups, one before this group and one
1921               // after us (at the beginning). We're going to remove this group,
1922               // but also the group at the very beginning.
1923               IP->EndIdx = IN->EndIdx;
1924               IP->Repl32CR = IP->Repl32CR || IN->Repl32CR || I->RLAmt >= 32;
1925               IP->Repl32Coalesced = true;
1926               I = BitGroups.erase(I);
1927               BitGroups.erase(BitGroups.begin());
1928             }
1929 
1930             // This must be the last group in the vector (and we might have
1931             // just invalidated the iterator above), so break here.
1932             break;
1933           }
1934         }
1935       }
1936 
1937       ++I;
1938     }
1939   }
1940 
getI32Imm(unsigned Imm,const SDLoc & dl)1941   SDValue getI32Imm(unsigned Imm, const SDLoc &dl) {
1942     return CurDAG->getTargetConstant(Imm, dl, MVT::i32);
1943   }
1944 
getZerosMask()1945   uint64_t getZerosMask() {
1946     uint64_t Mask = 0;
1947     for (unsigned i = 0; i < Bits.size(); ++i) {
1948       if (Bits[i].hasValue())
1949         continue;
1950       Mask |= (UINT64_C(1) << i);
1951     }
1952 
1953     return ~Mask;
1954   }
1955 
1956   // This method extends an input value to 64 bit if input is 32-bit integer.
1957   // While selecting instructions in BitPermutationSelector in 64-bit mode,
1958   // an input value can be a 32-bit integer if a ZERO_EXTEND node is included.
1959   // In such case, we extend it to 64 bit to be consistent with other values.
ExtendToInt64(SDValue V,const SDLoc & dl)1960   SDValue ExtendToInt64(SDValue V, const SDLoc &dl) {
1961     if (V.getValueSizeInBits() == 64)
1962       return V;
1963 
1964     assert(V.getValueSizeInBits() == 32);
1965     SDValue SubRegIdx = CurDAG->getTargetConstant(PPC::sub_32, dl, MVT::i32);
1966     SDValue ImDef = SDValue(CurDAG->getMachineNode(PPC::IMPLICIT_DEF, dl,
1967                                                    MVT::i64), 0);
1968     SDValue ExtVal = SDValue(CurDAG->getMachineNode(PPC::INSERT_SUBREG, dl,
1969                                                     MVT::i64, ImDef, V,
1970                                                     SubRegIdx), 0);
1971     return ExtVal;
1972   }
1973 
TruncateToInt32(SDValue V,const SDLoc & dl)1974   SDValue TruncateToInt32(SDValue V, const SDLoc &dl) {
1975     if (V.getValueSizeInBits() == 32)
1976       return V;
1977 
1978     assert(V.getValueSizeInBits() == 64);
1979     SDValue SubRegIdx = CurDAG->getTargetConstant(PPC::sub_32, dl, MVT::i32);
1980     SDValue SubVal = SDValue(CurDAG->getMachineNode(PPC::EXTRACT_SUBREG, dl,
1981                                                     MVT::i32, V, SubRegIdx), 0);
1982     return SubVal;
1983   }
1984 
1985   // Depending on the number of groups for a particular value, it might be
1986   // better to rotate, mask explicitly (using andi/andis), and then or the
1987   // result. Select this part of the result first.
SelectAndParts32(const SDLoc & dl,SDValue & Res,unsigned * InstCnt)1988   void SelectAndParts32(const SDLoc &dl, SDValue &Res, unsigned *InstCnt) {
1989     if (BPermRewriterNoMasking)
1990       return;
1991 
1992     for (ValueRotInfo &VRI : ValueRotsVec) {
1993       unsigned Mask = 0;
1994       for (unsigned i = 0; i < Bits.size(); ++i) {
1995         if (!Bits[i].hasValue() || Bits[i].getValue() != VRI.V)
1996           continue;
1997         if (RLAmt[i] != VRI.RLAmt)
1998           continue;
1999         Mask |= (1u << i);
2000       }
2001 
2002       // Compute the masks for andi/andis that would be necessary.
2003       unsigned ANDIMask = (Mask & UINT16_MAX), ANDISMask = Mask >> 16;
2004       assert((ANDIMask != 0 || ANDISMask != 0) &&
2005              "No set bits in mask for value bit groups");
2006       bool NeedsRotate = VRI.RLAmt != 0;
2007 
2008       // We're trying to minimize the number of instructions. If we have one
2009       // group, using one of andi/andis can break even.  If we have three
2010       // groups, we can use both andi and andis and break even (to use both
2011       // andi and andis we also need to or the results together). We need four
2012       // groups if we also need to rotate. To use andi/andis we need to do more
2013       // than break even because rotate-and-mask instructions tend to be easier
2014       // to schedule.
2015 
2016       // FIXME: We've biased here against using andi/andis, which is right for
2017       // POWER cores, but not optimal everywhere. For example, on the A2,
2018       // andi/andis have single-cycle latency whereas the rotate-and-mask
2019       // instructions take two cycles, and it would be better to bias toward
2020       // andi/andis in break-even cases.
2021 
2022       unsigned NumAndInsts = (unsigned) NeedsRotate +
2023                              (unsigned) (ANDIMask != 0) +
2024                              (unsigned) (ANDISMask != 0) +
2025                              (unsigned) (ANDIMask != 0 && ANDISMask != 0) +
2026                              (unsigned) (bool) Res;
2027 
2028       LLVM_DEBUG(dbgs() << "\t\trotation groups for " << VRI.V.getNode()
2029                         << " RL: " << VRI.RLAmt << ":"
2030                         << "\n\t\t\tisel using masking: " << NumAndInsts
2031                         << " using rotates: " << VRI.NumGroups << "\n");
2032 
2033       if (NumAndInsts >= VRI.NumGroups)
2034         continue;
2035 
2036       LLVM_DEBUG(dbgs() << "\t\t\t\tusing masking\n");
2037 
2038       if (InstCnt) *InstCnt += NumAndInsts;
2039 
2040       SDValue VRot;
2041       if (VRI.RLAmt) {
2042         SDValue Ops[] =
2043           { TruncateToInt32(VRI.V, dl), getI32Imm(VRI.RLAmt, dl),
2044             getI32Imm(0, dl), getI32Imm(31, dl) };
2045         VRot = SDValue(CurDAG->getMachineNode(PPC::RLWINM, dl, MVT::i32,
2046                                               Ops), 0);
2047       } else {
2048         VRot = TruncateToInt32(VRI.V, dl);
2049       }
2050 
2051       SDValue ANDIVal, ANDISVal;
2052       if (ANDIMask != 0)
2053         ANDIVal = SDValue(CurDAG->getMachineNode(PPC::ANDI_rec, dl, MVT::i32,
2054                                                  VRot, getI32Imm(ANDIMask, dl)),
2055                           0);
2056       if (ANDISMask != 0)
2057         ANDISVal =
2058             SDValue(CurDAG->getMachineNode(PPC::ANDIS_rec, dl, MVT::i32, VRot,
2059                                            getI32Imm(ANDISMask, dl)),
2060                     0);
2061 
2062       SDValue TotalVal;
2063       if (!ANDIVal)
2064         TotalVal = ANDISVal;
2065       else if (!ANDISVal)
2066         TotalVal = ANDIVal;
2067       else
2068         TotalVal = SDValue(CurDAG->getMachineNode(PPC::OR, dl, MVT::i32,
2069                              ANDIVal, ANDISVal), 0);
2070 
2071       if (!Res)
2072         Res = TotalVal;
2073       else
2074         Res = SDValue(CurDAG->getMachineNode(PPC::OR, dl, MVT::i32,
2075                         Res, TotalVal), 0);
2076 
2077       // Now, remove all groups with this underlying value and rotation
2078       // factor.
2079       eraseMatchingBitGroups([VRI](const BitGroup &BG) {
2080         return BG.V == VRI.V && BG.RLAmt == VRI.RLAmt;
2081       });
2082     }
2083   }
2084 
2085   // Instruction selection for the 32-bit case.
Select32(SDNode * N,bool LateMask,unsigned * InstCnt)2086   SDNode *Select32(SDNode *N, bool LateMask, unsigned *InstCnt) {
2087     SDLoc dl(N);
2088     SDValue Res;
2089 
2090     if (InstCnt) *InstCnt = 0;
2091 
2092     // Take care of cases that should use andi/andis first.
2093     SelectAndParts32(dl, Res, InstCnt);
2094 
2095     // If we've not yet selected a 'starting' instruction, and we have no zeros
2096     // to fill in, select the (Value, RLAmt) with the highest priority (largest
2097     // number of groups), and start with this rotated value.
2098     if ((!NeedMask || LateMask) && !Res) {
2099       ValueRotInfo &VRI = ValueRotsVec[0];
2100       if (VRI.RLAmt) {
2101         if (InstCnt) *InstCnt += 1;
2102         SDValue Ops[] =
2103           { TruncateToInt32(VRI.V, dl), getI32Imm(VRI.RLAmt, dl),
2104             getI32Imm(0, dl), getI32Imm(31, dl) };
2105         Res = SDValue(CurDAG->getMachineNode(PPC::RLWINM, dl, MVT::i32, Ops),
2106                       0);
2107       } else {
2108         Res = TruncateToInt32(VRI.V, dl);
2109       }
2110 
2111       // Now, remove all groups with this underlying value and rotation factor.
2112       eraseMatchingBitGroups([VRI](const BitGroup &BG) {
2113         return BG.V == VRI.V && BG.RLAmt == VRI.RLAmt;
2114       });
2115     }
2116 
2117     if (InstCnt) *InstCnt += BitGroups.size();
2118 
2119     // Insert the other groups (one at a time).
2120     for (auto &BG : BitGroups) {
2121       if (!Res) {
2122         SDValue Ops[] =
2123           { TruncateToInt32(BG.V, dl), getI32Imm(BG.RLAmt, dl),
2124             getI32Imm(Bits.size() - BG.EndIdx - 1, dl),
2125             getI32Imm(Bits.size() - BG.StartIdx - 1, dl) };
2126         Res = SDValue(CurDAG->getMachineNode(PPC::RLWINM, dl, MVT::i32, Ops), 0);
2127       } else {
2128         SDValue Ops[] =
2129           { Res, TruncateToInt32(BG.V, dl), getI32Imm(BG.RLAmt, dl),
2130               getI32Imm(Bits.size() - BG.EndIdx - 1, dl),
2131             getI32Imm(Bits.size() - BG.StartIdx - 1, dl) };
2132         Res = SDValue(CurDAG->getMachineNode(PPC::RLWIMI, dl, MVT::i32, Ops), 0);
2133       }
2134     }
2135 
2136     if (LateMask) {
2137       unsigned Mask = (unsigned) getZerosMask();
2138 
2139       unsigned ANDIMask = (Mask & UINT16_MAX), ANDISMask = Mask >> 16;
2140       assert((ANDIMask != 0 || ANDISMask != 0) &&
2141              "No set bits in zeros mask?");
2142 
2143       if (InstCnt) *InstCnt += (unsigned) (ANDIMask != 0) +
2144                                (unsigned) (ANDISMask != 0) +
2145                                (unsigned) (ANDIMask != 0 && ANDISMask != 0);
2146 
2147       SDValue ANDIVal, ANDISVal;
2148       if (ANDIMask != 0)
2149         ANDIVal = SDValue(CurDAG->getMachineNode(PPC::ANDI_rec, dl, MVT::i32,
2150                                                  Res, getI32Imm(ANDIMask, dl)),
2151                           0);
2152       if (ANDISMask != 0)
2153         ANDISVal =
2154             SDValue(CurDAG->getMachineNode(PPC::ANDIS_rec, dl, MVT::i32, Res,
2155                                            getI32Imm(ANDISMask, dl)),
2156                     0);
2157 
2158       if (!ANDIVal)
2159         Res = ANDISVal;
2160       else if (!ANDISVal)
2161         Res = ANDIVal;
2162       else
2163         Res = SDValue(CurDAG->getMachineNode(PPC::OR, dl, MVT::i32,
2164                         ANDIVal, ANDISVal), 0);
2165     }
2166 
2167     return Res.getNode();
2168   }
2169 
SelectRotMask64Count(unsigned RLAmt,bool Repl32,unsigned MaskStart,unsigned MaskEnd,bool IsIns)2170   unsigned SelectRotMask64Count(unsigned RLAmt, bool Repl32,
2171                                 unsigned MaskStart, unsigned MaskEnd,
2172                                 bool IsIns) {
2173     // In the notation used by the instructions, 'start' and 'end' are reversed
2174     // because bits are counted from high to low order.
2175     unsigned InstMaskStart = 64 - MaskEnd - 1,
2176              InstMaskEnd   = 64 - MaskStart - 1;
2177 
2178     if (Repl32)
2179       return 1;
2180 
2181     if ((!IsIns && (InstMaskEnd == 63 || InstMaskStart == 0)) ||
2182         InstMaskEnd == 63 - RLAmt)
2183       return 1;
2184 
2185     return 2;
2186   }
2187 
2188   // For 64-bit values, not all combinations of rotates and masks are
2189   // available. Produce one if it is available.
SelectRotMask64(SDValue V,const SDLoc & dl,unsigned RLAmt,bool Repl32,unsigned MaskStart,unsigned MaskEnd,unsigned * InstCnt=nullptr)2190   SDValue SelectRotMask64(SDValue V, const SDLoc &dl, unsigned RLAmt,
2191                           bool Repl32, unsigned MaskStart, unsigned MaskEnd,
2192                           unsigned *InstCnt = nullptr) {
2193     // In the notation used by the instructions, 'start' and 'end' are reversed
2194     // because bits are counted from high to low order.
2195     unsigned InstMaskStart = 64 - MaskEnd - 1,
2196              InstMaskEnd   = 64 - MaskStart - 1;
2197 
2198     if (InstCnt) *InstCnt += 1;
2199 
2200     if (Repl32) {
2201       // This rotation amount assumes that the lower 32 bits of the quantity
2202       // are replicated in the high 32 bits by the rotation operator (which is
2203       // done by rlwinm and friends).
2204       assert(InstMaskStart >= 32 && "Mask cannot start out of range");
2205       assert(InstMaskEnd   >= 32 && "Mask cannot end out of range");
2206       SDValue Ops[] =
2207         { ExtendToInt64(V, dl), getI32Imm(RLAmt, dl),
2208           getI32Imm(InstMaskStart - 32, dl), getI32Imm(InstMaskEnd - 32, dl) };
2209       return SDValue(CurDAG->getMachineNode(PPC::RLWINM8, dl, MVT::i64,
2210                                             Ops), 0);
2211     }
2212 
2213     if (InstMaskEnd == 63) {
2214       SDValue Ops[] =
2215         { ExtendToInt64(V, dl), getI32Imm(RLAmt, dl),
2216           getI32Imm(InstMaskStart, dl) };
2217       return SDValue(CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64, Ops), 0);
2218     }
2219 
2220     if (InstMaskStart == 0) {
2221       SDValue Ops[] =
2222         { ExtendToInt64(V, dl), getI32Imm(RLAmt, dl),
2223           getI32Imm(InstMaskEnd, dl) };
2224       return SDValue(CurDAG->getMachineNode(PPC::RLDICR, dl, MVT::i64, Ops), 0);
2225     }
2226 
2227     if (InstMaskEnd == 63 - RLAmt) {
2228       SDValue Ops[] =
2229         { ExtendToInt64(V, dl), getI32Imm(RLAmt, dl),
2230           getI32Imm(InstMaskStart, dl) };
2231       return SDValue(CurDAG->getMachineNode(PPC::RLDIC, dl, MVT::i64, Ops), 0);
2232     }
2233 
2234     // We cannot do this with a single instruction, so we'll use two. The
2235     // problem is that we're not free to choose both a rotation amount and mask
2236     // start and end independently. We can choose an arbitrary mask start and
2237     // end, but then the rotation amount is fixed. Rotation, however, can be
2238     // inverted, and so by applying an "inverse" rotation first, we can get the
2239     // desired result.
2240     if (InstCnt) *InstCnt += 1;
2241 
2242     // The rotation mask for the second instruction must be MaskStart.
2243     unsigned RLAmt2 = MaskStart;
2244     // The first instruction must rotate V so that the overall rotation amount
2245     // is RLAmt.
2246     unsigned RLAmt1 = (64 + RLAmt - RLAmt2) % 64;
2247     if (RLAmt1)
2248       V = SelectRotMask64(V, dl, RLAmt1, false, 0, 63);
2249     return SelectRotMask64(V, dl, RLAmt2, false, MaskStart, MaskEnd);
2250   }
2251 
2252   // For 64-bit values, not all combinations of rotates and masks are
2253   // available. Produce a rotate-mask-and-insert if one is available.
SelectRotMaskIns64(SDValue Base,SDValue V,const SDLoc & dl,unsigned RLAmt,bool Repl32,unsigned MaskStart,unsigned MaskEnd,unsigned * InstCnt=nullptr)2254   SDValue SelectRotMaskIns64(SDValue Base, SDValue V, const SDLoc &dl,
2255                              unsigned RLAmt, bool Repl32, unsigned MaskStart,
2256                              unsigned MaskEnd, unsigned *InstCnt = nullptr) {
2257     // In the notation used by the instructions, 'start' and 'end' are reversed
2258     // because bits are counted from high to low order.
2259     unsigned InstMaskStart = 64 - MaskEnd - 1,
2260              InstMaskEnd   = 64 - MaskStart - 1;
2261 
2262     if (InstCnt) *InstCnt += 1;
2263 
2264     if (Repl32) {
2265       // This rotation amount assumes that the lower 32 bits of the quantity
2266       // are replicated in the high 32 bits by the rotation operator (which is
2267       // done by rlwinm and friends).
2268       assert(InstMaskStart >= 32 && "Mask cannot start out of range");
2269       assert(InstMaskEnd   >= 32 && "Mask cannot end out of range");
2270       SDValue Ops[] =
2271         { ExtendToInt64(Base, dl), ExtendToInt64(V, dl), getI32Imm(RLAmt, dl),
2272           getI32Imm(InstMaskStart - 32, dl), getI32Imm(InstMaskEnd - 32, dl) };
2273       return SDValue(CurDAG->getMachineNode(PPC::RLWIMI8, dl, MVT::i64,
2274                                             Ops), 0);
2275     }
2276 
2277     if (InstMaskEnd == 63 - RLAmt) {
2278       SDValue Ops[] =
2279         { ExtendToInt64(Base, dl), ExtendToInt64(V, dl), getI32Imm(RLAmt, dl),
2280           getI32Imm(InstMaskStart, dl) };
2281       return SDValue(CurDAG->getMachineNode(PPC::RLDIMI, dl, MVT::i64, Ops), 0);
2282     }
2283 
2284     // We cannot do this with a single instruction, so we'll use two. The
2285     // problem is that we're not free to choose both a rotation amount and mask
2286     // start and end independently. We can choose an arbitrary mask start and
2287     // end, but then the rotation amount is fixed. Rotation, however, can be
2288     // inverted, and so by applying an "inverse" rotation first, we can get the
2289     // desired result.
2290     if (InstCnt) *InstCnt += 1;
2291 
2292     // The rotation mask for the second instruction must be MaskStart.
2293     unsigned RLAmt2 = MaskStart;
2294     // The first instruction must rotate V so that the overall rotation amount
2295     // is RLAmt.
2296     unsigned RLAmt1 = (64 + RLAmt - RLAmt2) % 64;
2297     if (RLAmt1)
2298       V = SelectRotMask64(V, dl, RLAmt1, false, 0, 63);
2299     return SelectRotMaskIns64(Base, V, dl, RLAmt2, false, MaskStart, MaskEnd);
2300   }
2301 
SelectAndParts64(const SDLoc & dl,SDValue & Res,unsigned * InstCnt)2302   void SelectAndParts64(const SDLoc &dl, SDValue &Res, unsigned *InstCnt) {
2303     if (BPermRewriterNoMasking)
2304       return;
2305 
2306     // The idea here is the same as in the 32-bit version, but with additional
2307     // complications from the fact that Repl32 might be true. Because we
2308     // aggressively convert bit groups to Repl32 form (which, for small
2309     // rotation factors, involves no other change), and then coalesce, it might
2310     // be the case that a single 64-bit masking operation could handle both
2311     // some Repl32 groups and some non-Repl32 groups. If converting to Repl32
2312     // form allowed coalescing, then we must use a 32-bit rotaton in order to
2313     // completely capture the new combined bit group.
2314 
2315     for (ValueRotInfo &VRI : ValueRotsVec) {
2316       uint64_t Mask = 0;
2317 
2318       // We need to add to the mask all bits from the associated bit groups.
2319       // If Repl32 is false, we need to add bits from bit groups that have
2320       // Repl32 true, but are trivially convertable to Repl32 false. Such a
2321       // group is trivially convertable if it overlaps only with the lower 32
2322       // bits, and the group has not been coalesced.
2323       auto MatchingBG = [VRI](const BitGroup &BG) {
2324         if (VRI.V != BG.V)
2325           return false;
2326 
2327         unsigned EffRLAmt = BG.RLAmt;
2328         if (!VRI.Repl32 && BG.Repl32) {
2329           if (BG.StartIdx < 32 && BG.EndIdx < 32 && BG.StartIdx <= BG.EndIdx &&
2330               !BG.Repl32Coalesced) {
2331             if (BG.Repl32CR)
2332               EffRLAmt += 32;
2333           } else {
2334             return false;
2335           }
2336         } else if (VRI.Repl32 != BG.Repl32) {
2337           return false;
2338         }
2339 
2340         return VRI.RLAmt == EffRLAmt;
2341       };
2342 
2343       for (auto &BG : BitGroups) {
2344         if (!MatchingBG(BG))
2345           continue;
2346 
2347         if (BG.StartIdx <= BG.EndIdx) {
2348           for (unsigned i = BG.StartIdx; i <= BG.EndIdx; ++i)
2349             Mask |= (UINT64_C(1) << i);
2350         } else {
2351           for (unsigned i = BG.StartIdx; i < Bits.size(); ++i)
2352             Mask |= (UINT64_C(1) << i);
2353           for (unsigned i = 0; i <= BG.EndIdx; ++i)
2354             Mask |= (UINT64_C(1) << i);
2355         }
2356       }
2357 
2358       // We can use the 32-bit andi/andis technique if the mask does not
2359       // require any higher-order bits. This can save an instruction compared
2360       // to always using the general 64-bit technique.
2361       bool Use32BitInsts = isUInt<32>(Mask);
2362       // Compute the masks for andi/andis that would be necessary.
2363       unsigned ANDIMask = (Mask & UINT16_MAX),
2364                ANDISMask = (Mask >> 16) & UINT16_MAX;
2365 
2366       bool NeedsRotate = VRI.RLAmt || (VRI.Repl32 && !isUInt<32>(Mask));
2367 
2368       unsigned NumAndInsts = (unsigned) NeedsRotate +
2369                              (unsigned) (bool) Res;
2370       unsigned NumOfSelectInsts = 0;
2371       selectI64Imm(CurDAG, dl, Mask, &NumOfSelectInsts);
2372       assert(NumOfSelectInsts > 0 && "Failed to select an i64 constant.");
2373       if (Use32BitInsts)
2374         NumAndInsts += (unsigned) (ANDIMask != 0) + (unsigned) (ANDISMask != 0) +
2375                        (unsigned) (ANDIMask != 0 && ANDISMask != 0);
2376       else
2377         NumAndInsts += NumOfSelectInsts + /* and */ 1;
2378 
2379       unsigned NumRLInsts = 0;
2380       bool FirstBG = true;
2381       bool MoreBG = false;
2382       for (auto &BG : BitGroups) {
2383         if (!MatchingBG(BG)) {
2384           MoreBG = true;
2385           continue;
2386         }
2387         NumRLInsts +=
2388           SelectRotMask64Count(BG.RLAmt, BG.Repl32, BG.StartIdx, BG.EndIdx,
2389                                !FirstBG);
2390         FirstBG = false;
2391       }
2392 
2393       LLVM_DEBUG(dbgs() << "\t\trotation groups for " << VRI.V.getNode()
2394                         << " RL: " << VRI.RLAmt << (VRI.Repl32 ? " (32):" : ":")
2395                         << "\n\t\t\tisel using masking: " << NumAndInsts
2396                         << " using rotates: " << NumRLInsts << "\n");
2397 
2398       // When we'd use andi/andis, we bias toward using the rotates (andi only
2399       // has a record form, and is cracked on POWER cores). However, when using
2400       // general 64-bit constant formation, bias toward the constant form,
2401       // because that exposes more opportunities for CSE.
2402       if (NumAndInsts > NumRLInsts)
2403         continue;
2404       // When merging multiple bit groups, instruction or is used.
2405       // But when rotate is used, rldimi can inert the rotated value into any
2406       // register, so instruction or can be avoided.
2407       if ((Use32BitInsts || MoreBG) && NumAndInsts == NumRLInsts)
2408         continue;
2409 
2410       LLVM_DEBUG(dbgs() << "\t\t\t\tusing masking\n");
2411 
2412       if (InstCnt) *InstCnt += NumAndInsts;
2413 
2414       SDValue VRot;
2415       // We actually need to generate a rotation if we have a non-zero rotation
2416       // factor or, in the Repl32 case, if we care about any of the
2417       // higher-order replicated bits. In the latter case, we generate a mask
2418       // backward so that it actually includes the entire 64 bits.
2419       if (VRI.RLAmt || (VRI.Repl32 && !isUInt<32>(Mask)))
2420         VRot = SelectRotMask64(VRI.V, dl, VRI.RLAmt, VRI.Repl32,
2421                                VRI.Repl32 ? 31 : 0, VRI.Repl32 ? 30 : 63);
2422       else
2423         VRot = VRI.V;
2424 
2425       SDValue TotalVal;
2426       if (Use32BitInsts) {
2427         assert((ANDIMask != 0 || ANDISMask != 0) &&
2428                "No set bits in mask when using 32-bit ands for 64-bit value");
2429 
2430         SDValue ANDIVal, ANDISVal;
2431         if (ANDIMask != 0)
2432           ANDIVal = SDValue(CurDAG->getMachineNode(PPC::ANDI8_rec, dl, MVT::i64,
2433                                                    ExtendToInt64(VRot, dl),
2434                                                    getI32Imm(ANDIMask, dl)),
2435                             0);
2436         if (ANDISMask != 0)
2437           ANDISVal =
2438               SDValue(CurDAG->getMachineNode(PPC::ANDIS8_rec, dl, MVT::i64,
2439                                              ExtendToInt64(VRot, dl),
2440                                              getI32Imm(ANDISMask, dl)),
2441                       0);
2442 
2443         if (!ANDIVal)
2444           TotalVal = ANDISVal;
2445         else if (!ANDISVal)
2446           TotalVal = ANDIVal;
2447         else
2448           TotalVal = SDValue(CurDAG->getMachineNode(PPC::OR8, dl, MVT::i64,
2449                                ExtendToInt64(ANDIVal, dl), ANDISVal), 0);
2450       } else {
2451         TotalVal = SDValue(selectI64Imm(CurDAG, dl, Mask), 0);
2452         TotalVal =
2453           SDValue(CurDAG->getMachineNode(PPC::AND8, dl, MVT::i64,
2454                                          ExtendToInt64(VRot, dl), TotalVal),
2455                   0);
2456      }
2457 
2458       if (!Res)
2459         Res = TotalVal;
2460       else
2461         Res = SDValue(CurDAG->getMachineNode(PPC::OR8, dl, MVT::i64,
2462                                              ExtendToInt64(Res, dl), TotalVal),
2463                       0);
2464 
2465       // Now, remove all groups with this underlying value and rotation
2466       // factor.
2467       eraseMatchingBitGroups(MatchingBG);
2468     }
2469   }
2470 
2471   // Instruction selection for the 64-bit case.
Select64(SDNode * N,bool LateMask,unsigned * InstCnt)2472   SDNode *Select64(SDNode *N, bool LateMask, unsigned *InstCnt) {
2473     SDLoc dl(N);
2474     SDValue Res;
2475 
2476     if (InstCnt) *InstCnt = 0;
2477 
2478     // Take care of cases that should use andi/andis first.
2479     SelectAndParts64(dl, Res, InstCnt);
2480 
2481     // If we've not yet selected a 'starting' instruction, and we have no zeros
2482     // to fill in, select the (Value, RLAmt) with the highest priority (largest
2483     // number of groups), and start with this rotated value.
2484     if ((!NeedMask || LateMask) && !Res) {
2485       // If we have both Repl32 groups and non-Repl32 groups, the non-Repl32
2486       // groups will come first, and so the VRI representing the largest number
2487       // of groups might not be first (it might be the first Repl32 groups).
2488       unsigned MaxGroupsIdx = 0;
2489       if (!ValueRotsVec[0].Repl32) {
2490         for (unsigned i = 0, ie = ValueRotsVec.size(); i < ie; ++i)
2491           if (ValueRotsVec[i].Repl32) {
2492             if (ValueRotsVec[i].NumGroups > ValueRotsVec[0].NumGroups)
2493               MaxGroupsIdx = i;
2494             break;
2495           }
2496       }
2497 
2498       ValueRotInfo &VRI = ValueRotsVec[MaxGroupsIdx];
2499       bool NeedsRotate = false;
2500       if (VRI.RLAmt) {
2501         NeedsRotate = true;
2502       } else if (VRI.Repl32) {
2503         for (auto &BG : BitGroups) {
2504           if (BG.V != VRI.V || BG.RLAmt != VRI.RLAmt ||
2505               BG.Repl32 != VRI.Repl32)
2506             continue;
2507 
2508           // We don't need a rotate if the bit group is confined to the lower
2509           // 32 bits.
2510           if (BG.StartIdx < 32 && BG.EndIdx < 32 && BG.StartIdx < BG.EndIdx)
2511             continue;
2512 
2513           NeedsRotate = true;
2514           break;
2515         }
2516       }
2517 
2518       if (NeedsRotate)
2519         Res = SelectRotMask64(VRI.V, dl, VRI.RLAmt, VRI.Repl32,
2520                               VRI.Repl32 ? 31 : 0, VRI.Repl32 ? 30 : 63,
2521                               InstCnt);
2522       else
2523         Res = VRI.V;
2524 
2525       // Now, remove all groups with this underlying value and rotation factor.
2526       if (Res)
2527         eraseMatchingBitGroups([VRI](const BitGroup &BG) {
2528           return BG.V == VRI.V && BG.RLAmt == VRI.RLAmt &&
2529                  BG.Repl32 == VRI.Repl32;
2530         });
2531     }
2532 
2533     // Because 64-bit rotates are more flexible than inserts, we might have a
2534     // preference regarding which one we do first (to save one instruction).
2535     if (!Res)
2536       for (auto I = BitGroups.begin(), IE = BitGroups.end(); I != IE; ++I) {
2537         if (SelectRotMask64Count(I->RLAmt, I->Repl32, I->StartIdx, I->EndIdx,
2538                                 false) <
2539             SelectRotMask64Count(I->RLAmt, I->Repl32, I->StartIdx, I->EndIdx,
2540                                 true)) {
2541           if (I != BitGroups.begin()) {
2542             BitGroup BG = *I;
2543             BitGroups.erase(I);
2544             BitGroups.insert(BitGroups.begin(), BG);
2545           }
2546 
2547           break;
2548         }
2549       }
2550 
2551     // Insert the other groups (one at a time).
2552     for (auto &BG : BitGroups) {
2553       if (!Res)
2554         Res = SelectRotMask64(BG.V, dl, BG.RLAmt, BG.Repl32, BG.StartIdx,
2555                               BG.EndIdx, InstCnt);
2556       else
2557         Res = SelectRotMaskIns64(Res, BG.V, dl, BG.RLAmt, BG.Repl32,
2558                                  BG.StartIdx, BG.EndIdx, InstCnt);
2559     }
2560 
2561     if (LateMask) {
2562       uint64_t Mask = getZerosMask();
2563 
2564       // We can use the 32-bit andi/andis technique if the mask does not
2565       // require any higher-order bits. This can save an instruction compared
2566       // to always using the general 64-bit technique.
2567       bool Use32BitInsts = isUInt<32>(Mask);
2568       // Compute the masks for andi/andis that would be necessary.
2569       unsigned ANDIMask = (Mask & UINT16_MAX),
2570                ANDISMask = (Mask >> 16) & UINT16_MAX;
2571 
2572       if (Use32BitInsts) {
2573         assert((ANDIMask != 0 || ANDISMask != 0) &&
2574                "No set bits in mask when using 32-bit ands for 64-bit value");
2575 
2576         if (InstCnt) *InstCnt += (unsigned) (ANDIMask != 0) +
2577                                  (unsigned) (ANDISMask != 0) +
2578                                  (unsigned) (ANDIMask != 0 && ANDISMask != 0);
2579 
2580         SDValue ANDIVal, ANDISVal;
2581         if (ANDIMask != 0)
2582           ANDIVal = SDValue(CurDAG->getMachineNode(PPC::ANDI8_rec, dl, MVT::i64,
2583                                                    ExtendToInt64(Res, dl),
2584                                                    getI32Imm(ANDIMask, dl)),
2585                             0);
2586         if (ANDISMask != 0)
2587           ANDISVal =
2588               SDValue(CurDAG->getMachineNode(PPC::ANDIS8_rec, dl, MVT::i64,
2589                                              ExtendToInt64(Res, dl),
2590                                              getI32Imm(ANDISMask, dl)),
2591                       0);
2592 
2593         if (!ANDIVal)
2594           Res = ANDISVal;
2595         else if (!ANDISVal)
2596           Res = ANDIVal;
2597         else
2598           Res = SDValue(CurDAG->getMachineNode(PPC::OR8, dl, MVT::i64,
2599                           ExtendToInt64(ANDIVal, dl), ANDISVal), 0);
2600       } else {
2601         unsigned NumOfSelectInsts = 0;
2602         SDValue MaskVal =
2603             SDValue(selectI64Imm(CurDAG, dl, Mask, &NumOfSelectInsts), 0);
2604         Res = SDValue(CurDAG->getMachineNode(PPC::AND8, dl, MVT::i64,
2605                                              ExtendToInt64(Res, dl), MaskVal),
2606                       0);
2607         if (InstCnt)
2608           *InstCnt += NumOfSelectInsts + /* and */ 1;
2609       }
2610     }
2611 
2612     return Res.getNode();
2613   }
2614 
Select(SDNode * N,bool LateMask,unsigned * InstCnt=nullptr)2615   SDNode *Select(SDNode *N, bool LateMask, unsigned *InstCnt = nullptr) {
2616     // Fill in BitGroups.
2617     collectBitGroups(LateMask);
2618     if (BitGroups.empty())
2619       return nullptr;
2620 
2621     // For 64-bit values, figure out when we can use 32-bit instructions.
2622     if (Bits.size() == 64)
2623       assignRepl32BitGroups();
2624 
2625     // Fill in ValueRotsVec.
2626     collectValueRotInfo();
2627 
2628     if (Bits.size() == 32) {
2629       return Select32(N, LateMask, InstCnt);
2630     } else {
2631       assert(Bits.size() == 64 && "Not 64 bits here?");
2632       return Select64(N, LateMask, InstCnt);
2633     }
2634 
2635     return nullptr;
2636   }
2637 
eraseMatchingBitGroups(function_ref<bool (const BitGroup &)> F)2638   void eraseMatchingBitGroups(function_ref<bool(const BitGroup &)> F) {
2639     erase_if(BitGroups, F);
2640   }
2641 
2642   SmallVector<ValueBit, 64> Bits;
2643 
2644   bool NeedMask = false;
2645   SmallVector<unsigned, 64> RLAmt;
2646 
2647   SmallVector<BitGroup, 16> BitGroups;
2648 
2649   DenseMap<std::pair<SDValue, unsigned>, ValueRotInfo> ValueRots;
2650   SmallVector<ValueRotInfo, 16> ValueRotsVec;
2651 
2652   SelectionDAG *CurDAG = nullptr;
2653 
2654 public:
BitPermutationSelector(SelectionDAG * DAG)2655   BitPermutationSelector(SelectionDAG *DAG)
2656     : CurDAG(DAG) {}
2657 
2658   // Here we try to match complex bit permutations into a set of
2659   // rotate-and-shift/shift/and/or instructions, using a set of heuristics
2660   // known to produce optimal code for common cases (like i32 byte swapping).
Select(SDNode * N)2661   SDNode *Select(SDNode *N) {
2662     Memoizer.clear();
2663     auto Result =
2664         getValueBits(SDValue(N, 0), N->getValueType(0).getSizeInBits());
2665     if (!Result.first)
2666       return nullptr;
2667     Bits = std::move(*Result.second);
2668 
2669     LLVM_DEBUG(dbgs() << "Considering bit-permutation-based instruction"
2670                          " selection for:    ");
2671     LLVM_DEBUG(N->dump(CurDAG));
2672 
2673     // Fill it RLAmt and set NeedMask.
2674     computeRotationAmounts();
2675 
2676     if (!NeedMask)
2677       return Select(N, false);
2678 
2679     // We currently have two techniques for handling results with zeros: early
2680     // masking (the default) and late masking. Late masking is sometimes more
2681     // efficient, but because the structure of the bit groups is different, it
2682     // is hard to tell without generating both and comparing the results. With
2683     // late masking, we ignore zeros in the resulting value when inserting each
2684     // set of bit groups, and then mask in the zeros at the end. With early
2685     // masking, we only insert the non-zero parts of the result at every step.
2686 
2687     unsigned InstCnt = 0, InstCntLateMask = 0;
2688     LLVM_DEBUG(dbgs() << "\tEarly masking:\n");
2689     SDNode *RN = Select(N, false, &InstCnt);
2690     LLVM_DEBUG(dbgs() << "\t\tisel would use " << InstCnt << " instructions\n");
2691 
2692     LLVM_DEBUG(dbgs() << "\tLate masking:\n");
2693     SDNode *RNLM = Select(N, true, &InstCntLateMask);
2694     LLVM_DEBUG(dbgs() << "\t\tisel would use " << InstCntLateMask
2695                       << " instructions\n");
2696 
2697     if (InstCnt <= InstCntLateMask) {
2698       LLVM_DEBUG(dbgs() << "\tUsing early-masking for isel\n");
2699       return RN;
2700     }
2701 
2702     LLVM_DEBUG(dbgs() << "\tUsing late-masking for isel\n");
2703     return RNLM;
2704   }
2705 };
2706 
2707 class IntegerCompareEliminator {
2708   SelectionDAG *CurDAG;
2709   PPCDAGToDAGISel *S;
2710   // Conversion type for interpreting results of a 32-bit instruction as
2711   // a 64-bit value or vice versa.
2712   enum ExtOrTruncConversion { Ext, Trunc };
2713 
2714   // Modifiers to guide how an ISD::SETCC node's result is to be computed
2715   // in a GPR.
2716   // ZExtOrig - use the original condition code, zero-extend value
2717   // ZExtInvert - invert the condition code, zero-extend value
2718   // SExtOrig - use the original condition code, sign-extend value
2719   // SExtInvert - invert the condition code, sign-extend value
2720   enum SetccInGPROpts { ZExtOrig, ZExtInvert, SExtOrig, SExtInvert };
2721 
2722   // Comparisons against zero to emit GPR code sequences for. Each of these
2723   // sequences may need to be emitted for two or more equivalent patterns.
2724   // For example (a >= 0) == (a > -1). The direction of the comparison (</>)
2725   // matters as well as the extension type: sext (-1/0), zext (1/0).
2726   // GEZExt - (zext (LHS >= 0))
2727   // GESExt - (sext (LHS >= 0))
2728   // LEZExt - (zext (LHS <= 0))
2729   // LESExt - (sext (LHS <= 0))
2730   enum ZeroCompare { GEZExt, GESExt, LEZExt, LESExt };
2731 
2732   SDNode *tryEXTEND(SDNode *N);
2733   SDNode *tryLogicOpOfCompares(SDNode *N);
2734   SDValue computeLogicOpInGPR(SDValue LogicOp);
2735   SDValue signExtendInputIfNeeded(SDValue Input);
2736   SDValue zeroExtendInputIfNeeded(SDValue Input);
2737   SDValue addExtOrTrunc(SDValue NatWidthRes, ExtOrTruncConversion Conv);
2738   SDValue getCompoundZeroComparisonInGPR(SDValue LHS, SDLoc dl,
2739                                         ZeroCompare CmpTy);
2740   SDValue get32BitZExtCompare(SDValue LHS, SDValue RHS, ISD::CondCode CC,
2741                               int64_t RHSValue, SDLoc dl);
2742  SDValue get32BitSExtCompare(SDValue LHS, SDValue RHS, ISD::CondCode CC,
2743                               int64_t RHSValue, SDLoc dl);
2744   SDValue get64BitZExtCompare(SDValue LHS, SDValue RHS, ISD::CondCode CC,
2745                               int64_t RHSValue, SDLoc dl);
2746   SDValue get64BitSExtCompare(SDValue LHS, SDValue RHS, ISD::CondCode CC,
2747                               int64_t RHSValue, SDLoc dl);
2748   SDValue getSETCCInGPR(SDValue Compare, SetccInGPROpts ConvOpts);
2749 
2750 public:
IntegerCompareEliminator(SelectionDAG * DAG,PPCDAGToDAGISel * Sel)2751   IntegerCompareEliminator(SelectionDAG *DAG,
2752                            PPCDAGToDAGISel *Sel) : CurDAG(DAG), S(Sel) {
2753     assert(CurDAG->getTargetLoweringInfo()
2754            .getPointerTy(CurDAG->getDataLayout()).getSizeInBits() == 64 &&
2755            "Only expecting to use this on 64 bit targets.");
2756   }
Select(SDNode * N)2757   SDNode *Select(SDNode *N) {
2758     if (CmpInGPR == ICGPR_None)
2759       return nullptr;
2760     switch (N->getOpcode()) {
2761     default: break;
2762     case ISD::ZERO_EXTEND:
2763       if (CmpInGPR == ICGPR_Sext || CmpInGPR == ICGPR_SextI32 ||
2764           CmpInGPR == ICGPR_SextI64)
2765         return nullptr;
2766       LLVM_FALLTHROUGH;
2767     case ISD::SIGN_EXTEND:
2768       if (CmpInGPR == ICGPR_Zext || CmpInGPR == ICGPR_ZextI32 ||
2769           CmpInGPR == ICGPR_ZextI64)
2770         return nullptr;
2771       return tryEXTEND(N);
2772     case ISD::AND:
2773     case ISD::OR:
2774     case ISD::XOR:
2775       return tryLogicOpOfCompares(N);
2776     }
2777     return nullptr;
2778   }
2779 };
2780 
isLogicOp(unsigned Opc)2781 static bool isLogicOp(unsigned Opc) {
2782   return Opc == ISD::AND || Opc == ISD::OR || Opc == ISD::XOR;
2783 }
2784 // The obvious case for wanting to keep the value in a GPR. Namely, the
2785 // result of the comparison is actually needed in a GPR.
tryEXTEND(SDNode * N)2786 SDNode *IntegerCompareEliminator::tryEXTEND(SDNode *N) {
2787   assert((N->getOpcode() == ISD::ZERO_EXTEND ||
2788           N->getOpcode() == ISD::SIGN_EXTEND) &&
2789          "Expecting a zero/sign extend node!");
2790   SDValue WideRes;
2791   // If we are zero-extending the result of a logical operation on i1
2792   // values, we can keep the values in GPRs.
2793   if (isLogicOp(N->getOperand(0).getOpcode()) &&
2794       N->getOperand(0).getValueType() == MVT::i1 &&
2795       N->getOpcode() == ISD::ZERO_EXTEND)
2796     WideRes = computeLogicOpInGPR(N->getOperand(0));
2797   else if (N->getOperand(0).getOpcode() != ISD::SETCC)
2798     return nullptr;
2799   else
2800     WideRes =
2801       getSETCCInGPR(N->getOperand(0),
2802                     N->getOpcode() == ISD::SIGN_EXTEND ?
2803                     SetccInGPROpts::SExtOrig : SetccInGPROpts::ZExtOrig);
2804 
2805   if (!WideRes)
2806     return nullptr;
2807 
2808   SDLoc dl(N);
2809   bool Input32Bit = WideRes.getValueType() == MVT::i32;
2810   bool Output32Bit = N->getValueType(0) == MVT::i32;
2811 
2812   NumSextSetcc += N->getOpcode() == ISD::SIGN_EXTEND ? 1 : 0;
2813   NumZextSetcc += N->getOpcode() == ISD::SIGN_EXTEND ? 0 : 1;
2814 
2815   SDValue ConvOp = WideRes;
2816   if (Input32Bit != Output32Bit)
2817     ConvOp = addExtOrTrunc(WideRes, Input32Bit ? ExtOrTruncConversion::Ext :
2818                            ExtOrTruncConversion::Trunc);
2819   return ConvOp.getNode();
2820 }
2821 
2822 // Attempt to perform logical operations on the results of comparisons while
2823 // keeping the values in GPRs. Without doing so, these would end up being
2824 // lowered to CR-logical operations which suffer from significant latency and
2825 // low ILP.
tryLogicOpOfCompares(SDNode * N)2826 SDNode *IntegerCompareEliminator::tryLogicOpOfCompares(SDNode *N) {
2827   if (N->getValueType(0) != MVT::i1)
2828     return nullptr;
2829   assert(isLogicOp(N->getOpcode()) &&
2830          "Expected a logic operation on setcc results.");
2831   SDValue LoweredLogical = computeLogicOpInGPR(SDValue(N, 0));
2832   if (!LoweredLogical)
2833     return nullptr;
2834 
2835   SDLoc dl(N);
2836   bool IsBitwiseNegate = LoweredLogical.getMachineOpcode() == PPC::XORI8;
2837   unsigned SubRegToExtract = IsBitwiseNegate ? PPC::sub_eq : PPC::sub_gt;
2838   SDValue CR0Reg = CurDAG->getRegister(PPC::CR0, MVT::i32);
2839   SDValue LHS = LoweredLogical.getOperand(0);
2840   SDValue RHS = LoweredLogical.getOperand(1);
2841   SDValue WideOp;
2842   SDValue OpToConvToRecForm;
2843 
2844   // Look through any 32-bit to 64-bit implicit extend nodes to find the
2845   // opcode that is input to the XORI.
2846   if (IsBitwiseNegate &&
2847       LoweredLogical.getOperand(0).getMachineOpcode() == PPC::INSERT_SUBREG)
2848     OpToConvToRecForm = LoweredLogical.getOperand(0).getOperand(1);
2849   else if (IsBitwiseNegate)
2850     // If the input to the XORI isn't an extension, that's what we're after.
2851     OpToConvToRecForm = LoweredLogical.getOperand(0);
2852   else
2853     // If this is not an XORI, it is a reg-reg logical op and we can convert
2854     // it to record-form.
2855     OpToConvToRecForm = LoweredLogical;
2856 
2857   // Get the record-form version of the node we're looking to use to get the
2858   // CR result from.
2859   uint16_t NonRecOpc = OpToConvToRecForm.getMachineOpcode();
2860   int NewOpc = PPCInstrInfo::getRecordFormOpcode(NonRecOpc);
2861 
2862   // Convert the right node to record-form. This is either the logical we're
2863   // looking at or it is the input node to the negation (if we're looking at
2864   // a bitwise negation).
2865   if (NewOpc != -1 && IsBitwiseNegate) {
2866     // The input to the XORI has a record-form. Use it.
2867     assert(LoweredLogical.getConstantOperandVal(1) == 1 &&
2868            "Expected a PPC::XORI8 only for bitwise negation.");
2869     // Emit the record-form instruction.
2870     std::vector<SDValue> Ops;
2871     for (int i = 0, e = OpToConvToRecForm.getNumOperands(); i < e; i++)
2872       Ops.push_back(OpToConvToRecForm.getOperand(i));
2873 
2874     WideOp =
2875       SDValue(CurDAG->getMachineNode(NewOpc, dl,
2876                                      OpToConvToRecForm.getValueType(),
2877                                      MVT::Glue, Ops), 0);
2878   } else {
2879     assert((NewOpc != -1 || !IsBitwiseNegate) &&
2880            "No record form available for AND8/OR8/XOR8?");
2881     WideOp =
2882         SDValue(CurDAG->getMachineNode(NewOpc == -1 ? PPC::ANDI8_rec : NewOpc,
2883                                        dl, MVT::i64, MVT::Glue, LHS, RHS),
2884                 0);
2885   }
2886 
2887   // Select this node to a single bit from CR0 set by the record-form node
2888   // just created. For bitwise negation, use the EQ bit which is the equivalent
2889   // of negating the result (i.e. it is a bit set when the result of the
2890   // operation is zero).
2891   SDValue SRIdxVal =
2892     CurDAG->getTargetConstant(SubRegToExtract, dl, MVT::i32);
2893   SDValue CRBit =
2894     SDValue(CurDAG->getMachineNode(TargetOpcode::EXTRACT_SUBREG, dl,
2895                                    MVT::i1, CR0Reg, SRIdxVal,
2896                                    WideOp.getValue(1)), 0);
2897   return CRBit.getNode();
2898 }
2899 
2900 // Lower a logical operation on i1 values into a GPR sequence if possible.
2901 // The result can be kept in a GPR if requested.
2902 // Three types of inputs can be handled:
2903 // - SETCC
2904 // - TRUNCATE
2905 // - Logical operation (AND/OR/XOR)
2906 // There is also a special case that is handled (namely a complement operation
2907 // achieved with xor %a, -1).
computeLogicOpInGPR(SDValue LogicOp)2908 SDValue IntegerCompareEliminator::computeLogicOpInGPR(SDValue LogicOp) {
2909   assert(isLogicOp(LogicOp.getOpcode()) &&
2910         "Can only handle logic operations here.");
2911   assert(LogicOp.getValueType() == MVT::i1 &&
2912          "Can only handle logic operations on i1 values here.");
2913   SDLoc dl(LogicOp);
2914   SDValue LHS, RHS;
2915 
2916  // Special case: xor %a, -1
2917   bool IsBitwiseNegation = isBitwiseNot(LogicOp);
2918 
2919   // Produces a GPR sequence for each operand of the binary logic operation.
2920   // For SETCC, it produces the respective comparison, for TRUNCATE it truncates
2921   // the value in a GPR and for logic operations, it will recursively produce
2922   // a GPR sequence for the operation.
2923  auto getLogicOperand = [&] (SDValue Operand) -> SDValue {
2924     unsigned OperandOpcode = Operand.getOpcode();
2925     if (OperandOpcode == ISD::SETCC)
2926       return getSETCCInGPR(Operand, SetccInGPROpts::ZExtOrig);
2927     else if (OperandOpcode == ISD::TRUNCATE) {
2928       SDValue InputOp = Operand.getOperand(0);
2929      EVT InVT = InputOp.getValueType();
2930       return SDValue(CurDAG->getMachineNode(InVT == MVT::i32 ? PPC::RLDICL_32 :
2931                                             PPC::RLDICL, dl, InVT, InputOp,
2932                                             S->getI64Imm(0, dl),
2933                                             S->getI64Imm(63, dl)), 0);
2934     } else if (isLogicOp(OperandOpcode))
2935       return computeLogicOpInGPR(Operand);
2936     return SDValue();
2937   };
2938   LHS = getLogicOperand(LogicOp.getOperand(0));
2939   RHS = getLogicOperand(LogicOp.getOperand(1));
2940 
2941   // If a GPR sequence can't be produced for the LHS we can't proceed.
2942   // Not producing a GPR sequence for the RHS is only a problem if this isn't
2943   // a bitwise negation operation.
2944   if (!LHS || (!RHS && !IsBitwiseNegation))
2945     return SDValue();
2946 
2947   NumLogicOpsOnComparison++;
2948 
2949   // We will use the inputs as 64-bit values.
2950   if (LHS.getValueType() == MVT::i32)
2951     LHS = addExtOrTrunc(LHS, ExtOrTruncConversion::Ext);
2952   if (!IsBitwiseNegation && RHS.getValueType() == MVT::i32)
2953     RHS = addExtOrTrunc(RHS, ExtOrTruncConversion::Ext);
2954 
2955   unsigned NewOpc;
2956   switch (LogicOp.getOpcode()) {
2957   default: llvm_unreachable("Unknown logic operation.");
2958   case ISD::AND: NewOpc = PPC::AND8; break;
2959   case ISD::OR:  NewOpc = PPC::OR8;  break;
2960   case ISD::XOR: NewOpc = PPC::XOR8; break;
2961   }
2962 
2963   if (IsBitwiseNegation) {
2964     RHS = S->getI64Imm(1, dl);
2965     NewOpc = PPC::XORI8;
2966   }
2967 
2968   return SDValue(CurDAG->getMachineNode(NewOpc, dl, MVT::i64, LHS, RHS), 0);
2969 
2970 }
2971 
2972 /// If the value isn't guaranteed to be sign-extended to 64-bits, extend it.
2973 /// Otherwise just reinterpret it as a 64-bit value.
2974 /// Useful when emitting comparison code for 32-bit values without using
2975 /// the compare instruction (which only considers the lower 32-bits).
signExtendInputIfNeeded(SDValue Input)2976 SDValue IntegerCompareEliminator::signExtendInputIfNeeded(SDValue Input) {
2977   assert(Input.getValueType() == MVT::i32 &&
2978          "Can only sign-extend 32-bit values here.");
2979   unsigned Opc = Input.getOpcode();
2980 
2981   // The value was sign extended and then truncated to 32-bits. No need to
2982   // sign extend it again.
2983   if (Opc == ISD::TRUNCATE &&
2984       (Input.getOperand(0).getOpcode() == ISD::AssertSext ||
2985        Input.getOperand(0).getOpcode() == ISD::SIGN_EXTEND))
2986     return addExtOrTrunc(Input, ExtOrTruncConversion::Ext);
2987 
2988   LoadSDNode *InputLoad = dyn_cast<LoadSDNode>(Input);
2989   // The input is a sign-extending load. All ppc sign-extending loads
2990   // sign-extend to the full 64-bits.
2991   if (InputLoad && InputLoad->getExtensionType() == ISD::SEXTLOAD)
2992     return addExtOrTrunc(Input, ExtOrTruncConversion::Ext);
2993 
2994   ConstantSDNode *InputConst = dyn_cast<ConstantSDNode>(Input);
2995   // We don't sign-extend constants.
2996   if (InputConst)
2997     return addExtOrTrunc(Input, ExtOrTruncConversion::Ext);
2998 
2999   SDLoc dl(Input);
3000   SignExtensionsAdded++;
3001   return SDValue(CurDAG->getMachineNode(PPC::EXTSW_32_64, dl,
3002                                         MVT::i64, Input), 0);
3003 }
3004 
3005 /// If the value isn't guaranteed to be zero-extended to 64-bits, extend it.
3006 /// Otherwise just reinterpret it as a 64-bit value.
3007 /// Useful when emitting comparison code for 32-bit values without using
3008 /// the compare instruction (which only considers the lower 32-bits).
zeroExtendInputIfNeeded(SDValue Input)3009 SDValue IntegerCompareEliminator::zeroExtendInputIfNeeded(SDValue Input) {
3010   assert(Input.getValueType() == MVT::i32 &&
3011          "Can only zero-extend 32-bit values here.");
3012   unsigned Opc = Input.getOpcode();
3013 
3014   // The only condition under which we can omit the actual extend instruction:
3015   // - The value is a positive constant
3016   // - The value comes from a load that isn't a sign-extending load
3017   // An ISD::TRUNCATE needs to be zero-extended unless it is fed by a zext.
3018   bool IsTruncateOfZExt = Opc == ISD::TRUNCATE &&
3019     (Input.getOperand(0).getOpcode() == ISD::AssertZext ||
3020      Input.getOperand(0).getOpcode() == ISD::ZERO_EXTEND);
3021   if (IsTruncateOfZExt)
3022     return addExtOrTrunc(Input, ExtOrTruncConversion::Ext);
3023 
3024   ConstantSDNode *InputConst = dyn_cast<ConstantSDNode>(Input);
3025   if (InputConst && InputConst->getSExtValue() >= 0)
3026     return addExtOrTrunc(Input, ExtOrTruncConversion::Ext);
3027 
3028   LoadSDNode *InputLoad = dyn_cast<LoadSDNode>(Input);
3029   // The input is a load that doesn't sign-extend (it will be zero-extended).
3030   if (InputLoad && InputLoad->getExtensionType() != ISD::SEXTLOAD)
3031     return addExtOrTrunc(Input, ExtOrTruncConversion::Ext);
3032 
3033   // None of the above, need to zero-extend.
3034   SDLoc dl(Input);
3035   ZeroExtensionsAdded++;
3036   return SDValue(CurDAG->getMachineNode(PPC::RLDICL_32_64, dl, MVT::i64, Input,
3037                                         S->getI64Imm(0, dl),
3038                                         S->getI64Imm(32, dl)), 0);
3039 }
3040 
3041 // Handle a 32-bit value in a 64-bit register and vice-versa. These are of
3042 // course not actual zero/sign extensions that will generate machine code,
3043 // they're just a way to reinterpret a 32 bit value in a register as a
3044 // 64 bit value and vice-versa.
addExtOrTrunc(SDValue NatWidthRes,ExtOrTruncConversion Conv)3045 SDValue IntegerCompareEliminator::addExtOrTrunc(SDValue NatWidthRes,
3046                                                 ExtOrTruncConversion Conv) {
3047   SDLoc dl(NatWidthRes);
3048 
3049   // For reinterpreting 32-bit values as 64 bit values, we generate
3050   // INSERT_SUBREG IMPLICIT_DEF:i64, <input>, TargetConstant:i32<1>
3051   if (Conv == ExtOrTruncConversion::Ext) {
3052     SDValue ImDef(CurDAG->getMachineNode(PPC::IMPLICIT_DEF, dl, MVT::i64), 0);
3053     SDValue SubRegIdx =
3054       CurDAG->getTargetConstant(PPC::sub_32, dl, MVT::i32);
3055     return SDValue(CurDAG->getMachineNode(PPC::INSERT_SUBREG, dl, MVT::i64,
3056                                           ImDef, NatWidthRes, SubRegIdx), 0);
3057   }
3058 
3059   assert(Conv == ExtOrTruncConversion::Trunc &&
3060          "Unknown convertion between 32 and 64 bit values.");
3061   // For reinterpreting 64-bit values as 32-bit values, we just need to
3062   // EXTRACT_SUBREG (i.e. extract the low word).
3063   SDValue SubRegIdx =
3064     CurDAG->getTargetConstant(PPC::sub_32, dl, MVT::i32);
3065   return SDValue(CurDAG->getMachineNode(PPC::EXTRACT_SUBREG, dl, MVT::i32,
3066                                         NatWidthRes, SubRegIdx), 0);
3067 }
3068 
3069 // Produce a GPR sequence for compound comparisons (<=, >=) against zero.
3070 // Handle both zero-extensions and sign-extensions.
3071 SDValue
getCompoundZeroComparisonInGPR(SDValue LHS,SDLoc dl,ZeroCompare CmpTy)3072 IntegerCompareEliminator::getCompoundZeroComparisonInGPR(SDValue LHS, SDLoc dl,
3073                                                          ZeroCompare CmpTy) {
3074   EVT InVT = LHS.getValueType();
3075   bool Is32Bit = InVT == MVT::i32;
3076   SDValue ToExtend;
3077 
3078   // Produce the value that needs to be either zero or sign extended.
3079   switch (CmpTy) {
3080   case ZeroCompare::GEZExt:
3081   case ZeroCompare::GESExt:
3082     ToExtend = SDValue(CurDAG->getMachineNode(Is32Bit ? PPC::NOR : PPC::NOR8,
3083                                               dl, InVT, LHS, LHS), 0);
3084     break;
3085   case ZeroCompare::LEZExt:
3086   case ZeroCompare::LESExt: {
3087     if (Is32Bit) {
3088       // Upper 32 bits cannot be undefined for this sequence.
3089       LHS = signExtendInputIfNeeded(LHS);
3090       SDValue Neg =
3091         SDValue(CurDAG->getMachineNode(PPC::NEG8, dl, MVT::i64, LHS), 0);
3092       ToExtend =
3093         SDValue(CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64,
3094                                        Neg, S->getI64Imm(1, dl),
3095                                        S->getI64Imm(63, dl)), 0);
3096     } else {
3097       SDValue Addi =
3098         SDValue(CurDAG->getMachineNode(PPC::ADDI8, dl, MVT::i64, LHS,
3099                                        S->getI64Imm(~0ULL, dl)), 0);
3100       ToExtend = SDValue(CurDAG->getMachineNode(PPC::OR8, dl, MVT::i64,
3101                                                 Addi, LHS), 0);
3102     }
3103     break;
3104   }
3105   }
3106 
3107   // For 64-bit sequences, the extensions are the same for the GE/LE cases.
3108   if (!Is32Bit &&
3109       (CmpTy == ZeroCompare::GEZExt || CmpTy == ZeroCompare::LEZExt))
3110     return SDValue(CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64,
3111                                           ToExtend, S->getI64Imm(1, dl),
3112                                           S->getI64Imm(63, dl)), 0);
3113   if (!Is32Bit &&
3114       (CmpTy == ZeroCompare::GESExt || CmpTy == ZeroCompare::LESExt))
3115     return SDValue(CurDAG->getMachineNode(PPC::SRADI, dl, MVT::i64, ToExtend,
3116                                           S->getI64Imm(63, dl)), 0);
3117 
3118   assert(Is32Bit && "Should have handled the 32-bit sequences above.");
3119   // For 32-bit sequences, the extensions differ between GE/LE cases.
3120   switch (CmpTy) {
3121   case ZeroCompare::GEZExt: {
3122     SDValue ShiftOps[] = { ToExtend, S->getI32Imm(1, dl), S->getI32Imm(31, dl),
3123                            S->getI32Imm(31, dl) };
3124     return SDValue(CurDAG->getMachineNode(PPC::RLWINM, dl, MVT::i32,
3125                                           ShiftOps), 0);
3126   }
3127   case ZeroCompare::GESExt:
3128     return SDValue(CurDAG->getMachineNode(PPC::SRAWI, dl, MVT::i32, ToExtend,
3129                                           S->getI32Imm(31, dl)), 0);
3130   case ZeroCompare::LEZExt:
3131     return SDValue(CurDAG->getMachineNode(PPC::XORI8, dl, MVT::i64, ToExtend,
3132                                           S->getI32Imm(1, dl)), 0);
3133   case ZeroCompare::LESExt:
3134     return SDValue(CurDAG->getMachineNode(PPC::ADDI8, dl, MVT::i64, ToExtend,
3135                                           S->getI32Imm(-1, dl)), 0);
3136   }
3137 
3138   // The above case covers all the enumerators so it can't have a default clause
3139   // to avoid compiler warnings.
3140   llvm_unreachable("Unknown zero-comparison type.");
3141 }
3142 
3143 /// Produces a zero-extended result of comparing two 32-bit values according to
3144 /// the passed condition code.
3145 SDValue
get32BitZExtCompare(SDValue LHS,SDValue RHS,ISD::CondCode CC,int64_t RHSValue,SDLoc dl)3146 IntegerCompareEliminator::get32BitZExtCompare(SDValue LHS, SDValue RHS,
3147                                               ISD::CondCode CC,
3148                                               int64_t RHSValue, SDLoc dl) {
3149   if (CmpInGPR == ICGPR_I64 || CmpInGPR == ICGPR_SextI64 ||
3150       CmpInGPR == ICGPR_ZextI64 || CmpInGPR == ICGPR_Sext)
3151     return SDValue();
3152   bool IsRHSZero = RHSValue == 0;
3153   bool IsRHSOne = RHSValue == 1;
3154   bool IsRHSNegOne = RHSValue == -1LL;
3155   switch (CC) {
3156   default: return SDValue();
3157   case ISD::SETEQ: {
3158     // (zext (setcc %a, %b, seteq)) -> (lshr (cntlzw (xor %a, %b)), 5)
3159     // (zext (setcc %a, 0, seteq))  -> (lshr (cntlzw %a), 5)
3160     SDValue Xor = IsRHSZero ? LHS :
3161       SDValue(CurDAG->getMachineNode(PPC::XOR, dl, MVT::i32, LHS, RHS), 0);
3162     SDValue Clz =
3163       SDValue(CurDAG->getMachineNode(PPC::CNTLZW, dl, MVT::i32, Xor), 0);
3164     SDValue ShiftOps[] = { Clz, S->getI32Imm(27, dl), S->getI32Imm(5, dl),
3165       S->getI32Imm(31, dl) };
3166     return SDValue(CurDAG->getMachineNode(PPC::RLWINM, dl, MVT::i32,
3167                                           ShiftOps), 0);
3168   }
3169   case ISD::SETNE: {
3170     // (zext (setcc %a, %b, setne)) -> (xor (lshr (cntlzw (xor %a, %b)), 5), 1)
3171     // (zext (setcc %a, 0, setne))  -> (xor (lshr (cntlzw %a), 5), 1)
3172     SDValue Xor = IsRHSZero ? LHS :
3173       SDValue(CurDAG->getMachineNode(PPC::XOR, dl, MVT::i32, LHS, RHS), 0);
3174     SDValue Clz =
3175       SDValue(CurDAG->getMachineNode(PPC::CNTLZW, dl, MVT::i32, Xor), 0);
3176     SDValue ShiftOps[] = { Clz, S->getI32Imm(27, dl), S->getI32Imm(5, dl),
3177       S->getI32Imm(31, dl) };
3178     SDValue Shift =
3179       SDValue(CurDAG->getMachineNode(PPC::RLWINM, dl, MVT::i32, ShiftOps), 0);
3180     return SDValue(CurDAG->getMachineNode(PPC::XORI, dl, MVT::i32, Shift,
3181                                           S->getI32Imm(1, dl)), 0);
3182   }
3183   case ISD::SETGE: {
3184     // (zext (setcc %a, %b, setge)) -> (xor (lshr (sub %a, %b), 63), 1)
3185     // (zext (setcc %a, 0, setge))  -> (lshr (~ %a), 31)
3186     if(IsRHSZero)
3187       return getCompoundZeroComparisonInGPR(LHS, dl, ZeroCompare::GEZExt);
3188 
3189     // Not a special case (i.e. RHS == 0). Handle (%a >= %b) as (%b <= %a)
3190     // by swapping inputs and falling through.
3191     std::swap(LHS, RHS);
3192     ConstantSDNode *RHSConst = dyn_cast<ConstantSDNode>(RHS);
3193     IsRHSZero = RHSConst && RHSConst->isNullValue();
3194     LLVM_FALLTHROUGH;
3195   }
3196   case ISD::SETLE: {
3197     if (CmpInGPR == ICGPR_NonExtIn)
3198       return SDValue();
3199     // (zext (setcc %a, %b, setle)) -> (xor (lshr (sub %b, %a), 63), 1)
3200     // (zext (setcc %a, 0, setle))  -> (xor (lshr (- %a), 63), 1)
3201     if(IsRHSZero) {
3202       if (CmpInGPR == ICGPR_NonExtIn)
3203         return SDValue();
3204       return getCompoundZeroComparisonInGPR(LHS, dl, ZeroCompare::LEZExt);
3205     }
3206 
3207     // The upper 32-bits of the register can't be undefined for this sequence.
3208     LHS = signExtendInputIfNeeded(LHS);
3209     RHS = signExtendInputIfNeeded(RHS);
3210     SDValue Sub =
3211       SDValue(CurDAG->getMachineNode(PPC::SUBF8, dl, MVT::i64, LHS, RHS), 0);
3212     SDValue Shift =
3213       SDValue(CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64, Sub,
3214                                      S->getI64Imm(1, dl), S->getI64Imm(63, dl)),
3215               0);
3216     return
3217       SDValue(CurDAG->getMachineNode(PPC::XORI8, dl,
3218                                      MVT::i64, Shift, S->getI32Imm(1, dl)), 0);
3219   }
3220   case ISD::SETGT: {
3221     // (zext (setcc %a, %b, setgt)) -> (lshr (sub %b, %a), 63)
3222     // (zext (setcc %a, -1, setgt)) -> (lshr (~ %a), 31)
3223     // (zext (setcc %a, 0, setgt))  -> (lshr (- %a), 63)
3224     // Handle SETLT -1 (which is equivalent to SETGE 0).
3225     if (IsRHSNegOne)
3226       return getCompoundZeroComparisonInGPR(LHS, dl, ZeroCompare::GEZExt);
3227 
3228     if (IsRHSZero) {
3229       if (CmpInGPR == ICGPR_NonExtIn)
3230         return SDValue();
3231       // The upper 32-bits of the register can't be undefined for this sequence.
3232       LHS = signExtendInputIfNeeded(LHS);
3233       RHS = signExtendInputIfNeeded(RHS);
3234       SDValue Neg =
3235         SDValue(CurDAG->getMachineNode(PPC::NEG8, dl, MVT::i64, LHS), 0);
3236       return SDValue(CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64,
3237                      Neg, S->getI32Imm(1, dl), S->getI32Imm(63, dl)), 0);
3238     }
3239     // Not a special case (i.e. RHS == 0 or RHS == -1). Handle (%a > %b) as
3240     // (%b < %a) by swapping inputs and falling through.
3241     std::swap(LHS, RHS);
3242     ConstantSDNode *RHSConst = dyn_cast<ConstantSDNode>(RHS);
3243     IsRHSZero = RHSConst && RHSConst->isNullValue();
3244     IsRHSOne = RHSConst && RHSConst->getSExtValue() == 1;
3245     LLVM_FALLTHROUGH;
3246   }
3247   case ISD::SETLT: {
3248     // (zext (setcc %a, %b, setlt)) -> (lshr (sub %a, %b), 63)
3249     // (zext (setcc %a, 1, setlt))  -> (xor (lshr (- %a), 63), 1)
3250     // (zext (setcc %a, 0, setlt))  -> (lshr %a, 31)
3251     // Handle SETLT 1 (which is equivalent to SETLE 0).
3252     if (IsRHSOne) {
3253       if (CmpInGPR == ICGPR_NonExtIn)
3254         return SDValue();
3255       return getCompoundZeroComparisonInGPR(LHS, dl, ZeroCompare::LEZExt);
3256     }
3257 
3258     if (IsRHSZero) {
3259       SDValue ShiftOps[] = { LHS, S->getI32Imm(1, dl), S->getI32Imm(31, dl),
3260                              S->getI32Imm(31, dl) };
3261       return SDValue(CurDAG->getMachineNode(PPC::RLWINM, dl, MVT::i32,
3262                                             ShiftOps), 0);
3263     }
3264 
3265     if (CmpInGPR == ICGPR_NonExtIn)
3266       return SDValue();
3267     // The upper 32-bits of the register can't be undefined for this sequence.
3268     LHS = signExtendInputIfNeeded(LHS);
3269     RHS = signExtendInputIfNeeded(RHS);
3270     SDValue SUBFNode =
3271       SDValue(CurDAG->getMachineNode(PPC::SUBF8, dl, MVT::i64, RHS, LHS), 0);
3272     return SDValue(CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64,
3273                                     SUBFNode, S->getI64Imm(1, dl),
3274                                     S->getI64Imm(63, dl)), 0);
3275   }
3276   case ISD::SETUGE:
3277     // (zext (setcc %a, %b, setuge)) -> (xor (lshr (sub %b, %a), 63), 1)
3278     // (zext (setcc %a, %b, setule)) -> (xor (lshr (sub %a, %b), 63), 1)
3279     std::swap(LHS, RHS);
3280     LLVM_FALLTHROUGH;
3281   case ISD::SETULE: {
3282     if (CmpInGPR == ICGPR_NonExtIn)
3283       return SDValue();
3284     // The upper 32-bits of the register can't be undefined for this sequence.
3285     LHS = zeroExtendInputIfNeeded(LHS);
3286     RHS = zeroExtendInputIfNeeded(RHS);
3287     SDValue Subtract =
3288       SDValue(CurDAG->getMachineNode(PPC::SUBF8, dl, MVT::i64, LHS, RHS), 0);
3289     SDValue SrdiNode =
3290       SDValue(CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64,
3291                                           Subtract, S->getI64Imm(1, dl),
3292                                           S->getI64Imm(63, dl)), 0);
3293     return SDValue(CurDAG->getMachineNode(PPC::XORI8, dl, MVT::i64, SrdiNode,
3294                                             S->getI32Imm(1, dl)), 0);
3295   }
3296   case ISD::SETUGT:
3297     // (zext (setcc %a, %b, setugt)) -> (lshr (sub %b, %a), 63)
3298     // (zext (setcc %a, %b, setult)) -> (lshr (sub %a, %b), 63)
3299     std::swap(LHS, RHS);
3300     LLVM_FALLTHROUGH;
3301   case ISD::SETULT: {
3302     if (CmpInGPR == ICGPR_NonExtIn)
3303       return SDValue();
3304     // The upper 32-bits of the register can't be undefined for this sequence.
3305     LHS = zeroExtendInputIfNeeded(LHS);
3306     RHS = zeroExtendInputIfNeeded(RHS);
3307     SDValue Subtract =
3308       SDValue(CurDAG->getMachineNode(PPC::SUBF8, dl, MVT::i64, RHS, LHS), 0);
3309     return SDValue(CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64,
3310                                           Subtract, S->getI64Imm(1, dl),
3311                                           S->getI64Imm(63, dl)), 0);
3312   }
3313   }
3314 }
3315 
3316 /// Produces a sign-extended result of comparing two 32-bit values according to
3317 /// the passed condition code.
3318 SDValue
get32BitSExtCompare(SDValue LHS,SDValue RHS,ISD::CondCode CC,int64_t RHSValue,SDLoc dl)3319 IntegerCompareEliminator::get32BitSExtCompare(SDValue LHS, SDValue RHS,
3320                                               ISD::CondCode CC,
3321                                               int64_t RHSValue, SDLoc dl) {
3322   if (CmpInGPR == ICGPR_I64 || CmpInGPR == ICGPR_SextI64 ||
3323       CmpInGPR == ICGPR_ZextI64 || CmpInGPR == ICGPR_Zext)
3324     return SDValue();
3325   bool IsRHSZero = RHSValue == 0;
3326   bool IsRHSOne = RHSValue == 1;
3327   bool IsRHSNegOne = RHSValue == -1LL;
3328 
3329   switch (CC) {
3330   default: return SDValue();
3331   case ISD::SETEQ: {
3332     // (sext (setcc %a, %b, seteq)) ->
3333     //   (ashr (shl (ctlz (xor %a, %b)), 58), 63)
3334     // (sext (setcc %a, 0, seteq)) ->
3335     //   (ashr (shl (ctlz %a), 58), 63)
3336     SDValue CountInput = IsRHSZero ? LHS :
3337       SDValue(CurDAG->getMachineNode(PPC::XOR, dl, MVT::i32, LHS, RHS), 0);
3338     SDValue Cntlzw =
3339       SDValue(CurDAG->getMachineNode(PPC::CNTLZW, dl, MVT::i32, CountInput), 0);
3340     SDValue SHLOps[] = { Cntlzw, S->getI32Imm(27, dl),
3341                          S->getI32Imm(5, dl), S->getI32Imm(31, dl) };
3342     SDValue Slwi =
3343       SDValue(CurDAG->getMachineNode(PPC::RLWINM, dl, MVT::i32, SHLOps), 0);
3344     return SDValue(CurDAG->getMachineNode(PPC::NEG, dl, MVT::i32, Slwi), 0);
3345   }
3346   case ISD::SETNE: {
3347     // Bitwise xor the operands, count leading zeros, shift right by 5 bits and
3348     // flip the bit, finally take 2's complement.
3349     // (sext (setcc %a, %b, setne)) ->
3350     //   (neg (xor (lshr (ctlz (xor %a, %b)), 5), 1))
3351     // Same as above, but the first xor is not needed.
3352     // (sext (setcc %a, 0, setne)) ->
3353     //   (neg (xor (lshr (ctlz %a), 5), 1))
3354     SDValue Xor = IsRHSZero ? LHS :
3355       SDValue(CurDAG->getMachineNode(PPC::XOR, dl, MVT::i32, LHS, RHS), 0);
3356     SDValue Clz =
3357       SDValue(CurDAG->getMachineNode(PPC::CNTLZW, dl, MVT::i32, Xor), 0);
3358     SDValue ShiftOps[] =
3359       { Clz, S->getI32Imm(27, dl), S->getI32Imm(5, dl), S->getI32Imm(31, dl) };
3360     SDValue Shift =
3361       SDValue(CurDAG->getMachineNode(PPC::RLWINM, dl, MVT::i32, ShiftOps), 0);
3362     SDValue Xori =
3363       SDValue(CurDAG->getMachineNode(PPC::XORI, dl, MVT::i32, Shift,
3364                                      S->getI32Imm(1, dl)), 0);
3365     return SDValue(CurDAG->getMachineNode(PPC::NEG, dl, MVT::i32, Xori), 0);
3366   }
3367   case ISD::SETGE: {
3368     // (sext (setcc %a, %b, setge)) -> (add (lshr (sub %a, %b), 63), -1)
3369     // (sext (setcc %a, 0, setge))  -> (ashr (~ %a), 31)
3370     if (IsRHSZero)
3371       return getCompoundZeroComparisonInGPR(LHS, dl, ZeroCompare::GESExt);
3372 
3373     // Not a special case (i.e. RHS == 0). Handle (%a >= %b) as (%b <= %a)
3374     // by swapping inputs and falling through.
3375     std::swap(LHS, RHS);
3376     ConstantSDNode *RHSConst = dyn_cast<ConstantSDNode>(RHS);
3377     IsRHSZero = RHSConst && RHSConst->isNullValue();
3378     LLVM_FALLTHROUGH;
3379   }
3380   case ISD::SETLE: {
3381     if (CmpInGPR == ICGPR_NonExtIn)
3382       return SDValue();
3383     // (sext (setcc %a, %b, setge)) -> (add (lshr (sub %b, %a), 63), -1)
3384     // (sext (setcc %a, 0, setle))  -> (add (lshr (- %a), 63), -1)
3385     if (IsRHSZero)
3386       return getCompoundZeroComparisonInGPR(LHS, dl, ZeroCompare::LESExt);
3387 
3388     // The upper 32-bits of the register can't be undefined for this sequence.
3389     LHS = signExtendInputIfNeeded(LHS);
3390     RHS = signExtendInputIfNeeded(RHS);
3391     SDValue SUBFNode =
3392       SDValue(CurDAG->getMachineNode(PPC::SUBF8, dl, MVT::i64, MVT::Glue,
3393                                      LHS, RHS), 0);
3394     SDValue Srdi =
3395       SDValue(CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64,
3396                                      SUBFNode, S->getI64Imm(1, dl),
3397                                      S->getI64Imm(63, dl)), 0);
3398     return SDValue(CurDAG->getMachineNode(PPC::ADDI8, dl, MVT::i64, Srdi,
3399                                           S->getI32Imm(-1, dl)), 0);
3400   }
3401   case ISD::SETGT: {
3402     // (sext (setcc %a, %b, setgt)) -> (ashr (sub %b, %a), 63)
3403     // (sext (setcc %a, -1, setgt)) -> (ashr (~ %a), 31)
3404     // (sext (setcc %a, 0, setgt))  -> (ashr (- %a), 63)
3405     if (IsRHSNegOne)
3406       return getCompoundZeroComparisonInGPR(LHS, dl, ZeroCompare::GESExt);
3407     if (IsRHSZero) {
3408       if (CmpInGPR == ICGPR_NonExtIn)
3409         return SDValue();
3410       // The upper 32-bits of the register can't be undefined for this sequence.
3411       LHS = signExtendInputIfNeeded(LHS);
3412       RHS = signExtendInputIfNeeded(RHS);
3413       SDValue Neg =
3414         SDValue(CurDAG->getMachineNode(PPC::NEG8, dl, MVT::i64, LHS), 0);
3415         return SDValue(CurDAG->getMachineNode(PPC::SRADI, dl, MVT::i64, Neg,
3416                                               S->getI64Imm(63, dl)), 0);
3417     }
3418     // Not a special case (i.e. RHS == 0 or RHS == -1). Handle (%a > %b) as
3419     // (%b < %a) by swapping inputs and falling through.
3420     std::swap(LHS, RHS);
3421     ConstantSDNode *RHSConst = dyn_cast<ConstantSDNode>(RHS);
3422     IsRHSZero = RHSConst && RHSConst->isNullValue();
3423     IsRHSOne = RHSConst && RHSConst->getSExtValue() == 1;
3424     LLVM_FALLTHROUGH;
3425   }
3426   case ISD::SETLT: {
3427     // (sext (setcc %a, %b, setgt)) -> (ashr (sub %a, %b), 63)
3428     // (sext (setcc %a, 1, setgt))  -> (add (lshr (- %a), 63), -1)
3429     // (sext (setcc %a, 0, setgt))  -> (ashr %a, 31)
3430     if (IsRHSOne) {
3431       if (CmpInGPR == ICGPR_NonExtIn)
3432         return SDValue();
3433       return getCompoundZeroComparisonInGPR(LHS, dl, ZeroCompare::LESExt);
3434     }
3435     if (IsRHSZero)
3436       return SDValue(CurDAG->getMachineNode(PPC::SRAWI, dl, MVT::i32, LHS,
3437                                             S->getI32Imm(31, dl)), 0);
3438 
3439     if (CmpInGPR == ICGPR_NonExtIn)
3440       return SDValue();
3441     // The upper 32-bits of the register can't be undefined for this sequence.
3442     LHS = signExtendInputIfNeeded(LHS);
3443     RHS = signExtendInputIfNeeded(RHS);
3444     SDValue SUBFNode =
3445       SDValue(CurDAG->getMachineNode(PPC::SUBF8, dl, MVT::i64, RHS, LHS), 0);
3446     return SDValue(CurDAG->getMachineNode(PPC::SRADI, dl, MVT::i64,
3447                                           SUBFNode, S->getI64Imm(63, dl)), 0);
3448   }
3449   case ISD::SETUGE:
3450     // (sext (setcc %a, %b, setuge)) -> (add (lshr (sub %a, %b), 63), -1)
3451     // (sext (setcc %a, %b, setule)) -> (add (lshr (sub %b, %a), 63), -1)
3452     std::swap(LHS, RHS);
3453     LLVM_FALLTHROUGH;
3454   case ISD::SETULE: {
3455     if (CmpInGPR == ICGPR_NonExtIn)
3456       return SDValue();
3457     // The upper 32-bits of the register can't be undefined for this sequence.
3458     LHS = zeroExtendInputIfNeeded(LHS);
3459     RHS = zeroExtendInputIfNeeded(RHS);
3460     SDValue Subtract =
3461       SDValue(CurDAG->getMachineNode(PPC::SUBF8, dl, MVT::i64, LHS, RHS), 0);
3462     SDValue Shift =
3463       SDValue(CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64, Subtract,
3464                                      S->getI32Imm(1, dl), S->getI32Imm(63,dl)),
3465               0);
3466     return SDValue(CurDAG->getMachineNode(PPC::ADDI8, dl, MVT::i64, Shift,
3467                                           S->getI32Imm(-1, dl)), 0);
3468   }
3469   case ISD::SETUGT:
3470     // (sext (setcc %a, %b, setugt)) -> (ashr (sub %b, %a), 63)
3471     // (sext (setcc %a, %b, setugt)) -> (ashr (sub %a, %b), 63)
3472     std::swap(LHS, RHS);
3473     LLVM_FALLTHROUGH;
3474   case ISD::SETULT: {
3475     if (CmpInGPR == ICGPR_NonExtIn)
3476       return SDValue();
3477     // The upper 32-bits of the register can't be undefined for this sequence.
3478     LHS = zeroExtendInputIfNeeded(LHS);
3479     RHS = zeroExtendInputIfNeeded(RHS);
3480     SDValue Subtract =
3481       SDValue(CurDAG->getMachineNode(PPC::SUBF8, dl, MVT::i64, RHS, LHS), 0);
3482     return SDValue(CurDAG->getMachineNode(PPC::SRADI, dl, MVT::i64,
3483                                           Subtract, S->getI64Imm(63, dl)), 0);
3484   }
3485   }
3486 }
3487 
3488 /// Produces a zero-extended result of comparing two 64-bit values according to
3489 /// the passed condition code.
3490 SDValue
get64BitZExtCompare(SDValue LHS,SDValue RHS,ISD::CondCode CC,int64_t RHSValue,SDLoc dl)3491 IntegerCompareEliminator::get64BitZExtCompare(SDValue LHS, SDValue RHS,
3492                                               ISD::CondCode CC,
3493                                               int64_t RHSValue, SDLoc dl) {
3494   if (CmpInGPR == ICGPR_I32 || CmpInGPR == ICGPR_SextI32 ||
3495       CmpInGPR == ICGPR_ZextI32 || CmpInGPR == ICGPR_Sext)
3496     return SDValue();
3497   bool IsRHSZero = RHSValue == 0;
3498   bool IsRHSOne = RHSValue == 1;
3499   bool IsRHSNegOne = RHSValue == -1LL;
3500   switch (CC) {
3501   default: return SDValue();
3502   case ISD::SETEQ: {
3503     // (zext (setcc %a, %b, seteq)) -> (lshr (ctlz (xor %a, %b)), 6)
3504     // (zext (setcc %a, 0, seteq)) ->  (lshr (ctlz %a), 6)
3505     SDValue Xor = IsRHSZero ? LHS :
3506       SDValue(CurDAG->getMachineNode(PPC::XOR8, dl, MVT::i64, LHS, RHS), 0);
3507     SDValue Clz =
3508       SDValue(CurDAG->getMachineNode(PPC::CNTLZD, dl, MVT::i64, Xor), 0);
3509     return SDValue(CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64, Clz,
3510                                           S->getI64Imm(58, dl),
3511                                           S->getI64Imm(63, dl)), 0);
3512   }
3513   case ISD::SETNE: {
3514     // {addc.reg, addc.CA} = (addcarry (xor %a, %b), -1)
3515     // (zext (setcc %a, %b, setne)) -> (sube addc.reg, addc.reg, addc.CA)
3516     // {addcz.reg, addcz.CA} = (addcarry %a, -1)
3517     // (zext (setcc %a, 0, setne)) -> (sube addcz.reg, addcz.reg, addcz.CA)
3518     SDValue Xor = IsRHSZero ? LHS :
3519       SDValue(CurDAG->getMachineNode(PPC::XOR8, dl, MVT::i64, LHS, RHS), 0);
3520     SDValue AC =
3521       SDValue(CurDAG->getMachineNode(PPC::ADDIC8, dl, MVT::i64, MVT::Glue,
3522                                      Xor, S->getI32Imm(~0U, dl)), 0);
3523     return SDValue(CurDAG->getMachineNode(PPC::SUBFE8, dl, MVT::i64, AC,
3524                                           Xor, AC.getValue(1)), 0);
3525   }
3526   case ISD::SETGE: {
3527     // {subc.reg, subc.CA} = (subcarry %a, %b)
3528     // (zext (setcc %a, %b, setge)) ->
3529     //   (adde (lshr %b, 63), (ashr %a, 63), subc.CA)
3530     // (zext (setcc %a, 0, setge)) -> (lshr (~ %a), 63)
3531     if (IsRHSZero)
3532       return getCompoundZeroComparisonInGPR(LHS, dl, ZeroCompare::GEZExt);
3533     std::swap(LHS, RHS);
3534     ConstantSDNode *RHSConst = dyn_cast<ConstantSDNode>(RHS);
3535     IsRHSZero = RHSConst && RHSConst->isNullValue();
3536     LLVM_FALLTHROUGH;
3537   }
3538   case ISD::SETLE: {
3539     // {subc.reg, subc.CA} = (subcarry %b, %a)
3540     // (zext (setcc %a, %b, setge)) ->
3541     //   (adde (lshr %a, 63), (ashr %b, 63), subc.CA)
3542     // (zext (setcc %a, 0, setge)) -> (lshr (or %a, (add %a, -1)), 63)
3543     if (IsRHSZero)
3544       return getCompoundZeroComparisonInGPR(LHS, dl, ZeroCompare::LEZExt);
3545     SDValue ShiftL =
3546       SDValue(CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64, LHS,
3547                                      S->getI64Imm(1, dl),
3548                                      S->getI64Imm(63, dl)), 0);
3549     SDValue ShiftR =
3550       SDValue(CurDAG->getMachineNode(PPC::SRADI, dl, MVT::i64, RHS,
3551                                      S->getI64Imm(63, dl)), 0);
3552     SDValue SubtractCarry =
3553       SDValue(CurDAG->getMachineNode(PPC::SUBFC8, dl, MVT::i64, MVT::Glue,
3554                                      LHS, RHS), 1);
3555     return SDValue(CurDAG->getMachineNode(PPC::ADDE8, dl, MVT::i64, MVT::Glue,
3556                                           ShiftR, ShiftL, SubtractCarry), 0);
3557   }
3558   case ISD::SETGT: {
3559     // {subc.reg, subc.CA} = (subcarry %b, %a)
3560     // (zext (setcc %a, %b, setgt)) ->
3561     //   (xor (adde (lshr %a, 63), (ashr %b, 63), subc.CA), 1)
3562     // (zext (setcc %a, 0, setgt)) -> (lshr (nor (add %a, -1), %a), 63)
3563     if (IsRHSNegOne)
3564       return getCompoundZeroComparisonInGPR(LHS, dl, ZeroCompare::GEZExt);
3565     if (IsRHSZero) {
3566       SDValue Addi =
3567         SDValue(CurDAG->getMachineNode(PPC::ADDI8, dl, MVT::i64, LHS,
3568                                        S->getI64Imm(~0ULL, dl)), 0);
3569       SDValue Nor =
3570         SDValue(CurDAG->getMachineNode(PPC::NOR8, dl, MVT::i64, Addi, LHS), 0);
3571       return SDValue(CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64, Nor,
3572                                             S->getI64Imm(1, dl),
3573                                             S->getI64Imm(63, dl)), 0);
3574     }
3575     std::swap(LHS, RHS);
3576     ConstantSDNode *RHSConst = dyn_cast<ConstantSDNode>(RHS);
3577     IsRHSZero = RHSConst && RHSConst->isNullValue();
3578     IsRHSOne = RHSConst && RHSConst->getSExtValue() == 1;
3579     LLVM_FALLTHROUGH;
3580   }
3581   case ISD::SETLT: {
3582     // {subc.reg, subc.CA} = (subcarry %a, %b)
3583     // (zext (setcc %a, %b, setlt)) ->
3584     //   (xor (adde (lshr %b, 63), (ashr %a, 63), subc.CA), 1)
3585     // (zext (setcc %a, 0, setlt)) -> (lshr %a, 63)
3586     if (IsRHSOne)
3587       return getCompoundZeroComparisonInGPR(LHS, dl, ZeroCompare::LEZExt);
3588     if (IsRHSZero)
3589       return SDValue(CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64, LHS,
3590                                             S->getI64Imm(1, dl),
3591                                             S->getI64Imm(63, dl)), 0);
3592     SDValue SRADINode =
3593       SDValue(CurDAG->getMachineNode(PPC::SRADI, dl, MVT::i64,
3594                                      LHS, S->getI64Imm(63, dl)), 0);
3595     SDValue SRDINode =
3596       SDValue(CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64,
3597                                      RHS, S->getI64Imm(1, dl),
3598                                      S->getI64Imm(63, dl)), 0);
3599     SDValue SUBFC8Carry =
3600       SDValue(CurDAG->getMachineNode(PPC::SUBFC8, dl, MVT::i64, MVT::Glue,
3601                                      RHS, LHS), 1);
3602     SDValue ADDE8Node =
3603       SDValue(CurDAG->getMachineNode(PPC::ADDE8, dl, MVT::i64, MVT::Glue,
3604                                      SRDINode, SRADINode, SUBFC8Carry), 0);
3605     return SDValue(CurDAG->getMachineNode(PPC::XORI8, dl, MVT::i64,
3606                                           ADDE8Node, S->getI64Imm(1, dl)), 0);
3607   }
3608   case ISD::SETUGE:
3609     // {subc.reg, subc.CA} = (subcarry %a, %b)
3610     // (zext (setcc %a, %b, setuge)) -> (add (sube %b, %b, subc.CA), 1)
3611     std::swap(LHS, RHS);
3612     LLVM_FALLTHROUGH;
3613   case ISD::SETULE: {
3614     // {subc.reg, subc.CA} = (subcarry %b, %a)
3615     // (zext (setcc %a, %b, setule)) -> (add (sube %a, %a, subc.CA), 1)
3616     SDValue SUBFC8Carry =
3617       SDValue(CurDAG->getMachineNode(PPC::SUBFC8, dl, MVT::i64, MVT::Glue,
3618                                      LHS, RHS), 1);
3619     SDValue SUBFE8Node =
3620       SDValue(CurDAG->getMachineNode(PPC::SUBFE8, dl, MVT::i64, MVT::Glue,
3621                                      LHS, LHS, SUBFC8Carry), 0);
3622     return SDValue(CurDAG->getMachineNode(PPC::ADDI8, dl, MVT::i64,
3623                                           SUBFE8Node, S->getI64Imm(1, dl)), 0);
3624   }
3625   case ISD::SETUGT:
3626     // {subc.reg, subc.CA} = (subcarry %b, %a)
3627     // (zext (setcc %a, %b, setugt)) -> -(sube %b, %b, subc.CA)
3628     std::swap(LHS, RHS);
3629     LLVM_FALLTHROUGH;
3630   case ISD::SETULT: {
3631     // {subc.reg, subc.CA} = (subcarry %a, %b)
3632     // (zext (setcc %a, %b, setult)) -> -(sube %a, %a, subc.CA)
3633     SDValue SubtractCarry =
3634       SDValue(CurDAG->getMachineNode(PPC::SUBFC8, dl, MVT::i64, MVT::Glue,
3635                                      RHS, LHS), 1);
3636     SDValue ExtSub =
3637       SDValue(CurDAG->getMachineNode(PPC::SUBFE8, dl, MVT::i64,
3638                                      LHS, LHS, SubtractCarry), 0);
3639     return SDValue(CurDAG->getMachineNode(PPC::NEG8, dl, MVT::i64,
3640                                           ExtSub), 0);
3641   }
3642   }
3643 }
3644 
3645 /// Produces a sign-extended result of comparing two 64-bit values according to
3646 /// the passed condition code.
3647 SDValue
get64BitSExtCompare(SDValue LHS,SDValue RHS,ISD::CondCode CC,int64_t RHSValue,SDLoc dl)3648 IntegerCompareEliminator::get64BitSExtCompare(SDValue LHS, SDValue RHS,
3649                                               ISD::CondCode CC,
3650                                               int64_t RHSValue, SDLoc dl) {
3651   if (CmpInGPR == ICGPR_I32 || CmpInGPR == ICGPR_SextI32 ||
3652       CmpInGPR == ICGPR_ZextI32 || CmpInGPR == ICGPR_Zext)
3653     return SDValue();
3654   bool IsRHSZero = RHSValue == 0;
3655   bool IsRHSOne = RHSValue == 1;
3656   bool IsRHSNegOne = RHSValue == -1LL;
3657   switch (CC) {
3658   default: return SDValue();
3659   case ISD::SETEQ: {
3660     // {addc.reg, addc.CA} = (addcarry (xor %a, %b), -1)
3661     // (sext (setcc %a, %b, seteq)) -> (sube addc.reg, addc.reg, addc.CA)
3662     // {addcz.reg, addcz.CA} = (addcarry %a, -1)
3663     // (sext (setcc %a, 0, seteq)) -> (sube addcz.reg, addcz.reg, addcz.CA)
3664     SDValue AddInput = IsRHSZero ? LHS :
3665       SDValue(CurDAG->getMachineNode(PPC::XOR8, dl, MVT::i64, LHS, RHS), 0);
3666     SDValue Addic =
3667       SDValue(CurDAG->getMachineNode(PPC::ADDIC8, dl, MVT::i64, MVT::Glue,
3668                                      AddInput, S->getI32Imm(~0U, dl)), 0);
3669     return SDValue(CurDAG->getMachineNode(PPC::SUBFE8, dl, MVT::i64, Addic,
3670                                           Addic, Addic.getValue(1)), 0);
3671   }
3672   case ISD::SETNE: {
3673     // {subfc.reg, subfc.CA} = (subcarry 0, (xor %a, %b))
3674     // (sext (setcc %a, %b, setne)) -> (sube subfc.reg, subfc.reg, subfc.CA)
3675     // {subfcz.reg, subfcz.CA} = (subcarry 0, %a)
3676     // (sext (setcc %a, 0, setne)) -> (sube subfcz.reg, subfcz.reg, subfcz.CA)
3677     SDValue Xor = IsRHSZero ? LHS :
3678       SDValue(CurDAG->getMachineNode(PPC::XOR8, dl, MVT::i64, LHS, RHS), 0);
3679     SDValue SC =
3680       SDValue(CurDAG->getMachineNode(PPC::SUBFIC8, dl, MVT::i64, MVT::Glue,
3681                                      Xor, S->getI32Imm(0, dl)), 0);
3682     return SDValue(CurDAG->getMachineNode(PPC::SUBFE8, dl, MVT::i64, SC,
3683                                           SC, SC.getValue(1)), 0);
3684   }
3685   case ISD::SETGE: {
3686     // {subc.reg, subc.CA} = (subcarry %a, %b)
3687     // (zext (setcc %a, %b, setge)) ->
3688     //   (- (adde (lshr %b, 63), (ashr %a, 63), subc.CA))
3689     // (zext (setcc %a, 0, setge)) -> (~ (ashr %a, 63))
3690     if (IsRHSZero)
3691       return getCompoundZeroComparisonInGPR(LHS, dl, ZeroCompare::GESExt);
3692     std::swap(LHS, RHS);
3693     ConstantSDNode *RHSConst = dyn_cast<ConstantSDNode>(RHS);
3694     IsRHSZero = RHSConst && RHSConst->isNullValue();
3695     LLVM_FALLTHROUGH;
3696   }
3697   case ISD::SETLE: {
3698     // {subc.reg, subc.CA} = (subcarry %b, %a)
3699     // (zext (setcc %a, %b, setge)) ->
3700     //   (- (adde (lshr %a, 63), (ashr %b, 63), subc.CA))
3701     // (zext (setcc %a, 0, setge)) -> (ashr (or %a, (add %a, -1)), 63)
3702     if (IsRHSZero)
3703       return getCompoundZeroComparisonInGPR(LHS, dl, ZeroCompare::LESExt);
3704     SDValue ShiftR =
3705       SDValue(CurDAG->getMachineNode(PPC::SRADI, dl, MVT::i64, RHS,
3706                                      S->getI64Imm(63, dl)), 0);
3707     SDValue ShiftL =
3708       SDValue(CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64, LHS,
3709                                      S->getI64Imm(1, dl),
3710                                      S->getI64Imm(63, dl)), 0);
3711     SDValue SubtractCarry =
3712       SDValue(CurDAG->getMachineNode(PPC::SUBFC8, dl, MVT::i64, MVT::Glue,
3713                                      LHS, RHS), 1);
3714     SDValue Adde =
3715       SDValue(CurDAG->getMachineNode(PPC::ADDE8, dl, MVT::i64, MVT::Glue,
3716                                      ShiftR, ShiftL, SubtractCarry), 0);
3717     return SDValue(CurDAG->getMachineNode(PPC::NEG8, dl, MVT::i64, Adde), 0);
3718   }
3719   case ISD::SETGT: {
3720     // {subc.reg, subc.CA} = (subcarry %b, %a)
3721     // (zext (setcc %a, %b, setgt)) ->
3722     //   -(xor (adde (lshr %a, 63), (ashr %b, 63), subc.CA), 1)
3723     // (zext (setcc %a, 0, setgt)) -> (ashr (nor (add %a, -1), %a), 63)
3724     if (IsRHSNegOne)
3725       return getCompoundZeroComparisonInGPR(LHS, dl, ZeroCompare::GESExt);
3726     if (IsRHSZero) {
3727       SDValue Add =
3728         SDValue(CurDAG->getMachineNode(PPC::ADDI8, dl, MVT::i64, LHS,
3729                                        S->getI64Imm(-1, dl)), 0);
3730       SDValue Nor =
3731         SDValue(CurDAG->getMachineNode(PPC::NOR8, dl, MVT::i64, Add, LHS), 0);
3732       return SDValue(CurDAG->getMachineNode(PPC::SRADI, dl, MVT::i64, Nor,
3733                                             S->getI64Imm(63, dl)), 0);
3734     }
3735     std::swap(LHS, RHS);
3736     ConstantSDNode *RHSConst = dyn_cast<ConstantSDNode>(RHS);
3737     IsRHSZero = RHSConst && RHSConst->isNullValue();
3738     IsRHSOne = RHSConst && RHSConst->getSExtValue() == 1;
3739     LLVM_FALLTHROUGH;
3740   }
3741   case ISD::SETLT: {
3742     // {subc.reg, subc.CA} = (subcarry %a, %b)
3743     // (zext (setcc %a, %b, setlt)) ->
3744     //   -(xor (adde (lshr %b, 63), (ashr %a, 63), subc.CA), 1)
3745     // (zext (setcc %a, 0, setlt)) -> (ashr %a, 63)
3746     if (IsRHSOne)
3747       return getCompoundZeroComparisonInGPR(LHS, dl, ZeroCompare::LESExt);
3748     if (IsRHSZero) {
3749       return SDValue(CurDAG->getMachineNode(PPC::SRADI, dl, MVT::i64, LHS,
3750                                             S->getI64Imm(63, dl)), 0);
3751     }
3752     SDValue SRADINode =
3753       SDValue(CurDAG->getMachineNode(PPC::SRADI, dl, MVT::i64,
3754                                      LHS, S->getI64Imm(63, dl)), 0);
3755     SDValue SRDINode =
3756       SDValue(CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64,
3757                                      RHS, S->getI64Imm(1, dl),
3758                                      S->getI64Imm(63, dl)), 0);
3759     SDValue SUBFC8Carry =
3760       SDValue(CurDAG->getMachineNode(PPC::SUBFC8, dl, MVT::i64, MVT::Glue,
3761                                      RHS, LHS), 1);
3762     SDValue ADDE8Node =
3763       SDValue(CurDAG->getMachineNode(PPC::ADDE8, dl, MVT::i64,
3764                                      SRDINode, SRADINode, SUBFC8Carry), 0);
3765     SDValue XORI8Node =
3766       SDValue(CurDAG->getMachineNode(PPC::XORI8, dl, MVT::i64,
3767                                      ADDE8Node, S->getI64Imm(1, dl)), 0);
3768     return SDValue(CurDAG->getMachineNode(PPC::NEG8, dl, MVT::i64,
3769                                           XORI8Node), 0);
3770   }
3771   case ISD::SETUGE:
3772     // {subc.reg, subc.CA} = (subcarry %a, %b)
3773     // (sext (setcc %a, %b, setuge)) -> ~(sube %b, %b, subc.CA)
3774     std::swap(LHS, RHS);
3775     LLVM_FALLTHROUGH;
3776   case ISD::SETULE: {
3777     // {subc.reg, subc.CA} = (subcarry %b, %a)
3778     // (sext (setcc %a, %b, setule)) -> ~(sube %a, %a, subc.CA)
3779     SDValue SubtractCarry =
3780       SDValue(CurDAG->getMachineNode(PPC::SUBFC8, dl, MVT::i64, MVT::Glue,
3781                                      LHS, RHS), 1);
3782     SDValue ExtSub =
3783       SDValue(CurDAG->getMachineNode(PPC::SUBFE8, dl, MVT::i64, MVT::Glue, LHS,
3784                                      LHS, SubtractCarry), 0);
3785     return SDValue(CurDAG->getMachineNode(PPC::NOR8, dl, MVT::i64,
3786                                           ExtSub, ExtSub), 0);
3787   }
3788   case ISD::SETUGT:
3789     // {subc.reg, subc.CA} = (subcarry %b, %a)
3790     // (sext (setcc %a, %b, setugt)) -> (sube %b, %b, subc.CA)
3791     std::swap(LHS, RHS);
3792     LLVM_FALLTHROUGH;
3793   case ISD::SETULT: {
3794     // {subc.reg, subc.CA} = (subcarry %a, %b)
3795     // (sext (setcc %a, %b, setult)) -> (sube %a, %a, subc.CA)
3796     SDValue SubCarry =
3797       SDValue(CurDAG->getMachineNode(PPC::SUBFC8, dl, MVT::i64, MVT::Glue,
3798                                      RHS, LHS), 1);
3799     return SDValue(CurDAG->getMachineNode(PPC::SUBFE8, dl, MVT::i64,
3800                                      LHS, LHS, SubCarry), 0);
3801   }
3802   }
3803 }
3804 
3805 /// Do all uses of this SDValue need the result in a GPR?
3806 /// This is meant to be used on values that have type i1 since
3807 /// it is somewhat meaningless to ask if values of other types
3808 /// should be kept in GPR's.
allUsesExtend(SDValue Compare,SelectionDAG * CurDAG)3809 static bool allUsesExtend(SDValue Compare, SelectionDAG *CurDAG) {
3810   assert(Compare.getOpcode() == ISD::SETCC &&
3811          "An ISD::SETCC node required here.");
3812 
3813   // For values that have a single use, the caller should obviously already have
3814   // checked if that use is an extending use. We check the other uses here.
3815   if (Compare.hasOneUse())
3816     return true;
3817   // We want the value in a GPR if it is being extended, used for a select, or
3818   // used in logical operations.
3819   for (auto CompareUse : Compare.getNode()->uses())
3820     if (CompareUse->getOpcode() != ISD::SIGN_EXTEND &&
3821         CompareUse->getOpcode() != ISD::ZERO_EXTEND &&
3822         CompareUse->getOpcode() != ISD::SELECT &&
3823         !isLogicOp(CompareUse->getOpcode())) {
3824       OmittedForNonExtendUses++;
3825       return false;
3826     }
3827   return true;
3828 }
3829 
3830 /// Returns an equivalent of a SETCC node but with the result the same width as
3831 /// the inputs. This can also be used for SELECT_CC if either the true or false
3832 /// values is a power of two while the other is zero.
getSETCCInGPR(SDValue Compare,SetccInGPROpts ConvOpts)3833 SDValue IntegerCompareEliminator::getSETCCInGPR(SDValue Compare,
3834                                                 SetccInGPROpts ConvOpts) {
3835   assert((Compare.getOpcode() == ISD::SETCC ||
3836           Compare.getOpcode() == ISD::SELECT_CC) &&
3837          "An ISD::SETCC node required here.");
3838 
3839   // Don't convert this comparison to a GPR sequence because there are uses
3840   // of the i1 result (i.e. uses that require the result in the CR).
3841   if ((Compare.getOpcode() == ISD::SETCC) && !allUsesExtend(Compare, CurDAG))
3842     return SDValue();
3843 
3844   SDValue LHS = Compare.getOperand(0);
3845   SDValue RHS = Compare.getOperand(1);
3846 
3847   // The condition code is operand 2 for SETCC and operand 4 for SELECT_CC.
3848   int CCOpNum = Compare.getOpcode() == ISD::SELECT_CC ? 4 : 2;
3849   ISD::CondCode CC =
3850     cast<CondCodeSDNode>(Compare.getOperand(CCOpNum))->get();
3851   EVT InputVT = LHS.getValueType();
3852   if (InputVT != MVT::i32 && InputVT != MVT::i64)
3853     return SDValue();
3854 
3855   if (ConvOpts == SetccInGPROpts::ZExtInvert ||
3856       ConvOpts == SetccInGPROpts::SExtInvert)
3857     CC = ISD::getSetCCInverse(CC, InputVT);
3858 
3859   bool Inputs32Bit = InputVT == MVT::i32;
3860 
3861   SDLoc dl(Compare);
3862   ConstantSDNode *RHSConst = dyn_cast<ConstantSDNode>(RHS);
3863   int64_t RHSValue = RHSConst ? RHSConst->getSExtValue() : INT64_MAX;
3864   bool IsSext = ConvOpts == SetccInGPROpts::SExtOrig ||
3865     ConvOpts == SetccInGPROpts::SExtInvert;
3866 
3867   if (IsSext && Inputs32Bit)
3868     return get32BitSExtCompare(LHS, RHS, CC, RHSValue, dl);
3869   else if (Inputs32Bit)
3870     return get32BitZExtCompare(LHS, RHS, CC, RHSValue, dl);
3871   else if (IsSext)
3872     return get64BitSExtCompare(LHS, RHS, CC, RHSValue, dl);
3873   return get64BitZExtCompare(LHS, RHS, CC, RHSValue, dl);
3874 }
3875 
3876 } // end anonymous namespace
3877 
tryIntCompareInGPR(SDNode * N)3878 bool PPCDAGToDAGISel::tryIntCompareInGPR(SDNode *N) {
3879   if (N->getValueType(0) != MVT::i32 &&
3880       N->getValueType(0) != MVT::i64)
3881     return false;
3882 
3883   // This optimization will emit code that assumes 64-bit registers
3884   // so we don't want to run it in 32-bit mode. Also don't run it
3885   // on functions that are not to be optimized.
3886   if (TM.getOptLevel() == CodeGenOpt::None || !TM.isPPC64())
3887     return false;
3888 
3889   // For POWER10, it is more profitable to use the set boolean extension
3890   // instructions rather than the integer compare elimination codegen.
3891   // Users can override this via the command line option, `--ppc-gpr-icmps`.
3892   if (!(CmpInGPR.getNumOccurrences() > 0) && Subtarget->isISA3_1())
3893     return false;
3894 
3895   switch (N->getOpcode()) {
3896   default: break;
3897   case ISD::ZERO_EXTEND:
3898   case ISD::SIGN_EXTEND:
3899   case ISD::AND:
3900   case ISD::OR:
3901   case ISD::XOR: {
3902     IntegerCompareEliminator ICmpElim(CurDAG, this);
3903     if (SDNode *New = ICmpElim.Select(N)) {
3904       ReplaceNode(N, New);
3905       return true;
3906     }
3907   }
3908   }
3909   return false;
3910 }
3911 
tryBitPermutation(SDNode * N)3912 bool PPCDAGToDAGISel::tryBitPermutation(SDNode *N) {
3913   if (N->getValueType(0) != MVT::i32 &&
3914       N->getValueType(0) != MVT::i64)
3915     return false;
3916 
3917   if (!UseBitPermRewriter)
3918     return false;
3919 
3920   switch (N->getOpcode()) {
3921   default: break;
3922   case ISD::ROTL:
3923   case ISD::SHL:
3924   case ISD::SRL:
3925   case ISD::AND:
3926   case ISD::OR: {
3927     BitPermutationSelector BPS(CurDAG);
3928     if (SDNode *New = BPS.Select(N)) {
3929       ReplaceNode(N, New);
3930       return true;
3931     }
3932     return false;
3933   }
3934   }
3935 
3936   return false;
3937 }
3938 
3939 /// SelectCC - Select a comparison of the specified values with the specified
3940 /// condition code, returning the CR# of the expression.
SelectCC(SDValue LHS,SDValue RHS,ISD::CondCode CC,const SDLoc & dl,SDValue Chain)3941 SDValue PPCDAGToDAGISel::SelectCC(SDValue LHS, SDValue RHS, ISD::CondCode CC,
3942                                   const SDLoc &dl, SDValue Chain) {
3943   // Always select the LHS.
3944   unsigned Opc;
3945 
3946   if (LHS.getValueType() == MVT::i32) {
3947     unsigned Imm;
3948     if (CC == ISD::SETEQ || CC == ISD::SETNE) {
3949       if (isInt32Immediate(RHS, Imm)) {
3950         // SETEQ/SETNE comparison with 16-bit immediate, fold it.
3951         if (isUInt<16>(Imm))
3952           return SDValue(CurDAG->getMachineNode(PPC::CMPLWI, dl, MVT::i32, LHS,
3953                                                 getI32Imm(Imm & 0xFFFF, dl)),
3954                          0);
3955         // If this is a 16-bit signed immediate, fold it.
3956         if (isInt<16>((int)Imm))
3957           return SDValue(CurDAG->getMachineNode(PPC::CMPWI, dl, MVT::i32, LHS,
3958                                                 getI32Imm(Imm & 0xFFFF, dl)),
3959                          0);
3960 
3961         // For non-equality comparisons, the default code would materialize the
3962         // constant, then compare against it, like this:
3963         //   lis r2, 4660
3964         //   ori r2, r2, 22136
3965         //   cmpw cr0, r3, r2
3966         // Since we are just comparing for equality, we can emit this instead:
3967         //   xoris r0,r3,0x1234
3968         //   cmplwi cr0,r0,0x5678
3969         //   beq cr0,L6
3970         SDValue Xor(CurDAG->getMachineNode(PPC::XORIS, dl, MVT::i32, LHS,
3971                                            getI32Imm(Imm >> 16, dl)), 0);
3972         return SDValue(CurDAG->getMachineNode(PPC::CMPLWI, dl, MVT::i32, Xor,
3973                                               getI32Imm(Imm & 0xFFFF, dl)), 0);
3974       }
3975       Opc = PPC::CMPLW;
3976     } else if (ISD::isUnsignedIntSetCC(CC)) {
3977       if (isInt32Immediate(RHS, Imm) && isUInt<16>(Imm))
3978         return SDValue(CurDAG->getMachineNode(PPC::CMPLWI, dl, MVT::i32, LHS,
3979                                               getI32Imm(Imm & 0xFFFF, dl)), 0);
3980       Opc = PPC::CMPLW;
3981     } else {
3982       int16_t SImm;
3983       if (isIntS16Immediate(RHS, SImm))
3984         return SDValue(CurDAG->getMachineNode(PPC::CMPWI, dl, MVT::i32, LHS,
3985                                               getI32Imm((int)SImm & 0xFFFF,
3986                                                         dl)),
3987                          0);
3988       Opc = PPC::CMPW;
3989     }
3990   } else if (LHS.getValueType() == MVT::i64) {
3991     uint64_t Imm;
3992     if (CC == ISD::SETEQ || CC == ISD::SETNE) {
3993       if (isInt64Immediate(RHS.getNode(), Imm)) {
3994         // SETEQ/SETNE comparison with 16-bit immediate, fold it.
3995         if (isUInt<16>(Imm))
3996           return SDValue(CurDAG->getMachineNode(PPC::CMPLDI, dl, MVT::i64, LHS,
3997                                                 getI32Imm(Imm & 0xFFFF, dl)),
3998                          0);
3999         // If this is a 16-bit signed immediate, fold it.
4000         if (isInt<16>(Imm))
4001           return SDValue(CurDAG->getMachineNode(PPC::CMPDI, dl, MVT::i64, LHS,
4002                                                 getI32Imm(Imm & 0xFFFF, dl)),
4003                          0);
4004 
4005         // For non-equality comparisons, the default code would materialize the
4006         // constant, then compare against it, like this:
4007         //   lis r2, 4660
4008         //   ori r2, r2, 22136
4009         //   cmpd cr0, r3, r2
4010         // Since we are just comparing for equality, we can emit this instead:
4011         //   xoris r0,r3,0x1234
4012         //   cmpldi cr0,r0,0x5678
4013         //   beq cr0,L6
4014         if (isUInt<32>(Imm)) {
4015           SDValue Xor(CurDAG->getMachineNode(PPC::XORIS8, dl, MVT::i64, LHS,
4016                                              getI64Imm(Imm >> 16, dl)), 0);
4017           return SDValue(CurDAG->getMachineNode(PPC::CMPLDI, dl, MVT::i64, Xor,
4018                                                 getI64Imm(Imm & 0xFFFF, dl)),
4019                          0);
4020         }
4021       }
4022       Opc = PPC::CMPLD;
4023     } else if (ISD::isUnsignedIntSetCC(CC)) {
4024       if (isInt64Immediate(RHS.getNode(), Imm) && isUInt<16>(Imm))
4025         return SDValue(CurDAG->getMachineNode(PPC::CMPLDI, dl, MVT::i64, LHS,
4026                                               getI64Imm(Imm & 0xFFFF, dl)), 0);
4027       Opc = PPC::CMPLD;
4028     } else {
4029       int16_t SImm;
4030       if (isIntS16Immediate(RHS, SImm))
4031         return SDValue(CurDAG->getMachineNode(PPC::CMPDI, dl, MVT::i64, LHS,
4032                                               getI64Imm(SImm & 0xFFFF, dl)),
4033                          0);
4034       Opc = PPC::CMPD;
4035     }
4036   } else if (LHS.getValueType() == MVT::f32) {
4037     if (Subtarget->hasSPE()) {
4038       switch (CC) {
4039         default:
4040         case ISD::SETEQ:
4041         case ISD::SETNE:
4042           Opc = PPC::EFSCMPEQ;
4043           break;
4044         case ISD::SETLT:
4045         case ISD::SETGE:
4046         case ISD::SETOLT:
4047         case ISD::SETOGE:
4048         case ISD::SETULT:
4049         case ISD::SETUGE:
4050           Opc = PPC::EFSCMPLT;
4051           break;
4052         case ISD::SETGT:
4053         case ISD::SETLE:
4054         case ISD::SETOGT:
4055         case ISD::SETOLE:
4056         case ISD::SETUGT:
4057         case ISD::SETULE:
4058           Opc = PPC::EFSCMPGT;
4059           break;
4060       }
4061     } else
4062       Opc = PPC::FCMPUS;
4063   } else if (LHS.getValueType() == MVT::f64) {
4064     if (Subtarget->hasSPE()) {
4065       switch (CC) {
4066         default:
4067         case ISD::SETEQ:
4068         case ISD::SETNE:
4069           Opc = PPC::EFDCMPEQ;
4070           break;
4071         case ISD::SETLT:
4072         case ISD::SETGE:
4073         case ISD::SETOLT:
4074         case ISD::SETOGE:
4075         case ISD::SETULT:
4076         case ISD::SETUGE:
4077           Opc = PPC::EFDCMPLT;
4078           break;
4079         case ISD::SETGT:
4080         case ISD::SETLE:
4081         case ISD::SETOGT:
4082         case ISD::SETOLE:
4083         case ISD::SETUGT:
4084         case ISD::SETULE:
4085           Opc = PPC::EFDCMPGT;
4086           break;
4087       }
4088     } else
4089       Opc = Subtarget->hasVSX() ? PPC::XSCMPUDP : PPC::FCMPUD;
4090   } else {
4091     assert(LHS.getValueType() == MVT::f128 && "Unknown vt!");
4092     assert(Subtarget->hasP9Vector() && "XSCMPUQP requires Power9 Vector");
4093     Opc = PPC::XSCMPUQP;
4094   }
4095   if (Chain)
4096     return SDValue(
4097         CurDAG->getMachineNode(Opc, dl, MVT::i32, MVT::Other, LHS, RHS, Chain),
4098         0);
4099   else
4100     return SDValue(CurDAG->getMachineNode(Opc, dl, MVT::i32, LHS, RHS), 0);
4101 }
4102 
getPredicateForSetCC(ISD::CondCode CC,const EVT & VT,const PPCSubtarget * Subtarget)4103 static PPC::Predicate getPredicateForSetCC(ISD::CondCode CC, const EVT &VT,
4104                                            const PPCSubtarget *Subtarget) {
4105   // For SPE instructions, the result is in GT bit of the CR
4106   bool UseSPE = Subtarget->hasSPE() && VT.isFloatingPoint();
4107 
4108   switch (CC) {
4109   case ISD::SETUEQ:
4110   case ISD::SETONE:
4111   case ISD::SETOLE:
4112   case ISD::SETOGE:
4113     llvm_unreachable("Should be lowered by legalize!");
4114   default: llvm_unreachable("Unknown condition!");
4115   case ISD::SETOEQ:
4116   case ISD::SETEQ:
4117     return UseSPE ? PPC::PRED_GT : PPC::PRED_EQ;
4118   case ISD::SETUNE:
4119   case ISD::SETNE:
4120     return UseSPE ? PPC::PRED_LE : PPC::PRED_NE;
4121   case ISD::SETOLT:
4122   case ISD::SETLT:
4123     return UseSPE ? PPC::PRED_GT : PPC::PRED_LT;
4124   case ISD::SETULE:
4125   case ISD::SETLE:
4126     return PPC::PRED_LE;
4127   case ISD::SETOGT:
4128   case ISD::SETGT:
4129     return PPC::PRED_GT;
4130   case ISD::SETUGE:
4131   case ISD::SETGE:
4132     return UseSPE ? PPC::PRED_LE : PPC::PRED_GE;
4133   case ISD::SETO:   return PPC::PRED_NU;
4134   case ISD::SETUO:  return PPC::PRED_UN;
4135     // These two are invalid for floating point.  Assume we have int.
4136   case ISD::SETULT: return PPC::PRED_LT;
4137   case ISD::SETUGT: return PPC::PRED_GT;
4138   }
4139 }
4140 
4141 /// getCRIdxForSetCC - Return the index of the condition register field
4142 /// associated with the SetCC condition, and whether or not the field is
4143 /// treated as inverted.  That is, lt = 0; ge = 0 inverted.
getCRIdxForSetCC(ISD::CondCode CC,bool & Invert)4144 static unsigned getCRIdxForSetCC(ISD::CondCode CC, bool &Invert) {
4145   Invert = false;
4146   switch (CC) {
4147   default: llvm_unreachable("Unknown condition!");
4148   case ISD::SETOLT:
4149   case ISD::SETLT:  return 0;                  // Bit #0 = SETOLT
4150   case ISD::SETOGT:
4151   case ISD::SETGT:  return 1;                  // Bit #1 = SETOGT
4152   case ISD::SETOEQ:
4153   case ISD::SETEQ:  return 2;                  // Bit #2 = SETOEQ
4154   case ISD::SETUO:  return 3;                  // Bit #3 = SETUO
4155   case ISD::SETUGE:
4156   case ISD::SETGE:  Invert = true; return 0;   // !Bit #0 = SETUGE
4157   case ISD::SETULE:
4158   case ISD::SETLE:  Invert = true; return 1;   // !Bit #1 = SETULE
4159   case ISD::SETUNE:
4160   case ISD::SETNE:  Invert = true; return 2;   // !Bit #2 = SETUNE
4161   case ISD::SETO:   Invert = true; return 3;   // !Bit #3 = SETO
4162   case ISD::SETUEQ:
4163   case ISD::SETOGE:
4164   case ISD::SETOLE:
4165   case ISD::SETONE:
4166     llvm_unreachable("Invalid branch code: should be expanded by legalize");
4167   // These are invalid for floating point.  Assume integer.
4168   case ISD::SETULT: return 0;
4169   case ISD::SETUGT: return 1;
4170   }
4171 }
4172 
4173 // getVCmpInst: return the vector compare instruction for the specified
4174 // vector type and condition code. Since this is for altivec specific code,
4175 // only support the altivec types (v16i8, v8i16, v4i32, v2i64, v1i128,
4176 // and v4f32).
getVCmpInst(MVT VecVT,ISD::CondCode CC,bool HasVSX,bool & Swap,bool & Negate)4177 static unsigned int getVCmpInst(MVT VecVT, ISD::CondCode CC,
4178                                 bool HasVSX, bool &Swap, bool &Negate) {
4179   Swap = false;
4180   Negate = false;
4181 
4182   if (VecVT.isFloatingPoint()) {
4183     /* Handle some cases by swapping input operands.  */
4184     switch (CC) {
4185       case ISD::SETLE: CC = ISD::SETGE; Swap = true; break;
4186       case ISD::SETLT: CC = ISD::SETGT; Swap = true; break;
4187       case ISD::SETOLE: CC = ISD::SETOGE; Swap = true; break;
4188       case ISD::SETOLT: CC = ISD::SETOGT; Swap = true; break;
4189       case ISD::SETUGE: CC = ISD::SETULE; Swap = true; break;
4190       case ISD::SETUGT: CC = ISD::SETULT; Swap = true; break;
4191       default: break;
4192     }
4193     /* Handle some cases by negating the result.  */
4194     switch (CC) {
4195       case ISD::SETNE: CC = ISD::SETEQ; Negate = true; break;
4196       case ISD::SETUNE: CC = ISD::SETOEQ; Negate = true; break;
4197       case ISD::SETULE: CC = ISD::SETOGT; Negate = true; break;
4198       case ISD::SETULT: CC = ISD::SETOGE; Negate = true; break;
4199       default: break;
4200     }
4201     /* We have instructions implementing the remaining cases.  */
4202     switch (CC) {
4203       case ISD::SETEQ:
4204       case ISD::SETOEQ:
4205         if (VecVT == MVT::v4f32)
4206           return HasVSX ? PPC::XVCMPEQSP : PPC::VCMPEQFP;
4207         else if (VecVT == MVT::v2f64)
4208           return PPC::XVCMPEQDP;
4209         break;
4210       case ISD::SETGT:
4211       case ISD::SETOGT:
4212         if (VecVT == MVT::v4f32)
4213           return HasVSX ? PPC::XVCMPGTSP : PPC::VCMPGTFP;
4214         else if (VecVT == MVT::v2f64)
4215           return PPC::XVCMPGTDP;
4216         break;
4217       case ISD::SETGE:
4218       case ISD::SETOGE:
4219         if (VecVT == MVT::v4f32)
4220           return HasVSX ? PPC::XVCMPGESP : PPC::VCMPGEFP;
4221         else if (VecVT == MVT::v2f64)
4222           return PPC::XVCMPGEDP;
4223         break;
4224       default:
4225         break;
4226     }
4227     llvm_unreachable("Invalid floating-point vector compare condition");
4228   } else {
4229     /* Handle some cases by swapping input operands.  */
4230     switch (CC) {
4231       case ISD::SETGE: CC = ISD::SETLE; Swap = true; break;
4232       case ISD::SETLT: CC = ISD::SETGT; Swap = true; break;
4233       case ISD::SETUGE: CC = ISD::SETULE; Swap = true; break;
4234       case ISD::SETULT: CC = ISD::SETUGT; Swap = true; break;
4235       default: break;
4236     }
4237     /* Handle some cases by negating the result.  */
4238     switch (CC) {
4239       case ISD::SETNE: CC = ISD::SETEQ; Negate = true; break;
4240       case ISD::SETUNE: CC = ISD::SETUEQ; Negate = true; break;
4241       case ISD::SETLE: CC = ISD::SETGT; Negate = true; break;
4242       case ISD::SETULE: CC = ISD::SETUGT; Negate = true; break;
4243       default: break;
4244     }
4245     /* We have instructions implementing the remaining cases.  */
4246     switch (CC) {
4247       case ISD::SETEQ:
4248       case ISD::SETUEQ:
4249         if (VecVT == MVT::v16i8)
4250           return PPC::VCMPEQUB;
4251         else if (VecVT == MVT::v8i16)
4252           return PPC::VCMPEQUH;
4253         else if (VecVT == MVT::v4i32)
4254           return PPC::VCMPEQUW;
4255         else if (VecVT == MVT::v2i64)
4256           return PPC::VCMPEQUD;
4257         else if (VecVT == MVT::v1i128)
4258           return PPC::VCMPEQUQ;
4259         break;
4260       case ISD::SETGT:
4261         if (VecVT == MVT::v16i8)
4262           return PPC::VCMPGTSB;
4263         else if (VecVT == MVT::v8i16)
4264           return PPC::VCMPGTSH;
4265         else if (VecVT == MVT::v4i32)
4266           return PPC::VCMPGTSW;
4267         else if (VecVT == MVT::v2i64)
4268           return PPC::VCMPGTSD;
4269         else if (VecVT == MVT::v1i128)
4270            return PPC::VCMPGTSQ;
4271         break;
4272       case ISD::SETUGT:
4273         if (VecVT == MVT::v16i8)
4274           return PPC::VCMPGTUB;
4275         else if (VecVT == MVT::v8i16)
4276           return PPC::VCMPGTUH;
4277         else if (VecVT == MVT::v4i32)
4278           return PPC::VCMPGTUW;
4279         else if (VecVT == MVT::v2i64)
4280           return PPC::VCMPGTUD;
4281         else if (VecVT == MVT::v1i128)
4282            return PPC::VCMPGTUQ;
4283         break;
4284       default:
4285         break;
4286     }
4287     llvm_unreachable("Invalid integer vector compare condition");
4288   }
4289 }
4290 
trySETCC(SDNode * N)4291 bool PPCDAGToDAGISel::trySETCC(SDNode *N) {
4292   SDLoc dl(N);
4293   unsigned Imm;
4294   bool IsStrict = N->isStrictFPOpcode();
4295   ISD::CondCode CC =
4296       cast<CondCodeSDNode>(N->getOperand(IsStrict ? 3 : 2))->get();
4297   EVT PtrVT =
4298       CurDAG->getTargetLoweringInfo().getPointerTy(CurDAG->getDataLayout());
4299   bool isPPC64 = (PtrVT == MVT::i64);
4300   SDValue Chain = IsStrict ? N->getOperand(0) : SDValue();
4301 
4302   SDValue LHS = N->getOperand(IsStrict ? 1 : 0);
4303   SDValue RHS = N->getOperand(IsStrict ? 2 : 1);
4304 
4305   if (!IsStrict && !Subtarget->useCRBits() && isInt32Immediate(RHS, Imm)) {
4306     // We can codegen setcc op, imm very efficiently compared to a brcond.
4307     // Check for those cases here.
4308     // setcc op, 0
4309     if (Imm == 0) {
4310       SDValue Op = LHS;
4311       switch (CC) {
4312       default: break;
4313       case ISD::SETEQ: {
4314         Op = SDValue(CurDAG->getMachineNode(PPC::CNTLZW, dl, MVT::i32, Op), 0);
4315         SDValue Ops[] = { Op, getI32Imm(27, dl), getI32Imm(5, dl),
4316                           getI32Imm(31, dl) };
4317         CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops);
4318         return true;
4319       }
4320       case ISD::SETNE: {
4321         if (isPPC64) break;
4322         SDValue AD =
4323           SDValue(CurDAG->getMachineNode(PPC::ADDIC, dl, MVT::i32, MVT::Glue,
4324                                          Op, getI32Imm(~0U, dl)), 0);
4325         CurDAG->SelectNodeTo(N, PPC::SUBFE, MVT::i32, AD, Op, AD.getValue(1));
4326         return true;
4327       }
4328       case ISD::SETLT: {
4329         SDValue Ops[] = { Op, getI32Imm(1, dl), getI32Imm(31, dl),
4330                           getI32Imm(31, dl) };
4331         CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops);
4332         return true;
4333       }
4334       case ISD::SETGT: {
4335         SDValue T =
4336           SDValue(CurDAG->getMachineNode(PPC::NEG, dl, MVT::i32, Op), 0);
4337         T = SDValue(CurDAG->getMachineNode(PPC::ANDC, dl, MVT::i32, T, Op), 0);
4338         SDValue Ops[] = { T, getI32Imm(1, dl), getI32Imm(31, dl),
4339                           getI32Imm(31, dl) };
4340         CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops);
4341         return true;
4342       }
4343       }
4344     } else if (Imm == ~0U) {        // setcc op, -1
4345       SDValue Op = LHS;
4346       switch (CC) {
4347       default: break;
4348       case ISD::SETEQ:
4349         if (isPPC64) break;
4350         Op = SDValue(CurDAG->getMachineNode(PPC::ADDIC, dl, MVT::i32, MVT::Glue,
4351                                             Op, getI32Imm(1, dl)), 0);
4352         CurDAG->SelectNodeTo(N, PPC::ADDZE, MVT::i32,
4353                              SDValue(CurDAG->getMachineNode(PPC::LI, dl,
4354                                                             MVT::i32,
4355                                                             getI32Imm(0, dl)),
4356                                      0), Op.getValue(1));
4357         return true;
4358       case ISD::SETNE: {
4359         if (isPPC64) break;
4360         Op = SDValue(CurDAG->getMachineNode(PPC::NOR, dl, MVT::i32, Op, Op), 0);
4361         SDNode *AD = CurDAG->getMachineNode(PPC::ADDIC, dl, MVT::i32, MVT::Glue,
4362                                             Op, getI32Imm(~0U, dl));
4363         CurDAG->SelectNodeTo(N, PPC::SUBFE, MVT::i32, SDValue(AD, 0), Op,
4364                              SDValue(AD, 1));
4365         return true;
4366       }
4367       case ISD::SETLT: {
4368         SDValue AD = SDValue(CurDAG->getMachineNode(PPC::ADDI, dl, MVT::i32, Op,
4369                                                     getI32Imm(1, dl)), 0);
4370         SDValue AN = SDValue(CurDAG->getMachineNode(PPC::AND, dl, MVT::i32, AD,
4371                                                     Op), 0);
4372         SDValue Ops[] = { AN, getI32Imm(1, dl), getI32Imm(31, dl),
4373                           getI32Imm(31, dl) };
4374         CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops);
4375         return true;
4376       }
4377       case ISD::SETGT: {
4378         SDValue Ops[] = { Op, getI32Imm(1, dl), getI32Imm(31, dl),
4379                           getI32Imm(31, dl) };
4380         Op = SDValue(CurDAG->getMachineNode(PPC::RLWINM, dl, MVT::i32, Ops), 0);
4381         CurDAG->SelectNodeTo(N, PPC::XORI, MVT::i32, Op, getI32Imm(1, dl));
4382         return true;
4383       }
4384       }
4385     }
4386   }
4387 
4388   // Altivec Vector compare instructions do not set any CR register by default and
4389   // vector compare operations return the same type as the operands.
4390   if (!IsStrict && LHS.getValueType().isVector()) {
4391     if (Subtarget->hasSPE())
4392       return false;
4393 
4394     EVT VecVT = LHS.getValueType();
4395     bool Swap, Negate;
4396     unsigned int VCmpInst =
4397         getVCmpInst(VecVT.getSimpleVT(), CC, Subtarget->hasVSX(), Swap, Negate);
4398     if (Swap)
4399       std::swap(LHS, RHS);
4400 
4401     EVT ResVT = VecVT.changeVectorElementTypeToInteger();
4402     if (Negate) {
4403       SDValue VCmp(CurDAG->getMachineNode(VCmpInst, dl, ResVT, LHS, RHS), 0);
4404       CurDAG->SelectNodeTo(N, Subtarget->hasVSX() ? PPC::XXLNOR : PPC::VNOR,
4405                            ResVT, VCmp, VCmp);
4406       return true;
4407     }
4408 
4409     CurDAG->SelectNodeTo(N, VCmpInst, ResVT, LHS, RHS);
4410     return true;
4411   }
4412 
4413   if (Subtarget->useCRBits())
4414     return false;
4415 
4416   bool Inv;
4417   unsigned Idx = getCRIdxForSetCC(CC, Inv);
4418   SDValue CCReg = SelectCC(LHS, RHS, CC, dl, Chain);
4419   if (IsStrict)
4420     CurDAG->ReplaceAllUsesOfValueWith(SDValue(N, 1), CCReg.getValue(1));
4421   SDValue IntCR;
4422 
4423   // SPE e*cmp* instructions only set the 'gt' bit, so hard-code that
4424   // The correct compare instruction is already set by SelectCC()
4425   if (Subtarget->hasSPE() && LHS.getValueType().isFloatingPoint()) {
4426     Idx = 1;
4427   }
4428 
4429   // Force the ccreg into CR7.
4430   SDValue CR7Reg = CurDAG->getRegister(PPC::CR7, MVT::i32);
4431 
4432   SDValue InFlag(nullptr, 0);  // Null incoming flag value.
4433   CCReg = CurDAG->getCopyToReg(CurDAG->getEntryNode(), dl, CR7Reg, CCReg,
4434                                InFlag).getValue(1);
4435 
4436   IntCR = SDValue(CurDAG->getMachineNode(PPC::MFOCRF, dl, MVT::i32, CR7Reg,
4437                                          CCReg), 0);
4438 
4439   SDValue Ops[] = { IntCR, getI32Imm((32 - (3 - Idx)) & 31, dl),
4440                       getI32Imm(31, dl), getI32Imm(31, dl) };
4441   if (!Inv) {
4442     CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops);
4443     return true;
4444   }
4445 
4446   // Get the specified bit.
4447   SDValue Tmp =
4448     SDValue(CurDAG->getMachineNode(PPC::RLWINM, dl, MVT::i32, Ops), 0);
4449   CurDAG->SelectNodeTo(N, PPC::XORI, MVT::i32, Tmp, getI32Imm(1, dl));
4450   return true;
4451 }
4452 
4453 /// Does this node represent a load/store node whose address can be represented
4454 /// with a register plus an immediate that's a multiple of \p Val:
isOffsetMultipleOf(SDNode * N,unsigned Val) const4455 bool PPCDAGToDAGISel::isOffsetMultipleOf(SDNode *N, unsigned Val) const {
4456   LoadSDNode *LDN = dyn_cast<LoadSDNode>(N);
4457   StoreSDNode *STN = dyn_cast<StoreSDNode>(N);
4458   SDValue AddrOp;
4459   if (LDN)
4460     AddrOp = LDN->getOperand(1);
4461   else if (STN)
4462     AddrOp = STN->getOperand(2);
4463 
4464   // If the address points a frame object or a frame object with an offset,
4465   // we need to check the object alignment.
4466   short Imm = 0;
4467   if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(
4468           AddrOp.getOpcode() == ISD::ADD ? AddrOp.getOperand(0) :
4469                                            AddrOp)) {
4470     // If op0 is a frame index that is under aligned, we can't do it either,
4471     // because it is translated to r31 or r1 + slot + offset. We won't know the
4472     // slot number until the stack frame is finalized.
4473     const MachineFrameInfo &MFI = CurDAG->getMachineFunction().getFrameInfo();
4474     unsigned SlotAlign = MFI.getObjectAlign(FI->getIndex()).value();
4475     if ((SlotAlign % Val) != 0)
4476       return false;
4477 
4478     // If we have an offset, we need further check on the offset.
4479     if (AddrOp.getOpcode() != ISD::ADD)
4480       return true;
4481   }
4482 
4483   if (AddrOp.getOpcode() == ISD::ADD)
4484     return isIntS16Immediate(AddrOp.getOperand(1), Imm) && !(Imm % Val);
4485 
4486   // If the address comes from the outside, the offset will be zero.
4487   return AddrOp.getOpcode() == ISD::CopyFromReg;
4488 }
4489 
transferMemOperands(SDNode * N,SDNode * Result)4490 void PPCDAGToDAGISel::transferMemOperands(SDNode *N, SDNode *Result) {
4491   // Transfer memoperands.
4492   MachineMemOperand *MemOp = cast<MemSDNode>(N)->getMemOperand();
4493   CurDAG->setNodeMemRefs(cast<MachineSDNode>(Result), {MemOp});
4494 }
4495 
mayUseP9Setb(SDNode * N,const ISD::CondCode & CC,SelectionDAG * DAG,bool & NeedSwapOps,bool & IsUnCmp)4496 static bool mayUseP9Setb(SDNode *N, const ISD::CondCode &CC, SelectionDAG *DAG,
4497                          bool &NeedSwapOps, bool &IsUnCmp) {
4498 
4499   assert(N->getOpcode() == ISD::SELECT_CC && "Expecting a SELECT_CC here.");
4500 
4501   SDValue LHS = N->getOperand(0);
4502   SDValue RHS = N->getOperand(1);
4503   SDValue TrueRes = N->getOperand(2);
4504   SDValue FalseRes = N->getOperand(3);
4505   ConstantSDNode *TrueConst = dyn_cast<ConstantSDNode>(TrueRes);
4506   if (!TrueConst || (N->getSimpleValueType(0) != MVT::i64 &&
4507                      N->getSimpleValueType(0) != MVT::i32))
4508     return false;
4509 
4510   // We are looking for any of:
4511   // (select_cc lhs, rhs,  1, (sext (setcc [lr]hs, [lr]hs, cc2)), cc1)
4512   // (select_cc lhs, rhs, -1, (zext (setcc [lr]hs, [lr]hs, cc2)), cc1)
4513   // (select_cc lhs, rhs,  0, (select_cc [lr]hs, [lr]hs,  1, -1, cc2), seteq)
4514   // (select_cc lhs, rhs,  0, (select_cc [lr]hs, [lr]hs, -1,  1, cc2), seteq)
4515   int64_t TrueResVal = TrueConst->getSExtValue();
4516   if ((TrueResVal < -1 || TrueResVal > 1) ||
4517       (TrueResVal == -1 && FalseRes.getOpcode() != ISD::ZERO_EXTEND) ||
4518       (TrueResVal == 1 && FalseRes.getOpcode() != ISD::SIGN_EXTEND) ||
4519       (TrueResVal == 0 &&
4520        (FalseRes.getOpcode() != ISD::SELECT_CC || CC != ISD::SETEQ)))
4521     return false;
4522 
4523   SDValue SetOrSelCC = FalseRes.getOpcode() == ISD::SELECT_CC
4524                            ? FalseRes
4525                            : FalseRes.getOperand(0);
4526   bool InnerIsSel = SetOrSelCC.getOpcode() == ISD::SELECT_CC;
4527   if (SetOrSelCC.getOpcode() != ISD::SETCC &&
4528       SetOrSelCC.getOpcode() != ISD::SELECT_CC)
4529     return false;
4530 
4531   // Without this setb optimization, the outer SELECT_CC will be manually
4532   // selected to SELECT_CC_I4/SELECT_CC_I8 Pseudo, then expand-isel-pseudos pass
4533   // transforms pseudo instruction to isel instruction. When there are more than
4534   // one use for result like zext/sext, with current optimization we only see
4535   // isel is replaced by setb but can't see any significant gain. Since
4536   // setb has longer latency than original isel, we should avoid this. Another
4537   // point is that setb requires comparison always kept, it can break the
4538   // opportunity to get the comparison away if we have in future.
4539   if (!SetOrSelCC.hasOneUse() || (!InnerIsSel && !FalseRes.hasOneUse()))
4540     return false;
4541 
4542   SDValue InnerLHS = SetOrSelCC.getOperand(0);
4543   SDValue InnerRHS = SetOrSelCC.getOperand(1);
4544   ISD::CondCode InnerCC =
4545       cast<CondCodeSDNode>(SetOrSelCC.getOperand(InnerIsSel ? 4 : 2))->get();
4546   // If the inner comparison is a select_cc, make sure the true/false values are
4547   // 1/-1 and canonicalize it if needed.
4548   if (InnerIsSel) {
4549     ConstantSDNode *SelCCTrueConst =
4550         dyn_cast<ConstantSDNode>(SetOrSelCC.getOperand(2));
4551     ConstantSDNode *SelCCFalseConst =
4552         dyn_cast<ConstantSDNode>(SetOrSelCC.getOperand(3));
4553     if (!SelCCTrueConst || !SelCCFalseConst)
4554       return false;
4555     int64_t SelCCTVal = SelCCTrueConst->getSExtValue();
4556     int64_t SelCCFVal = SelCCFalseConst->getSExtValue();
4557     // The values must be -1/1 (requiring a swap) or 1/-1.
4558     if (SelCCTVal == -1 && SelCCFVal == 1) {
4559       std::swap(InnerLHS, InnerRHS);
4560     } else if (SelCCTVal != 1 || SelCCFVal != -1)
4561       return false;
4562   }
4563 
4564   // Canonicalize unsigned case
4565   if (InnerCC == ISD::SETULT || InnerCC == ISD::SETUGT) {
4566     IsUnCmp = true;
4567     InnerCC = (InnerCC == ISD::SETULT) ? ISD::SETLT : ISD::SETGT;
4568   }
4569 
4570   bool InnerSwapped = false;
4571   if (LHS == InnerRHS && RHS == InnerLHS)
4572     InnerSwapped = true;
4573   else if (LHS != InnerLHS || RHS != InnerRHS)
4574     return false;
4575 
4576   switch (CC) {
4577   // (select_cc lhs, rhs,  0, \
4578   //     (select_cc [lr]hs, [lr]hs, 1, -1, setlt/setgt), seteq)
4579   case ISD::SETEQ:
4580     if (!InnerIsSel)
4581       return false;
4582     if (InnerCC != ISD::SETLT && InnerCC != ISD::SETGT)
4583       return false;
4584     NeedSwapOps = (InnerCC == ISD::SETGT) ? InnerSwapped : !InnerSwapped;
4585     break;
4586 
4587   // (select_cc lhs, rhs, -1, (zext (setcc [lr]hs, [lr]hs, setne)), setu?lt)
4588   // (select_cc lhs, rhs, -1, (zext (setcc lhs, rhs, setgt)), setu?lt)
4589   // (select_cc lhs, rhs, -1, (zext (setcc rhs, lhs, setlt)), setu?lt)
4590   // (select_cc lhs, rhs, 1, (sext (setcc [lr]hs, [lr]hs, setne)), setu?lt)
4591   // (select_cc lhs, rhs, 1, (sext (setcc lhs, rhs, setgt)), setu?lt)
4592   // (select_cc lhs, rhs, 1, (sext (setcc rhs, lhs, setlt)), setu?lt)
4593   case ISD::SETULT:
4594     if (!IsUnCmp && InnerCC != ISD::SETNE)
4595       return false;
4596     IsUnCmp = true;
4597     LLVM_FALLTHROUGH;
4598   case ISD::SETLT:
4599     if (InnerCC == ISD::SETNE || (InnerCC == ISD::SETGT && !InnerSwapped) ||
4600         (InnerCC == ISD::SETLT && InnerSwapped))
4601       NeedSwapOps = (TrueResVal == 1);
4602     else
4603       return false;
4604     break;
4605 
4606   // (select_cc lhs, rhs, 1, (sext (setcc [lr]hs, [lr]hs, setne)), setu?gt)
4607   // (select_cc lhs, rhs, 1, (sext (setcc lhs, rhs, setlt)), setu?gt)
4608   // (select_cc lhs, rhs, 1, (sext (setcc rhs, lhs, setgt)), setu?gt)
4609   // (select_cc lhs, rhs, -1, (zext (setcc [lr]hs, [lr]hs, setne)), setu?gt)
4610   // (select_cc lhs, rhs, -1, (zext (setcc lhs, rhs, setlt)), setu?gt)
4611   // (select_cc lhs, rhs, -1, (zext (setcc rhs, lhs, setgt)), setu?gt)
4612   case ISD::SETUGT:
4613     if (!IsUnCmp && InnerCC != ISD::SETNE)
4614       return false;
4615     IsUnCmp = true;
4616     LLVM_FALLTHROUGH;
4617   case ISD::SETGT:
4618     if (InnerCC == ISD::SETNE || (InnerCC == ISD::SETLT && !InnerSwapped) ||
4619         (InnerCC == ISD::SETGT && InnerSwapped))
4620       NeedSwapOps = (TrueResVal == -1);
4621     else
4622       return false;
4623     break;
4624 
4625   default:
4626     return false;
4627   }
4628 
4629   LLVM_DEBUG(dbgs() << "Found a node that can be lowered to a SETB: ");
4630   LLVM_DEBUG(N->dump());
4631 
4632   return true;
4633 }
4634 
4635 // Return true if it's a software square-root/divide operand.
isSWTestOp(SDValue N)4636 static bool isSWTestOp(SDValue N) {
4637   if (N.getOpcode() == PPCISD::FTSQRT)
4638     return true;
4639   if (N.getNumOperands() < 1 || !isa<ConstantSDNode>(N.getOperand(0)))
4640     return false;
4641   switch (N.getConstantOperandVal(0)) {
4642   case Intrinsic::ppc_vsx_xvtdivdp:
4643   case Intrinsic::ppc_vsx_xvtdivsp:
4644   case Intrinsic::ppc_vsx_xvtsqrtdp:
4645   case Intrinsic::ppc_vsx_xvtsqrtsp:
4646     return true;
4647   }
4648   return false;
4649 }
4650 
tryFoldSWTestBRCC(SDNode * N)4651 bool PPCDAGToDAGISel::tryFoldSWTestBRCC(SDNode *N) {
4652   assert(N->getOpcode() == ISD::BR_CC && "ISD::BR_CC is expected.");
4653   // We are looking for following patterns, where `truncate to i1` actually has
4654   // the same semantic with `and 1`.
4655   // (br_cc seteq, (truncateToi1 SWTestOp), 0) -> (BCC PRED_NU, SWTestOp)
4656   // (br_cc seteq, (and SWTestOp, 2), 0) -> (BCC PRED_NE, SWTestOp)
4657   // (br_cc seteq, (and SWTestOp, 4), 0) -> (BCC PRED_LE, SWTestOp)
4658   // (br_cc seteq, (and SWTestOp, 8), 0) -> (BCC PRED_GE, SWTestOp)
4659   // (br_cc setne, (truncateToi1 SWTestOp), 0) -> (BCC PRED_UN, SWTestOp)
4660   // (br_cc setne, (and SWTestOp, 2), 0) -> (BCC PRED_EQ, SWTestOp)
4661   // (br_cc setne, (and SWTestOp, 4), 0) -> (BCC PRED_GT, SWTestOp)
4662   // (br_cc setne, (and SWTestOp, 8), 0) -> (BCC PRED_LT, SWTestOp)
4663   ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(1))->get();
4664   if (CC != ISD::SETEQ && CC != ISD::SETNE)
4665     return false;
4666 
4667   SDValue CmpRHS = N->getOperand(3);
4668   if (!isa<ConstantSDNode>(CmpRHS) ||
4669       cast<ConstantSDNode>(CmpRHS)->getSExtValue() != 0)
4670     return false;
4671 
4672   SDValue CmpLHS = N->getOperand(2);
4673   if (CmpLHS.getNumOperands() < 1 || !isSWTestOp(CmpLHS.getOperand(0)))
4674     return false;
4675 
4676   unsigned PCC = 0;
4677   bool IsCCNE = CC == ISD::SETNE;
4678   if (CmpLHS.getOpcode() == ISD::AND &&
4679       isa<ConstantSDNode>(CmpLHS.getOperand(1)))
4680     switch (CmpLHS.getConstantOperandVal(1)) {
4681     case 1:
4682       PCC = IsCCNE ? PPC::PRED_UN : PPC::PRED_NU;
4683       break;
4684     case 2:
4685       PCC = IsCCNE ? PPC::PRED_EQ : PPC::PRED_NE;
4686       break;
4687     case 4:
4688       PCC = IsCCNE ? PPC::PRED_GT : PPC::PRED_LE;
4689       break;
4690     case 8:
4691       PCC = IsCCNE ? PPC::PRED_LT : PPC::PRED_GE;
4692       break;
4693     default:
4694       return false;
4695     }
4696   else if (CmpLHS.getOpcode() == ISD::TRUNCATE &&
4697            CmpLHS.getValueType() == MVT::i1)
4698     PCC = IsCCNE ? PPC::PRED_UN : PPC::PRED_NU;
4699 
4700   if (PCC) {
4701     SDLoc dl(N);
4702     SDValue Ops[] = {getI32Imm(PCC, dl), CmpLHS.getOperand(0), N->getOperand(4),
4703                      N->getOperand(0)};
4704     CurDAG->SelectNodeTo(N, PPC::BCC, MVT::Other, Ops);
4705     return true;
4706   }
4707   return false;
4708 }
4709 
tryAsSingleRLWINM(SDNode * N)4710 bool PPCDAGToDAGISel::tryAsSingleRLWINM(SDNode *N) {
4711   assert(N->getOpcode() == ISD::AND && "ISD::AND SDNode expected");
4712   unsigned Imm;
4713   if (!isInt32Immediate(N->getOperand(1), Imm))
4714     return false;
4715 
4716   SDLoc dl(N);
4717   SDValue Val = N->getOperand(0);
4718   unsigned SH, MB, ME;
4719   // If this is an and of a value rotated between 0 and 31 bits and then and'd
4720   // with a mask, emit rlwinm
4721   if (isRotateAndMask(Val.getNode(), Imm, false, SH, MB, ME)) {
4722     Val = Val.getOperand(0);
4723     SDValue Ops[] = {Val, getI32Imm(SH, dl), getI32Imm(MB, dl),
4724                      getI32Imm(ME, dl)};
4725     CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops);
4726     return true;
4727   }
4728 
4729   // If this is just a masked value where the input is not handled, and
4730   // is not a rotate-left (handled by a pattern in the .td file), emit rlwinm
4731   if (isRunOfOnes(Imm, MB, ME) && Val.getOpcode() != ISD::ROTL) {
4732     SDValue Ops[] = {Val, getI32Imm(0, dl), getI32Imm(MB, dl),
4733                      getI32Imm(ME, dl)};
4734     CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops);
4735     return true;
4736   }
4737 
4738   // AND X, 0 -> 0, not "rlwinm 32".
4739   if (Imm == 0) {
4740     ReplaceUses(SDValue(N, 0), N->getOperand(1));
4741     return true;
4742   }
4743 
4744   return false;
4745 }
4746 
tryAsSingleRLWINM8(SDNode * N)4747 bool PPCDAGToDAGISel::tryAsSingleRLWINM8(SDNode *N) {
4748   assert(N->getOpcode() == ISD::AND && "ISD::AND SDNode expected");
4749   uint64_t Imm64;
4750   if (!isInt64Immediate(N->getOperand(1).getNode(), Imm64))
4751     return false;
4752 
4753   unsigned MB, ME;
4754   if (isRunOfOnes64(Imm64, MB, ME) && MB >= 32 && MB <= ME) {
4755     //                MB  ME
4756     // +----------------------+
4757     // |xxxxxxxxxxx00011111000|
4758     // +----------------------+
4759     //  0         32         64
4760     // We can only do it if the MB is larger than 32 and MB <= ME
4761     // as RLWINM will replace the contents of [0 - 32) with [32 - 64) even
4762     // we didn't rotate it.
4763     SDLoc dl(N);
4764     SDValue Ops[] = {N->getOperand(0), getI64Imm(0, dl), getI64Imm(MB - 32, dl),
4765                      getI64Imm(ME - 32, dl)};
4766     CurDAG->SelectNodeTo(N, PPC::RLWINM8, MVT::i64, Ops);
4767     return true;
4768   }
4769 
4770   return false;
4771 }
4772 
tryAsPairOfRLDICL(SDNode * N)4773 bool PPCDAGToDAGISel::tryAsPairOfRLDICL(SDNode *N) {
4774   assert(N->getOpcode() == ISD::AND && "ISD::AND SDNode expected");
4775   uint64_t Imm64;
4776   if (!isInt64Immediate(N->getOperand(1).getNode(), Imm64))
4777     return false;
4778 
4779   // Do nothing if it is 16-bit imm as the pattern in the .td file handle
4780   // it well with "andi.".
4781   if (isUInt<16>(Imm64))
4782     return false;
4783 
4784   SDLoc Loc(N);
4785   SDValue Val = N->getOperand(0);
4786 
4787   // Optimized with two rldicl's as follows:
4788   // Add missing bits on left to the mask and check that the mask is a
4789   // wrapped run of ones, i.e.
4790   // Change pattern |0001111100000011111111|
4791   //             to |1111111100000011111111|.
4792   unsigned NumOfLeadingZeros = countLeadingZeros(Imm64);
4793   if (NumOfLeadingZeros != 0)
4794     Imm64 |= maskLeadingOnes<uint64_t>(NumOfLeadingZeros);
4795 
4796   unsigned MB, ME;
4797   if (!isRunOfOnes64(Imm64, MB, ME))
4798     return false;
4799 
4800   //         ME     MB                   MB-ME+63
4801   // +----------------------+     +----------------------+
4802   // |1111111100000011111111| ->  |0000001111111111111111|
4803   // +----------------------+     +----------------------+
4804   //  0                    63      0                    63
4805   // There are ME + 1 ones on the left and (MB - ME + 63) & 63 zeros in between.
4806   unsigned OnesOnLeft = ME + 1;
4807   unsigned ZerosInBetween = (MB - ME + 63) & 63;
4808   // Rotate left by OnesOnLeft (so leading ones are now trailing ones) and clear
4809   // on the left the bits that are already zeros in the mask.
4810   Val = SDValue(CurDAG->getMachineNode(PPC::RLDICL, Loc, MVT::i64, Val,
4811                                        getI64Imm(OnesOnLeft, Loc),
4812                                        getI64Imm(ZerosInBetween, Loc)),
4813                 0);
4814   //        MB-ME+63                      ME     MB
4815   // +----------------------+     +----------------------+
4816   // |0000001111111111111111| ->  |0001111100000011111111|
4817   // +----------------------+     +----------------------+
4818   //  0                    63      0                    63
4819   // Rotate back by 64 - OnesOnLeft to undo previous rotate. Then clear on the
4820   // left the number of ones we previously added.
4821   SDValue Ops[] = {Val, getI64Imm(64 - OnesOnLeft, Loc),
4822                    getI64Imm(NumOfLeadingZeros, Loc)};
4823   CurDAG->SelectNodeTo(N, PPC::RLDICL, MVT::i64, Ops);
4824   return true;
4825 }
4826 
tryAsSingleRLWIMI(SDNode * N)4827 bool PPCDAGToDAGISel::tryAsSingleRLWIMI(SDNode *N) {
4828   assert(N->getOpcode() == ISD::AND && "ISD::AND SDNode expected");
4829   unsigned Imm;
4830   if (!isInt32Immediate(N->getOperand(1), Imm))
4831     return false;
4832 
4833   SDValue Val = N->getOperand(0);
4834   unsigned Imm2;
4835   // ISD::OR doesn't get all the bitfield insertion fun.
4836   // (and (or x, c1), c2) where isRunOfOnes(~(c1^c2)) might be a
4837   // bitfield insert.
4838   if (Val.getOpcode() != ISD::OR || !isInt32Immediate(Val.getOperand(1), Imm2))
4839     return false;
4840 
4841   // The idea here is to check whether this is equivalent to:
4842   //   (c1 & m) | (x & ~m)
4843   // where m is a run-of-ones mask. The logic here is that, for each bit in
4844   // c1 and c2:
4845   //  - if both are 1, then the output will be 1.
4846   //  - if both are 0, then the output will be 0.
4847   //  - if the bit in c1 is 0, and the bit in c2 is 1, then the output will
4848   //    come from x.
4849   //  - if the bit in c1 is 1, and the bit in c2 is 0, then the output will
4850   //    be 0.
4851   //  If that last condition is never the case, then we can form m from the
4852   //  bits that are the same between c1 and c2.
4853   unsigned MB, ME;
4854   if (isRunOfOnes(~(Imm ^ Imm2), MB, ME) && !(~Imm & Imm2)) {
4855     SDLoc dl(N);
4856     SDValue Ops[] = {Val.getOperand(0), Val.getOperand(1), getI32Imm(0, dl),
4857                      getI32Imm(MB, dl), getI32Imm(ME, dl)};
4858     ReplaceNode(N, CurDAG->getMachineNode(PPC::RLWIMI, dl, MVT::i32, Ops));
4859     return true;
4860   }
4861 
4862   return false;
4863 }
4864 
tryAsSingleRLDICL(SDNode * N)4865 bool PPCDAGToDAGISel::tryAsSingleRLDICL(SDNode *N) {
4866   assert(N->getOpcode() == ISD::AND && "ISD::AND SDNode expected");
4867   uint64_t Imm64;
4868   if (!isInt64Immediate(N->getOperand(1).getNode(), Imm64) || !isMask_64(Imm64))
4869     return false;
4870 
4871   // If this is a 64-bit zero-extension mask, emit rldicl.
4872   unsigned MB = 64 - countTrailingOnes(Imm64);
4873   unsigned SH = 0;
4874   unsigned Imm;
4875   SDValue Val = N->getOperand(0);
4876   SDLoc dl(N);
4877 
4878   if (Val.getOpcode() == ISD::ANY_EXTEND) {
4879     auto Op0 = Val.getOperand(0);
4880     if (Op0.getOpcode() == ISD::SRL &&
4881         isInt32Immediate(Op0.getOperand(1).getNode(), Imm) && Imm <= MB) {
4882 
4883       auto ResultType = Val.getNode()->getValueType(0);
4884       auto ImDef = CurDAG->getMachineNode(PPC::IMPLICIT_DEF, dl, ResultType);
4885       SDValue IDVal(ImDef, 0);
4886 
4887       Val = SDValue(CurDAG->getMachineNode(PPC::INSERT_SUBREG, dl, ResultType,
4888                                            IDVal, Op0.getOperand(0),
4889                                            getI32Imm(1, dl)),
4890                     0);
4891       SH = 64 - Imm;
4892     }
4893   }
4894 
4895   // If the operand is a logical right shift, we can fold it into this
4896   // instruction: rldicl(rldicl(x, 64-n, n), 0, mb) -> rldicl(x, 64-n, mb)
4897   // for n <= mb. The right shift is really a left rotate followed by a
4898   // mask, and this mask is a more-restrictive sub-mask of the mask implied
4899   // by the shift.
4900   if (Val.getOpcode() == ISD::SRL &&
4901       isInt32Immediate(Val.getOperand(1).getNode(), Imm) && Imm <= MB) {
4902     assert(Imm < 64 && "Illegal shift amount");
4903     Val = Val.getOperand(0);
4904     SH = 64 - Imm;
4905   }
4906 
4907   SDValue Ops[] = {Val, getI32Imm(SH, dl), getI32Imm(MB, dl)};
4908   CurDAG->SelectNodeTo(N, PPC::RLDICL, MVT::i64, Ops);
4909   return true;
4910 }
4911 
tryAsSingleRLDICR(SDNode * N)4912 bool PPCDAGToDAGISel::tryAsSingleRLDICR(SDNode *N) {
4913   assert(N->getOpcode() == ISD::AND && "ISD::AND SDNode expected");
4914   uint64_t Imm64;
4915   if (!isInt64Immediate(N->getOperand(1).getNode(), Imm64) ||
4916       !isMask_64(~Imm64))
4917     return false;
4918 
4919   // If this is a negated 64-bit zero-extension mask,
4920   // i.e. the immediate is a sequence of ones from most significant side
4921   // and all zero for reminder, we should use rldicr.
4922   unsigned MB = 63 - countTrailingOnes(~Imm64);
4923   unsigned SH = 0;
4924   SDLoc dl(N);
4925   SDValue Ops[] = {N->getOperand(0), getI32Imm(SH, dl), getI32Imm(MB, dl)};
4926   CurDAG->SelectNodeTo(N, PPC::RLDICR, MVT::i64, Ops);
4927   return true;
4928 }
4929 
tryAsSingleRLDIMI(SDNode * N)4930 bool PPCDAGToDAGISel::tryAsSingleRLDIMI(SDNode *N) {
4931   assert(N->getOpcode() == ISD::OR && "ISD::OR SDNode expected");
4932   uint64_t Imm64;
4933   unsigned MB, ME;
4934   SDValue N0 = N->getOperand(0);
4935 
4936   // We won't get fewer instructions if the imm is 32-bit integer.
4937   // rldimi requires the imm to have consecutive ones with both sides zero.
4938   // Also, make sure the first Op has only one use, otherwise this may increase
4939   // register pressure since rldimi is destructive.
4940   if (!isInt64Immediate(N->getOperand(1).getNode(), Imm64) ||
4941       isUInt<32>(Imm64) || !isRunOfOnes64(Imm64, MB, ME) || !N0.hasOneUse())
4942     return false;
4943 
4944   unsigned SH = 63 - ME;
4945   SDLoc Dl(N);
4946   // Use select64Imm for making LI instr instead of directly putting Imm64
4947   SDValue Ops[] = {
4948       N->getOperand(0),
4949       SDValue(selectI64Imm(CurDAG, getI64Imm(-1, Dl).getNode()), 0),
4950       getI32Imm(SH, Dl), getI32Imm(MB, Dl)};
4951   CurDAG->SelectNodeTo(N, PPC::RLDIMI, MVT::i64, Ops);
4952   return true;
4953 }
4954 
4955 // Select - Convert the specified operand from a target-independent to a
4956 // target-specific node if it hasn't already been changed.
Select(SDNode * N)4957 void PPCDAGToDAGISel::Select(SDNode *N) {
4958   SDLoc dl(N);
4959   if (N->isMachineOpcode()) {
4960     N->setNodeId(-1);
4961     return;   // Already selected.
4962   }
4963 
4964   // In case any misguided DAG-level optimizations form an ADD with a
4965   // TargetConstant operand, crash here instead of miscompiling (by selecting
4966   // an r+r add instead of some kind of r+i add).
4967   if (N->getOpcode() == ISD::ADD &&
4968       N->getOperand(1).getOpcode() == ISD::TargetConstant)
4969     llvm_unreachable("Invalid ADD with TargetConstant operand");
4970 
4971   // Try matching complex bit permutations before doing anything else.
4972   if (tryBitPermutation(N))
4973     return;
4974 
4975   // Try to emit integer compares as GPR-only sequences (i.e. no use of CR).
4976   if (tryIntCompareInGPR(N))
4977     return;
4978 
4979   switch (N->getOpcode()) {
4980   default: break;
4981 
4982   case ISD::Constant:
4983     if (N->getValueType(0) == MVT::i64) {
4984       ReplaceNode(N, selectI64Imm(CurDAG, N));
4985       return;
4986     }
4987     break;
4988 
4989   case ISD::INTRINSIC_WO_CHAIN: {
4990     if (!Subtarget->isISA3_1())
4991       break;
4992     unsigned Opcode = 0;
4993     switch (N->getConstantOperandVal(0)) {
4994     default:
4995       break;
4996     case Intrinsic::ppc_altivec_vstribr_p:
4997       Opcode = PPC::VSTRIBR_rec;
4998       break;
4999     case Intrinsic::ppc_altivec_vstribl_p:
5000       Opcode = PPC::VSTRIBL_rec;
5001       break;
5002     case Intrinsic::ppc_altivec_vstrihr_p:
5003       Opcode = PPC::VSTRIHR_rec;
5004       break;
5005     case Intrinsic::ppc_altivec_vstrihl_p:
5006       Opcode = PPC::VSTRIHL_rec;
5007       break;
5008     }
5009     if (!Opcode)
5010       break;
5011 
5012     // Generate the appropriate vector string isolate intrinsic to match.
5013     EVT VTs[] = {MVT::v16i8, MVT::Glue};
5014     SDValue VecStrOp =
5015         SDValue(CurDAG->getMachineNode(Opcode, dl, VTs, N->getOperand(2)), 0);
5016     // Vector string isolate instructions update the EQ bit of CR6.
5017     // Generate a SETBC instruction to extract the bit and place it in a GPR.
5018     SDValue SubRegIdx = CurDAG->getTargetConstant(PPC::sub_eq, dl, MVT::i32);
5019     SDValue CR6Reg = CurDAG->getRegister(PPC::CR6, MVT::i32);
5020     SDValue CRBit = SDValue(
5021         CurDAG->getMachineNode(TargetOpcode::EXTRACT_SUBREG, dl, MVT::i1,
5022                                CR6Reg, SubRegIdx, VecStrOp.getValue(1)),
5023         0);
5024     CurDAG->SelectNodeTo(N, PPC::SETBC, MVT::i32, CRBit);
5025     return;
5026   }
5027 
5028   case ISD::SETCC:
5029   case ISD::STRICT_FSETCC:
5030   case ISD::STRICT_FSETCCS:
5031     if (trySETCC(N))
5032       return;
5033     break;
5034   // These nodes will be transformed into GETtlsADDR32 node, which
5035   // later becomes BL_TLS __tls_get_addr(sym at tlsgd)@PLT
5036   case PPCISD::ADDI_TLSLD_L_ADDR:
5037   case PPCISD::ADDI_TLSGD_L_ADDR: {
5038     const Module *Mod = MF->getFunction().getParent();
5039     if (PPCLowering->getPointerTy(CurDAG->getDataLayout()) != MVT::i32 ||
5040         !Subtarget->isSecurePlt() || !Subtarget->isTargetELF() ||
5041         Mod->getPICLevel() == PICLevel::SmallPIC)
5042       break;
5043     // Attach global base pointer on GETtlsADDR32 node in order to
5044     // generate secure plt code for TLS symbols.
5045     getGlobalBaseReg();
5046   } break;
5047   case PPCISD::CALL: {
5048     if (PPCLowering->getPointerTy(CurDAG->getDataLayout()) != MVT::i32 ||
5049         !TM.isPositionIndependent() || !Subtarget->isSecurePlt() ||
5050         !Subtarget->isTargetELF())
5051       break;
5052 
5053     SDValue Op = N->getOperand(1);
5054 
5055     if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Op)) {
5056       if (GA->getTargetFlags() == PPCII::MO_PLT)
5057         getGlobalBaseReg();
5058     }
5059     else if (ExternalSymbolSDNode *ES = dyn_cast<ExternalSymbolSDNode>(Op)) {
5060       if (ES->getTargetFlags() == PPCII::MO_PLT)
5061         getGlobalBaseReg();
5062     }
5063   }
5064     break;
5065 
5066   case PPCISD::GlobalBaseReg:
5067     ReplaceNode(N, getGlobalBaseReg());
5068     return;
5069 
5070   case ISD::FrameIndex:
5071     selectFrameIndex(N, N);
5072     return;
5073 
5074   case PPCISD::MFOCRF: {
5075     SDValue InFlag = N->getOperand(1);
5076     ReplaceNode(N, CurDAG->getMachineNode(PPC::MFOCRF, dl, MVT::i32,
5077                                           N->getOperand(0), InFlag));
5078     return;
5079   }
5080 
5081   case PPCISD::READ_TIME_BASE:
5082     ReplaceNode(N, CurDAG->getMachineNode(PPC::ReadTB, dl, MVT::i32, MVT::i32,
5083                                           MVT::Other, N->getOperand(0)));
5084     return;
5085 
5086   case PPCISD::SRA_ADDZE: {
5087     SDValue N0 = N->getOperand(0);
5088     SDValue ShiftAmt =
5089       CurDAG->getTargetConstant(*cast<ConstantSDNode>(N->getOperand(1))->
5090                                   getConstantIntValue(), dl,
5091                                   N->getValueType(0));
5092     if (N->getValueType(0) == MVT::i64) {
5093       SDNode *Op =
5094         CurDAG->getMachineNode(PPC::SRADI, dl, MVT::i64, MVT::Glue,
5095                                N0, ShiftAmt);
5096       CurDAG->SelectNodeTo(N, PPC::ADDZE8, MVT::i64, SDValue(Op, 0),
5097                            SDValue(Op, 1));
5098       return;
5099     } else {
5100       assert(N->getValueType(0) == MVT::i32 &&
5101              "Expecting i64 or i32 in PPCISD::SRA_ADDZE");
5102       SDNode *Op =
5103         CurDAG->getMachineNode(PPC::SRAWI, dl, MVT::i32, MVT::Glue,
5104                                N0, ShiftAmt);
5105       CurDAG->SelectNodeTo(N, PPC::ADDZE, MVT::i32, SDValue(Op, 0),
5106                            SDValue(Op, 1));
5107       return;
5108     }
5109   }
5110 
5111   case ISD::STORE: {
5112     // Change TLS initial-exec D-form stores to X-form stores.
5113     StoreSDNode *ST = cast<StoreSDNode>(N);
5114     if (EnableTLSOpt && Subtarget->isELFv2ABI() &&
5115         ST->getAddressingMode() != ISD::PRE_INC)
5116       if (tryTLSXFormStore(ST))
5117         return;
5118     break;
5119   }
5120   case ISD::LOAD: {
5121     // Handle preincrement loads.
5122     LoadSDNode *LD = cast<LoadSDNode>(N);
5123     EVT LoadedVT = LD->getMemoryVT();
5124 
5125     // Normal loads are handled by code generated from the .td file.
5126     if (LD->getAddressingMode() != ISD::PRE_INC) {
5127       // Change TLS initial-exec D-form loads to X-form loads.
5128       if (EnableTLSOpt && Subtarget->isELFv2ABI())
5129         if (tryTLSXFormLoad(LD))
5130           return;
5131       break;
5132     }
5133 
5134     SDValue Offset = LD->getOffset();
5135     if (Offset.getOpcode() == ISD::TargetConstant ||
5136         Offset.getOpcode() == ISD::TargetGlobalAddress) {
5137 
5138       unsigned Opcode;
5139       bool isSExt = LD->getExtensionType() == ISD::SEXTLOAD;
5140       if (LD->getValueType(0) != MVT::i64) {
5141         // Handle PPC32 integer and normal FP loads.
5142         assert((!isSExt || LoadedVT == MVT::i16) && "Invalid sext update load");
5143         switch (LoadedVT.getSimpleVT().SimpleTy) {
5144           default: llvm_unreachable("Invalid PPC load type!");
5145           case MVT::f64: Opcode = PPC::LFDU; break;
5146           case MVT::f32: Opcode = PPC::LFSU; break;
5147           case MVT::i32: Opcode = PPC::LWZU; break;
5148           case MVT::i16: Opcode = isSExt ? PPC::LHAU : PPC::LHZU; break;
5149           case MVT::i1:
5150           case MVT::i8:  Opcode = PPC::LBZU; break;
5151         }
5152       } else {
5153         assert(LD->getValueType(0) == MVT::i64 && "Unknown load result type!");
5154         assert((!isSExt || LoadedVT == MVT::i16) && "Invalid sext update load");
5155         switch (LoadedVT.getSimpleVT().SimpleTy) {
5156           default: llvm_unreachable("Invalid PPC load type!");
5157           case MVT::i64: Opcode = PPC::LDU; break;
5158           case MVT::i32: Opcode = PPC::LWZU8; break;
5159           case MVT::i16: Opcode = isSExt ? PPC::LHAU8 : PPC::LHZU8; break;
5160           case MVT::i1:
5161           case MVT::i8:  Opcode = PPC::LBZU8; break;
5162         }
5163       }
5164 
5165       SDValue Chain = LD->getChain();
5166       SDValue Base = LD->getBasePtr();
5167       SDValue Ops[] = { Offset, Base, Chain };
5168       SDNode *MN = CurDAG->getMachineNode(
5169           Opcode, dl, LD->getValueType(0),
5170           PPCLowering->getPointerTy(CurDAG->getDataLayout()), MVT::Other, Ops);
5171       transferMemOperands(N, MN);
5172       ReplaceNode(N, MN);
5173       return;
5174     } else {
5175       unsigned Opcode;
5176       bool isSExt = LD->getExtensionType() == ISD::SEXTLOAD;
5177       if (LD->getValueType(0) != MVT::i64) {
5178         // Handle PPC32 integer and normal FP loads.
5179         assert((!isSExt || LoadedVT == MVT::i16) && "Invalid sext update load");
5180         switch (LoadedVT.getSimpleVT().SimpleTy) {
5181           default: llvm_unreachable("Invalid PPC load type!");
5182           case MVT::f64: Opcode = PPC::LFDUX; break;
5183           case MVT::f32: Opcode = PPC::LFSUX; break;
5184           case MVT::i32: Opcode = PPC::LWZUX; break;
5185           case MVT::i16: Opcode = isSExt ? PPC::LHAUX : PPC::LHZUX; break;
5186           case MVT::i1:
5187           case MVT::i8:  Opcode = PPC::LBZUX; break;
5188         }
5189       } else {
5190         assert(LD->getValueType(0) == MVT::i64 && "Unknown load result type!");
5191         assert((!isSExt || LoadedVT == MVT::i16 || LoadedVT == MVT::i32) &&
5192                "Invalid sext update load");
5193         switch (LoadedVT.getSimpleVT().SimpleTy) {
5194           default: llvm_unreachable("Invalid PPC load type!");
5195           case MVT::i64: Opcode = PPC::LDUX; break;
5196           case MVT::i32: Opcode = isSExt ? PPC::LWAUX  : PPC::LWZUX8; break;
5197           case MVT::i16: Opcode = isSExt ? PPC::LHAUX8 : PPC::LHZUX8; break;
5198           case MVT::i1:
5199           case MVT::i8:  Opcode = PPC::LBZUX8; break;
5200         }
5201       }
5202 
5203       SDValue Chain = LD->getChain();
5204       SDValue Base = LD->getBasePtr();
5205       SDValue Ops[] = { Base, Offset, Chain };
5206       SDNode *MN = CurDAG->getMachineNode(
5207           Opcode, dl, LD->getValueType(0),
5208           PPCLowering->getPointerTy(CurDAG->getDataLayout()), MVT::Other, Ops);
5209       transferMemOperands(N, MN);
5210       ReplaceNode(N, MN);
5211       return;
5212     }
5213   }
5214 
5215   case ISD::AND:
5216     // If this is an 'and' with a mask, try to emit rlwinm/rldicl/rldicr
5217     if (tryAsSingleRLWINM(N) || tryAsSingleRLWIMI(N) || tryAsSingleRLDICL(N) ||
5218         tryAsSingleRLDICR(N) || tryAsSingleRLWINM8(N) || tryAsPairOfRLDICL(N))
5219       return;
5220 
5221     // Other cases are autogenerated.
5222     break;
5223   case ISD::OR: {
5224     if (N->getValueType(0) == MVT::i32)
5225       if (tryBitfieldInsert(N))
5226         return;
5227 
5228     int16_t Imm;
5229     if (N->getOperand(0)->getOpcode() == ISD::FrameIndex &&
5230         isIntS16Immediate(N->getOperand(1), Imm)) {
5231       KnownBits LHSKnown = CurDAG->computeKnownBits(N->getOperand(0));
5232 
5233       // If this is equivalent to an add, then we can fold it with the
5234       // FrameIndex calculation.
5235       if ((LHSKnown.Zero.getZExtValue()|~(uint64_t)Imm) == ~0ULL) {
5236         selectFrameIndex(N, N->getOperand(0).getNode(), (int)Imm);
5237         return;
5238       }
5239     }
5240 
5241     // If this is 'or' against an imm with consecutive ones and both sides zero,
5242     // try to emit rldimi
5243     if (tryAsSingleRLDIMI(N))
5244       return;
5245 
5246     // OR with a 32-bit immediate can be handled by ori + oris
5247     // without creating an immediate in a GPR.
5248     uint64_t Imm64 = 0;
5249     bool IsPPC64 = Subtarget->isPPC64();
5250     if (IsPPC64 && isInt64Immediate(N->getOperand(1), Imm64) &&
5251         (Imm64 & ~0xFFFFFFFFuLL) == 0) {
5252       // If ImmHi (ImmHi) is zero, only one ori (oris) is generated later.
5253       uint64_t ImmHi = Imm64 >> 16;
5254       uint64_t ImmLo = Imm64 & 0xFFFF;
5255       if (ImmHi != 0 && ImmLo != 0) {
5256         SDNode *Lo = CurDAG->getMachineNode(PPC::ORI8, dl, MVT::i64,
5257                                             N->getOperand(0),
5258                                             getI16Imm(ImmLo, dl));
5259         SDValue Ops1[] = { SDValue(Lo, 0), getI16Imm(ImmHi, dl)};
5260         CurDAG->SelectNodeTo(N, PPC::ORIS8, MVT::i64, Ops1);
5261         return;
5262       }
5263     }
5264 
5265     // Other cases are autogenerated.
5266     break;
5267   }
5268   case ISD::XOR: {
5269     // XOR with a 32-bit immediate can be handled by xori + xoris
5270     // without creating an immediate in a GPR.
5271     uint64_t Imm64 = 0;
5272     bool IsPPC64 = Subtarget->isPPC64();
5273     if (IsPPC64 && isInt64Immediate(N->getOperand(1), Imm64) &&
5274         (Imm64 & ~0xFFFFFFFFuLL) == 0) {
5275       // If ImmHi (ImmHi) is zero, only one xori (xoris) is generated later.
5276       uint64_t ImmHi = Imm64 >> 16;
5277       uint64_t ImmLo = Imm64 & 0xFFFF;
5278       if (ImmHi != 0 && ImmLo != 0) {
5279         SDNode *Lo = CurDAG->getMachineNode(PPC::XORI8, dl, MVT::i64,
5280                                             N->getOperand(0),
5281                                             getI16Imm(ImmLo, dl));
5282         SDValue Ops1[] = { SDValue(Lo, 0), getI16Imm(ImmHi, dl)};
5283         CurDAG->SelectNodeTo(N, PPC::XORIS8, MVT::i64, Ops1);
5284         return;
5285       }
5286     }
5287 
5288     break;
5289   }
5290   case ISD::ADD: {
5291     int16_t Imm;
5292     if (N->getOperand(0)->getOpcode() == ISD::FrameIndex &&
5293         isIntS16Immediate(N->getOperand(1), Imm)) {
5294       selectFrameIndex(N, N->getOperand(0).getNode(), (int)Imm);
5295       return;
5296     }
5297 
5298     break;
5299   }
5300   case ISD::SHL: {
5301     unsigned Imm, SH, MB, ME;
5302     if (isOpcWithIntImmediate(N->getOperand(0).getNode(), ISD::AND, Imm) &&
5303         isRotateAndMask(N, Imm, true, SH, MB, ME)) {
5304       SDValue Ops[] = { N->getOperand(0).getOperand(0),
5305                           getI32Imm(SH, dl), getI32Imm(MB, dl),
5306                           getI32Imm(ME, dl) };
5307       CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops);
5308       return;
5309     }
5310 
5311     // Other cases are autogenerated.
5312     break;
5313   }
5314   case ISD::SRL: {
5315     unsigned Imm, SH, MB, ME;
5316     if (isOpcWithIntImmediate(N->getOperand(0).getNode(), ISD::AND, Imm) &&
5317         isRotateAndMask(N, Imm, true, SH, MB, ME)) {
5318       SDValue Ops[] = { N->getOperand(0).getOperand(0),
5319                           getI32Imm(SH, dl), getI32Imm(MB, dl),
5320                           getI32Imm(ME, dl) };
5321       CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops);
5322       return;
5323     }
5324 
5325     // Other cases are autogenerated.
5326     break;
5327   }
5328   case ISD::MUL: {
5329     SDValue Op1 = N->getOperand(1);
5330     if (Op1.getOpcode() != ISD::Constant || Op1.getValueType() != MVT::i64)
5331       break;
5332 
5333     // If the multiplier fits int16, we can handle it with mulli.
5334     int64_t Imm = cast<ConstantSDNode>(Op1)->getZExtValue();
5335     unsigned Shift = countTrailingZeros<uint64_t>(Imm);
5336     if (isInt<16>(Imm) || !Shift)
5337       break;
5338 
5339     // If the shifted value fits int16, we can do this transformation:
5340     // (mul X, c1 << c2) -> (rldicr (mulli X, c1) c2). We do this in ISEL due to
5341     // DAGCombiner prefers (shl (mul X, c1), c2) -> (mul X, c1 << c2).
5342     uint64_t ImmSh = Imm >> Shift;
5343     if (isInt<16>(ImmSh)) {
5344       uint64_t SextImm = SignExtend64(ImmSh & 0xFFFF, 16);
5345       SDValue SDImm = CurDAG->getTargetConstant(SextImm, dl, MVT::i64);
5346       SDNode *MulNode = CurDAG->getMachineNode(PPC::MULLI8, dl, MVT::i64,
5347                                                N->getOperand(0), SDImm);
5348       CurDAG->SelectNodeTo(N, PPC::RLDICR, MVT::i64, SDValue(MulNode, 0),
5349                            getI32Imm(Shift, dl), getI32Imm(63 - Shift, dl));
5350       return;
5351     }
5352     break;
5353   }
5354   // FIXME: Remove this once the ANDI glue bug is fixed:
5355   case PPCISD::ANDI_rec_1_EQ_BIT:
5356   case PPCISD::ANDI_rec_1_GT_BIT: {
5357     if (!ANDIGlueBug)
5358       break;
5359 
5360     EVT InVT = N->getOperand(0).getValueType();
5361     assert((InVT == MVT::i64 || InVT == MVT::i32) &&
5362            "Invalid input type for ANDI_rec_1_EQ_BIT");
5363 
5364     unsigned Opcode = (InVT == MVT::i64) ? PPC::ANDI8_rec : PPC::ANDI_rec;
5365     SDValue AndI(CurDAG->getMachineNode(Opcode, dl, InVT, MVT::Glue,
5366                                         N->getOperand(0),
5367                                         CurDAG->getTargetConstant(1, dl, InVT)),
5368                  0);
5369     SDValue CR0Reg = CurDAG->getRegister(PPC::CR0, MVT::i32);
5370     SDValue SRIdxVal = CurDAG->getTargetConstant(
5371         N->getOpcode() == PPCISD::ANDI_rec_1_EQ_BIT ? PPC::sub_eq : PPC::sub_gt,
5372         dl, MVT::i32);
5373 
5374     CurDAG->SelectNodeTo(N, TargetOpcode::EXTRACT_SUBREG, MVT::i1, CR0Reg,
5375                          SRIdxVal, SDValue(AndI.getNode(), 1) /* glue */);
5376     return;
5377   }
5378   case ISD::SELECT_CC: {
5379     ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(4))->get();
5380     EVT PtrVT =
5381         CurDAG->getTargetLoweringInfo().getPointerTy(CurDAG->getDataLayout());
5382     bool isPPC64 = (PtrVT == MVT::i64);
5383 
5384     // If this is a select of i1 operands, we'll pattern match it.
5385     if (Subtarget->useCRBits() && N->getOperand(0).getValueType() == MVT::i1)
5386       break;
5387 
5388     if (Subtarget->isISA3_0() && Subtarget->isPPC64()) {
5389       bool NeedSwapOps = false;
5390       bool IsUnCmp = false;
5391       if (mayUseP9Setb(N, CC, CurDAG, NeedSwapOps, IsUnCmp)) {
5392         SDValue LHS = N->getOperand(0);
5393         SDValue RHS = N->getOperand(1);
5394         if (NeedSwapOps)
5395           std::swap(LHS, RHS);
5396 
5397         // Make use of SelectCC to generate the comparison to set CR bits, for
5398         // equality comparisons having one literal operand, SelectCC probably
5399         // doesn't need to materialize the whole literal and just use xoris to
5400         // check it first, it leads the following comparison result can't
5401         // exactly represent GT/LT relationship. So to avoid this we specify
5402         // SETGT/SETUGT here instead of SETEQ.
5403         SDValue GenCC =
5404             SelectCC(LHS, RHS, IsUnCmp ? ISD::SETUGT : ISD::SETGT, dl);
5405         CurDAG->SelectNodeTo(
5406             N, N->getSimpleValueType(0) == MVT::i64 ? PPC::SETB8 : PPC::SETB,
5407             N->getValueType(0), GenCC);
5408         NumP9Setb++;
5409         return;
5410       }
5411     }
5412 
5413     // Handle the setcc cases here.  select_cc lhs, 0, 1, 0, cc
5414     if (!isPPC64)
5415       if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N->getOperand(1)))
5416         if (ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N->getOperand(2)))
5417           if (ConstantSDNode *N3C = dyn_cast<ConstantSDNode>(N->getOperand(3)))
5418             if (N1C->isNullValue() && N3C->isNullValue() &&
5419                 N2C->getZExtValue() == 1ULL && CC == ISD::SETNE &&
5420                 // FIXME: Implement this optzn for PPC64.
5421                 N->getValueType(0) == MVT::i32) {
5422               SDNode *Tmp =
5423                 CurDAG->getMachineNode(PPC::ADDIC, dl, MVT::i32, MVT::Glue,
5424                                        N->getOperand(0), getI32Imm(~0U, dl));
5425               CurDAG->SelectNodeTo(N, PPC::SUBFE, MVT::i32, SDValue(Tmp, 0),
5426                                    N->getOperand(0), SDValue(Tmp, 1));
5427               return;
5428             }
5429 
5430     SDValue CCReg = SelectCC(N->getOperand(0), N->getOperand(1), CC, dl);
5431 
5432     if (N->getValueType(0) == MVT::i1) {
5433       // An i1 select is: (c & t) | (!c & f).
5434       bool Inv;
5435       unsigned Idx = getCRIdxForSetCC(CC, Inv);
5436 
5437       unsigned SRI;
5438       switch (Idx) {
5439       default: llvm_unreachable("Invalid CC index");
5440       case 0: SRI = PPC::sub_lt; break;
5441       case 1: SRI = PPC::sub_gt; break;
5442       case 2: SRI = PPC::sub_eq; break;
5443       case 3: SRI = PPC::sub_un; break;
5444       }
5445 
5446       SDValue CCBit = CurDAG->getTargetExtractSubreg(SRI, dl, MVT::i1, CCReg);
5447 
5448       SDValue NotCCBit(CurDAG->getMachineNode(PPC::CRNOR, dl, MVT::i1,
5449                                               CCBit, CCBit), 0);
5450       SDValue C =    Inv ? NotCCBit : CCBit,
5451               NotC = Inv ? CCBit    : NotCCBit;
5452 
5453       SDValue CAndT(CurDAG->getMachineNode(PPC::CRAND, dl, MVT::i1,
5454                                            C, N->getOperand(2)), 0);
5455       SDValue NotCAndF(CurDAG->getMachineNode(PPC::CRAND, dl, MVT::i1,
5456                                               NotC, N->getOperand(3)), 0);
5457 
5458       CurDAG->SelectNodeTo(N, PPC::CROR, MVT::i1, CAndT, NotCAndF);
5459       return;
5460     }
5461 
5462     unsigned BROpc =
5463         getPredicateForSetCC(CC, N->getOperand(0).getValueType(), Subtarget);
5464 
5465     unsigned SelectCCOp;
5466     if (N->getValueType(0) == MVT::i32)
5467       SelectCCOp = PPC::SELECT_CC_I4;
5468     else if (N->getValueType(0) == MVT::i64)
5469       SelectCCOp = PPC::SELECT_CC_I8;
5470     else if (N->getValueType(0) == MVT::f32) {
5471       if (Subtarget->hasP8Vector())
5472         SelectCCOp = PPC::SELECT_CC_VSSRC;
5473       else if (Subtarget->hasSPE())
5474         SelectCCOp = PPC::SELECT_CC_SPE4;
5475       else
5476         SelectCCOp = PPC::SELECT_CC_F4;
5477     } else if (N->getValueType(0) == MVT::f64) {
5478       if (Subtarget->hasVSX())
5479         SelectCCOp = PPC::SELECT_CC_VSFRC;
5480       else if (Subtarget->hasSPE())
5481         SelectCCOp = PPC::SELECT_CC_SPE;
5482       else
5483         SelectCCOp = PPC::SELECT_CC_F8;
5484     } else if (N->getValueType(0) == MVT::f128)
5485       SelectCCOp = PPC::SELECT_CC_F16;
5486     else if (Subtarget->hasSPE())
5487       SelectCCOp = PPC::SELECT_CC_SPE;
5488     else if (N->getValueType(0) == MVT::v2f64 ||
5489              N->getValueType(0) == MVT::v2i64)
5490       SelectCCOp = PPC::SELECT_CC_VSRC;
5491     else
5492       SelectCCOp = PPC::SELECT_CC_VRRC;
5493 
5494     SDValue Ops[] = { CCReg, N->getOperand(2), N->getOperand(3),
5495                         getI32Imm(BROpc, dl) };
5496     CurDAG->SelectNodeTo(N, SelectCCOp, N->getValueType(0), Ops);
5497     return;
5498   }
5499   case ISD::VECTOR_SHUFFLE:
5500     if (Subtarget->hasVSX() && (N->getValueType(0) == MVT::v2f64 ||
5501                                 N->getValueType(0) == MVT::v2i64)) {
5502       ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N);
5503 
5504       SDValue Op1 = N->getOperand(SVN->getMaskElt(0) < 2 ? 0 : 1),
5505               Op2 = N->getOperand(SVN->getMaskElt(1) < 2 ? 0 : 1);
5506       unsigned DM[2];
5507 
5508       for (int i = 0; i < 2; ++i)
5509         if (SVN->getMaskElt(i) <= 0 || SVN->getMaskElt(i) == 2)
5510           DM[i] = 0;
5511         else
5512           DM[i] = 1;
5513 
5514       if (Op1 == Op2 && DM[0] == 0 && DM[1] == 0 &&
5515           Op1.getOpcode() == ISD::SCALAR_TO_VECTOR &&
5516           isa<LoadSDNode>(Op1.getOperand(0))) {
5517         LoadSDNode *LD = cast<LoadSDNode>(Op1.getOperand(0));
5518         SDValue Base, Offset;
5519 
5520         if (LD->isUnindexed() && LD->hasOneUse() && Op1.hasOneUse() &&
5521             (LD->getMemoryVT() == MVT::f64 ||
5522              LD->getMemoryVT() == MVT::i64) &&
5523             SelectAddrIdxOnly(LD->getBasePtr(), Base, Offset)) {
5524           SDValue Chain = LD->getChain();
5525           SDValue Ops[] = { Base, Offset, Chain };
5526           MachineMemOperand *MemOp = LD->getMemOperand();
5527           SDNode *NewN = CurDAG->SelectNodeTo(N, PPC::LXVDSX,
5528                                               N->getValueType(0), Ops);
5529           CurDAG->setNodeMemRefs(cast<MachineSDNode>(NewN), {MemOp});
5530           return;
5531         }
5532       }
5533 
5534       // For little endian, we must swap the input operands and adjust
5535       // the mask elements (reverse and invert them).
5536       if (Subtarget->isLittleEndian()) {
5537         std::swap(Op1, Op2);
5538         unsigned tmp = DM[0];
5539         DM[0] = 1 - DM[1];
5540         DM[1] = 1 - tmp;
5541       }
5542 
5543       SDValue DMV = CurDAG->getTargetConstant(DM[1] | (DM[0] << 1), dl,
5544                                               MVT::i32);
5545       SDValue Ops[] = { Op1, Op2, DMV };
5546       CurDAG->SelectNodeTo(N, PPC::XXPERMDI, N->getValueType(0), Ops);
5547       return;
5548     }
5549 
5550     break;
5551   case PPCISD::BDNZ:
5552   case PPCISD::BDZ: {
5553     bool IsPPC64 = Subtarget->isPPC64();
5554     SDValue Ops[] = { N->getOperand(1), N->getOperand(0) };
5555     CurDAG->SelectNodeTo(N, N->getOpcode() == PPCISD::BDNZ
5556                                 ? (IsPPC64 ? PPC::BDNZ8 : PPC::BDNZ)
5557                                 : (IsPPC64 ? PPC::BDZ8 : PPC::BDZ),
5558                          MVT::Other, Ops);
5559     return;
5560   }
5561   case PPCISD::COND_BRANCH: {
5562     // Op #0 is the Chain.
5563     // Op #1 is the PPC::PRED_* number.
5564     // Op #2 is the CR#
5565     // Op #3 is the Dest MBB
5566     // Op #4 is the Flag.
5567     // Prevent PPC::PRED_* from being selected into LI.
5568     unsigned PCC = cast<ConstantSDNode>(N->getOperand(1))->getZExtValue();
5569     if (EnableBranchHint)
5570       PCC |= getBranchHint(PCC, *FuncInfo, N->getOperand(3));
5571 
5572     SDValue Pred = getI32Imm(PCC, dl);
5573     SDValue Ops[] = { Pred, N->getOperand(2), N->getOperand(3),
5574       N->getOperand(0), N->getOperand(4) };
5575     CurDAG->SelectNodeTo(N, PPC::BCC, MVT::Other, Ops);
5576     return;
5577   }
5578   case ISD::BR_CC: {
5579     if (tryFoldSWTestBRCC(N))
5580       return;
5581     ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(1))->get();
5582     unsigned PCC =
5583         getPredicateForSetCC(CC, N->getOperand(2).getValueType(), Subtarget);
5584 
5585     if (N->getOperand(2).getValueType() == MVT::i1) {
5586       unsigned Opc;
5587       bool Swap;
5588       switch (PCC) {
5589       default: llvm_unreachable("Unexpected Boolean-operand predicate");
5590       case PPC::PRED_LT: Opc = PPC::CRANDC; Swap = true;  break;
5591       case PPC::PRED_LE: Opc = PPC::CRORC;  Swap = true;  break;
5592       case PPC::PRED_EQ: Opc = PPC::CREQV;  Swap = false; break;
5593       case PPC::PRED_GE: Opc = PPC::CRORC;  Swap = false; break;
5594       case PPC::PRED_GT: Opc = PPC::CRANDC; Swap = false; break;
5595       case PPC::PRED_NE: Opc = PPC::CRXOR;  Swap = false; break;
5596       }
5597 
5598       // A signed comparison of i1 values produces the opposite result to an
5599       // unsigned one if the condition code includes less-than or greater-than.
5600       // This is because 1 is the most negative signed i1 number and the most
5601       // positive unsigned i1 number. The CR-logical operations used for such
5602       // comparisons are non-commutative so for signed comparisons vs. unsigned
5603       // ones, the input operands just need to be swapped.
5604       if (ISD::isSignedIntSetCC(CC))
5605         Swap = !Swap;
5606 
5607       SDValue BitComp(CurDAG->getMachineNode(Opc, dl, MVT::i1,
5608                                              N->getOperand(Swap ? 3 : 2),
5609                                              N->getOperand(Swap ? 2 : 3)), 0);
5610       CurDAG->SelectNodeTo(N, PPC::BC, MVT::Other, BitComp, N->getOperand(4),
5611                            N->getOperand(0));
5612       return;
5613     }
5614 
5615     if (EnableBranchHint)
5616       PCC |= getBranchHint(PCC, *FuncInfo, N->getOperand(4));
5617 
5618     SDValue CondCode = SelectCC(N->getOperand(2), N->getOperand(3), CC, dl);
5619     SDValue Ops[] = { getI32Imm(PCC, dl), CondCode,
5620                         N->getOperand(4), N->getOperand(0) };
5621     CurDAG->SelectNodeTo(N, PPC::BCC, MVT::Other, Ops);
5622     return;
5623   }
5624   case ISD::BRIND: {
5625     // FIXME: Should custom lower this.
5626     SDValue Chain = N->getOperand(0);
5627     SDValue Target = N->getOperand(1);
5628     unsigned Opc = Target.getValueType() == MVT::i32 ? PPC::MTCTR : PPC::MTCTR8;
5629     unsigned Reg = Target.getValueType() == MVT::i32 ? PPC::BCTR : PPC::BCTR8;
5630     Chain = SDValue(CurDAG->getMachineNode(Opc, dl, MVT::Glue, Target,
5631                                            Chain), 0);
5632     CurDAG->SelectNodeTo(N, Reg, MVT::Other, Chain);
5633     return;
5634   }
5635   case PPCISD::TOC_ENTRY: {
5636     const bool isPPC64 = Subtarget->isPPC64();
5637     const bool isELFABI = Subtarget->isSVR4ABI();
5638     const bool isAIXABI = Subtarget->isAIXABI();
5639 
5640     // PowerPC only support small, medium and large code model.
5641     const CodeModel::Model CModel = TM.getCodeModel();
5642     assert(!(CModel == CodeModel::Tiny || CModel == CodeModel::Kernel) &&
5643            "PowerPC doesn't support tiny or kernel code models.");
5644 
5645     if (isAIXABI && CModel == CodeModel::Medium)
5646       report_fatal_error("Medium code model is not supported on AIX.");
5647 
5648     // For 64-bit small code model, we allow SelectCodeCommon to handle this,
5649     // selecting one of LDtoc, LDtocJTI, LDtocCPT, and LDtocBA.
5650     if (isPPC64 && CModel == CodeModel::Small)
5651       break;
5652 
5653     // Handle 32-bit small code model.
5654     if (!isPPC64) {
5655       // Transforms the ISD::TOC_ENTRY node to passed in Opcode, either
5656       // PPC::ADDItoc, or PPC::LWZtoc
5657       auto replaceWith = [this, &dl](unsigned OpCode, SDNode *TocEntry) {
5658         SDValue GA = TocEntry->getOperand(0);
5659         SDValue TocBase = TocEntry->getOperand(1);
5660         SDNode *MN = CurDAG->getMachineNode(OpCode, dl, MVT::i32, GA, TocBase);
5661         transferMemOperands(TocEntry, MN);
5662         ReplaceNode(TocEntry, MN);
5663       };
5664 
5665       if (isELFABI) {
5666         assert(TM.isPositionIndependent() &&
5667                "32-bit ELF can only have TOC entries in position independent"
5668                " code.");
5669         // 32-bit ELF always uses a small code model toc access.
5670         replaceWith(PPC::LWZtoc, N);
5671         return;
5672       }
5673 
5674       if (isAIXABI && CModel == CodeModel::Small) {
5675         if (hasTocDataAttr(N->getOperand(0),
5676                            CurDAG->getDataLayout().getPointerSize()))
5677           replaceWith(PPC::ADDItoc, N);
5678         else
5679           replaceWith(PPC::LWZtoc, N);
5680 
5681         return;
5682       }
5683     }
5684 
5685     assert(CModel != CodeModel::Small && "All small code models handled.");
5686 
5687     assert((isPPC64 || (isAIXABI && !isPPC64)) && "We are dealing with 64-bit"
5688            " ELF/AIX or 32-bit AIX in the following.");
5689 
5690     // Transforms the ISD::TOC_ENTRY node for 32-bit AIX large code model mode
5691     // or 64-bit medium (ELF-only) or large (ELF and AIX) code model code. We
5692     // generate two instructions as described below. The first source operand
5693     // is a symbol reference. If it must be toc-referenced according to
5694     // Subtarget, we generate:
5695     // [32-bit AIX]
5696     //   LWZtocL(@sym, ADDIStocHA(%r2, @sym))
5697     // [64-bit ELF/AIX]
5698     //   LDtocL(@sym, ADDIStocHA8(%x2, @sym))
5699     // Otherwise we generate:
5700     //   ADDItocL(ADDIStocHA8(%x2, @sym), @sym)
5701     SDValue GA = N->getOperand(0);
5702     SDValue TOCbase = N->getOperand(1);
5703 
5704     EVT VT = isPPC64 ? MVT::i64 : MVT::i32;
5705     SDNode *Tmp = CurDAG->getMachineNode(
5706         isPPC64 ? PPC::ADDIStocHA8 : PPC::ADDIStocHA, dl, VT, TOCbase, GA);
5707 
5708     if (PPCLowering->isAccessedAsGotIndirect(GA)) {
5709       // If it is accessed as got-indirect, we need an extra LWZ/LD to load
5710       // the address.
5711       SDNode *MN = CurDAG->getMachineNode(
5712           isPPC64 ? PPC::LDtocL : PPC::LWZtocL, dl, VT, GA, SDValue(Tmp, 0));
5713 
5714       transferMemOperands(N, MN);
5715       ReplaceNode(N, MN);
5716       return;
5717     }
5718 
5719     // Build the address relative to the TOC-pointer.
5720     ReplaceNode(N, CurDAG->getMachineNode(PPC::ADDItocL, dl, MVT::i64,
5721                                           SDValue(Tmp, 0), GA));
5722     return;
5723   }
5724   case PPCISD::PPC32_PICGOT:
5725     // Generate a PIC-safe GOT reference.
5726     assert(Subtarget->is32BitELFABI() &&
5727            "PPCISD::PPC32_PICGOT is only supported for 32-bit SVR4");
5728     CurDAG->SelectNodeTo(N, PPC::PPC32PICGOT,
5729                          PPCLowering->getPointerTy(CurDAG->getDataLayout()),
5730                          MVT::i32);
5731     return;
5732 
5733   case PPCISD::VADD_SPLAT: {
5734     // This expands into one of three sequences, depending on whether
5735     // the first operand is odd or even, positive or negative.
5736     assert(isa<ConstantSDNode>(N->getOperand(0)) &&
5737            isa<ConstantSDNode>(N->getOperand(1)) &&
5738            "Invalid operand on VADD_SPLAT!");
5739 
5740     int Elt     = N->getConstantOperandVal(0);
5741     int EltSize = N->getConstantOperandVal(1);
5742     unsigned Opc1, Opc2, Opc3;
5743     EVT VT;
5744 
5745     if (EltSize == 1) {
5746       Opc1 = PPC::VSPLTISB;
5747       Opc2 = PPC::VADDUBM;
5748       Opc3 = PPC::VSUBUBM;
5749       VT = MVT::v16i8;
5750     } else if (EltSize == 2) {
5751       Opc1 = PPC::VSPLTISH;
5752       Opc2 = PPC::VADDUHM;
5753       Opc3 = PPC::VSUBUHM;
5754       VT = MVT::v8i16;
5755     } else {
5756       assert(EltSize == 4 && "Invalid element size on VADD_SPLAT!");
5757       Opc1 = PPC::VSPLTISW;
5758       Opc2 = PPC::VADDUWM;
5759       Opc3 = PPC::VSUBUWM;
5760       VT = MVT::v4i32;
5761     }
5762 
5763     if ((Elt & 1) == 0) {
5764       // Elt is even, in the range [-32,-18] + [16,30].
5765       //
5766       // Convert: VADD_SPLAT elt, size
5767       // Into:    tmp = VSPLTIS[BHW] elt
5768       //          VADDU[BHW]M tmp, tmp
5769       // Where:   [BHW] = B for size = 1, H for size = 2, W for size = 4
5770       SDValue EltVal = getI32Imm(Elt >> 1, dl);
5771       SDNode *Tmp = CurDAG->getMachineNode(Opc1, dl, VT, EltVal);
5772       SDValue TmpVal = SDValue(Tmp, 0);
5773       ReplaceNode(N, CurDAG->getMachineNode(Opc2, dl, VT, TmpVal, TmpVal));
5774       return;
5775     } else if (Elt > 0) {
5776       // Elt is odd and positive, in the range [17,31].
5777       //
5778       // Convert: VADD_SPLAT elt, size
5779       // Into:    tmp1 = VSPLTIS[BHW] elt-16
5780       //          tmp2 = VSPLTIS[BHW] -16
5781       //          VSUBU[BHW]M tmp1, tmp2
5782       SDValue EltVal = getI32Imm(Elt - 16, dl);
5783       SDNode *Tmp1 = CurDAG->getMachineNode(Opc1, dl, VT, EltVal);
5784       EltVal = getI32Imm(-16, dl);
5785       SDNode *Tmp2 = CurDAG->getMachineNode(Opc1, dl, VT, EltVal);
5786       ReplaceNode(N, CurDAG->getMachineNode(Opc3, dl, VT, SDValue(Tmp1, 0),
5787                                             SDValue(Tmp2, 0)));
5788       return;
5789     } else {
5790       // Elt is odd and negative, in the range [-31,-17].
5791       //
5792       // Convert: VADD_SPLAT elt, size
5793       // Into:    tmp1 = VSPLTIS[BHW] elt+16
5794       //          tmp2 = VSPLTIS[BHW] -16
5795       //          VADDU[BHW]M tmp1, tmp2
5796       SDValue EltVal = getI32Imm(Elt + 16, dl);
5797       SDNode *Tmp1 = CurDAG->getMachineNode(Opc1, dl, VT, EltVal);
5798       EltVal = getI32Imm(-16, dl);
5799       SDNode *Tmp2 = CurDAG->getMachineNode(Opc1, dl, VT, EltVal);
5800       ReplaceNode(N, CurDAG->getMachineNode(Opc2, dl, VT, SDValue(Tmp1, 0),
5801                                             SDValue(Tmp2, 0)));
5802       return;
5803     }
5804   }
5805   }
5806 
5807   SelectCode(N);
5808 }
5809 
5810 // If the target supports the cmpb instruction, do the idiom recognition here.
5811 // We don't do this as a DAG combine because we don't want to do it as nodes
5812 // are being combined (because we might miss part of the eventual idiom). We
5813 // don't want to do it during instruction selection because we want to reuse
5814 // the logic for lowering the masking operations already part of the
5815 // instruction selector.
combineToCMPB(SDNode * N)5816 SDValue PPCDAGToDAGISel::combineToCMPB(SDNode *N) {
5817   SDLoc dl(N);
5818 
5819   assert(N->getOpcode() == ISD::OR &&
5820          "Only OR nodes are supported for CMPB");
5821 
5822   SDValue Res;
5823   if (!Subtarget->hasCMPB())
5824     return Res;
5825 
5826   if (N->getValueType(0) != MVT::i32 &&
5827       N->getValueType(0) != MVT::i64)
5828     return Res;
5829 
5830   EVT VT = N->getValueType(0);
5831 
5832   SDValue RHS, LHS;
5833   bool BytesFound[8] = {false, false, false, false, false, false, false, false};
5834   uint64_t Mask = 0, Alt = 0;
5835 
5836   auto IsByteSelectCC = [this](SDValue O, unsigned &b,
5837                                uint64_t &Mask, uint64_t &Alt,
5838                                SDValue &LHS, SDValue &RHS) {
5839     if (O.getOpcode() != ISD::SELECT_CC)
5840       return false;
5841     ISD::CondCode CC = cast<CondCodeSDNode>(O.getOperand(4))->get();
5842 
5843     if (!isa<ConstantSDNode>(O.getOperand(2)) ||
5844         !isa<ConstantSDNode>(O.getOperand(3)))
5845       return false;
5846 
5847     uint64_t PM = O.getConstantOperandVal(2);
5848     uint64_t PAlt = O.getConstantOperandVal(3);
5849     for (b = 0; b < 8; ++b) {
5850       uint64_t Mask = UINT64_C(0xFF) << (8*b);
5851       if (PM && (PM & Mask) == PM && (PAlt & Mask) == PAlt)
5852         break;
5853     }
5854 
5855     if (b == 8)
5856       return false;
5857     Mask |= PM;
5858     Alt  |= PAlt;
5859 
5860     if (!isa<ConstantSDNode>(O.getOperand(1)) ||
5861         O.getConstantOperandVal(1) != 0) {
5862       SDValue Op0 = O.getOperand(0), Op1 = O.getOperand(1);
5863       if (Op0.getOpcode() == ISD::TRUNCATE)
5864         Op0 = Op0.getOperand(0);
5865       if (Op1.getOpcode() == ISD::TRUNCATE)
5866         Op1 = Op1.getOperand(0);
5867 
5868       if (Op0.getOpcode() == ISD::SRL && Op1.getOpcode() == ISD::SRL &&
5869           Op0.getOperand(1) == Op1.getOperand(1) && CC == ISD::SETEQ &&
5870           isa<ConstantSDNode>(Op0.getOperand(1))) {
5871 
5872         unsigned Bits = Op0.getValueSizeInBits();
5873         if (b != Bits/8-1)
5874           return false;
5875         if (Op0.getConstantOperandVal(1) != Bits-8)
5876           return false;
5877 
5878         LHS = Op0.getOperand(0);
5879         RHS = Op1.getOperand(0);
5880         return true;
5881       }
5882 
5883       // When we have small integers (i16 to be specific), the form present
5884       // post-legalization uses SETULT in the SELECT_CC for the
5885       // higher-order byte, depending on the fact that the
5886       // even-higher-order bytes are known to all be zero, for example:
5887       //   select_cc (xor $lhs, $rhs), 256, 65280, 0, setult
5888       // (so when the second byte is the same, because all higher-order
5889       // bits from bytes 3 and 4 are known to be zero, the result of the
5890       // xor can be at most 255)
5891       if (Op0.getOpcode() == ISD::XOR && CC == ISD::SETULT &&
5892           isa<ConstantSDNode>(O.getOperand(1))) {
5893 
5894         uint64_t ULim = O.getConstantOperandVal(1);
5895         if (ULim != (UINT64_C(1) << b*8))
5896           return false;
5897 
5898         // Now we need to make sure that the upper bytes are known to be
5899         // zero.
5900         unsigned Bits = Op0.getValueSizeInBits();
5901         if (!CurDAG->MaskedValueIsZero(
5902                 Op0, APInt::getHighBitsSet(Bits, Bits - (b + 1) * 8)))
5903           return false;
5904 
5905         LHS = Op0.getOperand(0);
5906         RHS = Op0.getOperand(1);
5907         return true;
5908       }
5909 
5910       return false;
5911     }
5912 
5913     if (CC != ISD::SETEQ)
5914       return false;
5915 
5916     SDValue Op = O.getOperand(0);
5917     if (Op.getOpcode() == ISD::AND) {
5918       if (!isa<ConstantSDNode>(Op.getOperand(1)))
5919         return false;
5920       if (Op.getConstantOperandVal(1) != (UINT64_C(0xFF) << (8*b)))
5921         return false;
5922 
5923       SDValue XOR = Op.getOperand(0);
5924       if (XOR.getOpcode() == ISD::TRUNCATE)
5925         XOR = XOR.getOperand(0);
5926       if (XOR.getOpcode() != ISD::XOR)
5927         return false;
5928 
5929       LHS = XOR.getOperand(0);
5930       RHS = XOR.getOperand(1);
5931       return true;
5932     } else if (Op.getOpcode() == ISD::SRL) {
5933       if (!isa<ConstantSDNode>(Op.getOperand(1)))
5934         return false;
5935       unsigned Bits = Op.getValueSizeInBits();
5936       if (b != Bits/8-1)
5937         return false;
5938       if (Op.getConstantOperandVal(1) != Bits-8)
5939         return false;
5940 
5941       SDValue XOR = Op.getOperand(0);
5942       if (XOR.getOpcode() == ISD::TRUNCATE)
5943         XOR = XOR.getOperand(0);
5944       if (XOR.getOpcode() != ISD::XOR)
5945         return false;
5946 
5947       LHS = XOR.getOperand(0);
5948       RHS = XOR.getOperand(1);
5949       return true;
5950     }
5951 
5952     return false;
5953   };
5954 
5955   SmallVector<SDValue, 8> Queue(1, SDValue(N, 0));
5956   while (!Queue.empty()) {
5957     SDValue V = Queue.pop_back_val();
5958 
5959     for (const SDValue &O : V.getNode()->ops()) {
5960       unsigned b = 0;
5961       uint64_t M = 0, A = 0;
5962       SDValue OLHS, ORHS;
5963       if (O.getOpcode() == ISD::OR) {
5964         Queue.push_back(O);
5965       } else if (IsByteSelectCC(O, b, M, A, OLHS, ORHS)) {
5966         if (!LHS) {
5967           LHS = OLHS;
5968           RHS = ORHS;
5969           BytesFound[b] = true;
5970           Mask |= M;
5971           Alt  |= A;
5972         } else if ((LHS == ORHS && RHS == OLHS) ||
5973                    (RHS == ORHS && LHS == OLHS)) {
5974           BytesFound[b] = true;
5975           Mask |= M;
5976           Alt  |= A;
5977         } else {
5978           return Res;
5979         }
5980       } else {
5981         return Res;
5982       }
5983     }
5984   }
5985 
5986   unsigned LastB = 0, BCnt = 0;
5987   for (unsigned i = 0; i < 8; ++i)
5988     if (BytesFound[LastB]) {
5989       ++BCnt;
5990       LastB = i;
5991     }
5992 
5993   if (!LastB || BCnt < 2)
5994     return Res;
5995 
5996   // Because we'll be zero-extending the output anyway if don't have a specific
5997   // value for each input byte (via the Mask), we can 'anyext' the inputs.
5998   if (LHS.getValueType() != VT) {
5999     LHS = CurDAG->getAnyExtOrTrunc(LHS, dl, VT);
6000     RHS = CurDAG->getAnyExtOrTrunc(RHS, dl, VT);
6001   }
6002 
6003   Res = CurDAG->getNode(PPCISD::CMPB, dl, VT, LHS, RHS);
6004 
6005   bool NonTrivialMask = ((int64_t) Mask) != INT64_C(-1);
6006   if (NonTrivialMask && !Alt) {
6007     // Res = Mask & CMPB
6008     Res = CurDAG->getNode(ISD::AND, dl, VT, Res,
6009                           CurDAG->getConstant(Mask, dl, VT));
6010   } else if (Alt) {
6011     // Res = (CMPB & Mask) | (~CMPB & Alt)
6012     // Which, as suggested here:
6013     //   https://graphics.stanford.edu/~seander/bithacks.html#MaskedMerge
6014     // can be written as:
6015     // Res = Alt ^ ((Alt ^ Mask) & CMPB)
6016     // useful because the (Alt ^ Mask) can be pre-computed.
6017     Res = CurDAG->getNode(ISD::AND, dl, VT, Res,
6018                           CurDAG->getConstant(Mask ^ Alt, dl, VT));
6019     Res = CurDAG->getNode(ISD::XOR, dl, VT, Res,
6020                           CurDAG->getConstant(Alt, dl, VT));
6021   }
6022 
6023   return Res;
6024 }
6025 
6026 // When CR bit registers are enabled, an extension of an i1 variable to a i32
6027 // or i64 value is lowered in terms of a SELECT_I[48] operation, and thus
6028 // involves constant materialization of a 0 or a 1 or both. If the result of
6029 // the extension is then operated upon by some operator that can be constant
6030 // folded with a constant 0 or 1, and that constant can be materialized using
6031 // only one instruction (like a zero or one), then we should fold in those
6032 // operations with the select.
foldBoolExts(SDValue & Res,SDNode * & N)6033 void PPCDAGToDAGISel::foldBoolExts(SDValue &Res, SDNode *&N) {
6034   if (!Subtarget->useCRBits())
6035     return;
6036 
6037   if (N->getOpcode() != ISD::ZERO_EXTEND &&
6038       N->getOpcode() != ISD::SIGN_EXTEND &&
6039       N->getOpcode() != ISD::ANY_EXTEND)
6040     return;
6041 
6042   if (N->getOperand(0).getValueType() != MVT::i1)
6043     return;
6044 
6045   if (!N->hasOneUse())
6046     return;
6047 
6048   SDLoc dl(N);
6049   EVT VT = N->getValueType(0);
6050   SDValue Cond = N->getOperand(0);
6051   SDValue ConstTrue =
6052     CurDAG->getConstant(N->getOpcode() == ISD::SIGN_EXTEND ? -1 : 1, dl, VT);
6053   SDValue ConstFalse = CurDAG->getConstant(0, dl, VT);
6054 
6055   do {
6056     SDNode *User = *N->use_begin();
6057     if (User->getNumOperands() != 2)
6058       break;
6059 
6060     auto TryFold = [this, N, User, dl](SDValue Val) {
6061       SDValue UserO0 = User->getOperand(0), UserO1 = User->getOperand(1);
6062       SDValue O0 = UserO0.getNode() == N ? Val : UserO0;
6063       SDValue O1 = UserO1.getNode() == N ? Val : UserO1;
6064 
6065       return CurDAG->FoldConstantArithmetic(User->getOpcode(), dl,
6066                                             User->getValueType(0), {O0, O1});
6067     };
6068 
6069     // FIXME: When the semantics of the interaction between select and undef
6070     // are clearly defined, it may turn out to be unnecessary to break here.
6071     SDValue TrueRes = TryFold(ConstTrue);
6072     if (!TrueRes || TrueRes.isUndef())
6073       break;
6074     SDValue FalseRes = TryFold(ConstFalse);
6075     if (!FalseRes || FalseRes.isUndef())
6076       break;
6077 
6078     // For us to materialize these using one instruction, we must be able to
6079     // represent them as signed 16-bit integers.
6080     uint64_t True  = cast<ConstantSDNode>(TrueRes)->getZExtValue(),
6081              False = cast<ConstantSDNode>(FalseRes)->getZExtValue();
6082     if (!isInt<16>(True) || !isInt<16>(False))
6083       break;
6084 
6085     // We can replace User with a new SELECT node, and try again to see if we
6086     // can fold the select with its user.
6087     Res = CurDAG->getSelect(dl, User->getValueType(0), Cond, TrueRes, FalseRes);
6088     N = User;
6089     ConstTrue = TrueRes;
6090     ConstFalse = FalseRes;
6091   } while (N->hasOneUse());
6092 }
6093 
PreprocessISelDAG()6094 void PPCDAGToDAGISel::PreprocessISelDAG() {
6095   SelectionDAG::allnodes_iterator Position = CurDAG->allnodes_end();
6096 
6097   bool MadeChange = false;
6098   while (Position != CurDAG->allnodes_begin()) {
6099     SDNode *N = &*--Position;
6100     if (N->use_empty())
6101       continue;
6102 
6103     SDValue Res;
6104     switch (N->getOpcode()) {
6105     default: break;
6106     case ISD::OR:
6107       Res = combineToCMPB(N);
6108       break;
6109     }
6110 
6111     if (!Res)
6112       foldBoolExts(Res, N);
6113 
6114     if (Res) {
6115       LLVM_DEBUG(dbgs() << "PPC DAG preprocessing replacing:\nOld:    ");
6116       LLVM_DEBUG(N->dump(CurDAG));
6117       LLVM_DEBUG(dbgs() << "\nNew: ");
6118       LLVM_DEBUG(Res.getNode()->dump(CurDAG));
6119       LLVM_DEBUG(dbgs() << "\n");
6120 
6121       CurDAG->ReplaceAllUsesOfValueWith(SDValue(N, 0), Res);
6122       MadeChange = true;
6123     }
6124   }
6125 
6126   if (MadeChange)
6127     CurDAG->RemoveDeadNodes();
6128 }
6129 
6130 /// PostprocessISelDAG - Perform some late peephole optimizations
6131 /// on the DAG representation.
PostprocessISelDAG()6132 void PPCDAGToDAGISel::PostprocessISelDAG() {
6133   // Skip peepholes at -O0.
6134   if (TM.getOptLevel() == CodeGenOpt::None)
6135     return;
6136 
6137   PeepholePPC64();
6138   PeepholeCROps();
6139   PeepholePPC64ZExt();
6140 }
6141 
6142 // Check if all users of this node will become isel where the second operand
6143 // is the constant zero. If this is so, and if we can negate the condition,
6144 // then we can flip the true and false operands. This will allow the zero to
6145 // be folded with the isel so that we don't need to materialize a register
6146 // containing zero.
AllUsersSelectZero(SDNode * N)6147 bool PPCDAGToDAGISel::AllUsersSelectZero(SDNode *N) {
6148   for (SDNode::use_iterator UI = N->use_begin(), UE = N->use_end();
6149        UI != UE; ++UI) {
6150     SDNode *User = *UI;
6151     if (!User->isMachineOpcode())
6152       return false;
6153     if (User->getMachineOpcode() != PPC::SELECT_I4 &&
6154         User->getMachineOpcode() != PPC::SELECT_I8)
6155       return false;
6156 
6157     SDNode *Op1 = User->getOperand(1).getNode();
6158     SDNode *Op2 = User->getOperand(2).getNode();
6159     // If we have a degenerate select with two equal operands, swapping will
6160     // not do anything, and we may run into an infinite loop.
6161     if (Op1 == Op2)
6162       return false;
6163 
6164     if (!Op2->isMachineOpcode())
6165       return false;
6166 
6167     if (Op2->getMachineOpcode() != PPC::LI &&
6168         Op2->getMachineOpcode() != PPC::LI8)
6169       return false;
6170 
6171     ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op2->getOperand(0));
6172     if (!C)
6173       return false;
6174 
6175     if (!C->isNullValue())
6176       return false;
6177   }
6178 
6179   return true;
6180 }
6181 
SwapAllSelectUsers(SDNode * N)6182 void PPCDAGToDAGISel::SwapAllSelectUsers(SDNode *N) {
6183   SmallVector<SDNode *, 4> ToReplace;
6184   for (SDNode::use_iterator UI = N->use_begin(), UE = N->use_end();
6185        UI != UE; ++UI) {
6186     SDNode *User = *UI;
6187     assert((User->getMachineOpcode() == PPC::SELECT_I4 ||
6188             User->getMachineOpcode() == PPC::SELECT_I8) &&
6189            "Must have all select users");
6190     ToReplace.push_back(User);
6191   }
6192 
6193   for (SmallVector<SDNode *, 4>::iterator UI = ToReplace.begin(),
6194        UE = ToReplace.end(); UI != UE; ++UI) {
6195     SDNode *User = *UI;
6196     SDNode *ResNode =
6197       CurDAG->getMachineNode(User->getMachineOpcode(), SDLoc(User),
6198                              User->getValueType(0), User->getOperand(0),
6199                              User->getOperand(2),
6200                              User->getOperand(1));
6201 
6202     LLVM_DEBUG(dbgs() << "CR Peephole replacing:\nOld:    ");
6203     LLVM_DEBUG(User->dump(CurDAG));
6204     LLVM_DEBUG(dbgs() << "\nNew: ");
6205     LLVM_DEBUG(ResNode->dump(CurDAG));
6206     LLVM_DEBUG(dbgs() << "\n");
6207 
6208     ReplaceUses(User, ResNode);
6209   }
6210 }
6211 
PeepholeCROps()6212 void PPCDAGToDAGISel::PeepholeCROps() {
6213   bool IsModified;
6214   do {
6215     IsModified = false;
6216     for (SDNode &Node : CurDAG->allnodes()) {
6217       MachineSDNode *MachineNode = dyn_cast<MachineSDNode>(&Node);
6218       if (!MachineNode || MachineNode->use_empty())
6219         continue;
6220       SDNode *ResNode = MachineNode;
6221 
6222       bool Op1Set   = false, Op1Unset = false,
6223            Op1Not   = false,
6224            Op2Set   = false, Op2Unset = false,
6225            Op2Not   = false;
6226 
6227       unsigned Opcode = MachineNode->getMachineOpcode();
6228       switch (Opcode) {
6229       default: break;
6230       case PPC::CRAND:
6231       case PPC::CRNAND:
6232       case PPC::CROR:
6233       case PPC::CRXOR:
6234       case PPC::CRNOR:
6235       case PPC::CREQV:
6236       case PPC::CRANDC:
6237       case PPC::CRORC: {
6238         SDValue Op = MachineNode->getOperand(1);
6239         if (Op.isMachineOpcode()) {
6240           if (Op.getMachineOpcode() == PPC::CRSET)
6241             Op2Set = true;
6242           else if (Op.getMachineOpcode() == PPC::CRUNSET)
6243             Op2Unset = true;
6244           else if (Op.getMachineOpcode() == PPC::CRNOR &&
6245                    Op.getOperand(0) == Op.getOperand(1))
6246             Op2Not = true;
6247         }
6248         LLVM_FALLTHROUGH;
6249       }
6250       case PPC::BC:
6251       case PPC::BCn:
6252       case PPC::SELECT_I4:
6253       case PPC::SELECT_I8:
6254       case PPC::SELECT_F4:
6255       case PPC::SELECT_F8:
6256       case PPC::SELECT_SPE:
6257       case PPC::SELECT_SPE4:
6258       case PPC::SELECT_VRRC:
6259       case PPC::SELECT_VSFRC:
6260       case PPC::SELECT_VSSRC:
6261       case PPC::SELECT_VSRC: {
6262         SDValue Op = MachineNode->getOperand(0);
6263         if (Op.isMachineOpcode()) {
6264           if (Op.getMachineOpcode() == PPC::CRSET)
6265             Op1Set = true;
6266           else if (Op.getMachineOpcode() == PPC::CRUNSET)
6267             Op1Unset = true;
6268           else if (Op.getMachineOpcode() == PPC::CRNOR &&
6269                    Op.getOperand(0) == Op.getOperand(1))
6270             Op1Not = true;
6271         }
6272         }
6273         break;
6274       }
6275 
6276       bool SelectSwap = false;
6277       switch (Opcode) {
6278       default: break;
6279       case PPC::CRAND:
6280         if (MachineNode->getOperand(0) == MachineNode->getOperand(1))
6281           // x & x = x
6282           ResNode = MachineNode->getOperand(0).getNode();
6283         else if (Op1Set)
6284           // 1 & y = y
6285           ResNode = MachineNode->getOperand(1).getNode();
6286         else if (Op2Set)
6287           // x & 1 = x
6288           ResNode = MachineNode->getOperand(0).getNode();
6289         else if (Op1Unset || Op2Unset)
6290           // x & 0 = 0 & y = 0
6291           ResNode = CurDAG->getMachineNode(PPC::CRUNSET, SDLoc(MachineNode),
6292                                            MVT::i1);
6293         else if (Op1Not)
6294           // ~x & y = andc(y, x)
6295           ResNode = CurDAG->getMachineNode(PPC::CRANDC, SDLoc(MachineNode),
6296                                            MVT::i1, MachineNode->getOperand(1),
6297                                            MachineNode->getOperand(0).
6298                                              getOperand(0));
6299         else if (Op2Not)
6300           // x & ~y = andc(x, y)
6301           ResNode = CurDAG->getMachineNode(PPC::CRANDC, SDLoc(MachineNode),
6302                                            MVT::i1, MachineNode->getOperand(0),
6303                                            MachineNode->getOperand(1).
6304                                              getOperand(0));
6305         else if (AllUsersSelectZero(MachineNode)) {
6306           ResNode = CurDAG->getMachineNode(PPC::CRNAND, SDLoc(MachineNode),
6307                                            MVT::i1, MachineNode->getOperand(0),
6308                                            MachineNode->getOperand(1));
6309           SelectSwap = true;
6310         }
6311         break;
6312       case PPC::CRNAND:
6313         if (MachineNode->getOperand(0) == MachineNode->getOperand(1))
6314           // nand(x, x) -> nor(x, x)
6315           ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode),
6316                                            MVT::i1, MachineNode->getOperand(0),
6317                                            MachineNode->getOperand(0));
6318         else if (Op1Set)
6319           // nand(1, y) -> nor(y, y)
6320           ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode),
6321                                            MVT::i1, MachineNode->getOperand(1),
6322                                            MachineNode->getOperand(1));
6323         else if (Op2Set)
6324           // nand(x, 1) -> nor(x, x)
6325           ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode),
6326                                            MVT::i1, MachineNode->getOperand(0),
6327                                            MachineNode->getOperand(0));
6328         else if (Op1Unset || Op2Unset)
6329           // nand(x, 0) = nand(0, y) = 1
6330           ResNode = CurDAG->getMachineNode(PPC::CRSET, SDLoc(MachineNode),
6331                                            MVT::i1);
6332         else if (Op1Not)
6333           // nand(~x, y) = ~(~x & y) = x | ~y = orc(x, y)
6334           ResNode = CurDAG->getMachineNode(PPC::CRORC, SDLoc(MachineNode),
6335                                            MVT::i1, MachineNode->getOperand(0).
6336                                                       getOperand(0),
6337                                            MachineNode->getOperand(1));
6338         else if (Op2Not)
6339           // nand(x, ~y) = ~x | y = orc(y, x)
6340           ResNode = CurDAG->getMachineNode(PPC::CRORC, SDLoc(MachineNode),
6341                                            MVT::i1, MachineNode->getOperand(1).
6342                                                       getOperand(0),
6343                                            MachineNode->getOperand(0));
6344         else if (AllUsersSelectZero(MachineNode)) {
6345           ResNode = CurDAG->getMachineNode(PPC::CRAND, SDLoc(MachineNode),
6346                                            MVT::i1, MachineNode->getOperand(0),
6347                                            MachineNode->getOperand(1));
6348           SelectSwap = true;
6349         }
6350         break;
6351       case PPC::CROR:
6352         if (MachineNode->getOperand(0) == MachineNode->getOperand(1))
6353           // x | x = x
6354           ResNode = MachineNode->getOperand(0).getNode();
6355         else if (Op1Set || Op2Set)
6356           // x | 1 = 1 | y = 1
6357           ResNode = CurDAG->getMachineNode(PPC::CRSET, SDLoc(MachineNode),
6358                                            MVT::i1);
6359         else if (Op1Unset)
6360           // 0 | y = y
6361           ResNode = MachineNode->getOperand(1).getNode();
6362         else if (Op2Unset)
6363           // x | 0 = x
6364           ResNode = MachineNode->getOperand(0).getNode();
6365         else if (Op1Not)
6366           // ~x | y = orc(y, x)
6367           ResNode = CurDAG->getMachineNode(PPC::CRORC, SDLoc(MachineNode),
6368                                            MVT::i1, MachineNode->getOperand(1),
6369                                            MachineNode->getOperand(0).
6370                                              getOperand(0));
6371         else if (Op2Not)
6372           // x | ~y = orc(x, y)
6373           ResNode = CurDAG->getMachineNode(PPC::CRORC, SDLoc(MachineNode),
6374                                            MVT::i1, MachineNode->getOperand(0),
6375                                            MachineNode->getOperand(1).
6376                                              getOperand(0));
6377         else if (AllUsersSelectZero(MachineNode)) {
6378           ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode),
6379                                            MVT::i1, MachineNode->getOperand(0),
6380                                            MachineNode->getOperand(1));
6381           SelectSwap = true;
6382         }
6383         break;
6384       case PPC::CRXOR:
6385         if (MachineNode->getOperand(0) == MachineNode->getOperand(1))
6386           // xor(x, x) = 0
6387           ResNode = CurDAG->getMachineNode(PPC::CRUNSET, SDLoc(MachineNode),
6388                                            MVT::i1);
6389         else if (Op1Set)
6390           // xor(1, y) -> nor(y, y)
6391           ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode),
6392                                            MVT::i1, MachineNode->getOperand(1),
6393                                            MachineNode->getOperand(1));
6394         else if (Op2Set)
6395           // xor(x, 1) -> nor(x, x)
6396           ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode),
6397                                            MVT::i1, MachineNode->getOperand(0),
6398                                            MachineNode->getOperand(0));
6399         else if (Op1Unset)
6400           // xor(0, y) = y
6401           ResNode = MachineNode->getOperand(1).getNode();
6402         else if (Op2Unset)
6403           // xor(x, 0) = x
6404           ResNode = MachineNode->getOperand(0).getNode();
6405         else if (Op1Not)
6406           // xor(~x, y) = eqv(x, y)
6407           ResNode = CurDAG->getMachineNode(PPC::CREQV, SDLoc(MachineNode),
6408                                            MVT::i1, MachineNode->getOperand(0).
6409                                                       getOperand(0),
6410                                            MachineNode->getOperand(1));
6411         else if (Op2Not)
6412           // xor(x, ~y) = eqv(x, y)
6413           ResNode = CurDAG->getMachineNode(PPC::CREQV, SDLoc(MachineNode),
6414                                            MVT::i1, MachineNode->getOperand(0),
6415                                            MachineNode->getOperand(1).
6416                                              getOperand(0));
6417         else if (AllUsersSelectZero(MachineNode)) {
6418           ResNode = CurDAG->getMachineNode(PPC::CREQV, SDLoc(MachineNode),
6419                                            MVT::i1, MachineNode->getOperand(0),
6420                                            MachineNode->getOperand(1));
6421           SelectSwap = true;
6422         }
6423         break;
6424       case PPC::CRNOR:
6425         if (Op1Set || Op2Set)
6426           // nor(1, y) -> 0
6427           ResNode = CurDAG->getMachineNode(PPC::CRUNSET, SDLoc(MachineNode),
6428                                            MVT::i1);
6429         else if (Op1Unset)
6430           // nor(0, y) = ~y -> nor(y, y)
6431           ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode),
6432                                            MVT::i1, MachineNode->getOperand(1),
6433                                            MachineNode->getOperand(1));
6434         else if (Op2Unset)
6435           // nor(x, 0) = ~x
6436           ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode),
6437                                            MVT::i1, MachineNode->getOperand(0),
6438                                            MachineNode->getOperand(0));
6439         else if (Op1Not)
6440           // nor(~x, y) = andc(x, y)
6441           ResNode = CurDAG->getMachineNode(PPC::CRANDC, SDLoc(MachineNode),
6442                                            MVT::i1, MachineNode->getOperand(0).
6443                                                       getOperand(0),
6444                                            MachineNode->getOperand(1));
6445         else if (Op2Not)
6446           // nor(x, ~y) = andc(y, x)
6447           ResNode = CurDAG->getMachineNode(PPC::CRANDC, SDLoc(MachineNode),
6448                                            MVT::i1, MachineNode->getOperand(1).
6449                                                       getOperand(0),
6450                                            MachineNode->getOperand(0));
6451         else if (AllUsersSelectZero(MachineNode)) {
6452           ResNode = CurDAG->getMachineNode(PPC::CROR, SDLoc(MachineNode),
6453                                            MVT::i1, MachineNode->getOperand(0),
6454                                            MachineNode->getOperand(1));
6455           SelectSwap = true;
6456         }
6457         break;
6458       case PPC::CREQV:
6459         if (MachineNode->getOperand(0) == MachineNode->getOperand(1))
6460           // eqv(x, x) = 1
6461           ResNode = CurDAG->getMachineNode(PPC::CRSET, SDLoc(MachineNode),
6462                                            MVT::i1);
6463         else if (Op1Set)
6464           // eqv(1, y) = y
6465           ResNode = MachineNode->getOperand(1).getNode();
6466         else if (Op2Set)
6467           // eqv(x, 1) = x
6468           ResNode = MachineNode->getOperand(0).getNode();
6469         else if (Op1Unset)
6470           // eqv(0, y) = ~y -> nor(y, y)
6471           ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode),
6472                                            MVT::i1, MachineNode->getOperand(1),
6473                                            MachineNode->getOperand(1));
6474         else if (Op2Unset)
6475           // eqv(x, 0) = ~x
6476           ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode),
6477                                            MVT::i1, MachineNode->getOperand(0),
6478                                            MachineNode->getOperand(0));
6479         else if (Op1Not)
6480           // eqv(~x, y) = xor(x, y)
6481           ResNode = CurDAG->getMachineNode(PPC::CRXOR, SDLoc(MachineNode),
6482                                            MVT::i1, MachineNode->getOperand(0).
6483                                                       getOperand(0),
6484                                            MachineNode->getOperand(1));
6485         else if (Op2Not)
6486           // eqv(x, ~y) = xor(x, y)
6487           ResNode = CurDAG->getMachineNode(PPC::CRXOR, SDLoc(MachineNode),
6488                                            MVT::i1, MachineNode->getOperand(0),
6489                                            MachineNode->getOperand(1).
6490                                              getOperand(0));
6491         else if (AllUsersSelectZero(MachineNode)) {
6492           ResNode = CurDAG->getMachineNode(PPC::CRXOR, SDLoc(MachineNode),
6493                                            MVT::i1, MachineNode->getOperand(0),
6494                                            MachineNode->getOperand(1));
6495           SelectSwap = true;
6496         }
6497         break;
6498       case PPC::CRANDC:
6499         if (MachineNode->getOperand(0) == MachineNode->getOperand(1))
6500           // andc(x, x) = 0
6501           ResNode = CurDAG->getMachineNode(PPC::CRUNSET, SDLoc(MachineNode),
6502                                            MVT::i1);
6503         else if (Op1Set)
6504           // andc(1, y) = ~y
6505           ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode),
6506                                            MVT::i1, MachineNode->getOperand(1),
6507                                            MachineNode->getOperand(1));
6508         else if (Op1Unset || Op2Set)
6509           // andc(0, y) = andc(x, 1) = 0
6510           ResNode = CurDAG->getMachineNode(PPC::CRUNSET, SDLoc(MachineNode),
6511                                            MVT::i1);
6512         else if (Op2Unset)
6513           // andc(x, 0) = x
6514           ResNode = MachineNode->getOperand(0).getNode();
6515         else if (Op1Not)
6516           // andc(~x, y) = ~(x | y) = nor(x, y)
6517           ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode),
6518                                            MVT::i1, MachineNode->getOperand(0).
6519                                                       getOperand(0),
6520                                            MachineNode->getOperand(1));
6521         else if (Op2Not)
6522           // andc(x, ~y) = x & y
6523           ResNode = CurDAG->getMachineNode(PPC::CRAND, SDLoc(MachineNode),
6524                                            MVT::i1, MachineNode->getOperand(0),
6525                                            MachineNode->getOperand(1).
6526                                              getOperand(0));
6527         else if (AllUsersSelectZero(MachineNode)) {
6528           ResNode = CurDAG->getMachineNode(PPC::CRORC, SDLoc(MachineNode),
6529                                            MVT::i1, MachineNode->getOperand(1),
6530                                            MachineNode->getOperand(0));
6531           SelectSwap = true;
6532         }
6533         break;
6534       case PPC::CRORC:
6535         if (MachineNode->getOperand(0) == MachineNode->getOperand(1))
6536           // orc(x, x) = 1
6537           ResNode = CurDAG->getMachineNode(PPC::CRSET, SDLoc(MachineNode),
6538                                            MVT::i1);
6539         else if (Op1Set || Op2Unset)
6540           // orc(1, y) = orc(x, 0) = 1
6541           ResNode = CurDAG->getMachineNode(PPC::CRSET, SDLoc(MachineNode),
6542                                            MVT::i1);
6543         else if (Op2Set)
6544           // orc(x, 1) = x
6545           ResNode = MachineNode->getOperand(0).getNode();
6546         else if (Op1Unset)
6547           // orc(0, y) = ~y
6548           ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode),
6549                                            MVT::i1, MachineNode->getOperand(1),
6550                                            MachineNode->getOperand(1));
6551         else if (Op1Not)
6552           // orc(~x, y) = ~(x & y) = nand(x, y)
6553           ResNode = CurDAG->getMachineNode(PPC::CRNAND, SDLoc(MachineNode),
6554                                            MVT::i1, MachineNode->getOperand(0).
6555                                                       getOperand(0),
6556                                            MachineNode->getOperand(1));
6557         else if (Op2Not)
6558           // orc(x, ~y) = x | y
6559           ResNode = CurDAG->getMachineNode(PPC::CROR, SDLoc(MachineNode),
6560                                            MVT::i1, MachineNode->getOperand(0),
6561                                            MachineNode->getOperand(1).
6562                                              getOperand(0));
6563         else if (AllUsersSelectZero(MachineNode)) {
6564           ResNode = CurDAG->getMachineNode(PPC::CRANDC, SDLoc(MachineNode),
6565                                            MVT::i1, MachineNode->getOperand(1),
6566                                            MachineNode->getOperand(0));
6567           SelectSwap = true;
6568         }
6569         break;
6570       case PPC::SELECT_I4:
6571       case PPC::SELECT_I8:
6572       case PPC::SELECT_F4:
6573       case PPC::SELECT_F8:
6574       case PPC::SELECT_SPE:
6575       case PPC::SELECT_SPE4:
6576       case PPC::SELECT_VRRC:
6577       case PPC::SELECT_VSFRC:
6578       case PPC::SELECT_VSSRC:
6579       case PPC::SELECT_VSRC:
6580         if (Op1Set)
6581           ResNode = MachineNode->getOperand(1).getNode();
6582         else if (Op1Unset)
6583           ResNode = MachineNode->getOperand(2).getNode();
6584         else if (Op1Not)
6585           ResNode = CurDAG->getMachineNode(MachineNode->getMachineOpcode(),
6586                                            SDLoc(MachineNode),
6587                                            MachineNode->getValueType(0),
6588                                            MachineNode->getOperand(0).
6589                                              getOperand(0),
6590                                            MachineNode->getOperand(2),
6591                                            MachineNode->getOperand(1));
6592         break;
6593       case PPC::BC:
6594       case PPC::BCn:
6595         if (Op1Not)
6596           ResNode = CurDAG->getMachineNode(Opcode == PPC::BC ? PPC::BCn :
6597                                                                PPC::BC,
6598                                            SDLoc(MachineNode),
6599                                            MVT::Other,
6600                                            MachineNode->getOperand(0).
6601                                              getOperand(0),
6602                                            MachineNode->getOperand(1),
6603                                            MachineNode->getOperand(2));
6604         // FIXME: Handle Op1Set, Op1Unset here too.
6605         break;
6606       }
6607 
6608       // If we're inverting this node because it is used only by selects that
6609       // we'd like to swap, then swap the selects before the node replacement.
6610       if (SelectSwap)
6611         SwapAllSelectUsers(MachineNode);
6612 
6613       if (ResNode != MachineNode) {
6614         LLVM_DEBUG(dbgs() << "CR Peephole replacing:\nOld:    ");
6615         LLVM_DEBUG(MachineNode->dump(CurDAG));
6616         LLVM_DEBUG(dbgs() << "\nNew: ");
6617         LLVM_DEBUG(ResNode->dump(CurDAG));
6618         LLVM_DEBUG(dbgs() << "\n");
6619 
6620         ReplaceUses(MachineNode, ResNode);
6621         IsModified = true;
6622       }
6623     }
6624     if (IsModified)
6625       CurDAG->RemoveDeadNodes();
6626   } while (IsModified);
6627 }
6628 
6629 // Gather the set of 32-bit operations that are known to have their
6630 // higher-order 32 bits zero, where ToPromote contains all such operations.
PeepholePPC64ZExtGather(SDValue Op32,SmallPtrSetImpl<SDNode * > & ToPromote)6631 static bool PeepholePPC64ZExtGather(SDValue Op32,
6632                                     SmallPtrSetImpl<SDNode *> &ToPromote) {
6633   if (!Op32.isMachineOpcode())
6634     return false;
6635 
6636   // First, check for the "frontier" instructions (those that will clear the
6637   // higher-order 32 bits.
6638 
6639   // For RLWINM and RLWNM, we need to make sure that the mask does not wrap
6640   // around. If it does not, then these instructions will clear the
6641   // higher-order bits.
6642   if ((Op32.getMachineOpcode() == PPC::RLWINM ||
6643        Op32.getMachineOpcode() == PPC::RLWNM) &&
6644       Op32.getConstantOperandVal(2) <= Op32.getConstantOperandVal(3)) {
6645     ToPromote.insert(Op32.getNode());
6646     return true;
6647   }
6648 
6649   // SLW and SRW always clear the higher-order bits.
6650   if (Op32.getMachineOpcode() == PPC::SLW ||
6651       Op32.getMachineOpcode() == PPC::SRW) {
6652     ToPromote.insert(Op32.getNode());
6653     return true;
6654   }
6655 
6656   // For LI and LIS, we need the immediate to be positive (so that it is not
6657   // sign extended).
6658   if (Op32.getMachineOpcode() == PPC::LI ||
6659       Op32.getMachineOpcode() == PPC::LIS) {
6660     if (!isUInt<15>(Op32.getConstantOperandVal(0)))
6661       return false;
6662 
6663     ToPromote.insert(Op32.getNode());
6664     return true;
6665   }
6666 
6667   // LHBRX and LWBRX always clear the higher-order bits.
6668   if (Op32.getMachineOpcode() == PPC::LHBRX ||
6669       Op32.getMachineOpcode() == PPC::LWBRX) {
6670     ToPromote.insert(Op32.getNode());
6671     return true;
6672   }
6673 
6674   // CNT[LT]ZW always produce a 64-bit value in [0,32], and so is zero extended.
6675   if (Op32.getMachineOpcode() == PPC::CNTLZW ||
6676       Op32.getMachineOpcode() == PPC::CNTTZW) {
6677     ToPromote.insert(Op32.getNode());
6678     return true;
6679   }
6680 
6681   // Next, check for those instructions we can look through.
6682 
6683   // Assuming the mask does not wrap around, then the higher-order bits are
6684   // taken directly from the first operand.
6685   if (Op32.getMachineOpcode() == PPC::RLWIMI &&
6686       Op32.getConstantOperandVal(3) <= Op32.getConstantOperandVal(4)) {
6687     SmallPtrSet<SDNode *, 16> ToPromote1;
6688     if (!PeepholePPC64ZExtGather(Op32.getOperand(0), ToPromote1))
6689       return false;
6690 
6691     ToPromote.insert(Op32.getNode());
6692     ToPromote.insert(ToPromote1.begin(), ToPromote1.end());
6693     return true;
6694   }
6695 
6696   // For OR, the higher-order bits are zero if that is true for both operands.
6697   // For SELECT_I4, the same is true (but the relevant operand numbers are
6698   // shifted by 1).
6699   if (Op32.getMachineOpcode() == PPC::OR ||
6700       Op32.getMachineOpcode() == PPC::SELECT_I4) {
6701     unsigned B = Op32.getMachineOpcode() == PPC::SELECT_I4 ? 1 : 0;
6702     SmallPtrSet<SDNode *, 16> ToPromote1;
6703     if (!PeepholePPC64ZExtGather(Op32.getOperand(B+0), ToPromote1))
6704       return false;
6705     if (!PeepholePPC64ZExtGather(Op32.getOperand(B+1), ToPromote1))
6706       return false;
6707 
6708     ToPromote.insert(Op32.getNode());
6709     ToPromote.insert(ToPromote1.begin(), ToPromote1.end());
6710     return true;
6711   }
6712 
6713   // For ORI and ORIS, we need the higher-order bits of the first operand to be
6714   // zero, and also for the constant to be positive (so that it is not sign
6715   // extended).
6716   if (Op32.getMachineOpcode() == PPC::ORI ||
6717       Op32.getMachineOpcode() == PPC::ORIS) {
6718     SmallPtrSet<SDNode *, 16> ToPromote1;
6719     if (!PeepholePPC64ZExtGather(Op32.getOperand(0), ToPromote1))
6720       return false;
6721     if (!isUInt<15>(Op32.getConstantOperandVal(1)))
6722       return false;
6723 
6724     ToPromote.insert(Op32.getNode());
6725     ToPromote.insert(ToPromote1.begin(), ToPromote1.end());
6726     return true;
6727   }
6728 
6729   // The higher-order bits of AND are zero if that is true for at least one of
6730   // the operands.
6731   if (Op32.getMachineOpcode() == PPC::AND) {
6732     SmallPtrSet<SDNode *, 16> ToPromote1, ToPromote2;
6733     bool Op0OK =
6734       PeepholePPC64ZExtGather(Op32.getOperand(0), ToPromote1);
6735     bool Op1OK =
6736       PeepholePPC64ZExtGather(Op32.getOperand(1), ToPromote2);
6737     if (!Op0OK && !Op1OK)
6738       return false;
6739 
6740     ToPromote.insert(Op32.getNode());
6741 
6742     if (Op0OK)
6743       ToPromote.insert(ToPromote1.begin(), ToPromote1.end());
6744 
6745     if (Op1OK)
6746       ToPromote.insert(ToPromote2.begin(), ToPromote2.end());
6747 
6748     return true;
6749   }
6750 
6751   // For ANDI and ANDIS, the higher-order bits are zero if either that is true
6752   // of the first operand, or if the second operand is positive (so that it is
6753   // not sign extended).
6754   if (Op32.getMachineOpcode() == PPC::ANDI_rec ||
6755       Op32.getMachineOpcode() == PPC::ANDIS_rec) {
6756     SmallPtrSet<SDNode *, 16> ToPromote1;
6757     bool Op0OK =
6758       PeepholePPC64ZExtGather(Op32.getOperand(0), ToPromote1);
6759     bool Op1OK = isUInt<15>(Op32.getConstantOperandVal(1));
6760     if (!Op0OK && !Op1OK)
6761       return false;
6762 
6763     ToPromote.insert(Op32.getNode());
6764 
6765     if (Op0OK)
6766       ToPromote.insert(ToPromote1.begin(), ToPromote1.end());
6767 
6768     return true;
6769   }
6770 
6771   return false;
6772 }
6773 
PeepholePPC64ZExt()6774 void PPCDAGToDAGISel::PeepholePPC64ZExt() {
6775   if (!Subtarget->isPPC64())
6776     return;
6777 
6778   // When we zero-extend from i32 to i64, we use a pattern like this:
6779   // def : Pat<(i64 (zext i32:$in)),
6780   //           (RLDICL (INSERT_SUBREG (i64 (IMPLICIT_DEF)), $in, sub_32),
6781   //                   0, 32)>;
6782   // There are several 32-bit shift/rotate instructions, however, that will
6783   // clear the higher-order bits of their output, rendering the RLDICL
6784   // unnecessary. When that happens, we remove it here, and redefine the
6785   // relevant 32-bit operation to be a 64-bit operation.
6786 
6787   SelectionDAG::allnodes_iterator Position = CurDAG->allnodes_end();
6788 
6789   bool MadeChange = false;
6790   while (Position != CurDAG->allnodes_begin()) {
6791     SDNode *N = &*--Position;
6792     // Skip dead nodes and any non-machine opcodes.
6793     if (N->use_empty() || !N->isMachineOpcode())
6794       continue;
6795 
6796     if (N->getMachineOpcode() != PPC::RLDICL)
6797       continue;
6798 
6799     if (N->getConstantOperandVal(1) != 0 ||
6800         N->getConstantOperandVal(2) != 32)
6801       continue;
6802 
6803     SDValue ISR = N->getOperand(0);
6804     if (!ISR.isMachineOpcode() ||
6805         ISR.getMachineOpcode() != TargetOpcode::INSERT_SUBREG)
6806       continue;
6807 
6808     if (!ISR.hasOneUse())
6809       continue;
6810 
6811     if (ISR.getConstantOperandVal(2) != PPC::sub_32)
6812       continue;
6813 
6814     SDValue IDef = ISR.getOperand(0);
6815     if (!IDef.isMachineOpcode() ||
6816         IDef.getMachineOpcode() != TargetOpcode::IMPLICIT_DEF)
6817       continue;
6818 
6819     // We now know that we're looking at a canonical i32 -> i64 zext. See if we
6820     // can get rid of it.
6821 
6822     SDValue Op32 = ISR->getOperand(1);
6823     if (!Op32.isMachineOpcode())
6824       continue;
6825 
6826     // There are some 32-bit instructions that always clear the high-order 32
6827     // bits, there are also some instructions (like AND) that we can look
6828     // through.
6829     SmallPtrSet<SDNode *, 16> ToPromote;
6830     if (!PeepholePPC64ZExtGather(Op32, ToPromote))
6831       continue;
6832 
6833     // If the ToPromote set contains nodes that have uses outside of the set
6834     // (except for the original INSERT_SUBREG), then abort the transformation.
6835     bool OutsideUse = false;
6836     for (SDNode *PN : ToPromote) {
6837       for (SDNode *UN : PN->uses()) {
6838         if (!ToPromote.count(UN) && UN != ISR.getNode()) {
6839           OutsideUse = true;
6840           break;
6841         }
6842       }
6843 
6844       if (OutsideUse)
6845         break;
6846     }
6847     if (OutsideUse)
6848       continue;
6849 
6850     MadeChange = true;
6851 
6852     // We now know that this zero extension can be removed by promoting to
6853     // nodes in ToPromote to 64-bit operations, where for operations in the
6854     // frontier of the set, we need to insert INSERT_SUBREGs for their
6855     // operands.
6856     for (SDNode *PN : ToPromote) {
6857       unsigned NewOpcode;
6858       switch (PN->getMachineOpcode()) {
6859       default:
6860         llvm_unreachable("Don't know the 64-bit variant of this instruction");
6861       case PPC::RLWINM:    NewOpcode = PPC::RLWINM8; break;
6862       case PPC::RLWNM:     NewOpcode = PPC::RLWNM8; break;
6863       case PPC::SLW:       NewOpcode = PPC::SLW8; break;
6864       case PPC::SRW:       NewOpcode = PPC::SRW8; break;
6865       case PPC::LI:        NewOpcode = PPC::LI8; break;
6866       case PPC::LIS:       NewOpcode = PPC::LIS8; break;
6867       case PPC::LHBRX:     NewOpcode = PPC::LHBRX8; break;
6868       case PPC::LWBRX:     NewOpcode = PPC::LWBRX8; break;
6869       case PPC::CNTLZW:    NewOpcode = PPC::CNTLZW8; break;
6870       case PPC::CNTTZW:    NewOpcode = PPC::CNTTZW8; break;
6871       case PPC::RLWIMI:    NewOpcode = PPC::RLWIMI8; break;
6872       case PPC::OR:        NewOpcode = PPC::OR8; break;
6873       case PPC::SELECT_I4: NewOpcode = PPC::SELECT_I8; break;
6874       case PPC::ORI:       NewOpcode = PPC::ORI8; break;
6875       case PPC::ORIS:      NewOpcode = PPC::ORIS8; break;
6876       case PPC::AND:       NewOpcode = PPC::AND8; break;
6877       case PPC::ANDI_rec:
6878         NewOpcode = PPC::ANDI8_rec;
6879         break;
6880       case PPC::ANDIS_rec:
6881         NewOpcode = PPC::ANDIS8_rec;
6882         break;
6883       }
6884 
6885       // Note: During the replacement process, the nodes will be in an
6886       // inconsistent state (some instructions will have operands with values
6887       // of the wrong type). Once done, however, everything should be right
6888       // again.
6889 
6890       SmallVector<SDValue, 4> Ops;
6891       for (const SDValue &V : PN->ops()) {
6892         if (!ToPromote.count(V.getNode()) && V.getValueType() == MVT::i32 &&
6893             !isa<ConstantSDNode>(V)) {
6894           SDValue ReplOpOps[] = { ISR.getOperand(0), V, ISR.getOperand(2) };
6895           SDNode *ReplOp =
6896             CurDAG->getMachineNode(TargetOpcode::INSERT_SUBREG, SDLoc(V),
6897                                    ISR.getNode()->getVTList(), ReplOpOps);
6898           Ops.push_back(SDValue(ReplOp, 0));
6899         } else {
6900           Ops.push_back(V);
6901         }
6902       }
6903 
6904       // Because all to-be-promoted nodes only have users that are other
6905       // promoted nodes (or the original INSERT_SUBREG), we can safely replace
6906       // the i32 result value type with i64.
6907 
6908       SmallVector<EVT, 2> NewVTs;
6909       SDVTList VTs = PN->getVTList();
6910       for (unsigned i = 0, ie = VTs.NumVTs; i != ie; ++i)
6911         if (VTs.VTs[i] == MVT::i32)
6912           NewVTs.push_back(MVT::i64);
6913         else
6914           NewVTs.push_back(VTs.VTs[i]);
6915 
6916       LLVM_DEBUG(dbgs() << "PPC64 ZExt Peephole morphing:\nOld:    ");
6917       LLVM_DEBUG(PN->dump(CurDAG));
6918 
6919       CurDAG->SelectNodeTo(PN, NewOpcode, CurDAG->getVTList(NewVTs), Ops);
6920 
6921       LLVM_DEBUG(dbgs() << "\nNew: ");
6922       LLVM_DEBUG(PN->dump(CurDAG));
6923       LLVM_DEBUG(dbgs() << "\n");
6924     }
6925 
6926     // Now we replace the original zero extend and its associated INSERT_SUBREG
6927     // with the value feeding the INSERT_SUBREG (which has now been promoted to
6928     // return an i64).
6929 
6930     LLVM_DEBUG(dbgs() << "PPC64 ZExt Peephole replacing:\nOld:    ");
6931     LLVM_DEBUG(N->dump(CurDAG));
6932     LLVM_DEBUG(dbgs() << "\nNew: ");
6933     LLVM_DEBUG(Op32.getNode()->dump(CurDAG));
6934     LLVM_DEBUG(dbgs() << "\n");
6935 
6936     ReplaceUses(N, Op32.getNode());
6937   }
6938 
6939   if (MadeChange)
6940     CurDAG->RemoveDeadNodes();
6941 }
6942 
isVSXSwap(SDValue N)6943 static bool isVSXSwap(SDValue N) {
6944   if (!N->isMachineOpcode())
6945     return false;
6946   unsigned Opc = N->getMachineOpcode();
6947 
6948   // Single-operand XXPERMDI or the regular XXPERMDI/XXSLDWI where the immediate
6949   // operand is 2.
6950   if (Opc == PPC::XXPERMDIs) {
6951     return isa<ConstantSDNode>(N->getOperand(1)) &&
6952            N->getConstantOperandVal(1) == 2;
6953   } else if (Opc == PPC::XXPERMDI || Opc == PPC::XXSLDWI) {
6954     return N->getOperand(0) == N->getOperand(1) &&
6955            isa<ConstantSDNode>(N->getOperand(2)) &&
6956            N->getConstantOperandVal(2) == 2;
6957   }
6958 
6959   return false;
6960 }
6961 
6962 // TODO: Make this complete and replace with a table-gen bit.
isLaneInsensitive(SDValue N)6963 static bool isLaneInsensitive(SDValue N) {
6964   if (!N->isMachineOpcode())
6965     return false;
6966   unsigned Opc = N->getMachineOpcode();
6967 
6968   switch (Opc) {
6969   default:
6970     return false;
6971   case PPC::VAVGSB:
6972   case PPC::VAVGUB:
6973   case PPC::VAVGSH:
6974   case PPC::VAVGUH:
6975   case PPC::VAVGSW:
6976   case PPC::VAVGUW:
6977   case PPC::VMAXFP:
6978   case PPC::VMAXSB:
6979   case PPC::VMAXUB:
6980   case PPC::VMAXSH:
6981   case PPC::VMAXUH:
6982   case PPC::VMAXSW:
6983   case PPC::VMAXUW:
6984   case PPC::VMINFP:
6985   case PPC::VMINSB:
6986   case PPC::VMINUB:
6987   case PPC::VMINSH:
6988   case PPC::VMINUH:
6989   case PPC::VMINSW:
6990   case PPC::VMINUW:
6991   case PPC::VADDFP:
6992   case PPC::VADDUBM:
6993   case PPC::VADDUHM:
6994   case PPC::VADDUWM:
6995   case PPC::VSUBFP:
6996   case PPC::VSUBUBM:
6997   case PPC::VSUBUHM:
6998   case PPC::VSUBUWM:
6999   case PPC::VAND:
7000   case PPC::VANDC:
7001   case PPC::VOR:
7002   case PPC::VORC:
7003   case PPC::VXOR:
7004   case PPC::VNOR:
7005   case PPC::VMULUWM:
7006     return true;
7007   }
7008 }
7009 
7010 // Try to simplify (xxswap (vec-op (xxswap) (xxswap))) where vec-op is
7011 // lane-insensitive.
reduceVSXSwap(SDNode * N,SelectionDAG * DAG)7012 static void reduceVSXSwap(SDNode *N, SelectionDAG *DAG) {
7013   // Our desired xxswap might be source of COPY_TO_REGCLASS.
7014   // TODO: Can we put this a common method for DAG?
7015   auto SkipRCCopy = [](SDValue V) {
7016     while (V->isMachineOpcode() &&
7017            V->getMachineOpcode() == TargetOpcode::COPY_TO_REGCLASS) {
7018       // All values in the chain should have single use.
7019       if (V->use_empty() || !V->use_begin()->isOnlyUserOf(V.getNode()))
7020         return SDValue();
7021       V = V->getOperand(0);
7022     }
7023     return V.hasOneUse() ? V : SDValue();
7024   };
7025 
7026   SDValue VecOp = SkipRCCopy(N->getOperand(0));
7027   if (!VecOp || !isLaneInsensitive(VecOp))
7028     return;
7029 
7030   SDValue LHS = SkipRCCopy(VecOp.getOperand(0)),
7031           RHS = SkipRCCopy(VecOp.getOperand(1));
7032   if (!LHS || !RHS || !isVSXSwap(LHS) || !isVSXSwap(RHS))
7033     return;
7034 
7035   // These swaps may still have chain-uses here, count on dead code elimination
7036   // in following passes to remove them.
7037   DAG->ReplaceAllUsesOfValueWith(LHS, LHS.getOperand(0));
7038   DAG->ReplaceAllUsesOfValueWith(RHS, RHS.getOperand(0));
7039   DAG->ReplaceAllUsesOfValueWith(SDValue(N, 0), N->getOperand(0));
7040 }
7041 
PeepholePPC64()7042 void PPCDAGToDAGISel::PeepholePPC64() {
7043   SelectionDAG::allnodes_iterator Position = CurDAG->allnodes_end();
7044 
7045   while (Position != CurDAG->allnodes_begin()) {
7046     SDNode *N = &*--Position;
7047     // Skip dead nodes and any non-machine opcodes.
7048     if (N->use_empty() || !N->isMachineOpcode())
7049       continue;
7050 
7051     if (isVSXSwap(SDValue(N, 0)))
7052       reduceVSXSwap(N, CurDAG);
7053 
7054     unsigned FirstOp;
7055     unsigned StorageOpcode = N->getMachineOpcode();
7056     bool RequiresMod4Offset = false;
7057 
7058     switch (StorageOpcode) {
7059     default: continue;
7060 
7061     case PPC::LWA:
7062     case PPC::LD:
7063     case PPC::DFLOADf64:
7064     case PPC::DFLOADf32:
7065       RequiresMod4Offset = true;
7066       LLVM_FALLTHROUGH;
7067     case PPC::LBZ:
7068     case PPC::LBZ8:
7069     case PPC::LFD:
7070     case PPC::LFS:
7071     case PPC::LHA:
7072     case PPC::LHA8:
7073     case PPC::LHZ:
7074     case PPC::LHZ8:
7075     case PPC::LWZ:
7076     case PPC::LWZ8:
7077       FirstOp = 0;
7078       break;
7079 
7080     case PPC::STD:
7081     case PPC::DFSTOREf64:
7082     case PPC::DFSTOREf32:
7083       RequiresMod4Offset = true;
7084       LLVM_FALLTHROUGH;
7085     case PPC::STB:
7086     case PPC::STB8:
7087     case PPC::STFD:
7088     case PPC::STFS:
7089     case PPC::STH:
7090     case PPC::STH8:
7091     case PPC::STW:
7092     case PPC::STW8:
7093       FirstOp = 1;
7094       break;
7095     }
7096 
7097     // If this is a load or store with a zero offset, or within the alignment,
7098     // we may be able to fold an add-immediate into the memory operation.
7099     // The check against alignment is below, as it can't occur until we check
7100     // the arguments to N
7101     if (!isa<ConstantSDNode>(N->getOperand(FirstOp)))
7102       continue;
7103 
7104     SDValue Base = N->getOperand(FirstOp + 1);
7105     if (!Base.isMachineOpcode())
7106       continue;
7107 
7108     unsigned Flags = 0;
7109     bool ReplaceFlags = true;
7110 
7111     // When the feeding operation is an add-immediate of some sort,
7112     // determine whether we need to add relocation information to the
7113     // target flags on the immediate operand when we fold it into the
7114     // load instruction.
7115     //
7116     // For something like ADDItocL, the relocation information is
7117     // inferred from the opcode; when we process it in the AsmPrinter,
7118     // we add the necessary relocation there.  A load, though, can receive
7119     // relocation from various flavors of ADDIxxx, so we need to carry
7120     // the relocation information in the target flags.
7121     switch (Base.getMachineOpcode()) {
7122     default: continue;
7123 
7124     case PPC::ADDI8:
7125     case PPC::ADDI:
7126       // In some cases (such as TLS) the relocation information
7127       // is already in place on the operand, so copying the operand
7128       // is sufficient.
7129       ReplaceFlags = false;
7130       // For these cases, the immediate may not be divisible by 4, in
7131       // which case the fold is illegal for DS-form instructions.  (The
7132       // other cases provide aligned addresses and are always safe.)
7133       if (RequiresMod4Offset &&
7134           (!isa<ConstantSDNode>(Base.getOperand(1)) ||
7135            Base.getConstantOperandVal(1) % 4 != 0))
7136         continue;
7137       break;
7138     case PPC::ADDIdtprelL:
7139       Flags = PPCII::MO_DTPREL_LO;
7140       break;
7141     case PPC::ADDItlsldL:
7142       Flags = PPCII::MO_TLSLD_LO;
7143       break;
7144     case PPC::ADDItocL:
7145       Flags = PPCII::MO_TOC_LO;
7146       break;
7147     }
7148 
7149     SDValue ImmOpnd = Base.getOperand(1);
7150 
7151     // On PPC64, the TOC base pointer is guaranteed by the ABI only to have
7152     // 8-byte alignment, and so we can only use offsets less than 8 (otherwise,
7153     // we might have needed different @ha relocation values for the offset
7154     // pointers).
7155     int MaxDisplacement = 7;
7156     if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(ImmOpnd)) {
7157       const GlobalValue *GV = GA->getGlobal();
7158       Align Alignment = GV->getPointerAlignment(CurDAG->getDataLayout());
7159       MaxDisplacement = std::min((int)Alignment.value() - 1, MaxDisplacement);
7160     }
7161 
7162     bool UpdateHBase = false;
7163     SDValue HBase = Base.getOperand(0);
7164 
7165     int Offset = N->getConstantOperandVal(FirstOp);
7166     if (ReplaceFlags) {
7167       if (Offset < 0 || Offset > MaxDisplacement) {
7168         // If we have a addi(toc@l)/addis(toc@ha) pair, and the addis has only
7169         // one use, then we can do this for any offset, we just need to also
7170         // update the offset (i.e. the symbol addend) on the addis also.
7171         if (Base.getMachineOpcode() != PPC::ADDItocL)
7172           continue;
7173 
7174         if (!HBase.isMachineOpcode() ||
7175             HBase.getMachineOpcode() != PPC::ADDIStocHA8)
7176           continue;
7177 
7178         if (!Base.hasOneUse() || !HBase.hasOneUse())
7179           continue;
7180 
7181         SDValue HImmOpnd = HBase.getOperand(1);
7182         if (HImmOpnd != ImmOpnd)
7183           continue;
7184 
7185         UpdateHBase = true;
7186       }
7187     } else {
7188       // If we're directly folding the addend from an addi instruction, then:
7189       //  1. In general, the offset on the memory access must be zero.
7190       //  2. If the addend is a constant, then it can be combined with a
7191       //     non-zero offset, but only if the result meets the encoding
7192       //     requirements.
7193       if (auto *C = dyn_cast<ConstantSDNode>(ImmOpnd)) {
7194         Offset += C->getSExtValue();
7195 
7196         if (RequiresMod4Offset && (Offset % 4) != 0)
7197           continue;
7198 
7199         if (!isInt<16>(Offset))
7200           continue;
7201 
7202         ImmOpnd = CurDAG->getTargetConstant(Offset, SDLoc(ImmOpnd),
7203                                             ImmOpnd.getValueType());
7204       } else if (Offset != 0) {
7205         continue;
7206       }
7207     }
7208 
7209     // We found an opportunity.  Reverse the operands from the add
7210     // immediate and substitute them into the load or store.  If
7211     // needed, update the target flags for the immediate operand to
7212     // reflect the necessary relocation information.
7213     LLVM_DEBUG(dbgs() << "Folding add-immediate into mem-op:\nBase:    ");
7214     LLVM_DEBUG(Base->dump(CurDAG));
7215     LLVM_DEBUG(dbgs() << "\nN: ");
7216     LLVM_DEBUG(N->dump(CurDAG));
7217     LLVM_DEBUG(dbgs() << "\n");
7218 
7219     // If the relocation information isn't already present on the
7220     // immediate operand, add it now.
7221     if (ReplaceFlags) {
7222       if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(ImmOpnd)) {
7223         SDLoc dl(GA);
7224         const GlobalValue *GV = GA->getGlobal();
7225         Align Alignment = GV->getPointerAlignment(CurDAG->getDataLayout());
7226         // We can't perform this optimization for data whose alignment
7227         // is insufficient for the instruction encoding.
7228         if (Alignment < 4 && (RequiresMod4Offset || (Offset % 4) != 0)) {
7229           LLVM_DEBUG(dbgs() << "Rejected this candidate for alignment.\n\n");
7230           continue;
7231         }
7232         ImmOpnd = CurDAG->getTargetGlobalAddress(GV, dl, MVT::i64, Offset, Flags);
7233       } else if (ConstantPoolSDNode *CP =
7234                  dyn_cast<ConstantPoolSDNode>(ImmOpnd)) {
7235         const Constant *C = CP->getConstVal();
7236         ImmOpnd = CurDAG->getTargetConstantPool(C, MVT::i64, CP->getAlign(),
7237                                                 Offset, Flags);
7238       }
7239     }
7240 
7241     if (FirstOp == 1) // Store
7242       (void)CurDAG->UpdateNodeOperands(N, N->getOperand(0), ImmOpnd,
7243                                        Base.getOperand(0), N->getOperand(3));
7244     else // Load
7245       (void)CurDAG->UpdateNodeOperands(N, ImmOpnd, Base.getOperand(0),
7246                                        N->getOperand(2));
7247 
7248     if (UpdateHBase)
7249       (void)CurDAG->UpdateNodeOperands(HBase.getNode(), HBase.getOperand(0),
7250                                        ImmOpnd);
7251 
7252     // The add-immediate may now be dead, in which case remove it.
7253     if (Base.getNode()->use_empty())
7254       CurDAG->RemoveDeadNode(Base.getNode());
7255   }
7256 }
7257 
7258 /// createPPCISelDag - This pass converts a legalized DAG into a
7259 /// PowerPC-specific DAG, ready for instruction scheduling.
7260 ///
createPPCISelDag(PPCTargetMachine & TM,CodeGenOpt::Level OptLevel)7261 FunctionPass *llvm::createPPCISelDag(PPCTargetMachine &TM,
7262                                      CodeGenOpt::Level OptLevel) {
7263   return new PPCDAGToDAGISel(TM, OptLevel);
7264 }
7265