1 //===- NewGVN.cpp - Global Value Numbering Pass ---------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 /// \file
10 /// This file implements the new LLVM's Global Value Numbering pass.
11 /// GVN partitions values computed by a function into congruence classes.
12 /// Values ending up in the same congruence class are guaranteed to be the same
13 /// for every execution of the program. In that respect, congruency is a
14 /// compile-time approximation of equivalence of values at runtime.
15 /// The algorithm implemented here uses a sparse formulation and it's based
16 /// on the ideas described in the paper:
17 /// "A Sparse Algorithm for Predicated Global Value Numbering" from
18 /// Karthik Gargi.
19 ///
20 /// A brief overview of the algorithm: The algorithm is essentially the same as
21 /// the standard RPO value numbering algorithm (a good reference is the paper
22 /// "SCC based value numbering" by L. Taylor Simpson) with one major difference:
23 /// The RPO algorithm proceeds, on every iteration, to process every reachable
24 /// block and every instruction in that block. This is because the standard RPO
25 /// algorithm does not track what things have the same value number, it only
26 /// tracks what the value number of a given operation is (the mapping is
27 /// operation -> value number). Thus, when a value number of an operation
28 /// changes, it must reprocess everything to ensure all uses of a value number
29 /// get updated properly. In constrast, the sparse algorithm we use *also*
30 /// tracks what operations have a given value number (IE it also tracks the
31 /// reverse mapping from value number -> operations with that value number), so
32 /// that it only needs to reprocess the instructions that are affected when
33 /// something's value number changes. The vast majority of complexity and code
34 /// in this file is devoted to tracking what value numbers could change for what
35 /// instructions when various things happen. The rest of the algorithm is
36 /// devoted to performing symbolic evaluation, forward propagation, and
37 /// simplification of operations based on the value numbers deduced so far
38 ///
39 /// In order to make the GVN mostly-complete, we use a technique derived from
40 /// "Detection of Redundant Expressions: A Complete and Polynomial-time
41 /// Algorithm in SSA" by R.R. Pai. The source of incompleteness in most SSA
42 /// based GVN algorithms is related to their inability to detect equivalence
43 /// between phi of ops (IE phi(a+b, c+d)) and op of phis (phi(a,c) + phi(b, d)).
44 /// We resolve this issue by generating the equivalent "phi of ops" form for
45 /// each op of phis we see, in a way that only takes polynomial time to resolve.
46 ///
47 /// We also do not perform elimination by using any published algorithm. All
48 /// published algorithms are O(Instructions). Instead, we use a technique that
49 /// is O(number of operations with the same value number), enabling us to skip
50 /// trying to eliminate things that have unique value numbers.
51 //
52 //===----------------------------------------------------------------------===//
53
54 #include "llvm/Transforms/Scalar/NewGVN.h"
55 #include "llvm/ADT/ArrayRef.h"
56 #include "llvm/ADT/BitVector.h"
57 #include "llvm/ADT/DenseMap.h"
58 #include "llvm/ADT/DenseMapInfo.h"
59 #include "llvm/ADT/DenseSet.h"
60 #include "llvm/ADT/DepthFirstIterator.h"
61 #include "llvm/ADT/GraphTraits.h"
62 #include "llvm/ADT/Hashing.h"
63 #include "llvm/ADT/PointerIntPair.h"
64 #include "llvm/ADT/PostOrderIterator.h"
65 #include "llvm/ADT/SetOperations.h"
66 #include "llvm/ADT/SmallPtrSet.h"
67 #include "llvm/ADT/SmallVector.h"
68 #include "llvm/ADT/SparseBitVector.h"
69 #include "llvm/ADT/Statistic.h"
70 #include "llvm/ADT/iterator_range.h"
71 #include "llvm/Analysis/AliasAnalysis.h"
72 #include "llvm/Analysis/AssumptionCache.h"
73 #include "llvm/Analysis/CFGPrinter.h"
74 #include "llvm/Analysis/ConstantFolding.h"
75 #include "llvm/Analysis/GlobalsModRef.h"
76 #include "llvm/Analysis/InstructionSimplify.h"
77 #include "llvm/Analysis/MemoryBuiltins.h"
78 #include "llvm/Analysis/MemorySSA.h"
79 #include "llvm/Analysis/TargetLibraryInfo.h"
80 #include "llvm/Analysis/ValueTracking.h"
81 #include "llvm/IR/Argument.h"
82 #include "llvm/IR/BasicBlock.h"
83 #include "llvm/IR/Constant.h"
84 #include "llvm/IR/Constants.h"
85 #include "llvm/IR/Dominators.h"
86 #include "llvm/IR/Function.h"
87 #include "llvm/IR/InstrTypes.h"
88 #include "llvm/IR/Instruction.h"
89 #include "llvm/IR/Instructions.h"
90 #include "llvm/IR/IntrinsicInst.h"
91 #include "llvm/IR/PatternMatch.h"
92 #include "llvm/IR/Type.h"
93 #include "llvm/IR/Use.h"
94 #include "llvm/IR/User.h"
95 #include "llvm/IR/Value.h"
96 #include "llvm/InitializePasses.h"
97 #include "llvm/Pass.h"
98 #include "llvm/Support/Allocator.h"
99 #include "llvm/Support/ArrayRecycler.h"
100 #include "llvm/Support/Casting.h"
101 #include "llvm/Support/CommandLine.h"
102 #include "llvm/Support/Debug.h"
103 #include "llvm/Support/DebugCounter.h"
104 #include "llvm/Support/ErrorHandling.h"
105 #include "llvm/Support/PointerLikeTypeTraits.h"
106 #include "llvm/Support/raw_ostream.h"
107 #include "llvm/Transforms/Scalar.h"
108 #include "llvm/Transforms/Scalar/GVNExpression.h"
109 #include "llvm/Transforms/Utils/AssumeBundleBuilder.h"
110 #include "llvm/Transforms/Utils/Local.h"
111 #include "llvm/Transforms/Utils/PredicateInfo.h"
112 #include "llvm/Transforms/Utils/VNCoercion.h"
113 #include <algorithm>
114 #include <cassert>
115 #include <cstdint>
116 #include <iterator>
117 #include <map>
118 #include <memory>
119 #include <set>
120 #include <string>
121 #include <tuple>
122 #include <utility>
123 #include <vector>
124
125 using namespace llvm;
126 using namespace llvm::GVNExpression;
127 using namespace llvm::VNCoercion;
128 using namespace llvm::PatternMatch;
129
130 #define DEBUG_TYPE "newgvn"
131
132 STATISTIC(NumGVNInstrDeleted, "Number of instructions deleted");
133 STATISTIC(NumGVNBlocksDeleted, "Number of blocks deleted");
134 STATISTIC(NumGVNOpsSimplified, "Number of Expressions simplified");
135 STATISTIC(NumGVNPhisAllSame, "Number of PHIs whos arguments are all the same");
136 STATISTIC(NumGVNMaxIterations,
137 "Maximum Number of iterations it took to converge GVN");
138 STATISTIC(NumGVNLeaderChanges, "Number of leader changes");
139 STATISTIC(NumGVNSortedLeaderChanges, "Number of sorted leader changes");
140 STATISTIC(NumGVNAvoidedSortedLeaderChanges,
141 "Number of avoided sorted leader changes");
142 STATISTIC(NumGVNDeadStores, "Number of redundant/dead stores eliminated");
143 STATISTIC(NumGVNPHIOfOpsCreated, "Number of PHI of ops created");
144 STATISTIC(NumGVNPHIOfOpsEliminations,
145 "Number of things eliminated using PHI of ops");
146 DEBUG_COUNTER(VNCounter, "newgvn-vn",
147 "Controls which instructions are value numbered");
148 DEBUG_COUNTER(PHIOfOpsCounter, "newgvn-phi",
149 "Controls which instructions we create phi of ops for");
150 // Currently store defining access refinement is too slow due to basicaa being
151 // egregiously slow. This flag lets us keep it working while we work on this
152 // issue.
153 static cl::opt<bool> EnableStoreRefinement("enable-store-refinement",
154 cl::init(false), cl::Hidden);
155
156 /// Currently, the generation "phi of ops" can result in correctness issues.
157 static cl::opt<bool> EnablePhiOfOps("enable-phi-of-ops", cl::init(true),
158 cl::Hidden);
159
160 //===----------------------------------------------------------------------===//
161 // GVN Pass
162 //===----------------------------------------------------------------------===//
163
164 // Anchor methods.
165 namespace llvm {
166 namespace GVNExpression {
167
168 Expression::~Expression() = default;
169 BasicExpression::~BasicExpression() = default;
170 CallExpression::~CallExpression() = default;
171 LoadExpression::~LoadExpression() = default;
172 StoreExpression::~StoreExpression() = default;
173 AggregateValueExpression::~AggregateValueExpression() = default;
174 PHIExpression::~PHIExpression() = default;
175
176 } // end namespace GVNExpression
177 } // end namespace llvm
178
179 namespace {
180
181 // Tarjan's SCC finding algorithm with Nuutila's improvements
182 // SCCIterator is actually fairly complex for the simple thing we want.
183 // It also wants to hand us SCC's that are unrelated to the phi node we ask
184 // about, and have us process them there or risk redoing work.
185 // Graph traits over a filter iterator also doesn't work that well here.
186 // This SCC finder is specialized to walk use-def chains, and only follows
187 // instructions,
188 // not generic values (arguments, etc).
189 struct TarjanSCC {
TarjanSCC__anon1f4f44df0111::TarjanSCC190 TarjanSCC() : Components(1) {}
191
Start__anon1f4f44df0111::TarjanSCC192 void Start(const Instruction *Start) {
193 if (Root.lookup(Start) == 0)
194 FindSCC(Start);
195 }
196
getComponentFor__anon1f4f44df0111::TarjanSCC197 const SmallPtrSetImpl<const Value *> &getComponentFor(const Value *V) const {
198 unsigned ComponentID = ValueToComponent.lookup(V);
199
200 assert(ComponentID > 0 &&
201 "Asking for a component for a value we never processed");
202 return Components[ComponentID];
203 }
204
205 private:
FindSCC__anon1f4f44df0111::TarjanSCC206 void FindSCC(const Instruction *I) {
207 Root[I] = ++DFSNum;
208 // Store the DFS Number we had before it possibly gets incremented.
209 unsigned int OurDFS = DFSNum;
210 for (const auto &Op : I->operands()) {
211 if (auto *InstOp = dyn_cast<Instruction>(Op)) {
212 if (Root.lookup(Op) == 0)
213 FindSCC(InstOp);
214 if (!InComponent.count(Op))
215 Root[I] = std::min(Root.lookup(I), Root.lookup(Op));
216 }
217 }
218 // See if we really were the root of a component, by seeing if we still have
219 // our DFSNumber. If we do, we are the root of the component, and we have
220 // completed a component. If we do not, we are not the root of a component,
221 // and belong on the component stack.
222 if (Root.lookup(I) == OurDFS) {
223 unsigned ComponentID = Components.size();
224 Components.resize(Components.size() + 1);
225 auto &Component = Components.back();
226 Component.insert(I);
227 LLVM_DEBUG(dbgs() << "Component root is " << *I << "\n");
228 InComponent.insert(I);
229 ValueToComponent[I] = ComponentID;
230 // Pop a component off the stack and label it.
231 while (!Stack.empty() && Root.lookup(Stack.back()) >= OurDFS) {
232 auto *Member = Stack.back();
233 LLVM_DEBUG(dbgs() << "Component member is " << *Member << "\n");
234 Component.insert(Member);
235 InComponent.insert(Member);
236 ValueToComponent[Member] = ComponentID;
237 Stack.pop_back();
238 }
239 } else {
240 // Part of a component, push to stack
241 Stack.push_back(I);
242 }
243 }
244
245 unsigned int DFSNum = 1;
246 SmallPtrSet<const Value *, 8> InComponent;
247 DenseMap<const Value *, unsigned int> Root;
248 SmallVector<const Value *, 8> Stack;
249
250 // Store the components as vector of ptr sets, because we need the topo order
251 // of SCC's, but not individual member order
252 SmallVector<SmallPtrSet<const Value *, 8>, 8> Components;
253
254 DenseMap<const Value *, unsigned> ValueToComponent;
255 };
256
257 // Congruence classes represent the set of expressions/instructions
258 // that are all the same *during some scope in the function*.
259 // That is, because of the way we perform equality propagation, and
260 // because of memory value numbering, it is not correct to assume
261 // you can willy-nilly replace any member with any other at any
262 // point in the function.
263 //
264 // For any Value in the Member set, it is valid to replace any dominated member
265 // with that Value.
266 //
267 // Every congruence class has a leader, and the leader is used to symbolize
268 // instructions in a canonical way (IE every operand of an instruction that is a
269 // member of the same congruence class will always be replaced with leader
270 // during symbolization). To simplify symbolization, we keep the leader as a
271 // constant if class can be proved to be a constant value. Otherwise, the
272 // leader is the member of the value set with the smallest DFS number. Each
273 // congruence class also has a defining expression, though the expression may be
274 // null. If it exists, it can be used for forward propagation and reassociation
275 // of values.
276
277 // For memory, we also track a representative MemoryAccess, and a set of memory
278 // members for MemoryPhis (which have no real instructions). Note that for
279 // memory, it seems tempting to try to split the memory members into a
280 // MemoryCongruenceClass or something. Unfortunately, this does not work
281 // easily. The value numbering of a given memory expression depends on the
282 // leader of the memory congruence class, and the leader of memory congruence
283 // class depends on the value numbering of a given memory expression. This
284 // leads to wasted propagation, and in some cases, missed optimization. For
285 // example: If we had value numbered two stores together before, but now do not,
286 // we move them to a new value congruence class. This in turn will move at one
287 // of the memorydefs to a new memory congruence class. Which in turn, affects
288 // the value numbering of the stores we just value numbered (because the memory
289 // congruence class is part of the value number). So while theoretically
290 // possible to split them up, it turns out to be *incredibly* complicated to get
291 // it to work right, because of the interdependency. While structurally
292 // slightly messier, it is algorithmically much simpler and faster to do what we
293 // do here, and track them both at once in the same class.
294 // Note: The default iterators for this class iterate over values
295 class CongruenceClass {
296 public:
297 using MemberType = Value;
298 using MemberSet = SmallPtrSet<MemberType *, 4>;
299 using MemoryMemberType = MemoryPhi;
300 using MemoryMemberSet = SmallPtrSet<const MemoryMemberType *, 2>;
301
CongruenceClass(unsigned ID)302 explicit CongruenceClass(unsigned ID) : ID(ID) {}
CongruenceClass(unsigned ID,Value * Leader,const Expression * E)303 CongruenceClass(unsigned ID, Value *Leader, const Expression *E)
304 : ID(ID), RepLeader(Leader), DefiningExpr(E) {}
305
getID() const306 unsigned getID() const { return ID; }
307
308 // True if this class has no members left. This is mainly used for assertion
309 // purposes, and for skipping empty classes.
isDead() const310 bool isDead() const {
311 // If it's both dead from a value perspective, and dead from a memory
312 // perspective, it's really dead.
313 return empty() && memory_empty();
314 }
315
316 // Leader functions
getLeader() const317 Value *getLeader() const { return RepLeader; }
setLeader(Value * Leader)318 void setLeader(Value *Leader) { RepLeader = Leader; }
getNextLeader() const319 const std::pair<Value *, unsigned int> &getNextLeader() const {
320 return NextLeader;
321 }
resetNextLeader()322 void resetNextLeader() { NextLeader = {nullptr, ~0}; }
addPossibleNextLeader(std::pair<Value *,unsigned int> LeaderPair)323 void addPossibleNextLeader(std::pair<Value *, unsigned int> LeaderPair) {
324 if (LeaderPair.second < NextLeader.second)
325 NextLeader = LeaderPair;
326 }
327
getStoredValue() const328 Value *getStoredValue() const { return RepStoredValue; }
setStoredValue(Value * Leader)329 void setStoredValue(Value *Leader) { RepStoredValue = Leader; }
getMemoryLeader() const330 const MemoryAccess *getMemoryLeader() const { return RepMemoryAccess; }
setMemoryLeader(const MemoryAccess * Leader)331 void setMemoryLeader(const MemoryAccess *Leader) { RepMemoryAccess = Leader; }
332
333 // Forward propagation info
getDefiningExpr() const334 const Expression *getDefiningExpr() const { return DefiningExpr; }
335
336 // Value member set
empty() const337 bool empty() const { return Members.empty(); }
size() const338 unsigned size() const { return Members.size(); }
begin() const339 MemberSet::const_iterator begin() const { return Members.begin(); }
end() const340 MemberSet::const_iterator end() const { return Members.end(); }
insert(MemberType * M)341 void insert(MemberType *M) { Members.insert(M); }
erase(MemberType * M)342 void erase(MemberType *M) { Members.erase(M); }
swap(MemberSet & Other)343 void swap(MemberSet &Other) { Members.swap(Other); }
344
345 // Memory member set
memory_empty() const346 bool memory_empty() const { return MemoryMembers.empty(); }
memory_size() const347 unsigned memory_size() const { return MemoryMembers.size(); }
memory_begin() const348 MemoryMemberSet::const_iterator memory_begin() const {
349 return MemoryMembers.begin();
350 }
memory_end() const351 MemoryMemberSet::const_iterator memory_end() const {
352 return MemoryMembers.end();
353 }
memory() const354 iterator_range<MemoryMemberSet::const_iterator> memory() const {
355 return make_range(memory_begin(), memory_end());
356 }
357
memory_insert(const MemoryMemberType * M)358 void memory_insert(const MemoryMemberType *M) { MemoryMembers.insert(M); }
memory_erase(const MemoryMemberType * M)359 void memory_erase(const MemoryMemberType *M) { MemoryMembers.erase(M); }
360
361 // Store count
getStoreCount() const362 unsigned getStoreCount() const { return StoreCount; }
incStoreCount()363 void incStoreCount() { ++StoreCount; }
decStoreCount()364 void decStoreCount() {
365 assert(StoreCount != 0 && "Store count went negative");
366 --StoreCount;
367 }
368
369 // True if this class has no memory members.
definesNoMemory() const370 bool definesNoMemory() const { return StoreCount == 0 && memory_empty(); }
371
372 // Return true if two congruence classes are equivalent to each other. This
373 // means that every field but the ID number and the dead field are equivalent.
isEquivalentTo(const CongruenceClass * Other) const374 bool isEquivalentTo(const CongruenceClass *Other) const {
375 if (!Other)
376 return false;
377 if (this == Other)
378 return true;
379
380 if (std::tie(StoreCount, RepLeader, RepStoredValue, RepMemoryAccess) !=
381 std::tie(Other->StoreCount, Other->RepLeader, Other->RepStoredValue,
382 Other->RepMemoryAccess))
383 return false;
384 if (DefiningExpr != Other->DefiningExpr)
385 if (!DefiningExpr || !Other->DefiningExpr ||
386 *DefiningExpr != *Other->DefiningExpr)
387 return false;
388
389 if (Members.size() != Other->Members.size())
390 return false;
391
392 return llvm::set_is_subset(Members, Other->Members);
393 }
394
395 private:
396 unsigned ID;
397
398 // Representative leader.
399 Value *RepLeader = nullptr;
400
401 // The most dominating leader after our current leader, because the member set
402 // is not sorted and is expensive to keep sorted all the time.
403 std::pair<Value *, unsigned int> NextLeader = {nullptr, ~0U};
404
405 // If this is represented by a store, the value of the store.
406 Value *RepStoredValue = nullptr;
407
408 // If this class contains MemoryDefs or MemoryPhis, this is the leading memory
409 // access.
410 const MemoryAccess *RepMemoryAccess = nullptr;
411
412 // Defining Expression.
413 const Expression *DefiningExpr = nullptr;
414
415 // Actual members of this class.
416 MemberSet Members;
417
418 // This is the set of MemoryPhis that exist in the class. MemoryDefs and
419 // MemoryUses have real instructions representing them, so we only need to
420 // track MemoryPhis here.
421 MemoryMemberSet MemoryMembers;
422
423 // Number of stores in this congruence class.
424 // This is used so we can detect store equivalence changes properly.
425 int StoreCount = 0;
426 };
427
428 } // end anonymous namespace
429
430 namespace llvm {
431
432 struct ExactEqualsExpression {
433 const Expression &E;
434
ExactEqualsExpressionllvm::ExactEqualsExpression435 explicit ExactEqualsExpression(const Expression &E) : E(E) {}
436
getComputedHashllvm::ExactEqualsExpression437 hash_code getComputedHash() const { return E.getComputedHash(); }
438
operator ==llvm::ExactEqualsExpression439 bool operator==(const Expression &Other) const {
440 return E.exactlyEquals(Other);
441 }
442 };
443
444 template <> struct DenseMapInfo<const Expression *> {
getEmptyKeyllvm::DenseMapInfo445 static const Expression *getEmptyKey() {
446 auto Val = static_cast<uintptr_t>(-1);
447 Val <<= PointerLikeTypeTraits<const Expression *>::NumLowBitsAvailable;
448 return reinterpret_cast<const Expression *>(Val);
449 }
450
getTombstoneKeyllvm::DenseMapInfo451 static const Expression *getTombstoneKey() {
452 auto Val = static_cast<uintptr_t>(~1U);
453 Val <<= PointerLikeTypeTraits<const Expression *>::NumLowBitsAvailable;
454 return reinterpret_cast<const Expression *>(Val);
455 }
456
getHashValuellvm::DenseMapInfo457 static unsigned getHashValue(const Expression *E) {
458 return E->getComputedHash();
459 }
460
getHashValuellvm::DenseMapInfo461 static unsigned getHashValue(const ExactEqualsExpression &E) {
462 return E.getComputedHash();
463 }
464
isEqualllvm::DenseMapInfo465 static bool isEqual(const ExactEqualsExpression &LHS, const Expression *RHS) {
466 if (RHS == getTombstoneKey() || RHS == getEmptyKey())
467 return false;
468 return LHS == *RHS;
469 }
470
isEqualllvm::DenseMapInfo471 static bool isEqual(const Expression *LHS, const Expression *RHS) {
472 if (LHS == RHS)
473 return true;
474 if (LHS == getTombstoneKey() || RHS == getTombstoneKey() ||
475 LHS == getEmptyKey() || RHS == getEmptyKey())
476 return false;
477 // Compare hashes before equality. This is *not* what the hashtable does,
478 // since it is computing it modulo the number of buckets, whereas we are
479 // using the full hash keyspace. Since the hashes are precomputed, this
480 // check is *much* faster than equality.
481 if (LHS->getComputedHash() != RHS->getComputedHash())
482 return false;
483 return *LHS == *RHS;
484 }
485 };
486
487 } // end namespace llvm
488
489 namespace {
490
491 class NewGVN {
492 Function &F;
493 DominatorTree *DT = nullptr;
494 const TargetLibraryInfo *TLI = nullptr;
495 AliasAnalysis *AA = nullptr;
496 MemorySSA *MSSA = nullptr;
497 MemorySSAWalker *MSSAWalker = nullptr;
498 AssumptionCache *AC = nullptr;
499 const DataLayout &DL;
500 std::unique_ptr<PredicateInfo> PredInfo;
501
502 // These are the only two things the create* functions should have
503 // side-effects on due to allocating memory.
504 mutable BumpPtrAllocator ExpressionAllocator;
505 mutable ArrayRecycler<Value *> ArgRecycler;
506 mutable TarjanSCC SCCFinder;
507 const SimplifyQuery SQ;
508
509 // Number of function arguments, used by ranking
510 unsigned int NumFuncArgs = 0;
511
512 // RPOOrdering of basic blocks
513 DenseMap<const DomTreeNode *, unsigned> RPOOrdering;
514
515 // Congruence class info.
516
517 // This class is called INITIAL in the paper. It is the class everything
518 // startsout in, and represents any value. Being an optimistic analysis,
519 // anything in the TOP class has the value TOP, which is indeterminate and
520 // equivalent to everything.
521 CongruenceClass *TOPClass = nullptr;
522 std::vector<CongruenceClass *> CongruenceClasses;
523 unsigned NextCongruenceNum = 0;
524
525 // Value Mappings.
526 DenseMap<Value *, CongruenceClass *> ValueToClass;
527 DenseMap<Value *, const Expression *> ValueToExpression;
528
529 // Value PHI handling, used to make equivalence between phi(op, op) and
530 // op(phi, phi).
531 // These mappings just store various data that would normally be part of the
532 // IR.
533 SmallPtrSet<const Instruction *, 8> PHINodeUses;
534
535 DenseMap<const Value *, bool> OpSafeForPHIOfOps;
536
537 // Map a temporary instruction we created to a parent block.
538 DenseMap<const Value *, BasicBlock *> TempToBlock;
539
540 // Map between the already in-program instructions and the temporary phis we
541 // created that they are known equivalent to.
542 DenseMap<const Value *, PHINode *> RealToTemp;
543
544 // In order to know when we should re-process instructions that have
545 // phi-of-ops, we track the set of expressions that they needed as
546 // leaders. When we discover new leaders for those expressions, we process the
547 // associated phi-of-op instructions again in case they have changed. The
548 // other way they may change is if they had leaders, and those leaders
549 // disappear. However, at the point they have leaders, there are uses of the
550 // relevant operands in the created phi node, and so they will get reprocessed
551 // through the normal user marking we perform.
552 mutable DenseMap<const Value *, SmallPtrSet<Value *, 2>> AdditionalUsers;
553 DenseMap<const Expression *, SmallPtrSet<Instruction *, 2>>
554 ExpressionToPhiOfOps;
555
556 // Map from temporary operation to MemoryAccess.
557 DenseMap<const Instruction *, MemoryUseOrDef *> TempToMemory;
558
559 // Set of all temporary instructions we created.
560 // Note: This will include instructions that were just created during value
561 // numbering. The way to test if something is using them is to check
562 // RealToTemp.
563 DenseSet<Instruction *> AllTempInstructions;
564
565 // This is the set of instructions to revisit on a reachability change. At
566 // the end of the main iteration loop it will contain at least all the phi of
567 // ops instructions that will be changed to phis, as well as regular phis.
568 // During the iteration loop, it may contain other things, such as phi of ops
569 // instructions that used edge reachability to reach a result, and so need to
570 // be revisited when the edge changes, independent of whether the phi they
571 // depended on changes.
572 DenseMap<BasicBlock *, SparseBitVector<>> RevisitOnReachabilityChange;
573
574 // Mapping from predicate info we used to the instructions we used it with.
575 // In order to correctly ensure propagation, we must keep track of what
576 // comparisons we used, so that when the values of the comparisons change, we
577 // propagate the information to the places we used the comparison.
578 mutable DenseMap<const Value *, SmallPtrSet<Instruction *, 2>>
579 PredicateToUsers;
580
581 // the same reasoning as PredicateToUsers. When we skip MemoryAccesses for
582 // stores, we no longer can rely solely on the def-use chains of MemorySSA.
583 mutable DenseMap<const MemoryAccess *, SmallPtrSet<MemoryAccess *, 2>>
584 MemoryToUsers;
585
586 // A table storing which memorydefs/phis represent a memory state provably
587 // equivalent to another memory state.
588 // We could use the congruence class machinery, but the MemoryAccess's are
589 // abstract memory states, so they can only ever be equivalent to each other,
590 // and not to constants, etc.
591 DenseMap<const MemoryAccess *, CongruenceClass *> MemoryAccessToClass;
592
593 // We could, if we wanted, build MemoryPhiExpressions and
594 // MemoryVariableExpressions, etc, and value number them the same way we value
595 // number phi expressions. For the moment, this seems like overkill. They
596 // can only exist in one of three states: they can be TOP (equal to
597 // everything), Equivalent to something else, or unique. Because we do not
598 // create expressions for them, we need to simulate leader change not just
599 // when they change class, but when they change state. Note: We can do the
600 // same thing for phis, and avoid having phi expressions if we wanted, We
601 // should eventually unify in one direction or the other, so this is a little
602 // bit of an experiment in which turns out easier to maintain.
603 enum MemoryPhiState { MPS_Invalid, MPS_TOP, MPS_Equivalent, MPS_Unique };
604 DenseMap<const MemoryPhi *, MemoryPhiState> MemoryPhiState;
605
606 enum InstCycleState { ICS_Unknown, ICS_CycleFree, ICS_Cycle };
607 mutable DenseMap<const Instruction *, InstCycleState> InstCycleState;
608
609 // Expression to class mapping.
610 using ExpressionClassMap = DenseMap<const Expression *, CongruenceClass *>;
611 ExpressionClassMap ExpressionToClass;
612
613 // We have a single expression that represents currently DeadExpressions.
614 // For dead expressions we can prove will stay dead, we mark them with
615 // DFS number zero. However, it's possible in the case of phi nodes
616 // for us to assume/prove all arguments are dead during fixpointing.
617 // We use DeadExpression for that case.
618 DeadExpression *SingletonDeadExpression = nullptr;
619
620 // Which values have changed as a result of leader changes.
621 SmallPtrSet<Value *, 8> LeaderChanges;
622
623 // Reachability info.
624 using BlockEdge = BasicBlockEdge;
625 DenseSet<BlockEdge> ReachableEdges;
626 SmallPtrSet<const BasicBlock *, 8> ReachableBlocks;
627
628 // This is a bitvector because, on larger functions, we may have
629 // thousands of touched instructions at once (entire blocks,
630 // instructions with hundreds of uses, etc). Even with optimization
631 // for when we mark whole blocks as touched, when this was a
632 // SmallPtrSet or DenseSet, for some functions, we spent >20% of all
633 // the time in GVN just managing this list. The bitvector, on the
634 // other hand, efficiently supports test/set/clear of both
635 // individual and ranges, as well as "find next element" This
636 // enables us to use it as a worklist with essentially 0 cost.
637 BitVector TouchedInstructions;
638
639 DenseMap<const BasicBlock *, std::pair<unsigned, unsigned>> BlockInstRange;
640 mutable DenseMap<const IntrinsicInst *, const Value *> IntrinsicInstPred;
641
642 #ifndef NDEBUG
643 // Debugging for how many times each block and instruction got processed.
644 DenseMap<const Value *, unsigned> ProcessedCount;
645 #endif
646
647 // DFS info.
648 // This contains a mapping from Instructions to DFS numbers.
649 // The numbering starts at 1. An instruction with DFS number zero
650 // means that the instruction is dead.
651 DenseMap<const Value *, unsigned> InstrDFS;
652
653 // This contains the mapping DFS numbers to instructions.
654 SmallVector<Value *, 32> DFSToInstr;
655
656 // Deletion info.
657 SmallPtrSet<Instruction *, 8> InstructionsToErase;
658
659 public:
NewGVN(Function & F,DominatorTree * DT,AssumptionCache * AC,TargetLibraryInfo * TLI,AliasAnalysis * AA,MemorySSA * MSSA,const DataLayout & DL)660 NewGVN(Function &F, DominatorTree *DT, AssumptionCache *AC,
661 TargetLibraryInfo *TLI, AliasAnalysis *AA, MemorySSA *MSSA,
662 const DataLayout &DL)
663 : F(F), DT(DT), TLI(TLI), AA(AA), MSSA(MSSA), AC(AC), DL(DL),
664 PredInfo(std::make_unique<PredicateInfo>(F, *DT, *AC)),
665 SQ(DL, TLI, DT, AC, /*CtxI=*/nullptr, /*UseInstrInfo=*/false,
666 /*CanUseUndef=*/false) {}
667
668 bool runGVN();
669
670 private:
671 /// Helper struct return a Expression with an optional extra dependency.
672 struct ExprResult {
673 const Expression *Expr;
674 Value *ExtraDep;
675 const PredicateBase *PredDep;
676
ExprResult__anon1f4f44df0211::NewGVN::ExprResult677 ExprResult(const Expression *Expr, Value *ExtraDep = nullptr,
678 const PredicateBase *PredDep = nullptr)
679 : Expr(Expr), ExtraDep(ExtraDep), PredDep(PredDep) {}
680 ExprResult(const ExprResult &) = delete;
ExprResult__anon1f4f44df0211::NewGVN::ExprResult681 ExprResult(ExprResult &&Other)
682 : Expr(Other.Expr), ExtraDep(Other.ExtraDep), PredDep(Other.PredDep) {
683 Other.Expr = nullptr;
684 Other.ExtraDep = nullptr;
685 Other.PredDep = nullptr;
686 }
687 ExprResult &operator=(const ExprResult &Other) = delete;
688 ExprResult &operator=(ExprResult &&Other) = delete;
689
~ExprResult__anon1f4f44df0211::NewGVN::ExprResult690 ~ExprResult() { assert(!ExtraDep && "unhandled ExtraDep"); }
691
operator bool__anon1f4f44df0211::NewGVN::ExprResult692 operator bool() const { return Expr; }
693
none__anon1f4f44df0211::NewGVN::ExprResult694 static ExprResult none() { return {nullptr, nullptr, nullptr}; }
some__anon1f4f44df0211::NewGVN::ExprResult695 static ExprResult some(const Expression *Expr, Value *ExtraDep = nullptr) {
696 return {Expr, ExtraDep, nullptr};
697 }
some__anon1f4f44df0211::NewGVN::ExprResult698 static ExprResult some(const Expression *Expr,
699 const PredicateBase *PredDep) {
700 return {Expr, nullptr, PredDep};
701 }
some__anon1f4f44df0211::NewGVN::ExprResult702 static ExprResult some(const Expression *Expr, Value *ExtraDep,
703 const PredicateBase *PredDep) {
704 return {Expr, ExtraDep, PredDep};
705 }
706 };
707
708 // Expression handling.
709 ExprResult createExpression(Instruction *) const;
710 const Expression *createBinaryExpression(unsigned, Type *, Value *, Value *,
711 Instruction *) const;
712
713 // Our canonical form for phi arguments is a pair of incoming value, incoming
714 // basic block.
715 using ValPair = std::pair<Value *, BasicBlock *>;
716
717 PHIExpression *createPHIExpression(ArrayRef<ValPair>, const Instruction *,
718 BasicBlock *, bool &HasBackEdge,
719 bool &OriginalOpsConstant) const;
720 const DeadExpression *createDeadExpression() const;
721 const VariableExpression *createVariableExpression(Value *) const;
722 const ConstantExpression *createConstantExpression(Constant *) const;
723 const Expression *createVariableOrConstant(Value *V) const;
724 const UnknownExpression *createUnknownExpression(Instruction *) const;
725 const StoreExpression *createStoreExpression(StoreInst *,
726 const MemoryAccess *) const;
727 LoadExpression *createLoadExpression(Type *, Value *, LoadInst *,
728 const MemoryAccess *) const;
729 const CallExpression *createCallExpression(CallInst *,
730 const MemoryAccess *) const;
731 const AggregateValueExpression *
732 createAggregateValueExpression(Instruction *) const;
733 bool setBasicExpressionInfo(Instruction *, BasicExpression *) const;
734
735 // Congruence class handling.
createCongruenceClass(Value * Leader,const Expression * E)736 CongruenceClass *createCongruenceClass(Value *Leader, const Expression *E) {
737 auto *result = new CongruenceClass(NextCongruenceNum++, Leader, E);
738 CongruenceClasses.emplace_back(result);
739 return result;
740 }
741
createMemoryClass(MemoryAccess * MA)742 CongruenceClass *createMemoryClass(MemoryAccess *MA) {
743 auto *CC = createCongruenceClass(nullptr, nullptr);
744 CC->setMemoryLeader(MA);
745 return CC;
746 }
747
ensureLeaderOfMemoryClass(MemoryAccess * MA)748 CongruenceClass *ensureLeaderOfMemoryClass(MemoryAccess *MA) {
749 auto *CC = getMemoryClass(MA);
750 if (CC->getMemoryLeader() != MA)
751 CC = createMemoryClass(MA);
752 return CC;
753 }
754
createSingletonCongruenceClass(Value * Member)755 CongruenceClass *createSingletonCongruenceClass(Value *Member) {
756 CongruenceClass *CClass = createCongruenceClass(Member, nullptr);
757 CClass->insert(Member);
758 ValueToClass[Member] = CClass;
759 return CClass;
760 }
761
762 void initializeCongruenceClasses(Function &F);
763 const Expression *makePossiblePHIOfOps(Instruction *,
764 SmallPtrSetImpl<Value *> &);
765 Value *findLeaderForInst(Instruction *ValueOp,
766 SmallPtrSetImpl<Value *> &Visited,
767 MemoryAccess *MemAccess, Instruction *OrigInst,
768 BasicBlock *PredBB);
769 bool OpIsSafeForPHIOfOps(Value *Op, const BasicBlock *PHIBlock,
770 SmallPtrSetImpl<const Value *> &);
771 void addPhiOfOps(PHINode *Op, BasicBlock *BB, Instruction *ExistingValue);
772 void removePhiOfOps(Instruction *I, PHINode *PHITemp);
773
774 // Value number an Instruction or MemoryPhi.
775 void valueNumberMemoryPhi(MemoryPhi *);
776 void valueNumberInstruction(Instruction *);
777
778 // Symbolic evaluation.
779 ExprResult checkExprResults(Expression *, Instruction *, Value *) const;
780 ExprResult performSymbolicEvaluation(Value *,
781 SmallPtrSetImpl<Value *> &) const;
782 const Expression *performSymbolicLoadCoercion(Type *, Value *, LoadInst *,
783 Instruction *,
784 MemoryAccess *) const;
785 const Expression *performSymbolicLoadEvaluation(Instruction *) const;
786 const Expression *performSymbolicStoreEvaluation(Instruction *) const;
787 ExprResult performSymbolicCallEvaluation(Instruction *) const;
788 void sortPHIOps(MutableArrayRef<ValPair> Ops) const;
789 const Expression *performSymbolicPHIEvaluation(ArrayRef<ValPair>,
790 Instruction *I,
791 BasicBlock *PHIBlock) const;
792 const Expression *performSymbolicAggrValueEvaluation(Instruction *) const;
793 ExprResult performSymbolicCmpEvaluation(Instruction *) const;
794 ExprResult performSymbolicPredicateInfoEvaluation(IntrinsicInst *) const;
795
796 // Congruence finding.
797 bool someEquivalentDominates(const Instruction *, const Instruction *) const;
798 Value *lookupOperandLeader(Value *) const;
799 CongruenceClass *getClassForExpression(const Expression *E) const;
800 void performCongruenceFinding(Instruction *, const Expression *);
801 void moveValueToNewCongruenceClass(Instruction *, const Expression *,
802 CongruenceClass *, CongruenceClass *);
803 void moveMemoryToNewCongruenceClass(Instruction *, MemoryAccess *,
804 CongruenceClass *, CongruenceClass *);
805 Value *getNextValueLeader(CongruenceClass *) const;
806 const MemoryAccess *getNextMemoryLeader(CongruenceClass *) const;
807 bool setMemoryClass(const MemoryAccess *From, CongruenceClass *To);
808 CongruenceClass *getMemoryClass(const MemoryAccess *MA) const;
809 const MemoryAccess *lookupMemoryLeader(const MemoryAccess *) const;
810 bool isMemoryAccessTOP(const MemoryAccess *) const;
811
812 // Ranking
813 unsigned int getRank(const Value *) const;
814 bool shouldSwapOperands(const Value *, const Value *) const;
815 bool shouldSwapOperandsForIntrinsic(const Value *, const Value *,
816 const IntrinsicInst *I) const;
817
818 // Reachability handling.
819 void updateReachableEdge(BasicBlock *, BasicBlock *);
820 void processOutgoingEdges(Instruction *, BasicBlock *);
821 Value *findConditionEquivalence(Value *) const;
822
823 // Elimination.
824 struct ValueDFS;
825 void convertClassToDFSOrdered(const CongruenceClass &,
826 SmallVectorImpl<ValueDFS> &,
827 DenseMap<const Value *, unsigned int> &,
828 SmallPtrSetImpl<Instruction *> &) const;
829 void convertClassToLoadsAndStores(const CongruenceClass &,
830 SmallVectorImpl<ValueDFS> &) const;
831
832 bool eliminateInstructions(Function &);
833 void replaceInstruction(Instruction *, Value *);
834 void markInstructionForDeletion(Instruction *);
835 void deleteInstructionsInBlock(BasicBlock *);
836 Value *findPHIOfOpsLeader(const Expression *, const Instruction *,
837 const BasicBlock *) const;
838
839 // Various instruction touch utilities
840 template <typename Map, typename KeyType>
841 void touchAndErase(Map &, const KeyType &);
842 void markUsersTouched(Value *);
843 void markMemoryUsersTouched(const MemoryAccess *);
844 void markMemoryDefTouched(const MemoryAccess *);
845 void markPredicateUsersTouched(Instruction *);
846 void markValueLeaderChangeTouched(CongruenceClass *CC);
847 void markMemoryLeaderChangeTouched(CongruenceClass *CC);
848 void markPhiOfOpsChanged(const Expression *E);
849 void addMemoryUsers(const MemoryAccess *To, MemoryAccess *U) const;
850 void addAdditionalUsers(Value *To, Value *User) const;
851 void addAdditionalUsers(ExprResult &Res, Instruction *User) const;
852
853 // Main loop of value numbering
854 void iterateTouchedInstructions();
855
856 // Utilities.
857 void cleanupTables();
858 std::pair<unsigned, unsigned> assignDFSNumbers(BasicBlock *, unsigned);
859 void updateProcessedCount(const Value *V);
860 void verifyMemoryCongruency() const;
861 void verifyIterationSettled(Function &F);
862 void verifyStoreExpressions() const;
863 bool singleReachablePHIPath(SmallPtrSet<const MemoryAccess *, 8> &,
864 const MemoryAccess *, const MemoryAccess *) const;
865 BasicBlock *getBlockForValue(Value *V) const;
866 void deleteExpression(const Expression *E) const;
867 MemoryUseOrDef *getMemoryAccess(const Instruction *) const;
868 MemoryPhi *getMemoryAccess(const BasicBlock *) const;
869 template <class T, class Range> T *getMinDFSOfRange(const Range &) const;
870
InstrToDFSNum(const Value * V) const871 unsigned InstrToDFSNum(const Value *V) const {
872 assert(isa<Instruction>(V) && "This should not be used for MemoryAccesses");
873 return InstrDFS.lookup(V);
874 }
875
InstrToDFSNum(const MemoryAccess * MA) const876 unsigned InstrToDFSNum(const MemoryAccess *MA) const {
877 return MemoryToDFSNum(MA);
878 }
879
InstrFromDFSNum(unsigned DFSNum)880 Value *InstrFromDFSNum(unsigned DFSNum) { return DFSToInstr[DFSNum]; }
881
882 // Given a MemoryAccess, return the relevant instruction DFS number. Note:
883 // This deliberately takes a value so it can be used with Use's, which will
884 // auto-convert to Value's but not to MemoryAccess's.
MemoryToDFSNum(const Value * MA) const885 unsigned MemoryToDFSNum(const Value *MA) const {
886 assert(isa<MemoryAccess>(MA) &&
887 "This should not be used with instructions");
888 return isa<MemoryUseOrDef>(MA)
889 ? InstrToDFSNum(cast<MemoryUseOrDef>(MA)->getMemoryInst())
890 : InstrDFS.lookup(MA);
891 }
892
893 bool isCycleFree(const Instruction *) const;
894 bool isBackedge(BasicBlock *From, BasicBlock *To) const;
895
896 // Debug counter info. When verifying, we have to reset the value numbering
897 // debug counter to the same state it started in to get the same results.
898 int64_t StartingVNCounter = 0;
899 };
900
901 } // end anonymous namespace
902
903 template <typename T>
equalsLoadStoreHelper(const T & LHS,const Expression & RHS)904 static bool equalsLoadStoreHelper(const T &LHS, const Expression &RHS) {
905 if (!isa<LoadExpression>(RHS) && !isa<StoreExpression>(RHS))
906 return false;
907 return LHS.MemoryExpression::equals(RHS);
908 }
909
equals(const Expression & Other) const910 bool LoadExpression::equals(const Expression &Other) const {
911 return equalsLoadStoreHelper(*this, Other);
912 }
913
equals(const Expression & Other) const914 bool StoreExpression::equals(const Expression &Other) const {
915 if (!equalsLoadStoreHelper(*this, Other))
916 return false;
917 // Make sure that store vs store includes the value operand.
918 if (const auto *S = dyn_cast<StoreExpression>(&Other))
919 if (getStoredValue() != S->getStoredValue())
920 return false;
921 return true;
922 }
923
924 // Determine if the edge From->To is a backedge
isBackedge(BasicBlock * From,BasicBlock * To) const925 bool NewGVN::isBackedge(BasicBlock *From, BasicBlock *To) const {
926 return From == To ||
927 RPOOrdering.lookup(DT->getNode(From)) >=
928 RPOOrdering.lookup(DT->getNode(To));
929 }
930
931 #ifndef NDEBUG
getBlockName(const BasicBlock * B)932 static std::string getBlockName(const BasicBlock *B) {
933 return DOTGraphTraits<DOTFuncInfo *>::getSimpleNodeLabel(B, nullptr);
934 }
935 #endif
936
937 // Get a MemoryAccess for an instruction, fake or real.
getMemoryAccess(const Instruction * I) const938 MemoryUseOrDef *NewGVN::getMemoryAccess(const Instruction *I) const {
939 auto *Result = MSSA->getMemoryAccess(I);
940 return Result ? Result : TempToMemory.lookup(I);
941 }
942
943 // Get a MemoryPhi for a basic block. These are all real.
getMemoryAccess(const BasicBlock * BB) const944 MemoryPhi *NewGVN::getMemoryAccess(const BasicBlock *BB) const {
945 return MSSA->getMemoryAccess(BB);
946 }
947
948 // Get the basic block from an instruction/memory value.
getBlockForValue(Value * V) const949 BasicBlock *NewGVN::getBlockForValue(Value *V) const {
950 if (auto *I = dyn_cast<Instruction>(V)) {
951 auto *Parent = I->getParent();
952 if (Parent)
953 return Parent;
954 Parent = TempToBlock.lookup(V);
955 assert(Parent && "Every fake instruction should have a block");
956 return Parent;
957 }
958
959 auto *MP = dyn_cast<MemoryPhi>(V);
960 assert(MP && "Should have been an instruction or a MemoryPhi");
961 return MP->getBlock();
962 }
963
964 // Delete a definitely dead expression, so it can be reused by the expression
965 // allocator. Some of these are not in creation functions, so we have to accept
966 // const versions.
deleteExpression(const Expression * E) const967 void NewGVN::deleteExpression(const Expression *E) const {
968 assert(isa<BasicExpression>(E));
969 auto *BE = cast<BasicExpression>(E);
970 const_cast<BasicExpression *>(BE)->deallocateOperands(ArgRecycler);
971 ExpressionAllocator.Deallocate(E);
972 }
973
974 // If V is a predicateinfo copy, get the thing it is a copy of.
getCopyOf(const Value * V)975 static Value *getCopyOf(const Value *V) {
976 if (auto *II = dyn_cast<IntrinsicInst>(V))
977 if (II->getIntrinsicID() == Intrinsic::ssa_copy)
978 return II->getOperand(0);
979 return nullptr;
980 }
981
982 // Return true if V is really PN, even accounting for predicateinfo copies.
isCopyOfPHI(const Value * V,const PHINode * PN)983 static bool isCopyOfPHI(const Value *V, const PHINode *PN) {
984 return V == PN || getCopyOf(V) == PN;
985 }
986
isCopyOfAPHI(const Value * V)987 static bool isCopyOfAPHI(const Value *V) {
988 auto *CO = getCopyOf(V);
989 return CO && isa<PHINode>(CO);
990 }
991
992 // Sort PHI Operands into a canonical order. What we use here is an RPO
993 // order. The BlockInstRange numbers are generated in an RPO walk of the basic
994 // blocks.
sortPHIOps(MutableArrayRef<ValPair> Ops) const995 void NewGVN::sortPHIOps(MutableArrayRef<ValPair> Ops) const {
996 llvm::sort(Ops, [&](const ValPair &P1, const ValPair &P2) {
997 return BlockInstRange.lookup(P1.second).first <
998 BlockInstRange.lookup(P2.second).first;
999 });
1000 }
1001
1002 // Return true if V is a value that will always be available (IE can
1003 // be placed anywhere) in the function. We don't do globals here
1004 // because they are often worse to put in place.
alwaysAvailable(Value * V)1005 static bool alwaysAvailable(Value *V) {
1006 return isa<Constant>(V) || isa<Argument>(V);
1007 }
1008
1009 // Create a PHIExpression from an array of {incoming edge, value} pairs. I is
1010 // the original instruction we are creating a PHIExpression for (but may not be
1011 // a phi node). We require, as an invariant, that all the PHIOperands in the
1012 // same block are sorted the same way. sortPHIOps will sort them into a
1013 // canonical order.
createPHIExpression(ArrayRef<ValPair> PHIOperands,const Instruction * I,BasicBlock * PHIBlock,bool & HasBackedge,bool & OriginalOpsConstant) const1014 PHIExpression *NewGVN::createPHIExpression(ArrayRef<ValPair> PHIOperands,
1015 const Instruction *I,
1016 BasicBlock *PHIBlock,
1017 bool &HasBackedge,
1018 bool &OriginalOpsConstant) const {
1019 unsigned NumOps = PHIOperands.size();
1020 auto *E = new (ExpressionAllocator) PHIExpression(NumOps, PHIBlock);
1021
1022 E->allocateOperands(ArgRecycler, ExpressionAllocator);
1023 E->setType(PHIOperands.begin()->first->getType());
1024 E->setOpcode(Instruction::PHI);
1025
1026 // Filter out unreachable phi operands.
1027 auto Filtered = make_filter_range(PHIOperands, [&](const ValPair &P) {
1028 auto *BB = P.second;
1029 if (auto *PHIOp = dyn_cast<PHINode>(I))
1030 if (isCopyOfPHI(P.first, PHIOp))
1031 return false;
1032 if (!ReachableEdges.count({BB, PHIBlock}))
1033 return false;
1034 // Things in TOPClass are equivalent to everything.
1035 if (ValueToClass.lookup(P.first) == TOPClass)
1036 return false;
1037 OriginalOpsConstant = OriginalOpsConstant && isa<Constant>(P.first);
1038 HasBackedge = HasBackedge || isBackedge(BB, PHIBlock);
1039 return lookupOperandLeader(P.first) != I;
1040 });
1041 std::transform(Filtered.begin(), Filtered.end(), op_inserter(E),
1042 [&](const ValPair &P) -> Value * {
1043 return lookupOperandLeader(P.first);
1044 });
1045 return E;
1046 }
1047
1048 // Set basic expression info (Arguments, type, opcode) for Expression
1049 // E from Instruction I in block B.
setBasicExpressionInfo(Instruction * I,BasicExpression * E) const1050 bool NewGVN::setBasicExpressionInfo(Instruction *I, BasicExpression *E) const {
1051 bool AllConstant = true;
1052 if (auto *GEP = dyn_cast<GetElementPtrInst>(I))
1053 E->setType(GEP->getSourceElementType());
1054 else
1055 E->setType(I->getType());
1056 E->setOpcode(I->getOpcode());
1057 E->allocateOperands(ArgRecycler, ExpressionAllocator);
1058
1059 // Transform the operand array into an operand leader array, and keep track of
1060 // whether all members are constant.
1061 std::transform(I->op_begin(), I->op_end(), op_inserter(E), [&](Value *O) {
1062 auto Operand = lookupOperandLeader(O);
1063 AllConstant = AllConstant && isa<Constant>(Operand);
1064 return Operand;
1065 });
1066
1067 return AllConstant;
1068 }
1069
createBinaryExpression(unsigned Opcode,Type * T,Value * Arg1,Value * Arg2,Instruction * I) const1070 const Expression *NewGVN::createBinaryExpression(unsigned Opcode, Type *T,
1071 Value *Arg1, Value *Arg2,
1072 Instruction *I) const {
1073 auto *E = new (ExpressionAllocator) BasicExpression(2);
1074 // TODO: we need to remove context instruction after Value Tracking
1075 // can run without context instruction
1076 const SimplifyQuery Q = SQ.getWithInstruction(I);
1077
1078 E->setType(T);
1079 E->setOpcode(Opcode);
1080 E->allocateOperands(ArgRecycler, ExpressionAllocator);
1081 if (Instruction::isCommutative(Opcode)) {
1082 // Ensure that commutative instructions that only differ by a permutation
1083 // of their operands get the same value number by sorting the operand value
1084 // numbers. Since all commutative instructions have two operands it is more
1085 // efficient to sort by hand rather than using, say, std::sort.
1086 if (shouldSwapOperands(Arg1, Arg2))
1087 std::swap(Arg1, Arg2);
1088 }
1089 E->op_push_back(lookupOperandLeader(Arg1));
1090 E->op_push_back(lookupOperandLeader(Arg2));
1091
1092 Value *V = simplifyBinOp(Opcode, E->getOperand(0), E->getOperand(1), Q);
1093 if (auto Simplified = checkExprResults(E, I, V)) {
1094 addAdditionalUsers(Simplified, I);
1095 return Simplified.Expr;
1096 }
1097 return E;
1098 }
1099
1100 // Take a Value returned by simplification of Expression E/Instruction
1101 // I, and see if it resulted in a simpler expression. If so, return
1102 // that expression.
checkExprResults(Expression * E,Instruction * I,Value * V) const1103 NewGVN::ExprResult NewGVN::checkExprResults(Expression *E, Instruction *I,
1104 Value *V) const {
1105 if (!V)
1106 return ExprResult::none();
1107
1108 if (auto *C = dyn_cast<Constant>(V)) {
1109 if (I)
1110 LLVM_DEBUG(dbgs() << "Simplified " << *I << " to "
1111 << " constant " << *C << "\n");
1112 NumGVNOpsSimplified++;
1113 assert(isa<BasicExpression>(E) &&
1114 "We should always have had a basic expression here");
1115 deleteExpression(E);
1116 return ExprResult::some(createConstantExpression(C));
1117 } else if (isa<Argument>(V) || isa<GlobalVariable>(V)) {
1118 if (I)
1119 LLVM_DEBUG(dbgs() << "Simplified " << *I << " to "
1120 << " variable " << *V << "\n");
1121 deleteExpression(E);
1122 return ExprResult::some(createVariableExpression(V));
1123 }
1124
1125 CongruenceClass *CC = ValueToClass.lookup(V);
1126 if (CC) {
1127 if (CC->getLeader() && CC->getLeader() != I) {
1128 return ExprResult::some(createVariableOrConstant(CC->getLeader()), V);
1129 }
1130 if (CC->getDefiningExpr()) {
1131 if (I)
1132 LLVM_DEBUG(dbgs() << "Simplified " << *I << " to "
1133 << " expression " << *CC->getDefiningExpr() << "\n");
1134 NumGVNOpsSimplified++;
1135 deleteExpression(E);
1136 return ExprResult::some(CC->getDefiningExpr(), V);
1137 }
1138 }
1139
1140 return ExprResult::none();
1141 }
1142
1143 // Create a value expression from the instruction I, replacing operands with
1144 // their leaders.
1145
createExpression(Instruction * I) const1146 NewGVN::ExprResult NewGVN::createExpression(Instruction *I) const {
1147 auto *E = new (ExpressionAllocator) BasicExpression(I->getNumOperands());
1148 // TODO: we need to remove context instruction after Value Tracking
1149 // can run without context instruction
1150 const SimplifyQuery Q = SQ.getWithInstruction(I);
1151
1152 bool AllConstant = setBasicExpressionInfo(I, E);
1153
1154 if (I->isCommutative()) {
1155 // Ensure that commutative instructions that only differ by a permutation
1156 // of their operands get the same value number by sorting the operand value
1157 // numbers. Since all commutative instructions have two operands it is more
1158 // efficient to sort by hand rather than using, say, std::sort.
1159 assert(I->getNumOperands() == 2 && "Unsupported commutative instruction!");
1160 if (shouldSwapOperands(E->getOperand(0), E->getOperand(1)))
1161 E->swapOperands(0, 1);
1162 }
1163 // Perform simplification.
1164 if (auto *CI = dyn_cast<CmpInst>(I)) {
1165 // Sort the operand value numbers so x<y and y>x get the same value
1166 // number.
1167 CmpInst::Predicate Predicate = CI->getPredicate();
1168 if (shouldSwapOperands(E->getOperand(0), E->getOperand(1))) {
1169 E->swapOperands(0, 1);
1170 Predicate = CmpInst::getSwappedPredicate(Predicate);
1171 }
1172 E->setOpcode((CI->getOpcode() << 8) | Predicate);
1173 // TODO: 25% of our time is spent in simplifyCmpInst with pointer operands
1174 assert(I->getOperand(0)->getType() == I->getOperand(1)->getType() &&
1175 "Wrong types on cmp instruction");
1176 assert((E->getOperand(0)->getType() == I->getOperand(0)->getType() &&
1177 E->getOperand(1)->getType() == I->getOperand(1)->getType()));
1178 Value *V =
1179 simplifyCmpInst(Predicate, E->getOperand(0), E->getOperand(1), Q);
1180 if (auto Simplified = checkExprResults(E, I, V))
1181 return Simplified;
1182 } else if (isa<SelectInst>(I)) {
1183 if (isa<Constant>(E->getOperand(0)) ||
1184 E->getOperand(1) == E->getOperand(2)) {
1185 assert(E->getOperand(1)->getType() == I->getOperand(1)->getType() &&
1186 E->getOperand(2)->getType() == I->getOperand(2)->getType());
1187 Value *V = simplifySelectInst(E->getOperand(0), E->getOperand(1),
1188 E->getOperand(2), Q);
1189 if (auto Simplified = checkExprResults(E, I, V))
1190 return Simplified;
1191 }
1192 } else if (I->isBinaryOp()) {
1193 Value *V =
1194 simplifyBinOp(E->getOpcode(), E->getOperand(0), E->getOperand(1), Q);
1195 if (auto Simplified = checkExprResults(E, I, V))
1196 return Simplified;
1197 } else if (auto *CI = dyn_cast<CastInst>(I)) {
1198 Value *V =
1199 simplifyCastInst(CI->getOpcode(), E->getOperand(0), CI->getType(), Q);
1200 if (auto Simplified = checkExprResults(E, I, V))
1201 return Simplified;
1202 } else if (auto *GEPI = dyn_cast<GetElementPtrInst>(I)) {
1203 Value *V = simplifyGEPInst(GEPI->getSourceElementType(), *E->op_begin(),
1204 ArrayRef(std::next(E->op_begin()), E->op_end()),
1205 GEPI->isInBounds(), Q);
1206 if (auto Simplified = checkExprResults(E, I, V))
1207 return Simplified;
1208 } else if (AllConstant) {
1209 // We don't bother trying to simplify unless all of the operands
1210 // were constant.
1211 // TODO: There are a lot of Simplify*'s we could call here, if we
1212 // wanted to. The original motivating case for this code was a
1213 // zext i1 false to i8, which we don't have an interface to
1214 // simplify (IE there is no SimplifyZExt).
1215
1216 SmallVector<Constant *, 8> C;
1217 for (Value *Arg : E->operands())
1218 C.emplace_back(cast<Constant>(Arg));
1219
1220 if (Value *V = ConstantFoldInstOperands(I, C, DL, TLI))
1221 if (auto Simplified = checkExprResults(E, I, V))
1222 return Simplified;
1223 }
1224 return ExprResult::some(E);
1225 }
1226
1227 const AggregateValueExpression *
createAggregateValueExpression(Instruction * I) const1228 NewGVN::createAggregateValueExpression(Instruction *I) const {
1229 if (auto *II = dyn_cast<InsertValueInst>(I)) {
1230 auto *E = new (ExpressionAllocator)
1231 AggregateValueExpression(I->getNumOperands(), II->getNumIndices());
1232 setBasicExpressionInfo(I, E);
1233 E->allocateIntOperands(ExpressionAllocator);
1234 std::copy(II->idx_begin(), II->idx_end(), int_op_inserter(E));
1235 return E;
1236 } else if (auto *EI = dyn_cast<ExtractValueInst>(I)) {
1237 auto *E = new (ExpressionAllocator)
1238 AggregateValueExpression(I->getNumOperands(), EI->getNumIndices());
1239 setBasicExpressionInfo(EI, E);
1240 E->allocateIntOperands(ExpressionAllocator);
1241 std::copy(EI->idx_begin(), EI->idx_end(), int_op_inserter(E));
1242 return E;
1243 }
1244 llvm_unreachable("Unhandled type of aggregate value operation");
1245 }
1246
createDeadExpression() const1247 const DeadExpression *NewGVN::createDeadExpression() const {
1248 // DeadExpression has no arguments and all DeadExpression's are the same,
1249 // so we only need one of them.
1250 return SingletonDeadExpression;
1251 }
1252
createVariableExpression(Value * V) const1253 const VariableExpression *NewGVN::createVariableExpression(Value *V) const {
1254 auto *E = new (ExpressionAllocator) VariableExpression(V);
1255 E->setOpcode(V->getValueID());
1256 return E;
1257 }
1258
createVariableOrConstant(Value * V) const1259 const Expression *NewGVN::createVariableOrConstant(Value *V) const {
1260 if (auto *C = dyn_cast<Constant>(V))
1261 return createConstantExpression(C);
1262 return createVariableExpression(V);
1263 }
1264
createConstantExpression(Constant * C) const1265 const ConstantExpression *NewGVN::createConstantExpression(Constant *C) const {
1266 auto *E = new (ExpressionAllocator) ConstantExpression(C);
1267 E->setOpcode(C->getValueID());
1268 return E;
1269 }
1270
createUnknownExpression(Instruction * I) const1271 const UnknownExpression *NewGVN::createUnknownExpression(Instruction *I) const {
1272 auto *E = new (ExpressionAllocator) UnknownExpression(I);
1273 E->setOpcode(I->getOpcode());
1274 return E;
1275 }
1276
1277 const CallExpression *
createCallExpression(CallInst * CI,const MemoryAccess * MA) const1278 NewGVN::createCallExpression(CallInst *CI, const MemoryAccess *MA) const {
1279 // FIXME: Add operand bundles for calls.
1280 // FIXME: Allow commutative matching for intrinsics.
1281 auto *E =
1282 new (ExpressionAllocator) CallExpression(CI->getNumOperands(), CI, MA);
1283 setBasicExpressionInfo(CI, E);
1284 return E;
1285 }
1286
1287 // Return true if some equivalent of instruction Inst dominates instruction U.
someEquivalentDominates(const Instruction * Inst,const Instruction * U) const1288 bool NewGVN::someEquivalentDominates(const Instruction *Inst,
1289 const Instruction *U) const {
1290 auto *CC = ValueToClass.lookup(Inst);
1291 // This must be an instruction because we are only called from phi nodes
1292 // in the case that the value it needs to check against is an instruction.
1293
1294 // The most likely candidates for dominance are the leader and the next leader.
1295 // The leader or nextleader will dominate in all cases where there is an
1296 // equivalent that is higher up in the dom tree.
1297 // We can't *only* check them, however, because the
1298 // dominator tree could have an infinite number of non-dominating siblings
1299 // with instructions that are in the right congruence class.
1300 // A
1301 // B C D E F G
1302 // |
1303 // H
1304 // Instruction U could be in H, with equivalents in every other sibling.
1305 // Depending on the rpo order picked, the leader could be the equivalent in
1306 // any of these siblings.
1307 if (!CC)
1308 return false;
1309 if (alwaysAvailable(CC->getLeader()))
1310 return true;
1311 if (DT->dominates(cast<Instruction>(CC->getLeader()), U))
1312 return true;
1313 if (CC->getNextLeader().first &&
1314 DT->dominates(cast<Instruction>(CC->getNextLeader().first), U))
1315 return true;
1316 return llvm::any_of(*CC, [&](const Value *Member) {
1317 return Member != CC->getLeader() &&
1318 DT->dominates(cast<Instruction>(Member), U);
1319 });
1320 }
1321
1322 // See if we have a congruence class and leader for this operand, and if so,
1323 // return it. Otherwise, return the operand itself.
lookupOperandLeader(Value * V) const1324 Value *NewGVN::lookupOperandLeader(Value *V) const {
1325 CongruenceClass *CC = ValueToClass.lookup(V);
1326 if (CC) {
1327 // Everything in TOP is represented by poison, as it can be any value.
1328 // We do have to make sure we get the type right though, so we can't set the
1329 // RepLeader to poison.
1330 if (CC == TOPClass)
1331 return PoisonValue::get(V->getType());
1332 return CC->getStoredValue() ? CC->getStoredValue() : CC->getLeader();
1333 }
1334
1335 return V;
1336 }
1337
lookupMemoryLeader(const MemoryAccess * MA) const1338 const MemoryAccess *NewGVN::lookupMemoryLeader(const MemoryAccess *MA) const {
1339 auto *CC = getMemoryClass(MA);
1340 assert(CC->getMemoryLeader() &&
1341 "Every MemoryAccess should be mapped to a congruence class with a "
1342 "representative memory access");
1343 return CC->getMemoryLeader();
1344 }
1345
1346 // Return true if the MemoryAccess is really equivalent to everything. This is
1347 // equivalent to the lattice value "TOP" in most lattices. This is the initial
1348 // state of all MemoryAccesses.
isMemoryAccessTOP(const MemoryAccess * MA) const1349 bool NewGVN::isMemoryAccessTOP(const MemoryAccess *MA) const {
1350 return getMemoryClass(MA) == TOPClass;
1351 }
1352
createLoadExpression(Type * LoadType,Value * PointerOp,LoadInst * LI,const MemoryAccess * MA) const1353 LoadExpression *NewGVN::createLoadExpression(Type *LoadType, Value *PointerOp,
1354 LoadInst *LI,
1355 const MemoryAccess *MA) const {
1356 auto *E =
1357 new (ExpressionAllocator) LoadExpression(1, LI, lookupMemoryLeader(MA));
1358 E->allocateOperands(ArgRecycler, ExpressionAllocator);
1359 E->setType(LoadType);
1360
1361 // Give store and loads same opcode so they value number together.
1362 E->setOpcode(0);
1363 E->op_push_back(PointerOp);
1364
1365 // TODO: Value number heap versions. We may be able to discover
1366 // things alias analysis can't on it's own (IE that a store and a
1367 // load have the same value, and thus, it isn't clobbering the load).
1368 return E;
1369 }
1370
1371 const StoreExpression *
createStoreExpression(StoreInst * SI,const MemoryAccess * MA) const1372 NewGVN::createStoreExpression(StoreInst *SI, const MemoryAccess *MA) const {
1373 auto *StoredValueLeader = lookupOperandLeader(SI->getValueOperand());
1374 auto *E = new (ExpressionAllocator)
1375 StoreExpression(SI->getNumOperands(), SI, StoredValueLeader, MA);
1376 E->allocateOperands(ArgRecycler, ExpressionAllocator);
1377 E->setType(SI->getValueOperand()->getType());
1378
1379 // Give store and loads same opcode so they value number together.
1380 E->setOpcode(0);
1381 E->op_push_back(lookupOperandLeader(SI->getPointerOperand()));
1382
1383 // TODO: Value number heap versions. We may be able to discover
1384 // things alias analysis can't on it's own (IE that a store and a
1385 // load have the same value, and thus, it isn't clobbering the load).
1386 return E;
1387 }
1388
performSymbolicStoreEvaluation(Instruction * I) const1389 const Expression *NewGVN::performSymbolicStoreEvaluation(Instruction *I) const {
1390 // Unlike loads, we never try to eliminate stores, so we do not check if they
1391 // are simple and avoid value numbering them.
1392 auto *SI = cast<StoreInst>(I);
1393 auto *StoreAccess = getMemoryAccess(SI);
1394 // Get the expression, if any, for the RHS of the MemoryDef.
1395 const MemoryAccess *StoreRHS = StoreAccess->getDefiningAccess();
1396 if (EnableStoreRefinement)
1397 StoreRHS = MSSAWalker->getClobberingMemoryAccess(StoreAccess);
1398 // If we bypassed the use-def chains, make sure we add a use.
1399 StoreRHS = lookupMemoryLeader(StoreRHS);
1400 if (StoreRHS != StoreAccess->getDefiningAccess())
1401 addMemoryUsers(StoreRHS, StoreAccess);
1402 // If we are defined by ourselves, use the live on entry def.
1403 if (StoreRHS == StoreAccess)
1404 StoreRHS = MSSA->getLiveOnEntryDef();
1405
1406 if (SI->isSimple()) {
1407 // See if we are defined by a previous store expression, it already has a
1408 // value, and it's the same value as our current store. FIXME: Right now, we
1409 // only do this for simple stores, we should expand to cover memcpys, etc.
1410 const auto *LastStore = createStoreExpression(SI, StoreRHS);
1411 const auto *LastCC = ExpressionToClass.lookup(LastStore);
1412 // We really want to check whether the expression we matched was a store. No
1413 // easy way to do that. However, we can check that the class we found has a
1414 // store, which, assuming the value numbering state is not corrupt, is
1415 // sufficient, because we must also be equivalent to that store's expression
1416 // for it to be in the same class as the load.
1417 if (LastCC && LastCC->getStoredValue() == LastStore->getStoredValue())
1418 return LastStore;
1419 // Also check if our value operand is defined by a load of the same memory
1420 // location, and the memory state is the same as it was then (otherwise, it
1421 // could have been overwritten later. See test32 in
1422 // transforms/DeadStoreElimination/simple.ll).
1423 if (auto *LI = dyn_cast<LoadInst>(LastStore->getStoredValue()))
1424 if ((lookupOperandLeader(LI->getPointerOperand()) ==
1425 LastStore->getOperand(0)) &&
1426 (lookupMemoryLeader(getMemoryAccess(LI)->getDefiningAccess()) ==
1427 StoreRHS))
1428 return LastStore;
1429 deleteExpression(LastStore);
1430 }
1431
1432 // If the store is not equivalent to anything, value number it as a store that
1433 // produces a unique memory state (instead of using it's MemoryUse, we use
1434 // it's MemoryDef).
1435 return createStoreExpression(SI, StoreAccess);
1436 }
1437
1438 // See if we can extract the value of a loaded pointer from a load, a store, or
1439 // a memory instruction.
1440 const Expression *
performSymbolicLoadCoercion(Type * LoadType,Value * LoadPtr,LoadInst * LI,Instruction * DepInst,MemoryAccess * DefiningAccess) const1441 NewGVN::performSymbolicLoadCoercion(Type *LoadType, Value *LoadPtr,
1442 LoadInst *LI, Instruction *DepInst,
1443 MemoryAccess *DefiningAccess) const {
1444 assert((!LI || LI->isSimple()) && "Not a simple load");
1445 if (auto *DepSI = dyn_cast<StoreInst>(DepInst)) {
1446 // Can't forward from non-atomic to atomic without violating memory model.
1447 // Also don't need to coerce if they are the same type, we will just
1448 // propagate.
1449 if (LI->isAtomic() > DepSI->isAtomic() ||
1450 LoadType == DepSI->getValueOperand()->getType())
1451 return nullptr;
1452 int Offset = analyzeLoadFromClobberingStore(LoadType, LoadPtr, DepSI, DL);
1453 if (Offset >= 0) {
1454 if (auto *C = dyn_cast<Constant>(
1455 lookupOperandLeader(DepSI->getValueOperand()))) {
1456 if (Constant *Res =
1457 getConstantStoreValueForLoad(C, Offset, LoadType, DL)) {
1458 LLVM_DEBUG(dbgs() << "Coercing load from store " << *DepSI
1459 << " to constant " << *Res << "\n");
1460 return createConstantExpression(Res);
1461 }
1462 }
1463 }
1464 } else if (auto *DepLI = dyn_cast<LoadInst>(DepInst)) {
1465 // Can't forward from non-atomic to atomic without violating memory model.
1466 if (LI->isAtomic() > DepLI->isAtomic())
1467 return nullptr;
1468 int Offset = analyzeLoadFromClobberingLoad(LoadType, LoadPtr, DepLI, DL);
1469 if (Offset >= 0) {
1470 // We can coerce a constant load into a load.
1471 if (auto *C = dyn_cast<Constant>(lookupOperandLeader(DepLI)))
1472 if (auto *PossibleConstant =
1473 getConstantLoadValueForLoad(C, Offset, LoadType, DL)) {
1474 LLVM_DEBUG(dbgs() << "Coercing load from load " << *LI
1475 << " to constant " << *PossibleConstant << "\n");
1476 return createConstantExpression(PossibleConstant);
1477 }
1478 }
1479 } else if (auto *DepMI = dyn_cast<MemIntrinsic>(DepInst)) {
1480 int Offset = analyzeLoadFromClobberingMemInst(LoadType, LoadPtr, DepMI, DL);
1481 if (Offset >= 0) {
1482 if (auto *PossibleConstant =
1483 getConstantMemInstValueForLoad(DepMI, Offset, LoadType, DL)) {
1484 LLVM_DEBUG(dbgs() << "Coercing load from meminst " << *DepMI
1485 << " to constant " << *PossibleConstant << "\n");
1486 return createConstantExpression(PossibleConstant);
1487 }
1488 }
1489 }
1490
1491 // All of the below are only true if the loaded pointer is produced
1492 // by the dependent instruction.
1493 if (LoadPtr != lookupOperandLeader(DepInst) &&
1494 !AA->isMustAlias(LoadPtr, DepInst))
1495 return nullptr;
1496 // If this load really doesn't depend on anything, then we must be loading an
1497 // undef value. This can happen when loading for a fresh allocation with no
1498 // intervening stores, for example. Note that this is only true in the case
1499 // that the result of the allocation is pointer equal to the load ptr.
1500 if (isa<AllocaInst>(DepInst)) {
1501 return createConstantExpression(UndefValue::get(LoadType));
1502 }
1503 // If this load occurs either right after a lifetime begin,
1504 // then the loaded value is undefined.
1505 else if (auto *II = dyn_cast<IntrinsicInst>(DepInst)) {
1506 if (II->getIntrinsicID() == Intrinsic::lifetime_start)
1507 return createConstantExpression(UndefValue::get(LoadType));
1508 } else if (auto *InitVal =
1509 getInitialValueOfAllocation(DepInst, TLI, LoadType))
1510 return createConstantExpression(InitVal);
1511
1512 return nullptr;
1513 }
1514
performSymbolicLoadEvaluation(Instruction * I) const1515 const Expression *NewGVN::performSymbolicLoadEvaluation(Instruction *I) const {
1516 auto *LI = cast<LoadInst>(I);
1517
1518 // We can eliminate in favor of non-simple loads, but we won't be able to
1519 // eliminate the loads themselves.
1520 if (!LI->isSimple())
1521 return nullptr;
1522
1523 Value *LoadAddressLeader = lookupOperandLeader(LI->getPointerOperand());
1524 // Load of undef is UB.
1525 if (isa<UndefValue>(LoadAddressLeader))
1526 return createConstantExpression(PoisonValue::get(LI->getType()));
1527 MemoryAccess *OriginalAccess = getMemoryAccess(I);
1528 MemoryAccess *DefiningAccess =
1529 MSSAWalker->getClobberingMemoryAccess(OriginalAccess);
1530
1531 if (!MSSA->isLiveOnEntryDef(DefiningAccess)) {
1532 if (auto *MD = dyn_cast<MemoryDef>(DefiningAccess)) {
1533 Instruction *DefiningInst = MD->getMemoryInst();
1534 // If the defining instruction is not reachable, replace with poison.
1535 if (!ReachableBlocks.count(DefiningInst->getParent()))
1536 return createConstantExpression(PoisonValue::get(LI->getType()));
1537 // This will handle stores and memory insts. We only do if it the
1538 // defining access has a different type, or it is a pointer produced by
1539 // certain memory operations that cause the memory to have a fixed value
1540 // (IE things like calloc).
1541 if (const auto *CoercionResult =
1542 performSymbolicLoadCoercion(LI->getType(), LoadAddressLeader, LI,
1543 DefiningInst, DefiningAccess))
1544 return CoercionResult;
1545 }
1546 }
1547
1548 const auto *LE = createLoadExpression(LI->getType(), LoadAddressLeader, LI,
1549 DefiningAccess);
1550 // If our MemoryLeader is not our defining access, add a use to the
1551 // MemoryLeader, so that we get reprocessed when it changes.
1552 if (LE->getMemoryLeader() != DefiningAccess)
1553 addMemoryUsers(LE->getMemoryLeader(), OriginalAccess);
1554 return LE;
1555 }
1556
1557 NewGVN::ExprResult
performSymbolicPredicateInfoEvaluation(IntrinsicInst * I) const1558 NewGVN::performSymbolicPredicateInfoEvaluation(IntrinsicInst *I) const {
1559 auto *PI = PredInfo->getPredicateInfoFor(I);
1560 if (!PI)
1561 return ExprResult::none();
1562
1563 LLVM_DEBUG(dbgs() << "Found predicate info from instruction !\n");
1564
1565 const std::optional<PredicateConstraint> &Constraint = PI->getConstraint();
1566 if (!Constraint)
1567 return ExprResult::none();
1568
1569 CmpInst::Predicate Predicate = Constraint->Predicate;
1570 Value *CmpOp0 = I->getOperand(0);
1571 Value *CmpOp1 = Constraint->OtherOp;
1572
1573 Value *FirstOp = lookupOperandLeader(CmpOp0);
1574 Value *SecondOp = lookupOperandLeader(CmpOp1);
1575 Value *AdditionallyUsedValue = CmpOp0;
1576
1577 // Sort the ops.
1578 if (shouldSwapOperandsForIntrinsic(FirstOp, SecondOp, I)) {
1579 std::swap(FirstOp, SecondOp);
1580 Predicate = CmpInst::getSwappedPredicate(Predicate);
1581 AdditionallyUsedValue = CmpOp1;
1582 }
1583
1584 if (Predicate == CmpInst::ICMP_EQ)
1585 return ExprResult::some(createVariableOrConstant(FirstOp),
1586 AdditionallyUsedValue, PI);
1587
1588 // Handle the special case of floating point.
1589 if (Predicate == CmpInst::FCMP_OEQ && isa<ConstantFP>(FirstOp) &&
1590 !cast<ConstantFP>(FirstOp)->isZero())
1591 return ExprResult::some(createConstantExpression(cast<Constant>(FirstOp)),
1592 AdditionallyUsedValue, PI);
1593
1594 return ExprResult::none();
1595 }
1596
1597 // Evaluate read only and pure calls, and create an expression result.
performSymbolicCallEvaluation(Instruction * I) const1598 NewGVN::ExprResult NewGVN::performSymbolicCallEvaluation(Instruction *I) const {
1599 auto *CI = cast<CallInst>(I);
1600 if (auto *II = dyn_cast<IntrinsicInst>(I)) {
1601 // Intrinsics with the returned attribute are copies of arguments.
1602 if (auto *ReturnedValue = II->getReturnedArgOperand()) {
1603 if (II->getIntrinsicID() == Intrinsic::ssa_copy)
1604 if (auto Res = performSymbolicPredicateInfoEvaluation(II))
1605 return Res;
1606 return ExprResult::some(createVariableOrConstant(ReturnedValue));
1607 }
1608 }
1609
1610 // FIXME: Currently the calls which may access the thread id may
1611 // be considered as not accessing the memory. But this is
1612 // problematic for coroutines, since coroutines may resume in a
1613 // different thread. So we disable the optimization here for the
1614 // correctness. However, it may block many other correct
1615 // optimizations. Revert this one when we detect the memory
1616 // accessing kind more precisely.
1617 if (CI->getFunction()->isPresplitCoroutine())
1618 return ExprResult::none();
1619
1620 if (AA->doesNotAccessMemory(CI)) {
1621 return ExprResult::some(
1622 createCallExpression(CI, TOPClass->getMemoryLeader()));
1623 } else if (AA->onlyReadsMemory(CI)) {
1624 if (auto *MA = MSSA->getMemoryAccess(CI)) {
1625 auto *DefiningAccess = MSSAWalker->getClobberingMemoryAccess(MA);
1626 return ExprResult::some(createCallExpression(CI, DefiningAccess));
1627 } else // MSSA determined that CI does not access memory.
1628 return ExprResult::some(
1629 createCallExpression(CI, TOPClass->getMemoryLeader()));
1630 }
1631 return ExprResult::none();
1632 }
1633
1634 // Retrieve the memory class for a given MemoryAccess.
getMemoryClass(const MemoryAccess * MA) const1635 CongruenceClass *NewGVN::getMemoryClass(const MemoryAccess *MA) const {
1636 auto *Result = MemoryAccessToClass.lookup(MA);
1637 assert(Result && "Should have found memory class");
1638 return Result;
1639 }
1640
1641 // Update the MemoryAccess equivalence table to say that From is equal to To,
1642 // and return true if this is different from what already existed in the table.
setMemoryClass(const MemoryAccess * From,CongruenceClass * NewClass)1643 bool NewGVN::setMemoryClass(const MemoryAccess *From,
1644 CongruenceClass *NewClass) {
1645 assert(NewClass &&
1646 "Every MemoryAccess should be getting mapped to a non-null class");
1647 LLVM_DEBUG(dbgs() << "Setting " << *From);
1648 LLVM_DEBUG(dbgs() << " equivalent to congruence class ");
1649 LLVM_DEBUG(dbgs() << NewClass->getID()
1650 << " with current MemoryAccess leader ");
1651 LLVM_DEBUG(dbgs() << *NewClass->getMemoryLeader() << "\n");
1652
1653 auto LookupResult = MemoryAccessToClass.find(From);
1654 bool Changed = false;
1655 // If it's already in the table, see if the value changed.
1656 if (LookupResult != MemoryAccessToClass.end()) {
1657 auto *OldClass = LookupResult->second;
1658 if (OldClass != NewClass) {
1659 // If this is a phi, we have to handle memory member updates.
1660 if (auto *MP = dyn_cast<MemoryPhi>(From)) {
1661 OldClass->memory_erase(MP);
1662 NewClass->memory_insert(MP);
1663 // This may have killed the class if it had no non-memory members
1664 if (OldClass->getMemoryLeader() == From) {
1665 if (OldClass->definesNoMemory()) {
1666 OldClass->setMemoryLeader(nullptr);
1667 } else {
1668 OldClass->setMemoryLeader(getNextMemoryLeader(OldClass));
1669 LLVM_DEBUG(dbgs() << "Memory class leader change for class "
1670 << OldClass->getID() << " to "
1671 << *OldClass->getMemoryLeader()
1672 << " due to removal of a memory member " << *From
1673 << "\n");
1674 markMemoryLeaderChangeTouched(OldClass);
1675 }
1676 }
1677 }
1678 // It wasn't equivalent before, and now it is.
1679 LookupResult->second = NewClass;
1680 Changed = true;
1681 }
1682 }
1683
1684 return Changed;
1685 }
1686
1687 // Determine if a instruction is cycle-free. That means the values in the
1688 // instruction don't depend on any expressions that can change value as a result
1689 // of the instruction. For example, a non-cycle free instruction would be v =
1690 // phi(0, v+1).
isCycleFree(const Instruction * I) const1691 bool NewGVN::isCycleFree(const Instruction *I) const {
1692 // In order to compute cycle-freeness, we do SCC finding on the instruction,
1693 // and see what kind of SCC it ends up in. If it is a singleton, it is
1694 // cycle-free. If it is not in a singleton, it is only cycle free if the
1695 // other members are all phi nodes (as they do not compute anything, they are
1696 // copies).
1697 auto ICS = InstCycleState.lookup(I);
1698 if (ICS == ICS_Unknown) {
1699 SCCFinder.Start(I);
1700 auto &SCC = SCCFinder.getComponentFor(I);
1701 // It's cycle free if it's size 1 or the SCC is *only* phi nodes.
1702 if (SCC.size() == 1)
1703 InstCycleState.insert({I, ICS_CycleFree});
1704 else {
1705 bool AllPhis = llvm::all_of(SCC, [](const Value *V) {
1706 return isa<PHINode>(V) || isCopyOfAPHI(V);
1707 });
1708 ICS = AllPhis ? ICS_CycleFree : ICS_Cycle;
1709 for (const auto *Member : SCC)
1710 if (auto *MemberPhi = dyn_cast<PHINode>(Member))
1711 InstCycleState.insert({MemberPhi, ICS});
1712 }
1713 }
1714 if (ICS == ICS_Cycle)
1715 return false;
1716 return true;
1717 }
1718
1719 // Evaluate PHI nodes symbolically and create an expression result.
1720 const Expression *
performSymbolicPHIEvaluation(ArrayRef<ValPair> PHIOps,Instruction * I,BasicBlock * PHIBlock) const1721 NewGVN::performSymbolicPHIEvaluation(ArrayRef<ValPair> PHIOps,
1722 Instruction *I,
1723 BasicBlock *PHIBlock) const {
1724 // True if one of the incoming phi edges is a backedge.
1725 bool HasBackedge = false;
1726 // All constant tracks the state of whether all the *original* phi operands
1727 // This is really shorthand for "this phi cannot cycle due to forward
1728 // change in value of the phi is guaranteed not to later change the value of
1729 // the phi. IE it can't be v = phi(undef, v+1)
1730 bool OriginalOpsConstant = true;
1731 auto *E = cast<PHIExpression>(createPHIExpression(
1732 PHIOps, I, PHIBlock, HasBackedge, OriginalOpsConstant));
1733 // We match the semantics of SimplifyPhiNode from InstructionSimplify here.
1734 // See if all arguments are the same.
1735 // We track if any were undef because they need special handling.
1736 bool HasUndef = false, HasPoison = false;
1737 auto Filtered = make_filter_range(E->operands(), [&](Value *Arg) {
1738 if (isa<PoisonValue>(Arg)) {
1739 HasPoison = true;
1740 return false;
1741 }
1742 if (isa<UndefValue>(Arg)) {
1743 HasUndef = true;
1744 return false;
1745 }
1746 return true;
1747 });
1748 // If we are left with no operands, it's dead.
1749 if (Filtered.empty()) {
1750 // If it has undef or poison at this point, it means there are no-non-undef
1751 // arguments, and thus, the value of the phi node must be undef.
1752 if (HasUndef) {
1753 LLVM_DEBUG(
1754 dbgs() << "PHI Node " << *I
1755 << " has no non-undef arguments, valuing it as undef\n");
1756 return createConstantExpression(UndefValue::get(I->getType()));
1757 }
1758 if (HasPoison) {
1759 LLVM_DEBUG(
1760 dbgs() << "PHI Node " << *I
1761 << " has no non-poison arguments, valuing it as poison\n");
1762 return createConstantExpression(PoisonValue::get(I->getType()));
1763 }
1764
1765 LLVM_DEBUG(dbgs() << "No arguments of PHI node " << *I << " are live\n");
1766 deleteExpression(E);
1767 return createDeadExpression();
1768 }
1769 Value *AllSameValue = *(Filtered.begin());
1770 ++Filtered.begin();
1771 // Can't use std::equal here, sadly, because filter.begin moves.
1772 if (llvm::all_of(Filtered, [&](Value *Arg) { return Arg == AllSameValue; })) {
1773 // Can't fold phi(undef, X) -> X unless X can't be poison (thus X is undef
1774 // in the worst case).
1775 if (HasUndef && !isGuaranteedNotToBePoison(AllSameValue, AC, nullptr, DT))
1776 return E;
1777
1778 // In LLVM's non-standard representation of phi nodes, it's possible to have
1779 // phi nodes with cycles (IE dependent on other phis that are .... dependent
1780 // on the original phi node), especially in weird CFG's where some arguments
1781 // are unreachable, or uninitialized along certain paths. This can cause
1782 // infinite loops during evaluation. We work around this by not trying to
1783 // really evaluate them independently, but instead using a variable
1784 // expression to say if one is equivalent to the other.
1785 // We also special case undef/poison, so that if we have an undef, we can't
1786 // use the common value unless it dominates the phi block.
1787 if (HasPoison || HasUndef) {
1788 // If we have undef and at least one other value, this is really a
1789 // multivalued phi, and we need to know if it's cycle free in order to
1790 // evaluate whether we can ignore the undef. The other parts of this are
1791 // just shortcuts. If there is no backedge, or all operands are
1792 // constants, it also must be cycle free.
1793 if (HasBackedge && !OriginalOpsConstant &&
1794 !isa<UndefValue>(AllSameValue) && !isCycleFree(I))
1795 return E;
1796
1797 // Only have to check for instructions
1798 if (auto *AllSameInst = dyn_cast<Instruction>(AllSameValue))
1799 if (!someEquivalentDominates(AllSameInst, I))
1800 return E;
1801 }
1802 // Can't simplify to something that comes later in the iteration.
1803 // Otherwise, when and if it changes congruence class, we will never catch
1804 // up. We will always be a class behind it.
1805 if (isa<Instruction>(AllSameValue) &&
1806 InstrToDFSNum(AllSameValue) > InstrToDFSNum(I))
1807 return E;
1808 NumGVNPhisAllSame++;
1809 LLVM_DEBUG(dbgs() << "Simplified PHI node " << *I << " to " << *AllSameValue
1810 << "\n");
1811 deleteExpression(E);
1812 return createVariableOrConstant(AllSameValue);
1813 }
1814 return E;
1815 }
1816
1817 const Expression *
performSymbolicAggrValueEvaluation(Instruction * I) const1818 NewGVN::performSymbolicAggrValueEvaluation(Instruction *I) const {
1819 if (auto *EI = dyn_cast<ExtractValueInst>(I)) {
1820 auto *WO = dyn_cast<WithOverflowInst>(EI->getAggregateOperand());
1821 if (WO && EI->getNumIndices() == 1 && *EI->idx_begin() == 0)
1822 // EI is an extract from one of our with.overflow intrinsics. Synthesize
1823 // a semantically equivalent expression instead of an extract value
1824 // expression.
1825 return createBinaryExpression(WO->getBinaryOp(), EI->getType(),
1826 WO->getLHS(), WO->getRHS(), I);
1827 }
1828
1829 return createAggregateValueExpression(I);
1830 }
1831
performSymbolicCmpEvaluation(Instruction * I) const1832 NewGVN::ExprResult NewGVN::performSymbolicCmpEvaluation(Instruction *I) const {
1833 assert(isa<CmpInst>(I) && "Expected a cmp instruction.");
1834
1835 auto *CI = cast<CmpInst>(I);
1836 // See if our operands are equal to those of a previous predicate, and if so,
1837 // if it implies true or false.
1838 auto Op0 = lookupOperandLeader(CI->getOperand(0));
1839 auto Op1 = lookupOperandLeader(CI->getOperand(1));
1840 auto OurPredicate = CI->getPredicate();
1841 if (shouldSwapOperands(Op0, Op1)) {
1842 std::swap(Op0, Op1);
1843 OurPredicate = CI->getSwappedPredicate();
1844 }
1845
1846 // Avoid processing the same info twice.
1847 const PredicateBase *LastPredInfo = nullptr;
1848 // See if we know something about the comparison itself, like it is the target
1849 // of an assume.
1850 auto *CmpPI = PredInfo->getPredicateInfoFor(I);
1851 if (isa_and_nonnull<PredicateAssume>(CmpPI))
1852 return ExprResult::some(
1853 createConstantExpression(ConstantInt::getTrue(CI->getType())));
1854
1855 if (Op0 == Op1) {
1856 // This condition does not depend on predicates, no need to add users
1857 if (CI->isTrueWhenEqual())
1858 return ExprResult::some(
1859 createConstantExpression(ConstantInt::getTrue(CI->getType())));
1860 else if (CI->isFalseWhenEqual())
1861 return ExprResult::some(
1862 createConstantExpression(ConstantInt::getFalse(CI->getType())));
1863 }
1864
1865 // NOTE: Because we are comparing both operands here and below, and using
1866 // previous comparisons, we rely on fact that predicateinfo knows to mark
1867 // comparisons that use renamed operands as users of the earlier comparisons.
1868 // It is *not* enough to just mark predicateinfo renamed operands as users of
1869 // the earlier comparisons, because the *other* operand may have changed in a
1870 // previous iteration.
1871 // Example:
1872 // icmp slt %a, %b
1873 // %b.0 = ssa.copy(%b)
1874 // false branch:
1875 // icmp slt %c, %b.0
1876
1877 // %c and %a may start out equal, and thus, the code below will say the second
1878 // %icmp is false. c may become equal to something else, and in that case the
1879 // %second icmp *must* be reexamined, but would not if only the renamed
1880 // %operands are considered users of the icmp.
1881
1882 // *Currently* we only check one level of comparisons back, and only mark one
1883 // level back as touched when changes happen. If you modify this code to look
1884 // back farther through comparisons, you *must* mark the appropriate
1885 // comparisons as users in PredicateInfo.cpp, or you will cause bugs. See if
1886 // we know something just from the operands themselves
1887
1888 // See if our operands have predicate info, so that we may be able to derive
1889 // something from a previous comparison.
1890 for (const auto &Op : CI->operands()) {
1891 auto *PI = PredInfo->getPredicateInfoFor(Op);
1892 if (const auto *PBranch = dyn_cast_or_null<PredicateBranch>(PI)) {
1893 if (PI == LastPredInfo)
1894 continue;
1895 LastPredInfo = PI;
1896 // In phi of ops cases, we may have predicate info that we are evaluating
1897 // in a different context.
1898 if (!DT->dominates(PBranch->To, getBlockForValue(I)))
1899 continue;
1900 // TODO: Along the false edge, we may know more things too, like
1901 // icmp of
1902 // same operands is false.
1903 // TODO: We only handle actual comparison conditions below, not
1904 // and/or.
1905 auto *BranchCond = dyn_cast<CmpInst>(PBranch->Condition);
1906 if (!BranchCond)
1907 continue;
1908 auto *BranchOp0 = lookupOperandLeader(BranchCond->getOperand(0));
1909 auto *BranchOp1 = lookupOperandLeader(BranchCond->getOperand(1));
1910 auto BranchPredicate = BranchCond->getPredicate();
1911 if (shouldSwapOperands(BranchOp0, BranchOp1)) {
1912 std::swap(BranchOp0, BranchOp1);
1913 BranchPredicate = BranchCond->getSwappedPredicate();
1914 }
1915 if (BranchOp0 == Op0 && BranchOp1 == Op1) {
1916 if (PBranch->TrueEdge) {
1917 // If we know the previous predicate is true and we are in the true
1918 // edge then we may be implied true or false.
1919 if (CmpInst::isImpliedTrueByMatchingCmp(BranchPredicate,
1920 OurPredicate)) {
1921 return ExprResult::some(
1922 createConstantExpression(ConstantInt::getTrue(CI->getType())),
1923 PI);
1924 }
1925
1926 if (CmpInst::isImpliedFalseByMatchingCmp(BranchPredicate,
1927 OurPredicate)) {
1928 return ExprResult::some(
1929 createConstantExpression(ConstantInt::getFalse(CI->getType())),
1930 PI);
1931 }
1932 } else {
1933 // Just handle the ne and eq cases, where if we have the same
1934 // operands, we may know something.
1935 if (BranchPredicate == OurPredicate) {
1936 // Same predicate, same ops,we know it was false, so this is false.
1937 return ExprResult::some(
1938 createConstantExpression(ConstantInt::getFalse(CI->getType())),
1939 PI);
1940 } else if (BranchPredicate ==
1941 CmpInst::getInversePredicate(OurPredicate)) {
1942 // Inverse predicate, we know the other was false, so this is true.
1943 return ExprResult::some(
1944 createConstantExpression(ConstantInt::getTrue(CI->getType())),
1945 PI);
1946 }
1947 }
1948 }
1949 }
1950 }
1951 // Create expression will take care of simplifyCmpInst
1952 return createExpression(I);
1953 }
1954
1955 // Substitute and symbolize the value before value numbering.
1956 NewGVN::ExprResult
performSymbolicEvaluation(Value * V,SmallPtrSetImpl<Value * > & Visited) const1957 NewGVN::performSymbolicEvaluation(Value *V,
1958 SmallPtrSetImpl<Value *> &Visited) const {
1959
1960 const Expression *E = nullptr;
1961 if (auto *C = dyn_cast<Constant>(V))
1962 E = createConstantExpression(C);
1963 else if (isa<Argument>(V) || isa<GlobalVariable>(V)) {
1964 E = createVariableExpression(V);
1965 } else {
1966 // TODO: memory intrinsics.
1967 // TODO: Some day, we should do the forward propagation and reassociation
1968 // parts of the algorithm.
1969 auto *I = cast<Instruction>(V);
1970 switch (I->getOpcode()) {
1971 case Instruction::ExtractValue:
1972 case Instruction::InsertValue:
1973 E = performSymbolicAggrValueEvaluation(I);
1974 break;
1975 case Instruction::PHI: {
1976 SmallVector<ValPair, 3> Ops;
1977 auto *PN = cast<PHINode>(I);
1978 for (unsigned i = 0; i < PN->getNumOperands(); ++i)
1979 Ops.push_back({PN->getIncomingValue(i), PN->getIncomingBlock(i)});
1980 // Sort to ensure the invariant createPHIExpression requires is met.
1981 sortPHIOps(Ops);
1982 E = performSymbolicPHIEvaluation(Ops, I, getBlockForValue(I));
1983 } break;
1984 case Instruction::Call:
1985 return performSymbolicCallEvaluation(I);
1986 break;
1987 case Instruction::Store:
1988 E = performSymbolicStoreEvaluation(I);
1989 break;
1990 case Instruction::Load:
1991 E = performSymbolicLoadEvaluation(I);
1992 break;
1993 case Instruction::BitCast:
1994 case Instruction::AddrSpaceCast:
1995 return createExpression(I);
1996 break;
1997 case Instruction::ICmp:
1998 case Instruction::FCmp:
1999 return performSymbolicCmpEvaluation(I);
2000 break;
2001 case Instruction::FNeg:
2002 case Instruction::Add:
2003 case Instruction::FAdd:
2004 case Instruction::Sub:
2005 case Instruction::FSub:
2006 case Instruction::Mul:
2007 case Instruction::FMul:
2008 case Instruction::UDiv:
2009 case Instruction::SDiv:
2010 case Instruction::FDiv:
2011 case Instruction::URem:
2012 case Instruction::SRem:
2013 case Instruction::FRem:
2014 case Instruction::Shl:
2015 case Instruction::LShr:
2016 case Instruction::AShr:
2017 case Instruction::And:
2018 case Instruction::Or:
2019 case Instruction::Xor:
2020 case Instruction::Trunc:
2021 case Instruction::ZExt:
2022 case Instruction::SExt:
2023 case Instruction::FPToUI:
2024 case Instruction::FPToSI:
2025 case Instruction::UIToFP:
2026 case Instruction::SIToFP:
2027 case Instruction::FPTrunc:
2028 case Instruction::FPExt:
2029 case Instruction::PtrToInt:
2030 case Instruction::IntToPtr:
2031 case Instruction::Select:
2032 case Instruction::ExtractElement:
2033 case Instruction::InsertElement:
2034 case Instruction::GetElementPtr:
2035 return createExpression(I);
2036 break;
2037 case Instruction::ShuffleVector:
2038 // FIXME: Add support for shufflevector to createExpression.
2039 return ExprResult::none();
2040 default:
2041 return ExprResult::none();
2042 }
2043 }
2044 return ExprResult::some(E);
2045 }
2046
2047 // Look up a container of values/instructions in a map, and touch all the
2048 // instructions in the container. Then erase value from the map.
2049 template <typename Map, typename KeyType>
touchAndErase(Map & M,const KeyType & Key)2050 void NewGVN::touchAndErase(Map &M, const KeyType &Key) {
2051 const auto Result = M.find_as(Key);
2052 if (Result != M.end()) {
2053 for (const typename Map::mapped_type::value_type Mapped : Result->second)
2054 TouchedInstructions.set(InstrToDFSNum(Mapped));
2055 M.erase(Result);
2056 }
2057 }
2058
addAdditionalUsers(Value * To,Value * User) const2059 void NewGVN::addAdditionalUsers(Value *To, Value *User) const {
2060 assert(User && To != User);
2061 if (isa<Instruction>(To))
2062 AdditionalUsers[To].insert(User);
2063 }
2064
addAdditionalUsers(ExprResult & Res,Instruction * User) const2065 void NewGVN::addAdditionalUsers(ExprResult &Res, Instruction *User) const {
2066 if (Res.ExtraDep && Res.ExtraDep != User)
2067 addAdditionalUsers(Res.ExtraDep, User);
2068 Res.ExtraDep = nullptr;
2069
2070 if (Res.PredDep) {
2071 if (const auto *PBranch = dyn_cast<PredicateBranch>(Res.PredDep))
2072 PredicateToUsers[PBranch->Condition].insert(User);
2073 else if (const auto *PAssume = dyn_cast<PredicateAssume>(Res.PredDep))
2074 PredicateToUsers[PAssume->Condition].insert(User);
2075 }
2076 Res.PredDep = nullptr;
2077 }
2078
markUsersTouched(Value * V)2079 void NewGVN::markUsersTouched(Value *V) {
2080 // Now mark the users as touched.
2081 for (auto *User : V->users()) {
2082 assert(isa<Instruction>(User) && "Use of value not within an instruction?");
2083 TouchedInstructions.set(InstrToDFSNum(User));
2084 }
2085 touchAndErase(AdditionalUsers, V);
2086 }
2087
addMemoryUsers(const MemoryAccess * To,MemoryAccess * U) const2088 void NewGVN::addMemoryUsers(const MemoryAccess *To, MemoryAccess *U) const {
2089 LLVM_DEBUG(dbgs() << "Adding memory user " << *U << " to " << *To << "\n");
2090 MemoryToUsers[To].insert(U);
2091 }
2092
markMemoryDefTouched(const MemoryAccess * MA)2093 void NewGVN::markMemoryDefTouched(const MemoryAccess *MA) {
2094 TouchedInstructions.set(MemoryToDFSNum(MA));
2095 }
2096
markMemoryUsersTouched(const MemoryAccess * MA)2097 void NewGVN::markMemoryUsersTouched(const MemoryAccess *MA) {
2098 if (isa<MemoryUse>(MA))
2099 return;
2100 for (const auto *U : MA->users())
2101 TouchedInstructions.set(MemoryToDFSNum(U));
2102 touchAndErase(MemoryToUsers, MA);
2103 }
2104
2105 // Touch all the predicates that depend on this instruction.
markPredicateUsersTouched(Instruction * I)2106 void NewGVN::markPredicateUsersTouched(Instruction *I) {
2107 touchAndErase(PredicateToUsers, I);
2108 }
2109
2110 // Mark users affected by a memory leader change.
markMemoryLeaderChangeTouched(CongruenceClass * CC)2111 void NewGVN::markMemoryLeaderChangeTouched(CongruenceClass *CC) {
2112 for (const auto *M : CC->memory())
2113 markMemoryDefTouched(M);
2114 }
2115
2116 // Touch the instructions that need to be updated after a congruence class has a
2117 // leader change, and mark changed values.
markValueLeaderChangeTouched(CongruenceClass * CC)2118 void NewGVN::markValueLeaderChangeTouched(CongruenceClass *CC) {
2119 for (auto *M : *CC) {
2120 if (auto *I = dyn_cast<Instruction>(M))
2121 TouchedInstructions.set(InstrToDFSNum(I));
2122 LeaderChanges.insert(M);
2123 }
2124 }
2125
2126 // Give a range of things that have instruction DFS numbers, this will return
2127 // the member of the range with the smallest dfs number.
2128 template <class T, class Range>
getMinDFSOfRange(const Range & R) const2129 T *NewGVN::getMinDFSOfRange(const Range &R) const {
2130 std::pair<T *, unsigned> MinDFS = {nullptr, ~0U};
2131 for (const auto X : R) {
2132 auto DFSNum = InstrToDFSNum(X);
2133 if (DFSNum < MinDFS.second)
2134 MinDFS = {X, DFSNum};
2135 }
2136 return MinDFS.first;
2137 }
2138
2139 // This function returns the MemoryAccess that should be the next leader of
2140 // congruence class CC, under the assumption that the current leader is going to
2141 // disappear.
getNextMemoryLeader(CongruenceClass * CC) const2142 const MemoryAccess *NewGVN::getNextMemoryLeader(CongruenceClass *CC) const {
2143 // TODO: If this ends up to slow, we can maintain a next memory leader like we
2144 // do for regular leaders.
2145 // Make sure there will be a leader to find.
2146 assert(!CC->definesNoMemory() && "Can't get next leader if there is none");
2147 if (CC->getStoreCount() > 0) {
2148 if (auto *NL = dyn_cast_or_null<StoreInst>(CC->getNextLeader().first))
2149 return getMemoryAccess(NL);
2150 // Find the store with the minimum DFS number.
2151 auto *V = getMinDFSOfRange<Value>(make_filter_range(
2152 *CC, [&](const Value *V) { return isa<StoreInst>(V); }));
2153 return getMemoryAccess(cast<StoreInst>(V));
2154 }
2155 assert(CC->getStoreCount() == 0);
2156
2157 // Given our assertion, hitting this part must mean
2158 // !OldClass->memory_empty()
2159 if (CC->memory_size() == 1)
2160 return *CC->memory_begin();
2161 return getMinDFSOfRange<const MemoryPhi>(CC->memory());
2162 }
2163
2164 // This function returns the next value leader of a congruence class, under the
2165 // assumption that the current leader is going away. This should end up being
2166 // the next most dominating member.
getNextValueLeader(CongruenceClass * CC) const2167 Value *NewGVN::getNextValueLeader(CongruenceClass *CC) const {
2168 // We don't need to sort members if there is only 1, and we don't care about
2169 // sorting the TOP class because everything either gets out of it or is
2170 // unreachable.
2171
2172 if (CC->size() == 1 || CC == TOPClass) {
2173 return *(CC->begin());
2174 } else if (CC->getNextLeader().first) {
2175 ++NumGVNAvoidedSortedLeaderChanges;
2176 return CC->getNextLeader().first;
2177 } else {
2178 ++NumGVNSortedLeaderChanges;
2179 // NOTE: If this ends up to slow, we can maintain a dual structure for
2180 // member testing/insertion, or keep things mostly sorted, and sort only
2181 // here, or use SparseBitVector or ....
2182 return getMinDFSOfRange<Value>(*CC);
2183 }
2184 }
2185
2186 // Move a MemoryAccess, currently in OldClass, to NewClass, including updates to
2187 // the memory members, etc for the move.
2188 //
2189 // The invariants of this function are:
2190 //
2191 // - I must be moving to NewClass from OldClass
2192 // - The StoreCount of OldClass and NewClass is expected to have been updated
2193 // for I already if it is a store.
2194 // - The OldClass memory leader has not been updated yet if I was the leader.
moveMemoryToNewCongruenceClass(Instruction * I,MemoryAccess * InstMA,CongruenceClass * OldClass,CongruenceClass * NewClass)2195 void NewGVN::moveMemoryToNewCongruenceClass(Instruction *I,
2196 MemoryAccess *InstMA,
2197 CongruenceClass *OldClass,
2198 CongruenceClass *NewClass) {
2199 // If the leader is I, and we had a representative MemoryAccess, it should
2200 // be the MemoryAccess of OldClass.
2201 assert((!InstMA || !OldClass->getMemoryLeader() ||
2202 OldClass->getLeader() != I ||
2203 MemoryAccessToClass.lookup(OldClass->getMemoryLeader()) ==
2204 MemoryAccessToClass.lookup(InstMA)) &&
2205 "Representative MemoryAccess mismatch");
2206 // First, see what happens to the new class
2207 if (!NewClass->getMemoryLeader()) {
2208 // Should be a new class, or a store becoming a leader of a new class.
2209 assert(NewClass->size() == 1 ||
2210 (isa<StoreInst>(I) && NewClass->getStoreCount() == 1));
2211 NewClass->setMemoryLeader(InstMA);
2212 // Mark it touched if we didn't just create a singleton
2213 LLVM_DEBUG(dbgs() << "Memory class leader change for class "
2214 << NewClass->getID()
2215 << " due to new memory instruction becoming leader\n");
2216 markMemoryLeaderChangeTouched(NewClass);
2217 }
2218 setMemoryClass(InstMA, NewClass);
2219 // Now, fixup the old class if necessary
2220 if (OldClass->getMemoryLeader() == InstMA) {
2221 if (!OldClass->definesNoMemory()) {
2222 OldClass->setMemoryLeader(getNextMemoryLeader(OldClass));
2223 LLVM_DEBUG(dbgs() << "Memory class leader change for class "
2224 << OldClass->getID() << " to "
2225 << *OldClass->getMemoryLeader()
2226 << " due to removal of old leader " << *InstMA << "\n");
2227 markMemoryLeaderChangeTouched(OldClass);
2228 } else
2229 OldClass->setMemoryLeader(nullptr);
2230 }
2231 }
2232
2233 // Move a value, currently in OldClass, to be part of NewClass
2234 // Update OldClass and NewClass for the move (including changing leaders, etc).
moveValueToNewCongruenceClass(Instruction * I,const Expression * E,CongruenceClass * OldClass,CongruenceClass * NewClass)2235 void NewGVN::moveValueToNewCongruenceClass(Instruction *I, const Expression *E,
2236 CongruenceClass *OldClass,
2237 CongruenceClass *NewClass) {
2238 if (I == OldClass->getNextLeader().first)
2239 OldClass->resetNextLeader();
2240
2241 OldClass->erase(I);
2242 NewClass->insert(I);
2243
2244 if (NewClass->getLeader() != I)
2245 NewClass->addPossibleNextLeader({I, InstrToDFSNum(I)});
2246 // Handle our special casing of stores.
2247 if (auto *SI = dyn_cast<StoreInst>(I)) {
2248 OldClass->decStoreCount();
2249 // Okay, so when do we want to make a store a leader of a class?
2250 // If we have a store defined by an earlier load, we want the earlier load
2251 // to lead the class.
2252 // If we have a store defined by something else, we want the store to lead
2253 // the class so everything else gets the "something else" as a value.
2254 // If we have a store as the single member of the class, we want the store
2255 // as the leader
2256 if (NewClass->getStoreCount() == 0 && !NewClass->getStoredValue()) {
2257 // If it's a store expression we are using, it means we are not equivalent
2258 // to something earlier.
2259 if (auto *SE = dyn_cast<StoreExpression>(E)) {
2260 NewClass->setStoredValue(SE->getStoredValue());
2261 markValueLeaderChangeTouched(NewClass);
2262 // Shift the new class leader to be the store
2263 LLVM_DEBUG(dbgs() << "Changing leader of congruence class "
2264 << NewClass->getID() << " from "
2265 << *NewClass->getLeader() << " to " << *SI
2266 << " because store joined class\n");
2267 // If we changed the leader, we have to mark it changed because we don't
2268 // know what it will do to symbolic evaluation.
2269 NewClass->setLeader(SI);
2270 }
2271 // We rely on the code below handling the MemoryAccess change.
2272 }
2273 NewClass->incStoreCount();
2274 }
2275 // True if there is no memory instructions left in a class that had memory
2276 // instructions before.
2277
2278 // If it's not a memory use, set the MemoryAccess equivalence
2279 auto *InstMA = dyn_cast_or_null<MemoryDef>(getMemoryAccess(I));
2280 if (InstMA)
2281 moveMemoryToNewCongruenceClass(I, InstMA, OldClass, NewClass);
2282 ValueToClass[I] = NewClass;
2283 // See if we destroyed the class or need to swap leaders.
2284 if (OldClass->empty() && OldClass != TOPClass) {
2285 if (OldClass->getDefiningExpr()) {
2286 LLVM_DEBUG(dbgs() << "Erasing expression " << *OldClass->getDefiningExpr()
2287 << " from table\n");
2288 // We erase it as an exact expression to make sure we don't just erase an
2289 // equivalent one.
2290 auto Iter = ExpressionToClass.find_as(
2291 ExactEqualsExpression(*OldClass->getDefiningExpr()));
2292 if (Iter != ExpressionToClass.end())
2293 ExpressionToClass.erase(Iter);
2294 #ifdef EXPENSIVE_CHECKS
2295 assert(
2296 (*OldClass->getDefiningExpr() != *E || ExpressionToClass.lookup(E)) &&
2297 "We erased the expression we just inserted, which should not happen");
2298 #endif
2299 }
2300 } else if (OldClass->getLeader() == I) {
2301 // When the leader changes, the value numbering of
2302 // everything may change due to symbolization changes, so we need to
2303 // reprocess.
2304 LLVM_DEBUG(dbgs() << "Value class leader change for class "
2305 << OldClass->getID() << "\n");
2306 ++NumGVNLeaderChanges;
2307 // Destroy the stored value if there are no more stores to represent it.
2308 // Note that this is basically clean up for the expression removal that
2309 // happens below. If we remove stores from a class, we may leave it as a
2310 // class of equivalent memory phis.
2311 if (OldClass->getStoreCount() == 0) {
2312 if (OldClass->getStoredValue())
2313 OldClass->setStoredValue(nullptr);
2314 }
2315 OldClass->setLeader(getNextValueLeader(OldClass));
2316 OldClass->resetNextLeader();
2317 markValueLeaderChangeTouched(OldClass);
2318 }
2319 }
2320
2321 // For a given expression, mark the phi of ops instructions that could have
2322 // changed as a result.
markPhiOfOpsChanged(const Expression * E)2323 void NewGVN::markPhiOfOpsChanged(const Expression *E) {
2324 touchAndErase(ExpressionToPhiOfOps, E);
2325 }
2326
2327 // Perform congruence finding on a given value numbering expression.
performCongruenceFinding(Instruction * I,const Expression * E)2328 void NewGVN::performCongruenceFinding(Instruction *I, const Expression *E) {
2329 // This is guaranteed to return something, since it will at least find
2330 // TOP.
2331
2332 CongruenceClass *IClass = ValueToClass.lookup(I);
2333 assert(IClass && "Should have found a IClass");
2334 // Dead classes should have been eliminated from the mapping.
2335 assert(!IClass->isDead() && "Found a dead class");
2336
2337 CongruenceClass *EClass = nullptr;
2338 if (const auto *VE = dyn_cast<VariableExpression>(E)) {
2339 EClass = ValueToClass.lookup(VE->getVariableValue());
2340 } else if (isa<DeadExpression>(E)) {
2341 EClass = TOPClass;
2342 }
2343 if (!EClass) {
2344 auto lookupResult = ExpressionToClass.insert({E, nullptr});
2345
2346 // If it's not in the value table, create a new congruence class.
2347 if (lookupResult.second) {
2348 CongruenceClass *NewClass = createCongruenceClass(nullptr, E);
2349 auto place = lookupResult.first;
2350 place->second = NewClass;
2351
2352 // Constants and variables should always be made the leader.
2353 if (const auto *CE = dyn_cast<ConstantExpression>(E)) {
2354 NewClass->setLeader(CE->getConstantValue());
2355 } else if (const auto *SE = dyn_cast<StoreExpression>(E)) {
2356 StoreInst *SI = SE->getStoreInst();
2357 NewClass->setLeader(SI);
2358 NewClass->setStoredValue(SE->getStoredValue());
2359 // The RepMemoryAccess field will be filled in properly by the
2360 // moveValueToNewCongruenceClass call.
2361 } else {
2362 NewClass->setLeader(I);
2363 }
2364 assert(!isa<VariableExpression>(E) &&
2365 "VariableExpression should have been handled already");
2366
2367 EClass = NewClass;
2368 LLVM_DEBUG(dbgs() << "Created new congruence class for " << *I
2369 << " using expression " << *E << " at "
2370 << NewClass->getID() << " and leader "
2371 << *(NewClass->getLeader()));
2372 if (NewClass->getStoredValue())
2373 LLVM_DEBUG(dbgs() << " and stored value "
2374 << *(NewClass->getStoredValue()));
2375 LLVM_DEBUG(dbgs() << "\n");
2376 } else {
2377 EClass = lookupResult.first->second;
2378 if (isa<ConstantExpression>(E))
2379 assert((isa<Constant>(EClass->getLeader()) ||
2380 (EClass->getStoredValue() &&
2381 isa<Constant>(EClass->getStoredValue()))) &&
2382 "Any class with a constant expression should have a "
2383 "constant leader");
2384
2385 assert(EClass && "Somehow don't have an eclass");
2386
2387 assert(!EClass->isDead() && "We accidentally looked up a dead class");
2388 }
2389 }
2390 bool ClassChanged = IClass != EClass;
2391 bool LeaderChanged = LeaderChanges.erase(I);
2392 if (ClassChanged || LeaderChanged) {
2393 LLVM_DEBUG(dbgs() << "New class " << EClass->getID() << " for expression "
2394 << *E << "\n");
2395 if (ClassChanged) {
2396 moveValueToNewCongruenceClass(I, E, IClass, EClass);
2397 markPhiOfOpsChanged(E);
2398 }
2399
2400 markUsersTouched(I);
2401 if (MemoryAccess *MA = getMemoryAccess(I))
2402 markMemoryUsersTouched(MA);
2403 if (auto *CI = dyn_cast<CmpInst>(I))
2404 markPredicateUsersTouched(CI);
2405 }
2406 // If we changed the class of the store, we want to ensure nothing finds the
2407 // old store expression. In particular, loads do not compare against stored
2408 // value, so they will find old store expressions (and associated class
2409 // mappings) if we leave them in the table.
2410 if (ClassChanged && isa<StoreInst>(I)) {
2411 auto *OldE = ValueToExpression.lookup(I);
2412 // It could just be that the old class died. We don't want to erase it if we
2413 // just moved classes.
2414 if (OldE && isa<StoreExpression>(OldE) && *E != *OldE) {
2415 // Erase this as an exact expression to ensure we don't erase expressions
2416 // equivalent to it.
2417 auto Iter = ExpressionToClass.find_as(ExactEqualsExpression(*OldE));
2418 if (Iter != ExpressionToClass.end())
2419 ExpressionToClass.erase(Iter);
2420 }
2421 }
2422 ValueToExpression[I] = E;
2423 }
2424
2425 // Process the fact that Edge (from, to) is reachable, including marking
2426 // any newly reachable blocks and instructions for processing.
updateReachableEdge(BasicBlock * From,BasicBlock * To)2427 void NewGVN::updateReachableEdge(BasicBlock *From, BasicBlock *To) {
2428 // Check if the Edge was reachable before.
2429 if (ReachableEdges.insert({From, To}).second) {
2430 // If this block wasn't reachable before, all instructions are touched.
2431 if (ReachableBlocks.insert(To).second) {
2432 LLVM_DEBUG(dbgs() << "Block " << getBlockName(To)
2433 << " marked reachable\n");
2434 const auto &InstRange = BlockInstRange.lookup(To);
2435 TouchedInstructions.set(InstRange.first, InstRange.second);
2436 } else {
2437 LLVM_DEBUG(dbgs() << "Block " << getBlockName(To)
2438 << " was reachable, but new edge {"
2439 << getBlockName(From) << "," << getBlockName(To)
2440 << "} to it found\n");
2441
2442 // We've made an edge reachable to an existing block, which may
2443 // impact predicates. Otherwise, only mark the phi nodes as touched, as
2444 // they are the only thing that depend on new edges. Anything using their
2445 // values will get propagated to if necessary.
2446 if (MemoryAccess *MemPhi = getMemoryAccess(To))
2447 TouchedInstructions.set(InstrToDFSNum(MemPhi));
2448
2449 // FIXME: We should just add a union op on a Bitvector and
2450 // SparseBitVector. We can do it word by word faster than we are doing it
2451 // here.
2452 for (auto InstNum : RevisitOnReachabilityChange[To])
2453 TouchedInstructions.set(InstNum);
2454 }
2455 }
2456 }
2457
2458 // Given a predicate condition (from a switch, cmp, or whatever) and a block,
2459 // see if we know some constant value for it already.
findConditionEquivalence(Value * Cond) const2460 Value *NewGVN::findConditionEquivalence(Value *Cond) const {
2461 auto Result = lookupOperandLeader(Cond);
2462 return isa<Constant>(Result) ? Result : nullptr;
2463 }
2464
2465 // Process the outgoing edges of a block for reachability.
processOutgoingEdges(Instruction * TI,BasicBlock * B)2466 void NewGVN::processOutgoingEdges(Instruction *TI, BasicBlock *B) {
2467 // Evaluate reachability of terminator instruction.
2468 Value *Cond;
2469 BasicBlock *TrueSucc, *FalseSucc;
2470 if (match(TI, m_Br(m_Value(Cond), TrueSucc, FalseSucc))) {
2471 Value *CondEvaluated = findConditionEquivalence(Cond);
2472 if (!CondEvaluated) {
2473 if (auto *I = dyn_cast<Instruction>(Cond)) {
2474 SmallPtrSet<Value *, 4> Visited;
2475 auto Res = performSymbolicEvaluation(I, Visited);
2476 if (const auto *CE = dyn_cast_or_null<ConstantExpression>(Res.Expr)) {
2477 CondEvaluated = CE->getConstantValue();
2478 addAdditionalUsers(Res, I);
2479 } else {
2480 // Did not use simplification result, no need to add the extra
2481 // dependency.
2482 Res.ExtraDep = nullptr;
2483 }
2484 } else if (isa<ConstantInt>(Cond)) {
2485 CondEvaluated = Cond;
2486 }
2487 }
2488 ConstantInt *CI;
2489 if (CondEvaluated && (CI = dyn_cast<ConstantInt>(CondEvaluated))) {
2490 if (CI->isOne()) {
2491 LLVM_DEBUG(dbgs() << "Condition for Terminator " << *TI
2492 << " evaluated to true\n");
2493 updateReachableEdge(B, TrueSucc);
2494 } else if (CI->isZero()) {
2495 LLVM_DEBUG(dbgs() << "Condition for Terminator " << *TI
2496 << " evaluated to false\n");
2497 updateReachableEdge(B, FalseSucc);
2498 }
2499 } else {
2500 updateReachableEdge(B, TrueSucc);
2501 updateReachableEdge(B, FalseSucc);
2502 }
2503 } else if (auto *SI = dyn_cast<SwitchInst>(TI)) {
2504 // For switches, propagate the case values into the case
2505 // destinations.
2506
2507 Value *SwitchCond = SI->getCondition();
2508 Value *CondEvaluated = findConditionEquivalence(SwitchCond);
2509 // See if we were able to turn this switch statement into a constant.
2510 if (CondEvaluated && isa<ConstantInt>(CondEvaluated)) {
2511 auto *CondVal = cast<ConstantInt>(CondEvaluated);
2512 // We should be able to get case value for this.
2513 auto Case = *SI->findCaseValue(CondVal);
2514 if (Case.getCaseSuccessor() == SI->getDefaultDest()) {
2515 // We proved the value is outside of the range of the case.
2516 // We can't do anything other than mark the default dest as reachable,
2517 // and go home.
2518 updateReachableEdge(B, SI->getDefaultDest());
2519 return;
2520 }
2521 // Now get where it goes and mark it reachable.
2522 BasicBlock *TargetBlock = Case.getCaseSuccessor();
2523 updateReachableEdge(B, TargetBlock);
2524 } else {
2525 for (unsigned i = 0, e = SI->getNumSuccessors(); i != e; ++i) {
2526 BasicBlock *TargetBlock = SI->getSuccessor(i);
2527 updateReachableEdge(B, TargetBlock);
2528 }
2529 }
2530 } else {
2531 // Otherwise this is either unconditional, or a type we have no
2532 // idea about. Just mark successors as reachable.
2533 for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i) {
2534 BasicBlock *TargetBlock = TI->getSuccessor(i);
2535 updateReachableEdge(B, TargetBlock);
2536 }
2537
2538 // This also may be a memory defining terminator, in which case, set it
2539 // equivalent only to itself.
2540 //
2541 auto *MA = getMemoryAccess(TI);
2542 if (MA && !isa<MemoryUse>(MA)) {
2543 auto *CC = ensureLeaderOfMemoryClass(MA);
2544 if (setMemoryClass(MA, CC))
2545 markMemoryUsersTouched(MA);
2546 }
2547 }
2548 }
2549
2550 // Remove the PHI of Ops PHI for I
removePhiOfOps(Instruction * I,PHINode * PHITemp)2551 void NewGVN::removePhiOfOps(Instruction *I, PHINode *PHITemp) {
2552 InstrDFS.erase(PHITemp);
2553 // It's still a temp instruction. We keep it in the array so it gets erased.
2554 // However, it's no longer used by I, or in the block
2555 TempToBlock.erase(PHITemp);
2556 RealToTemp.erase(I);
2557 // We don't remove the users from the phi node uses. This wastes a little
2558 // time, but such is life. We could use two sets to track which were there
2559 // are the start of NewGVN, and which were added, but right nowt he cost of
2560 // tracking is more than the cost of checking for more phi of ops.
2561 }
2562
2563 // Add PHI Op in BB as a PHI of operations version of ExistingValue.
addPhiOfOps(PHINode * Op,BasicBlock * BB,Instruction * ExistingValue)2564 void NewGVN::addPhiOfOps(PHINode *Op, BasicBlock *BB,
2565 Instruction *ExistingValue) {
2566 InstrDFS[Op] = InstrToDFSNum(ExistingValue);
2567 AllTempInstructions.insert(Op);
2568 TempToBlock[Op] = BB;
2569 RealToTemp[ExistingValue] = Op;
2570 // Add all users to phi node use, as they are now uses of the phi of ops phis
2571 // and may themselves be phi of ops.
2572 for (auto *U : ExistingValue->users())
2573 if (auto *UI = dyn_cast<Instruction>(U))
2574 PHINodeUses.insert(UI);
2575 }
2576
okayForPHIOfOps(const Instruction * I)2577 static bool okayForPHIOfOps(const Instruction *I) {
2578 if (!EnablePhiOfOps)
2579 return false;
2580 return isa<BinaryOperator>(I) || isa<SelectInst>(I) || isa<CmpInst>(I) ||
2581 isa<LoadInst>(I);
2582 }
2583
2584 // Return true if this operand will be safe to use for phi of ops.
2585 //
2586 // The reason some operands are unsafe is that we are not trying to recursively
2587 // translate everything back through phi nodes. We actually expect some lookups
2588 // of expressions to fail. In particular, a lookup where the expression cannot
2589 // exist in the predecessor. This is true even if the expression, as shown, can
2590 // be determined to be constant.
OpIsSafeForPHIOfOps(Value * V,const BasicBlock * PHIBlock,SmallPtrSetImpl<const Value * > & Visited)2591 bool NewGVN::OpIsSafeForPHIOfOps(Value *V, const BasicBlock *PHIBlock,
2592 SmallPtrSetImpl<const Value *> &Visited) {
2593 SmallVector<Value *, 4> Worklist;
2594 Worklist.push_back(V);
2595 while (!Worklist.empty()) {
2596 auto *I = Worklist.pop_back_val();
2597 if (!isa<Instruction>(I))
2598 continue;
2599
2600 auto OISIt = OpSafeForPHIOfOps.find(I);
2601 if (OISIt != OpSafeForPHIOfOps.end())
2602 return OISIt->second;
2603
2604 // Keep walking until we either dominate the phi block, or hit a phi, or run
2605 // out of things to check.
2606 if (DT->properlyDominates(getBlockForValue(I), PHIBlock)) {
2607 OpSafeForPHIOfOps.insert({I, true});
2608 continue;
2609 }
2610 // PHI in the same block.
2611 if (isa<PHINode>(I) && getBlockForValue(I) == PHIBlock) {
2612 OpSafeForPHIOfOps.insert({I, false});
2613 return false;
2614 }
2615
2616 auto *OrigI = cast<Instruction>(I);
2617 // When we hit an instruction that reads memory (load, call, etc), we must
2618 // consider any store that may happen in the loop. For now, we assume the
2619 // worst: there is a store in the loop that alias with this read.
2620 // The case where the load is outside the loop is already covered by the
2621 // dominator check above.
2622 // TODO: relax this condition
2623 if (OrigI->mayReadFromMemory())
2624 return false;
2625
2626 // Check the operands of the current instruction.
2627 for (auto *Op : OrigI->operand_values()) {
2628 if (!isa<Instruction>(Op))
2629 continue;
2630 // Stop now if we find an unsafe operand.
2631 auto OISIt = OpSafeForPHIOfOps.find(OrigI);
2632 if (OISIt != OpSafeForPHIOfOps.end()) {
2633 if (!OISIt->second) {
2634 OpSafeForPHIOfOps.insert({I, false});
2635 return false;
2636 }
2637 continue;
2638 }
2639 if (!Visited.insert(Op).second)
2640 continue;
2641 Worklist.push_back(cast<Instruction>(Op));
2642 }
2643 }
2644 OpSafeForPHIOfOps.insert({V, true});
2645 return true;
2646 }
2647
2648 // Try to find a leader for instruction TransInst, which is a phi translated
2649 // version of something in our original program. Visited is used to ensure we
2650 // don't infinite loop during translations of cycles. OrigInst is the
2651 // instruction in the original program, and PredBB is the predecessor we
2652 // translated it through.
findLeaderForInst(Instruction * TransInst,SmallPtrSetImpl<Value * > & Visited,MemoryAccess * MemAccess,Instruction * OrigInst,BasicBlock * PredBB)2653 Value *NewGVN::findLeaderForInst(Instruction *TransInst,
2654 SmallPtrSetImpl<Value *> &Visited,
2655 MemoryAccess *MemAccess, Instruction *OrigInst,
2656 BasicBlock *PredBB) {
2657 unsigned IDFSNum = InstrToDFSNum(OrigInst);
2658 // Make sure it's marked as a temporary instruction.
2659 AllTempInstructions.insert(TransInst);
2660 // and make sure anything that tries to add it's DFS number is
2661 // redirected to the instruction we are making a phi of ops
2662 // for.
2663 TempToBlock.insert({TransInst, PredBB});
2664 InstrDFS.insert({TransInst, IDFSNum});
2665
2666 auto Res = performSymbolicEvaluation(TransInst, Visited);
2667 const Expression *E = Res.Expr;
2668 addAdditionalUsers(Res, OrigInst);
2669 InstrDFS.erase(TransInst);
2670 AllTempInstructions.erase(TransInst);
2671 TempToBlock.erase(TransInst);
2672 if (MemAccess)
2673 TempToMemory.erase(TransInst);
2674 if (!E)
2675 return nullptr;
2676 auto *FoundVal = findPHIOfOpsLeader(E, OrigInst, PredBB);
2677 if (!FoundVal) {
2678 ExpressionToPhiOfOps[E].insert(OrigInst);
2679 LLVM_DEBUG(dbgs() << "Cannot find phi of ops operand for " << *TransInst
2680 << " in block " << getBlockName(PredBB) << "\n");
2681 return nullptr;
2682 }
2683 if (auto *SI = dyn_cast<StoreInst>(FoundVal))
2684 FoundVal = SI->getValueOperand();
2685 return FoundVal;
2686 }
2687
2688 // When we see an instruction that is an op of phis, generate the equivalent phi
2689 // of ops form.
2690 const Expression *
makePossiblePHIOfOps(Instruction * I,SmallPtrSetImpl<Value * > & Visited)2691 NewGVN::makePossiblePHIOfOps(Instruction *I,
2692 SmallPtrSetImpl<Value *> &Visited) {
2693 if (!okayForPHIOfOps(I))
2694 return nullptr;
2695
2696 if (!Visited.insert(I).second)
2697 return nullptr;
2698 // For now, we require the instruction be cycle free because we don't
2699 // *always* create a phi of ops for instructions that could be done as phi
2700 // of ops, we only do it if we think it is useful. If we did do it all the
2701 // time, we could remove the cycle free check.
2702 if (!isCycleFree(I))
2703 return nullptr;
2704
2705 SmallPtrSet<const Value *, 8> ProcessedPHIs;
2706 // TODO: We don't do phi translation on memory accesses because it's
2707 // complicated. For a load, we'd need to be able to simulate a new memoryuse,
2708 // which we don't have a good way of doing ATM.
2709 auto *MemAccess = getMemoryAccess(I);
2710 // If the memory operation is defined by a memory operation this block that
2711 // isn't a MemoryPhi, transforming the pointer backwards through a scalar phi
2712 // can't help, as it would still be killed by that memory operation.
2713 if (MemAccess && !isa<MemoryPhi>(MemAccess->getDefiningAccess()) &&
2714 MemAccess->getDefiningAccess()->getBlock() == I->getParent())
2715 return nullptr;
2716
2717 // Convert op of phis to phi of ops
2718 SmallPtrSet<const Value *, 10> VisitedOps;
2719 SmallVector<Value *, 4> Ops(I->operand_values());
2720 BasicBlock *SamePHIBlock = nullptr;
2721 PHINode *OpPHI = nullptr;
2722 if (!DebugCounter::shouldExecute(PHIOfOpsCounter))
2723 return nullptr;
2724 for (auto *Op : Ops) {
2725 if (!isa<PHINode>(Op)) {
2726 auto *ValuePHI = RealToTemp.lookup(Op);
2727 if (!ValuePHI)
2728 continue;
2729 LLVM_DEBUG(dbgs() << "Found possible dependent phi of ops\n");
2730 Op = ValuePHI;
2731 }
2732 OpPHI = cast<PHINode>(Op);
2733 if (!SamePHIBlock) {
2734 SamePHIBlock = getBlockForValue(OpPHI);
2735 } else if (SamePHIBlock != getBlockForValue(OpPHI)) {
2736 LLVM_DEBUG(
2737 dbgs()
2738 << "PHIs for operands are not all in the same block, aborting\n");
2739 return nullptr;
2740 }
2741 // No point in doing this for one-operand phis.
2742 if (OpPHI->getNumOperands() == 1) {
2743 OpPHI = nullptr;
2744 continue;
2745 }
2746 }
2747
2748 if (!OpPHI)
2749 return nullptr;
2750
2751 SmallVector<ValPair, 4> PHIOps;
2752 SmallPtrSet<Value *, 4> Deps;
2753 auto *PHIBlock = getBlockForValue(OpPHI);
2754 RevisitOnReachabilityChange[PHIBlock].reset(InstrToDFSNum(I));
2755 for (unsigned PredNum = 0; PredNum < OpPHI->getNumOperands(); ++PredNum) {
2756 auto *PredBB = OpPHI->getIncomingBlock(PredNum);
2757 Value *FoundVal = nullptr;
2758 SmallPtrSet<Value *, 4> CurrentDeps;
2759 // We could just skip unreachable edges entirely but it's tricky to do
2760 // with rewriting existing phi nodes.
2761 if (ReachableEdges.count({PredBB, PHIBlock})) {
2762 // Clone the instruction, create an expression from it that is
2763 // translated back into the predecessor, and see if we have a leader.
2764 Instruction *ValueOp = I->clone();
2765 if (MemAccess)
2766 TempToMemory.insert({ValueOp, MemAccess});
2767 bool SafeForPHIOfOps = true;
2768 VisitedOps.clear();
2769 for (auto &Op : ValueOp->operands()) {
2770 auto *OrigOp = &*Op;
2771 // When these operand changes, it could change whether there is a
2772 // leader for us or not, so we have to add additional users.
2773 if (isa<PHINode>(Op)) {
2774 Op = Op->DoPHITranslation(PHIBlock, PredBB);
2775 if (Op != OrigOp && Op != I)
2776 CurrentDeps.insert(Op);
2777 } else if (auto *ValuePHI = RealToTemp.lookup(Op)) {
2778 if (getBlockForValue(ValuePHI) == PHIBlock)
2779 Op = ValuePHI->getIncomingValueForBlock(PredBB);
2780 }
2781 // If we phi-translated the op, it must be safe.
2782 SafeForPHIOfOps =
2783 SafeForPHIOfOps &&
2784 (Op != OrigOp || OpIsSafeForPHIOfOps(Op, PHIBlock, VisitedOps));
2785 }
2786 // FIXME: For those things that are not safe we could generate
2787 // expressions all the way down, and see if this comes out to a
2788 // constant. For anything where that is true, and unsafe, we should
2789 // have made a phi-of-ops (or value numbered it equivalent to something)
2790 // for the pieces already.
2791 FoundVal = !SafeForPHIOfOps ? nullptr
2792 : findLeaderForInst(ValueOp, Visited,
2793 MemAccess, I, PredBB);
2794 ValueOp->deleteValue();
2795 if (!FoundVal) {
2796 // We failed to find a leader for the current ValueOp, but this might
2797 // change in case of the translated operands change.
2798 if (SafeForPHIOfOps)
2799 for (auto *Dep : CurrentDeps)
2800 addAdditionalUsers(Dep, I);
2801
2802 return nullptr;
2803 }
2804 Deps.insert(CurrentDeps.begin(), CurrentDeps.end());
2805 } else {
2806 LLVM_DEBUG(dbgs() << "Skipping phi of ops operand for incoming block "
2807 << getBlockName(PredBB)
2808 << " because the block is unreachable\n");
2809 FoundVal = PoisonValue::get(I->getType());
2810 RevisitOnReachabilityChange[PHIBlock].set(InstrToDFSNum(I));
2811 }
2812
2813 PHIOps.push_back({FoundVal, PredBB});
2814 LLVM_DEBUG(dbgs() << "Found phi of ops operand " << *FoundVal << " in "
2815 << getBlockName(PredBB) << "\n");
2816 }
2817 for (auto *Dep : Deps)
2818 addAdditionalUsers(Dep, I);
2819 sortPHIOps(PHIOps);
2820 auto *E = performSymbolicPHIEvaluation(PHIOps, I, PHIBlock);
2821 if (isa<ConstantExpression>(E) || isa<VariableExpression>(E)) {
2822 LLVM_DEBUG(
2823 dbgs()
2824 << "Not creating real PHI of ops because it simplified to existing "
2825 "value or constant\n");
2826 // We have leaders for all operands, but do not create a real PHI node with
2827 // those leaders as operands, so the link between the operands and the
2828 // PHI-of-ops is not materialized in the IR. If any of those leaders
2829 // changes, the PHI-of-op may change also, so we need to add the operands as
2830 // additional users.
2831 for (auto &O : PHIOps)
2832 addAdditionalUsers(O.first, I);
2833
2834 return E;
2835 }
2836 auto *ValuePHI = RealToTemp.lookup(I);
2837 bool NewPHI = false;
2838 if (!ValuePHI) {
2839 ValuePHI =
2840 PHINode::Create(I->getType(), OpPHI->getNumOperands(), "phiofops");
2841 addPhiOfOps(ValuePHI, PHIBlock, I);
2842 NewPHI = true;
2843 NumGVNPHIOfOpsCreated++;
2844 }
2845 if (NewPHI) {
2846 for (auto PHIOp : PHIOps)
2847 ValuePHI->addIncoming(PHIOp.first, PHIOp.second);
2848 } else {
2849 TempToBlock[ValuePHI] = PHIBlock;
2850 unsigned int i = 0;
2851 for (auto PHIOp : PHIOps) {
2852 ValuePHI->setIncomingValue(i, PHIOp.first);
2853 ValuePHI->setIncomingBlock(i, PHIOp.second);
2854 ++i;
2855 }
2856 }
2857 RevisitOnReachabilityChange[PHIBlock].set(InstrToDFSNum(I));
2858 LLVM_DEBUG(dbgs() << "Created phi of ops " << *ValuePHI << " for " << *I
2859 << "\n");
2860
2861 return E;
2862 }
2863
2864 // The algorithm initially places the values of the routine in the TOP
2865 // congruence class. The leader of TOP is the undetermined value `poison`.
2866 // When the algorithm has finished, values still in TOP are unreachable.
initializeCongruenceClasses(Function & F)2867 void NewGVN::initializeCongruenceClasses(Function &F) {
2868 NextCongruenceNum = 0;
2869
2870 // Note that even though we use the live on entry def as a representative
2871 // MemoryAccess, it is *not* the same as the actual live on entry def. We
2872 // have no real equivalent to poison for MemoryAccesses, and so we really
2873 // should be checking whether the MemoryAccess is top if we want to know if it
2874 // is equivalent to everything. Otherwise, what this really signifies is that
2875 // the access "it reaches all the way back to the beginning of the function"
2876
2877 // Initialize all other instructions to be in TOP class.
2878 TOPClass = createCongruenceClass(nullptr, nullptr);
2879 TOPClass->setMemoryLeader(MSSA->getLiveOnEntryDef());
2880 // The live on entry def gets put into it's own class
2881 MemoryAccessToClass[MSSA->getLiveOnEntryDef()] =
2882 createMemoryClass(MSSA->getLiveOnEntryDef());
2883
2884 for (auto *DTN : nodes(DT)) {
2885 BasicBlock *BB = DTN->getBlock();
2886 // All MemoryAccesses are equivalent to live on entry to start. They must
2887 // be initialized to something so that initial changes are noticed. For
2888 // the maximal answer, we initialize them all to be the same as
2889 // liveOnEntry.
2890 auto *MemoryBlockDefs = MSSA->getBlockDefs(BB);
2891 if (MemoryBlockDefs)
2892 for (const auto &Def : *MemoryBlockDefs) {
2893 MemoryAccessToClass[&Def] = TOPClass;
2894 auto *MD = dyn_cast<MemoryDef>(&Def);
2895 // Insert the memory phis into the member list.
2896 if (!MD) {
2897 const MemoryPhi *MP = cast<MemoryPhi>(&Def);
2898 TOPClass->memory_insert(MP);
2899 MemoryPhiState.insert({MP, MPS_TOP});
2900 }
2901
2902 if (MD && isa<StoreInst>(MD->getMemoryInst()))
2903 TOPClass->incStoreCount();
2904 }
2905
2906 // FIXME: This is trying to discover which instructions are uses of phi
2907 // nodes. We should move this into one of the myriad of places that walk
2908 // all the operands already.
2909 for (auto &I : *BB) {
2910 if (isa<PHINode>(&I))
2911 for (auto *U : I.users())
2912 if (auto *UInst = dyn_cast<Instruction>(U))
2913 if (InstrToDFSNum(UInst) != 0 && okayForPHIOfOps(UInst))
2914 PHINodeUses.insert(UInst);
2915 // Don't insert void terminators into the class. We don't value number
2916 // them, and they just end up sitting in TOP.
2917 if (I.isTerminator() && I.getType()->isVoidTy())
2918 continue;
2919 TOPClass->insert(&I);
2920 ValueToClass[&I] = TOPClass;
2921 }
2922 }
2923
2924 // Initialize arguments to be in their own unique congruence classes
2925 for (auto &FA : F.args())
2926 createSingletonCongruenceClass(&FA);
2927 }
2928
cleanupTables()2929 void NewGVN::cleanupTables() {
2930 for (CongruenceClass *&CC : CongruenceClasses) {
2931 LLVM_DEBUG(dbgs() << "Congruence class " << CC->getID() << " has "
2932 << CC->size() << " members\n");
2933 // Make sure we delete the congruence class (probably worth switching to
2934 // a unique_ptr at some point.
2935 delete CC;
2936 CC = nullptr;
2937 }
2938
2939 // Destroy the value expressions
2940 SmallVector<Instruction *, 8> TempInst(AllTempInstructions.begin(),
2941 AllTempInstructions.end());
2942 AllTempInstructions.clear();
2943
2944 // We have to drop all references for everything first, so there are no uses
2945 // left as we delete them.
2946 for (auto *I : TempInst) {
2947 I->dropAllReferences();
2948 }
2949
2950 while (!TempInst.empty()) {
2951 auto *I = TempInst.pop_back_val();
2952 I->deleteValue();
2953 }
2954
2955 ValueToClass.clear();
2956 ArgRecycler.clear(ExpressionAllocator);
2957 ExpressionAllocator.Reset();
2958 CongruenceClasses.clear();
2959 ExpressionToClass.clear();
2960 ValueToExpression.clear();
2961 RealToTemp.clear();
2962 AdditionalUsers.clear();
2963 ExpressionToPhiOfOps.clear();
2964 TempToBlock.clear();
2965 TempToMemory.clear();
2966 PHINodeUses.clear();
2967 OpSafeForPHIOfOps.clear();
2968 ReachableBlocks.clear();
2969 ReachableEdges.clear();
2970 #ifndef NDEBUG
2971 ProcessedCount.clear();
2972 #endif
2973 InstrDFS.clear();
2974 InstructionsToErase.clear();
2975 DFSToInstr.clear();
2976 BlockInstRange.clear();
2977 TouchedInstructions.clear();
2978 MemoryAccessToClass.clear();
2979 PredicateToUsers.clear();
2980 MemoryToUsers.clear();
2981 RevisitOnReachabilityChange.clear();
2982 IntrinsicInstPred.clear();
2983 }
2984
2985 // Assign local DFS number mapping to instructions, and leave space for Value
2986 // PHI's.
assignDFSNumbers(BasicBlock * B,unsigned Start)2987 std::pair<unsigned, unsigned> NewGVN::assignDFSNumbers(BasicBlock *B,
2988 unsigned Start) {
2989 unsigned End = Start;
2990 if (MemoryAccess *MemPhi = getMemoryAccess(B)) {
2991 InstrDFS[MemPhi] = End++;
2992 DFSToInstr.emplace_back(MemPhi);
2993 }
2994
2995 // Then the real block goes next.
2996 for (auto &I : *B) {
2997 // There's no need to call isInstructionTriviallyDead more than once on
2998 // an instruction. Therefore, once we know that an instruction is dead
2999 // we change its DFS number so that it doesn't get value numbered.
3000 if (isInstructionTriviallyDead(&I, TLI)) {
3001 InstrDFS[&I] = 0;
3002 LLVM_DEBUG(dbgs() << "Skipping trivially dead instruction " << I << "\n");
3003 markInstructionForDeletion(&I);
3004 continue;
3005 }
3006 if (isa<PHINode>(&I))
3007 RevisitOnReachabilityChange[B].set(End);
3008 InstrDFS[&I] = End++;
3009 DFSToInstr.emplace_back(&I);
3010 }
3011
3012 // All of the range functions taken half-open ranges (open on the end side).
3013 // So we do not subtract one from count, because at this point it is one
3014 // greater than the last instruction.
3015 return std::make_pair(Start, End);
3016 }
3017
updateProcessedCount(const Value * V)3018 void NewGVN::updateProcessedCount(const Value *V) {
3019 #ifndef NDEBUG
3020 if (ProcessedCount.count(V) == 0) {
3021 ProcessedCount.insert({V, 1});
3022 } else {
3023 ++ProcessedCount[V];
3024 assert(ProcessedCount[V] < 100 &&
3025 "Seem to have processed the same Value a lot");
3026 }
3027 #endif
3028 }
3029
3030 // Evaluate MemoryPhi nodes symbolically, just like PHI nodes
valueNumberMemoryPhi(MemoryPhi * MP)3031 void NewGVN::valueNumberMemoryPhi(MemoryPhi *MP) {
3032 // If all the arguments are the same, the MemoryPhi has the same value as the
3033 // argument. Filter out unreachable blocks and self phis from our operands.
3034 // TODO: We could do cycle-checking on the memory phis to allow valueizing for
3035 // self-phi checking.
3036 const BasicBlock *PHIBlock = MP->getBlock();
3037 auto Filtered = make_filter_range(MP->operands(), [&](const Use &U) {
3038 return cast<MemoryAccess>(U) != MP &&
3039 !isMemoryAccessTOP(cast<MemoryAccess>(U)) &&
3040 ReachableEdges.count({MP->getIncomingBlock(U), PHIBlock});
3041 });
3042 // If all that is left is nothing, our memoryphi is poison. We keep it as
3043 // InitialClass. Note: The only case this should happen is if we have at
3044 // least one self-argument.
3045 if (Filtered.begin() == Filtered.end()) {
3046 if (setMemoryClass(MP, TOPClass))
3047 markMemoryUsersTouched(MP);
3048 return;
3049 }
3050
3051 // Transform the remaining operands into operand leaders.
3052 // FIXME: mapped_iterator should have a range version.
3053 auto LookupFunc = [&](const Use &U) {
3054 return lookupMemoryLeader(cast<MemoryAccess>(U));
3055 };
3056 auto MappedBegin = map_iterator(Filtered.begin(), LookupFunc);
3057 auto MappedEnd = map_iterator(Filtered.end(), LookupFunc);
3058
3059 // and now check if all the elements are equal.
3060 // Sadly, we can't use std::equals since these are random access iterators.
3061 const auto *AllSameValue = *MappedBegin;
3062 ++MappedBegin;
3063 bool AllEqual = std::all_of(
3064 MappedBegin, MappedEnd,
3065 [&AllSameValue](const MemoryAccess *V) { return V == AllSameValue; });
3066
3067 if (AllEqual)
3068 LLVM_DEBUG(dbgs() << "Memory Phi value numbered to " << *AllSameValue
3069 << "\n");
3070 else
3071 LLVM_DEBUG(dbgs() << "Memory Phi value numbered to itself\n");
3072 // If it's equal to something, it's in that class. Otherwise, it has to be in
3073 // a class where it is the leader (other things may be equivalent to it, but
3074 // it needs to start off in its own class, which means it must have been the
3075 // leader, and it can't have stopped being the leader because it was never
3076 // removed).
3077 CongruenceClass *CC =
3078 AllEqual ? getMemoryClass(AllSameValue) : ensureLeaderOfMemoryClass(MP);
3079 auto OldState = MemoryPhiState.lookup(MP);
3080 assert(OldState != MPS_Invalid && "Invalid memory phi state");
3081 auto NewState = AllEqual ? MPS_Equivalent : MPS_Unique;
3082 MemoryPhiState[MP] = NewState;
3083 if (setMemoryClass(MP, CC) || OldState != NewState)
3084 markMemoryUsersTouched(MP);
3085 }
3086
3087 // Value number a single instruction, symbolically evaluating, performing
3088 // congruence finding, and updating mappings.
valueNumberInstruction(Instruction * I)3089 void NewGVN::valueNumberInstruction(Instruction *I) {
3090 LLVM_DEBUG(dbgs() << "Processing instruction " << *I << "\n");
3091 if (!I->isTerminator()) {
3092 const Expression *Symbolized = nullptr;
3093 SmallPtrSet<Value *, 2> Visited;
3094 if (DebugCounter::shouldExecute(VNCounter)) {
3095 auto Res = performSymbolicEvaluation(I, Visited);
3096 Symbolized = Res.Expr;
3097 addAdditionalUsers(Res, I);
3098
3099 // Make a phi of ops if necessary
3100 if (Symbolized && !isa<ConstantExpression>(Symbolized) &&
3101 !isa<VariableExpression>(Symbolized) && PHINodeUses.count(I)) {
3102 auto *PHIE = makePossiblePHIOfOps(I, Visited);
3103 // If we created a phi of ops, use it.
3104 // If we couldn't create one, make sure we don't leave one lying around
3105 if (PHIE) {
3106 Symbolized = PHIE;
3107 } else if (auto *Op = RealToTemp.lookup(I)) {
3108 removePhiOfOps(I, Op);
3109 }
3110 }
3111 } else {
3112 // Mark the instruction as unused so we don't value number it again.
3113 InstrDFS[I] = 0;
3114 }
3115 // If we couldn't come up with a symbolic expression, use the unknown
3116 // expression
3117 if (Symbolized == nullptr)
3118 Symbolized = createUnknownExpression(I);
3119 performCongruenceFinding(I, Symbolized);
3120 } else {
3121 // Handle terminators that return values. All of them produce values we
3122 // don't currently understand. We don't place non-value producing
3123 // terminators in a class.
3124 if (!I->getType()->isVoidTy()) {
3125 auto *Symbolized = createUnknownExpression(I);
3126 performCongruenceFinding(I, Symbolized);
3127 }
3128 processOutgoingEdges(I, I->getParent());
3129 }
3130 }
3131
3132 // Check if there is a path, using single or equal argument phi nodes, from
3133 // First to Second.
singleReachablePHIPath(SmallPtrSet<const MemoryAccess *,8> & Visited,const MemoryAccess * First,const MemoryAccess * Second) const3134 bool NewGVN::singleReachablePHIPath(
3135 SmallPtrSet<const MemoryAccess *, 8> &Visited, const MemoryAccess *First,
3136 const MemoryAccess *Second) const {
3137 if (First == Second)
3138 return true;
3139 if (MSSA->isLiveOnEntryDef(First))
3140 return false;
3141
3142 // This is not perfect, but as we're just verifying here, we can live with
3143 // the loss of precision. The real solution would be that of doing strongly
3144 // connected component finding in this routine, and it's probably not worth
3145 // the complexity for the time being. So, we just keep a set of visited
3146 // MemoryAccess and return true when we hit a cycle.
3147 if (!Visited.insert(First).second)
3148 return true;
3149
3150 const auto *EndDef = First;
3151 for (const auto *ChainDef : optimized_def_chain(First)) {
3152 if (ChainDef == Second)
3153 return true;
3154 if (MSSA->isLiveOnEntryDef(ChainDef))
3155 return false;
3156 EndDef = ChainDef;
3157 }
3158 auto *MP = cast<MemoryPhi>(EndDef);
3159 auto ReachableOperandPred = [&](const Use &U) {
3160 return ReachableEdges.count({MP->getIncomingBlock(U), MP->getBlock()});
3161 };
3162 auto FilteredPhiArgs =
3163 make_filter_range(MP->operands(), ReachableOperandPred);
3164 SmallVector<const Value *, 32> OperandList;
3165 llvm::copy(FilteredPhiArgs, std::back_inserter(OperandList));
3166 bool Okay = all_equal(OperandList);
3167 if (Okay)
3168 return singleReachablePHIPath(Visited, cast<MemoryAccess>(OperandList[0]),
3169 Second);
3170 return false;
3171 }
3172
3173 // Verify the that the memory equivalence table makes sense relative to the
3174 // congruence classes. Note that this checking is not perfect, and is currently
3175 // subject to very rare false negatives. It is only useful for
3176 // testing/debugging.
verifyMemoryCongruency() const3177 void NewGVN::verifyMemoryCongruency() const {
3178 #ifndef NDEBUG
3179 // Verify that the memory table equivalence and memory member set match
3180 for (const auto *CC : CongruenceClasses) {
3181 if (CC == TOPClass || CC->isDead())
3182 continue;
3183 if (CC->getStoreCount() != 0) {
3184 assert((CC->getStoredValue() || !isa<StoreInst>(CC->getLeader())) &&
3185 "Any class with a store as a leader should have a "
3186 "representative stored value");
3187 assert(CC->getMemoryLeader() &&
3188 "Any congruence class with a store should have a "
3189 "representative access");
3190 }
3191
3192 if (CC->getMemoryLeader())
3193 assert(MemoryAccessToClass.lookup(CC->getMemoryLeader()) == CC &&
3194 "Representative MemoryAccess does not appear to be reverse "
3195 "mapped properly");
3196 for (const auto *M : CC->memory())
3197 assert(MemoryAccessToClass.lookup(M) == CC &&
3198 "Memory member does not appear to be reverse mapped properly");
3199 }
3200
3201 // Anything equivalent in the MemoryAccess table should be in the same
3202 // congruence class.
3203
3204 // Filter out the unreachable and trivially dead entries, because they may
3205 // never have been updated if the instructions were not processed.
3206 auto ReachableAccessPred =
3207 [&](const std::pair<const MemoryAccess *, CongruenceClass *> Pair) {
3208 bool Result = ReachableBlocks.count(Pair.first->getBlock());
3209 if (!Result || MSSA->isLiveOnEntryDef(Pair.first) ||
3210 MemoryToDFSNum(Pair.first) == 0)
3211 return false;
3212 if (auto *MemDef = dyn_cast<MemoryDef>(Pair.first))
3213 return !isInstructionTriviallyDead(MemDef->getMemoryInst());
3214
3215 // We could have phi nodes which operands are all trivially dead,
3216 // so we don't process them.
3217 if (auto *MemPHI = dyn_cast<MemoryPhi>(Pair.first)) {
3218 for (const auto &U : MemPHI->incoming_values()) {
3219 if (auto *I = dyn_cast<Instruction>(&*U)) {
3220 if (!isInstructionTriviallyDead(I))
3221 return true;
3222 }
3223 }
3224 return false;
3225 }
3226
3227 return true;
3228 };
3229
3230 auto Filtered = make_filter_range(MemoryAccessToClass, ReachableAccessPred);
3231 for (auto KV : Filtered) {
3232 if (auto *FirstMUD = dyn_cast<MemoryUseOrDef>(KV.first)) {
3233 auto *SecondMUD = dyn_cast<MemoryUseOrDef>(KV.second->getMemoryLeader());
3234 if (FirstMUD && SecondMUD) {
3235 SmallPtrSet<const MemoryAccess *, 8> VisitedMAS;
3236 assert((singleReachablePHIPath(VisitedMAS, FirstMUD, SecondMUD) ||
3237 ValueToClass.lookup(FirstMUD->getMemoryInst()) ==
3238 ValueToClass.lookup(SecondMUD->getMemoryInst())) &&
3239 "The instructions for these memory operations should have "
3240 "been in the same congruence class or reachable through"
3241 "a single argument phi");
3242 }
3243 } else if (auto *FirstMP = dyn_cast<MemoryPhi>(KV.first)) {
3244 // We can only sanely verify that MemoryDefs in the operand list all have
3245 // the same class.
3246 auto ReachableOperandPred = [&](const Use &U) {
3247 return ReachableEdges.count(
3248 {FirstMP->getIncomingBlock(U), FirstMP->getBlock()}) &&
3249 isa<MemoryDef>(U);
3250
3251 };
3252 // All arguments should in the same class, ignoring unreachable arguments
3253 auto FilteredPhiArgs =
3254 make_filter_range(FirstMP->operands(), ReachableOperandPred);
3255 SmallVector<const CongruenceClass *, 16> PhiOpClasses;
3256 std::transform(FilteredPhiArgs.begin(), FilteredPhiArgs.end(),
3257 std::back_inserter(PhiOpClasses), [&](const Use &U) {
3258 const MemoryDef *MD = cast<MemoryDef>(U);
3259 return ValueToClass.lookup(MD->getMemoryInst());
3260 });
3261 assert(all_equal(PhiOpClasses) &&
3262 "All MemoryPhi arguments should be in the same class");
3263 }
3264 }
3265 #endif
3266 }
3267
3268 // Verify that the sparse propagation we did actually found the maximal fixpoint
3269 // We do this by storing the value to class mapping, touching all instructions,
3270 // and redoing the iteration to see if anything changed.
verifyIterationSettled(Function & F)3271 void NewGVN::verifyIterationSettled(Function &F) {
3272 #ifndef NDEBUG
3273 LLVM_DEBUG(dbgs() << "Beginning iteration verification\n");
3274 if (DebugCounter::isCounterSet(VNCounter))
3275 DebugCounter::setCounterValue(VNCounter, StartingVNCounter);
3276
3277 // Note that we have to store the actual classes, as we may change existing
3278 // classes during iteration. This is because our memory iteration propagation
3279 // is not perfect, and so may waste a little work. But it should generate
3280 // exactly the same congruence classes we have now, with different IDs.
3281 std::map<const Value *, CongruenceClass> BeforeIteration;
3282
3283 for (auto &KV : ValueToClass) {
3284 if (auto *I = dyn_cast<Instruction>(KV.first))
3285 // Skip unused/dead instructions.
3286 if (InstrToDFSNum(I) == 0)
3287 continue;
3288 BeforeIteration.insert({KV.first, *KV.second});
3289 }
3290
3291 TouchedInstructions.set();
3292 TouchedInstructions.reset(0);
3293 OpSafeForPHIOfOps.clear();
3294 iterateTouchedInstructions();
3295 DenseSet<std::pair<const CongruenceClass *, const CongruenceClass *>>
3296 EqualClasses;
3297 for (const auto &KV : ValueToClass) {
3298 if (auto *I = dyn_cast<Instruction>(KV.first))
3299 // Skip unused/dead instructions.
3300 if (InstrToDFSNum(I) == 0)
3301 continue;
3302 // We could sink these uses, but i think this adds a bit of clarity here as
3303 // to what we are comparing.
3304 auto *BeforeCC = &BeforeIteration.find(KV.first)->second;
3305 auto *AfterCC = KV.second;
3306 // Note that the classes can't change at this point, so we memoize the set
3307 // that are equal.
3308 if (!EqualClasses.count({BeforeCC, AfterCC})) {
3309 assert(BeforeCC->isEquivalentTo(AfterCC) &&
3310 "Value number changed after main loop completed!");
3311 EqualClasses.insert({BeforeCC, AfterCC});
3312 }
3313 }
3314 #endif
3315 }
3316
3317 // Verify that for each store expression in the expression to class mapping,
3318 // only the latest appears, and multiple ones do not appear.
3319 // Because loads do not use the stored value when doing equality with stores,
3320 // if we don't erase the old store expressions from the table, a load can find
3321 // a no-longer valid StoreExpression.
verifyStoreExpressions() const3322 void NewGVN::verifyStoreExpressions() const {
3323 #ifndef NDEBUG
3324 // This is the only use of this, and it's not worth defining a complicated
3325 // densemapinfo hash/equality function for it.
3326 std::set<
3327 std::pair<const Value *,
3328 std::tuple<const Value *, const CongruenceClass *, Value *>>>
3329 StoreExpressionSet;
3330 for (const auto &KV : ExpressionToClass) {
3331 if (auto *SE = dyn_cast<StoreExpression>(KV.first)) {
3332 // Make sure a version that will conflict with loads is not already there
3333 auto Res = StoreExpressionSet.insert(
3334 {SE->getOperand(0), std::make_tuple(SE->getMemoryLeader(), KV.second,
3335 SE->getStoredValue())});
3336 bool Okay = Res.second;
3337 // It's okay to have the same expression already in there if it is
3338 // identical in nature.
3339 // This can happen when the leader of the stored value changes over time.
3340 if (!Okay)
3341 Okay = (std::get<1>(Res.first->second) == KV.second) &&
3342 (lookupOperandLeader(std::get<2>(Res.first->second)) ==
3343 lookupOperandLeader(SE->getStoredValue()));
3344 assert(Okay && "Stored expression conflict exists in expression table");
3345 auto *ValueExpr = ValueToExpression.lookup(SE->getStoreInst());
3346 assert(ValueExpr && ValueExpr->equals(*SE) &&
3347 "StoreExpression in ExpressionToClass is not latest "
3348 "StoreExpression for value");
3349 }
3350 }
3351 #endif
3352 }
3353
3354 // This is the main value numbering loop, it iterates over the initial touched
3355 // instruction set, propagating value numbers, marking things touched, etc,
3356 // until the set of touched instructions is completely empty.
iterateTouchedInstructions()3357 void NewGVN::iterateTouchedInstructions() {
3358 uint64_t Iterations = 0;
3359 // Figure out where touchedinstructions starts
3360 int FirstInstr = TouchedInstructions.find_first();
3361 // Nothing set, nothing to iterate, just return.
3362 if (FirstInstr == -1)
3363 return;
3364 const BasicBlock *LastBlock = getBlockForValue(InstrFromDFSNum(FirstInstr));
3365 while (TouchedInstructions.any()) {
3366 ++Iterations;
3367 // Walk through all the instructions in all the blocks in RPO.
3368 // TODO: As we hit a new block, we should push and pop equalities into a
3369 // table lookupOperandLeader can use, to catch things PredicateInfo
3370 // might miss, like edge-only equivalences.
3371 for (unsigned InstrNum : TouchedInstructions.set_bits()) {
3372
3373 // This instruction was found to be dead. We don't bother looking
3374 // at it again.
3375 if (InstrNum == 0) {
3376 TouchedInstructions.reset(InstrNum);
3377 continue;
3378 }
3379
3380 Value *V = InstrFromDFSNum(InstrNum);
3381 const BasicBlock *CurrBlock = getBlockForValue(V);
3382
3383 // If we hit a new block, do reachability processing.
3384 if (CurrBlock != LastBlock) {
3385 LastBlock = CurrBlock;
3386 bool BlockReachable = ReachableBlocks.count(CurrBlock);
3387 const auto &CurrInstRange = BlockInstRange.lookup(CurrBlock);
3388
3389 // If it's not reachable, erase any touched instructions and move on.
3390 if (!BlockReachable) {
3391 TouchedInstructions.reset(CurrInstRange.first, CurrInstRange.second);
3392 LLVM_DEBUG(dbgs() << "Skipping instructions in block "
3393 << getBlockName(CurrBlock)
3394 << " because it is unreachable\n");
3395 continue;
3396 }
3397 updateProcessedCount(CurrBlock);
3398 }
3399 // Reset after processing (because we may mark ourselves as touched when
3400 // we propagate equalities).
3401 TouchedInstructions.reset(InstrNum);
3402
3403 if (auto *MP = dyn_cast<MemoryPhi>(V)) {
3404 LLVM_DEBUG(dbgs() << "Processing MemoryPhi " << *MP << "\n");
3405 valueNumberMemoryPhi(MP);
3406 } else if (auto *I = dyn_cast<Instruction>(V)) {
3407 valueNumberInstruction(I);
3408 } else {
3409 llvm_unreachable("Should have been a MemoryPhi or Instruction");
3410 }
3411 updateProcessedCount(V);
3412 }
3413 }
3414 NumGVNMaxIterations = std::max(NumGVNMaxIterations.getValue(), Iterations);
3415 }
3416
3417 // This is the main transformation entry point.
runGVN()3418 bool NewGVN::runGVN() {
3419 if (DebugCounter::isCounterSet(VNCounter))
3420 StartingVNCounter = DebugCounter::getCounterValue(VNCounter);
3421 bool Changed = false;
3422 NumFuncArgs = F.arg_size();
3423 MSSAWalker = MSSA->getWalker();
3424 SingletonDeadExpression = new (ExpressionAllocator) DeadExpression();
3425
3426 // Count number of instructions for sizing of hash tables, and come
3427 // up with a global dfs numbering for instructions.
3428 unsigned ICount = 1;
3429 // Add an empty instruction to account for the fact that we start at 1
3430 DFSToInstr.emplace_back(nullptr);
3431 // Note: We want ideal RPO traversal of the blocks, which is not quite the
3432 // same as dominator tree order, particularly with regard whether backedges
3433 // get visited first or second, given a block with multiple successors.
3434 // If we visit in the wrong order, we will end up performing N times as many
3435 // iterations.
3436 // The dominator tree does guarantee that, for a given dom tree node, it's
3437 // parent must occur before it in the RPO ordering. Thus, we only need to sort
3438 // the siblings.
3439 ReversePostOrderTraversal<Function *> RPOT(&F);
3440 unsigned Counter = 0;
3441 for (auto &B : RPOT) {
3442 auto *Node = DT->getNode(B);
3443 assert(Node && "RPO and Dominator tree should have same reachability");
3444 RPOOrdering[Node] = ++Counter;
3445 }
3446 // Sort dominator tree children arrays into RPO.
3447 for (auto &B : RPOT) {
3448 auto *Node = DT->getNode(B);
3449 if (Node->getNumChildren() > 1)
3450 llvm::sort(*Node, [&](const DomTreeNode *A, const DomTreeNode *B) {
3451 return RPOOrdering[A] < RPOOrdering[B];
3452 });
3453 }
3454
3455 // Now a standard depth first ordering of the domtree is equivalent to RPO.
3456 for (auto *DTN : depth_first(DT->getRootNode())) {
3457 BasicBlock *B = DTN->getBlock();
3458 const auto &BlockRange = assignDFSNumbers(B, ICount);
3459 BlockInstRange.insert({B, BlockRange});
3460 ICount += BlockRange.second - BlockRange.first;
3461 }
3462 initializeCongruenceClasses(F);
3463
3464 TouchedInstructions.resize(ICount);
3465 // Ensure we don't end up resizing the expressionToClass map, as
3466 // that can be quite expensive. At most, we have one expression per
3467 // instruction.
3468 ExpressionToClass.reserve(ICount);
3469
3470 // Initialize the touched instructions to include the entry block.
3471 const auto &InstRange = BlockInstRange.lookup(&F.getEntryBlock());
3472 TouchedInstructions.set(InstRange.first, InstRange.second);
3473 LLVM_DEBUG(dbgs() << "Block " << getBlockName(&F.getEntryBlock())
3474 << " marked reachable\n");
3475 ReachableBlocks.insert(&F.getEntryBlock());
3476
3477 iterateTouchedInstructions();
3478 verifyMemoryCongruency();
3479 verifyIterationSettled(F);
3480 verifyStoreExpressions();
3481
3482 Changed |= eliminateInstructions(F);
3483
3484 // Delete all instructions marked for deletion.
3485 for (Instruction *ToErase : InstructionsToErase) {
3486 if (!ToErase->use_empty())
3487 ToErase->replaceAllUsesWith(PoisonValue::get(ToErase->getType()));
3488
3489 assert(ToErase->getParent() &&
3490 "BB containing ToErase deleted unexpectedly!");
3491 ToErase->eraseFromParent();
3492 }
3493 Changed |= !InstructionsToErase.empty();
3494
3495 // Delete all unreachable blocks.
3496 auto UnreachableBlockPred = [&](const BasicBlock &BB) {
3497 return !ReachableBlocks.count(&BB);
3498 };
3499
3500 for (auto &BB : make_filter_range(F, UnreachableBlockPred)) {
3501 LLVM_DEBUG(dbgs() << "We believe block " << getBlockName(&BB)
3502 << " is unreachable\n");
3503 deleteInstructionsInBlock(&BB);
3504 Changed = true;
3505 }
3506
3507 cleanupTables();
3508 return Changed;
3509 }
3510
3511 struct NewGVN::ValueDFS {
3512 int DFSIn = 0;
3513 int DFSOut = 0;
3514 int LocalNum = 0;
3515
3516 // Only one of Def and U will be set.
3517 // The bool in the Def tells us whether the Def is the stored value of a
3518 // store.
3519 PointerIntPair<Value *, 1, bool> Def;
3520 Use *U = nullptr;
3521
operator <NewGVN::ValueDFS3522 bool operator<(const ValueDFS &Other) const {
3523 // It's not enough that any given field be less than - we have sets
3524 // of fields that need to be evaluated together to give a proper ordering.
3525 // For example, if you have;
3526 // DFS (1, 3)
3527 // Val 0
3528 // DFS (1, 2)
3529 // Val 50
3530 // We want the second to be less than the first, but if we just go field
3531 // by field, we will get to Val 0 < Val 50 and say the first is less than
3532 // the second. We only want it to be less than if the DFS orders are equal.
3533 //
3534 // Each LLVM instruction only produces one value, and thus the lowest-level
3535 // differentiator that really matters for the stack (and what we use as as a
3536 // replacement) is the local dfs number.
3537 // Everything else in the structure is instruction level, and only affects
3538 // the order in which we will replace operands of a given instruction.
3539 //
3540 // For a given instruction (IE things with equal dfsin, dfsout, localnum),
3541 // the order of replacement of uses does not matter.
3542 // IE given,
3543 // a = 5
3544 // b = a + a
3545 // When you hit b, you will have two valuedfs with the same dfsin, out, and
3546 // localnum.
3547 // The .val will be the same as well.
3548 // The .u's will be different.
3549 // You will replace both, and it does not matter what order you replace them
3550 // in (IE whether you replace operand 2, then operand 1, or operand 1, then
3551 // operand 2).
3552 // Similarly for the case of same dfsin, dfsout, localnum, but different
3553 // .val's
3554 // a = 5
3555 // b = 6
3556 // c = a + b
3557 // in c, we will a valuedfs for a, and one for b,with everything the same
3558 // but .val and .u.
3559 // It does not matter what order we replace these operands in.
3560 // You will always end up with the same IR, and this is guaranteed.
3561 return std::tie(DFSIn, DFSOut, LocalNum, Def, U) <
3562 std::tie(Other.DFSIn, Other.DFSOut, Other.LocalNum, Other.Def,
3563 Other.U);
3564 }
3565 };
3566
3567 // This function converts the set of members for a congruence class from values,
3568 // to sets of defs and uses with associated DFS info. The total number of
3569 // reachable uses for each value is stored in UseCount, and instructions that
3570 // seem
3571 // dead (have no non-dead uses) are stored in ProbablyDead.
convertClassToDFSOrdered(const CongruenceClass & Dense,SmallVectorImpl<ValueDFS> & DFSOrderedSet,DenseMap<const Value *,unsigned int> & UseCounts,SmallPtrSetImpl<Instruction * > & ProbablyDead) const3572 void NewGVN::convertClassToDFSOrdered(
3573 const CongruenceClass &Dense, SmallVectorImpl<ValueDFS> &DFSOrderedSet,
3574 DenseMap<const Value *, unsigned int> &UseCounts,
3575 SmallPtrSetImpl<Instruction *> &ProbablyDead) const {
3576 for (auto *D : Dense) {
3577 // First add the value.
3578 BasicBlock *BB = getBlockForValue(D);
3579 // Constants are handled prior to ever calling this function, so
3580 // we should only be left with instructions as members.
3581 assert(BB && "Should have figured out a basic block for value");
3582 ValueDFS VDDef;
3583 DomTreeNode *DomNode = DT->getNode(BB);
3584 VDDef.DFSIn = DomNode->getDFSNumIn();
3585 VDDef.DFSOut = DomNode->getDFSNumOut();
3586 // If it's a store, use the leader of the value operand, if it's always
3587 // available, or the value operand. TODO: We could do dominance checks to
3588 // find a dominating leader, but not worth it ATM.
3589 if (auto *SI = dyn_cast<StoreInst>(D)) {
3590 auto Leader = lookupOperandLeader(SI->getValueOperand());
3591 if (alwaysAvailable(Leader)) {
3592 VDDef.Def.setPointer(Leader);
3593 } else {
3594 VDDef.Def.setPointer(SI->getValueOperand());
3595 VDDef.Def.setInt(true);
3596 }
3597 } else {
3598 VDDef.Def.setPointer(D);
3599 }
3600 assert(isa<Instruction>(D) &&
3601 "The dense set member should always be an instruction");
3602 Instruction *Def = cast<Instruction>(D);
3603 VDDef.LocalNum = InstrToDFSNum(D);
3604 DFSOrderedSet.push_back(VDDef);
3605 // If there is a phi node equivalent, add it
3606 if (auto *PN = RealToTemp.lookup(Def)) {
3607 auto *PHIE =
3608 dyn_cast_or_null<PHIExpression>(ValueToExpression.lookup(Def));
3609 if (PHIE) {
3610 VDDef.Def.setInt(false);
3611 VDDef.Def.setPointer(PN);
3612 VDDef.LocalNum = 0;
3613 DFSOrderedSet.push_back(VDDef);
3614 }
3615 }
3616
3617 unsigned int UseCount = 0;
3618 // Now add the uses.
3619 for (auto &U : Def->uses()) {
3620 if (auto *I = dyn_cast<Instruction>(U.getUser())) {
3621 // Don't try to replace into dead uses
3622 if (InstructionsToErase.count(I))
3623 continue;
3624 ValueDFS VDUse;
3625 // Put the phi node uses in the incoming block.
3626 BasicBlock *IBlock;
3627 if (auto *P = dyn_cast<PHINode>(I)) {
3628 IBlock = P->getIncomingBlock(U);
3629 // Make phi node users appear last in the incoming block
3630 // they are from.
3631 VDUse.LocalNum = InstrDFS.size() + 1;
3632 } else {
3633 IBlock = getBlockForValue(I);
3634 VDUse.LocalNum = InstrToDFSNum(I);
3635 }
3636
3637 // Skip uses in unreachable blocks, as we're going
3638 // to delete them.
3639 if (!ReachableBlocks.contains(IBlock))
3640 continue;
3641
3642 DomTreeNode *DomNode = DT->getNode(IBlock);
3643 VDUse.DFSIn = DomNode->getDFSNumIn();
3644 VDUse.DFSOut = DomNode->getDFSNumOut();
3645 VDUse.U = &U;
3646 ++UseCount;
3647 DFSOrderedSet.emplace_back(VDUse);
3648 }
3649 }
3650
3651 // If there are no uses, it's probably dead (but it may have side-effects,
3652 // so not definitely dead. Otherwise, store the number of uses so we can
3653 // track if it becomes dead later).
3654 if (UseCount == 0)
3655 ProbablyDead.insert(Def);
3656 else
3657 UseCounts[Def] = UseCount;
3658 }
3659 }
3660
3661 // This function converts the set of members for a congruence class from values,
3662 // to the set of defs for loads and stores, with associated DFS info.
convertClassToLoadsAndStores(const CongruenceClass & Dense,SmallVectorImpl<ValueDFS> & LoadsAndStores) const3663 void NewGVN::convertClassToLoadsAndStores(
3664 const CongruenceClass &Dense,
3665 SmallVectorImpl<ValueDFS> &LoadsAndStores) const {
3666 for (auto *D : Dense) {
3667 if (!isa<LoadInst>(D) && !isa<StoreInst>(D))
3668 continue;
3669
3670 BasicBlock *BB = getBlockForValue(D);
3671 ValueDFS VD;
3672 DomTreeNode *DomNode = DT->getNode(BB);
3673 VD.DFSIn = DomNode->getDFSNumIn();
3674 VD.DFSOut = DomNode->getDFSNumOut();
3675 VD.Def.setPointer(D);
3676
3677 // If it's an instruction, use the real local dfs number.
3678 if (auto *I = dyn_cast<Instruction>(D))
3679 VD.LocalNum = InstrToDFSNum(I);
3680 else
3681 llvm_unreachable("Should have been an instruction");
3682
3683 LoadsAndStores.emplace_back(VD);
3684 }
3685 }
3686
patchAndReplaceAllUsesWith(Instruction * I,Value * Repl)3687 static void patchAndReplaceAllUsesWith(Instruction *I, Value *Repl) {
3688 patchReplacementInstruction(I, Repl);
3689 I->replaceAllUsesWith(Repl);
3690 }
3691
deleteInstructionsInBlock(BasicBlock * BB)3692 void NewGVN::deleteInstructionsInBlock(BasicBlock *BB) {
3693 LLVM_DEBUG(dbgs() << " BasicBlock Dead:" << *BB);
3694 ++NumGVNBlocksDeleted;
3695
3696 // Delete the instructions backwards, as it has a reduced likelihood of having
3697 // to update as many def-use and use-def chains. Start after the terminator.
3698 auto StartPoint = BB->rbegin();
3699 ++StartPoint;
3700 // Note that we explicitly recalculate BB->rend() on each iteration,
3701 // as it may change when we remove the first instruction.
3702 for (BasicBlock::reverse_iterator I(StartPoint); I != BB->rend();) {
3703 Instruction &Inst = *I++;
3704 if (!Inst.use_empty())
3705 Inst.replaceAllUsesWith(PoisonValue::get(Inst.getType()));
3706 if (isa<LandingPadInst>(Inst))
3707 continue;
3708 salvageKnowledge(&Inst, AC);
3709
3710 Inst.eraseFromParent();
3711 ++NumGVNInstrDeleted;
3712 }
3713 // Now insert something that simplifycfg will turn into an unreachable.
3714 Type *Int8Ty = Type::getInt8Ty(BB->getContext());
3715 new StoreInst(PoisonValue::get(Int8Ty),
3716 Constant::getNullValue(Int8Ty->getPointerTo()),
3717 BB->getTerminator());
3718 }
3719
markInstructionForDeletion(Instruction * I)3720 void NewGVN::markInstructionForDeletion(Instruction *I) {
3721 LLVM_DEBUG(dbgs() << "Marking " << *I << " for deletion\n");
3722 InstructionsToErase.insert(I);
3723 }
3724
replaceInstruction(Instruction * I,Value * V)3725 void NewGVN::replaceInstruction(Instruction *I, Value *V) {
3726 LLVM_DEBUG(dbgs() << "Replacing " << *I << " with " << *V << "\n");
3727 patchAndReplaceAllUsesWith(I, V);
3728 // We save the actual erasing to avoid invalidating memory
3729 // dependencies until we are done with everything.
3730 markInstructionForDeletion(I);
3731 }
3732
3733 namespace {
3734
3735 // This is a stack that contains both the value and dfs info of where
3736 // that value is valid.
3737 class ValueDFSStack {
3738 public:
back() const3739 Value *back() const { return ValueStack.back(); }
dfs_back() const3740 std::pair<int, int> dfs_back() const { return DFSStack.back(); }
3741
push_back(Value * V,int DFSIn,int DFSOut)3742 void push_back(Value *V, int DFSIn, int DFSOut) {
3743 ValueStack.emplace_back(V);
3744 DFSStack.emplace_back(DFSIn, DFSOut);
3745 }
3746
empty() const3747 bool empty() const { return DFSStack.empty(); }
3748
isInScope(int DFSIn,int DFSOut) const3749 bool isInScope(int DFSIn, int DFSOut) const {
3750 if (empty())
3751 return false;
3752 return DFSIn >= DFSStack.back().first && DFSOut <= DFSStack.back().second;
3753 }
3754
popUntilDFSScope(int DFSIn,int DFSOut)3755 void popUntilDFSScope(int DFSIn, int DFSOut) {
3756
3757 // These two should always be in sync at this point.
3758 assert(ValueStack.size() == DFSStack.size() &&
3759 "Mismatch between ValueStack and DFSStack");
3760 while (
3761 !DFSStack.empty() &&
3762 !(DFSIn >= DFSStack.back().first && DFSOut <= DFSStack.back().second)) {
3763 DFSStack.pop_back();
3764 ValueStack.pop_back();
3765 }
3766 }
3767
3768 private:
3769 SmallVector<Value *, 8> ValueStack;
3770 SmallVector<std::pair<int, int>, 8> DFSStack;
3771 };
3772
3773 } // end anonymous namespace
3774
3775 // Given an expression, get the congruence class for it.
getClassForExpression(const Expression * E) const3776 CongruenceClass *NewGVN::getClassForExpression(const Expression *E) const {
3777 if (auto *VE = dyn_cast<VariableExpression>(E))
3778 return ValueToClass.lookup(VE->getVariableValue());
3779 else if (isa<DeadExpression>(E))
3780 return TOPClass;
3781 return ExpressionToClass.lookup(E);
3782 }
3783
3784 // Given a value and a basic block we are trying to see if it is available in,
3785 // see if the value has a leader available in that block.
findPHIOfOpsLeader(const Expression * E,const Instruction * OrigInst,const BasicBlock * BB) const3786 Value *NewGVN::findPHIOfOpsLeader(const Expression *E,
3787 const Instruction *OrigInst,
3788 const BasicBlock *BB) const {
3789 // It would already be constant if we could make it constant
3790 if (auto *CE = dyn_cast<ConstantExpression>(E))
3791 return CE->getConstantValue();
3792 if (auto *VE = dyn_cast<VariableExpression>(E)) {
3793 auto *V = VE->getVariableValue();
3794 if (alwaysAvailable(V) || DT->dominates(getBlockForValue(V), BB))
3795 return VE->getVariableValue();
3796 }
3797
3798 auto *CC = getClassForExpression(E);
3799 if (!CC)
3800 return nullptr;
3801 if (alwaysAvailable(CC->getLeader()))
3802 return CC->getLeader();
3803
3804 for (auto *Member : *CC) {
3805 auto *MemberInst = dyn_cast<Instruction>(Member);
3806 if (MemberInst == OrigInst)
3807 continue;
3808 // Anything that isn't an instruction is always available.
3809 if (!MemberInst)
3810 return Member;
3811 if (DT->dominates(getBlockForValue(MemberInst), BB))
3812 return Member;
3813 }
3814 return nullptr;
3815 }
3816
eliminateInstructions(Function & F)3817 bool NewGVN::eliminateInstructions(Function &F) {
3818 // This is a non-standard eliminator. The normal way to eliminate is
3819 // to walk the dominator tree in order, keeping track of available
3820 // values, and eliminating them. However, this is mildly
3821 // pointless. It requires doing lookups on every instruction,
3822 // regardless of whether we will ever eliminate it. For
3823 // instructions part of most singleton congruence classes, we know we
3824 // will never eliminate them.
3825
3826 // Instead, this eliminator looks at the congruence classes directly, sorts
3827 // them into a DFS ordering of the dominator tree, and then we just
3828 // perform elimination straight on the sets by walking the congruence
3829 // class member uses in order, and eliminate the ones dominated by the
3830 // last member. This is worst case O(E log E) where E = number of
3831 // instructions in a single congruence class. In theory, this is all
3832 // instructions. In practice, it is much faster, as most instructions are
3833 // either in singleton congruence classes or can't possibly be eliminated
3834 // anyway (if there are no overlapping DFS ranges in class).
3835 // When we find something not dominated, it becomes the new leader
3836 // for elimination purposes.
3837 // TODO: If we wanted to be faster, We could remove any members with no
3838 // overlapping ranges while sorting, as we will never eliminate anything
3839 // with those members, as they don't dominate anything else in our set.
3840
3841 bool AnythingReplaced = false;
3842
3843 // Since we are going to walk the domtree anyway, and we can't guarantee the
3844 // DFS numbers are updated, we compute some ourselves.
3845 DT->updateDFSNumbers();
3846
3847 // Go through all of our phi nodes, and kill the arguments associated with
3848 // unreachable edges.
3849 auto ReplaceUnreachablePHIArgs = [&](PHINode *PHI, BasicBlock *BB) {
3850 for (auto &Operand : PHI->incoming_values())
3851 if (!ReachableEdges.count({PHI->getIncomingBlock(Operand), BB})) {
3852 LLVM_DEBUG(dbgs() << "Replacing incoming value of " << PHI
3853 << " for block "
3854 << getBlockName(PHI->getIncomingBlock(Operand))
3855 << " with poison due to it being unreachable\n");
3856 Operand.set(PoisonValue::get(PHI->getType()));
3857 }
3858 };
3859 // Replace unreachable phi arguments.
3860 // At this point, RevisitOnReachabilityChange only contains:
3861 //
3862 // 1. PHIs
3863 // 2. Temporaries that will convert to PHIs
3864 // 3. Operations that are affected by an unreachable edge but do not fit into
3865 // 1 or 2 (rare).
3866 // So it is a slight overshoot of what we want. We could make it exact by
3867 // using two SparseBitVectors per block.
3868 DenseMap<const BasicBlock *, unsigned> ReachablePredCount;
3869 for (auto &KV : ReachableEdges)
3870 ReachablePredCount[KV.getEnd()]++;
3871 for (auto &BBPair : RevisitOnReachabilityChange) {
3872 for (auto InstNum : BBPair.second) {
3873 auto *Inst = InstrFromDFSNum(InstNum);
3874 auto *PHI = dyn_cast<PHINode>(Inst);
3875 PHI = PHI ? PHI : dyn_cast_or_null<PHINode>(RealToTemp.lookup(Inst));
3876 if (!PHI)
3877 continue;
3878 auto *BB = BBPair.first;
3879 if (ReachablePredCount.lookup(BB) != PHI->getNumIncomingValues())
3880 ReplaceUnreachablePHIArgs(PHI, BB);
3881 }
3882 }
3883
3884 // Map to store the use counts
3885 DenseMap<const Value *, unsigned int> UseCounts;
3886 for (auto *CC : reverse(CongruenceClasses)) {
3887 LLVM_DEBUG(dbgs() << "Eliminating in congruence class " << CC->getID()
3888 << "\n");
3889 // Track the equivalent store info so we can decide whether to try
3890 // dead store elimination.
3891 SmallVector<ValueDFS, 8> PossibleDeadStores;
3892 SmallPtrSet<Instruction *, 8> ProbablyDead;
3893 if (CC->isDead() || CC->empty())
3894 continue;
3895 // Everything still in the TOP class is unreachable or dead.
3896 if (CC == TOPClass) {
3897 for (auto *M : *CC) {
3898 auto *VTE = ValueToExpression.lookup(M);
3899 if (VTE && isa<DeadExpression>(VTE))
3900 markInstructionForDeletion(cast<Instruction>(M));
3901 assert((!ReachableBlocks.count(cast<Instruction>(M)->getParent()) ||
3902 InstructionsToErase.count(cast<Instruction>(M))) &&
3903 "Everything in TOP should be unreachable or dead at this "
3904 "point");
3905 }
3906 continue;
3907 }
3908
3909 assert(CC->getLeader() && "We should have had a leader");
3910 // If this is a leader that is always available, and it's a
3911 // constant or has no equivalences, just replace everything with
3912 // it. We then update the congruence class with whatever members
3913 // are left.
3914 Value *Leader =
3915 CC->getStoredValue() ? CC->getStoredValue() : CC->getLeader();
3916 if (alwaysAvailable(Leader)) {
3917 CongruenceClass::MemberSet MembersLeft;
3918 for (auto *M : *CC) {
3919 Value *Member = M;
3920 // Void things have no uses we can replace.
3921 if (Member == Leader || !isa<Instruction>(Member) ||
3922 Member->getType()->isVoidTy()) {
3923 MembersLeft.insert(Member);
3924 continue;
3925 }
3926 LLVM_DEBUG(dbgs() << "Found replacement " << *(Leader) << " for "
3927 << *Member << "\n");
3928 auto *I = cast<Instruction>(Member);
3929 assert(Leader != I && "About to accidentally remove our leader");
3930 replaceInstruction(I, Leader);
3931 AnythingReplaced = true;
3932 }
3933 CC->swap(MembersLeft);
3934 } else {
3935 // If this is a singleton, we can skip it.
3936 if (CC->size() != 1 || RealToTemp.count(Leader)) {
3937 // This is a stack because equality replacement/etc may place
3938 // constants in the middle of the member list, and we want to use
3939 // those constant values in preference to the current leader, over
3940 // the scope of those constants.
3941 ValueDFSStack EliminationStack;
3942
3943 // Convert the members to DFS ordered sets and then merge them.
3944 SmallVector<ValueDFS, 8> DFSOrderedSet;
3945 convertClassToDFSOrdered(*CC, DFSOrderedSet, UseCounts, ProbablyDead);
3946
3947 // Sort the whole thing.
3948 llvm::sort(DFSOrderedSet);
3949 for (auto &VD : DFSOrderedSet) {
3950 int MemberDFSIn = VD.DFSIn;
3951 int MemberDFSOut = VD.DFSOut;
3952 Value *Def = VD.Def.getPointer();
3953 bool FromStore = VD.Def.getInt();
3954 Use *U = VD.U;
3955 // We ignore void things because we can't get a value from them.
3956 if (Def && Def->getType()->isVoidTy())
3957 continue;
3958 auto *DefInst = dyn_cast_or_null<Instruction>(Def);
3959 if (DefInst && AllTempInstructions.count(DefInst)) {
3960 auto *PN = cast<PHINode>(DefInst);
3961
3962 // If this is a value phi and that's the expression we used, insert
3963 // it into the program
3964 // remove from temp instruction list.
3965 AllTempInstructions.erase(PN);
3966 auto *DefBlock = getBlockForValue(Def);
3967 LLVM_DEBUG(dbgs() << "Inserting fully real phi of ops" << *Def
3968 << " into block "
3969 << getBlockName(getBlockForValue(Def)) << "\n");
3970 PN->insertBefore(&DefBlock->front());
3971 Def = PN;
3972 NumGVNPHIOfOpsEliminations++;
3973 }
3974
3975 if (EliminationStack.empty()) {
3976 LLVM_DEBUG(dbgs() << "Elimination Stack is empty\n");
3977 } else {
3978 LLVM_DEBUG(dbgs() << "Elimination Stack Top DFS numbers are ("
3979 << EliminationStack.dfs_back().first << ","
3980 << EliminationStack.dfs_back().second << ")\n");
3981 }
3982
3983 LLVM_DEBUG(dbgs() << "Current DFS numbers are (" << MemberDFSIn << ","
3984 << MemberDFSOut << ")\n");
3985 // First, we see if we are out of scope or empty. If so,
3986 // and there equivalences, we try to replace the top of
3987 // stack with equivalences (if it's on the stack, it must
3988 // not have been eliminated yet).
3989 // Then we synchronize to our current scope, by
3990 // popping until we are back within a DFS scope that
3991 // dominates the current member.
3992 // Then, what happens depends on a few factors
3993 // If the stack is now empty, we need to push
3994 // If we have a constant or a local equivalence we want to
3995 // start using, we also push.
3996 // Otherwise, we walk along, processing members who are
3997 // dominated by this scope, and eliminate them.
3998 bool ShouldPush = Def && EliminationStack.empty();
3999 bool OutOfScope =
4000 !EliminationStack.isInScope(MemberDFSIn, MemberDFSOut);
4001
4002 if (OutOfScope || ShouldPush) {
4003 // Sync to our current scope.
4004 EliminationStack.popUntilDFSScope(MemberDFSIn, MemberDFSOut);
4005 bool ShouldPush = Def && EliminationStack.empty();
4006 if (ShouldPush) {
4007 EliminationStack.push_back(Def, MemberDFSIn, MemberDFSOut);
4008 }
4009 }
4010
4011 // Skip the Def's, we only want to eliminate on their uses. But mark
4012 // dominated defs as dead.
4013 if (Def) {
4014 // For anything in this case, what and how we value number
4015 // guarantees that any side-effets that would have occurred (ie
4016 // throwing, etc) can be proven to either still occur (because it's
4017 // dominated by something that has the same side-effects), or never
4018 // occur. Otherwise, we would not have been able to prove it value
4019 // equivalent to something else. For these things, we can just mark
4020 // it all dead. Note that this is different from the "ProbablyDead"
4021 // set, which may not be dominated by anything, and thus, are only
4022 // easy to prove dead if they are also side-effect free. Note that
4023 // because stores are put in terms of the stored value, we skip
4024 // stored values here. If the stored value is really dead, it will
4025 // still be marked for deletion when we process it in its own class.
4026 if (!EliminationStack.empty() && Def != EliminationStack.back() &&
4027 isa<Instruction>(Def) && !FromStore)
4028 markInstructionForDeletion(cast<Instruction>(Def));
4029 continue;
4030 }
4031 // At this point, we know it is a Use we are trying to possibly
4032 // replace.
4033
4034 assert(isa<Instruction>(U->get()) &&
4035 "Current def should have been an instruction");
4036 assert(isa<Instruction>(U->getUser()) &&
4037 "Current user should have been an instruction");
4038
4039 // If the thing we are replacing into is already marked to be dead,
4040 // this use is dead. Note that this is true regardless of whether
4041 // we have anything dominating the use or not. We do this here
4042 // because we are already walking all the uses anyway.
4043 Instruction *InstUse = cast<Instruction>(U->getUser());
4044 if (InstructionsToErase.count(InstUse)) {
4045 auto &UseCount = UseCounts[U->get()];
4046 if (--UseCount == 0) {
4047 ProbablyDead.insert(cast<Instruction>(U->get()));
4048 }
4049 }
4050
4051 // If we get to this point, and the stack is empty we must have a use
4052 // with nothing we can use to eliminate this use, so just skip it.
4053 if (EliminationStack.empty())
4054 continue;
4055
4056 Value *DominatingLeader = EliminationStack.back();
4057
4058 auto *II = dyn_cast<IntrinsicInst>(DominatingLeader);
4059 bool isSSACopy = II && II->getIntrinsicID() == Intrinsic::ssa_copy;
4060 if (isSSACopy)
4061 DominatingLeader = II->getOperand(0);
4062
4063 // Don't replace our existing users with ourselves.
4064 if (U->get() == DominatingLeader)
4065 continue;
4066 LLVM_DEBUG(dbgs()
4067 << "Found replacement " << *DominatingLeader << " for "
4068 << *U->get() << " in " << *(U->getUser()) << "\n");
4069
4070 // If we replaced something in an instruction, handle the patching of
4071 // metadata. Skip this if we are replacing predicateinfo with its
4072 // original operand, as we already know we can just drop it.
4073 auto *ReplacedInst = cast<Instruction>(U->get());
4074 auto *PI = PredInfo->getPredicateInfoFor(ReplacedInst);
4075 if (!PI || DominatingLeader != PI->OriginalOp)
4076 patchReplacementInstruction(ReplacedInst, DominatingLeader);
4077 U->set(DominatingLeader);
4078 // This is now a use of the dominating leader, which means if the
4079 // dominating leader was dead, it's now live!
4080 auto &LeaderUseCount = UseCounts[DominatingLeader];
4081 // It's about to be alive again.
4082 if (LeaderUseCount == 0 && isa<Instruction>(DominatingLeader))
4083 ProbablyDead.erase(cast<Instruction>(DominatingLeader));
4084 // For copy instructions, we use their operand as a leader,
4085 // which means we remove a user of the copy and it may become dead.
4086 if (isSSACopy) {
4087 unsigned &IIUseCount = UseCounts[II];
4088 if (--IIUseCount == 0)
4089 ProbablyDead.insert(II);
4090 }
4091 ++LeaderUseCount;
4092 AnythingReplaced = true;
4093 }
4094 }
4095 }
4096
4097 // At this point, anything still in the ProbablyDead set is actually dead if
4098 // would be trivially dead.
4099 for (auto *I : ProbablyDead)
4100 if (wouldInstructionBeTriviallyDead(I))
4101 markInstructionForDeletion(I);
4102
4103 // Cleanup the congruence class.
4104 CongruenceClass::MemberSet MembersLeft;
4105 for (auto *Member : *CC)
4106 if (!isa<Instruction>(Member) ||
4107 !InstructionsToErase.count(cast<Instruction>(Member)))
4108 MembersLeft.insert(Member);
4109 CC->swap(MembersLeft);
4110
4111 // If we have possible dead stores to look at, try to eliminate them.
4112 if (CC->getStoreCount() > 0) {
4113 convertClassToLoadsAndStores(*CC, PossibleDeadStores);
4114 llvm::sort(PossibleDeadStores);
4115 ValueDFSStack EliminationStack;
4116 for (auto &VD : PossibleDeadStores) {
4117 int MemberDFSIn = VD.DFSIn;
4118 int MemberDFSOut = VD.DFSOut;
4119 Instruction *Member = cast<Instruction>(VD.Def.getPointer());
4120 if (EliminationStack.empty() ||
4121 !EliminationStack.isInScope(MemberDFSIn, MemberDFSOut)) {
4122 // Sync to our current scope.
4123 EliminationStack.popUntilDFSScope(MemberDFSIn, MemberDFSOut);
4124 if (EliminationStack.empty()) {
4125 EliminationStack.push_back(Member, MemberDFSIn, MemberDFSOut);
4126 continue;
4127 }
4128 }
4129 // We already did load elimination, so nothing to do here.
4130 if (isa<LoadInst>(Member))
4131 continue;
4132 assert(!EliminationStack.empty());
4133 Instruction *Leader = cast<Instruction>(EliminationStack.back());
4134 (void)Leader;
4135 assert(DT->dominates(Leader->getParent(), Member->getParent()));
4136 // Member is dominater by Leader, and thus dead
4137 LLVM_DEBUG(dbgs() << "Marking dead store " << *Member
4138 << " that is dominated by " << *Leader << "\n");
4139 markInstructionForDeletion(Member);
4140 CC->erase(Member);
4141 ++NumGVNDeadStores;
4142 }
4143 }
4144 }
4145 return AnythingReplaced;
4146 }
4147
4148 // This function provides global ranking of operations so that we can place them
4149 // in a canonical order. Note that rank alone is not necessarily enough for a
4150 // complete ordering, as constants all have the same rank. However, generally,
4151 // we will simplify an operation with all constants so that it doesn't matter
4152 // what order they appear in.
getRank(const Value * V) const4153 unsigned int NewGVN::getRank(const Value *V) const {
4154 // Prefer constants to undef to anything else
4155 // Undef is a constant, have to check it first.
4156 // Prefer poison to undef as it's less defined.
4157 // Prefer smaller constants to constantexprs
4158 // Note that the order here matters because of class inheritance
4159 if (isa<ConstantExpr>(V))
4160 return 3;
4161 if (isa<PoisonValue>(V))
4162 return 1;
4163 if (isa<UndefValue>(V))
4164 return 2;
4165 if (isa<Constant>(V))
4166 return 0;
4167 if (auto *A = dyn_cast<Argument>(V))
4168 return 4 + A->getArgNo();
4169
4170 // Need to shift the instruction DFS by number of arguments + 5 to account for
4171 // the constant and argument ranking above.
4172 unsigned Result = InstrToDFSNum(V);
4173 if (Result > 0)
4174 return 5 + NumFuncArgs + Result;
4175 // Unreachable or something else, just return a really large number.
4176 return ~0;
4177 }
4178
4179 // This is a function that says whether two commutative operations should
4180 // have their order swapped when canonicalizing.
shouldSwapOperands(const Value * A,const Value * B) const4181 bool NewGVN::shouldSwapOperands(const Value *A, const Value *B) const {
4182 // Because we only care about a total ordering, and don't rewrite expressions
4183 // in this order, we order by rank, which will give a strict weak ordering to
4184 // everything but constants, and then we order by pointer address.
4185 return std::make_pair(getRank(A), A) > std::make_pair(getRank(B), B);
4186 }
4187
shouldSwapOperandsForIntrinsic(const Value * A,const Value * B,const IntrinsicInst * I) const4188 bool NewGVN::shouldSwapOperandsForIntrinsic(const Value *A, const Value *B,
4189 const IntrinsicInst *I) const {
4190 auto LookupResult = IntrinsicInstPred.find(I);
4191 if (shouldSwapOperands(A, B)) {
4192 if (LookupResult == IntrinsicInstPred.end())
4193 IntrinsicInstPred.insert({I, B});
4194 else
4195 LookupResult->second = B;
4196 return true;
4197 }
4198
4199 if (LookupResult != IntrinsicInstPred.end()) {
4200 auto *SeenPredicate = LookupResult->second;
4201 if (SeenPredicate) {
4202 if (SeenPredicate == B)
4203 return true;
4204 else
4205 LookupResult->second = nullptr;
4206 }
4207 }
4208 return false;
4209 }
4210
4211 namespace {
4212
4213 class NewGVNLegacyPass : public FunctionPass {
4214 public:
4215 // Pass identification, replacement for typeid.
4216 static char ID;
4217
NewGVNLegacyPass()4218 NewGVNLegacyPass() : FunctionPass(ID) {
4219 initializeNewGVNLegacyPassPass(*PassRegistry::getPassRegistry());
4220 }
4221
4222 bool runOnFunction(Function &F) override;
4223
4224 private:
getAnalysisUsage(AnalysisUsage & AU) const4225 void getAnalysisUsage(AnalysisUsage &AU) const override {
4226 AU.addRequired<AssumptionCacheTracker>();
4227 AU.addRequired<DominatorTreeWrapperPass>();
4228 AU.addRequired<TargetLibraryInfoWrapperPass>();
4229 AU.addRequired<MemorySSAWrapperPass>();
4230 AU.addRequired<AAResultsWrapperPass>();
4231 AU.addPreserved<DominatorTreeWrapperPass>();
4232 AU.addPreserved<GlobalsAAWrapperPass>();
4233 }
4234 };
4235
4236 } // end anonymous namespace
4237
runOnFunction(Function & F)4238 bool NewGVNLegacyPass::runOnFunction(Function &F) {
4239 if (skipFunction(F))
4240 return false;
4241 return NewGVN(F, &getAnalysis<DominatorTreeWrapperPass>().getDomTree(),
4242 &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F),
4243 &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F),
4244 &getAnalysis<AAResultsWrapperPass>().getAAResults(),
4245 &getAnalysis<MemorySSAWrapperPass>().getMSSA(),
4246 F.getParent()->getDataLayout())
4247 .runGVN();
4248 }
4249
4250 char NewGVNLegacyPass::ID = 0;
4251
4252 INITIALIZE_PASS_BEGIN(NewGVNLegacyPass, "newgvn", "Global Value Numbering",
4253 false, false)
INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)4254 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
4255 INITIALIZE_PASS_DEPENDENCY(MemorySSAWrapperPass)
4256 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
4257 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
4258 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
4259 INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass)
4260 INITIALIZE_PASS_END(NewGVNLegacyPass, "newgvn", "Global Value Numbering", false,
4261 false)
4262
4263 // createGVNPass - The public interface to this file.
4264 FunctionPass *llvm::createNewGVNPass() { return new NewGVNLegacyPass(); }
4265
run(Function & F,AnalysisManager<Function> & AM)4266 PreservedAnalyses NewGVNPass::run(Function &F, AnalysisManager<Function> &AM) {
4267 // Apparently the order in which we get these results matter for
4268 // the old GVN (see Chandler's comment in GVN.cpp). I'll keep
4269 // the same order here, just in case.
4270 auto &AC = AM.getResult<AssumptionAnalysis>(F);
4271 auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
4272 auto &TLI = AM.getResult<TargetLibraryAnalysis>(F);
4273 auto &AA = AM.getResult<AAManager>(F);
4274 auto &MSSA = AM.getResult<MemorySSAAnalysis>(F).getMSSA();
4275 bool Changed =
4276 NewGVN(F, &DT, &AC, &TLI, &AA, &MSSA, F.getParent()->getDataLayout())
4277 .runGVN();
4278 if (!Changed)
4279 return PreservedAnalyses::all();
4280 PreservedAnalyses PA;
4281 PA.preserve<DominatorTreeAnalysis>();
4282 return PA;
4283 }
4284