xref: /llvm-project/llvm/unittests/Analysis/MLModelRunnerTest.cpp (revision 89e6a288674c9fae33aeb5448c7b1fe782b2bf53)
1 //===- MLModelRunnerTest.cpp - test for MLModelRunner ---------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "llvm/Analysis/MLModelRunner.h"
10 #include "llvm/ADT/StringExtras.h"
11 #include "llvm/Analysis/InteractiveModelRunner.h"
12 #include "llvm/Analysis/NoInferenceModelRunner.h"
13 #include "llvm/Analysis/ReleaseModeModelRunner.h"
14 #include "llvm/Config/llvm-config.h" // for LLVM_ON_UNIX
15 #include "llvm/Support/BinaryByteStream.h"
16 #include "llvm/Support/ErrorHandling.h"
17 #include "llvm/Support/FileSystem.h"
18 #include "llvm/Support/FileUtilities.h"
19 #include "llvm/Support/JSON.h"
20 #include "llvm/Support/Path.h"
21 #include "llvm/Support/raw_ostream.h"
22 #include "llvm/Testing/Support/SupportHelpers.h"
23 #include "gtest/gtest.h"
24 #include <atomic>
25 #include <thread>
26 
27 using namespace llvm;
28 
29 namespace llvm {
30 // This is a mock of the kind of AOT-generated model evaluator. It has 2 tensors
31 // of shape {1}, and 'evaluation' adds them.
32 // The interface is the one expected by ReleaseModelRunner.
33 class MockAOTModelBase {
34 protected:
35   int64_t A = 0;
36   int64_t B = 0;
37   int64_t R = 0;
38 
39 public:
40   MockAOTModelBase() = default;
41   virtual ~MockAOTModelBase() = default;
42 
43   virtual int LookupArgIndex(const std::string &Name) {
44     if (Name == "prefix_a")
45       return 0;
46     if (Name == "prefix_b")
47       return 1;
48     return -1;
49   }
50   int LookupResultIndex(const std::string &) { return 0; }
51   virtual void Run() = 0;
52   virtual void *result_data(int RIndex) {
53     if (RIndex == 0)
54       return &R;
55     return nullptr;
56   }
57   virtual void *arg_data(int Index) {
58     switch (Index) {
59     case 0:
60       return &A;
61     case 1:
62       return &B;
63     default:
64       return nullptr;
65     }
66   }
67 };
68 
69 class AdditionAOTModel final : public MockAOTModelBase {
70 public:
71   AdditionAOTModel() = default;
72   void Run() override { R = A + B; }
73 };
74 
75 class DiffAOTModel final : public MockAOTModelBase {
76 public:
77   DiffAOTModel() = default;
78   void Run() override { R = A - B; }
79 };
80 
81 static const char *M1Selector = "the model that subtracts";
82 static const char *M2Selector = "the model that adds";
83 
84 static MD5::MD5Result Hash1 = MD5::hash(arrayRefFromStringRef(M1Selector));
85 static MD5::MD5Result Hash2 = MD5::hash(arrayRefFromStringRef(M2Selector));
86 class ComposedAOTModel final {
87   DiffAOTModel M1;
88   AdditionAOTModel M2;
89   uint64_t Selector[2] = {0};
90 
91   bool isHashSameAsSelector(const std::pair<uint64_t, uint64_t> &Words) const {
92     return Selector[0] == Words.first && Selector[1] == Words.second;
93   }
94   MockAOTModelBase *getModel() {
95     if (isHashSameAsSelector(Hash1.words()))
96       return &M1;
97     if (isHashSameAsSelector(Hash2.words()))
98       return &M2;
99     llvm_unreachable("Should be one of the two");
100   }
101 
102 public:
103   ComposedAOTModel() = default;
104   int LookupArgIndex(const std::string &Name) {
105     if (Name == "prefix_model_selector")
106       return 2;
107     return getModel()->LookupArgIndex(Name);
108   }
109   int LookupResultIndex(const std::string &Name) {
110     return getModel()->LookupResultIndex(Name);
111   }
112   void *arg_data(int Index) {
113     if (Index == 2)
114       return Selector;
115     return getModel()->arg_data(Index);
116   }
117   void *result_data(int RIndex) { return getModel()->result_data(RIndex); }
118   void Run() { getModel()->Run(); }
119 };
120 
121 static EmbeddedModelRunnerOptions makeOptions() {
122   EmbeddedModelRunnerOptions Opts;
123   Opts.setFeedPrefix("prefix_");
124   return Opts;
125 }
126 } // namespace llvm
127 
128 TEST(NoInferenceModelRunner, AccessTensors) {
129   const std::vector<TensorSpec> Inputs{
130       TensorSpec::createSpec<int64_t>("F1", {1}),
131       TensorSpec::createSpec<int64_t>("F2", {10}),
132       TensorSpec::createSpec<float>("F2", {5}),
133   };
134   LLVMContext Ctx;
135   NoInferenceModelRunner NIMR(Ctx, Inputs);
136   NIMR.getTensor<int64_t>(0)[0] = 1;
137   std::memcpy(NIMR.getTensor<int64_t>(1),
138               std::vector<int64_t>{1, 2, 3, 4, 5, 6, 7, 8, 9, 10}.data(),
139               10 * sizeof(int64_t));
140   std::memcpy(NIMR.getTensor<float>(2),
141               std::vector<float>{0.1f, 0.2f, 0.3f, 0.4f, 0.5f}.data(),
142               5 * sizeof(float));
143   ASSERT_EQ(NIMR.getTensor<int64_t>(0)[0], 1);
144   ASSERT_EQ(NIMR.getTensor<int64_t>(1)[8], 9);
145   ASSERT_EQ(NIMR.getTensor<float>(2)[1], 0.2f);
146 }
147 
148 TEST(ReleaseModeRunner, NormalUse) {
149   LLVMContext Ctx;
150   std::vector<TensorSpec> Inputs{TensorSpec::createSpec<int64_t>("a", {1}),
151                                  TensorSpec::createSpec<int64_t>("b", {1})};
152   auto Evaluator = std::make_unique<ReleaseModeModelRunner<AdditionAOTModel>>(
153       Ctx, Inputs, "", makeOptions());
154   *Evaluator->getTensor<int64_t>(0) = 1;
155   *Evaluator->getTensor<int64_t>(1) = 2;
156   EXPECT_EQ(Evaluator->evaluate<int64_t>(), 3);
157   EXPECT_EQ(*Evaluator->getTensor<int64_t>(0), 1);
158   EXPECT_EQ(*Evaluator->getTensor<int64_t>(1), 2);
159 }
160 
161 TEST(ReleaseModeRunner, ExtraFeatures) {
162   LLVMContext Ctx;
163   std::vector<TensorSpec> Inputs{TensorSpec::createSpec<int64_t>("a", {1}),
164                                  TensorSpec::createSpec<int64_t>("b", {1}),
165                                  TensorSpec::createSpec<int64_t>("c", {1})};
166   auto Evaluator = std::make_unique<ReleaseModeModelRunner<AdditionAOTModel>>(
167       Ctx, Inputs, "", makeOptions());
168   *Evaluator->getTensor<int64_t>(0) = 1;
169   *Evaluator->getTensor<int64_t>(1) = 2;
170   *Evaluator->getTensor<int64_t>(2) = -3;
171   EXPECT_EQ(Evaluator->evaluate<int64_t>(), 3);
172   EXPECT_EQ(*Evaluator->getTensor<int64_t>(0), 1);
173   EXPECT_EQ(*Evaluator->getTensor<int64_t>(1), 2);
174   EXPECT_EQ(*Evaluator->getTensor<int64_t>(2), -3);
175 }
176 
177 TEST(ReleaseModeRunner, ExtraFeaturesOutOfOrder) {
178   LLVMContext Ctx;
179   std::vector<TensorSpec> Inputs{
180       TensorSpec::createSpec<int64_t>("a", {1}),
181       TensorSpec::createSpec<int64_t>("c", {1}),
182       TensorSpec::createSpec<int64_t>("b", {1}),
183   };
184   auto Evaluator = std::make_unique<ReleaseModeModelRunner<AdditionAOTModel>>(
185       Ctx, Inputs, "", makeOptions());
186   *Evaluator->getTensor<int64_t>(0) = 1;         // a
187   *Evaluator->getTensor<int64_t>(1) = 2;         // c
188   *Evaluator->getTensor<int64_t>(2) = -3;        // b
189   EXPECT_EQ(Evaluator->evaluate<int64_t>(), -2); // a + b
190   EXPECT_EQ(*Evaluator->getTensor<int64_t>(0), 1);
191   EXPECT_EQ(*Evaluator->getTensor<int64_t>(1), 2);
192   EXPECT_EQ(*Evaluator->getTensor<int64_t>(2), -3);
193 }
194 
195 // We expect an error to be reported early if the user tried to specify a model
196 // selector, but the model in fact doesn't support that.
197 TEST(ReleaseModelRunner, ModelSelectorNoInputFeaturePresent) {
198   LLVMContext Ctx;
199   std::vector<TensorSpec> Inputs{TensorSpec::createSpec<int64_t>("a", {1}),
200                                  TensorSpec::createSpec<int64_t>("b", {1})};
201   EXPECT_DEATH((void)std::make_unique<ReleaseModeModelRunner<AdditionAOTModel>>(
202                    Ctx, Inputs, "", makeOptions().setModelSelector(M2Selector)),
203                "A model selector was specified but the underlying model does "
204                "not expose a model_selector input");
205 }
206 
207 TEST(ReleaseModelRunner, ModelSelectorNoSelectorGiven) {
208   LLVMContext Ctx;
209   std::vector<TensorSpec> Inputs{TensorSpec::createSpec<int64_t>("a", {1}),
210                                  TensorSpec::createSpec<int64_t>("b", {1})};
211   EXPECT_DEATH(
212       (void)std::make_unique<ReleaseModeModelRunner<ComposedAOTModel>>(
213           Ctx, Inputs, "", makeOptions()),
214       "A model selector was not specified but the underlying model requires "
215       "selecting one because it exposes a model_selector input");
216 }
217 
218 // Test that we correctly set up the model_selector tensor value. We are only
219 // responsbile for what happens if the user doesn't specify a value (but the
220 // model supports the feature), or if the user specifies one, and we correctly
221 // populate the tensor, and do so upfront (in case the model implementation
222 // needs that for subsequent tensor buffer lookups).
223 TEST(ReleaseModelRunner, ModelSelector) {
224   LLVMContext Ctx;
225   std::vector<TensorSpec> Inputs{TensorSpec::createSpec<int64_t>("a", {1}),
226                                  TensorSpec::createSpec<int64_t>("b", {1})};
227   // This explicitly asks for M1
228   auto Evaluator = std::make_unique<ReleaseModeModelRunner<ComposedAOTModel>>(
229       Ctx, Inputs, "", makeOptions().setModelSelector(M1Selector));
230   *Evaluator->getTensor<int64_t>(0) = 1;
231   *Evaluator->getTensor<int64_t>(1) = 2;
232   EXPECT_EQ(Evaluator->evaluate<int64_t>(), -1);
233 
234   // Ask for M2
235   Evaluator = std::make_unique<ReleaseModeModelRunner<ComposedAOTModel>>(
236       Ctx, Inputs, "", makeOptions().setModelSelector(M2Selector));
237   *Evaluator->getTensor<int64_t>(0) = 1;
238   *Evaluator->getTensor<int64_t>(1) = 2;
239   EXPECT_EQ(Evaluator->evaluate<int64_t>(), 3);
240 
241   // Asking for a model that's not supported isn't handled by our infra and we
242   // expect the model implementation to fail at a point.
243 }
244 
245 #if defined(LLVM_ON_UNIX)
246 TEST(InteractiveModelRunner, Evaluation) {
247   LLVMContext Ctx;
248   // Test the interaction with an external advisor by asking for advice twice.
249   // Use simple values, since we use the Logger underneath, that's tested more
250   // extensively elsewhere.
251   std::vector<TensorSpec> Inputs{
252       TensorSpec::createSpec<int64_t>("a", {1}),
253       TensorSpec::createSpec<int64_t>("b", {1}),
254       TensorSpec::createSpec<int64_t>("c", {1}),
255   };
256   TensorSpec AdviceSpec = TensorSpec::createSpec<float>("advice", {1});
257 
258   // Create the 2 files. Ideally we'd create them as named pipes, but that's not
259   // quite supported by the generic API.
260   std::error_code EC;
261   llvm::unittest::TempDir Tmp("tmpdir", /*Unique=*/true);
262   SmallString<128> FromCompilerName(Tmp.path().begin(), Tmp.path().end());
263   SmallString<128> ToCompilerName(Tmp.path().begin(), Tmp.path().end());
264   sys::path::append(FromCompilerName, "InteractiveModelRunner_Evaluation.out");
265   sys::path::append(ToCompilerName, "InteractiveModelRunner_Evaluation.in");
266   EXPECT_EQ(::mkfifo(FromCompilerName.c_str(), 0666), 0);
267   EXPECT_EQ(::mkfifo(ToCompilerName.c_str(), 0666), 0);
268 
269   FileRemover Cleanup1(FromCompilerName);
270   FileRemover Cleanup2(ToCompilerName);
271 
272   // Since the evaluator sends the features over and then blocks waiting for
273   // an answer, we must spawn a thread playing the role of the advisor / host:
274   std::atomic<int> SeenObservations = 0;
275   // Start the host first to make sure the pipes are being prepared. Otherwise
276   // the evaluator will hang.
277   std::thread Advisor([&]() {
278     // Open the writer first. This is because the evaluator will try opening
279     // the "input" pipe first. An alternative that avoids ordering is for the
280     // host to open the pipes RW.
281     raw_fd_ostream ToCompiler(ToCompilerName, EC);
282     EXPECT_FALSE(EC);
283     int FromCompilerHandle = 0;
284     EXPECT_FALSE(
285         sys::fs::openFileForRead(FromCompilerName, FromCompilerHandle));
286     sys::fs::file_t FromCompiler =
287         sys::fs::convertFDToNativeFile(FromCompilerHandle);
288     EXPECT_EQ(SeenObservations, 0);
289     // Helper to read headers and other json lines.
290     SmallVector<char, 1024> Buffer;
291     auto ReadLn = [&]() {
292       Buffer.clear();
293       while (true) {
294         char Chr = 0;
295         auto ReadOrErr = sys::fs::readNativeFile(FromCompiler, {&Chr, 1});
296         EXPECT_FALSE(ReadOrErr.takeError());
297         if (!*ReadOrErr)
298           continue;
299         if (Chr == '\n')
300           return StringRef(Buffer.data(), Buffer.size());
301         Buffer.push_back(Chr);
302       }
303     };
304     // See include/llvm/Analysis/Utils/TrainingLogger.h
305     // First comes the header
306     auto Header = json::parse(ReadLn());
307     EXPECT_FALSE(Header.takeError());
308     EXPECT_NE(Header->getAsObject()->getArray("features"), nullptr);
309     EXPECT_NE(Header->getAsObject()->getObject("advice"), nullptr);
310     // Then comes the context
311     EXPECT_FALSE(json::parse(ReadLn()).takeError());
312 
313     int64_t Features[3] = {0};
314     auto FullyRead = [&]() {
315       size_t InsPt = 0;
316       const size_t ToRead = 3 * Inputs[0].getTotalTensorBufferSize();
317       char *Buff = reinterpret_cast<char *>(Features);
318       while (InsPt < ToRead) {
319         auto ReadOrErr = sys::fs::readNativeFile(
320             FromCompiler, {Buff + InsPt, ToRead - InsPt});
321         EXPECT_FALSE(ReadOrErr.takeError());
322         InsPt += *ReadOrErr;
323       }
324     };
325     // Observation
326     EXPECT_FALSE(json::parse(ReadLn()).takeError());
327     // Tensor values
328     FullyRead();
329     // a "\n"
330     char Chr = 0;
331     auto ReadNL = [&]() {
332       do {
333         auto ReadOrErr = sys::fs::readNativeFile(FromCompiler, {&Chr, 1});
334         EXPECT_FALSE(ReadOrErr.takeError());
335         if (*ReadOrErr == 1)
336           break;
337       } while (true);
338     };
339     ReadNL();
340     EXPECT_EQ(Chr, '\n');
341     EXPECT_EQ(Features[0], 42);
342     EXPECT_EQ(Features[1], 43);
343     EXPECT_EQ(Features[2], 100);
344     ++SeenObservations;
345 
346     // Send the advice
347     float Advice = 42.0012;
348     ToCompiler.write(reinterpret_cast<const char *>(&Advice),
349                      AdviceSpec.getTotalTensorBufferSize());
350     ToCompiler.flush();
351 
352     // Second observation, and same idea as above
353     EXPECT_FALSE(json::parse(ReadLn()).takeError());
354     FullyRead();
355     ReadNL();
356     EXPECT_EQ(Chr, '\n');
357     EXPECT_EQ(Features[0], 10);
358     EXPECT_EQ(Features[1], -2);
359     EXPECT_EQ(Features[2], 1);
360     ++SeenObservations;
361     Advice = 50.30;
362     ToCompiler.write(reinterpret_cast<const char *>(&Advice),
363                      AdviceSpec.getTotalTensorBufferSize());
364     ToCompiler.flush();
365     sys::fs::closeFile(FromCompiler);
366   });
367 
368   InteractiveModelRunner Evaluator(Ctx, Inputs, AdviceSpec, FromCompilerName,
369                                    ToCompilerName);
370 
371   Evaluator.switchContext("hi");
372 
373   EXPECT_EQ(SeenObservations, 0);
374   *Evaluator.getTensor<int64_t>(0) = 42;
375   *Evaluator.getTensor<int64_t>(1) = 43;
376   *Evaluator.getTensor<int64_t>(2) = 100;
377   float Ret = Evaluator.evaluate<float>();
378   EXPECT_EQ(SeenObservations, 1);
379   EXPECT_FLOAT_EQ(Ret, 42.0012);
380 
381   *Evaluator.getTensor<int64_t>(0) = 10;
382   *Evaluator.getTensor<int64_t>(1) = -2;
383   *Evaluator.getTensor<int64_t>(2) = 1;
384   Ret = Evaluator.evaluate<float>();
385   EXPECT_EQ(SeenObservations, 2);
386   EXPECT_FLOAT_EQ(Ret, 50.30);
387   Advisor.join();
388 }
389 #endif
390